
Name
ST_Within — Tests if every point of A lies in B, and their interiors have a point in common

Synopsis
	boolean ST_Within(A, 	
	 	B);	

geometry
 A;
geometry
 B;

Description
Returns TRUE if geometry A is within geometry B.
 A is within B if and only if all points of A lie inside (i.e. in the interior or boundary of) B
 (or equivalently, no points of A lie in the exterior of B),
 and the interiors of A and B have at least one point in common.

For this function to make
 sense, the source geometries must both be of the same coordinate projection,
 having the same SRID.

In mathematical terms:
 ST_Within(A, B) ⇔ (A ⋂ B = A) ∧ (Int(A) ⋂ Int(B) ≠ ∅)
The within relation is reflexive: every geometry is within itself.
 The relation is antisymmetric: if ST_Within(A,B) = true and ST_Within(B,A) = true, then
 the two geometries must be topologically equal (ST_Equals(A,B) = true).
ST_Within is the converse of ST_Contains.
 So, ST_Within(A,B) = ST_Contains(B,A).
Note
Because the interiors must have a common point, a subtlety of the definition is that
 lines and points lying fully in the boundary of polygons or lines are not within the geometry.
 For further details see Subtleties of OGC Covers, Contains, Within.
 The ST_CoveredBy predicate provides a more inclusive relationship.

Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Within.

Performed by the GEOS module
Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.2 // s2.1.13.3
 - a.Relate(b, 'T*F**F***')

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.30

Examples

--a circle within a circle
SELECT ST_Within(smallc,smallc) As smallinsmall,
 ST_Within(smallc, bigc) As smallinbig,
 ST_Within(bigc,smallc) As biginsmall,
 ST_Within(ST_Union(smallc, bigc), bigc) as unioninbig,
 ST_Within(bigc, ST_Union(smallc, bigc)) as biginunion,
 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion
FROM
(
SELECT ST_Buffer(ST_GeomFromText('POINT(50 50)'), 20) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(50 50)'), 40) As bigc) As foo;
--Result
 smallinsmall | smallinbig | biginsmall | unioninbig | biginunion | bigisunion
--------------+------------+------------+------------+------------+------------
 t | t | f | t | t | t
(1 row)

[image: Examples]

See Also
ST_Contains, ST_CoveredBy, ST_Equals, ST_IsValid

Name
PostGIS_Version — Returns PostGIS version number and compile-time
		options.

Synopsis
	text PostGIS_Version();	

;

Description
Returns PostGIS version number and compile-time options.

Examples
SELECT PostGIS_Version();
			postgis_version

 3.4 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version

Name
ST_MakePoint — Creates a 2D, 3DZ or 4D Point.

Synopsis
	geometry ST_MakePoint(x, 	
	 	y);	

float x;
float y;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z);	

float x;
float y;
float z;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z, 	
	 	m);	

float x;
float y;
float z;
float m;

Description
Creates a 2D, 3D Z or 4D ZM Point geometry.
Use ST_MakePointM to make points with XYM coordinates.

			While not OGC-compliant, ST_MakePoint is
			faster and more precise than ST_GeomFromText
			and ST_PointFromText.
			It is also easier to use for numeric coordinate values.
Note
For geodetic coordinates, X is longitude and Y is latitude

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
--Return point with unknown SRID
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint(1, 2,1.5);

--Get z of point
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result

1.5

See Also
ST_GeomFromText, ST_PointFromText, ST_SetSRID, ST_MakePointM

Name
ST_3DDifference — Perform 3D difference

Synopsis
	geometry ST_3DDifference(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Returns that part of geom1 that is not part of geom2.
Availability: 2.2.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is the part that will be removed.

 	

SELECT ST_3DDifference(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]What's left after removing geom2

See Also

 ST_Extrude,
 ST_AsX3D, ST_3DIntersection
 ST_3DUnion

Name
ST_Slope — Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

Synopsis
	raster ST_Slope(rast, 	
	 	nband=1, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband=1;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

	raster ST_Slope(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

Description
Returns the slope (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the slope equation to neighboring pixels.

 units indicates the units of the slope. Possible values are: RADIANS, DEGREES (default), PERCENT.

 scale is the ratio of vertical units to horizontal. For Feet:LatLon use scale=370400, for Meters:LatLon use scale=111120.

 If interpolate_nodata is TRUE, values for NODATA pixels from the input raster will be interpolated using ST_InvDistWeight4ma before computing the surface slope.

Note

 For more information about Slope, Aspect and Hillshade, please refer to ESRI - How hillshade works and ERDAS Field Guide - Slope Images.

Availability: 2.0.0
Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS (
 SELECT ST_SetValues(
 ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1],
 [1, 2, 2, 2, 1],
 [1, 2, 3, 2, 1],
 [1, 2, 2, 2, 1],
 [1, 1, 1, 1, 1]
]::double precision[][]
) AS rast
)
SELECT
 ST_DumpValues(ST_Slope(rast, 1, '32BF'))
FROM foo

 st_dumpvalues

--
--

 (1,"{{10.0249881744385,21.5681285858154,26.5650520324707,21.5681285858154,10.0249881744385},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},
{26.5650520324707,36.8698959350586,0,36.8698959350586,26.5650520324707},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},{10.0249881744385,21.
5681285858154,26.5650520324707,21.5681285858154,10.0249881744385}}")
(1 row)

Examples: Variant 2
Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
 SELECT ST_Tile(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
 1, '32BF', 0, -9999
),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 2, 1],
 [1, 2, 2, 3, 3, 1],
 [1, 1, 3, 2, 1, 1],
 [1, 2, 2, 1, 2, 1],
 [1, 1, 1, 1, 1, 1]
]::double precision[]
),
 2, 2
) AS rast
)
SELECT
 t1.rast,
 ST_Slope(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;

See Also

 ST_MapAlgebra (callback function version),
 ST_TRI,
 ST_TPI,
 ST_Roughness,
 ST_HillShade,
 ST_Aspect

Name
ST_SetM — Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the M dimension using the requested resample algorithm.

Synopsis
	geometry ST_SetM(rast, 	
	 	geom, 	
	 	resample=nearest, 	
	 	band=1);	

raster rast;
geometry geom;
text resample=nearest;
integer band=1;

Description
Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the M dimensions using the requested resample algorithm.
The resample parameter can be set to "nearest" to copy the values from the cell each vertex falls within, or "bilinear" to use bilinear interpolation to calculate a value that takes neighboring cells into account also.
Availability: 3.2.0

Examples
--
-- 2x2 test raster with values
--
-- 10 50
-- 40 20
--
WITH test_raster AS (
SELECT
ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(width => 2, height => 2,
 upperleftx => 0, upperlefty => 2,
 scalex => 1.0, scaley => -1.0,
 skewx => 0, skewy => 0, srid => 4326),
 index => 1, pixeltype => '16BSI',
 initialvalue => 0,
 nodataval => -999),
 1,1,1,
 newvalueset =>ARRAY[ARRAY[10.0::float8, 50.0::float8], ARRAY[40.0::float8, 20.0::float8]]) AS rast
)
SELECT
ST_AsText(
 ST_SetM(
 rast,
 band => 1,
 geom => 'SRID=4326;LINESTRING(1.0 1.9, 1.0 0.2)'::geometry,
 resample => 'bilinear'
))
FROM test_raster

 st_astext

 LINESTRING M (1 1.9 38,1 0.2 27)

See Also

 ST_Value,
 ST_SetZ

Name
GetTopoGeomElementArray — Returns a topoelementarray (an array of topoelements) containing the topological elements and type of the given TopoGeometry (primitive elements).

Synopsis
	topoelementarray GetTopoGeomElementArray(toponame, 	
	 	layer_id, 	
	 	tg_id);	

varchar toponame;
integer layer_id;
integer tg_id;

	topoelementarray GetTopoGeomElementArray(tg);	

topogeometry tg;

Description
Returns a TopoElementArray containing the topological elements and type of the given TopoGeometry (primitive elements). This is similar to GetTopoGeomElements except it returns the elements as an array rather
 than as a dataset.
tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.
Availability: 1.1

Examples

See Also
GetTopoGeomElements, TopoElementArray

Name
ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of
					closed linestrings as a MultiLineString text
					representation Well-Known text representation.

Synopsis
	geometry ST_BdMPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Construct a Polygon given an arbitrary collection of closed
				linestrings, polygons, MultiLineStrings as Well-Known text representation.
Note
Throws an error if WKT is not a MULTILINESTRING. Forces
					MULTIPOLYGON output even when result is really only composed by a
					single POLYGON; use ST_BdPolyFromText if you're sure a
					single POLYGON will result from operation, or see ST_BuildArea() for a postgis-specific
					approach.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2
Performed by the GEOS module.
Availability: 1.1.0

See Also
ST_BuildArea, ST_BdPolyFromText

Name
ST_AsEWKT — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

Synopsis
	text ST_AsEWKT(g1);	

geometry g1;

	text ST_AsEWKT(g1, 	
	 	maxdecimaldigits=15);	

geometry g1;
integer maxdecimaldigits=15;

	text ST_AsEWKT(g1);	

geography g1;

	text ST_AsEWKT(g1, 	
	 	maxdecimaldigits=15);	

geography g1;
integer maxdecimaldigits=15;

Description
Returns the Well-Known Text representation of the geometry prefixed with the SRID.
 The optional maxdecimaldigits argument may be used to reduce the maximum number
			of decimal digits after floating point used in output (defaults to 15).
To perform the inverse conversion of EWKT representation to PostGIS geometry
 use ST_GeomFromEWKT.
Warning
Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

Note
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText.

Warning
WKT format does not maintain precision so to prevent floating truncation,
 use ST_AsBinary or ST_AsEWKB format for transport.

Enhanced: 3.1.0 support for optional precision parameter.
Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_AsEWKT('0103000020E61000000100000005000000000000
			00
			F03F000000000000F03F000000000000F03F000000000000F03
			F00'::geometry);

		 st_asewkt

SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_AsEWKT('0108000080030000000000000060E30A4100000000785C0241000000000000F03F0000000018
E20A4100000000485F024100000000000000400000000018
E20A4100000000305C02410000000000000840')

--st_asewkt---
CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinary,
ST_AsEWKB,
ST_AsText,
ST_GeomFromEWKT

Name
ST_MakeEmptyCoverage — Cover georeferenced area with a grid of empty raster tiles.

Synopsis
	raster ST_MakeEmptyCoverage(tilewidth, 	
	 	tileheight, 	
	 	width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy, 	
	 	srid=unknown);	

integer tilewidth;
integer tileheight;
integer width;
integer height;
double precision upperleftx;
double precision upperlefty;
double precision scalex;
double precision scaley;
double precision skewx;
double precision skewy;
integer srid=unknown;

Description
Create a set of raster tiles with ST_MakeEmptyRaster. Grid dimension is width & height. Tile dimension is tilewidth & tileheight. The covered georeferenced area is from upper left corner (upperleftx, upperlefty) to lower right corner (upperleftx + width * scalex, upperlefty + height * scaley).
Note
Note that scaley is generally negative for rasters and scalex is generally positive. So lower right corner will have a lower y value and higher x value than the upper left corner.

Availability: 2.4.0

Examples Basic
Create 16 tiles in a 4x4 grid to cover the WGS84 area from upper left corner (22, 77) to lower right corner (55, 33).
SELECT (ST_MetaData(tile)).* FROM ST_MakeEmptyCoverage(1, 1, 4, 4, 22, 33, (55 - 22)/(4)::float, (33 - 77)/(4)::float, 0., 0., 4326) tile;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands

 22 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0

See Also

 ST_MakeEmptyRaster

Name
ST_MinPossibleValue — Returns the minimum value this pixeltype can store.

Synopsis
	integer ST_MinPossibleValue(pixeltype);	

text pixeltype;

Description
Returns the minimum value this pixeltype can store.

Examples
SELECT ST_MinPossibleValue('16BSI');

 st_minpossiblevalue

 -32768

SELECT ST_MinPossibleValue('8BUI');

 st_minpossiblevalue

 0

See Also
ST_BandPixelType

Name
ST_AsLatLonText — Return the Degrees, Minutes, Seconds representation of the given point.

Synopsis
	text ST_AsLatLonText(pt, 	
	 	format='');	

geometry pt;
text format='';

Description
Returns the Degrees, Minutes, Seconds representation of the point.
Note
It is assumed the point is in a lat/lon projection. The X (lon) and Y (lat) coordinates are normalized in the output
				to the "normal" range (-180 to +180 for lon, -90 to +90 for lat).

					The text parameter is a format string containing the format for the resulting text, similar to a date format string. Valid tokens
					are "D" for degrees, "M" for minutes, "S" for seconds, and "C" for cardinal direction (NSEW). DMS tokens may be repeated to indicate
					desired width and precision ("SSS.SSSS" means " 1.0023").
				

					"M", "S", and "C" are optional. If "C" is omitted, degrees are
					shown with a "-" sign if south or west. If "S" is omitted, minutes will be shown as decimal with as many digits of precision
					as you specify. If "M" is also omitted, degrees are shown as decimal with as many digits precision as you specify.
				

					If the format string is omitted (or zero-length) a default format will be used.
				
Availability: 2.0

Examples
Default format.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)'));
 st_aslatlontext

 2°19'29.928"S 3°14'3.243"W

Providing a format (same as the default).

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"C'));
 st_aslatlontext

 2°19'29.928"S 3°14'3.243"W

Characters other than D, M, S, C and . are just passed through.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to the C'));
 st_aslatlontext
--
 2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Signed degrees instead of cardinal directions.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"'));
 st_aslatlontext

 -2°19'29.928" -3°14'3.243"

Decimal degrees.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
 st_aslatlontext

 2.3250 degrees S 3.2342 degrees W

Excessively large values are normalized.

SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)'));
 st_aslatlontext

 72°19'29.928"S 57°45'56.757"E

Name

				ST_ForcePolygonCW
			 —
				Orients all exterior rings clockwise and all interior rings counter-clockwise.
			

Synopsis
	
						geometry
						ST_ForcePolygonCW
					(geom);	

						geometry
						geom
					;

Description

				Forces (Multi)Polygons to use a clockwise orientation for
				their exterior ring, and a counter-clockwise orientation for their interior
				rings. Non-polygonal geometries are returned unchanged.
			
Availability: 2.4.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Name
ST_SetEffectiveArea —
 Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.

Synopsis
	geometry ST_SetEffectiveArea(geomA, 	
	 	threshold = 0, 	
	 	set_area = 1);	

geometry geomA;
float threshold = 0;
integer set_area = 1;

Description

 Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.
 The effective area is stored as the M-value of the vertex.
 If the optional "theshold" parameter is used, a simplified geometry will be returned, containing only vertices with an effective area
 greater than or equal to the threshold value.

 This function can be used for server-side simplification when a threshold is specified. Another option is to use a threshold value of zero.
 In this case, the full geometry will be returned with effective areas as M-values, which can be used by the client to simplify very quickly.

 Will actually do something only with
 (multi)lines and (multi)polygons but you can safely call it with
 any kind of geometry. Since simplification occurs on a
 object-by-object basis you can also feed a GeometryCollection to
 this function.

Note
Note that returned geometry might lose its
 simplicity (see ST_IsSimple)

Note
Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Note
The output geometry will lose all previous information in the M-values

Note
This function handles 3D and the third dimension will affect the effective area

Availability: 2.2.0

Examples

 Calculating the effective area of a LineString. Because we use a threshold value of zero, all vertices in the input geometry are returned.

select ST_AsText(ST_SetEffectiveArea(geom)) all_pts, ST_AsText(ST_SetEffectiveArea(geom,30)) thrshld_30
FROM (SELECT 'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 all_pts | thrshld_30
-----------+-------------------+
LINESTRING M (5 2 3.40282346638529e+38,3 8 29,6 20 1.5,7 25 49.5,10 10 3.40282346638529e+38) | LINESTRING M (5 2 3.40282346638529e+38,7 25 49.5,10 10 3.40282346638529e+38)

See Also
ST_SimplifyVW

Name
ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

Synopsis
	geometry ST_MLineFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry ST_MLineFromText(WKT);	

text WKT;

Description
Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is
			not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite
Returns null if the WKT is not a MULTILINESTRING
Note
If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2

 [image: Description]
 This method implements the SQL/MM specification.

SQL-MM 3: 9.4.4

Examples
SELECT ST_MLineFromText('MULTILINESTRING((1 2, 3 4), (4 5, 6 7))');

See Also
ST_GeomFromText

Raster Band Accessors

Name
ST_Extent — Aggregate function that returns the bounding box of geometries.

Synopsis
	box2d ST_Extent(geomfield);	

geometry set geomfield;

Description
An aggregate function that returns a box2d bounding box
 that bounds a set of geometries.

The bounding box coordinates are in the spatial reference system of the input geometries.
ST_Extent is similar in concept to Oracle Spatial/Locator's SDO_AGGR_MBR.
Note
ST_Extent returns boxes with only X and Y ordinates even with 3D geometries.
 To return XYZ ordinates use ST_3DExtent.

Note
The returned box3d value does not include a SRID.
 Use ST_SetSRID to convert it into a geometry with SRID metadata.
 The SRID is the same as the input geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use Massachusetts State Plane ft (SRID=2249)

SELECT ST_Extent(geom) as bextent FROM sometable;
					 st_bextent

BOX(739651.875 2908247.25,794875.8125 2970042.75)

--Return extent of each category of geometries
SELECT ST_Extent(geom) as bextent
FROM sometable
GROUP BY category ORDER BY category;

					 bextent | name
--+----------------
 BOX(778783.5625 2951741.25,794875.8125 2970042.75) | A
 BOX(751315.8125 2919164.75,765202.6875 2935417.25) | B
 BOX(739651.875 2917394.75,756688.375 2935866) | C

 --Force back into a geometry
 -- and render the extended text representation of that geometry
SELECT ST_SetSRID(ST_Extent(geom),2249) as bextent FROM sometable;

				bextent
--
 SRID=2249;POLYGON((739651.875 2908247.25,739651.875 2970042.75,794875.8125 2970042.75,
 794875.8125 2908247.25,739651.875 2908247.25))
		

See Also

 ST_EstimatedExtent,
 ST_3DExtent,
 ST_SetSRID
		

Name
ST_ConstrainedDelaunayTriangles —
Return a constrained Delaunay triangulation around the given input geometry.
			

Synopsis
	geometry ST_ConstrainedDelaunayTriangles(g1);	

geometry g1;

Description

Return a Constrained Delaunay
triangulation around the vertices of the input geometry.
Output is a TIN.
			

 [image: Description]
 This method needs SFCGAL backend.

Availability: 3.0.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
	[image: Examples]ST_ConstrainedDelaunayTriangles of 2 polygons

						

select ST_ConstrainedDelaunayTriangles(
 ST_Union(
 'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
 ST_Buffer('POINT(110 170)'::geometry, 20)
)
);
				

						
	[image: Examples]ST_DelaunayTriangles of 2 polygons. Triangle edges cross polygon boundaries.

						

select ST_DelaunayTriangles(
 ST_Union(
 'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
 ST_Buffer('POINT(110 170)'::geometry, 20)
)
);

						

See Also

				ST_DelaunayTriangles,
				ST_TriangulatePolygon,
				ST_Tesselate,
				ST_ConcaveHull,
				ST_Dump
			

Name
ST_ClosestPoint — Returns the 2D point on g1 that is closest to g2. This is the first point of
			the shortest line from one geometry to the other.

Synopsis
	geometry ST_ClosestPoint(geom1, 	
	 	geom2);	

geometry
			geom1;
geometry
			geom2;

	geography ST_ClosestPoint(geom1, 	
	 	geom2, 	
	 	use_spheroid = true);	

geography
 geom1;
geography
 geom2;
boolean
 use_spheroid = true;

Description
Returns the 2-dimensional point on geom1 that is closest to geom2.
 This is the first point of the shortest line between the geometries
 (as computed by ST_ShortestLine).
		
Note
If you have a 3D Geometry, you may prefer to use ST_3DClosestPoint.

Enhanced: 3.4.0 - Support for geography.
Availability: 1.5.0

Examples
[image: Examples]The closest point for a Point and a LineString is the point itself.
 The closest point for a LineString and a Point is a point on the line.

SELECT ST_AsText(ST_ClosestPoint(pt,line)) AS cp_pt_line,
 ST_AsText(ST_ClosestPoint(line,pt)) AS cp_line_pt
 FROM (SELECT 'POINT (160 40)'::geometry AS pt,
 'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)'::geometry AS line) AS t;

 cp_pt_line | cp_line_pt
----------------+--
 POINT(160 40) | POINT(125.75342465753425 115.34246575342466)

	
[image: Examples]The closest point on polygon A to polygon B

SELECT ST_AsText(ST_ClosestPoint(
		'POLYGON ((190 150, 20 10, 160 70, 190 150))',
		ST_Buffer('POINT(80 160)', 30))) As ptwkt;
--
 POINT(131.59149149528952 101.89887534906197)

	

See Also
ST_3DClosestPoint, ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

Name
ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis
	setof record ST_SquareGrid(size, 	
	 	bounds);	

float8 size;
geometry bounds;

Description
Starts with the concept of a square tiling of the plane.
 For a given planar SRS, and a given edge size, starting at the origin of the SRS,
 there is one unique square tiling of the plane, Tiling(SRS, Size).
 This function answers the question: what grids in a given Tiling(SRS, Size)
 overlap with a given bounds.
The SRS for the output squares is the SRS provided by the bounds geometry.
Doubling or edge size of the square generates a new parent tiling that
 perfectly fits with the original tiling. Standard web map tilings in mercator
 are just powers-of-two square grids in the mercator plane.
Availability: 3.1.0

Example: Generating a 1 degree grid for a country
The grid will fill the whole bounds of the country, so if you want just squares
 that touch the country you will have to filter afterwards with ST_Intersects.
WITH grid AS (
SELECT (ST_SquareGrid(1, ST_Transform(geom,4326))).*
FROM admin0 WHERE name = 'Canada'
)
 SELEcT ST_AsText(geom)
 FROM grid

Example: Counting points in squares (using single chopped grid)
To do a point summary against a square tiling, generate a square grid using the
 extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you've analyzed your table.
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

Example: Counting points in squares using set of grid per point
This yields the same result as the first example but will be slower for a large number of points
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 pts.geom
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

See Also
ST_TileEnvelope, ST_HexagonGrid
 , ST_EstimatedExtent
 , ST_SetSRID

TopoGeometry Editors

Abstract
This section covers the topology functions for editing existing topogeometries.

Name
ST_WrapX — Wrap a geometry around an X value.

Synopsis
	geometry ST_WrapX(geom, 	
	 	wrap, 	
	 	move);	

geometry geom;
float8 wrap;
float8 move;

Description

This function splits the input geometries and then moves every resulting
component falling on the right (for negative 'move') or on the left (for
positive 'move') of given 'wrap' line in the direction specified by the
'move' parameter, finally re-unioning the pieces together.

Note

This is useful to "recenter" long-lat input to have features
of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(geom, -30, 360);

See Also
ST_ShiftLongitude

Name
getfaceedges_returntype —
A composite type that consists of a sequence
number and an edge number.
			

Description

A composite type that consists of a sequence number
and an edge number.
This is the return type for ST_GetFaceEdges
and GetNodeEdges functions.
			
	sequence is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema and srid.

	edge is an integer: The identifier of an edge.

Name
ST_NewEdgesSplit — Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges.

Synopsis
	integer ST_NewEdgesSplit(atopology, 	
	 	anedge, 	
	 	apoint);	

varchar atopology;
integer anedge;
geometry apoint;

Description

Split an edge with edge id anedge by creating a
new node with point location apoint along current
edge, deleting the original edge and replacing it with two new edges.
Returns the id of the new node created that joins the new edges.
Updates all existing joined edges and relationships accordingly.
		
If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, the point already exists as a node, the edge does not correspond to an existing edge or the point is not within the edge then an exception is thrown.
Availability: 1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Net Routines: X.3.8

Examples

-- Add an edge --
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575 893917,227592 893900)', 26986)) As edgeid;
-- result-
edgeid

	2
-- Split the new edge --
SELECT topology.ST_NewEdgesSplit('ma_topo', 2, ST_GeomFromText('POINT(227578.5 893913.5)', 26986)) As newnodeid;
 newnodeid

 6

See Also

				ST_ModEdgeSplit
				ST_ModEdgeHeal
				ST_NewEdgeHeal
				AddEdge
				

Name
ST_InvDistWeight4ma — Raster processing function that interpolates a pixel's value from the pixel's neighborhood.

Synopsis
	double precision ST_InvDistWeight4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate an interpolated value for a pixel using the Inverse Distance Weighted method.

 There are two optional parameters that can be passed through userargs. The first parameter is the power factor (variable k in the equation below) between 0 and 1 used in the Inverse Distance Weighted equation. If not specified, default value is 1. The second parameter is the weight percentage applied only when the value of the pixel of interest is included with the interpolated value from the neighborhood. If not specified and the pixel of interest has a value, that value is returned.

 The basic inverse distance weight equation is:

[image: Description]
 k = power factor, a real number between 0 and 1

Note
This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Availability: 2.1.0

Examples

-- NEEDS EXAMPLE

See Also

 ST_MapAlgebra (callback function version),
 ST_MinDist4ma

Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the
	Shapefile dumper. The section on SQL presents some of
	the functions available to do comparisons and queries on spatial tables.

Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the
 database is to use a SQL SELECT query
 to define the data set to be extracted
 and dump the resulting columns into a parsable text file:
db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
--------+---+-----------
	 1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
	 2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
	 3 | LINESTRING(192783 228138,192612 229814) | Paul St
	 4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
	 5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
	 6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
	 7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)
There will be times when some kind of restriction is
	 necessary to cut down the number of records returned. In the case of
	 attribute-based restrictions, use the same SQL syntax as used
	 with a non-spatial table. In the case of spatial restrictions, the
	 following functions are useful:
	ST_Intersects
	This function tells whether two geometries share any space.

	=
	This tests whether two geometries are
			geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0
			0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).
			

Next, you can use these operators in queries. Note that when
	 specifying geometries and boxes on the SQL command line, you must
	 explicitly turn the string representations into geometries function.
		The 312 is a fictitious spatial reference system that matches our data.
	 So, for example:
SELECT road_id, road_name
 FROM roads
 WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;
The above query would return the single record from the
	 "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:
SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');
The most common spatial query will probably be a "frame-based"
	 query, used by client software, like data browsers and web mappers, to
	 grab a "map frame" worth of data for display.
When using the "&&" operator, you can specify either a
	 BOX3D as the comparison feature or a GEOMETRY. When you specify a
	 GEOMETRY, however, its bounding box will be used for the
	 comparison.
Using a "BOX3D" object for the frame, such a query looks like this:
SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
 roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
Note the use of the SRID 312, to specify the projection of the envelope.

Using the Shapefile Dumper

The pgsql2shp table dumper connects
	 to the database and converts a table (possibly defined by a query) into
	 a shape file. The basic syntax is:
pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>
The commandline options are:
	-f <filename>
	Write the output to a particular filename.

	-h <host>
	The database host to connect to.

	-p <port>
	The port to connect to on the database host.

	-P <password>
	The password to use when connecting to the database.

	-u <user>
	The username to use when connecting to the database.

	-g <geometry column>
	In the case of tables with multiple geometry columns, the
			geometry column to use when writing the shape file.

	-b
	Use a binary cursor. This will make the operation faster,
			but will not work if any NON-geometry attribute in the table lacks
			a cast to text.

	-r
	Raw mode. Do not drop the gid field, or
			escape column names.

	-m filename
	 Remap identifiers to ten character names.
			The content of the file is lines of two symbols separated by
			a single white space and no trailing or leading space:
			VERYLONGSYMBOL SHORTONE
			ANOTHERVERYLONGSYMBOL SHORTER
			etc.

Name
ST_SetBandNoDataValue — Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.

Synopsis
	raster ST_SetBandNoDataValue(rast, 	
	 	nodatavalue);	

raster rast;
double precision nodatavalue;

	raster ST_SetBandNoDataValue(rast, 	
	 	band, 	
	 	nodatavalue, 	
	 	forcechecking=false);	

raster rast;
integer band;
double precision nodatavalue;
boolean forcechecking=false;

Description
Sets the value that represents no data for the band. Band 1 is assumed if not specified. This will affect results from ST_Polygon, ST_DumpAsPolygons, and the ST_PixelAs...() functions.

Examples
-- change just first band no data value
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, 254)
WHERE rid = 2;

-- change no data band value of bands 1,2,3
UPDATE dummy_rast
 SET rast =
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 rast,1, 254)
 ,2,99),
 3,108)
 WHERE rid = 2;

-- wipe out the nodata value this will ensure all pixels are considered for all processing functions
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, NULL)
WHERE rid = 2;

See Also
ST_BandNoDataValue, ST_NumBands

Long Transaction Support

Abstract
These functions implement a row locking mechanism to support long transactions.
		They are provided primarily for implementors of the
		Web Feature Service specification.

Note
For the locking mechanism to operate correctly the serializable
			
			transaction isolation level must be used.

Name
ST_InteriorRingN — Returns the Nth interior ring (hole) of a Polygon.

Synopsis
	geometry ST_InteriorRingN(a_polygon, 	
	 	n);	

geometry a_polygon;
integer n;

Description
Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING.
			The index starts at 1.
 Returns NULL if the geometry is not a polygon or the index is out
			of range.
Note
This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.2.6, 8.3.5

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText(ST_InteriorRingN(geom, 1)) As geom
FROM (SELECT ST_BuildArea(
		ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
			ST_Buffer(ST_Point(1, 2), 10,3))) As geom
) as foo;
		

See Also

 ST_ExteriorRing,
 ST_BuildArea,
 ST_Collect,
 ST_Dump,
 ST_NumInteriorRing,
 ST_NumInteriorRings
		

Name
ST_3DLineInterpolatePoint — Returns a point interpolated along a 3D line at a fractional location.

Synopsis
	geometry ST_3DLineInterpolatePoint(a_linestring, 	
	 	a_fraction);	

geometry a_linestring;
float8 a_fraction;

Description
Returns a point interpolated along a 3D line at a fractional location.
 First argument must be a LINESTRING. Second argument is a float between 0 and 1
			representing the point location as a fraction of line length.
 The M value is interpolated if present.

Note
ST_LineInterpolatePoint computes points in 2D
 and then interpolates the values for Z and M,
 while this function computes points in 3D
 and only interpolates the M value.

Availability: 3.0.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Return point 20% along 3D line

SELECT ST_AsText(
 ST_3DLineInterpolatePoint('LINESTRING(25 50 70, 100 125 90, 150 190 200)',
 0.20));

 st_asetext

 POINT Z (59.0675892910822 84.0675892910822 79.0846904776219)

See Also

				ST_LineInterpolatePoint,
				ST_LineInterpolatePoints,
				ST_LineLocatePoint
			

Name
ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.

Synopsis
	float ST_Perimeter(g1);	

geometry g1;

	float ST_Perimeter(geog, 	
	 	use_spheroid = true);	

geography geog;
boolean use_spheroid = true;

Description
Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for
				non-areal geometries. For linear geometries use ST_Length. For geometry types, units for perimeter measures are specified by the
				spatial reference system of the geometry.
For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid = false, then calculations will approximate a sphere instead of a spheroid.
Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.5.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.1.3, 9.5.4
Availability 2.0.0: Support for geography was introduced

Examples: Geometry
Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter

 122.630744000095
(1 row)

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter

 845.227713366825
(1 row)
			

Examples: Geography
Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)

SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;

 per_meters | per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949

-- MultiPolygon example --
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;

 per_meters | per_sphere_meters | per_ft
------------------+-------------------+------------------
 257.634283683311 | 257.412311446337 | 845.256836231335
			

See Also
ST_GeogFromText, ST_GeomFromText, ST_Length

Topology Processing

Abstract
This section covers the functions for processing topologies in non-standard ways.

Name
ST_Touches —
 Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.

Synopsis
	boolean ST_Touches(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Touches(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Return true if raster rastA spatially touches raster rastB. This means that rastA and rastB have at least one point in common but their interiors do not intersect. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Touches(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_Touches(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_touches
-----+-----+------------
 2 | 1 | f
 2 | 2 | f

See Also

 ST_Intersects

Name
ST_PixelHeight — Returns the pixel height in geometric units of the spatial reference system.

Synopsis
	double precision ST_PixelHeight(rast);	

raster rast;

Description
Returns the height of a pixel in geometric units of the spatial reference system. In the common case where
 there is no skew, the pixel height is just the scale ratio between geometric coordinates and raster pixels.
Refer to ST_PixelWidth for a diagrammatic visualization of the relationship.

Examples: Rasters with no skew
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM dummy_rast;

 rastheight | pixheight | scalex | scaley | skewx | skewy
------------+-----------+--------+--------+-------+----------
 20 | 3 | 2 | 3 | 0 | 0
 5 | 0.05 | 0.05 | -0.05 | 0 | 0

Examples: Rasters with skew different than 0
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSKew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;

rastheight | pixheight | scalex | scaley | skewx | skewy
-----------+-------------------+--------+--------+-------+----------
 20 | 3.04138126514911 | 2 | 3 | 0.5 | 0.5
 5 | 0.502493781056044 | 0.05 | -0.05 | 0.5 | 0.5

See Also

 ST_PixelWidth,
 ST_ScaleX,
 ST_ScaleY,
 ST_SkewX,
 ST_SkewY

Overlay Functions

Abstract
These functions compute results arising from the overlay of two geometries.
 These are also known as point-set theoretic boolean operations.
 Some related functions are also provided.

Name
ST_CollectionHomogenize —
Returns the simplest representation of a geometry collection.

Synopsis
	geometry ST_CollectionHomogenize(collection);	

geometry collection;

Description

 Given a geometry collection, returns the "simplest" representation of the contents.

	Homogeneous (uniform) collections are returned as the appropriate multi-geometry.

	Heterogeneous (mixed) collections are flattened into a single GeometryCollection.

	Collections containing a single atomic element are returned as that element.

	Atomic geometries are returned unchanged.
 If required, these can be converted to a multi-geometry using ST_Multi.

Warning
This function does not ensure that the result is valid.
 In particular, a collection containing adjacent or overlapping Polygons
 will create an invalid MultiPolygon.
 This situation can be checked with ST_IsValid and repaired with ST_MakeValid.

Availability: 2.0.0

Examples
Single-element collection converted to an atomic geometry

 SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0))'));

	st_astext

	POINT(0 0)

Nested single-element collection converted to an atomic geometry:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(MULTIPOINT((0 0)))'));

	st_astext

	POINT(0 0)

Collection converted to a multi-geometry:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0),POINT(1 1))'));

	st_astext

	MULTIPOINT((0 0),(1 1))

Nested heterogeneous collection flattened to a GeometryCollection:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0), GEOMETRYCOLLECTION(LINESTRING(1 1, 2 2)))'));

	st_astext

	GEOMETRYCOLLECTION(POINT(0 0),LINESTRING(1 1,2 2))

Collection of Polygons converted to an (invalid) MultiPolygon:

SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION (POLYGON ((10 50, 50 50, 50 10, 10 10, 10 50)), POLYGON ((90 50, 90 10, 50 10, 50 50, 90 50)))'));

	st_astext

	MULTIPOLYGON(((10 50,50 50,50 10,10 10,10 50)),((90 50,90 10,50 10,50 50,90 50)))

See Also
ST_CollectionExtract, ST_Multi,
 ST_IsValid, ST_MakeValid

Name
ST_OffsetCurve —
Returns an offset line at a given distance and side from an input line.

Synopsis
	geometry ST_OffsetCurve(line, 	
	 	signed_distance, 	
	 	style_parameters='');	

geometry line;
float signed_distance;
text style_parameters='';

Description

Return an offset line at a given distance and side from an input line.
All points of the returned geometries are not further than the given
distance from the input geometry.
Useful for computing parallel lines about a center line.

For positive distance the offset is on the left side of the input line
and retains the same direction. For a negative distance it is on the right
side and in the opposite direction.

Units of distance are measured in units of the spatial reference system.

Note that output may be a MULTILINESTRING or EMPTY for some jigsaw-shaped input geometries.

The optional third parameter allows specifying a list of blank-separated
key=value pairs to tweak operations as follows:

	'quad_segs=#' : number of segments used to approximate a quarter circle (defaults to 8).

	'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is also accepted as a synonym for 'mitre'.

	'mitre_limit=#.#' : mitre ratio limit (only affects mitred join style). 'miter_limit' is also accepted as a synonym for 'mitre_limit'.

Performed by the GEOS module.
Behavior changed in GEOS 3.11 so offset curves now have the same direction as the input line, for both positive and negative offsets.
Availability: 2.0
Enhanced: 2.5 - added support for GEOMETRYCOLLECTION and MULTILINESTRING
Note
This function ignores the Z dimension.
It always gives a 2D result even when used on a 3D geometry.

Examples
Compute an open buffer around roads

SELECT ST_Union(
 ST_OffsetCurve(f.geom, f.width/2, 'quad_segs=4 join=round'),
 ST_OffsetCurve(f.geom, -f.width/2, 'quad_segs=4 join=round')
) as track
FROM someroadstable;

	[image: Examples]15, 'quad_segs=4 join=round' original line
and its offset 15 units.

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)'),
 15, 'quad_segs=4 join=round'));

output

LINESTRING(164 1,18 1,12.2597485145237 2.1418070123307,
 7.39339828220179 5.39339828220179,
 5.39339828220179 7.39339828220179,
 2.14180701233067 12.2597485145237,1 18,1 195)

	[image: Examples]-15, 'quad_segs=4 join=round' original line
 and its offset -15 units

SELECT ST_AsText(ST_OffsetCurve(geom,
 -15, 'quad_segs=4 join=round')) As notsocurvy
 FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)') As geom;

notsocurvy

LINESTRING(31 195,31 31,164 31)

	[image: Examples]double-offset to get more curvy, note the first reverses direction, so -30 + 15 = -15

SELECT ST_AsText(ST_OffsetCurve(ST_OffsetCurve(geom,
 -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')) As morecurvy
 FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)') As geom;

morecurvy

LINESTRING(164 31,46 31,40.2597485145236 32.1418070123307,
35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195)

	[image: Examples]double-offset to get more curvy,combined with regular offset 15 to get parallel lines. Overlaid with original.

SELECT ST_AsText(ST_Collect(
 ST_OffsetCurve(geom, 15, 'quad_segs=4 join=round'),
 ST_OffsetCurve(ST_OffsetCurve(geom,
 -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')
)
) As parallel_curves
 FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)') As geom;

parallel curves

MULTILINESTRING((164 1,18 1,12.2597485145237 2.1418070123307,
7.39339828220179 5.39339828220179,5.39339828220179 7.39339828220179,
2.14180701233067 12.2597485145237,1 18,1 195),
(164 31,46 31,40.2597485145236 32.1418070123307,35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195))

	[image: Examples]15, 'quad_segs=4 join=bevel' shown with original line

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)'),
 15, 'quad_segs=4 join=bevel'));

output

LINESTRING(164 1,18 1,7.39339828220179 5.39339828220179,
 5.39339828220179 7.39339828220179,1 18,1 195)

	[image: Examples]15,-15 collected, join=mitre mitre_limit=2.1

SELECT ST_AsText(ST_Collect(
 ST_OffsetCurve(geom, 15, 'quad_segs=4 join=mitre mitre_limit=2.2'),
 ST_OffsetCurve(geom, -15, 'quad_segs=4 join=mitre mitre_limit=2.2')
))
 FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
 44 16,24 16,20 16,18 16,17 17,
 16 18,16 20,16 40,16 60,16 80,16 100,
 16 120,16 140,16 160,16 180,16 195)') As geom;

output

MULTILINESTRING((164 1,11.7867965644036 1,1 11.7867965644036,1 195),
 (31 195,31 31,164 31))

See Also
ST_Buffer

Name
ST_MakeBox2D — Creates a BOX2D defined by two 2D point geometries.

Synopsis
	box2d ST_MakeBox2D(pointLowLeft, 	
	 	pointUpRight);	

geometry pointLowLeft;
geometry pointUpRight;

Description
Creates a box2d defined by two Point
			geometries. This is useful for doing range queries.

Examples

--Return all features that fall reside or partly reside in a US national atlas coordinate bounding box
--It is assumed here that the geometries are stored with SRID = 2163 (US National atlas equal area)
SELECT feature_id, feature_name, geom
FROM features
WHERE geom && ST_SetSRID(ST_MakeBox2D(ST_Point(-989502.1875, 528439.5625),
	ST_Point(-987121.375 ,529933.1875)),2163)

See Also
ST_Point, ST_SetSRID, ST_SRID

Name
~ — Returns TRUE if A's bounding box contains B's.

Synopsis
	boolean ~(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The ~ operator returns TRUE if the bounding box of geometry A completely
			contains the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains
FROM
 (VALUES
	(1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 4)'::geometry),
	(3, 'LINESTRING (1 1, 2 2)'::geometry),
	(4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contains
---------+---------+----------
	 1 | 2 | f
	 1 | 3 | t
	 1 | 4 | t
(3 rows)

See Also
@, &&

PostGIS Box Functions

The functions given below are PostGIS functions that take as input or return as output the box* family of PostGIS spatial types.
				The box family of types consists of box2d, and box3d
	Box2D - Returns a BOX2D representing the 2D extent of a geometry.
	Box3D - Returns a BOX3D representing the 3D extent of a geometry.
	Box3D - Returns the box 3d representation of the enclosing box of the raster.
	ST_3DExtent - Aggregate function that returns the 3D bounding box of geometries.
	ST_3DMakeBox - Creates a BOX3D defined by two 3D point geometries.
	ST_AsMVTGeom - Transforms a geometry into the coordinate space of a MVT tile.
	ST_AsTWKB - Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_Box2dFromGeoHash - Return a BOX2D from a GeoHash string.
	ST_ClipByBox2D - Computes the portion of a geometry falling within a rectangle.
	ST_EstimatedExtent - Returns the estimated extent of a spatial table.
	ST_Expand - Returns a bounding box expanded from another bounding box or a geometry.
	ST_Extent - Aggregate function that returns the bounding box of geometries.
	ST_MakeBox2D - Creates a BOX2D defined by two 2D point geometries.
	ST_XMax - Returns the X maxima of a 2D or 3D bounding box or a geometry.
	ST_XMin - Returns the X minima of a 2D or 3D bounding box or a geometry.
	ST_YMax - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
	ST_YMin - Returns the Y minima of a 2D or 3D bounding box or a geometry.
	ST_ZMax - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
	ST_ZMin - Returns the Z minima of a 2D or 3D bounding box or a geometry.
	RemoveUnusedPrimitives - Removes topology primitives which not needed to define existing TopoGeometry objects.
	ValidateTopology - Returns a set of validatetopology_returntype objects detailing issues with topology.
	~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
	@(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	&&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

Name
ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis
	geometry ST_MPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry ST_MPolyFromText(WKT);	

text WKT;

Description
Makes a MultiPolygon from WKT with the given SRID. If SRID is
			not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLYGON
Note
If you are absolutely sure all your WKT geometries are multipolygons, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 9.6.4

Examples
SELECT ST_MPolyFromText('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 3,7 5 3,5 5 3)))');
SELECt ST_MPolyFromText('MULTIPOLYGON(((-70.916 42.1002,-70.9468 42.0946,-70.9765 42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758 42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753 42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751 42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767 42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977 42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773 42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779 42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807 42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792 42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 42.1116,-71.0022 42.1273,
	-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))',4326);

See Also
ST_GeomFromText, ST_SRID

Name
ST_BandFileTimestamp — Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis
	bigint ST_BandFileTimestamp(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns the file timestamp (number of seconds since Jan 1st 1970 00:00:00 UTC) of a band stored in file system. Throws an error if called with an in db band, or if outdb access is not enabled.
This function is typically used in conjunction with ST_BandPath() and ST_BandFileSize() so a client can determine if the filename of a outdb raster as seen by it is the same as the one seen by the server.
Availability: 2.5.0

Examples
SELECT ST_BandFileTimestamp(rast,1) FROM dummy_rast WHERE rid = 1;

 st_bandfiletimestamp

 1521807257

Name
ST_Count — Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

Synopsis
	bigint ST_Count(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;

	bigint ST_Count(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

Description
Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
If exclude_nodata_value is set to true, will only count pixels with value not equal to the nodata value of the raster. Set exclude_nodata_value to false to get count all pixels

Changed: 3.1.0 - The ST_Count(rastertable, rastercolumn, ...) variants removed. Use ST_CountAgg instead.
Availability: 2.0.0

Examples

--example will count all pixels not 249 and one will count all pixels. --
SELECT rid, ST_Count(ST_SetBandNoDataValue(rast,249)) As exclude_nodata,
 ST_Count(ST_SetBandNoDataValue(rast,249),false) As include_nodata
 FROM dummy_rast WHERE rid=2;

rid | exclude_nodata | include_nodata
-----+----------------+----------------
 2 | 23 | 25

See Also

 ST_CountAgg,
 ST_SummaryStats,
 ST_SetBandNoDataValue

Name
ST_GetFaceGeometry — Returns the polygon in the given topology with the specified face id.

Synopsis
	geometry ST_GetFaceGeometry(atopology, 	
	 	aface);	

varchar atopology;
integer aface;

Description
Returns the polygon in the given topology with the specified face id. Builds the polygon from the edges making up the face.
Availability: 1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

Examples

-- Returns the wkt of the polygon added with AddFace
SELECT ST_AsText(topology.ST_GetFaceGeometry('ma_topo', 1)) As facegeomwkt;
-- result --
 facegeomwkt

--
 POLYGON((234776.9 899563.7,234896.5 899456.7,234914 899436.4,234946.6 899356.9,
234872.5 899328.7,234891 899285.4,234992.5 899145,234890.6 899069,
234755.2 899255.4,234612.7 899379.4,234776.9 899563.7))

See Also
AddFace

Name
ST_CreateOverview —
Create an reduced resolution version of a given raster coverage.

Synopsis
	regclass ST_CreateOverview(tab, 	
	 	col, 	
	 	factor, 	
	 	algo='NearestNeighbor');	

regclass tab;
name col;
int factor;
text algo='NearestNeighbor';

Description

Create an overview table with resampled tiles from the source table.
Output tiles will have the same size of input tiles and cover the same
spatial extent with a lower resolution (pixel size will be
1/factor of the original in both directions).

The overview table will be made available in the
raster_overviews catalog and will have raster
constraints enforced.

Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.
Availability: 2.2.0

Example
Output to generally better quality but slower to product format
SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2, 'Lanczos');
Output to faster to process default nearest neighbor
SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2);

See Also

 ST_Retile,
 AddOverviewConstraints,
 AddRasterConstraints,
 the section called “Raster Overviews”

Name
ST_PixelAsPoint —
 Returns a point geometry of the pixel's upper-left corner.

Synopsis
	geometry ST_PixelAsPoint(rast, 	
	 	columnx, 	
	 	rowy);	

raster rast;
integer columnx;
integer rowy;

Description
Returns a point geometry of the pixel's upper-left corner.
Availability: 2.1.0

Examples

SELECT ST_AsText(ST_PixelAsPoint(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;

 st_astext

 POINT(0.5 0.5)

See Also

 ST_DumpAsPolygons,
 ST_PixelAsPolygon,
 ST_PixelAsPolygons,
 ST_PixelAsPoints,
 ST_PixelAsCentroid,
 ST_PixelAsCentroids

Name
ST_Simplify — Returns a simplified version of a geometry, using
 the Douglas-Peucker algorithm.

Synopsis
	geometry ST_Simplify(geomA, 	
	 	tolerance);	

geometry geomA;
float tolerance;

	geometry ST_Simplify(geomA, 	
	 	tolerance, 	
	 	preserveCollapsed);	

geometry geomA;
float tolerance;
boolean preserveCollapsed;

Description
Returns a "simplified" version of the given geometry using
 the Douglas-Peucker algorithm. Will actually do something only with
 (multi)lines and (multi)polygons but you can safely call it with
 any kind of geometry. Since simplification occurs on a
 object-by-object basis you can also feed a GeometryCollection to
 this function.
The "preserve collapsed" flag will retain objects that would otherwise
 be too small given the tolerance. For example, a 1m long line simplified with a 10m
 tolerance. If preserveCollapsed argument is
 specified as true, the line will not disappear.
 This flag is useful for rendering engines, to avoid having large numbers of very
 small objects disappear from a map leaving surprising gaps.
Note
Note that returned geometry might lose its
 simplicity (see ST_IsSimple)

Note
Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Availability: 1.2.2

Examples
A circle simplified too much becomes a triangle, medium an octagon,
SELECT ST_Npoints(geom) AS np_before,
 ST_NPoints(ST_Simplify(geom,0.1)) AS np01_notbadcircle,
 ST_NPoints(ST_Simplify(geom,0.5)) AS np05_notquitecircle,
 ST_NPoints(ST_Simplify(geom,1)) AS np1_octagon,
 ST_NPoints(ST_Simplify(geom,10)) AS np10_triangle,
 (ST_Simplify(geom,100) is null) AS np100_geometrygoesaway
 FROM
 (SELECT ST_Buffer('POINT(1 3)', 10,12) As geom) AS foo;

 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_triangle | np100_geometrygoesaway
-----------+-------------------+---------------------+-------------+---------------+------------------------
 49 | 33 | 17 | 9 | 4 | t

See Also

 ST_IsSimple,
 ST_SimplifyPreserveTopology,
 ST_SimplifyVW,
 Topology ST_Simplify

Name
ST_Force3DM — Force the geometries into XYM mode.

Synopsis
	geometry ST_Force3DM(geomA, 	
	 	Mvalue = 0.0);	

geometry geomA;
float Mvalue = 0.0;

Description
Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has a Z component, then Z is removed
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt
--
 CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)

SELECT ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

						 st_asewkt

 POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

Name
ST_AsSVG — Returns SVG path data for a geometry.

Synopsis
	text ST_AsSVG(geom, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer rel=0;
integer maxdecimaldigits=15;

	text ST_AsSVG(geog, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geography geog;
integer rel=0;
integer maxdecimaldigits=15;

Description
Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second
			argument to have the path data implemented in terms of relative
			moves, the default (or 0) uses absolute moves. Third argument may
			be used to reduce the maximum number of decimal digits used in
			output (defaults to 15). Point geometries will be rendered as
			cx/cy when 'rel' arg is 0, x/y when 'rel' is 1. Multipoint
			geometries are delimited by commas (","), GeometryCollection
			geometries are delimited by semicolons (";").
For working with PostGIS SVG graphics, checkout pg_svg library which
 provides plpgsql functions for working with outputs from ST_AsSVG.
Enhanced: 3.4.0 to support all curve types
Changed: 2.0.0 to use default args and support named args
Note
Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsSVG('POLYGON((0 0,0 1,1 1,1 0,0 0))'::geometry);

st_assvg

M 0 0 L 0 -1 1 -1 1 0 Z
Circular string
SELECT ST_AsSVG(ST_GeomFromText('CIRCULARSTRING(-2 0,0 2,2 0,0 2,2 4)'));

st_assvg

M -2 0 A 2 2 0 0 1 2 0 A 2 2 0 0 1 2 -4
Multi-curve
SELECT ST_AsSVG('MULTICURVE((5 5,3 5,3 3,0 3),
 CIRCULARSTRING(0 0,2 1,2 2))'::geometry, 0, 0);
 st_assvg
--
 M 5 -5 L 3 -5 3 -3 0 -3 M 0 0 A 2 2 0 0 0 2 -2

Multi-surface
SELECT ST_AsSVG('MULTISURFACE(
CURVEPOLYGON(CIRCULARSTRING(-2 0,-1 -1,0 0,1 -1,2 0,0 2,-2 0),
 (-1 0,0 0.5,1 0,0 1,-1 0)),
((7 8,10 10,6 14,4 11,7 8)))'::geometry, 0, 2);

st_assvg

M -2 0 A 1 1 0 0 0 0 0 A 1 1 0 0 0 2 0 A 2 2 0 0 0 -2 0 Z
M -1 0 L 0 -0.5 1 0 0 -1 -1 0 Z
M 7 -8 L 10 -10 6 -14 4 -11 Z

Name
ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis
	geometry ST_Polygon(lineString, 	
	 	srid);	

geometry lineString;
integer srid;

Description
Returns a polygon built from the given LineString
		and sets the spatial reference system from the srid.
ST_Polygon is similar to ST_MakePolygon Variant 1
		with the addition of setting the SRID.
To create polygons with holes
		use ST_MakePolygon Variant 2 and then ST_SetSRID.
		
Note
This function does not accept MultiLineStrings.
		Use ST_LineMerge to generate a LineString, or ST_Dump to extract LineStrings.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.3.2

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Create a 2D polygon.

SELECT ST_AsText(ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326));

-- result --
POLYGON((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.

SELECT ST_AsEWKT(ST_Polygon(ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326));

-- result --
SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

See Also
 ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

Name
ST_IsSolid — Test if the geometry is a solid. No validity check is performed.

Synopsis
	boolean ST_IsSolid(geom1);	

geometry geom1;

Description
Availability: 2.2.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_PointInsideCircle — Tests if a point geometry is inside a circle defined by a center and radius

Synopsis
	boolean ST_PointInsideCircle(a_point, 	
	 	center_x, 	
	 	center_y, 	
	 	radius);	

geometry a_point;
float center_x;
float center_y;
float radius;

Description
Returns true if the geometry is a point and is inside the
 circle with center center_x,center_y
 and radius radius.

Warning
Does not use spatial indexes. Use ST_DWithin instead.

Availability: 1.2
Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle

Examples
SELECT ST_PointInsideCircle(ST_Point(1,2), 0.5, 2, 3);
 st_pointinsidecircle

 t

See Also
ST_DWithin

Name
ST_X — Returns the X coordinate of a Point.

Synopsis
	float ST_X(a_point);	

geometry a_point;

Description
Return the X coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum X value of geometry coordinates use the functions
		ST_XMin and ST_XMax.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 6.1.3

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_X(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_x

	1
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_XMax, ST_XMin, ST_Y, ST_Z

Name
ST_LineMerge — Return the lines formed by sewing together
			a MultiLineString.

Synopsis
	geometry ST_LineMerge(amultilinestring);	

geometry amultilinestring;

	geometry ST_LineMerge(amultilinestring, 	
	 	directed);	

geometry amultilinestring;
boolean directed;

Description
Returns a LineString or MultiLineString formed by joining together
			the line elements of a MultiLineString.
 Lines are joined at their endpoints at 2-way intersections.
 Lines are not joined across intersections of 3-way or greater degree.

If directed is TRUE, then ST_LineMerge
			will not change point order within LineStrings, so lines with opposite directions
			will not be merged
Note
Only use with MultiLineString/LineStrings. Other geometry types
			return an empty GeometryCollection

Performed by the GEOS module.
Enhanced: 3.3.0 accept a directed parameter.
Requires GEOS >= 3.11.0 to use the directed parameter.
Availability: 1.1.0
Warning
This function strips the M dimension.

Examples

[image: Examples]Merging lines with different orientation.

SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((10 160, 60 120), (120 140, 60 120), (120 140, 180 120))'
));
--
 LINESTRING(10 160,60 120,120 140,180 120)

[image: Examples]Lines are not merged across intersections with degree > 2.

SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((10 160, 60 120), (120 140, 60 120), (120 140, 180 120), (100 180, 120 140))'
));
--
 MULTILINESTRING((10 160,60 120,120 140),(100 180,120 140),(120 140,180 120))

If merging is not possible due to non-touching lines,
the original MultiLineString is returned.

SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45.2 -33.2,-46 -32))'
));

MULTILINESTRING((-45.2 -33.2,-46 -32),(-29 -27,-30 -29.7,-36 -31,-45 -33))

	
[image: Examples]Lines with opposite directions are not merged if directed = TRUE.

SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((60 30, 10 70), (120 50, 60 30), (120 50, 180 30))',
TRUE));

 MULTILINESTRING((120 50,60 30,10 70),(120 50,180 30))

Example showing Z-dimension handling.

SELECT ST_AsText(ST_LineMerge(
 'MULTILINESTRING((-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 6), (-29 -27 12,-30 -29.7 5), (-45 -33 1,-46 -32 11))'
));
--
LINESTRING Z (-30 -29.7 5,-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 1,-46 -32 11)

See Also
ST_Segmentize, ST_LineSubstring

Name
ST_Width — Returns the width of the raster in pixels.

Synopsis
	integer ST_Width(rast);	

raster rast;

Description
Returns the width of the raster in pixels.

Examples
SELECT ST_Width(rast) As rastwidth
FROM dummy_rast WHERE rid=1;

rastwidth

10

See Also
ST_Height

Importing and exporting Topologies

Once you have created topologies, and maybe associated topological layers,
you might want to export them into a file-based format for backup or transfer
into another database.

Using the standard dump/restore tools of PostgreSQL is
problematic because topologies are composed by a set of tables (4 for
primitives, an arbitrary number for layers) and records in metadata tables
(topology.topology and topology.layer). Additionally, topology identifiers
are not univoque across databases so that parameter of your topology
will need to be changes upon restoring it.

In order to simplify export/restore of topologies a pair of
executables are provided: pgtopo_export
and pgtopo_import. Example usage:

pgtopo_export dev_db topo1 | pgtopo_import topo1 | psql staging_db

Using the Topology exporter

The pgtopo_export script takes the name of a
database and a topology and outputs a dump file which can be used
to import the topology (and associated layers) into a new database.

By default pgtopo_export writes the
dump file to the standard output so that it can be piped to
pgtopo_import or redirected to a file
(refusing to write to terminal). You can optionally specify
an output filename with the -f commandline switch.

By default pgtopo_export includes a dump
of all layers defined against the given topology. This may be more
data than you need, or may be non-working (in case your layer tables
have complex dependencies) in which case you can request skipping the
layers with the --skip-layers switch and deal with those
separately.

Invoking pgtopo_export with the
--help (or -h for short) switch
will always print short usage string.

The dump file format is a compressed tar archive of a
pgtopo_export directory containing
at least a pgtopo_dump_version file with
format version info. As of version 1 the directory
contains tab-delimited CSV files with data of the topology
primitive tables (node, edge_data, face, relation), the
topology and layer records associated with it and
(unless --skip-layers is given) a custom-format
PostgreSQL dump of tables reported as being layers of the given
topology.

Using the Topology importer

The pgtopo_import script takes a
pgtopo_export format topology dump and a
name to give to the topology to be created and outputs
an SQL script reconstructing the topology and associated
layers.

The generated SQL file will contain statements that create
a topology with the given name, load primitive data in it,
restores and registers all topology layers by properly
linking all TopoGeometry values to their correct topology.

By default pgtopo_import reads the dump
from the standard input so that it can be used in conjuction
with pgtopo_export in a pipeline.
You can optionally specify an input filename with the
-f commandline switch.

By default pgtopo_import includes in the output
SQL file the code to restore all layers found in the dump.

This may be unwanted or non-working in case your target database already
have tables with the same name as the ones in the dump. In that case
you can request skipping the layers with the --skip-layers
switch and deal with those separately (or later).

SQL to only load and link layers to a named topology can be generated
using the --only-layers switch. This can be useful to load
layers AFTER resolving the naming conflicts or to link layers to a
different topology (say a spatially-simplified version of the starting
topology).

Name
ST_NumInteriorRings — Returns the number of interior rings (holes) of a Polygon.

Synopsis
	integer ST_NumInteriorRings(a_polygon);	

geometry a_polygon;

Description

 Return the number of interior rings of a polygon geometry.
			Return NULL if the geometry is not a polygon.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.2.5
Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.

Examples

--If you have a regular polygon
SELECT gid, field1, field2, ST_NumInteriorRings(geom) AS numholes
FROM sometable;

--If you have multipolygons
--And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(geom)).geom As geom
	FROM sometable) As foo
GROUP BY gid, field1,field2;
			

See Also
ST_NumInteriorRing, ST_InteriorRingN

Name
ST_Union — Computes a geometry representing the point-set union of
 the input geometries.

Synopsis
	geometry ST_Union(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry ST_Union(g1, 	
	 	g2, 	
	 	gridSize);	

geometry g1;
geometry g2;
float8 gridSize;

	geometry ST_Union(g1_array);	

geometry[] g1_array;

	geometry ST_Union(g1field);	

geometry set g1field;

	geometry ST_Union(g1field, 	
	 	gridSize);	

geometry set g1field;
float8 gridSize;

Description
Unions the input geometries, merging geometry to produce a result geometry
 with no overlaps.
 The output may be an atomic geometry, a MultiGeometry, or a Geometry Collection.
 Comes in several variants:
Two-input variant:
 returns a geometry that is the union of two input geometries.
 If either input is NULL, then NULL is returned.

Array variant:
 returns a geometry that is the union of an array of geometries.

Aggregate variant:
 returns a geometry that is the union of a rowset of geometries.
 The ST_Union() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.
See ST_UnaryUnion for a non-aggregate, single-input variant.
The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

A gridSize can be specified to work in fixed-precision space.
 The inputs are snapped to a grid of the given size, and the result vertices are computed
 on that same grid.
 (Requires GEOS-3.9.0 or higher)

Note
ST_Collect may sometimes be used in place of ST_Union,
 if the result is not required to be non-overlapping.
 ST_Collect is usually faster than ST_Union because it performs no processing
 on the collected geometries.

Performed by the GEOS module.
ST_Union creates MultiLineString and does not sew LineStrings into a single LineString.
 Use ST_LineMerge to sew LineStrings.
NOTE: this function was formerly called GeomUnion(), which
 was renamed from "Union" because UNION is an SQL reserved
 word.
Enhanced: 3.1.0 accept a gridSize parameter.
Requires GEOS >= 3.9.0 to use the gridSize parameter
Changed: 3.0.0 does not depend on SFCGAL.
Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.3
Note
Aggregate version is not explicitly defined in OGC SPEC.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.19
 the z-index (elevation) when polygons are involved.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
Aggregate example

SELECT id,
 ST_Union(geom) as singlegeom
FROM sometable f
GROUP BY id;

Non-Aggregate example

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext

MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext

POINT(1 2)
3D example - sort of supports 3D (and with mixed dimensions!)
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));

3d example not mixing dimensions
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
 ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

See Also

 ST_Collect,
 ST_UnaryUnion,
 ST_MemUnion,
 ST_Intersection,
 ST_Difference,
 ST_SymDifference

Name
ST_Collect — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis
	geometry ST_Collect(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry ST_Collect(g1_array);	

geometry[] g1_array;

	geometry ST_Collect(g1field);	

geometry set g1field;

Description
 Collects geometries into a geometry collection.
			The result is either a Multi* or a
			GeometryCollection, depending on whether the input geometries have the same or different types
			(homogeneous or heterogeneous).
			The input geometries are left unchanged within the collection.
			
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries
Variant 3: aggregate function accepting a rowset of geometries.
Note

		If any of the input geometries are collections (Multi* or GeometryCollection)
		ST_Collect returns a GeometryCollection (since that is the only type
		which can contain nested collections).
		To prevent this, use ST_Dump in a subquery to expand the
		input collections to their atomic elements (see example below).
		

Note
ST_Collect and ST_Union appear similar, but in fact operate quite differently.
		ST_Collect aggregates geometries into a collection without changing them in any way.
		ST_Union geometrically merges geometries where they overlap,
		and splits linestrings at intersections.
		It may return single geometries when it dissolves boundaries.
		

Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples - Two-input variant
Collect 2D points.

SELECT ST_AsText(ST_Collect(ST_GeomFromText('POINT(1 2)'),
	ST_GeomFromText('POINT(-2 3)')));

st_astext

MULTIPOINT((1 2),(-2 3))

Collect 3D points.

SELECT ST_AsEWKT(ST_Collect(ST_GeomFromEWKT('POINT(1 2 3)'),
		ST_GeomFromEWKT('POINT(1 2 4)')));

		st_asewkt

 MULTIPOINT(1 2 3,1 2 4)

Collect curves.

SELECT ST_AsText(ST_Collect('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)',
		'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));

		st_astext
--
MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406),
 CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))

Examples - Array variant
Using an array constructor for a subquery.

SELECT ST_Collect(ARRAY(SELECT geom FROM sometable));

Using an array constructor for values.

SELECT ST_AsText(ST_Collect(
		ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
			ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktcollect;

--wkt collect --
MULTILINESTRING((1 2,3 4),(3 4,4 5))

Examples - Aggregate variant
Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect(f.geom) as geom
	 FROM (SELECT stusps, (ST_Dump(geom)).geom As geom
				FROM
				somestatetable) As f
	GROUP BY stusps

See Also
ST_Dump, ST_Union

Name
ST_Overlaps — Tests if two geometries have the same dimension and intersect, but each has at least one point not in the other

Synopsis
	boolean ST_Overlaps(A, 	
	 	B);	

geometry A;
geometry B;

Description
Returns TRUE if geometry A and B "spatially overlap".
 Two geometries overlap if they have the same dimension,
 their interiors intersect in that dimension.
 and each has at least one point inside the other
 (or equivalently, neither one covers the other).
 The overlaps relation is symmetric and irreflexive.

In mathematical terms:
 ST_Overlaps(A, B) ⇔ (dim(A) = dim(B) = dim(Int(A) ⋂ Int(B))) ∧ (A ⋂ B ≠ A) ∧ (A ⋂ B ≠ B)
Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Overlaps.

Performed by the GEOS module
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.2 // s2.1.13.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.32

Examples
ST_Overlaps returns TRUE in the following situations:
	[image: Examples]MULTIPOINT / MULTIPOINT

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]POLYGON / POLYGON

[image: Examples]

A Point on a LineString is contained,
but since it has lower dimension it does not overlap or cross.

SELECT ST_Overlaps(a,b) AS overlaps, ST_Crosses(a,b) AS crosses,
 ST_Intersects(a, b) AS intersects, ST_Contains(b,a) AS b_contains_a
FROM (SELECT ST_GeomFromText('POINT (100 100)') As a,
 ST_GeomFromText('LINESTRING (30 50, 40 160, 160 40, 180 160)') AS b) AS t

overlaps | crosses | intersects | b_contains_a
---------+----------------------+--------------
f | f | t | t

[image: Examples]

A LineString that partly covers a Polygon intersects and crosses,
but does not overlap since it has different dimension.

SELECT ST_Overlaps(a,b) AS overlaps, ST_Crosses(a,b) AS crosses,
 ST_Intersects(a, b) AS intersects, ST_Contains(a,b) AS contains
FROM (SELECT ST_GeomFromText('POLYGON ((40 170, 90 30, 180 100, 40 170))') AS a,
 ST_GeomFromText('LINESTRING(10 10, 190 190)') AS b) AS t;

 overlap | crosses | intersects | contains
---------+---------+------------+--------------
 f | t | t | f

[image: Examples]

Two Polygons that intersect but with neither contained by the other overlap,
but do not cross because their intersection has the same dimension.

SELECT ST_Overlaps(a,b) AS overlaps, ST_Crosses(a,b) AS crosses,
 ST_Intersects(a, b) AS intersects, ST_Contains(b, a) AS b_contains_a,
 ST_Dimension(a) AS dim_a, ST_Dimension(b) AS dim_b,
 ST_Dimension(ST_Intersection(a,b)) AS dim_int
FROM (SELECT ST_GeomFromText('POLYGON ((40 170, 90 30, 180 100, 40 170))') AS a,
 ST_GeomFromText('POLYGON ((110 180, 20 60, 130 90, 110 180))') AS b) As t;

 overlaps | crosses | intersects | b_contains_a | dim_a | dim_b | dim_int
----------+---------+------------+--------------+-------+-------+-----------
 t | f | t | f | 2 | 2 | 2

See Also
ST_Contains, ST_Crosses, ST_Dimension, ST_Intersects

Name
postgis.enable_outdb_rasters —
 A boolean configuration option to enable access to out-db raster bands.

Description

 A boolean configuration option to enable access to out-db raster bands. This option can be set in PostgreSQL's configuration file: postgresql.conf. It can also be set by connection or transaction.

 The initial value of postgis.enable_outdb_rasters may also be set by passing the environment variable POSTGIS_ENABLE_OUTDB_RASTERS with a non-zero value to the process starting PostgreSQL.

Note

 Even if postgis.enable_outdb_rasters is True, the GUC postgis.gdal_enabled_drivers determines the accessible raster formats.

Note

 In the standard PostGIS installation, postgis.enable_outdb_rasters is set to False.

Availability: 2.2.0

Examples
Set and reset postgis.enable_outdb_rasters for current session

SET postgis.enable_outdb_rasters TO True;
SET postgis.enable_outdb_rasters = default;
SET postgis.enable_outdb_rasters = True;
SET postgis.enable_outdb_rasters = False;

Set for specific database

ALTER DATABASE gisdb SET postgis.enable_outdb_rasters = true;

Setting for whole database cluster. You need to reconnect to the database for changes to take effect.

 --writes to postgres.auto.conf
ALTER SYSTEM postgis.enable_outdb_rasters = true;
 --Reloads postgres conf
SELECT pg_reload_conf();

See Also

 postgis.gdal_enabled_drivers
 postgis.gdal_vsi_options

Name
ST_ConvexHull — Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue.
 For regular shaped and non-skewed
 rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.

Synopsis
	geometry ST_ConvexHull(rast);	

raster rast;

Description
Return the convex hull geometry of the raster including the NoDataBandValue band pixels. For regular shaped and non-skewed
 rasters, this gives more or less the same result as ST_Envelope
 so only useful for irregularly shaped or skewed rasters.
Note
ST_Envelope floors the coordinates and hence add a little buffer around the raster so the answer is subtly
 different from ST_ConvexHull which does not floor.

Examples
Refer to PostGIS Raster Specification for a diagram of this.

-- Note envelope and convexhull are more or less the same
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
 ST_AsText(ST_Envelope(rast)) As env
FROM dummy_rast WHERE rid=1;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 0.5,20.5 60.5,0.5 60.5,0.5 0.5)) | POLYGON((0 0,20 0,20 60,0 60,0 0))

-- now we skew the raster
-- note how the convex hull and envelope are now different
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
 ST_AsText(ST_Envelope(rast)) As env
FROM (SELECT ST_SetRotation(rast, 0.1, 0.1) As rast
 FROM dummy_rast WHERE rid=1) As foo;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 1.5,22.5 61.5,2.5 60.5,0.5 0.5)) | POLYGON((0 0,22 0,22 61,0 61,0 0))

See Also

 ST_Envelope,
 ST_MinConvexHull,
 ST_ConvexHull,
 ST_AsText

Name
ST_DumpValues —
 Get the values of the specified band as a 2-dimension array.

Synopsis
	setof record ST_DumpValues(rast, 	
	 	nband=NULL, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer[] nband=NULL
 ;

 boolean exclude_nodata_value=true
 ;

	double precision[][] ST_DumpValues(rast, 	
	 	nband, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer nband
 ;

 boolean exclude_nodata_value=true
 ;

Description

 Get the values of the specified band as a 2-dimension array (first index is row, second is column). If nband is NULL or not provided, all raster bands are processed.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
 (ST_DumpValues(rast)).*
FROM foo;

 nband | valarray
-------+--
 1 | {{1,1,1},{1,1,1},{1,1,1}}
 2 | {{3,3,3},{3,3,3},{3,3,3}}
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
(3 rows)

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
 (ST_DumpValues(rast, ARRAY[3, 1])).*
FROM foo;

 nband | valarray
-------+--
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
 1 | {{1,1,1},{1,1,1},{1,1,1}}
(2 rows)

WITH foo AS (
 SELECT ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5) AS rast
)
SELECT
 (ST_DumpValues(rast, 1))[2][1]
FROM foo;

 st_dumpvalues

 5
(1 row)

See Also

 ST_Value,
 ST_SetValue,
 ST_SetValues

Name
TopoGeom_addElement — Adds an element to the definition of a TopoGeometry.

Synopsis
	topogeometry TopoGeom_addElement(tg, 	
	 	el);	

topogeometry tg;
topoelement el;

Description

Adds a TopoElement to the definition of a
TopoGeometry object. Does not error out if the element is already
part of the definition.

Availability: 2.3

Examples

-- Add edge 5 to TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_addElement(tg, '{5,2}');
				

See Also

TopoGeom_remElement,
CreateTopoGeom

Name
ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding.

Synopsis
	text ST_AsHEXEWKB(g1, 	
	 	NDRorXDR);	

geometry g1;
text NDRorXDR;

	text ST_AsHEXEWKB(g1);	

geometry g1;

Description
Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding. If no encoding is specified, then NDR is used.
Note
Availability: 1.2.2

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
		which gives same answer as

		SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;

		st_ashexewkb

		0103000020E6100000010000000500
		00000000000000000000000000000000
		00000000000000000000000000000000F03F
		000000000000F03F000000000000F03F000000000000F03
		F00

Chapter 13. Reporting Problems

Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS
 development. The most effective bug report is that enabling PostGIS
 developers to reproduce it, so it would ideally contain a script
 triggering it and every information regarding the environment in which it
 was detected. Good enough info can be extracted running SELECT
 postgis_full_version() [for PostGIS] and SELECT
 version() [for postgresql].
If you aren't using the latest release, it's worth taking a look at
 its release
 changelog first, to find out if your bug has already been
 fixed.
Using the PostGIS bug
 tracker will ensure your reports are not discarded, and will keep
 you informed on its handling process. Before reporting a new bug please
 query the database to see if it is a known one, and if it is please add
 any new information you have about it.
You might want to read Simon Tatham's paper about How to Report
 Bugs Effectively before filing a new report.

Clustering Functions

Abstract
These functions implement clustering algorithms for sets of geometries.

Name
ST_IsEmpty — Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.

Synopsis
	boolean ST_IsEmpty(rast);	

raster rast;

Description
Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
Availability: 2.0.0

Examples
SELECT ST_IsEmpty(ST_MakeEmptyRaster(100, 100, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
f |

SELECT ST_IsEmpty(ST_MakeEmptyRaster(0, 0, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
t |

See Also
ST_HasNoBand

Name
ST_CoveredBy —
 Return true if no points of raster rastA lie outside raster rastB.

Synopsis
	boolean ST_CoveredBy(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_CoveredBy(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA is covered by rastB if and only if no points of rastA lie in the exterior of rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_CoveredBy(ST_Polygon(raster), geometry) or ST_CoveredBy(geometry, ST_Polygon(raster)).

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_CoveredBy(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_coveredby
-----+-----+--------------
 2 | 1 | f
 2 | 2 | t

See Also

 ST_Intersects,
 ST_Covers

Name
~= — Returns TRUE if A's bounding box is the same as B's.

Synopsis
	boolean ~=(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The ~= operator returns TRUE if the bounding box of geometry/geography A
			is the same as the bounding box of geometry/geography B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Availability: 1.5.0 changed behavior

 [image: Description]
 This function supports Polyhedral surfaces.

Warning
This operator has changed behavior in PostGIS 1.5
			 from testing for actual geometric equality to only
			 checking for bounding box equality. To complicate things
			 it also depends on if you have done a hard or soft upgrade
			 which behavior your database has. To find out which behavior
			 your database has you can run the query below.
				To check for true equality use ST_OrderingEquals or ST_Equals.

Examples

select 'LINESTRING(0 0, 1 1)'::geometry ~= 'LINESTRING(0 1, 1 0)'::geometry as equality;
 equality |
-----------------+
 t |
			

See Also
ST_Equals, ST_OrderingEquals, =

Name
ST_LargestEmptyCircle — Computes the largest circle not overlapping a geometry.

Synopsis
	(geometry, geometry, double precision) ST_LargestEmptyCircle(geom, 	
	 	tolerance=0.0, 	
	 	boundary=POINT EMPTY);	

geometry geom;
double precision tolerance=0.0;
geometry boundary=POINT EMPTY;

Description
Finds the largest circle which does not overlap a set of point and line obstacles. (Polygonal geometries may be included as obstacles, but only their boundary lines are used.) The center of the circle is constrained to lie inside a polygonal boundary, which by default is the convex hull of the input geometry. The circle center is the point in the interior of the boundary which has the farthest distance from the obstacles. The circle itself is provided by the center point and a nearest point lying on an obstacle detemining the circle radius.
The circle center is determined to a given accuracy specified by a distance tolerance, using an iterative algorithm. If the accuracy distance is not specified a reasonable default is used.
Returns a record with fields:
	 center - center point of the circle

	 nearest - a point on the geometry nearest to the center

	 radius - radius of the circle

To find the largest empty circle in the interior of a polygon, see ST_MaximumInscribedCircle.
Availability: 3.4.0.
Requires GEOS >= 3.9.0.

Examples
SELECT radius,
 ST_AsText(center) AS center,
 ST_AsText(nearest) AS nearest
 FROM ST_LargestEmptyCircle(
 'MULTILINESTRING (
 (10 100, 60 180, 130 150, 190 160),
 (20 50, 70 70, 90 20, 110 40),
 (160 30, 100 100, 180 100))');
[image: Examples]Largest Empty Circle within a set of lines.

SELECT radius,
 ST_AsText(center) AS center,
 ST_AsText(nearest) AS nearest
 FROM ST_LargestEmptyCircle(
 St_Collect(
 'MULTIPOINT ((70 50), (60 130), (130 150), (80 90))',
 'POLYGON ((90 190, 10 100, 60 10, 190 40, 120 100, 190 180, 90 190))'),
 'POLYGON ((90 190, 10 100, 60 10, 190 40, 120 100, 190 180, 90 190))'
);
[image: Examples]Largest Empty Circle within a set of points, constrained to lie in a polygon. The constraint polygon boundary must be included as an obstacle, as well as specified as the constraint for the circle center.

See Also
ST_MinimumBoundingRadius

Name
ST_YMax — Returns the Y maxima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_YMax(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the Y maxima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However it will not accept a geometry or box2d text representation, since those do not auto-cast.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_YMax('BOX3D(1 2 3, 4 5 6)');
st_ymax

5

SELECT ST_YMax(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymax

6

SELECT ST_YMax(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymax

4
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_YMax('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_YMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymax

150506.126829327
		

See Also
ST_XMin, ST_XMax, ST_YMin, ST_ZMax, ST_ZMin

Name
ST_Z — Returns the Z coordinate of a Point.

Synopsis
	float ST_Z(a_point);	

geometry a_point;

Description
Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum Z value of geometry coordinates use the functions
		ST_ZMin and ST_ZMax.

 [image: Description]
 This method implements the SQL/MM specification.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z

	3
(1 row)

		

See Also
ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST_ZMax, ST_ZMin

Name
ST_SetPoint — Replace point of a linestring with a given point.

Synopsis
	geometry ST_SetPoint(linestring, 	
	 	zerobasedposition, 	
	 	point);	

geometry linestring;
integer zerobasedposition;
geometry point;

Description
Replace point N of linestring with given point. Index is
			0-based.Negative index are counted backwards, so that -1 is last point.
				This is especially useful in triggers when trying to maintain relationship of joints when one vertex moves.
Availability: 1.1.0
Updated 2.3.0 : negative indexing

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Change first point in line string from -1 3 to -1 1
SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)'));
	 st_astext

 LINESTRING(-1 1,-1 3)

---Change last point in a line string (lets play with 3d linestring this time)
SELECT ST_AsEWKT(ST_SetPoint(foo.geom, ST_NumPoints(foo.geom) - 1, ST_GeomFromEWKT('POINT(-1 1 3)')))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As geom) As foo;
	 st_asewkt

LINESTRING(-1 2 3,-1 3 4,-1 1 3)

SELECT ST_AsText(ST_SetPoint(g, -3, p))
FROM ST_GEomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g
	, ST_PointN(g,1) as p;
	 st_astext

LINESTRING(0 0,1 1,0 0,3 3,4 4)

			

See Also
ST_AddPoint, ST_NPoints, ST_NumPoints, ST_PointN, ST_RemovePoint

Name
ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry
		representation (WKB) or extended Well Known Binary (EWKB).

Synopsis
	geography ST_GeogFromWKB(wkb);	

bytea wkb;

Description
The ST_GeogFromWKB function, takes a well-known
		binary representation (WKB) of a geometry or PostGIS Extended WKB and creates an instance of the appropriate
		geography type. This function plays the role of the Geometry Factory in
		SQL.
If SRID is not specified, it defaults to 4326 (WGS 84 long lat).

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
--Although bytea rep contains single \, these need to be escaped when inserting into a table
SELECT ST_AsText(
ST_GeogFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@')
);
					 st_astext
--
 LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also
ST_GeogFromText, ST_AsBinary

Name
ST_TransScale — Translates and scales a geometry by given offsets and factors.

Synopsis
	geometry ST_TransScale(geomA, 	
	 	deltaX, 	
	 	deltaY, 	
	 	XFactor, 	
	 	YFactor);	

geometry geomA;
float deltaX;
float deltaY;
float XFactor;
float YFactor;

Description
Translates the geometry using the deltaX and deltaY args,
			then scales it using the XFactor, YFactor args, working in 2D only.
Note
ST_TransScale(geomA, deltaX, deltaY, XFactor, YFactor)
			is short-hand for ST_Affine(geomA, XFactor, 0, 0, 0, YFactor, 0,
			0, 0, 1, deltaX*XFactor, deltaY*YFactor, 0).

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsEWKT(ST_TransScale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 1, 1, 2));
		 st_asewkt

 LINESTRING(1.5 6 3,1.5 4 1)

--Buffer a point to get an approximation of a circle, convert to curve and then translate 1,2 and scale it 3,4
 SELECT ST_AsText(ST_Transscale(ST_LineToCurve(ST_Buffer('POINT(234 567)', 3)),1,2,3,4));
														 st_astext
--
 CURVEPOLYGON(CIRCULARSTRING(714 2276,711.363961030679 2267.51471862576,705 2264,698.636038969321 2284.48528137424,714 2276))

See Also
ST_Affine, ST_Translate

PostGIS SQL-MM Compliant Functions

The functions given below are PostGIS functions that conform to the SQL/MM 3 standard
	ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
		Description

		Availability: 2.1.0
		

 This method needs SFCGAL backend.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 8.1, 10.5
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_3DDWithin - Tests if two 3D geometries are within a given 3D distance
 Description

 Returns true if the 3D distance between two geometry values is no larger than
 distance distance_of_srid.
 The distance is specified in units defined by the spatial reference system of the geometries.
 For this function to make sense
 the source geometries must be in the same coordinate system (have the same SRID).

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 This function supports 3d and will not drop the z-index.

 This function supports Polyhedral surfaces.

 This method implements the SQL/MM specification.
 SQL-MM ?

 Availability: 2.0.0

	ST_3DDifference - Perform 3D difference
		Description
		Returns that part of geom1 that is not part of geom2.
		Availability: 2.2.0
		

 This method needs SFCGAL backend.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_3DDistance - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
		Description

		Returns the 3-dimensional minimum cartesian distance between two geometries in
		projected units (spatial ref units).

		

 This function supports 3d and will not drop the z-index.

		
		

 This function supports Polyhedral surfaces.

		

 This method implements the SQL/MM specification.
 SQL-MM ISO/IEC 13249-3

		Availability: 2.0.0
		Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
		Changed: 3.0.0 - SFCGAL version removed
	
	ST_3DIntersection - Perform 3D intersection
		Description
		Return a geometry that is the shared portion between geom1 and geom2.
		Availability: 2.1.0
		

 This method needs SFCGAL backend.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_3DIntersects - Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area)
 Description
 Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
 returns true, then the geometries also spatially intersect.
 Disjoint implies false for spatial intersection.

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs.
 Availability: 2.0.0

 This function supports 3d and will not drop the z-index.

 This function supports Polyhedral surfaces.

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1

	ST_3DLength - Returns the 3D length of a linear geometry.
		Description

		Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			LineString or MultiLineString. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)
		

 This function supports 3d and will not drop the z-index.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 7.1, 10.3
		Changed: 2.0.0 In prior versions this used to be called ST_Length3D
	
	ST_3DPerimeter - Returns the 3D perimeter of a polygonal geometry.
		Description

		Returns the 3-dimensional perimeter of the geometry, if it
			is a polygon or multi-polygon. If the geometry is 2-dimensional, then the 2-dimensional perimeter is returned.
		

 This function supports 3d and will not drop the z-index.

 This method implements the SQL/MM specification.
 SQL-MM ISO/IEC 13249-3: 8.1, 10.5
		Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D
	
	ST_3DUnion - Perform 3D union.
		Description

		Availability: 2.2.0
		Availability: 3.3.0 aggregate variant was added
		

 This method needs SFCGAL backend.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 Aggregate variant:
 returns a geometry that is the 3D union of a rowset of geometries.
 The ST_3DUnion() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.

	
	ST_AddEdgeModFace - Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.
 Description

Add a new edge and, if doing so splits a face, modify the original
face and add a new one.

If possible, the new face will be created on left side of the new edge.
This will not be possible if the face on the left side will need to
be the Universe face (unbounded).

Returns the id of the newly added edge.
		

Updates all existing joined edges and relationships accordingly.
		

 If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) ,
 the acurve is not a LINESTRING, the anode and anothernode are not the start
 and endpoints of acurve then an error is thrown.
 If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13
			
	ST_AddEdgeNewFaces - Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.
 Description

Add a new edge and, if in doing so it splits a face, delete the original
face and replace it with two new faces.
Returns the id of the newly added edge.
		

Updates all existing joined edges and relationships accordingly.
		

 If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) ,
 the acurve is not a LINESTRING, the anode and anothernode are not the start
 and endpoints of acurve then an error is thrown.
 If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12
			
	ST_AddIsoEdge - Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.
 Description

 Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.
 If the spatial reference system (srid) of the alinestring geometry is not the same as the topology, any of the input arguments are null, or the nodes are contained in more than one face, or the nodes are start or end nodes of an existing edge,
 then an exception is thrown.
 If the alinestring is not within the face of the face the anode and anothernode belong to, then an exception is thrown.
 If the anode and anothernode are not the start and end points of the alinestring then an exception is thrown.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4
			
	ST_AddIsoNode - Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the node is still created.
 Description

 Adds an isolated node with point location apoint to an existing face with faceid aface to a topology atopology and returns the nodeid of the new node.
 If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, or the point intersects an existing edge
 (even at the boundaries) then an exception is thrown. If the point already exists as a node, an exception is thrown.
 If aface is not null and the apoint is not within the face, then an exception is thrown.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Net Routines: X+1.3.1
			
	ST_Area - Returns the area of a polygonal geometry.
			Description

			Returns the area of a polygonal geometry.
			For geometry types a 2D Cartesian (planar) area is computed, with units specified by the SRID.
			For geography types by default area is determined on a spheroid with units in square meters.
		 To compute the area using the faster but less accurate spherical model use ST_Area(geog,false).
		
			Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
			Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
			Changed: 3.0.0 - does not depend on SFCGAL anymore.
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

			

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.1.2, 9.5.3
			

 This function supports Polyhedral surfaces.

			For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but only for the faces that
			sit completely in XY plane.
		
	ST_AsBinary - Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
			Description

			Returns the OGC/ISO Well-Known Binary (WKB) representation of the geometry.
 The first function variant defaults to encoding using server machine endian.
 The second function variant takes a text argument
			specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').

			WKB format is useful to read geometry data from the
			database and maintaining full numeric precision.
 This avoids the precision rounding that can happen with text formats such as WKT.

			To perform the inverse conversion of WKB to PostGIS geometry use .

			
			 The OGC/ISO WKB format does not include the SRID. To get the EWKB format which does include the SRID use
			

			
			 The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding.
 If your GUI tools require the old behavior, then SET bytea_output='escape' in your database.
			

			Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
			Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
			Enhanced: 2.0.0 support for specifying endian with geography was introduced.
			Availability: 1.5.0 geography support was introduced.
			Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that
			needs to be changed to ST_AsBinary('POINT(1 2)'::geometry);. If that is not possible, then install legacy.sql.
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.37
			

 This method supports Circular Strings and Curves.

			

 This function supports Polyhedral surfaces.

			

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

			

 This function supports 3d and will not drop the z-index.

		
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
		Description

		Return the geometry as a Geography Markup Language (GML) element. The version parameter,
			if specified, may be either 2 or 3. If no version parameter is
			specified then the default is assumed to be 2. The maxdecimaldigits argument
			may be used to reduce the maximum number of decimal places
			used in output (defaults to 15).

			Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use
 with a suitable gridsize first.

		GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version
		The 'options' argument is a bitfield. It could be used to define CRS output type
					in GML output, and to declare data as lat/lon:
						
								
								 0: GML Short CRS (e.g EPSG:4326), default value
								

								
								 1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)
								

								
								 2: For GML 3 only, remove srsDimension attribute from output.
								

								
								 4: For GML 3 only, use <LineString> rather than <Curve> tag for lines.
								

								
								 16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars.
								 This option is useful for GML 3.1.1 output only, related to axis order. So if you set it, it will swap the coordinates
								 so order is lat lon instead of database lon lat.
								

								
								 32: Output the box of the geometry (envelope).
								
						
						

		The 'namespace prefix' argument may be used to specify a custom
namespace prefix or no prefix (if empty). If null or omitted 'gml' prefix is used

		 Availability: 1.3.2
		 Availability: 1.5.0 geography support was introduced.
		 Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.
		 Changed: 2.0.0 use default named args
		 Enhanced: 2.1.0 id support was introduced, for GML 3.

		Only version 3+ of ST_AsGML supports Polyhedral Surfaces and TINS.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 17.2
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
			Description

			Returns the OGC Well-Known Text (WKT) representation of the geometry/geography.
 The optional maxdecimaldigits argument may be used to limit the number
			of digits after the decimal point in output ordinates (defaults to 15).

			To perform the inverse conversion of WKT representation to PostGIS geometry
 use .

			
			 The standard OGC WKT representation does not include the SRID.
 To include the SRID as part of the output representation, use the non-standard
				PostGIS function
			

			The textual representation of numbers in WKT may not maintain full floating-point precision.
 To ensure full accuracy for data storage or transport it is best to use
 Well-Known Binary (WKB) format
 (see and maxdecimaldigits).

			Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use
 with a suitable gridsize first.

			Availability: 1.5 - support for geography was introduced.
			Enhanced: 2.5 - optional parameter precision introduced.
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.25
			

 This method supports Circular Strings and Curves.

		
	ST_Boundary - Returns the boundary of a geometry.
		Description

		Returns the closure of the combinatorial boundary of this
			Geometry. The combinatorial boundary is defined as described in
			section 3.12.3.2 of the OGC SPEC. Because the result of this
			function is a closure, and hence topologically closed, the
			resulting boundary can be represented using representational
			geometry primitives as discussed in the OGC SPEC, section
			3.12.2.
		Performed by the GEOS module

		 Prior to 2.0.0, this function throws an exception if used with GEOMETRYCOLLECTION. From 2.0.0 up it will return NULL instead (unsupported input).

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 OGC SPEC s2.1.1.1

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1.17
		

 This function supports 3d and will not drop the z-index.

		Enhanced: 2.1.0 support for Triangle was introduced
		Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves
	
	ST_Buffer - Computes a geometry covering all points within a given distance from a geometry.
 Description

 Computes a POLYGON or MULTIPOLYGON that represents all points whose distance
 from a geometry/geography is less than or equal to a given distance.
 A negative distance shrinks the geometry rather than expanding it.
 A negative distance may shrink a polygon completely, in which case POLYGON EMPTY is returned.
 For points and lines negative distances always return empty results.

 For geometry, the distance is specified in the units of the
 Spatial Reference System of the geometry.
 For geography, the distance is specified in meters.

 The optional third parameter controls the buffer accuracy and style.
The accuracy of circular arcs in the buffer is specified as the number of line segments
used to approximate a quarter circle (default is 8).
The buffer style can be specifed by
providing a list of blank-separated key=value pairs as follows:

'quad_segs=#' : number of line segments used to approximate a quarter circle (default is 8).

'endcap=round|flat|square' : endcap style (defaults to "round"). 'butt' is accepted as a synonym for 'flat'.

'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is accepted as a synonym for 'mitre'.

'mitre_limit=#.#' : mitre ratio limit (only affects mitered join style). 'miter_limit' is accepted as a synonym for 'mitre_limit'.

'side=both|left|right' : 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line.
This is only applicable to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

 For geography this is a thin wrapper around the geometry implementation.

 It determines a planar spatial reference system that best fits the bounding box of the geography object
 (trying UTM, Lambert Azimuthal Equal Area (LAEA) North/South pole, and finally Mercator).
 The buffer is computed in the planar space, and then transformed back to WGS84.
 This may not produce the desired behavior if the input object is much larger than a UTM zone or crosses the dateline

 Buffer output is always a valid polygonal geometry.
 Buffer can handle invalid inputs,
 so buffering by distance 0 is sometimes used as a way of repairing invalid polygons.
 can also be used for this purpose.

 Buffering is sometimes used to perform a within-distance search.
 For this use case it is more efficient to use .

 This function ignores the Z dimension.
It always gives a 2D result even when used on a 3D geometry.

 Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.
 Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
 into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.

 Performed by the GEOS module.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1.30

	ST_Centroid - Returns the geometric center of a geometry.
 Description

 Computes a point which is the geometric center of mass of a geometry.
 For [MULTI]POINTs,
 the centroid is the arithmetic mean of the input coordinates.
 For [MULTI]LINESTRINGs,
 the centroid is computed using the weighted length of each line segment.
 For [MULTI]POLYGONs,
 the centroid is computed in terms of area.
 If an empty geometry is supplied, an empty GEOMETRYCOLLECTION is returned.
 If NULL is supplied, NULL is returned.
 If CIRCULARSTRING or COMPOUNDCURVE
 are supplied, they are converted to linestring with CurveToLine first,
 then same than for LINESTRING

 For mixed-dimension input, the result is equal to the centroid of the component
 Geometries of highest dimension (since the lower-dimension geometries
 contribute zero "weight" to the centroid).
 Note that for polygonal geometries the centroid does not necessarily
 lie in the interior of the polygon. For example, see the diagram below
 of the centroid of a C-shaped polygon.
 To construct a point guaranteed to lie in the interior
 of a polygon use .

 New in 2.3.0 : supports CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)

 Availability: 2.4.0 support for geography was introduced.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.1.4, 9.5.5

	ST_ChangeEdgeGeom - Changes the shape of an edge without affecting the topology structure.
 Description

Changes the shape of an edge without affecting the topology structure.
		

If any arguments are null, the given edge does not exist in
the edge table of the topology schema, the
acurve is not a LINESTRING, or the modification would
change the underlying topology then an error is thrown.
		
 If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.
 If the new acurve is not simple, then an error is thrown.

If moving the edge from old to new position would hit an obstacle then
an error is thrown.
		

 Availability: 1.1.0

	Enhanced: 2.0.0 adds topological consistency enforcement
		

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6
			
	ST_Contains - Tests if every point of B lies in A, and their interiors have a point in common
 Description

 Returns TRUE if geometry A contains geometry B.
 A contains B if and only if all points of B lie inside (i.e. in the interior or boundary of) A
 (or equivalently, no points of B lie in the exterior of A),
 and the interiors of A and B have at least one point in common.

 In mathematical terms:
 ST_Contains(A, B) ⇔ (A ⋂ B = B) ∧ (Int(A) ⋂ Int(B) ≠ ∅)

 The contains relationship is reflexive: every geometry contains itself.
 (In contrast, in the
 predicate a geometry does not properly contain itself.)
 The relationship is antisymmetric: if ST_Contains(A,B) = true and ST_Contains(B,A) = true, then
 the two geometries must be topologically equal (ST_Equals(A,B) = true).

 ST_Contains is the converse of .
 So, ST_Contains(A,B) = ST_Within(B,A).

 Because the interiors must have a common point, a subtlety of the definition is that
 polygons and lines do not contain lines and points lying fully in their boundary.
 For further details see Subtleties of OGC Covers, Contains, Within.
 The predicate provides a more inclusive relationship.

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Contains.

 Performed by the GEOS module
 Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 Do not use this function with invalid geometries. You will get unexpected results.

 NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 // s2.1.13.3
 - same as within(geometry B, geometry A)

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.31

	ST_ConvexHull - Computes the convex hull of a geometry.
 Description
 Computes the convex hull of a geometry.
 The convex hull is the smallest convex
 geometry that encloses all geometries in the input.

 One can think of the convex hull as the geometry obtained by wrapping an rubber
 band around a set of geometries. This is different from a
 concave hull
 which is analogous to "shrink-wrapping" the geometries.
 A convex hull is often used to
 determine an affected area based on a set of point observations.

 In the general case the convex hull is a Polygon.
 The convex hull of two or more collinear points is a two-point LineString.
 The convex hull of one or more identical points is a Point.

 This is not an aggregate function.
 To compute the convex hull of a set of geometries, use
 to aggregate them into a geometry collection
 (e.g. ST_ConvexHull(ST_Collect(geom)).

 Performed by the GEOS module

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1.16

 This function supports 3d and will not drop the z-index.

	ST_CoordDim - Return the coordinate dimension of a geometry.
		Description

		Return the coordinate dimension of the ST_Geometry value.

		This is the MM compliant alias name for

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.3
		

 This method supports Circular Strings and Curves.

		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_CreateTopoGeo - Adds a collection of geometries to a given empty topology and returns a message detailing success.
 Description

Adds a collection of geometries to a given empty topology and returns a message detailing success.

				Useful for populating an empty topology.

 Availability: 2.0
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18
			
	ST_Crosses - Tests if two geometries have some, but not all, interior points in common
 Description

 Compares two geometry objects and
 returns true if their intersection "spatially crosses";
 that is, the geometries have some, but not all interior points in common.
 The intersection of the interiors of the geometries must be non-empty
 and must have dimension less than the maximum dimension
 of the two input geometries, and the intersection of the two
 geometries must not equal either geometry. Otherwise, it
 returns false.
 The crosses relation is symmetric and irreflexive.

 In mathematical terms:
 ST_Crosses(A, B) ⇔ (dim(Int(A) ⋂ Int(B)) < max(dim(Int(A)), dim(Int(B)))) ∧ (A ⋂ B ≠ A) ∧ (A ⋂ B ≠ B)

 Geometries cross if their DE-9IM Intersection Matrix matches:

 T*T****** for Point/Line, Point/Area, and Line/Area situations

 T*****T** for Line/Point, Area/Point, and Area/Line situations

 0******** for Line/Line situations

 the result is false for Point/Point and Area/Area situations

 The OpenGIS Simple Features Specification defines this predicate
 only for Point/Line, Point/Area, Line/Line, and Line/Area situations.
 JTS / GEOS extends the definition to apply to Line/Point, Area/Point and
 Area/Line situations as well. This makes the relation symmetric.

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.13.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.29

	ST_CurveToLine - Converts a geometry containing curves to a linear geometry.
 Description

 Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MULTIPOLYGON. Useful for outputting to devices that can't support CIRCULARSTRING geometry types

 Converts a given geometry to a linear geometry.
 Each curved geometry or segment is converted into a linear
approximation using the given `tolerance` and options (32 segments per
quadrant and no options by default).

The 'tolerance_type' argument determines interpretation of the
`tolerance` argument. It can take the following values:

 0 (default): Tolerance is max segments per quadrant.

 1: Tolerance is max-deviation of line from curve, in source units.

 2: Tolerance is max-angle, in radians, between generating radii.

The 'flags' argument is a bitfield. 0 by default.
Supported bits are:

 1: Symmetric (orientation idependent) output.

 2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric flag is off.

 Availability: 1.3.0
 Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.
 Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.7

 This function supports 3d and will not drop the z-index.

 This method supports Circular Strings and Curves.

	ST_Difference - Computes a geometry representing the part of geometry A that does not intersect geometry B.
 Description

 Returns a geometry representing the part of geometry A
 that does not intersect geometry B.
 This is equivalent to A - ST_Intersection(A,B).
 If A is completely contained in B
 then an empty atomic geometry of appropriate type is returned.
 This is the only overlay function where input order matters.
 ST_Difference(A, B) always returns a portion of A.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

 Performed by the GEOS module
 Enhanced: 3.1.0 accept a gridSize parameter.
 Requires GEOS >= 3.9.0 to use the gridSize parameter.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.20

 This function supports 3d and will not drop the z-index.
 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

	ST_Dimension - Returns the topological dimension of a geometry.
		Description

		Return the topological dimension of this Geometry object, which must
			be less than or equal to the coordinate dimension. OGC SPEC
			s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and
			the largest dimension of the components of a
			GEOMETRYCOLLECTION.
			If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) 0 is returned.
		

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.2
		Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
		 Prior to 2.0.0, this function throws an exception if used with empty geometry.
		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_Disjoint - Tests if two geometries have no points in common
 Description

 Returns true if two geometries are disjoint.
 Geometries are disjoint if they have no point in common.

 If any other spatial relationship is true for a pair of geometries, they are not disjoint.
 Disjoint implies that is false.

 In mathematical terms:
 ST_Disjoint(A, B) ⇔ A ⋂ B = ∅

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 Performed by the GEOS module

 This function call does not use indexes. A negated predicate
 can be used as a more performant alternative that uses indexes:
 ST_Disjoint(A,B) = NOT ST_Intersects(A,B)

 NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 //s2.1.13.3
 - a.Relate(b, 'FF*FF****')

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.26

	ST_Distance - Returns the distance between two geometry or geography values.
		Description

		For types returns the minimum 2D Cartesian (planar) distance between two geometries, in
		projected units (spatial ref units).
		
		For types defaults to return the minimum geodesic distance between two geographies in meters,
		compute on the spheroid determined by the SRID.
		If use_spheroid is
		false, a faster spherical calculation is used.

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.23
		

 This method supports Circular Strings and Curves.

		Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries
		Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
		Enhanced: 2.1.0 - support for curved geometries was introduced.
		Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
		Changed: 3.0.0 - does not depend on SFCGAL anymore.
	
	ST_EndPoint - Returns the last point of a LineString or CircularLineString.
		Description

	 Returns the last point of a LINESTRING
 or CIRCULARLINESTRING geometry
	 as a POINT.
 Returns NULL if the input
	 is not a LINESTRING or CIRCULARLINESTRING.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.4
		

 This function supports 3d and will not drop the z-index.

	

 This method supports Circular Strings and Curves.

		Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work with this
	 function and return the end point. In 2.0.0 it returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0.

	
	ST_Envelope - Returns a geometry representing the bounding box of a geometry.
			Description

			Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry.
			The polygon is defined by the corner points of the bounding box
			((MINX, MINY),
			(MINX, MAXY),
			(MAXX, MAXY),
			(MAXX, MINY),
			(MINX, MINY)). (PostGIS will add a
			ZMIN/ZMAX coordinate as
			well).

			Degenerate cases (vertical lines, points) will return a geometry of
			lower dimension than POLYGON, ie.
			POINT or LINESTRING.

			Availability: 1.5.0 behavior changed to output double precision instead of float4
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.19
		
	ST_Equals - Tests if two geometries include the same set of points
 Description

 Returns true if the given geometries are "topologically equal".
 Use this for a 'better' answer than '='.
 Topological equality means that the geometries have the same dimension,
 and their point-sets occupy the same space.
 This means that the order of vertices may be different in topologically equal geometries.
 To verify the order of points is consistent use
 (it must be noted ST_OrderingEquals is a little more stringent than simply verifying order of
 points are the same).

 In mathematical terms:
 ST_Equals(A, B) ⇔ A = B

 The following relation holds:
 ST_Equals(A, B) ⇔ ST_Within(A,B) ∧ ST_Within(B,A)

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.24
 Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal

	ST_ExteriorRing - Returns a LineString representing the exterior ring of a Polygon.
		Description

		Returns a LINESTRING representing the exterior ring (shell) of a POLYGON.
 Returns	NULL if the geometry is not a polygon.

		
		 This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with or

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 2.1.5.1
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.2.3, 8.3.3

 This function supports 3d and will not drop the z-index.

	
	ST_GMLToSQL - Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
			Description
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.50 (except for curves support).
			Availability: 1.5, requires libxml2 1.6+
		 Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
		 Enhanced: 2.0.0 default srid optional parameter added.
		
	ST_GeomCollFromText - Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it defaults to 0.
		Description

		 Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is
			not given, it defaults to 0.

		 OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

		 Returns null if the WKT is not a GEOMETRYCOLLECTION
		
			If you are absolutely sure all your WKT geometries are collections, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.

	
	ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT).
			Description

			Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

			
			
				There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry
					with no defined spatial reference system (SRID=0). The second takes a SRID as the second argument
					and returns a geometry that includes this SRID as part of its metadata.
				
			

			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2 - option SRID is from the conformance suite.
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.40
			

 This method supports Circular Strings and Curves.

 While not OGC-compliant, is faster than ST_GeomFromText and ST_PointFromText. It is also easier to use for numeric coordinate values. is another option similar in speed to and is OGC-compliant, but doesn't support anything but 2D points.
			Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')

		
	ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.
		Description

		The ST_GeomFromWKB function, takes a well-known
		binary representation of a geometry and a Spatial Reference System ID
		(SRID) and creates an instance of the appropriate
		geometry type. This function plays the role of the Geometry Factory in
		SQL. This is an alternate name for ST_WKBToSQL.

		If SRID is not specified, it defaults to 0 (Unknown).
		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.7.2 - the optional SRID is from the conformance suite
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.41
		

 This method supports Circular Strings and Curves.

	
	ST_GeometryFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText
			Description
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.40
		
	ST_GeometryN - Return an element of a geometry collection.
		Description

		Return the 1-based Nth element geometry of an input geometry which is a
			GEOMETRYCOLLECTION, MULTIPOINT, MULTILINESTRING, MULTICURVE, MULTI)POLYGON, or POLYHEDRALSURFACE.
			Otherwise, returns NULL.

		
		 Index is 1-based as for OGC specs since version 0.8.0.
		 Previous versions implemented this as 0-based instead.
		

		
		 To extract all elements of a geometry, is more efficient and works for atomic geometries.
		
		Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
		Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(..,1) case.
		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 9.1.5
		

 This function supports 3d and will not drop the z-index.

		

 This method supports Circular Strings and Curves.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	
	ST_GeometryType - Returns the SQL-MM type of a geometry as text.
			Description

			Returns the type of the geometry as a string. EG: 'ST_LineString', 'ST_Polygon','ST_MultiPolygon' etc. This function differs from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate whether the geometry is measured.

			Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
			

 This method implements the SQL/MM specification.
 	SQL-MM 3: 5.1.4
			

 This function supports 3d and will not drop the z-index.

			

 This function supports Polyhedral surfaces.

		
	ST_GetFaceEdges - Returns a set of ordered edges that bound aface.
 Description

 Returns a set of ordered edges that bound aface. Each output consists of a sequence and edgeid. Sequence numbers start with value 1.

		
Enumeration of each ring edges start from the edge with smallest identifier.
Order of edges follows a left-hand-rule (bound face is on the left of each directed edge).
		

 Availability: 2.0
	

 This method implements the SQL/MM specification.
 SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5
			
	ST_GetFaceGeometry - Returns the polygon in the given topology with the specified face id.
 Description

 Returns the polygon in the given topology with the specified face id. Builds the polygon from the edges making up the face.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16
			
	ST_InitTopoGeo - Creates a new topology schema and registers it in the topology.topology table.
 Description

 This is the SQL-MM equivalent of .
 It lacks options for spatial reference system and tolerance.
 it returns a text description of the topology creation, instead of the topology id.

 Availability: 1.1

 This method implements the SQL/MM specification.
 SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17
			
	ST_InteriorRingN - Returns the Nth interior ring (hole) of a Polygon.
		Description

		Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING.
			The index starts at 1.
 Returns NULL if the geometry is not a polygon or the index is out
			of range.

		
		
		 This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with or
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.2.6, 8.3.5
		

 This function supports 3d and will not drop the z-index.

	
	ST_Intersection - Computes a geometry representing the shared portion of geometries A and B.
 Description
 Returns a geometry representing the point-set
 intersection of two geometries.
 In other words, that portion of geometry A and geometry B
 that is shared between the two geometries.

 If the geometries have no points in common (i.e. are disjoint)
 then an empty atomic geometry of appropriate type is returned.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

 ST_Intersection in conjunction with is useful for clipping geometries such as in bounding box, buffer, or region
 queries where you only require the portion of a geometry that is inside a country or region of interest.

 For geography this is a thin wrapper around the geometry implementation.
 It first determines the best SRID that
 fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms back to WGS84 geography.

 This function will drop the M coordinate values if present.

 If working with 3D geometries, you may want to use SFGCAL based which does a proper 3D intersection for 3D geometries. Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.

 Performed by the GEOS module

 Enhanced: 3.1.0 accept a gridSize parameter
 Requires GEOS >= 3.9.0 to use the gridSize parameter
 Changed: 3.0.0 does not depend on SFCGAL.
 Availability: 1.5 support for geography data type was introduced.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.18

 This function supports 3d and will not drop the z-index.
 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

	ST_Intersects - Tests if two geometries intersect (they have at least one point in common)
 Description
 Returns true if two geometries intersect.
 Geometries intersect if they have any point in common.

 For geography, a distance tolerance of 0.00001 meters is used
 (so points that are very close are considered to intersect).

 In mathematical terms:
 ST_Intersects(A, B) ⇔ A ⋂ B ≠ ∅

 Geometries intersect if their DE-9IM Intersection Matrix matches one of:

 T********
 *T*******
 T**
 ****T****

 Spatial intersection is implied by all the other spatial relationship tests,
 except , which tests that geometries do NOT intersect.

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added.
 Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION.
 Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
 Performed by the GEOS module (for geometry), geography is native
 Availability: 1.5 support for geography was introduced.

 For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather
 than spheroid calculation.

 NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 //s2.1.13.3
 - ST_Intersects(g1, g2) --> Not (ST_Disjoint(g1, g2))

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.27

 This method supports Circular Strings and Curves.

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

	ST_IsClosed - Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
		Description

		Returns TRUE if the LINESTRING's
		start and end points are coincident.
		For Polyhedral Surfaces, reports if the surface is areal (open) or volumetric (closed).

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.5, 9.3.3
		
		 SQL-MM defines the result of
		 ST_IsClosed(NULL) to be 0, while
		 PostGIS returns NULL.
		

		

 This function supports 3d and will not drop the z-index.

		

 This method supports Circular Strings and Curves.

		Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

		

 This function supports Polyhedral surfaces.

	
	ST_IsEmpty - Tests if a geometry is empty.
		Description

		Returns true if this Geometry is an empty geometry. If
				true, then this Geometry represents an empty geometry collection, polygon, point etc.
		
			SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while
			PostGIS returns NULL.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.7
		

 This method supports Circular Strings and Curves.

		Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

	
	ST_IsRing - Tests if a LineString is closed and simple.
	 Description

	 Returns TRUE if this
	 LINESTRING is both
	 (ST_StartPoint(g)
	 ~=
	 ST_Endpoint(g)) and (does not self intersect).

	

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 2.1.5.1
	

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.6
	
		SQL-MM defines the result of
		ST_IsRing(NULL) to be 0, while
		PostGIS returns NULL.
	
	
	ST_IsSimple - Tests if a geometry has no points of self-intersection or self-tangency.
		Description

		Returns true if this Geometry has no anomalous geometric
				points, such as self-intersection or self-tangency. For more
			information on the OGC's definition of geometry simplicity and validity, refer
			to "Ensuring OpenGIS compliancy of geometries"

		
			SQL-MM defines the result of ST_IsSimple(NULL) to be 0,
			while PostGIS returns NULL.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.8
		

 This function supports 3d and will not drop the z-index.

	
	ST_IsValid - Tests if a geometry is well-formed in 2D.
		Description

		
 Tests if an ST_Geometry value is well-formed and valid in 2D according to the OGC rules.
 For geometries with 3 and 4 dimensions, the validity is still only tested in 2 dimensions.
		For geometries that are invalid, a PostgreSQL NOTICE is emitted providing details of why it is not valid.

		
For the version with the flags parameter,
supported values are documented in
This version does not print a NOTICE explaining invalidity.
		
		For more information on the definition of geometry validity, refer
			to
		
		
			SQL-MM defines the result of ST_IsValid(NULL) to be 0, while
			PostGIS returns NULL.
		
	 Performed by the GEOS module.

		The version accepting flags is available starting with 2.0.0.		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.9

		
			
Neither OGC-SFS nor SQL-MM specifications include a flag argument
for ST_IsValid. The flag is a PostGIS extension.
			
		

	
	ST_Length - Returns the 2D length of a linear geometry.
			Description

			For geometry types: returns the 2D Cartesian length of the geometry if it is a LineString, MultiLineString, ST_Curve, ST_MultiCurve.
				For areal geometries 0 is returned; use instead.
				The units of length is determined by the
				spatial reference system of the geometry.
			For geography types: computation is performed using the inverse geodesic calculation. Units of length are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid = false, then the calculation is based on a sphere instead of a spheroid.
				

			Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.

			Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
			this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon

			For geography the calculation defaults to using a spheroidal model. To use the faster but less accurate spherical calculation use ST_Length(gg,false);
			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.5.1
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.2, 9.3.4
			Availability: 1.5.0 geography support was introduced in 1.5.
		
	ST_LineFromText - Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.
		Description

		Makes a Geometry from WKT with the given SRID. If SRID is
				not given, it defaults to 0. If WKT passed in is not a LINESTRING, then null is returned.

		
		 OGC SPEC 3.2.6.2 - option SRID is from the conformance
				suite.
		

		
		 If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText.
			This just calls ST_GeomFromText and adds additional validation that it returns a linestring.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.2.8

	
	ST_LineFromWKB - Makes a LINESTRING from WKB with the given SRID
		Description

	 The ST_LineFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.

	 If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea
		does not represent a LINESTRING.

		
		 OGC SPEC 3.2.6.2 - option SRID is from the conformance
				suite.
		

		
		 If you know all your geometries are LINESTRINGs, its more
		 efficient to just use . This function just
		 calls and adds additional validation that
		 it returns a linestring.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.2.9

	
	ST_LinestringFromWKB - Makes a geometry from WKB with the given SRID.
		Description

	 The ST_LinestringFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.

	 If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		LINESTRING geometry. This an alias for .

		
		 OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.
		

		
		 If you know all your geometries are LINESTRINGs, it's more
		 efficient to just use . This function just calls
		 and adds additional validation that it returns a
		 LINESTRING.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.2.9
	
	ST_LocateAlong - Returns the point(s) on a geometry that match a measure value.
		Description

		Returns the location(s) along a measured geometry
		that have the given measure values.
 The result is a Point or MultiPoint.
 Polygonal inputs are not supported.

		If offset is provided, the result
 is offset to the left or right of the input line by the specified distance.
 A positive offset will be to the left, and a negative one to the right.

		Use this function only for linear geometries with an M component

		The semantic is specified by the ISO/IEC 13249-3 SQL/MM Spatial standard.

		Availability: 1.1.0 by old name ST_Locate_Along_Measure.
		Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure.

		

 This function supports M coordinates.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1.13
	
	ST_LocateBetween - Returns the portions of a geometry that match a measure range.
		Description

		Return a geometry (collection) with the portions of the input measured geometry
 that match the specified measure range (inclusively).

		If the offset is provided, the result
 is offset to the left or right of the input line by the specified distance.
 A positive offset will be to the left, and a negative one to the right.

		Clipping a non-convex POLYGON may produce invalid geometry.

		The semantic is specified by the ISO/IEC 13249-3 SQL/MM Spatial standard.

		Availability: 1.1.0 by old name ST_Locate_Between_Measures.
		Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures.
		Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

		

 This function supports M coordinates.

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 5.1
	
	ST_M - Returns the M coordinate of a Point.
		Description

		Return the M coordinate of a Point, or NULL if not
			available. Input must be a Point.

		
			 This is not (yet) part of the OGC spec, but is listed here
			 to complete the point coordinate extractor function list.
		
		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.

		

 This function supports 3d and will not drop the z-index.

	
	ST_MLineFromText - Return a specified ST_MultiLineString value from WKT representation.
		Description

		 Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is
			not given, it defaults to 0.

		 OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite

		 Returns null if the WKT is not a MULTILINESTRING

		
			If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 9.4.4

	
	ST_MPointFromText - Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
		Description

		 Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

		 OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite

		 Returns null if the WKT is not a MULTIPOINT

		
			If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 9.2.4

	
	ST_MPolyFromText - Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
		Description

		 Makes a MultiPolygon from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

		 OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

		 Throws an error if the WKT is not a MULTIPOLYGON

		
			If you are absolutely sure all your WKT geometries are multipolygons, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 9.6.4

	
	ST_ModEdgeHeal - Heals two edges by deleting the node connecting them, modifying the first edgeand deleting the second edge. Returns the id of the deleted node.
 Description

Heals two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge.
Returns the id of the deleted node.
Updates all existing joined edges and relationships accordingly.
		

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
			
	ST_ModEdgeSplit - Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge.
 Description

Split an edge by creating a new node along an existing edge,
modifying the original edge and adding a new edge.
Updates all existing joined edges and relationships accordingly.
Returns the identifier of the newly added node.
		

 Availability: 1.1
 Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
			
	ST_MoveIsoNode - Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown. Returns description of move.
 Description

 Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown.
 If any arguments are null, the
apoint is not a point, the existing node is not
isolated (is a start or end point of an existing edge), new node
location intersects an existing edge (even at the end points) or the
new location is in a different face (since 3.2.0) then an exception is thrown.

 If the spatial reference system (srid) of the point geometry is not the same as the topology an exception is thrown.

 Availability: 2.0.0

	Enhanced: 3.2.0 ensures the nod cannot be moved in a different face

	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Net Routines: X.3.2
			
	ST_NewEdgeHeal - Heals two edges by deleting the node connecting them, deleting both edges,and replacing them with an edge whose direction is the same as the firstedge provided.
 Description

Heals two edges by deleting the node connecting them, deleting both edges,
and replacing them with an edge whose direction is the same as the first
edge provided.
Returns the id of the new edge replacing the healed ones.
Updates all existing joined edges and relationships accordingly.
		

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
			
	ST_NewEdgesSplit - Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges.
 Description

Split an edge with edge id anedge by creating a
new node with point location apoint along current
edge, deleting the original edge and replacing it with two new edges.
Returns the id of the new node created that joins the new edges.
Updates all existing joined edges and relationships accordingly.
		

 If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, the point already exists as a node, the edge does not correspond to an existing edge or the point is not within the edge then an exception is thrown.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Net Routines: X.3.8
			
	ST_NumGeometries - Returns the number of elements in a geometry collection.
			Description

			Returns the number of elements in a geometry collection (GEOMETRYCOLLECTION or MULTI*).
			For non-empty atomic geometries returns 1. For empty geometries returns 0.
			

			Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
			Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 9.1.4
			

 This function supports 3d and will not drop the z-index.

			

 This function supports Polyhedral surfaces.

			

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

		
	ST_NumInteriorRings - Returns the number of interior rings (holes) of a Polygon.
		Description

		
 Return the number of interior rings of a polygon geometry.
			Return NULL if the geometry is not a polygon.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.2.5
		Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.
	
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
		Description

		Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is
		an alias for ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don't care about MM convention.

		Availability: 2.0.0
		

 This function supports 3d and will not drop the z-index.

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM ISO/IEC 13249-3: 8.5
		

 This function supports Polyhedral surfaces.

	
	ST_NumPoints - Returns the number of points in a LineString or CircularString.
		Description

		Return the number of points in an ST_LineString or
		 ST_CircularString value. Prior to 1.4 only works with linestrings as the specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for
		 not just linestrings.
		 Consider using ST_NPoints instead which is multi-purpose
		 and works with many geometry types.

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.2.4
	
	ST_OrderingEquals - Tests if two geometries represent the same geometry and have points in the same directional order
 Description

 ST_OrderingEquals compares two geometries and returns t (TRUE) if the
 geometries are equal and the coordinates are in the same order;
 otherwise it returns f (FALSE).

 This function is implemented as per the ArcSDE SQL
 specification rather than SQL-MM.
 http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.43

	ST_Overlaps - Tests if two geometries have the same dimension and intersect, but each has at least one point not in the other
 Description

 Returns TRUE if geometry A and B "spatially overlap".
 Two geometries overlap if they have the same dimension,
 their interiors intersect in that dimension.
 and each has at least one point inside the other
 (or equivalently, neither one covers the other).
 The overlaps relation is symmetric and irreflexive.

 In mathematical terms:
 ST_Overlaps(A, B) ⇔ (dim(A) = dim(B) = dim(Int(A) ⋂ Int(B))) ∧ (A ⋂ B ≠ A) ∧ (A ⋂ B ≠ B)

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Overlaps.

 Performed by the GEOS module

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 // s2.1.13.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.32

	ST_PatchN - Returns the Nth geometry (face) of a PolyhedralSurface.
		Description

		Returns the 1-based Nth geometry (face) if the geometry is a
			POLYHEDRALSURFACE or POLYHEDRALSURFACEM.
			Otherwise, returns NULL.
			This returns the same answer as ST_GeometryN for PolyhedralSurfaces.
			Using ST_GeometryN is faster.

		
		 Index is 1-based.
		

		
		 If you want to extract all elements of a geometry is more efficient.
		

		Availability: 2.0.0
		

 This method implements the SQL/MM specification.
 SQL-MM ISO/IEC 13249-3: 8.5
		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

	
	ST_Perimeter - Returns the length of the boundary of a polygonal geometry or geography.
			Description

			Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for
				non-areal geometries. For linear geometries use . For geometry types, units for perimeter measures are specified by the
				spatial reference system of the geometry.
			For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid = false, then calculations will approximate a sphere instead of a spheroid.

			Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.

			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.5.1
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.1.3, 9.5.4
			Availability 2.0.0: Support for geography was introduced
		
	ST_Point - Creates a Point with X, Y and SRID values.
		Description

		Returns a Point with the given X and Y coordinate values. This is the SQL-MM equivalent for that takes just X and Y.

		For geodetic coordinates, X is longitude and Y is latitude

	 Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 6.1.2

	
	ST_PointFromText - Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.
			Description

			Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is
			not given, it defaults to unknown (currently 0). If geometry is not a WKT point representation, returns null.
			If completely invalid WKT, then throws an error.

			
			
				There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry
					with no defined spatial reference system. The second takes a spatial reference id as the second argument
					and returns an ST_Geometry that includes this srid as part of its meta-data. The srid must be defined
					in the spatial_ref_sys table.
			

			
				If you are absolutely sure all your WKT geometries are points, don't use this function.
					It is slower than ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates and care more about performance and accuracy than OGC compliance, use or OGC compliant alias .
			

			

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2 - option SRID is from the conformance suite.
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 6.1.8
		
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID
		Description

		The ST_PointFromWKB function, takes a well-known binary
			representation of geometry and a Spatial Reference System ID (SRID)
			and creates an instance of the appropriate geometry type - in this case, a
			POINT geometry. This function plays the role of the Geometry
			Factory in SQL.

		If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		POINT geometry.
		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.7.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 6.1.9
		

 This function supports 3d and will not drop the z-index.

		

 This method supports Circular Strings and Curves.

	
	ST_PointN - Returns the Nth point in the first LineString or circular LineString in a geometry.
		Description

		Return the Nth point in a single linestring or circular linestring in the
			geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the
			geometry.

		
			 Index is 1-based as for OGC specs since version 0.8.0.
 Backward indexing (negative index) is not in OGC
			 Previous versions implemented this as 0-based instead.
		

		
			 If you want to get the Nth point of each LineString in a MultiLineString, use in conjunction
			 with ST_Dump
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.2.5, 7.3.5
		

 This function supports 3d and will not drop the z-index.

		

 This method supports Circular Strings and Curves.

		Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
 Changed: 2.3.0 : negative indexing available (-1 is last point)

	
	ST_PointOnSurface - Computes a point guaranteed to lie in a polygon, or on a geometry.
 Description

 Returns a POINT which is guaranteed to lie in the interior of a surface
 (POLYGON, MULTIPOLYGON, and CURVED POLYGON).
 In PostGIS this function also works on line and point geometries.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.14.2 // s3.2.18.2

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.1.5, 9.5.6.
 The specifications define ST_PointOnSurface for surface geometries only.
 PostGIS extends the function to support all common geometry types.
 Other databases (Oracle, DB2, ArcSDE) seem to support this function only for surfaces.
 SQL Server 2008 supports all common geometry types.

 This function supports 3d and will not drop the z-index.

	ST_Polygon - Creates a Polygon from a LineString with a specified SRID.
		Description

		Returns a polygon built from the given LineString
		and sets the spatial reference system from the srid.

		ST_Polygon is similar to Variant 1
		with the addition of setting the SRID.
		To create polygons with holes
		use Variant 2 and then .
		

		This function does not accept MultiLineStrings.
		Use to generate a LineString, or to extract LineStrings.
		

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.3.2
		

 This function supports 3d and will not drop the z-index.

	
	ST_PolygonFromText - Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
		Description

		Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0. Returns null if WKT is not a polygon.

		OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite

		If you are absolutely sure all your WKT geometries are polygons, don't use this function.
					It is slower than ST_GeomFromText since it adds an additional validation step.
		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s3.2.6.2
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 8.3.6
	
	ST_Relate - Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their Intersection Matrix
 Description

 These functions allow testing and evaluating the spatial (topological) relationship between two geometries,
 as defined by the Dimensionally Extended 9-Intersection Model (DE-9IM).

 The DE-9IM is specified as a 9-element matrix indicating the dimension of the intersections between the
 Interior, Boundary and Exterior of two geometries.
 It is represented by a 9-character text string using the symbols 'F', '0', '1', '2'
 (e.g. 'FF1FF0102').

 A specific kind of spatial relationship can be tested by matching the intersection
 matrix to an intersection matrix pattern.
 Patterns can include the additional symbols 'T' (meaning "intersection is non-empty")
 and '*' (meaning "any value").
 Common spatial relationships are provided by the named functions
 , ,
 , ,
 , , ,
 , , ,
 and .
 Using an explicit pattern allows testing multiple conditions of intersects, crosses, etc in one step.
 It also allows testing spatial relationships which do not have a named spatial relationship function.
 For example, the relationship "Interior-Intersects" has the DE-9IM pattern T********,
 which is not evaluated by any named predicate.

 For more information refer to .

 Variant 1: Tests if two geometries are spatially related
 according to the given intersectionMatrixPattern.

 Unlike most of the named spatial relationship predicates,
 this does NOT automatically include an index call.
 The reason is that some relationships are true for geometries
 which do NOT intersect (e.g. Disjoint). If you are
 using a relationship pattern that requires intersection, then include the &&
 index call.

 It is better to use a named relationship function if available,
 since they automatically use a spatial index where one exists.
 Also, they may implement performance optimizations which are not available
 with full relate evalation.

 Variant 2: Returns the DE-9IM matrix string for the
 spatial relationship between the two input geometries.
 The matrix string can be tested for matching a DE-9IM pattern using .

 Variant 3: Like variant 2,
 but allows specifying a Boundary Node Rule.
 A boundary node rule allows finer control over whether the endpoints of MultiLineStrings
 are considered to lie in the DE-9IM Interior or Boundary.
 The boundaryNodeRule values are:

 1: OGC-Mod2 - line endpoints are in the Boundary if they occur an odd number of times.
 This is the rule defined by the OGC SFS standard, and is the default for ST_Relate.

 2: Endpoint - all endpoints are in the Boundary.

 3: MultivalentEndpoint - endpoints are in the Boundary if they occur more than once.
 In other words, the boundary is all the "attached" or "inner" endpoints (but not the "unattached/outer" ones).

 4: MonovalentEndpoint - endpoints are in the Boundary if they occur only once.
 In other words, the boundary is all the "unattached" or "outer" endpoints.

 This function is not in the OGC spec, but is implied. see s2.1.13.2

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 // s2.1.13.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.25
 Performed by the GEOS module
 Enhanced: 2.0.0 - added support for specifying boundary node rule.

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

	ST_RemEdgeModFace - Removes an edge, and if the edge separates two facesdeletes one face and modifies the other face to cover the space of both.
 Description

Removes an edge, and if the removed edge separates two faces
deletes one face and modifies the other face to cover the space of both.
Preferentially keeps the face on the right, to be consistent with
.
Returns the id of the face which is preserved.
		

Updates all existing joined edges and relationships accordingly.
		

Refuses to remove an edge participating in the definition of an
existing TopoGeometry.
Refuses to heal two faces if any TopoGeometry is defined by only
one of them (and not the other).
		

If any arguments are null, the given edge is unknown (must already exist in
the edge table of the topology schema), the topology
name is invalid then an error is thrown.

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15
			
	ST_RemEdgeNewFace - Removes an edge and, if the removed edge separated two faces,delete the original faces and replace them with a new face.
 Description

Removes an edge and, if the removed edge separated two faces,
delete the original faces and replace them with a new face.
		

Returns the id of a newly created face or NULL, if no new face is created.
No new face is created when the removed edge is dangling or isolated or
confined with the universe face (possibly making the universe flood into
the face on the other side).
		

Updates all existing joined edges and relationships accordingly.
		

Refuses to remove an edge participating in the definition of an
existing TopoGeometry.
Refuses to heal two faces if any TopoGeometry is defined by only
one of them (and not the other).
		

If any arguments are null, the given edge is unknown (must already exist in
the edge table of the topology schema), the topology
name is invalid then an error is thrown.

 Availability: 2.0

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14
			
	ST_RemoveIsoEdge - Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.
 Description

 Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
			
	ST_RemoveIsoNode - Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.
 Description

 Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.

 Availability: 1.1
	

 This method implements the SQL/MM specification.
 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
			
	ST_SRID - Returns the spatial reference identifier for a geometry.
 Description

 Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.
 spatial_ref_sys
 table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial
 reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.1

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.5

 This method supports Circular Strings and Curves.

	ST_StartPoint - Returns the first point of a LineString.
	 Description

	 Returns the first point of a LINESTRING
 or CIRCULARLINESTRING geometry
	 as a POINT.
 Returns NULL if the input
	 is not a LINESTRING or CIRCULARLINESTRING.

	

 This method implements the SQL/MM specification.
 SQL-MM 3: 7.1.3
	

 This function supports 3d and will not drop the z-index.

	

 This method supports Circular Strings and Curves.

	
 Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString.
 Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0.

	
	ST_SymDifference - Computes a geometry representing the portions of geometries A and B that do not intersect.
 Description

 Returns a geometry representing the portions of geonetries A and B
 that do not intersect.
 This is equivalent to ST_Union(A,B) - ST_Intersection(A,B).
 It is called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

 Performed by the GEOS module

 Enhanced: 3.1.0 accept a gridSize parameter.
 Requires GEOS >= 3.9.0 to use the gridSize parameter

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.21

 This function supports 3d and will not drop the z-index.
 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

	ST_Touches - Tests if two geometries have at least one point in common, but their interiors do not intersect
 Description

 Returns TRUE if A and B intersect,
 but their interiors do not intersect. Equivalently, A and B have at least one point in common,
 and the common points lie in at least one boundary.
 For Point/Point inputs the relationship is always FALSE,
 since points do not have a boundary.

 In mathematical terms:
 ST_Touches(A, B) ⇔ (Int(A) ⋂ Int(B) ≠ ∅) ∧ (A ⋂ B ≠ ∅)

 This relationship holds if the DE-9IM Intersection Matrix for the two geometries matches one of:

 FT*******

 F**T*****

 F***T****

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid using an index, use _ST_Touches instead.

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 // s2.1.13.3

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.28

	ST_Transform - Return a new geometry with coordinates transformed to a different spatial reference system.
 Description

 Returns a new geometry with its coordinates transformed to
 a different spatial reference system. The destination spatial
 reference to_srid may be identified by a valid
 SRID integer parameter (i.e. it must exist in the
 spatial_ref_sys table).
 Alternatively, a spatial reference defined as a PROJ.4 string
 can be used for to_proj and/or
 from_proj, however these methods are not
 optimized. If the destination spatial reference system is
 expressed with a PROJ.4 string instead of an SRID, the SRID of the
 output geometry will be set to zero. With the exception of functions with
 from_proj, input geometries must have a defined SRID.

 ST_Transform is often confused with . ST_Transform actually changes the coordinates
 of a geometry from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of
 the geometry.

 ST_Transform automatically selects a suitable conversion pipeline given the source and target spatial
 reference systems. To use a specific conversion method, use .

 Requires PostGIS be compiled with PROJ support. Use to confirm you have PROJ support compiled in.

 If using more than one transformation, it is useful to have a functional index on the commonly used
 transformations to take advantage of index usage.

 Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

 Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
 Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.6

 This method supports Circular Strings and Curves.

 This function supports Polyhedral surfaces.

	ST_Union - Computes a geometry representing the point-set union of the input geometries.
 Description
 Unions the input geometries, merging geometry to produce a result geometry
 with no overlaps.
 The output may be an atomic geometry, a MultiGeometry, or a Geometry Collection.
 Comes in several variants:

 Two-input variant:
 returns a geometry that is the union of two input geometries.
 If either input is NULL, then NULL is returned.

 Array variant:
 returns a geometry that is the union of an array of geometries.

 Aggregate variant:
 returns a geometry that is the union of a rowset of geometries.
 The ST_Union() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.

 See for a non-aggregate, single-input variant.

 The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

 A gridSize can be specified to work in fixed-precision space.
 The inputs are snapped to a grid of the given size, and the result vertices are computed
 on that same grid.
 (Requires GEOS-3.9.0 or higher)

 may sometimes be used in place of ST_Union,
 if the result is not required to be non-overlapping.
 ST_Collect is usually faster than ST_Union because it performs no processing
 on the collected geometries.

 Performed by the GEOS module.
 ST_Union creates MultiLineString and does not sew LineStrings into a single LineString.
 Use to sew LineStrings.

 NOTE: this function was formerly called GeomUnion(), which
 was renamed from "Union" because UNION is an SQL reserved
 word.

 Enhanced: 3.1.0 accept a gridSize parameter.
 Requires GEOS >= 3.9.0 to use the gridSize parameter
 Changed: 3.0.0 does not depend on SFCGAL.
 Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.3
 Aggregate version is not explicitly defined in OGC SPEC.

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.19
 the z-index (elevation) when polygons are involved.

 This function supports 3d and will not drop the z-index.
 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

	ST_Volume - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
		Description

		Availability: 2.2.0
		

 This method needs SFCGAL backend.

		

 This function supports 3d and will not drop the z-index.

		

 This function supports Polyhedral surfaces.

		

 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 This method implements the SQL/MM specification.
 SQL-MM IEC 13249-3: 9.1 (same as ST_3DVolume)
	
	ST_WKBToSQL - Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid
			Description
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.36
		
	ST_WKTToSQL - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText
			Description
			

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.34
		
	ST_Within - Tests if every point of A lies in B, and their interiors have a point in common
 Description

 Returns TRUE if geometry A is within geometry B.
 A is within B if and only if all points of A lie inside (i.e. in the interior or boundary of) B
 (or equivalently, no points of A lie in the exterior of B),
 and the interiors of A and B have at least one point in common.

 For this function to make
 sense, the source geometries must both be of the same coordinate projection,
 having the same SRID.

 In mathematical terms:
 ST_Within(A, B) ⇔ (A ⋂ B = A) ∧ (Int(A) ⋂ Int(B) ≠ ∅)

 The within relation is reflexive: every geometry is within itself.
 The relation is antisymmetric: if ST_Within(A,B) = true and ST_Within(B,A) = true, then
 the two geometries must be topologically equal (ST_Equals(A,B) = true).

 ST_Within is the converse of .
 So, ST_Within(A,B) = ST_Contains(B,A).

 Because the interiors must have a common point, a subtlety of the definition is that
 lines and points lying fully in the boundary of polygons or lines are not within the geometry.
 For further details see Subtleties of OGC Covers, Contains, Within.
 The predicate provides a more inclusive relationship.

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Within.

 Performed by the GEOS module

 Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.

 Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 Do not use this function with invalid geometries. You will get unexpected results.

 NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
 s2.1.1.2 // s2.1.13.3
 - a.Relate(b, 'T*F**F***')

 This method implements the SQL/MM specification.
 SQL-MM 3: 5.1.30

	ST_X - Returns the X coordinate of a Point.
		Description

		Return the X coordinate of the point, or NULL if not
			available. Input must be a point.

		To get the minimum and maximum X value of geometry coordinates use the functions
		 and .

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 6.1.3
		

 This function supports 3d and will not drop the z-index.

	
	ST_Y - Returns the Y coordinate of a Point.
		Description

		Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.

		To get the minimum and maximum Y value of geometry coordinates use the functions
		 and .

		

 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

		

 This method implements the SQL/MM specification.
 SQL-MM 3: 6.1.4
		

 This function supports 3d and will not drop the z-index.

	
	ST_Z - Returns the Z coordinate of a Point.
		Description

		Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.

		To get the minimum and maximum Z value of geometry coordinates use the functions
		 and .

		

 This method implements the SQL/MM specification.

		

 This function supports 3d and will not drop the z-index.

	
	TG_ST_SRID - Returns the spatial reference identifier for a topogeometry.
		Description

		Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.
		spatial_ref_sys
		table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial
			reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries.
 Availability: 3.2.0
		

 This method implements the SQL/MM specification.
 SQL-MM 3: 14.1.5

	

Name
ST_SummaryStats — Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

Synopsis
	summarystats ST_SummaryStats(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

	summarystats ST_SummaryStats(rast, 	
	 	nband, 	
	 	exclude_nodata_value);	

raster rast;
integer nband;
boolean exclude_nodata_value;

Description
Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the nodata value. Set exclude_nodata_value to false to get count of all pixels.

Note
By default will sample all pixels. To get faster response, set sample_percent to lower than 1

Changed: 3.1.0 ST_SummaryStats(rastertable, rastercolumn, ...) variants are removed. Use ST_SummaryStatsAgg instead.
Availability: 2.0.0

Example: Single raster tile

SELECT rid, band, (stats).*
FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;

 rid | band | count | sum | mean | stddev | min | max
-----+------+-------+------+------------+-----------+-----+-----
 2 | 1 | 23 | 5821 | 253.086957 | 1.248061 | 250 | 254
 2 | 2 | 25 | 3682 | 147.28 | 59.862188 | 78 | 254
 2 | 3 | 25 | 3290 | 131.6 | 61.647384 | 62 | 254

Example: Summarize pixels that intersect buildings of interest
This example took 574ms on PostGIS windows 64-bit with all of Boston Buildings
and aerial Tiles (tiles each 150x150 pixels ~ 134,000 tiles), ~102,000 building records
WITH
-- our features of interest
 feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b
 WHERE gid IN(100, 103,150)
),
-- clip band 2 of raster tiles to boundaries of builds
-- then get stats for these clipped regions
 b_stats AS
 (SELECT building_id, (stats).*
FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats
 FROM aerials.boston
 INNER JOIN feat
 ON ST_Intersects(feat.geom,rast)
) As foo
)
-- finally summarize stats
SELECT building_id, SUM(count) As num_pixels
 , MIN(min) As min_pval
 , MAX(max) As max_pval
 , SUM(mean*count)/SUM(count) As avg_pval
 FROM b_stats
 WHERE count > 0
 GROUP BY building_id
 ORDER BY building_id;
 building_id | num_pixels | min_pval | max_pval | avg_pval
-------------+------------+----------+----------+------------------
 100 | 1090 | 1 | 255 | 61.0697247706422
 103 | 655 | 7 | 182 | 70.5038167938931
 150 | 895 | 2 | 252 | 185.642458100559

Example: Raster coverage

-- stats for each band --
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 | 0 | 255
 2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 | 0 | 255
 3 | 8450000 | 575943 | 74.682739408284 | 44.2143885481407 | 0 | 255

-- For a table -- will get better speed if set sampling to less than 100%
-- Here we set to 25% and get a much faster answer
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 | 0 | 255
 2 | 2112500 | 174571 | 81.448503668639 | 44.2252623171821 | 0 | 255
 3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 | 0 | 255

See Also

 summarystats,
 ST_SummaryStatsAgg,
 ST_Count,
 ST_Clip

Name
GetTopologyID — Returns the id of a topology in the topology.topology table given the name of the topology.

Synopsis
	integer GetTopologyID(toponame);	

varchar toponame;

Description
Returns the id of a topology in the topology.topology table given the name of the topology.
Availability: 1.1

Examples
SELECT topology.GetTopologyID('ma_topo') As topo_id;
 topo_id

 1

See Also

	CreateTopology,
	DropTopology,
	GetTopologyName,
	GetTopologySRID
				

Name
ST_InterpolateRaster — Interpolates a gridded surface based on an input set
 of 3-d points, using the X- and Y-values to position the points on
 the grid and the Z-value of the points as the surface elevation.

Synopsis
	raster ST_InterpolateRaster(input_points, 	
	 	algorithm_options, 	
	 	template, 	
	 	template_band_num=1);	

geometry input_points;
text algorithm_options;
raster template;
integer template_band_num=1;

Description

 Interpolates a gridded surface based on an input set
 of 3-d points, using the X- and Y-values to position the points on
 the grid and the Z-value of the points as the surface elevation.

 There are five interpolation algorithms available: inverse distance,
 inverse distance nearest-neighbor, moving average, nearest neighbor,
 and linear interpolation.
 See the gdal_grid documentation
 for more details on the algorithms and their parameters. For more
 information on how interpolations are calculated, see the
 GDAL grid
 tutorial.

 Input parameters are:

	input_points
	The points to drive the interpolation. Any
 geometry with Z-values is acceptable, all points in the
 input will be used.

	algorithm_options
	A string defining the algorithm and
 algorithm options, in the format used by gdal_grid.
 For example, for an inverse-distance interpolation with a
 smoothing of 2, you would use "invdist:smoothing=2.0"

	template
	A raster template to drive the geometry of the
 output raster. The width, height, pixel size, spatial extent
 and pixel type will be read from this template.

	template_band_num
	By default the first band in the template raster
 is used to drive the output raster, but that can be adjusted
 with this parameter.

Availability: 3.2.0

Example
SELECT ST_InterpolateRaster(
 'MULTIPOINT(10.5 9.5 1000, 11.5 8.5 1000, 10.5 8.5 500, 11.5 9.5 500)'::geometry,
 'invdist:smoothing:2.0',
 ST_AddBand(ST_MakeEmptyRaster(200, 400, 10, 10, 0.01, -0.005, 0, 0), '16BSI')
)

See Also

 ST_Contour

Name
TopoElementArray — An array of TopoElement objects.

Description
An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples
SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
 tea

{{1,2},{4,3}}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

 tea

{{1,2},{4,3}}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
 tea
--
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}

SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement,
GetTopoGeomElementArray,
TopoElementArray_Agg

Name
ST_IsValid — Tests if a geometry is well-formed in 2D.
		

Synopsis
	boolean ST_IsValid(g);	

geometry g;

	boolean ST_IsValid(g, 	
	 	flags);	

geometry g;
integer flags;

Description

 Tests if an ST_Geometry value is well-formed and valid in 2D according to the OGC rules.
 For geometries with 3 and 4 dimensions, the validity is still only tested in 2 dimensions.
		For geometries that are invalid, a PostgreSQL NOTICE is emitted providing details of why it is not valid.

For the version with the flags parameter,
supported values are documented in ST_IsValidDetail
This version does not print a NOTICE explaining invalidity.
		
For more information on the definition of geometry validity, refer
			to the section called “Geometry Validation”
		
Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while
			PostGIS returns NULL.

Performed by the GEOS module.
The version accepting flags is available starting with 2.0.0.		

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.9
Note

Neither OGC-SFS nor SQL-MM specifications include a flag argument
for ST_IsValid. The flag is a PostGIS extension.
			

Examples
SELECT ST_IsValid(ST_GeomFromText('LINESTRING(0 0, 1 1)')) As good_line,
	ST_IsValid(ST_GeomFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) As bad_poly
--results
NOTICE: Self-intersection at or near point 0 0
 good_line | bad_poly
-----------+----------
 t | f

See Also

ST_IsSimple,
ST_IsValidReason,
ST_IsValidDetail,

Name
AddRasterConstraints — Adds raster constraints to a loaded raster table for a specific column that constrains spatial ref, scaling, blocksize, alignment, bands, band type and a flag to denote if raster column is regularly blocked. The table must be loaded with data for the constraints to be inferred. Returns true if the constraint setting was accomplished and issues a notice otherwise.

Synopsis
	boolean AddRasterConstraints(rasttable, 	
	 	rastcolumn, 	
	 	srid=true, 	
	 	scale_x=true, 	
	 	scale_y=true, 	
	 	blocksize_x=true, 	
	 	blocksize_y=true, 	
	 	same_alignment=true, 	
	 	regular_blocking=false, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
 rasttable;
name
 rastcolumn;
boolean
 srid=true;
boolean
 scale_x=true;
boolean
 scale_y=true;
boolean
 blocksize_x=true;
boolean
 blocksize_y=true;
boolean
 same_alignment=true;
boolean
 regular_blocking=false;
boolean
 num_bands=true
 ;
boolean
 pixel_types=true
 ;
boolean
 nodata_values=true
 ;
boolean
 out_db=true
 ;
boolean
 extent=true
 ;

	boolean AddRasterConstraints(rasttable, 	
	 	rastcolumn, 	
	 	VARIADIC constraints);	

name
 rasttable;
name
 rastcolumn;
text[]
 VARIADIC constraints;

	boolean AddRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	VARIADIC constraints);	

name
 rastschema;
name
 rasttable;
name
 rastcolumn;
text[]
 VARIADIC constraints;

	boolean AddRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	srid=true, 	
	 	scale_x=true, 	
	 	scale_y=true, 	
	 	blocksize_x=true, 	
	 	blocksize_y=true, 	
	 	same_alignment=true, 	
	 	regular_blocking=false, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
 rastschema;
name
 rasttable;
name
 rastcolumn;
boolean
 srid=true;
boolean
 scale_x=true;
boolean
 scale_y=true;
boolean
 blocksize_x=true;
boolean
 blocksize_y=true;
boolean
 same_alignment=true;
boolean
 regular_blocking=false;
boolean
 num_bands=true;
boolean
 pixel_types=true;
boolean
 nodata_values=true
 ;
boolean
 out_db=true
 ;
boolean
 extent=true
 ;

Description
Generates constraints on a raster column that are used to display information in the raster_columns raster catalog.
 The rastschema is the name of the table schema the table resides in. The srid
 must be an integer value reference to an entry in the SPATIAL_REF_SYS
 table.
raster2pgsql loader uses this function to register raster tables
Valid constraint names to pass in: refer to the section called “Raster Columns Catalog” for more details.
	blocksize sets both X and Y blocksize

	blocksize_x sets X tile (width in pixels of each tile)

	blocksize_y sets Y tile (height in pixels of each tile)

	extent computes extent of whole table and applys constraint all rasters must be within that extent

	num_bands number of bands

	pixel_types reads array of pixel types for each band ensure all band n have same pixel type

	regular_blocking sets spatially unique (no two rasters can be spatially the same) and coverage tile (raster is aligned to a coverage) constraints

	same_alignment ensures they all have same alignment meaning any two tiles you compare will return true for. Refer to ST_SameAlignment.

	srid ensures all have same srid

	More -- any listed as inputs into the above functions

Note
This function infers the constraints from the data already present in the table. As such for it to work, you must create the raster column first
 and then load it with data.

Note
If you need to load more data in your tables after you have already applied constraints, you may want to run the DropRasterConstraints
 if the extent of your data has changed.

Availability: 2.0.0

Examples: Apply all possible constraints on column based on data
CREATE TABLE myrasters(rid SERIAL primary key, rast raster);
INSERT INTO myrasters(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI'::text, -129, NULL);

SELECT AddRasterConstraints('myrasters'::name, 'rast'::name);

-- verify if registered correctly in the raster_columns view --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
 FROM raster_columns
 WHERE r_table_name = 'myrasters';

 srid | scale_x | scale_y | blocksize_x | blocksize_y | num_bands | pixel_types| nodata_values
------+---------+---------+-------------+-------------+-----------+-------------+---------------
 4326 | 2 | 2 | 1000 | 1000 | 1 | {8BSI} | {0}

Examples: Apply single constraint
CREATE TABLE public.myrasters2(rid SERIAL primary key, rast raster);
INSERT INTO myrasters2(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI'::text, -129, NULL);

SELECT AddRasterConstraints('public'::name, 'myrasters2'::name, 'rast'::name,'regular_blocking', 'blocksize');
-- get notice--
NOTICE: Adding regular blocking constraint
NOTICE: Adding blocksize-X constraint
NOTICE: Adding blocksize-Y constraint

See Also
the section called “Raster Columns Catalog”, ST_AddBand, ST_MakeEmptyRaster, DropRasterConstraints, ST_BandPixelType, ST_SRID

Appendix A. Appendix

Release Notes

PostGIS 3.4.3

2024/09/04
Bug Fixes

5766, Always report invalid non-null MBR of universal face (Sandro Santilli)
5709, Fix loose mbr in topology.face on ST_ChangeEdgeGeom (Sandro Santilli)
5698, Fix robustness issue splitting line by vertex very close to endpoints, affecting topology population functions (Sandro Santilli)
5649, ST_Value should return NULL on missing band (Paul Ramsey)
5677, ST_Union(geom[]) should unary union single entry arrays (Paul Ramsey)
5679, Remove spurious COMMIT statements from sfcgal script (Sandro Santilli, Loïc Bartoletti)
5680, Fix populate_topology_layer with standard_conforming_strings set to off (Sandro Santilli)
5589, ST_3DDistance error for shared first point (Paul Ramsey)
5686, ST_NumInteriorRings and Triangle crash (Paul Ramsey)
5666, Build reproducibility: timestamps in extension upgrade SQL scripts (James Addison)
5671, Bug in ST_Area function with use_spheroid=false (Paul Ramsey, Regina Obe)
5687, Don't rely on search_path to determine postgis schema. Fix for PG17 security change (Regina Obe)
5695, [address_standardizer_data_us] standardize_address incorrect handling of directionals (Regina Obe)
5653, Do not simplify away points when linestring doubles back on itself (Paul Ramsey)
5720, Correctly mangle special column names in shp2pgsql (Paul Ramsey)
5734, Estimate geography extent more correctly (Paul Ramsey)
5752, ST_ClosestPoint(geography) error (Paul Ramsey)
5740, ST_DistanceSpheroid(geometry) incorrectly handles polygons (Paul Ramsey)
5765, Handle nearly co-linear edges with slightly less slop (Paul Ramsey)
5745, St_AsLatLonText rounding errors (Paul Ramsey)

Name
ST_ModEdgeSplit — Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge.

Synopsis
	integer ST_ModEdgeSplit(atopology, 	
	 	anedge, 	
	 	apoint);	

varchar atopology;
integer anedge;
geometry apoint;

Description

Split an edge by creating a new node along an existing edge,
modifying the original edge and adding a new edge.
Updates all existing joined edges and relationships accordingly.
Returns the identifier of the newly added node.
		
Availability: 1.1
Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

Examples

-- Add an edge --
 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227592 893910, 227600 893910)', 26986)) As edgeid;

-- edgeid-
3

-- Split the edge --
SELECT topology.ST_ModEdgeSplit('ma_topo', 3, ST_SetSRID(ST_Point(227594,893910),26986)) As node_id;
 node_id

7

See Also

				ST_NewEdgesSplit,
				ST_ModEdgeHeal,
				ST_NewEdgeHeal,
				AddEdge
				

Name
ST_MinDist4ma — Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.

Synopsis
	double precision ST_MinDist4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Return the shortest distance (in number of pixels) between the pixel of interest and the closest pixel with value in the neighborhood.
Note

 The intent of this function is to provide an informative data point that helps infer the usefulness of the pixel of interest's interpolated value from ST_InvDistWeight4ma. This function is particularly useful when the neighborhood is sparsely populated.

Note
This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Availability: 2.1.0

Examples

-- NEEDS EXAMPLE

See Also

 ST_MapAlgebra (callback function version),
 ST_InvDistWeight4ma

Name
Pprint_Addy — Given a norm_addy composite type object, returns a pretty print representation of it. Usually used in conjunction with normalize_address.

Synopsis
	varchar pprint_addy(in_addy);	

norm_addy in_addy;

Description
Given a norm_addy composite type object, returns a pretty print representation of it. No other data is required aside from what is packaged with the geocoder.
Usually used in conjunction with Normalize_Address.

Examples
Pretty print a single address
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
 pretty_address

 202 E Fremont St, Las Vegas, NV 89101

Pretty print address a table of addresses
SELECT address As orig, pprint_addy(normalize_address(address)) As pretty_address
 FROM addresses_to_geocode;

 orig | pretty_address
---+---
 529 Main Street, Boston MA, 02129 | 529 Main St, Boston MA, 02129
 77 Massachusetts Avenue, Cambridge, MA 02139 | 77 Massachusetts Ave, Cambridge, MA 02139
 28 Capen Street, Medford, MA | 28 Capen St, Medford, MA
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | 124 Mount Auburn St, Cambridge, MA 02138
 950 Main Street, Worcester, MA 01610 | 950 Main St, Worcester, MA 01610

See Also
Normalize_Address

Reporting Documentation Issues

The documentation should accurately reflect the features and
 behavior of the software. If it doesn't, it could be because of a software
 bug or because the documentation is in error or deficient.
Documentation issues can also be reported to the PostGIS bug
 tracker.
If your revision is trivial, just describe it in a new bug tracker
 issue, being specific about its location in the documentation.
If your changes are more extensive, a patch is definitely
 preferred. This is a four step process on Unix (assuming you already have
 git
 installed):
	Clone the PostGIS' git repository. On Unix,
 type:
git clone
 https://git.osgeo.org/gitea/postgis/postgis.git
This will be stored in the directory postgis

	Make your changes to the documentation with your favorite text
 editor. On Unix, type (for example):
vim doc/postgis.xml
Note that the documentation is written in DocBook XML rather than HTML,
 so if you are not familiar with it please follow the example of the
 rest of the documentation.

	Make a patch file containing the differences from the master
 copy of the documentation. On Unix, type:
git diff doc/postgis.xml >
 doc.patch

	Attach the patch to a new issue in bug tracker.

Name
ST_LocateAlong — Returns the point(s) on a geometry that match a measure value.

Synopsis
	geometry ST_LocateAlong(geom_with_measure, 	
	 	measure, 	
	 	offset = 0);	

geometry geom_with_measure;
float8 measure;
float8 offset = 0;

Description
Returns the location(s) along a measured geometry
		that have the given measure values.
 The result is a Point or MultiPoint.
 Polygonal inputs are not supported.
If offset is provided, the result
 is offset to the left or right of the input line by the specified distance.
 A positive offset will be to the left, and a negative one to the right.
Note
Use this function only for linear geometries with an M component

The semantic is specified by the ISO/IEC 13249-3 SQL/MM Spatial standard.
Availability: 1.1.0 by old name ST_Locate_Along_Measure.
Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure.

 [image: Description]
 This function supports M coordinates.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1.13

Examples

SELECT ST_AsText(
 ST_LocateAlong(
 'MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),(1 2 3, 5 4 5))'::geometry,
 3));

 MULTIPOINT M ((1 2 3),(9 4 3),(1 2 3))

See Also
ST_LocateBetween, ST_LocateBetweenElevations, ST_InterpolatePoint

Name
ST_MaxDistance — Returns the 2D largest distance between two geometries in
		projected units.

Synopsis
	float ST_MaxDistance(g1, 	
	 	g2);	

geometry g1;
geometry g2;

Description
Returns the 2-dimensional maximum distance between two geometries, in projected units.
 The maximum distance always occurs between two vertices.
 This is the length of the line returned by ST_LongestLine.

If g1 and g2 are the same geometry, returns the distance between
 the two vertices farthest apart in that geometry.

Availability: 1.5.0

Examples
Maximum distance between a point and lines.
SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);

 2

SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 2, 2 2)'::geometry);

 2.82842712474619

Maximum distance between vertices of a single geometry.

SELECT ST_MaxDistance('POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry,
 'POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry);

 14.142135623730951

See Also
ST_Distance, ST_LongestLine, ST_DFullyWithin

Name
ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis
	geometry ST_ExteriorRing(a_polygon);	

geometry a_polygon;

Description
Returns a LINESTRING representing the exterior ring (shell) of a POLYGON.
 Returns	NULL if the geometry is not a polygon.
Note
This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 2.1.5.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.2.3, 8.3.3

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--If you have a table of polygons
SELECT gid, ST_ExteriorRing(geom) AS ering
FROM sometable;

--If you have a table of MULTIPOLYGONs
--and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect(ST_ExteriorRing(geom)) AS erings
	FROM (SELECT gid, (ST_Dump(geom)).geom As geom
			FROM sometable) As foo
GROUP BY gid;

--3d Example
SELECT ST_AsEWKT(
	ST_ExteriorRing(
	ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
)
);

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_InteriorRingN,
ST_Boundary,
ST_NumInteriorRings
		

Name
ST_SetSRID — Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.

Synopsis
	raster ST_SetSRID(rast, 	
	 	srid);	

raster
 rast;
integer
 srid;

Description
Sets the SRID on a raster to a particular integer value.
Note
This function does not transform the raster in any way -
 it simply sets meta data defining the spatial ref of the coordinate reference system that it's currently in.
 Useful for transformations later.

See Also
the section called “Spatial Reference Systems”, ST_SRID

Name
raster — raster spatial data type.

Description
raster is a spatial data type used to represent raster data such as those imported from JPEGs, TIFFs, PNGs, digital elevation models.
 Each raster has 1 or more bands each having a set of pixel values. Rasters can be georeferenced.
Note
Requires PostGIS be compiled with GDAL support. Currently rasters can be implicitly converted to geometry type, but the conversion returns the
 ST_ConvexHull of the raster. This auto casting may be removed in the near future so don't rely on it.

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	geometry	automatic

See Also
Chapter 10, Raster Reference

Name
ST_GeomFromGeoHash — Return a geometry from a GeoHash string.

Synopsis
	geometry ST_GeomFromGeoHash(geohash, 	
	 	precision=full_precision_of_geohash);	

text geohash;
integer precision=full_precision_of_geohash;

Description
Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.
If no precision is specified ST_GeomFromGeoHash returns a polygon based on full precision of the input GeoHash string.
If precision is specified ST_GeomFromGeoHash will use that many characters from the GeoHash to create the polygon.
Availability: 2.1.0

Examples
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));
 st_astext
--
 POLYGON((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4));
 st_astext
--
 POLYGON((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 36.03515625,-115.3125 36.03515625))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));
 st_astext
--
 POLYGON((-115.17282128334 36.1146408319473,-115.17282128334 36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 36.1146408319473,-115.17282128334 36.1146408319473))
		
		

See Also
ST_GeoHash,ST_Box2dFromGeoHash, ST_PointFromGeoHash

Name
ST_InverseTransformPipeline — Return a new geometry with coordinates transformed to
 a different spatial reference system using the inverse of a defined coordinate
 transformation pipeline.

Synopsis
	geometry ST_InverseTransformPipeline(geom, 	
	 	pipeline, 	
	 	to_srid);	

geometry geom;
text pipeline;
integer to_srid;

Description

 Return a new geometry with coordinates transformed to a different spatial reference system
 using a defined coordinate transformation pipeline to go in the inverse direction.

 Refer to ST_TransformPipeline for details on writing a transformation pipeline.
Availability: 3.4.0

 The SRID of the input geometry is ignored, and the SRID of the output geometry will be set to
 zero unless a value is provided via the optional to_srid parameter. When
 using ST_TransformPipeline the pipeline is executed in a forward direction. Using
 `ST_InverseTransformPipeline()` the pipeline is executed in the inverse direction.
Transforms using pipelines are a specialised version of ST_Transform.
 In most cases `ST_Transform` will choose the correct operations to convert between coordinate
 systems, and should be preferred.

Examples
Change WGS 84 long lat to UTM 31N using the EPSG:16031 conversion

-- Inverse direction
SELECT ST_AsText(ST_InverseTransformPipeline('POINT(426857.9877165967 5427937.523342293)'::geometry,
 'urn:ogc:def:coordinateOperation:EPSG::16031')) AS wgs_geom;

 wgs_geom

 POINT(2 48.99999999999999)
(1 row)

GDA2020 example.

-- using ST_Transform with automatic selection of a conversion pipeline.
SELECT ST_AsText(ST_Transform('SRID=4939;POINT(143.0 -37.0)'::geometry, 7844)) AS gda2020_auto;

 gda2020_auto

 POINT(143.00000635638918 -36.999986706128176)
(1 row)

See Also
ST_Transform, ST_TransformPipeline

Chapter 7. PostGIS Reference

The functions given below are the ones which a user of PostGIS is
 likely to need. There are other functions which are required support
 functions to the PostGIS objects which are not of use to a general
 user.
Note
PostGIS has begun a transition from the existing naming convention
	to an SQL-MM-centric convention. As a result, most of the functions that
	you know and love have been renamed using the standard spatial type (ST)
	prefix. Previous functions are still available, though are not listed in
	this document where updated functions are equivalent. The non ST_ functions not listed in this documentation are
	deprecated and will be removed in a future release so STOP USING THEM.

PostGIS Geometry/Geography/Box Data Types

Abstract
This section lists the custom PostgreSQL
		data types installed by PostGIS to represent spatial data.

Each data type describes its type casting behavior.
		A type cast
		converts values of one data type into another type.
		PostgreSQL allows defining casting behavior for custom types, along with the functions used to convert type values.
		Casts can have automatic behavior,
		which allows automatic conversion of a function argument to a type supported by the function.

		Some casts have explicit behavior,
		which means the cast must be specified using the syntax CAST(myval As sometype)
		or myval::sometype.
		Explicit casting avoids the issue of ambiguous casts,
		which can occur when using an overloaded function which does not support a given type.
		For example, a function may accept a box2d or a box3d, but not a geometry.
		Since geometry has an automatic cast to both box types, this produces an "ambiguous function" error.
	 To prevent the error use an explicit cast to the desired box type.
All data types can be cast to text, so this does not need to be specified explicitly.

Name
ST_AddMeasure — Interpolates measures along a linear geometry.

Synopsis
	geometry ST_AddMeasure(geom_mline, 	
	 	measure_start, 	
	 	measure_end);	

geometry geom_mline;
float8 measure_start;
float8 measure_end;

Description
Return a derived geometry with measure values linearly interpolated between the start and end points. If the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new values. Only LINESTRINGS and MULTILINESTRINGS are supported.
Availability: 1.5.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0, 2 0, 4 0)'),1,4)) As ewelev;
 ewelev

 LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRINGM(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('MULTILINESTRINGM((1 0 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))'),10,70)) As ewelev;
 ewelev

 MULTILINESTRINGM((1 0 10,2 0 20,4 0 40),(1 0 40,2 0 50,4 0 70))

Name
AddGeometryColumn — Adds a geometry column to an existing table.

Synopsis
	text AddGeometryColumn(table_name, 	
	 	column_name, 	
	 	srid, 	
	 	type, 	
	 	dimension, 	
	 	use_typmod=true);	

varchar
			table_name;
varchar
			column_name;
integer
			srid;
varchar
			type;
integer
			dimension;
boolean
			use_typmod=true;

	text AddGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	srid, 	
	 	type, 	
	 	dimension, 	
	 	use_typmod=true);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;
integer
			srid;
varchar
			type;
integer
			dimension;
boolean
			use_typmod=true;

	text AddGeometryColumn(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	srid, 	
	 	type, 	
	 	dimension, 	
	 	use_typmod=true);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;
integer
			srid;
varchar
			type;
integer
			dimension;
boolean
			use_typmod=true;

Description
Adds a geometry column to an existing table of attributes. The
		schema_name is the name of the table schema. The srid
		must be an integer value reference to an entry in the SPATIAL_REF_SYS
		table. The type must be a string
		corresponding to the geometry type, eg, 'POLYGON' or
		'MULTILINESTRING' . An error is thrown if the schemaname doesn't exist
		(or not visible in the current search_path) or the specified SRID,
		geometry type, or dimension is invalid.
Note
Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from system catalogs. It by default
			also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now
			equivalent to: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);
Changed: 2.0.0 If you require the old behavior of constraints use the default use_typmod, but set it to false.

Note
Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly
		 because they inherit the typmod behavior of their parent table column.
		 Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly
		 in geometry_columns. Refer to the section called “Manually Registering Geometry Columns”.
			

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

Examples
-- Create schema to hold data
CREATE SCHEMA my_schema;
-- Create a new simple PostgreSQL table
CREATE TABLE my_schema.my_spatial_table (id serial);

-- Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
							 Table "my_schema.my_spatial_table"
 Column | Type | Modifiers
--------+---------+---
 id | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)

-- Add a spatial column to the table
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom',4326,'POINT',2);

-- Add a point using the old constraint based behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geom_c',4326,'POINT',2, false);

--Add a curvepolygon using old constraint behavior
SELECT AddGeometryColumn ('my_schema','my_spatial_table','geomcp_c',4326,'CURVEPOLYGON',2, false);

-- Describe the table again reveals the addition of a new geometry columns.
\d my_schema.my_spatial_table
 addgeometrycolumn

 my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2
(1 row)

 Table "my_schema.my_spatial_table"
 Column | Type | Modifiers
----------+----------------------+---
 id | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)
 geom | geometry(Point,4326) |
 geom_c | geometry |
 geomcp_c | geometry |
Check constraints:
 "enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2)
 "enforce_dims_geomcp_c" CHECK (st_ndims(geomcp_c) = 2)
 "enforce_geotype_geom_c" CHECK (geometrytype(geom_c) = 'POINT'::text OR geom_c IS NULL)
 "enforce_geotype_geomcp_c" CHECK (geometrytype(geomcp_c) = 'CURVEPOLYGON'::text OR geomcp_c IS NULL)
 "enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
 "enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

-- geometry_columns view also registers the new columns --
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
 FROM geometry_columns
 WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';

 col_name | type | srid | ndims
----------+--------------+------+-------
 geom | Point | 4326 | 2
 geom_c | Point | 4326 | 2
 geomcp_c | CurvePolygon | 4326 | 2

See Also
DropGeometryColumn, DropGeometryTable, the section called “GEOMETRY_COLUMNS View”, the section called “Manually Registering Geometry Columns”

Name
ST_Crosses — Tests if two geometries have some, but not all, interior points in common

Synopsis
	boolean ST_Crosses(g1, 	
	 	g2);	

geometry g1;
geometry g2;

Description
Compares two geometry objects and
 returns true if their intersection "spatially crosses";
 that is, the geometries have some, but not all interior points in common.
 The intersection of the interiors of the geometries must be non-empty
 and must have dimension less than the maximum dimension
 of the two input geometries, and the intersection of the two
 geometries must not equal either geometry. Otherwise, it
 returns false.
 The crosses relation is symmetric and irreflexive.
In mathematical terms:
 ST_Crosses(A, B) ⇔ (dim(Int(A) ⋂ Int(B)) < max(dim(Int(A)), dim(Int(B)))) ∧ (A ⋂ B ≠ A) ∧ (A ⋂ B ≠ B)
Geometries cross if their DE-9IM Intersection Matrix matches:
	T*T****** for Point/Line, Point/Area, and Line/Area situations

	T*****T** for Line/Point, Area/Point, and Area/Line situations

	0******** for Line/Line situations

	the result is false for Point/Point and Area/Area situations

Note
The OpenGIS Simple Features Specification defines this predicate
 only for Point/Line, Point/Area, Line/Line, and Line/Area situations.
 JTS / GEOS extends the definition to apply to Line/Point, Area/Point and
 Area/Line situations as well. This makes the relation symmetric.

Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.13.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.29

Examples
The following situations all return true.
	[image: Examples]MULTIPOINT / LINESTRING

	[image: Examples]MULTIPOINT / POLYGON

	[image: Examples]LINESTRING / POLYGON

	[image: Examples]LINESTRING / LINESTRING

Consider a situation where a user has two tables: a table of roads
 and a table of highways.
	
CREATE TABLE roads (
 id serial NOT NULL,
 geom geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

	
CREATE TABLE highways (
 id serial NOT NULL,
 the_gem geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

To determine a list of roads that cross a highway, use a query
 similiar to:
SELECT roads.id
FROM roads, highways
WHERE ST_Crosses(roads.geom, highways.geom);

See Also
ST_Contains, ST_Overlaps

Name
PostGIS_GEOS_Compiled_Version — Returns the version number of the GEOS
		library against which PostGIS was built.

Synopsis
	text PostGIS_GEOS_Compiled_Version();	

;

Description
Returns the version number of the GEOS library, or
		against which PostGIS was built.
Availability: 3.4.0

Examples
SELECT PostGIS_GEOS_Compiled_Version();
 postgis_geos_compiled_version

 3.12.0
(1 row)

See Also

PostGIS_GEOS_Version,
PostGIS_Full_Version

Name
&< — Returns TRUE if A's bounding box is to the left of B's.

Synopsis
	boolean &<(A, 	
	 	B);	

 raster

 A
 ;

 raster

 B
 ;

Description
The &< operator returns TRUE if the bounding box of raster A
 overlaps or is to the left of the bounding box of raster B, or more accurately, overlaps or is NOT to the right
 of the bounding box of raster B.
Note
This operand will make use of any indexes that may be available on the rasters.

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &< B.rast As overleft
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

a_rid | b_rid | overleft
------+-------+----------
 2 | 2 | t
 2 | 3 | f
 2 | 1 | f
 3 | 2 | t
 3 | 3 | t
 3 | 1 | f
 1 | 2 | t
 1 | 3 | t
 1 | 1 | t

Name
ST_DumpSegments — Returns a set of geometry_dump rows for the segments in a geometry.

Synopsis
	geometry_dump[] ST_DumpSegments(geom);	

geometry geom;

Description
A set-returning function (SRF) that extracts the segments of a geometry.
 It returns a set of
			 geometry_dump rows,
 each containing a geometry (geom field)
 and an array of integers (path field).

	the geom field
 LINESTRINGs represent the segments of the supplied geometry.

	the path field (an integer[])
 is an index enumerating the segment start point positions in the elements of the supplied geometry.
 The indices are 1-based.
 For example, for a LINESTRING the paths are {i}
 where i is the nth
 segment start point in the LINESTRING.
 For a POLYGON the paths are {i,j} where
 i is the ring number (1 is outer; inner rings follow)
 and j is the segment start point position in the ring.

Availability: 3.2.0

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This function supports 3d and will not drop the z-index.

Standard Geometry Examples
SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'GEOMETRYCOLLECTION(
 LINESTRING(1 1, 3 3, 4 4),
 POLYGON((5 5, 6 6, 7 7, 5 5))
)'::geometry AS geom
) AS g
) j;

 path │ st_astext

 {1,1} │ LINESTRING(1 1,3 3)
 {1,2} │ LINESTRING(3 3,4 4)
 {2,1,1} │ LINESTRING(5 5,6 6)
 {2,1,2} │ LINESTRING(6 6,7 7)
 {2,1,3} │ LINESTRING(7 7,5 5)
(5 rows)

TIN and Triangle Examples
-- Triangle --
SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'TRIANGLE((
 0 0,
 0 9,
 9 0,
 0 0
))'::geometry AS geom
) AS g
) j;

 path │ st_astext

 {1,1} │ LINESTRING(0 0,0 9)
 {1,2} │ LINESTRING(0 9,9 0)
 {1,3} │ LINESTRING(9 0,0 0)
(3 rows)

-- TIN --
SELECT path, ST_AsEWKT(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'TIN(((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)'::geometry AS geom
) AS g
) j;

 path │ st_asewkt

 {1,1,1} │ LINESTRING(0 0 0,0 0 1)
 {1,1,2} │ LINESTRING(0 0 1,0 1 0)
 {1,1,3} │ LINESTRING(0 1 0,0 0 0)
 {2,1,1} │ LINESTRING(0 0 0,0 1 0)
 {2,1,2} │ LINESTRING(0 1 0,1 1 0)
 {2,1,3} │ LINESTRING(1 1 0,0 0 0)
(6 rows)

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”,
 ST_Dump, ST_DumpRings

Name
ST_Tesselate — Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

Synopsis
	geometry ST_Tesselate(geom);	

geometry geom;

Description
Takes as input a surface such a MULTI(POLYGON) or POLYHEDRALSURFACE and returns a TIN representation via the process of tessellation using triangles.
Availability: 2.1.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
	
						
SELECT ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))');

						
[image: Examples]Original Cube

					 	
					
SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));

		ST_AsText output:

		TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
	((0 0 0,0 1 0,1 1 0,0 0 0)),
	((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)),
	((0 0 1,0 0 0,1 0 0,0 0 1)),
	((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
	((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
	((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

		
[image: Examples]Tesselated Cube with triangles colored

					
	
						
SELECT 'POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry;

						
[image: Examples]Original polygon

					 	
					
SELECT
	ST_Tesselate('POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry);

	

	ST_AsText output

	TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
	 ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)),
 ((120 190,10 190,50 160,120 190)))

					 [image: Examples]Tesselated Polygon

					

See Also
ST_ConstrainedDelaunayTriangles, ST_DelaunayTriangles

Name
ST_3DLength — Returns the 3D length of a linear geometry.

Synopsis
	float ST_3DLength(a_3dlinestring);	

geometry a_3dlinestring;

Description
Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			LineString or MultiLineString. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 7.1, 10.3
Changed: 2.0.0 In prior versions this used to be called ST_Length3D

Examples
Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength

122.704716741457
		

See Also
ST_Length, ST_Length2D

Name
ST_LineInterpolatePoint — Returns a point interpolated along a line at a fractional location.

Synopsis
	geometry ST_LineInterpolatePoint(a_linestring, 	
	 	a_fraction);	

geometry a_linestring;
float8 a_fraction;

	geography ST_LineInterpolatePoint(a_linestring, 	
	 	a_fraction, 	
	 	use_spheroid = true);	

geography a_linestring;
float8 a_fraction;
boolean use_spheroid = true;

Description
Returns a point interpolated along a line at a fractional location.
 First argument must be a LINESTRING.
 Second argument is a float between 0 and 1
			representing the fraction of line length
 where the point is to be located.
 The Z and M values are interpolated if present.

See ST_LineLocatePoint for
			computing the line location nearest to a Point.
Note
This function computes points in 2D and then interpolates
 values for Z and M,
 while ST_3DLineInterpolatePoint computes points in 3D
 and only interpolates the M value.

Note
Since release 1.1.1 this function also interpolates M and
			 Z values (when present), while prior releases set them to
			 0.0.

Availability: 0.8.2, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A LineString with the interpolated point at 20% position (0.20)

-- The point 20% along a line

SELECT ST_AsEWKT(ST_LineInterpolatePoint(
 'LINESTRING(25 50, 100 125, 150 190)',
 0.2));

 POINT(51.5974135047432 76.5974135047432)

The mid-point of a 3D line:

SELECT ST_AsEWKT(ST_LineInterpolatePoint('
 LINESTRING(1 2 3, 4 5 6, 6 7 8)',
 0.5));

 POINT(3.5 4.5 5.5)

The closest point on a line to a point:

SELECT ST_AsText(ST_LineInterpolatePoint(line.geom,
 ST_LineLocatePoint(line.geom, 'POINT(4 3)')))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As geom) AS line;

 POINT(3 4)

See Also

				ST_LineInterpolatePoints,
				ST_3DLineInterpolatePoint,
				ST_LineLocatePoint
			

Name
PostGIS_Raster_Lib_Build_Date — Reports full raster library build date.

Synopsis
	text PostGIS_Raster_Lib_Build_Date();	

;

Description
Reports raster build date

Examples
SELECT PostGIS_Raster_Lib_Build_Date();
postgis_raster_lib_build_date

2010-04-28 21:15:10

See Also
 PostGIS_Raster_Lib_Version

Name
ST_WorldToRasterCoord — Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

Synopsis
	record ST_WorldToRasterCoord(rast, 	
	 	pt);	

raster rast;
geometry pt;

	record ST_WorldToRasterCoord(rast, 	
	 	longitude, 	
	 	latitude);	

raster rast;
double precision longitude;
double precision latitude;

Description

 Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry.
 This function works regardless of whether or not the geometric X and Y or point geometry is outside the extent of the raster.
 Geometric X and Y must be expressed in the spatial reference coordinate system of the raster.

Availability: 2.1.0

Examples

SELECT
 rid,
 (ST_WorldToRasterCoord(rast,3427927.8,20.5)).*,
 (ST_WorldToRasterCoord(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast)))).*
FROM dummy_rast;

 rid | columnx | rowy | columnx | rowy
-----+---------+-----------+---------+-----------
 1 | 1713964 | 7 | 1713964 | 7
 2 | 2 | 115864471 | 2 | 115864471

See Also

 ST_WorldToRasterCoordX,
 ST_WorldToRasterCoordY,
 ST_RasterToWorldCoordX,
 ST_RasterToWorldCoordY,
 ST_SRID

Raster Processing: Raster to Geometry

Name
ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis
	geometry ST_LinestringFromWKB(WKB);	

bytea WKB;

	geometry ST_LinestringFromWKB(WKB, 	
	 	srid);	

bytea WKB;
integer srid;

Description
The ST_LinestringFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.
If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		LINESTRING geometry. This an alias for ST_LineFromWKB.
Note
OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

Note
If you know all your geometries are LINESTRINGs, it's more
		 efficient to just use ST_GeomFromWKB. This function just calls
		 ST_GeomFromWKB and adds additional validation that it returns a
		 LINESTRING.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 7.2.9

Examples
SELECT
 ST_LineStringFromWKB(
	ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) AS aline,
 ST_LinestringFromWKB(
	ST_AsBinary(ST_GeomFromText('POINT(1 2)'))
) IS NULL AS null_return;
 aline | null_return
--
010200000002000000000000000000F ... | t

See Also
ST_GeomFromWKB, ST_LineFromWKB

Name
ST_RotateY — Rotates a geometry about the Y axis.

Synopsis
	geometry ST_RotateY(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotates a geometry geomA - rotRadians about the y axis.
Note
ST_RotateY(geomA, rotRadians)
			is short-hand for ST_Affine(geomA, cos(rotRadians), 0, sin(rotRadians), 0, 1, 0, -sin(rotRadians), 0, cos(rotRadians), 0, 0, 0).

Availability: 1.1.2. Name changed from RotateY to ST_RotateY in 1.2.2
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along y-axis
 SELECT ST_AsEWKT(ST_RotateY(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(3 2 -1,1 1 -1)

See Also
ST_Affine, ST_RotateX, ST_RotateZ

PostGIS 3.4.2

2024/02/08
This version requires PostgreSQL 12-16, GEOS 3.6 or higher, and Proj 6.1+. To take advantage of all features, GEOS 3.12+ is needed. To take advantage of all SFCGAL featurs, SFCGAL 1.4.1+ is needed.
NOTE: GEOS 3.12.1 details at GEOS 3.12.1 release notes
Bug Fixes

5633, Fix load, upgrade and usage with standard_conforming_strings set to off (Sandro Santilli, Regina Obe)
5571, Memory over-allocation for narrow inputs (Paul Ramsey)
5610, Allow Nan and infinity again in ST_SetPoint (Regina Obe)
5627, Handling of EMPTY components in PiP check (Paul Ramsey)
5629, Handling EMPTY components in repeated point removal (Paul Ramsey)
5604, Handle distance between collections with empty elements (Paul Ramsey)
5635, Handle NaN points in ST_Split (Regina Obe)
5648, postgis_raster upgrade fails on PG16 (Ronan Dunklau)
5646, Crash on collections with empty members (Paul Ramsey)
5580, Handle empty collection components in 3d distance (Paul Ramsey)
5639, ST_DFullyWithin line/poly error case (Paul Ramsey)
5662, Change XML parsers to SAX2 (Paul Ramsey)

Name
ST_RemovePoint — Remove a point from a linestring.

Synopsis
	geometry ST_RemovePoint(linestring, 	
	 	offset);	

geometry linestring;
integer offset;

Description
Removes a point from a LineString, given its index (0-based).
 Useful for turning a closed line (ring) into an open linestring.

Enhanced: 3.2.0
Availability: 1.1.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Guarantees no lines are closed by removing the end point of closed lines (rings).
Assumes geom is of type LINESTRING

UPDATE sometable
	SET geom = ST_RemovePoint(geom, ST_NPoints(geom) - 1)
	FROM sometable
	WHERE ST_IsClosed(geom);

See Also
ST_AddPoint, ST_NPoints, ST_NumPoints

Name
&&(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.

Synopsis
	boolean &&(A, 	
	 	B);	

				 box2df

				 A
				;

				 geometry

				 B
				;

Description
The && operator returns TRUE if the 2D bounding box A intersects the cached 2D bounding box of geometry B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) && ST_Point(1,1) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
Loader_Generate_Census_Script — Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

Synopsis
	setof text loader_generate_census_script(param_states, 	
	 	os);	

text[] param_states;
text os;

Description
Generates a shell script for the specified platform for the specified states that will download Tiger data census state tract, block groups bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.
It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses the section called “Using the Shapefile Loader” to load in the data. Note the smallest unit it does is a whole state. It will only
 process the files in the staging and temp folders.
It uses the following control tables to control the process and different OS shell syntax variations.
	loader_variables keeps track of various variables such as census site, year, data and staging schemas

	loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.

	loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Availability: 2.0.0
Note
Loader_Generate_Script includes this logic, but if you installed tiger geocoder prior to PostGIS 2.0.0 alpha5, you'll need to run this on the states you have already done
 to get these additional tables.

Examples
Generate script to load up data for select states in Windows shell script format.
SELECT loader_generate_census_script(ARRAY['MA'], 'windows');
-- result --
set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\projects\pg\pg91win\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=tiger_postgis20
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

%WGETTOOL% http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
del %TMPDIR%*.* /Q
%PSQL% -c "DROP SCHEMA tiger_staging CASCADE;"
%PSQL% -c "CREATE SCHEMA tiger_staging;"
cd %STATEDIR%
for /r %%z in (*.zip) do %UNZIPTOOL% e %%z -o%TMPDIR%
cd %TMPDIR%
%PSQL% -c "CREATE TABLE tiger_data.MA_tract(CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id)) INHERITS(tiger.tract); "
%SHP2PGSQL% -c -s 4269 -g the_geom -W "latin1" tl_2010_25_tract10.dbf tiger_staging.ma_tract10 | %PSQL%
%PSQL% -c "ALTER TABLE tiger_staging.MA_tract10 RENAME geoid10 TO tract_id; SELECT loader_load_staged_data(lower('MA_tract10'), lower('MA_tract')); "
%PSQL% -c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist(the_geom);"
%PSQL% -c "VACUUM ANALYZE tiger_data.MA_tract;"
%PSQL% -c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = '25');"
:
Generate sh script
STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
rm -f ${TMPDIR}/*.*
${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"
${PSQL} -c "CREATE SCHEMA tiger_staging;"
cd $STATEDIR
for z in *.zip; do $UNZIPTOOL -o -d $TMPDIR $z; done
:
:

See Also
Loader_Generate_Script

Compiling and Install from Source

Note

		Many OS systems now include pre-built packages for PostgreSQL/PostGIS.
		In many cases compilation is only necessary if you want the most
		bleeding edge versions or you are a package maintainer.
	
This section includes general compilation instructions, if you are compiling for Windows etc
		or another OS, you may find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site
	 We also have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything exciting happens. You can
	 use these to experiment with the in progress releases of PostGIS

	 The PostGIS module is an extension to the PostgreSQL backend server. As
	 such, PostGIS 3.4.3 requires full
	 PostgreSQL server headers access in order to compile. It can be built
	 against PostgreSQL versions 12 - 16. Earlier
	 versions of PostgreSQL are not supported.
	

	 Refer to the PostgreSQL installation guides if you haven't already
	 installed PostgreSQL.
	
		https://www.postgresql.org
	
	 .
	
Note

		For GEOS functionality, when you install PostgresSQL you may need to
		explicitly link PostgreSQL against the standard C++ library:
	
LDFLAGS=-lstdc++ ./configure [YOUR OPTIONS HERE]

		This is a workaround for bogus C++ exceptions interaction with older
		development tools. If you experience weird problems (backend
		unexpectedly closed or similar things) try this trick. This will require
		recompiling your PostgreSQL from scratch, of course.
	

	 The following steps outline the configuration and compilation of the
	 PostGIS source. They are written for Linux users and will not work on
	 Windows or Mac.
	
Getting the Source

	 Retrieve the PostGIS source archive from the downloads website
	
		https://download.osgeo.org/postgis/source/postgis-3.4.3.tar.gz
	
	
wget https://download.osgeo.org/postgis/source/postgis-3.4.3.tar.gz
tar -xvzf postgis-3.4.3.tar.gz
cd postgis-3.4.3

	 This will create a directory called
	 postgis-3.4.3 in the current working
	 directory.
	

	 Alternatively, checkout the source from the
	
		git
	
	 repository
	
		https://git.osgeo.org/gitea/postgis/postgis/
	
	 .
	
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis
cd postgis
sh autogen.sh

	 Change into the newly created
	 postgis directory to continue
	 the installation.
	
./configure

Install Requirements

	 PostGIS has the following requirements for building and usage:
	

	 Required
	
	
		 PostgreSQL 12 - 16. A complete installation
		 of PostgreSQL (including server headers) is required. PostgreSQL
		 is available from
		
			https://www.postgresql.org
		
		 .
		
For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to
			https://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
		

	
		 GNU C compiler (gcc). Some other ANSI C compilers
		 can be used to compile PostGIS, but we find far fewer problems when
		 compiling with gcc.
		

	
		 GNU Make (gmake or make).
		 For many systems, GNU make is the default version
		 of make. Check the version by invoking make -v.
		 Other versions of make may not process the
		 PostGIS Makefile properly.
		

	
		 Proj reprojection library. Proj 6.1 or above is required.
			The Proj library is used to provide coordinate reprojection support within
		 PostGIS. Proj is available for download from
		
			https://proj.org/
		
		 .
		

	
		 GEOS geometry library, version 3.6 or greater, but GEOS 3.12+ is required to take full advantage of all the new functions and features. GEOS is available for download from
		
			https://libgeos.org
		 .
		

	
		 LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports
		 functions (ST_GeomFromGML and ST_GeomFromKML). LibXML2 is available for download from
		 https://gitlab.gnome.org/GNOME/libxml2/-/releases.
		

	
		 JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the
		 function ST_GeomFromGeoJson. JSON-C is available for download from
		 https://github.com/json-c/json-c/releases/.
		

	
		 GDAL, version 2+ is required 3+ is preferred. This is required for raster
 support.
		 https://gdal.org/download.html.
		

	
		 If compiling with PostgreSQL+JIT, LLVM version >=6 is required
		 https://trac.osgeo.org/postgis/ticket/4125.
		

	 Optional
	
	
		 GDAL (pseudo optional) only if you don't want raster
		 you can leave it out. Also make sure to enable
		 the drivers you want to use as described in the section called “Configuring raster support”.

	
		 GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader.
		
			http://www.gtk.org/
		
		 .
		

	
			SFCGAL, version 1.3.1 (or higher), 1.4.1 or higher is recommended and required to be able to use all functionality. SFCGAL can be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf the section called “SFCGAL Functions”. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://sfcgal.org)

		 https://gitlab.com/sfcgal/SFCGAL/.
		

	
				In order to build the the section called “Address Standardizer” you will also need PCRE http://www.pcre.org (which generally is already installed on nix systems).
				the section called “Address Standardizer” will automatically be built if it detects a PCRE library, or you pass in a valid --with-pcre-dir=/path/to/pcre during configure.
			

	
			 To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
				Also, pkg-config is required to verify the correct minimum version of protobuf-c.
				See protobuf-c.
				By default, Postgis will use Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as the PostgreSQL installation. To disable this and use GEOS instead use the --without-wagyu during the configure step.
			

	
		 CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
		

	
		 DocBook (xsltproc) is required for building the
		 documentation. Docbook is available from
		
			http://www.docbook.org/
		
		 .
		

	
		 DBLatex (dblatex) is required for building the
		 documentation in PDF format. DBLatex is available from
		
			http://dblatex.sourceforge.net/
		
		 .
		

	
		 ImageMagick (convert) is required to generate the
		 images used in the documentation. ImageMagick is available from
		
			http://www.imagemagick.org/
		
		 .
		

Build configuration

		As with most linux installations, the first step is to generate the
		Makefile that will be used to build the source code. This is done by
		running the shell script
	

		./configure
	

		With no additional parameters, this command will attempt to
		automatically locate the required components and libraries needed to
		build the PostGIS source code on your system. Although this is the most
		common usage of ./configure, the script accepts
		several parameters for those who have the required libraries and
		programs in non-standard locations.
	

		The following list shows only the most commonly used parameters. For a
		complete list, use the --help or
		--help=short parameters.
	
	--with-library-minor-version
	Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version
			as part of the file name. This means all PostGIS 3 libs will end in postgis-3.
			This was done to make pg_upgrade easier, with downside that you can only install
			one version PostGIS 3 series in your server.
			To get the old behavior of file including the minor version: e.g. postgis-3.0
			add this switch to your configure statement.

	--prefix=PREFIX
	
			 This is the location the PostGIS loader executables and shared libs will be installed.
				By default, this location is the same as the
			 detected PostgreSQL installation.
			
Caution

				This parameter is currently broken, as the package will only
				install into the PostgreSQL installation directory. Visit
				
				 http://trac.osgeo.org/postgis/ticket/635
				
				to track this bug.
			

	--with-pgconfig=FILE
	
			 PostgreSQL provides a utility called pg_config
			 to enable extensions like PostGIS to locate the PostgreSQL
			 installation directory. Use this parameter
			 (--with-pgconfig=/path/to/pg_config) to
			 manually specify a particular PostgreSQL installation that PostGIS
			 will build against.
			

	--with-gdalconfig=FILE
	
			 GDAL, a required library, provides functionality needed for raster support
			 gdal-config to enable software installations to
			 locate the GDAL installation directory. Use this parameter
			 (--with-gdalconfig=/path/to/gdal-config) to
			 manually specify a particular GDAL installation that PostGIS will
			 build against.
			

	--with-geosconfig=FILE
	
			 GEOS, a required geometry library, provides a utility called
			 geos-config to enable software installations to
			 locate the GEOS installation directory. Use this parameter
			 (--with-geosconfig=/path/to/geos-config) to
			 manually specify a particular GEOS installation that PostGIS will
			 build against.
			

	--with-xml2config=FILE
	
			 LibXML is the library required for doing GeomFromKML/GML processes.
			 It normally is found if you have libxml installed, but if not or you want
			 a specific version used, you'll need to point PostGIS at a specific
			 xml2-config confi file to enable software installations to
			 locate the LibXML installation directory. Use this parameter
			 (>--with-xml2config=/path/to/xml2-config) to
			 manually specify a particular LibXML installation that PostGIS will
			 build against.
			

	--with-projdir=DIR
	
			 Proj is a reprojection library required by PostGIS. Use this
			 parameter (--with-projdir=/path/to/projdir) to
			 manually specify a particular Proj installation directory that
			 PostGIS will build against.
			

	--with-libiconv=DIR
	
			 Directory where iconv is installed.
			

	--with-jsondir=DIR
	
			 JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
			 parameter (--with-jsondir=/path/to/jsondir) to
			 manually specify a particular JSON-C installation directory that
			 PostGIS will build against.
			

	--with-pcredir=DIR
	
			 PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer extension. Use this
			 parameter (--with-pcredir=/path/to/pcredir) to
			 manually specify a particular PCRE installation directory that
			 PostGIS will build against.
			

	--with-gui
	
			 Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface
			 to shp2pgsql.
			

	--without-raster
	
			 Compile without raster support.

	--without-topology
	
			 Disable topology support. There is no corresponding library
			 as all logic needed for topology is in postgis-3.4.3 library.
			

	--with-gettext=no
	
			 By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibility issues that
			 cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/postgis/ticket/748 for an example issue solved by configuring with this.
			 NOTE: that you aren't missing much by turning this off. This is used for international help/label support for the GUI loader which is not yet documented
			 and still experimental.
			

	--with-sfcgal=PATH
	
			 By default PostGIS will not install with sfcgal support without this switch.
			 PATH is an optional argument that allows to specify an alternate PATH to sfcgal-config.
			

	--without-phony-revision
	
			 Disable updating postgis_revision.h to match current HEAD of the git repository.
			

Note

		 If you obtained PostGIS from the
		
			code repository
		
		 , the first step is really to run the script
		

		 ./autogen.sh
		

		 This script will generate the configure script that
		 in turn is used to customize the installation of PostGIS.
		

		 If you instead obtained PostGIS as a tarball, running
		 ./autogen.sh is not necessary as
		 configure has already been generated.
		

Building

		Once the Makefile has been generated, building PostGIS is as simple as
		running
	

		make
	

		The last line of the output should be "PostGIS was built
		successfully. Ready to install."
	

		As of PostGIS v1.4.0, all the functions have comments generated from the
		documentation. If you wish to install these comments into your spatial
		databases later, run the command which requires docbook. The postgis_comments.sql and other
		package comments files raster_comments.sql, topology_comments.sql are
			also packaged in the tar.gz distribution in the doc folder so no need to make comments
			if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.
	

		make comments
	

		Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts.
		This requires xsltproc to build and will generate 4 files in doc folder topology_cheatsheet.html, tiger_geocoder_cheatsheet.html,
			raster_cheatsheet.html, postgis_cheatsheet.html
	
You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

		make cheatsheets
	

Building PostGIS Extensions and Deploying them

		The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.
	
If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook installed. You can also manually build with the statement:

	 make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar ball already.
The extensions should automatically build as part of the make install process. You can if needed build from the extensions
	 folders or copy files if you need them on a different server.
cd extensions
cd postgis
make clean
make
export PGUSER=postgres #overwrite psql variables
make check #to test before install
make install
to test extensions
make check RUNTESTFLAGS=--extension
Note
make check uses psql to run tests and as such can use psql environment variables.
		Common ones useful to override are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to copy over the extension files from one OS to another as long as you
	 have the PostGIS binaries already installed on your servers.
If you want to install the extensions manually on a separate server different from your development,
		You need to copy the following files from the extensions folder into the PostgreSQL / share / extension folder
		of your PostgreSQL install as well as the needed binaries for regular PostGIS if you don't have them already on the server.
	
	
			These are the control files that denote information such as the version of the extension to install if not specified.
			postgis.control, postgis_topology.control.
		

	
			All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension folder
			extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql
		

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:
SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%';

 name | default_version | installed_version
------------------------------+-----------------+-------------------
 address_standardizer | 3.4.3 | 3.4.3
 address_standardizer_data_us | 3.4.3 | 3.4.3
 postgis | 3.4.3 | 3.4.3
 postgis_raster | 3.4.3 | 3.4.3
 postgis_sfcgal | 3.4.3 |
 postgis_tiger_geocoder | 3.4.3 | 3.4.3
 postgis_topology | 3.4.3 |
(6 rows)
If you have the extension installed in the database you are querying, you'll see mention in the installed_version column.
If you get no records back, it means you don't have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also provide this information
in the extensions section of the database browser tree and will even allow upgrade or uninstall by right-clicking.
If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin extension interface or running these sql commands:
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster;
CREATE EXTENSION postgis_sfcgal;
CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder
--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;
In psql you can use to see what versions you have installed and also what schema they are installed.
\connect mygisdb
\x
\dx postgis*
List of installed extensions
-[RECORD 1]---
Name | postgis
Version | 3.4.3
Schema | public
Description | PostGIS geometry, geography, and raster spat..
-[RECORD 2]---
Name | postgis_raster
Version | 3.0.0dev
Schema | public
Description | PostGIS raster types and functions
-[RECORD 3]---
Name | postgis_tiger_geocoder
Version | 3.4.3
Schema | tiger
Description | PostGIS tiger geocoder and reverse geocoder
-[RECORD 4]---
Name | postgis_topology
Version | 3.4.3
Schema | topology
Description | PostGIS topology spatial types and functions
Warning
Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only
be backed up when the respective postgis or postgis_topology extension is backed up, which only seems to happen when you backup the whole database.
As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed up when the database is backed up so don't go around changing srids we package and expect your changes to be there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created with CREATE EXTENSION
and assumed to be the same for a given version of an extension. These behaviors are built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.4.3, without using our
wonderful extension system, you can change it to be extension based by
running the below commands to package the functions in their respective extension.
Installing using `unpackaged` was removed in PostgreSQL 13, so you are advised to switch to an extension build before upgrading to PostgreSQL 13.

CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_raster FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

Testing

		If you wish to test the PostGIS build, run
	

		make check
	

		The above command will run through various checks and regression tests
		using the generated library against an actual PostgreSQL database.
	
Note

		 If you configured PostGIS using non-standard PostgreSQL, GEOS, or
		 Proj locations, you may need to add their library locations to the
		 LD_LIBRARY_PATH environment variable.
		

Caution

		 Currently, the make check relies on the
		 PATH and PGPORT environment variables when
		 performing the checks - it does not use the
		 PostgreSQL version that may have been specified using the
		 configuration parameter --with-pgconfig. So make
		 sure to modify your PATH to match the detected PostgreSQL installation
		 during configuration or be prepared to deal with the impending
		 headaches.
		

		If successful, make check will produce the output of almost 500 tests. The results will look similar to the
		following (numerous lines omitted below):
	

 CUnit - A unit testing framework for C - Version 2.1-3
 http://cunit.sourceforge.net/

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 44 44 n/a 0 0
 tests 300 300 300 0 0
 asserts 4215 4215 4215 0 n/a
Elapsed time = 0.229 seconds

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 134
Failed: 0

-- if you build with SFCGAL

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 13
Failed: 0

-- if you built with raster support

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 12 12 n/a 0 0
 tests 65 65 65 0 0
 asserts 45896 45896 45896 0 n/a

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 101
Failed: 0

-- topology regress

.
.
.

Running tests

	.
	.
	.

Run tests: 51
Failed: 0

-- if you built --with-gui, you should see this too

 CUnit - A unit testing framework for C - Version 2.1-2
 http://cunit.sourceforge.net/

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 2 2 n/a 0 0
 tests 4 4 4 0 0
 asserts 4 4 4 0 n/a
The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard PostgreSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root of PostGIS code folder.
For address_standardizer:
	
cd extensions/address_standardizer
make install
make installcheck
	
Output should look like:
	
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries ==============
test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

=====================
 All 4 tests passed.
=====================
For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The address_standardizer tests will also kick in if you built postgis with address_standardizer support:
	
cd extensions/postgis_tiger_geocoder
make install
make installcheck
	
output should look like:
	
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing fuzzystrmatch ==============
CREATE EXTENSION
============== installing postgis ==============
CREATE EXTENSION
============== installing postgis_tiger_geocoder ==============
CREATE EXTENSION
============== installing address_standardizer ==============
CREATE EXTENSION
============== running regression test queries ==============
test test-normalize_address ... ok
test test-pagc_normalize_address ... ok

=====================
All 2 tests passed.
=====================

Installation

		To install PostGIS, type
	

		make install
	

		This will copy the PostGIS installation files into their appropriate
		subdirectory specified by the --prefix configuration
		parameter. In particular:
	
	
			The loader and dumper binaries are installed in
			[prefix]/bin.
		

	
			The SQL files, such as postgis.sql, are
			installed in [prefix]/share/contrib.
		

	
			The PostGIS libraries are installed in
			[prefix]/lib.
		

		If you previously ran the make comments command to
		generate the postgis_comments.sql, raster_comments.sql file, install the
		sql file by running
	

		make comments-install
	
Note

		 postgis_comments.sql, raster_comments.sql, topology_comments.sql was separated from the
		 typical build and installation targets since with it comes the extra
		 dependency of xsltproc.
		

Name
ST_ClosestPointOfApproach —
Returns a measure at the closest point of approach of two trajectories.

Synopsis
	float8 ST_ClosestPointOfApproach(track1, 	
	 	track2);	

geometry track1;
geometry track2;

Description

Returns the smallest measure at which points interpolated along the given
trajectories are at the smallest distance.

Inputs must be valid trajectories as
checked by ST_IsValidTrajectory. Null is returned if
the trajectories do not overlap in their M ranges.
			

See ST_LocateAlong for getting the actual points at
the given measure.
			
Availability: 2.2.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Return the time in which two objects moving between 10:00 and 11:00
-- are closest to each other and their distance at that point
WITH inp AS (SELECT
 ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) a,
 ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) b
), cpa AS (
 SELECT ST_ClosestPointOfApproach(a,b) m FROM inp
), points AS (
 SELECT ST_Force3DZ(ST_GeometryN(ST_LocateAlong(a,m),1)) pa,
 ST_Force3DZ(ST_GeometryN(ST_LocateAlong(b,m),1)) pb
 FROM inp, cpa
)
SELECT to_timestamp(m) t,
 ST_Distance(pa,pb) distance
FROM points, cpa;

 t | distance
-------------------------------+------------------
 2015-05-26 10:45:31.034483+02 | 1.96036833151395

See Also

ST_IsValidTrajectory,
ST_DistanceCPA,
ST_LocateAlong,
ST_AddMeasure
			

Name
ST_Split — Returns a collection of geometries created by splitting a geometry by another geometry.

Synopsis
	geometry ST_Split(input, 	
	 	blade);	

geometry input;
geometry blade;

Description

 The function supports splitting a LineString by a (Multi)Point, (Multi)LineString or (Multi)Polygon boundary,
 or a (Multi)Polygon by a LineString.
 When a (Multi)Polygon is used as as the blade, its linear components
 (the boundary) are used for splitting the input.
 The result geometry is always a collection.

 This function is in a sense the opposite of ST_Union.
 Applying ST_Union to the returned collection should theoretically yield the original geometry
 (although due to numerical rounding this may not be exactly the case).

Note

 If the the input and blade do not intersect due to numerical precision issues,
 the input may not be split as expected.
 To avoid this situation it may be necessary
 to snap the input to the blade first, using ST_Snap with a small tolerance.

Availability: 2.0.0 requires GEOS
Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced.

Examples
Split a Polygon by a Line.
	

[image: Examples]Before Split

 	

[image: Examples]After split

SELECT ST_AsText(ST_Split(
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50), -- circle
 ST_MakeLine(ST_Point(10, 10),ST_Point(190, 190)) -- line
));

-- result --
 GEOMETRYCOLLECTION(
 POLYGON((150 90,149.039264020162 80.2454838991936,146.193976625564 70.8658283817455,..),
 POLYGON(..))
)

Split a MultiLineString by a Point, where the point lies exactly on both LineStrings elements.
	

[image: Examples]Before Split

 	

[image: Examples]After split

SELECT ST_AsText(ST_Split(
 'MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))',
 ST_Point(30,30))) As split;

split

GEOMETRYCOLLECTION(
 LINESTRING(10 10,30 30),
 LINESTRING(30 30,190 190),
 LINESTRING(15 15,30 30),
 LINESTRING(30 30,100 90)
)

Split a LineString by a Point, where the point does not lie exactly on the line.
 Shows using ST_Snap to snap the line to the point to allow it to be split.

WITH data AS (SELECT
 'LINESTRING(0 0, 100 100)'::geometry AS line,
 'POINT(51 50)':: geometry AS point
)
SELECT ST_AsText(ST_Split(ST_Snap(line, point, 1), point)) AS snapped_split,
 ST_AsText(ST_Split(line, point)) AS not_snapped_not_split
 FROM data;

 snapped_split | not_snapped_not_split
---+---
 GEOMETRYCOLLECTION(LINESTRING(0 0,51 50),LINESTRING(51 50,100 100)) | GEOMETRYCOLLECTION(LINESTRING(0 0,100 100))

See Also

 ST_Snap, ST_Union

Name
ST_NDims — Returns the coordinate dimension of a geometry.

Synopsis
	integer ST_NDims(g1);	

geometry g1;

Description
Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) ,
			3 - (x,y,z) or 2D with measure - x,y,m, and 4 - 3D with measure space x,y,z,m

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
	ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
	ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;

	 d2point | d3point | d2pointm
---------+---------+----------
	 2 | 3 | 3
			

See Also
ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

Name
Populate_Topology_Layer — Adds missing entries to topology.layer table by reading metadata from topo tables.

Synopsis
	setof record Populate_Topology_Layer();	

;

Description
Adds missing entries to the topology.layer table by inspecting topology constraints on tables.
 This function is useful for fixing up entries in topology catalog after restores of schemas with topo data.
It returns the list of entries created. Returned columns are schema_name, table_name, feature_column.
Availability: 2.3.0

Examples
SELECT CreateTopology('strk_topo');
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
-- this will return no records because this feature is already registered
SELECT *
 FROM topology.Populate_Topology_Layer();

-- let's rebuild
TRUNCATE TABLE topology.layer;

SELECT *
 FROM topology.Populate_Topology_Layer();

SELECT topology_id,layer_id, schema_name As sn, table_name As tn, feature_column As fc
FROM topology.layer;

				
 schema_name | table_name | feature_column
-------------+------------+----------------
 strk | parcels | topo
(1 row)

 topology_id | layer_id | sn | tn | fc
-------------+----------+------+---------+------
 2 | 2 | strk | parcels | topo
(1 row)

See Also
AddTopoGeometryColumn

Name
ST_SRID — Returns the spatial reference identifier for a geometry.

Synopsis
	integer ST_SRID(g1);	

geometry g1;

Description
Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. the section called “Spatial Reference Systems”
Note
spatial_ref_sys
 table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial
 reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.5

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_SRID(ST_GeomFromText('POINT(-71.1043 42.315)',4326));
 --result
 4326

See Also
the section called “Spatial Reference Systems”, ST_SetSRID, ST_Transform, ST_SRID, ST_SRID

Name
ST_SetScale — Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.

Synopsis
	raster ST_SetScale(rast, 	
	 	xy);	

raster rast;
float8 xy;

	raster ST_SetScale(rast, 	
	 	x, 	
	 	y);	

raster rast;
float8 x;
float8 y;

Description
Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height. If
 only one unit passed in, assumed X and Y are the same number.
Note
ST_SetScale is different from ST_Rescale in that ST_SetScale do not resample the raster to match the raster extent. It only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.

Examples
UPDATE dummy_rast
 SET rast = ST_SetScale(rast, 1.5)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 1.5 | BOX(3427927.75 5793244 0, 3427935.25 5793251.5 0)

UPDATE dummy_rast
 SET rast = ST_SetScale(rast, 1.5, 0.55)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 0.55 | BOX(3427927.75 5793244 0,3427935.25 5793247 0)

See Also
ST_ScaleX, ST_ScaleY, Box3D

Name
ST_AddIsoEdge — Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.

Synopsis
	integer ST_AddIsoEdge(atopology, 	
	 	anode, 	
	 	anothernode, 	
	 	alinestring);	

varchar atopology;
integer anode;
integer anothernode;
geometry alinestring;

Description
Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.
If the spatial reference system (srid) of the alinestring geometry is not the same as the topology, any of the input arguments are null, or the nodes are contained in more than one face, or the nodes are start or end nodes of an existing edge,
 then an exception is thrown.
If the alinestring is not within the face of the face the anode and anothernode belong to, then an exception is thrown.
If the anode and anothernode are not the start and end points of the alinestring then an exception is thrown.
Availability: 1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

Examples

See Also
ST_AddIsoNode, ST_IsSimple, ST_Within

Name
ST_MapAlgebra (callback function version) —
 Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.

Synopsis
	raster ST_MapAlgebra(rastbandargset, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

rastbandarg[] rastbandargset;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=FIRST, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast;
integer[] nband;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=FIRST;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=FIRST, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast;
integer nband;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=FIRST;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	callbackfunc, 	
	 	mask, 	
	 	weighted, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	VARIADIC userargs=NULL);	

raster rast;
integer nband;
regprocedure callbackfunc;
float8[] mask;
boolean weighted;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
text[] VARIADIC userargs=NULL;

Description

 Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.

	rast,rast1,rast2, rastbandargset
	
 Rasters on which the map algebra process is evaluated.
rastbandargset allows the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.

	nband, nband1, nband2
	
 Band numbers of the raster to be evaluated. nband can be an integer or integer[] denoting the bands. nband1 is band on rast1 and nband2 is band on rast2 for hte 2 raster/2band case.

	callbackfunc
	
 The callbackfunc parameter must be the name and signature of an SQL or PL/pgSQL function, cast to a regprocedure. An example PL/pgSQL function example is:

CREATE OR REPLACE FUNCTION sample_callbackfunc(value double precision[][][], position integer[][], VARIADIC userargs text[])
 RETURNS double precision
 AS $$
 BEGIN
 RETURN 0;
 END;
 $$ LANGUAGE 'plpgsql' IMMUTABLE;

 The callbackfunc must have three arguments: a 3-dimension double precision array, a 2-dimension integer array and a variadic 1-dimension text array. The first argument value is the set of values (as double precision) from all input rasters. The three dimensions (where indexes are 1-based) are: raster #, row y, column x. The second argument position is the set of pixel positions from the output raster and input rasters. The outer dimension (where indexes are 0-based) is the raster #. The position at outer dimension index 0 is the output raster's pixel position. For each outer dimension, there are two elements in the inner dimension for X and Y. The third argument userargs is for passing through any user-specified arguments.

 Passing a regprocedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

'sample_callbackfunc(double precision[], integer[], text[])'::regprocedure

 Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

	mask
	
 An n-dimensional array (matrix) of numbers used to filter what cells get passed to map algebra call-back function. 0 means a neighbor cell value should be treated as no-data and 1 means value should be treated as data. If weight is set to true, then the values, are used as multipliers to multiple the pixel value of that value in the neighborhood position.

	weighted
	
 boolean (true/false) to denote if a mask value should be weighted (multiplied by original value) or not (only applies to proto that takes a mask).

	pixeltype
	
 If pixeltype is passed in, the one band of the new raster will be of that pixeltype. If pixeltype is passed NULL or left out, the new raster band will have the same pixeltype as the specified band of the first raster (for extent types: INTERSECTION, UNION, FIRST, CUSTOM) or the specified band of the appropriate raster (for extent types: SECOND, LAST). If in doubt, always specify pixeltype.

 The resulting pixel type of the output raster must be one listed in ST_BandPixelType or left out or set to NULL.

	extenttype
	
 Possible values are INTERSECTION (default), UNION, FIRST (default for one raster variants), SECOND, LAST, CUSTOM.

	customextent
	
 If extentype is CUSTOM, a raster must be provided for customextent. See example 4 of Variant 1.

	distancex
	
 The distance in pixels from the reference cell in x direction. So width of resulting matrix would be 2*distancex + 1.If not specified only the reference cell is considered (neighborhood of 0).

	distancey
	
 The distance in pixels from reference cell in y direction. Height of resulting matrix would be 2*distancey + 1 .If not specified only the reference cell is considered (neighborhood of 0).

	userargs
	
 The third argument to the callbackfunc is a variadic text array. All trailing text arguments are passed through to the specified callbackfunc, and are contained in the userargs argument.

Note

 For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

Note

 The text[] argument to the callbackfunc is required, regardless of whether you choose to pass any arguments to the callback function for processing or not.

 Variant 1 accepts an array of rastbandarg allowing the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.

 Variants 2 and 3 operate upon one or more bands of one raster. See example Variant 2 and 3.

 Variant 4 operate upon two rasters with one band per raster. See example Variant 4.

Availability: 2.2.0: Ability to add a mask
Availability: 2.1.0

Examples: Variant 1
One raster, one band

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 ARRAY[ROW(rast, 1)]::rastbandarg[],
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo

One raster, several bands

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 ARRAY[ROW(rast, 3), ROW(rast, 1), ROW(rast, 3), ROW(rast, 2)]::rastbandarg[],
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo

Several rasters, several bands

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 ARRAY[ROW(t1.rast, 3), ROW(t2.rast, 1), ROW(t2.rast, 3), ROW(t1.rast, 2)]::rastbandarg[],
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
 AND t2.rid = 2

Complete example of tiles of a coverage with neighborhood. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
 SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
 SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
 SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

 SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
 SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
 SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

 SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
 SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
 SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
SELECT
 t1.rid,
 ST_MapAlgebra(
 ARRAY[ROW(ST_Union(t2.rast), 1)]::rastbandarg[],
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure,
 '32BUI',
 'CUSTOM', t1.rast,
 1, 1
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 4
 AND t2.rid BETWEEN 0 AND 8
 AND ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rid, t1.rast

Example like the prior one for tiles of a coverage with neighborhood but works with PostgreSQL 9.0.

WITH src AS (
 SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
 SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
 SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

 SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
 SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
 SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

 SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
 SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
 SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
WITH foo AS (
 SELECT
 t1.rid,
 ST_Union(t2.rast) AS rast
 FROM src t1
 JOIN src t2
 ON ST_Intersects(t1.rast, t2.rast)
 AND t2.rid BETWEEN 0 AND 8
 WHERE t1.rid = 4
 GROUP BY t1.rid
), bar AS (
 SELECT
 t1.rid,
 ST_MapAlgebra(
 ARRAY[ROW(t2.rast, 1)]::rastbandarg[],
 'raster_nmapalgebra_test(double precision[], int[], text[])'::regprocedure,
 '32BUI',
 'CUSTOM', t1.rast,
 1, 1
) AS rast
 FROM src t1
 JOIN foo t2
 ON t1.rid = t2.rid
)
SELECT
 rid,
 (ST_Metadata(rast)),
 (ST_BandMetadata(rast, 1)),
 ST_Value(rast, 1, 1, 1)
FROM bar;

Examples: Variants 2 and 3
One raster, several bands

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 rast, ARRAY[3, 1, 3, 2]::integer[],
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo

One raster, one band

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 rast, 2,
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo

Examples: Variant 4
Two rasters, two bands

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 t1.rast, 2,
 t2.rast, 1,
 'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
 AND t2.rid = 2

Examples: Using Masks

WITH foo AS (SELECT
 ST_SetBandNoDataValue(
ST_SetValue(ST_SetValue(ST_AsRaster(
 ST_Buffer(
 ST_GeomFromText('LINESTRING(50 50,100 90,100 50)'), 5,'join=bevel'),
 200,200,ARRAY['8BUI'], ARRAY[100], ARRAY[0]), ST_Buffer('POINT(70 70)'::geometry,10,'quad_segs=1') ,50),
 'LINESTRING(20 20, 100 100, 150 98)'::geometry,1),0) AS rast)
SELECT 'original' AS title, rast
FROM foo
UNION ALL
SELECT 'no mask mean value' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure) AS rast
FROM foo
UNION ALL
SELECT 'mask only consider neighbors, exclude center' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
 '{{1,1,1}, {1,0,1}, {1,1,1}}'::double precision[], false) As rast
FROM foo

UNION ALL
SELECT 'mask weighted only consider neighbors, exclude center multi otehr pixel values by 2' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
 '{{2,2,2}, {2,0,2}, {2,2,2}}'::double precision[], true) As rast
FROM foo;

	

[image: Examples: Using Masks]original

 	

[image: Examples: Using Masks]no mask mean value (same as having all 1s in mask matrix)

	

[image: Examples: Using Masks]mask only consider neighbors, exclude center

 	

[image: Examples: Using Masks]mask weighted only consider neighbors, exclude center multi other pixel values by 2

See Also

 rastbandarg,
 ST_Union,
 ST_MapAlgebra (expression version)

CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is
 used for the majority of queries, PostgreSQL offers the CLUSTER command.
 This command physically reorders all the data rows in the same order as
 the index criteria, yielding two performance advantages: First, for index
 range scans, the number of seeks on the data table is drastically reduced.
 Second, if your working set concentrates to some small intervals on the
 indices, you have a more efficient caching because the data rows are
 spread along fewer data pages. (Feel invited to read the CLUSTER command
 documentation from the PostgreSQL manual at this point.)
However, currently PostgreSQL does not allow clustering on PostGIS
 GIST indices because GIST indices simply ignores NULL values, you get an
 error message like:
lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "geom" NOT NULL.
As the HINT message tells you, one can work around this deficiency
 by adding a "not null" constraint to the table:
lwgeom=# ALTER TABLE my_table ALTER COLUMN geom SET not null;
ALTER TABLE
Of course, this will not work if you in fact need NULL values in
 your geometry column. Additionally, you must use the above method to add
 the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK
 (geometry is not null);" will not work.

Name
ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis
	geography ST_GeogFromText(EWKT);	

text EWKT;

Description
Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspecified.
				This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

--- converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography(POINT,4326);
UPDATE sometable SET geog = ST_GeogFromText('SRID=4326;POINT(' || lon || ' ' || lat || ')');

--- specify a geography point using EPSG:4267, NAD27
SELECT ST_AsEWKT(ST_GeogFromText('SRID=4267;POINT(-77.0092 38.889588)'));
			

See Also
ST_AsText, ST_GeographyFromText

Name
ST_AsHexWKB — Return the Well-Known Binary (WKB) in Hex representation of the raster.

Synopsis
	bytea ST_AsHexWKB(rast, 	
	 	outasin=FALSE);	

raster rast;
boolean outasin=FALSE;

Description

 Returns the Binary representation in Hex representation of the raster. If outasin is TRUE, out-db bands are treated as in-db.
 Refer to raster/doc/RFC2-WellKnownBinaryFormat located in the PostGIS source folder for details of the representation.

Note

 By default, Hex WKB output contains the external file path for out-db bands. If the client does not have access to the raster file underlying an out-db band, set outasin to TRUE.

Availability: 2.5.0

Examples

SELECT ST_AsHexWKB(rast) As rastbin FROM dummy_rast WHERE rid=1;

 st_ashexwkb
--
 010000000000000000000000400000000000000840000000000000E03F000000000000E03F000000000000000000000000000000000A0000000A001400

See Also

 ST_RastFromHexWKB,
 ST_AsBinary/ST_AsWKB

Name
toTopoGeom — Converts a simple Geometry into a topo geometry.

Synopsis
	topogeometry toTopoGeom(geom, 	
	 	toponame, 	
	 	layer_id, 	
	 	tolerance);	

geometry geom;
varchar toponame;
integer layer_id;
float8 tolerance;

	topogeometry toTopoGeom(geom, 	
	 	topogeom, 	
	 	tolerance);	

geometry geom;
topogeometry topogeom;
float8 tolerance;

Description

Converts a simple Geometry into a TopoGeometry.

Topological primitives required to represent the input geometry will be
added to the underlying topology, possibly splitting existing ones,
and they will be associated with the output TopoGeometry in the
relation table.

Existing TopoGeometry objects (with the possible exception of
topogeom, if given) will retain their shapes.

When tolerance is given it will be used to snap the
input geometry to existing primitives.

In the first form a new TopoGeometry will be created for the given
layer (layer_id) of the given topology (toponame).

In the second form the primitives resulting from the conversion will be
added to the pre-existing TopoGeometry (topogeom),
possibly adding space to its final shape. To have the new shape completely
replace the old one see clearTopoGeom.

Availability: 2.0
Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

Examples
This is a full self-contained workflow
 -- do this if you don't have a topology setup already
-- creates topology not allowing any tolerance
SELECT topology.CreateTopology('topo_boston_test', 2249);
-- create a new table
CREATE TABLE nei_topo(gid serial primary key, nei varchar(30));
--add a topogeometry column to it
SELECT topology.AddTopoGeometryColumn('topo_boston_test', 'public', 'nei_topo', 'topo', 'MULTIPOLYGON') As new_layer_id;
new_layer_id

1

--use new layer id in populating the new topogeometry column
-- we add the topogeoms to the new layer with 0 tolerance
INSERT INTO nei_topo(nei, topo)
SELECT nei, topology.toTopoGeom(geom, 'topo_boston_test', 1)
FROM neighborhoods
WHERE gid BETWEEN 1 and 15;

--use to verify what has happened --
SELECT * FROM
 topology.TopologySummary('topo_boston_test');

-- summary--
Topology topo_boston_test (5), SRID 2249, precision 0
61 nodes, 87 edges, 35 faces, 15 topogeoms in 1 layers
Layer 1, type Polygonal (3), 15 topogeoms
 Deploy: public.nei_topo.topo

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);

-- Get the no-one-lands left by the above operation
-- I think GRASS calls this "polygon0 layer"
SELECT ST_GetFaceGeometry('topo_boston_test', f.face_id)
 FROM topo_boston_test.face f
 WHERE f.face_id > 0 -- don't consider the universe face
 AND NOT EXISTS (-- check that no TopoGeometry references the face
 SELECT * FROM topo_boston_test.relation
 WHERE layer_id = 1 AND element_id = f.face_id
);

See Also

CreateTopology,
AddTopoGeometryColumn,
CreateTopoGeom,
TopologySummary,
clearTopoGeom

Creating spatial databases

Spatially enable database using EXTENSION

	 If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you
	 can turn a database into a spatial one using the EXTENSION mechanism.
	

	 Core postgis extension includes geometry, geography,
 spatial_ref_sys and all the functions and comments.
	 Raster and topology are packaged as a separate extension.
	

	 Run the following SQL snippet in the database you want to enable spatially:

 CREATE EXTENSION IF NOT EXISTS plpgsql;
 CREATE EXTENSION postgis;
 CREATE EXTENSION postgis_raster; -- OPTIONAL
 CREATE EXTENSION postgis_topology; -- OPTIONAL

	

Spatially enable database without using EXTENSION (discouraged)

Note
This is generally only needed if you cannot or don't
want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted
environment).

	 Adding PostGIS objects and function definitions into your
 database is done by loading the various sql files located in
	 [prefix]/share/contrib as specified during
 the build phase.
	

 The core PostGIS objects (geometry and geography types, and their
 support functions) are in the postgis.sql
 script.
 Raster objects are in the rtpostgis.sql script.
 Topology objects are in the topology.sql script.
	

	 For a complete set of EPSG coordinate system definition identifiers, you
	 can also load the spatial_ref_sys.sql definitions
	 file and populate the spatial_ref_sys table. This will
	 permit you to perform ST_Transform() operations on geometries.
	

	 If you wish to add comments to the PostGIS functions, you can find
 them in the postgis_comments.sql script.
	 Comments can be viewed by simply typing \dd
	 [function_name] from a psql terminal window.
	

	 Run the following Shell commands in your terminal:

 DB=[yourdatabase]
 SCRIPTSDIR=`pg_config --sharedir`/contrib/postgis-3.3/

 # Core objects
 psql -d ${DB} -f ${SCRIPTSDIR}/postgis.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

 # Raster support (OPTIONAL)
 psql -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/raster_comments.sql # OPTIONAL

 # Topology support (OPTIONAL)
 psql -d ${DB} -f ${SCRIPTSDIR}/topology.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/topology_comments.sql # OPTIONAL

Name
ST_Value — Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Synopsis
	double precision ST_Value(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	pt, 	
	 	exclude_nodata_value=true, 	
	 	resample='nearest');	

raster rast;
integer band;
geometry pt;
boolean exclude_nodata_value=true;
text resample='nearest';

	double precision ST_Value(rast, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer x;
integer y;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer band;
integer x;
integer y;
boolean exclude_nodata_value=true;

Description
Returns the value of a given band in a given columnx, rowy pixel or at a given geometry point. Band numbers start at 1 and band is assumed to be 1 if not specified.
If exclude_nodata_value is set to true, then only non nodata pixels are considered. If exclude_nodata_value is set to false, then all pixels are considered.
The allowed values of the resample parameter are "nearest" which performs the default nearest-neighbor resampling, and "bilinear" which performs a bilinear interpolation to estimate the value between pixel centers.
Enhanced: 3.2.0 resample optional argument was added.
Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

Examples

-- get raster values at particular postgis geometry points
-- the srid of your geometry should be same as for your raster
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;

 rid | b1pval | b2pval
-----+--------+--------
 2 | 252 | 79

-- general fictitious example using a real table
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);

SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
 ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;

 rid | b1pval | b2pval | b3pval
-----+--------+--------+--------
 2 | 253 | 78 | 70

--- Get all values in bands 1,2,3 of each pixel --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1, 1000) As x CROSS JOIN generate_series(1, 1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 x | y | b1val | b2val | b3val
---+---+-------+-------+-------
 1 | 1 | 253 | 78 | 70
 1 | 2 | 253 | 96 | 80
 1 | 3 | 250 | 99 | 90
 1 | 4 | 251 | 89 | 77
 1 | 5 | 252 | 79 | 62
 2 | 1 | 254 | 98 | 86
 2 | 2 | 254 | 118 | 108
 :
 :

--- Get all values in bands 1,2,3 of each pixel same as above but returning the upper left point point of each pixel --
SELECT ST_AsText(ST_SetSRID(
 ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
 ST_SRID(rast))) As uplpt
 , ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 uplpt | b1val | b2val | b3val
-----------------------------+-------+-------+-------
 POINT(3427929.25 5793245.5) | 253 | 78 | 70
 POINT(3427929.25 5793247) | 253 | 96 | 80
 POINT(3427929.25 5793248.5) | 250 | 99 | 90
:

--- Get a polygon formed by union of all pixels
 that fall in a particular value range and intersect particular polygon --
SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast),
 ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427928 5793243.9,3427928 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,
 3427927.95 5793243.95,3427928 5793243.95,3427928.05 5793243.95,3427928.05 5793243.9,3427928 5793243.9)),((3427927.95 5793243.9,3427927.95 579324
3.85,3427927.9 5793243.85,3427927.85 5793243.85,3427927.85 5793243.9,3427927.9 5793243.9,3427927.9 5793243.95,
3427927.95 5793243.95,3427927.95 5793243.9)),((3427927.85 5793243.75,3427927.85 5793243.7,3427927.8 5793243.7,3427927.8 5793243.75
,3427927.8 5793243.8,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75)),
((3427928.05 5793243.75,3427928.05 5793243.7,3427928 5793243.7,3427927.95 5793243.7,3427927.95 5793243.75,3427927.95 5793243.8,3427
927.95 5793243.85,3427928 5793243.85,3427928 5793243.8,3427928.05 5793243.8,
3427928.05 5793243.75)),((3427927.95 5793243.75,3427927.95 5793243.7,3427927.9 5793243.7,3427927.85 5793243.7,
3427927.85 5793243.75,3427927.85 5793243.8,3427927.85 5793243.85,3427927.9 5793243.85,
3427927.95 5793243.85,3427927.95 5793243.8,3427927.95 5793243.75)))

--- Checking all the pixels of a large raster tile can take a long time.
--- You can dramatically improve speed at some lose of precision by orders of magnitude
-- by sampling pixels using the step optional parameter of generate_series.
-- This next example does the same as previous but by checking 1 for every 4 (2x2) pixels and putting in the last checked
-- putting in the checked pixel as the value for subsequent 4

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427927.9 5793243.85,3427927.8 5793243.85,3427927.8 5793243.95,
 3427927.9 5793243.95,3427928 5793243.95,3427928.1 5793243.95,3427928.1 5793243.85,3427928 5793243.85,3427927.9 5793243.85)),
 ((3427927.9 5793243.65,3427927.8 5793243.65,3427927.8 5793243.75,3427927.8 5793243.85,3427927.9 5793243.85,
 3427928 5793243.85,3427928 5793243.75,3427928.1 5793243.75,3427928.1 5793243.65,3427928 5793243.65,3427927.9 5793243.65)))

See Also

 ST_SetValue,
 ST_DumpAsPolygons,
 ST_NumBands,
 ST_PixelAsPolygon,
 ST_ScaleX,
 ST_ScaleY,
 ST_UpperLeftX,
 ST_UpperLeftY,
 ST_SRID,
 ST_AsText,
 ST_Point,
 ST_MakeEnvelope,
 ST_Intersects,
 ST_Intersection

Geometry Constructors

Name
ST_SRID — Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.

Synopsis
	integer ST_SRID(rast);	

raster rast;

Description
Returns the spatial reference identifier of the raster object as defined in the spatial_ref_sys table.
Note
From PostGIS 2.0+ the srid of a non-georeferenced raster/geometry is 0 instead of the prior -1.

Examples
SELECT ST_SRID(rast) As srid
FROM dummy_rast WHERE rid=1;

srid

0

See Also
the section called “Spatial Reference Systems”, ST_SRID

Name
debug_standardize_address — Returns a json formatted text listing the parse tokens and standardizations

Synopsis
	text debug_standardize_address(lextab, 	
	 	gaztab, 	
	 	rultab, 	
	 	micro, 	
	 	macro=NULL);	

text lextab;
text gaztab;
text rultab;
text micro;
text macro=NULL;

Description
This is a function for debugging address standardizer rules and lex/gaz mappings. It returns a json formatted text that includes the matching rules, mapping of tokens, and best standardized address stdaddr form of an input address utilizing lex table table name, gaz table, and rules table table names and an address.
For single line addresses use just micro
For two line address A micro consisting of standard first line of postal address e.g. house_num street, and a macro consisting of standard postal second line of an address e.g city, state postal_code country.
Elements returned in the json document are
	input_tokens
	For each word in the input address, returns the position of the word,
 token categorization of the word, and the standard word it is mapped to.
 Note that for some input words, you might get back multiple records because some inputs can be categorized
 as more than one thing.

	rules
	The set of rules matching the input and the corresponding score for each. The first rule (highest scoring) is
 what is used for standardization

	stdaddr
	The standardized address elements stdaddr that would be returned when running standardize_address

Availability: 3.4.0

 [image: Description]
 This method needs address_standardizer extension.

Examples
Using address_standardizer_data_us extension
CREATE EXTENSION address_standardizer_data_us; -- only needs to be done once
Variant 1: Single line address and returning the input tokens
SELECT it->>'pos' AS position, it->>'word' AS word, it->>'stdword' AS standardized_word,
 it->>'token' AS token, it->>'token-code' AS token_code
 FROM jsonb(
 debug_standardize_address('us_lex',
 'us_gaz', 'us_rules', 'One Devonshire Place, PH 301, Boston, MA 02109')
) AS s, jsonb_array_elements(s->'input_tokens') AS it;
position | word | standardized_word | token | token_code
----------+------------+-------------------+--------+------------
 0 | ONE | 1 | NUMBER | 0
 0 | ONE | 1 | WORD | 1
 1 | DEVONSHIRE | DEVONSHIRE | WORD | 1
 2 | PLACE | PLACE | TYPE | 2
 3 | PH | PATH | TYPE | 2
 3 | PH | PENTHOUSE | UNITT | 17
 4 | 301 | 301 | NUMBER | 0
(7 rows)
Variant 2: Multi line address and returning first rule input mappings and score
SELECT (s->'rules'->0->>'score')::numeric AS score, it->>'pos' AS position,
 it->>'input-word' AS word, it->>'input-token' AS input_token, it->>'mapped-word' AS standardized_word,
 it->>'output-token' AS output_token
 FROM jsonb(
 debug_standardize_address('us_lex',
 'us_gaz', 'us_rules', 'One Devonshire Place, PH 301', 'Boston, MA 02109')
) AS s, jsonb_array_elements(s->'rules'->0->'rule_tokens') AS it;
 score | position | word | input_token | standardized_word | output_token
----------+----------+------------+-------------+-------------------+--------------
 0.876250 | 0 | ONE | NUMBER | 1 | HOUSE
 0.876250 | 1 | DEVONSHIRE | WORD | DEVONSHIRE | STREET
 0.876250 | 2 | PLACE | TYPE | PLACE | SUFTYP
 0.876250 | 3 | PH | UNITT | PENTHOUSE | UNITT
 0.876250 | 4 | 301 | NUMBER | 301 | UNITT
(5 rows)

See Also
stdaddr, rules table, lex table, gaz table, Pagc_Normalize_Address

Name
<< — Returns TRUE if A's bounding box is strictly to the left of B's.

Synopsis
	boolean <<(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The << operator returns TRUE if the bounding box of geometry A
			is strictly to the left of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left
FROM
 (VALUES
	(1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 3)'::geometry),
	(3, 'LINESTRING (6 0, 6 5)'::geometry),
	(4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | left
---------+---------+------
	 1 | 2 | f
	 1 | 3 | t
	 1 | 4 | t
(3 rows)

See Also
>>, |>>, <<|

Name
ST_DelaunayTriangles —
Returns the Delaunay triangulation of the vertices of a geometry.

Synopsis
	geometry ST_DelaunayTriangles(g1, 	
	 	tolerance = 0.0, 	
	 	flags = 0);	

geometry g1;
float tolerance = 0.0;
int4 flags = 0;

Description

Computes the Delaunay triangulation
of the vertices of the input geometry.
The optional tolerance can be used to snap nearby input vertices together,
which improves robustness in some situations.
The result geometry is bounded by the convex hull of the input vertices.
The result geometry representation is determined by the flags code:

	 0 - a GEOMETRYCOLLECTION of triangular POLYGONs (default)

	 1 - a MULTILINESTRING of the edges of the triangulation

	 2 - A TIN of the triangulation

Performed by the GEOS module.
Availability: 2.1.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
	[image: Examples]Original polygons

our original geometry
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)

	[image: Examples]ST_DelaunayTriangles of 2 polygons: delaunay triangle polygons each triangle themed in different color

geometries overlaid multilinestring triangles

SELECT
 ST_DelaunayTriangles(
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
))
 As dtriag;

	[image: Examples]-- delaunay triangles as multilinestring

SELECT
 ST_DelaunayTriangles(
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
),0.001,1)
 As dtriag;

	[image: Examples]-- delaunay triangles of 45 points as 55 triangle polygons

this produces a table of 42 points that form an L shape

SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
 INTO TABLE l_shape;

output as individual polygon triangles

SELECT ST_AsText((ST_Dump(geom)).geom) As wkt
FROM (SELECT ST_DelaunayTriangles(ST_Collect(geom)) As geom
FROM l_shape) As foo;

wkt

POLYGON((6 194,6 190,14 194,6 194))
POLYGON((14 194,6 190,14 174,14 194))
POLYGON((14 194,14 174,154 14,14 194))
POLYGON((154 14,14 174,14 154,154 14))
POLYGON((154 14,14 154,150 14,154 14))
POLYGON((154 14,150 14,154 6,154 14))

Example using vertices with Z values.

3D multipoint

SELECT ST_AsText(ST_DelaunayTriangles(ST_GeomFromText(
 'MULTIPOINT Z(14 14 10, 150 14 100,34 6 25, 20 10 150)'))) As wkt;

wkt

GEOMETRYCOLLECTION Z (POLYGON Z ((14 14 10,20 10 150,34 6 25,14 14 10))
 ,POLYGON Z ((14 14 10,34 6 25,150 14 100,14 14 10)))

See Also
ST_VoronoiPolygons,
 ST_TriangulatePolygon,
 ST_ConstrainedDelaunayTriangles,
 ST_VoronoiLines,
 ST_ConvexHull

Name
ST_ClusterIntersectingWin — Window function that returns a cluster id for each input geometry, clustering input geometries into connected sets.

Synopsis
	integer ST_ClusterIntersectingWin(geom);	

geometry winset geom;

Description
A window function that builds connected clusters of geometries that intersect. It is possible to traverse all geometries in a cluster without leaving the cluster. The return value is the cluster number that the geometry argument participates in, or null for null inputs.
Availability: 3.4.0

Examples

WITH testdata AS (
 SELECT id, geom::geometry FROM (
 VALUES (1, 'LINESTRING (0 0, 1 1)'),
 (2, 'LINESTRING (5 5, 4 4)'),
 (3, 'LINESTRING (6 6, 7 7)'),
 (4, 'LINESTRING (0 0, -1 -1)'),
 (5, 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))')) AS t(id, geom)
)
SELECT id,
 ST_AsText(geom),
 ST_ClusterIntersectingWin(geom) OVER () AS cluster
FROM testdata;

 id | st_astext | cluster
----+--------------------------------+---------
 1 | LINESTRING(0 0,1 1) | 0
 2 | LINESTRING(5 5,4 4) | 0
 3 | LINESTRING(6 6,7 7) | 1
 4 | LINESTRING(0 0,-1 -1) | 0
 5 | POLYGON((0 0,4 0,4 4,0 4,0 0)) | 0

See Also

 ST_ClusterIntersecting,
 ST_ClusterWithin,
 ST_ClusterWithinWin

Name
ST_PointN — Returns the Nth point in the first LineString or circular LineString in a
			geometry.

Synopsis
	geometry ST_PointN(a_linestring, 	
	 	n);	

geometry a_linestring;
integer n;

Description
Return the Nth point in a single linestring or circular linestring in the
			geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the
			geometry.
Note
Index is 1-based as for OGC specs since version 0.8.0.
 Backward indexing (negative index) is not in OGC
			 Previous versions implemented this as 0-based instead.

Note
If you want to get the Nth point of each LineString in a MultiLineString, use in conjunction
			 with ST_Dump

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 7.2.5, 7.3.5

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Note
Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
 Changed: 2.3.0 : negative indexing available (-1 is last point)

Examples
-- Extract all POINTs from a LINESTRING
SELECT ST_AsText(
 ST_PointN(
	 column1,
	 generate_series(1, ST_NPoints(column1))
))
FROM (VALUES ('LINESTRING(0 0, 1 1, 2 2)'::geometry)) AS foo;

 st_astext

 POINT(0 0)
 POINT(1 1)
 POINT(2 2)
(3 rows)

--Example circular string
SELECT ST_AsText(ST_PointN(ST_GeomFromText('CIRCULARSTRING(1 2, 3 2, 1 2)'), 2));

 st_astext

 POINT(3 2)
(1 row)

SELECT ST_AsText(f)
FROM ST_GeomFromText('LINESTRING(0 0 0, 1 1 1, 2 2 2)') AS g
 ,ST_PointN(g, -2) AS f; -- 1 based index

 st_astext

 POINT Z (1 1 1)
(1 row)

See Also
ST_NPoints

Name
ST_SharedPaths — Returns a collection containing paths shared by the two input linestrings/multilinestrings.

Synopsis
	geometry ST_SharedPaths(lineal1, 	
	 	lineal2);	

geometry lineal1;
geometry lineal2;

Description
Returns a collection containing paths shared by the two input geometries.
 Those going in the same direction are in the first element of the collection, those going in the opposite direction are in the second element.
 The paths themselves are given in the direction of the first geometry.

Performed by the GEOS module.
Availability: 2.0.0

Examples: Finding shared paths
	[image: Examples: Finding shared paths]A multilinestring and a linestring

	[image: Examples: Finding shared paths]The shared path of multilinestring and linestring overlaid with original geometries.

 SELECT ST_AsText(
 ST_SharedPaths(
 ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
 (51 150,101 150,76 175,51 150))'),
 ST_GeomFromText('LINESTRING(151 100,126 156.25,126 125,90 161, 76 175)')
)
) As wkt

 wkt

GEOMETRYCOLLECTION(MULTILINESTRING((126 156.25,126 125),
 (101 150,90 161),(90 161,76 175)),MULTILINESTRING EMPTY)

	

same example but linestring orientation flipped

SELECT ST_AsText(
 ST_SharedPaths(
 ST_GeomFromText('LINESTRING(76 175,90 161,126 125,126 156.25,151 100)'),
 ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
 (51 150,101 150,76 175,51 150))')
)
) As wkt

 wkt

GEOMETRYCOLLECTION(MULTILINESTRING EMPTY,
MULTILINESTRING((76 175,90 161),(90 161,101 150),(126 125,126 156.25)))

See Also

 ST_Dump,
 ST_GeometryN,
 ST_NumGeometries

Name
ST_Force2D — Force the geometries into a "2-dimensional mode".

Synopsis
	geometry ST_Force2D(geomA);	

geometry geomA;

Description
Forces the geometries into a "2-dimensional mode" so that
		all output representations will only have the X and Y coordinates.
		This is useful for force OGC-compliant output (since OGC only
		specifies 2-D geometries).
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
		st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT ST_AsEWKT(ST_Force2D('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 1 2,1 3 2,1 1 2))'));

				 st_asewkt
--
 POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

		

See Also
ST_Force3D

Name
DisableLongTransactions — Disables long transaction support.

Synopsis
	text DisableLongTransactions();	

;

Description
Disables long transaction support. This function removes the
			long transaction support metadata tables, and drops all triggers
			attached to lock-checked tables.
Drops meta table called authorization_table and a view called authorized_tables
				and all triggers called checkauthtrigger
Availability: 1.1.3

Examples
SELECT DisableLongTransactions();
--result--
Long transactions support disabled
		

See Also
EnableLongTransactions

Name
ST_FrechetDistance — Returns the Fréchet distance between two geometries.

Synopsis
	float ST_FrechetDistance(g1, 	
	 	g2, 	
	 	densifyFrac = -1);	

geometry
			g1;
geometry
			g2;
float
			densifyFrac = -1;

Description
Implements algorithm for computing the Fréchet distance restricted to discrete points for both geometries, based on Computing Discrete Fréchet Distance.
		The Fréchet distance is a measure of similarity between curves that takes into account the location and ordering of the points along the curves. Therefore it is often better than the Hausdorff distance.

When the optional densifyFrac is specified, this function performs a segment densification before computing the discrete Fréchet distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.
		
Units are in the units of the spatial reference system of the geometries.
		
Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.
			

Note

The smaller densifyFrac we specify, the more acurate Fréchet distance we get. But, the computation time and the memory usage increase with the square of the number of subsegments.
			

Performed by the GEOS module.
Availability: 2.4.0 - requires GEOS >= 3.7.0

Examples
postgres=# SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
 st_frechetdistance

 70.7106781186548
(1 row)
			
SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry, 0.5);
 st_frechetdistance

 50
(1 row)
			

See Also
ST_HausdorffDistance

Name
ST_CoordDim — Return the coordinate dimension of a geometry.

Synopsis
	integer ST_CoordDim(geomA);	

geometry geomA;

Description
Return the coordinate dimension of the ST_Geometry value.
This is the MM compliant alias name for ST_NDims

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.3

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
			---result--
				3

				SELECT ST_CoordDim(ST_Point(1,2));
			--result--
				2

		

See Also
ST_NDims

Topology Statistics Management

Abstract

This section discusses management of database statistics during
topology building.

Adding elements to a topology triggers many database queries for
finding existing edges that will be split, adding nodes and
updating edges that will node with the new linework. For this reason
it is useful that statistics about the data in the topology tables
are up-to-date.

PostGIS Topology population and editing functions do not automatically
update the statistics because a updating stats after each and every
change in a topology would be overkill, so it is the caller's duty
to take care of that.

Note

That the statistics updated by autovacuum
will NOT be visible to transactions which started before autovacuum
process completed, so long-running transactions will need to run
ANALYZE themselves, to use updated statistics.

Name
ST_RasterToWorldCoord — Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

Synopsis
	record ST_RasterToWorldCoord(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description

 Returns the upper left corner as geometric X and Y (longitude and latitude) given a column and row. Returned X and Y are in geometric units of the georeferenced raster.
 Numbering of column and row starts at 1 but if either parameter is passed a zero, a negative number or a number greater than the respective dimension of the raster, it will return coordinates outside of the raster assuming the raster's grid is applicable outside the raster's bounds.

Availability: 2.1.0

Examples

-- non-skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast,1, 1)).*,
 (ST_RasterToWorldCoord(rast,2, 2)).*
FROM dummy_rast

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+------------
 1 | 0.5 | 0.5 | 2.5 | 3.5
 2 | 3427927.75 | 5793244 | 3427927.8 | 5793243.95

-- skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast, 1, 1)).*,
 (ST_RasterToWorldCoord(rast, 2, 3)).*
FROM (
 SELECT
 rid,
 ST_SetSkew(rast, 100.5, 0) As rast
 FROM dummy_rast
) As foo

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+-----------
 1 | 0.5 | 0.5 | 203.5 | 6.5
 2 | 3427927.75 | 5793244 | 3428128.8 | 5793243.9

See Also

 ST_RasterToWorldCoordX,
 ST_RasterToWorldCoordY,
 ST_SetSkew

Name
DropRasterConstraints — Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.

Synopsis
	boolean DropRasterConstraints(rasttable, 	
	 	rastcolumn, 	
	 	srid, 	
	 	scale_x, 	
	 	scale_y, 	
	 	blocksize_x, 	
	 	blocksize_y, 	
	 	same_alignment, 	
	 	regular_blocking, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
 rasttable;
name
 rastcolumn;
boolean
 srid;
boolean
 scale_x;
boolean
 scale_y;
boolean
 blocksize_x;
boolean
 blocksize_y;
boolean
 same_alignment;
boolean
 regular_blocking;
boolean
 num_bands=true;
boolean
 pixel_types=true;
boolean
 nodata_values=true;
boolean
 out_db=true
 ;
boolean
 extent=true;

	boolean DropRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	srid=true, 	
	 	scale_x=true, 	
	 	scale_y=true, 	
	 	blocksize_x=true, 	
	 	blocksize_y=true, 	
	 	same_alignment=true, 	
	 	regular_blocking=false, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
 rastschema;
name
 rasttable;
name
 rastcolumn;
boolean
 srid=true;
boolean
 scale_x=true;
boolean
 scale_y=true;
boolean
 blocksize_x=true;
boolean
 blocksize_y=true;
boolean
 same_alignment=true;
boolean
 regular_blocking=false;
boolean
 num_bands=true;
boolean
 pixel_types=true;
boolean
 nodata_values=true;
boolean
 out_db=true
 ;
boolean
 extent=true;

	boolean DropRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	constraints);	

name
 rastschema;
name
 rasttable;
name
 rastcolumn;
text[]
 constraints;

Description
Drops PostGIS raster constraints that refer to a raster table column that were added by AddRasterConstraints. Useful if you need to load more data or update your raster column data.
 You do not need to do this if you want to get rid of a raster table or a raster column.
To drop a raster table use the standard
DROP TABLE mytable
To drop just a raster column and leave the rest of the table, use standard SQL
ALTER TABLE mytable DROP COLUMN rast
the table will disappear from the raster_columns catalog if the column or table is dropped. However if only the constraints are dropped, the
 raster column will still be listed in the raster_columns catalog, but there will be no other information about it aside from the column name and table.
Availability: 2.0.0

Examples

SELECT DropRasterConstraints ('myrasters','rast');
----RESULT output ---
t

-- verify change in raster_columns --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
 FROM raster_columns
 WHERE r_table_name = 'myrasters';

 srid | scale_x | scale_y | blocksize_x | blocksize_y | num_bands | pixel_types| nodata_values
------+---------+---------+-------------+-------------+-----------+-------------+---------------
 0 | | | | | | |

See Also
AddRasterConstraints

Name
ST_BandNoDataValue — Returns the value in a given band that represents no data. If no band num 1 is assumed.

Synopsis
	double precision ST_BandNoDataValue(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns the value that represents no data for the band

Examples
SELECT ST_BandNoDataValue(rast,1) As bnval1,
 ST_BandNoDataValue(rast,2) As bnval2, ST_BandNoDataValue(rast,3) As bnval3
FROM dummy_rast
WHERE rid = 2;

 bnval1 | bnval2 | bnval3
--------+--------+--------
 0 | 0 | 0

See Also
ST_NumBands

Name
&&&(gidx,geometry) — Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.

Synopsis
	boolean &&&(A, 	
	 	B);	

				 gidx

				 A
				;

				 geometry

				 B
				;

Description
The &&& operator returns TRUE if the n-D bounding box A intersects the cached n-D bounding box of geometry B, using float precision. This means that if A is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&&(geometry,gidx),
				&&&(gidx,gidx)

Name
ST_LineExtend — Returns a line with the last and first segments extended the specified distance(s).

Synopsis
	geometry ST_LineExtend(line, 	
	 	distance_forward, 	
	 	distance_backward=0.0);	

geometry
 line;
float
 distance_forward;
float distance_backward=0.0;

Description
Returns a line with the last and first segments extended the specified distance(s). Distance of zero carries out no extension. Only non-negative distances are allowed. The first (and last) two distinct points in a line are used to determine the direction of projection, duplicate points are ignored.
Availability: 3.4.0

Example: Extends a line 5 units forward and 6 units backward

SELECT ST_AsText(ST_LineExtend('LINESTRING(0 0, 0 10)'::geometry, 5, 6));
--
LINESTRING(0 -6,0 0,0 10,0 15)

See Also
ST_LocateAlong, ST_Project

Raster Outputs

Name
ST_CoverageUnion — Computes the union of a set of polygons forming a coverage by removing shared edges.

Synopsis
	geometry ST_CoverageUnion(geom);	

geometry set
 geom;

Description
An aggregate function which unions a set of polygons forming a polygonal coverage.
 The result is a polygonal geometry covering the same area as the coverage.
 This function produces the same result as ST_Union,
 but uses the coverage structure to compute the union much faster.

Note
If the input is not a valid coverage there may be unexpected artifacts in the output (such as unmerged or overlapping polygons).
 Use ST_CoverageInvalidEdges to determine if a coverage is valid.

Availability: 3.4.0 - requires GEOS >= 3.8.0

Examples
	

[image: Examples]Input coverage

	

[image: Examples]Union result

WITH coverage(id, geom) AS (VALUES
 (1, 'POLYGON ((10 10, 10 150, 80 190, 110 150, 90 110, 40 110, 50 60, 10 10))'::geometry),
 (2, 'POLYGON ((120 10, 10 10, 50 60, 100 70, 120 10))'::geometry),
 (3, 'POLYGON ((140 80, 120 10, 100 70, 40 110, 90 110, 110 150, 140 80))'::geometry),
 (4, 'POLYGON ((140 190, 120 170, 140 130, 160 150, 140 190))'::geometry),
 (5, 'POLYGON ((180 160, 170 140, 140 130, 160 150, 140 190, 180 160))'::geometry)
)
SELECT ST_AsText(ST_CoverageUnion(geom))
 FROM coverage;

MULTIPOLYGON (((10 150, 80 190, 110 150, 140 80, 120 10, 10 10, 10 150), (50 60, 100 70, 40 110, 50 60)), ((120 170, 140 190, 180 160, 170 140, 140 130, 120 170)))

See Also

 ST_CoverageInvalidEdges,
 ST_Union

Name
ST_Reskew — Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

Synopsis
	raster ST_Reskew(rast, 	
	 	skewxy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision skewxy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Reskew(rast, 	
	 	skewx, 	
	 	skewy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision skewx;
double precision skewy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
skewx and skewy define the new skew.
The extent of the new raster will encompass the extent of the provided raster.
A maxerror percent of 0.125 if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Reskew is different from ST_SetSkew in that ST_SetSkew do not resample the raster to match the raster extent. ST_SetSkew only changes the metadata (or georeference) of the raster to correct an originally mis-specified skew. ST_Reskew results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetSkew do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example reskewing a raster from a skew of 0.0 to a skew of 0.0015.
-- the original raster non-rotated
SELECT ST_Rotation(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0));

-- result
0

-- the reskewed raster raster rotation
SELECT ST_Rotation(ST_Reskew(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015));

-- result
-0.982793723247329

See Also
ST_Resample, ST_Rescale, ST_SetSkew, ST_SetRotation, ST_SkewX, ST_SkewY, ST_Transform

Name
Intersects — Returns true if any pair of primitives from the two topogeometries intersect.

Synopsis
	boolean Intersects(tg1, 	
	 	tg2);	

topogeometry tg1;
topogeometry tg2;

Description

Returns true if any pair of primitives from the
two topogeometries intersect.

Note
This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies.
 Also not currently supported for hierarchical topogeometries (topogeometries composed of other topogeometries).

Availability: 1.1.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

See Also
ST_Intersects

Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC)
	 Simple Features specification.
 That standard defines the concepts of geometry being
 simple and valid.
 These definitions allow the Simple Features geometry model
 to represent spatial objects in a consistent and unambiguous way
 that supports efficient computation.
 (Note: the OGC SF and SQL/MM have the same definitions for simple and valid.)

Simple Geometry

A simple
	 geometry is one that has no anomalous geometric points, such as self
	 intersection or self tangency.
	
A POINT is inherently simple
	 as a 0-dimensional geometry object.
MULTIPOINTs are simple if
	 no two coordinates (POINTs) are equal (have identical
	 coordinate values).
A LINESTRING is simple if
	 it does not pass through the same point twice, except for the endpoints.
 If the endpoints of a simple LineString are identical it is called closed
 and referred to as a Linear Ring.
	
 (a) and
				(c) are simple	LINESTRINGs.
 (b) and (d) are not simple.
 (c) is a closed Linear Ring.

	[image: Simple Geometry](a)

	[image: Simple Geometry](b)

	[image: Simple Geometry](c)

	[image: Simple Geometry](d)

A MULTILINESTRING is simple
	 only if all of its elements are simple and the only intersection between
	 any two elements occurs at points that are on the
	 boundaries of both elements.
	
 (e) and
				(f) are simple
				MULTILINESTRINGs.
 (g) is not simple.

	[image: Simple Geometry](e)

	[image: Simple Geometry](f)

	[image: Simple Geometry](g)

POLYGONs are formed from linear rings, so
 valid polygonal geometry is always simple.
To test if a geometry is simple
	use the ST_IsSimple function:

SELECT
 ST_IsSimple('LINESTRING(0 0, 100 100)') AS straight,
 ST_IsSimple('LINESTRING(0 0, 100 100, 100 0, 0 100)') AS crossing;

 straight | crossing
----------+----------
 t | f

Generally, PostGIS functions do not require geometric arguments to be simple.
	Simplicity is primarily used as a basis for defining geometric validity.
 It is also a requirement for some kinds of spatial data models
 (for example, linear networks often disallow lines that cross).
 Multipoint and linear geometry can be made simple using ST_UnaryUnion.

Valid Geometry

Geometry validity primarily applies to 2-dimensional
 geometries (POLYGONs and MULTIPOLYGONs) .
 Validity is defined by rules that allow polygonal geometry
 to model planar areas unambiguously.

A POLYGON is valid if:

	
 the polygon boundary rings (the exterior shell ring and interior hole rings)
 are simple (do not cross or self-touch).
 Because of this a polygon cannnot have cut lines, spikes or loops.
 This implies that polygon holes must be represented as interior rings,
 rather than by the exterior ring self-touching (a so-called "inverted hole").

	
 boundary rings do not cross

	
 boundary rings may touch at points but only as a tangent (i.e. not in a line)

	
 interior rings are contained in the exterior ring

	
 the polygon interior is simply connected
 (i.e. the rings must not touch in a way that splits the polygon into more than one part)

	
 (h) and
				(i) are valid POLYGONs.
 (j-m) are invalid.
				(j)
				can be represented as a valid MULTIPOLYGON.
				

	[image: Valid Geometry](h)

	[image: Valid Geometry](i)

	[image: Valid Geometry](j)

	[image: Valid Geometry](k)

	[image: Valid Geometry](l)

	[image: Valid Geometry](m)

A MULTIPOLYGON is valid if:
	
	
 its element POLYGONs are valid

	
 elements do not overlap (i.e. their interiors must not intersect)

	
 elements touch only at points (i.e. not along a line)

	
 (n) is a valid MULTIPOLYGON.
				(o) and (p) are invalid.

	[image: Valid Geometry](n)

	[image: Valid Geometry](o)

	[image: Valid Geometry](p)

These rules mean that valid polygonal geometry is also simple.

For linear geometry the only validity rule is that LINESTRINGs must
 have at least two points and have non-zero length
 (or equivalently, have at least two distinct points.)
 Note that non-simple (self-intersecting) lines are valid.

SELECT
 ST_IsValid('LINESTRING(0 0, 1 1)') AS len_nonzero,
 ST_IsValid('LINESTRING(0 0, 0 0, 0 0)') AS len_zero,
 ST_IsValid('LINESTRING(10 10, 150 150, 180 50, 20 130)') AS self_int;

 len_nonzero | len_zero | self_int
-------------+----------+----------
 t | f | t

POINT and MULTIPOINT geometries
 have no validity rules.

Managing Validity

PostGIS allows creating and storing both valid and invalid Geometry.
 This allows invalid geometry to be detected and flagged or fixed.
 There are also situations where the OGC validity rules are stricter than desired
 (examples of this are zero-length linestrings and polygons with inverted holes.)

Many of the functions provided by PostGIS rely on the
	 assumption that geometry arguments are valid.
 For example, it does not make sense to calculate the area of
	 a polygon that has a hole defined outside of the polygon, or to construct
	 a polygon from a non-simple boundary line.
 Assuming valid geometric inputs allows functions to operate more efficiently,
 since they do not need to check for topological correctness.
 (Notable exceptions are that zero-length lines
 and polygons with inversions are generally handled correctly.)
 Also, most PostGIS functions produce valid geometry output if the inputs are valid.
 This allows PostGIS functions to be chained together safely.

If you encounter unexpected error messages when calling PostGIS functions
 (such as "GEOS Intersection() threw an error!"),
 you should first confirm that the function arguments are valid.
 If they are not, then consider using one of the techniques below to ensure
 the data you are processing is valid.

Note

 If a function reports an error with valid inputs,
 then you may have found an error in either PostGIS or one of
		the libraries it uses, and you should report this to the PostGIS project.
		The same is true if a PostGIS function returns an invalid geometry for
		valid input.

To test if a geometry is valid use the
	 ST_IsValid function:

SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))');

 t

Information about the nature and location of an geometry invalidity are provided by
	 the ST_IsValidDetail function:

SELECT valid, reason, ST_AsText(location) AS location
 FROM ST_IsValidDetail('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t;

 valid | reason | location
-------+-------------------+---
 f | Self-intersection | POINT(91.51162790697674 141.56976744186045)

In some situations it is desirable to correct invalid geometry automatically.
	 Use the ST_MakeValid function to do this.
 (ST_MakeValid is a case of a spatial function that does allow invalid input!)

By default, PostGIS does not check for validity when loading geometry,
	 because validity testing can take a lot of CPU time for complex
	 geometries. If you do not trust your data sources,
	 you can enforce a validity check on your tables by adding a check
	 constraint:
ALTER TABLE mytable
 ADD CONSTRAINT geometry_valid_check
	CHECK (ST_IsValid(geom));

Chapter 3. PostGIS Administration

Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload.
 The only additional consideration is that geometries and rasters are usually large,
 so memory-related optimizations generally have more of an impact on PostGIS than other types of PostgreSQL queries.
For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.
For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresql.conf or postgresql.auto.conf
 by using the ALTER SYSTEM command.
ALTER SYSTEM SET work_mem = '256MB';
-- this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf();
-- show current setting value
-- use SHOW ALL to see all settings
SHOW work_mem;
In addition to the Postgres settings, PostGIS has some custom settings which are listed in the section called “Grand Unified Custom Variables (GUCs)”.
Startup

 These settings are configured in postgresql.conf:

 constraint_exclusion

	
 Default: partition

	
 This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and above since
 it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy
 and not pay the planner penalty otherwise.

 shared_buffers

	
 Default: ~128MB in PostgreSQL 9.6

	
 Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

 max_worker_processes
 This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional importance in that it controls the
 max number of processes you can have for parallel queries.

	
 Default: 8

	
 Sets the maximum number of background processes that
 the system can support. This parameter can only be set at
 server start.

Runtime

 work_mem
 - sets the size of memory used for sort operations and complex queries

	
 Default: 1-4MB

	
 Adjust up for large dbs, complex queries, lots of RAM

	
 Adjust down for many concurrent users or low RAM.

	
 If you have lots of RAM and few developers:

SET work_mem TO '256MB';

 maintenance_work_mem
 - the memory size used for VACUUM, CREATE INDEX, etc.

	
 Default: 16-64MB

	
 Generally too low - ties up I/O, locks objects while swapping memory

	
 Recommend 32MB to 1GB on production servers w/lots of RAM, but depends
 on the # of concurrent users. If you have lots of RAM and few developers:

SET maintenance_work_mem TO '1GB';

 max_parallel_workers_per_gather

 This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel queries.
 If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use multiple processes and can run
 more than twice as fast when doing so. If you have a lot of processors to spare, you should change the value of this to as many processors as you have.
 Also make sure to bump up max_worker_processes to at least as high as this number.

	
 Default: 0

	
 Sets the maximum number of workers that can be started
 by a single Gather node.
 Parallel workers are taken from the pool of processes
 established by max_worker_processes.
 Note that the requested number of workers may not
 actually be available at run time. If this occurs, the
 plan will run with fewer workers than expected, which may
 be inefficient. Setting this value to 0, which is the
 default, disables parallel query execution.

Name
ST_GeomFromTWKB — Creates a geometry instance from a TWKB ("Tiny Well-Known Binary") geometry
		representation.

Synopsis
	geometry ST_GeomFromTWKB(twkb);	

bytea twkb;

Description
The ST_GeomFromTWKB function, takes a a TWKB ("Tiny Well-Known Binary") geometry representation (WKB) and creates an instance of the appropriate
		geometry type.

Examples

SELECT ST_AsText(ST_GeomFromTWKB(ST_AsTWKB('LINESTRING(126 34, 127 35)'::geometry)));

 st_astext

 LINESTRING(126 34, 127 35)
(1 row)

SELECT ST_AsEWKT(
 ST_GeomFromTWKB(E'\\x620002f7f40dbce4040105')
);
					 st_asewkt
--
LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also
ST_AsTWKB

Name
ST_Contains — Tests if every point of B lies in A, and their interiors have a point in common

Synopsis
	boolean ST_Contains(geomA, 	
	 	geomB);	

geometry
 geomA;
geometry
 geomB;

Description
Returns TRUE if geometry A contains geometry B.
 A contains B if and only if all points of B lie inside (i.e. in the interior or boundary of) A
 (or equivalently, no points of B lie in the exterior of A),
 and the interiors of A and B have at least one point in common.

In mathematical terms:
 ST_Contains(A, B) ⇔ (A ⋂ B = B) ∧ (Int(A) ⋂ Int(B) ≠ ∅)
The contains relationship is reflexive: every geometry contains itself.
 (In contrast, in the ST_ContainsProperly
 predicate a geometry does not properly contain itself.)
 The relationship is antisymmetric: if ST_Contains(A,B) = true and ST_Contains(B,A) = true, then
 the two geometries must be topologically equal (ST_Equals(A,B) = true).

ST_Contains is the converse of ST_Within.
 So, ST_Contains(A,B) = ST_Within(B,A).
Note
Because the interiors must have a common point, a subtlety of the definition is that
 polygons and lines do not contain lines and points lying fully in their boundary.
 For further details see Subtleties of OGC Covers, Contains, Within.
 The ST_Covers predicate provides a more inclusive relationship.

Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Contains.

Performed by the GEOS module
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.2 // s2.1.13.3
 - same as within(geometry B, geometry A)

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.31

Examples
ST_Contains returns TRUE in the following situations:
	[image: Examples]LINESTRING / MULTIPOINT

	[image: Examples]POLYGON / POINT

	[image: Examples]POLYGON / LINESTRING

	[image: Examples]POLYGON / POLYGON

ST_Contains returns FALSE in the following situations:
	[image: Examples]POLYGON / MULTIPOINT

	[image: Examples]POLYGON / LINESTRING

Due to the interior intersection condition ST_Contains returns FALSE in the following situations
 (whereas ST_Covers returns TRUE):
	[image: Examples]LINESTRING / POINT

	[image: Examples]POLYGON / LINESTRING

-- A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
 ST_Contains(bigc,smallc) As bigcontainssmall,
 ST_Contains(bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
 ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;

-- Result
 smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | t | t | t | f

-- Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also
ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

Name
PostGIS_Lib_Version — Returns the version number of the PostGIS
		library.

Synopsis
	text PostGIS_Lib_Version();	

;

Description
Returns the version number of the PostGIS library.

Examples
SELECT PostGIS_Lib_Version();
 postgis_lib_version

 3.4.0dev
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

Name
box3d — The type representing a 3-dimensional bounding box.

Description
box3d is a PostGIS spatial data type used to represent
 the three-dimensional bounding box enclosing a geometry or collection of geometries.
 For example, the ST_3DExtent aggregate function returns a box3d object.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax.
 These are the minimum and maxium values of the X, Y and Z extents.

box3d objects have a text representation which looks like BOX3D(1 2 3,5 6 5).

Casting Behavior
This table lists the automatic and explicit casts allowed for this data type:
	Cast To	Behavior
	box	automatic
	box2d	automatic
	geometry	automatic

See Also
the section called “PostGIS Box Functions”

Name
ST_3DShortestLine — Returns the 3D shortest line between two geometries

Synopsis
	geometry ST_3DShortestLine(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 3-dimensional shortest line between two geometries. The function will
		only return the first shortest line if more than one, that the function finds.
		If g1 and g2 intersects in just one point the function will return a line with both start
		and end in that intersection-point.
		If g1 and g2 are intersecting with more than one point the function will return a line with start
		and end in the same point but it can be any of the intersecting points.
		The line returned will always start in g1 and end in g2.
		The 3D length of the line this function returns will always be the same as ST_3DDistance returns for g1 and g2.
		
Availability: 2.0.0
Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
	linestring and point -- both 3d and 2d shortest line
					

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
		ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
	FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;

 shl3d_line_pt						 | shl2d_line_pt
--+--
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(73.0769230769231 115.384615384615,100 100)
					

							

	linestring and multipoint -- both 3d and 2d shortest line
					
SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
		ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
	FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;

 shl3d_line_pt | shl2d_line_pt
---+------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(50 75,50 74)
					

							

	MultiLineString and polygon both 3d and 2d shortest line
					
SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) As shl3d,
 ST_AsEWKT(ST_ShortestLine(poly, mline)) As shl2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 shl3d | shl2d
---+------------------------
 LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 5.03423778139177) | LINESTRING(20 40,20 40)

							

See Also
ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_ShortestLine, ST_3DMaxDistance

Name

				ST_IsPolygonCCW
			 — Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
			

Synopsis
	
						boolean
						ST_IsPolygonCCW
					(geom);	

						geometry
						geom
					;

Description

				Returns true if all polygonal components of the input geometry use a counter-clockwise
				orientation for their exterior ring, and a clockwise direction
				for all interior rings.
			

				Returns true if the geometry has no polygonal components.
			
Note

					Closed linestrings are not considered polygonal components,
					so you would still get a true return by passing
 a single closed linestring no matter its orientation.
				

Note

					If a polygonal geometry does not use reversed orientation
					for interior rings (i.e., if one or more interior rings
					are oriented in the same direction as an exterior ring)
					then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.
				

Availability: 2.4.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCW
			,
				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Name
~= — Returns TRUE if A's bounding box is the same as B's.

Synopsis
	boolean ~=(A, 	
	 	B);	

 raster

 A
 ;

 raster

 B
 ;

Description
The ~= operator returns TRUE if the bounding box of raster A
 is the same as the bounding box of raster B.
Note
This operand will make use of any indexes that may be available on the
 rasters.

Availability: 2.0.0

Examples
Very useful usecase is for taking two sets of single band rasters that are of the same chunk but represent different themes and creating a multi-band raster
SELECT ST_AddBand(prec.rast, alt.rast) As new_rast
 FROM prec INNER JOIN alt ON (prec.rast ~= alt.rast);

See Also
ST_AddBand, =

Name
ST_CoverageInvalidEdges — Window function that finds locations where polygons fail to form a valid coverage.

Synopsis
	geometry ST_CoverageInvalidEdges(geom, 	
	 	tolerance = 0);	

geometry winset
 geom;
float8
 tolerance = 0;

Description
A window function which checks if the polygons in the window partition form a valid polygonal coverage.
 It returns linear indicators showing the location of invalid edges (if any) in each polygon.

A set of valid polygons is a valid coverage if the following conditions hold:

	
 Non-overlapping - polygons do not overlap (their interiors do not intersect)

	
 Edge-Matched - vertices along shared edges are identical

As a window function a value is returned for every input polygon.
 For polygons which violate one or more of the validity conditions the return value is a MULTILINESTRING containing the problematic edges.
 Coverage-valid polygons return the value NULL.
 Non-polygonal or empty geometries also produce NULL values.
The conditions allow a valid coverage to contain holes (gaps between polygons),
 as long as the surrounding polygons are edge-matched.
 However, very narrow gaps are often undesirable.
 If the tolerance parameter is specified with a non-zero distance,
 edges forming narrower gaps will also be returned as invalid.

The polygons being checked for coverage validity must also be valid geometries.
 This can be checked with ST_IsValid.

Availability: 3.4.0
Requires GEOS >= 3.12.0

Examples
[image: Examples]Invalid edges caused by overlap and non-matching vertices

WITH coverage(id, geom) AS (VALUES
 (1, 'POLYGON ((10 190, 30 160, 40 110, 100 70, 120 10, 10 10, 10 190))'::geometry),
 (2, 'POLYGON ((100 190, 10 190, 30 160, 40 110, 50 80, 74 110.5, 100 130, 140 120, 140 160, 100 190))'::geometry),
 (3, 'POLYGON ((140 190, 190 190, 190 80, 140 80, 140 190))'::geometry),
 (4, 'POLYGON ((180 40, 120 10, 100 70, 140 80, 190 80, 180 40))'::geometry)
)
SELECT id, ST_AsText(ST_CoverageInvalidEdges(geom) OVER ())
 FROM coverage;

 id | st_astext
----+---------------------------------------
 1 | LINESTRING (40 110, 100 70)
 2 | MULTILINESTRING ((100 130, 140 120, 140 160, 100 190), (40 110, 50 80, 74 110.5))
 3 | LINESTRING (140 80, 140 190)
 3 | null

-- Test entire table for coverage validity
SELECT true = ALL (
 SELECT ST_CoverageInvalidEdges(geom) OVER () IS NULL
 FROM coverage
);

See Also

 ST_IsValid,
 ST_CoverageUnion,
 ST_CoverageSimplify

Raster Band Statistics and Analytics

Name
ST_GeomFromMARC21 — Takes MARC21/XML geographic data as input and returns a PostGIS geometry object.

Synopsis
	
 geometry
 ST_GeomFromMARC21
 (marcxml);	

 text
 marcxml
 ;

Description

 This function creates a PostGIS geometry from a MARC21/XML record, which can contain a POINT or a POLYGON.
 In case of multiple geographic data entries in the same MARC21/XML record, a MULTIPOINT or MULTIPOLYGON will be returned.
 If the record contains mixed geometry types, a GEOMETRYCOLLECTION will be returned.
 It returns NULL if the MARC21/XML record does not contain any geographic data (datafield:034).

 LOC MARC21/XML versions supported:

	MARC21/XML 1.1

Availability: 3.3.0, requires libxml2 2.6+
Note

 The MARC21/XML Coded Cartographic Mathematical Data currently does not provide any means to describe the Spatial Reference System of the encoded coordinates, so
 this function will always return a geometry with SRID 0.

Note

 Returned POLYGON geometries will always be clockwise oriented.

Examples
Converting MARC21/XML geographic data containing a single POINT encoded as hddd.dddddd

 SELECT
 ST_AsText(
 ST_GeomFromMARC21('
 <record xmlns="http://www.loc.gov/MARC21/slim">
 <leader>00000nz a2200000nc 4500</leader>
 <controlfield tag="001">040277569</controlfield>
 <datafield tag="034" ind1=" " ind2=" ">
 <subfield code="d">W004.500000</subfield>
 <subfield code="e">W004.500000</subfield>
 <subfield code="f">N054.250000</subfield>
 <subfield code="g">N054.250000</subfield>
 </datafield>
 </record>'));

 st_astext

 POINT(-4.5 54.25)
 (1 row)

Converting MARC21/XML geographic data containing a single POLYGON encoded as hdddmmss

 SELECT
 ST_AsText(
 ST_GeomFromMARC21('
 <record xmlns="http://www.loc.gov/MARC21/slim">
 <leader>01062cem a2200241 a 4500</leader>
 <controlfield tag="001"> 84696781 </controlfield>
 <datafield tag="034" ind1="1" ind2=" ">
 <subfield code="a">a</subfield>
 <subfield code="b">50000</subfield>
 <subfield code="d">E0130600</subfield>
 <subfield code="e">E0133100</subfield>
 <subfield code="f">N0523900</subfield>
 <subfield code="g">N0522300</subfield>
 </datafield>
 </record>'));

 st_astext

 POLYGON((13.1 52.65,13.516666666666667 52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 52.65))
 (1 row)

Converting MARC21/XML geographic data containing a POLYGON and a POINT:

 SELECT
 ST_AsText(
 ST_GeomFromMARC21('
 <record xmlns="http://www.loc.gov/MARC21/slim">
 <datafield tag="034" ind1="1" ind2=" ">
 <subfield code="a">a</subfield>
 <subfield code="b">50000</subfield>
 <subfield code="d">E0130600</subfield>
 <subfield code="e">E0133100</subfield>
 <subfield code="f">N0523900</subfield>
 <subfield code="g">N0522300</subfield>
 </datafield>
 <datafield tag="034" ind1=" " ind2=" ">
 <subfield code="d">W004.500000</subfield>
 <subfield code="e">W004.500000</subfield>
 <subfield code="f">N054.250000</subfield>
 <subfield code="g">N054.250000</subfield>
 </datafield>
 </record>'));
 st_astext

 GEOMETRYCOLLECTION(POLYGON((13.1 52.65,13.516666666666667 52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 52.65)),POINT(-4.5 54.25))
 (1 row)

See Also

 ST_AsMARC21

Name
ST_LineToCurve — Converts a linear geometry to a curved geometry.

Synopsis
	geometry ST_LineToCurve(geomANoncircular);	

geometry geomANoncircular;

Description
Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed to describe the curved equivalent.
Note
If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same input geometry.

Availability: 1.3.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
 -- 2D Example
SELECT ST_AsText(ST_LineToCurve(foo.geom)) As curvedastext,ST_AsText(foo.geom) As non_curvedastext
 FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As geom) As foo;

curvedatext non_curvedastext
--|---
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359,
 | 2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141,
 | 1.58527096604839 0.0576441587903094,1 0,
 | 0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137,
 | -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353,
 | -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472
 | --ETC-- ,3.94235584120969 3.58527096604839,4 3))

--3D example
SELECT ST_AsText(ST_LineToCurve(geom)) As curved, ST_AsText(geom) AS not_curved
FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo;

 curved | not_curved
--+---
 CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3,
 | -0.414213562373092 1.5857864376269 3,-1 2.99999999999999 3,
 | -0.414213562373101 4.41421356237309 3,
 | 0.999999999999991 5 3,2.41421356237309 4.4142135623731 3,3 3 3)
(1 row)

See Also
ST_CurveToLine

Name
ST_FromGDALRaster — Returns a raster from a supported GDAL raster file.

Synopsis
	raster ST_FromGDALRaster(gdaldata, 	
	 	srid=NULL);	

bytea gdaldata;
integer srid=NULL;

Description

 Returns a raster from a supported GDAL raster file. gdaldata is of type bytea and should be the contents of the GDAL raster file.

 If srid is NULL, the function will try to automatically assign the SRID from the GDAL raster. If srid is provided, the value provided will override any automatically assigned SRID.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AsPNG(ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.1, -0.1, 0, 0, 4326), 1, '8BUI', 1, 0), 2, '8BUI', 2, 0), 3, '8BUI', 3, 0)) AS png
),
bar AS (
 SELECT 1 AS rid, ST_FromGDALRaster(png) AS rast FROM foo
 UNION ALL
 SELECT 2 AS rid, ST_FromGDALRaster(png, 3310) AS rast FROM foo
)
SELECT
 rid,
 ST_Metadata(rast) AS metadata,
 ST_SummaryStats(rast, 1) AS stats1,
 ST_SummaryStats(rast, 2) AS stats2,
 ST_SummaryStats(rast, 3) AS stats3
FROM bar
ORDER BY rid;

 rid | metadata | stats1 | stats2 | stats3
-----+---------------------------+---------------+---------------+----------------
 1 | (0,0,2,2,1,-1,0,0,0,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
 2 | (0,0,2,2,1,-1,0,0,3310,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
(2 rows)

See Also

 ST_AsGDALRaster

Name
ST_AsTIFF — Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.

Synopsis
	bytea ST_AsTIFF(rast, 	
	 	options='', 	
	 	srid=sameassource);	

raster rast;
text[] options='';
integer srid=sameassource;

	bytea ST_AsTIFF(rast, 	
	 	compression='', 	
	 	srid=sameassource);	

raster rast;
text compression='';
integer srid=sameassource;

	bytea ST_AsTIFF(rast, 	
	 	nbands, 	
	 	compression='', 	
	 	srid=sameassource);	

raster rast;
integer[] nbands;
text compression='';
integer srid=sameassource;

	bytea ST_AsTIFF(rast, 	
	 	nbands, 	
	 	options, 	
	 	srid=sameassource);	

raster rast;
integer[] nbands;
text[] options;
integer srid=sameassource;

Description
Returns the selected bands of the raster as a single Tagged Image File Format (TIFF). If no band is specified, will try to use all bands. This is a wrapper around ST_AsGDALRaster. Use ST_AsGDALRaster if you need to export as less common raster types. There are many variants of the function with many options. If no spatial reference SRS text is present, the spatial reference of the raster is used. These are itemized below:
	
 nbands is an array of bands to export (note that max is 3 for PNG) and the order of the bands is RGB. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue

	
compression Compression expression -- JPEG90 (or some other percent), LZW, JPEG, DEFLATE9.

	
options text Array of GDAL create options as defined for GTiff (look at create_options for GTiff of ST_GDALDrivers). or refer to GDAL Raster format options for more details.

	
srid srid of spatial_ref_sys of the raster. This is used to populate the georeference information

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples: Use jpeg compression 90%
SELECT ST_AsTIFF(rast, 'JPEG90') As rasttiff
FROM dummy_rast WHERE rid=2;

See Also
ST_GDALDrivers, ST_AsGDALRaster, ST_SRID

Name
AddFace — Registers a face primitive to a topology and gets its identifier.

Synopsis
	integer AddFace(toponame, 	
	 	apolygon, 	
	 	force_new=false);	

varchar toponame;
geometry apolygon;
boolean force_new=false;

Description

Registers a face primitive to a topology and gets its identifier.

For a newly added face, the edges forming its boundaries and the ones
contained in the face will be updated to have correct values in the
left_face and right_face fields.
Isolated nodes contained in the face will also be updated to have a correct
containing_face field value.

Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

The target topology is assumed to be valid (containing no self-intersecting edges). An exception is raised if: The polygon boundary is not fully defined by existing edges or the polygon overlaps an existing face.

If the apolygon geometry already exists as a face, then:
if force_new is false (the default) the
face id of the existing face is returned;
if force_new is true a new id will be assigned to
the newly registered face.

Note

When a new registration of an existing face is performed (force_new=true),
no action will be taken to resolve dangling references to the existing
face in the edge, node an relation tables, nor will the MBR field of the
existing face record be updated. It is up to the caller to deal with that.

Note
The apolygon geometry must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Availability: 2.0.0

Examples

-- first add the edges we use generate_series as an iterator (the below
-- will only work for polygons with < 10000 points because of our max in gs)
SELECT topology.AddEdge('ma_topo', ST_MakeLine(ST_PointN(geom,i), ST_PointN(geom, i + 1))) As edgeid
 FROM (SELECT ST_NPoints(geom) AS npt, geom
 FROM
 (SELECT ST_Boundary(ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
 234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
 234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986)) As geom
) As geoms) As facen CROSS JOIN generate_series(1,10000) As i
 WHERE i < npt;
-- result --
 edgeid

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
(10 rows)
-- then add the face -

SELECT topology.AddFace('ma_topo',
 ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
 234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
 234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986)) As faceid;
-- result --
faceid

 1

See Also
AddEdge, CreateTopology, the section called “Spatial Reference Systems”

Name
stdaddr — A composite type that consists of the elements of an address. This is the return type for standardize_address function.

Description
A composite type that consists of elements of an address. This is the return type for standardize_address function. Some descriptions for elements are borrowed from PAGC Postal Attributes.
The token numbers denote the output reference number in the rules table.

 [image: Description]
 This method needs address_standardizer extension.

	building
	 is text (token number 0): Refers to building number or name. Unparsed building identifiers and types. Generally blank for most addresses.

	house_num
	is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

	predir
	 is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

	qual
	is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

	pretype
	 is text (token number 4): STREET PREFIX TYPE

	name
	is text (token number 5): STREET NAME

	suftype
	is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example STREET in 75 State Street.

	sufdir
	is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

	ruralroute
	is text (token number 8): RURAL ROUTE . Example 7 in RR 7.

	extra
	is text: Extra information like Floor number.

	city
	is text (token number 10): Example Boston.

	state
	is text (token number 11): Example MASSACHUSETTS

	country
	is text (token number 12): Example USA

	postcode
	is text POSTAL CODE (ZIP CODE) (token number 13): Example 02109

	box
	is text POSTAL BOX NUMBER (token number 14 and 15): Example 02109

	unit
	is text Apartment number or Suite Number (token number 17): Example 3B in APT 3B.

Name
ST_RasterToWorldCoordY — Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns
 and rows starts at 1.

Synopsis
	float8 ST_RasterToWorldCoordY(rast, 	
	 	yrow);	

raster rast;
integer yrow;

	float8 ST_RasterToWorldCoordY(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description
Returns the upper left Y coordinate of a raster column row in geometric units of the georeferenced raster.
 Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of
 columns/rows in raster, it will give you
 coordinates outside of the raster file to left or right with the assumption that the
 skew and pixel sizes are same as selected raster tile.
Note
For non-skewed rasters, providing the Y column is sufficient. For skewed rasters,
 the georeferenced coordinate is a function of the ST_ScaleY and ST_SkewY and row and column.
 An error will be raised if you give just the Y row for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY

Examples

-- non-skewed raster providing row is sufficient
SELECT rid, ST_RasterToWorldCoordY(rast,1) As y1coord,
 ST_RasterToWorldCoordY(rast,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM dummy_rast;

 rid | y1coord | y2coord | pixely
-----+---------+-----------+--------
 1 | 0.5 | 6.5 | 3
 2 | 5793244 | 5793243.9 | -0.05

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordY(rast,1,1) As y1coord,
 ST_RasterToWorldCoordY(rast,2,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM (SELECT rid, ST_SetSkew(rast,0,100.5) As rast FROM dummy_rast) As foo;

 rid | y1coord | y2coord | pixely
-----+---------+-----------+--------
 1 | 0.5 | 107 | 3
 2 | 5793244 | 5793344.4 | -0.05

See Also
ST_ScaleY, ST_RasterToWorldCoordX, ST_SetSkew, ST_SkewY

Spatial Reference System Functions

Abstract
These functions work with the Spatial Reference System of geometries
 as defined in the spatial_ref_sys table.

Name
ST_NumInteriorRing — Returns the number of interior rings (holes) of a Polygon. Aias for ST_NumInteriorRings

Synopsis
	integer ST_NumInteriorRing(a_polygon);	

geometry a_polygon;

See Also
ST_NumInteriorRings, ST_InteriorRingN

Name
ST_Centroid — Returns the geometric center of a geometry.

Synopsis
	geometry ST_Centroid(g1);	

geometry
 g1;

	geography ST_Centroid(g1, 	
	 	use_spheroid = true);	

geography
 g1;
boolean
 use_spheroid = true;

Description
Computes a point which is the geometric center of mass of a geometry.
 For [MULTI]POINTs,
 the centroid is the arithmetic mean of the input coordinates.
 For [MULTI]LINESTRINGs,
 the centroid is computed using the weighted length of each line segment.
 For [MULTI]POLYGONs,
 the centroid is computed in terms of area.
 If an empty geometry is supplied, an empty GEOMETRYCOLLECTION is returned.
 If NULL is supplied, NULL is returned.
 If CIRCULARSTRING or COMPOUNDCURVE
 are supplied, they are converted to linestring with CurveToLine first,
 then same than for LINESTRING

For mixed-dimension input, the result is equal to the centroid of the component
 Geometries of highest dimension (since the lower-dimension geometries
 contribute zero "weight" to the centroid).
Note that for polygonal geometries the centroid does not necessarily
 lie in the interior of the polygon. For example, see the diagram below
 of the centroid of a C-shaped polygon.
 To construct a point guaranteed to lie in the interior
 of a polygon use ST_PointOnSurface.

New in 2.3.0 : supports CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)
Availability: 2.4.0 support for geography was introduced.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.1.4, 9.5.5

Examples
In the following illustrations the red dot is
 the centroid of the source geometry.
	[image: Examples]Centroid of a
 MULTIPOINT

	[image: Examples]Centroid of a
 LINESTRING

	[image: Examples]Centroid of a
 POLYGON

	[image: Examples]Centroid of a
 GEOMETRYCOLLECTION

SELECT ST_AsText(ST_Centroid('MULTIPOINT (-1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6)'));
 st_astext
--
 POINT(2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)') AS g ;
--
POINT(0.5 1)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('COMPOUNDCURVE(CIRCULARSTRING(0 2, -1 1,0 0),(0 0, 0.5 0, 1 0),CIRCULARSTRING(1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))') AS g;
--
POINT(0.5 1)

See Also
ST_PointOnSurface,
 ST_GeometricMedian

Name
Box2D — Returns a BOX2D representing the 2D extent of a geometry.

Synopsis
	box2d Box2D(geom);	

geometry geom;

Description
Returns a box2d representing the 2D extent of the geometry.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT Box2D(ST_GeomFromText('LINESTRING(1 2, 3 4, 5 6)'));

box2d

BOX(1 2,5 6)

SELECT Box2D(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

box2d

BOX(220186.984375 150406,220288.25 150506.140625)

See Also
Box3D, ST_GeomFromText

Name
@ — Returns TRUE if A's bounding box is contained by B's.

Synopsis
	boolean @(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The @ operator returns TRUE if the bounding box of geometry A is completely
			contained by the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 @ tbl2.column2 AS contained
FROM
 (VALUES
	(1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 4)'::geometry),
	(3, 'LINESTRING (2 2, 4 4)'::geometry),
	(4, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contained
---------+---------+-----------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | t
(3 rows)

See Also
~, &&

Name
Geocode_Intersection — Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat, a normalized_address (addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching (soundex, levenshtein).

Synopsis
	setof record geocode_intersection(roadway1, 	
	 	 roadway2, 	
	 	 in_state, 	
	 	 in_city, 	
	 	 in_zip, 	
	 	max_results=10, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

text roadway1;
text roadway2;
text in_state;
text in_city;
text in_zip;
integer max_results=10;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

Description
Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a point geometry in NAD 83 long lat, a normalized address for each location, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10.
 Returns normalized_address (addy) for each, geomout as the point location in nad 83 long lat, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein)
Availability: 2.0.0

Examples: Basic
The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.0/PostGIS 1.5 loaded with all of MA state Tiger data loaded. Currently a bit slow (3000 ms)
Testing on Windows 2003 64-bit 8GB on PostGIS 2.0 PostgreSQL 64-bit Tiger 2011 data loaded -- (41ms)
SELECT pprint_addy(addy), st_astext(geomout),rating
 FROM geocode_intersection('Haverford St','Germania St', 'MA', 'Boston', '02130',1);
 pprint_addy | st_astext | rating
----------------------------------+----------------------------+--------
98 Haverford St, Boston, MA 02130 | POINT(-71.101375 42.31376) | 0

Even if zip is not passed in the geocoder can guess (took about 3500 ms on the windows 7 box), on the windows 2003 64-bit 741 ms
SELECT pprint_addy(addy), st_astext(geomout),rating
 FROM geocode_intersection('Weld', 'School', 'MA', 'Boston');
 pprint_addy | st_astext | rating
-------------------------------+--------------------------+--------
 98 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3
 99 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3

See Also
Geocode, Pprint_Addy, ST_AsText

Name
ST_IsRing — Tests if a LineString is closed and simple.

Synopsis
	boolean ST_IsRing(g);	

geometry g;

Description
Returns TRUE if this
	 LINESTRING is both ST_IsClosed
	 (ST_StartPoint(g)
	 ~=
	 ST_Endpoint(g)) and ST_IsSimple (does not self intersect).

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 2.1.5.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 7.1.6
Note
SQL-MM defines the result of
		ST_IsRing(NULL) to be 0, while
		PostGIS returns NULL.

Examples
SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple(geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 t | t | t
(1 row)

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple(geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 f | t | f
(1 row)

See Also
ST_IsClosed, ST_IsSimple, ST_StartPoint,
	 ST_EndPoint

Name
postgis_sfcgal_full_version — Returns the full version of SFCGAL in use including CGAL and Boost versions

Synopsis
	text postgis_sfcgal_full_version();	

Description
Returns the full version of SFCGAL in use including CGAL and Boost versions
Availability: 3.3.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

See Also
postgis_sfcgal_version

Name
ST_Difference — Computes a geometry representing the part of geometry A
 that does not intersect geometry B.

Synopsis
	geometry ST_Difference(geomA, 	
	 	geomB, 	
	 	gridSize = -1);	

geometry geomA;
geometry geomB;
float8 gridSize = -1;

Description
Returns a geometry representing the part of geometry A
 that does not intersect geometry B.
 This is equivalent to A - ST_Intersection(A,B).
 If A is completely contained in B
 then an empty atomic geometry of appropriate type is returned.
Note
This is the only overlay function where input order matters.
 ST_Difference(A, B) always returns a portion of A.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter.
Requires GEOS >= 3.9.0 to use the gridSize parameter.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.20

 [image: Description]
 This function supports 3d and will not drop the z-index.

 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
	

[image: Examples]The input linestrings

 	
 [image: Examples]The difference of the two linestrings

The difference of 2D linestrings.
SELECT ST_AsText(
 ST_Difference(
 'LINESTRING(50 100, 50 200)'::geometry,
 'LINESTRING(50 50, 50 150)'::geometry
)
);

st_astext

LINESTRING(50 150,50 200)

The difference of 3D points.
SELECT ST_AsEWKT(ST_Difference(
 'MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)' :: geometry,
 'POINT(-118.614 38.281 5)' :: geometry
));

st_asewkt

MULTIPOINT(-118.6 38.329 6,-118.58 38.38 5)

See Also
ST_SymDifference, ST_Intersection, ST_Union

Name
postgis_srs — Return a metadata record for the requested authority and srid.

Synopsis
	setof record postgis_srs(auth_name, 	
	 	auth_srid);	

text auth_name;
text auth_srid;

Description
Returns a metadata record for the requested auth_srid for the given auth_name. The record will have the auth_name, auth_srid, srname, srtext, proj4text, and the corners of the area of usage, point_sw and point_ne.
Availability: 3.4.0
Proj version 6+

Examples
Get the metadata for EPSG:3005.

SELECT * FROM postgis_srs('EPSG', '3005');

auth_name | EPSG
auth_srid | 3005
srname | NAD83 / BC Albers
srtext | PROJCS["NAD83 / BC Albers", ...]]
proj4text | +proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0 +datum=NAD83 +units=m +no_defs +type=crs
point_sw | 0101000020E6100000E17A14AE476161C00000000000204840
point_ne | 0101000020E610000085EB51B81E855CC0E17A14AE47014E40

See Also
postgis_srs_codes, postgis_srs_all, postgis_srs_search

Name
FindTopology — Returns a topology record by different means.

Synopsis
	topology FindTopology(topogeom);	

TopoGeometry topogeom;

	topology FindTopology(layerTable, 	
	 	layerColumn);	

regclass layerTable;
name layerColumn;

	topology FindTopology(layerSchema, 	
	 	layerTable, 	
	 	layerColumn);	

name layerSchema;
name layerTable;
name layerColumn;

	topology FindTopology(topoName);	

text topoName;

	topology FindTopology(id);	

int id;

Description
Takes a topology identifier or the identifier of
a topology-related object and returns a topology.topology record.
Availability: 3.2.0

Examples

SELECT name(findTopology('features.land_parcels', 'feature'));
 name

 city_data
(1 row)

See Also
FindLayer

Name
TopoGeo_AddPoint —
Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
				

Synopsis
	integer TopoGeo_AddPoint(atopology, 	
	 	apoint, 	
	 	tolerance);	

varchar atopology;
geometry apoint;
float8 tolerance;

Description

Adds a point to an existing topology and returns its identifier.
The given point will snap to existing nodes or edges within given tolerance.
An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString,
TopoGeo_AddPolygon,
AddNode,
CreateTopology

Name
ST_MapAlgebraFct — 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.

Synopsis
	raster ST_MapAlgebraFct(rast, 	
	 	onerasteruserfunc);	

raster rast;
regprocedure onerasteruserfunc;

	raster ST_MapAlgebraFct(rast, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster ST_MapAlgebraFct(rast, 	
	 	pixeltype, 	
	 	onerasteruserfunc);	

raster rast;
text pixeltype;
regprocedure onerasteruserfunc;

	raster ST_MapAlgebraFct(rast, 	
	 	pixeltype, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
text pixeltype;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster ST_MapAlgebraFct(rast, 	
	 	band, 	
	 	onerasteruserfunc);	

raster rast;
integer band;
regprocedure onerasteruserfunc;

	raster ST_MapAlgebraFct(rast, 	
	 	band, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
integer band;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster ST_MapAlgebraFct(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	onerasteruserfunc);	

raster rast;
integer band;
text pixeltype;
regprocedure onerasteruserfunc;

	raster ST_MapAlgebraFct(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
integer band;
text pixeltype;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

Description
Warning

 ST_MapAlgebraFct is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.

Creates a new one band raster formed by applying a valid PostgreSQL function specified by the onerasteruserfunc on the input raster (rast). If no band is specified, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.
If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.
The onerasteruserfunc parameter must be the name and signature of a SQL or PL/pgSQL function, cast to a regprocedure. A very simple and quite useless PL/pgSQL function example is:

CREATE OR REPLACE FUNCTION simple_function(pixel FLOAT, pos INTEGER[], VARIADIC args TEXT[])
 RETURNS FLOAT
 AS $$ BEGIN
 RETURN 0.0;
 END; $$
 LANGUAGE 'plpgsql' IMMUTABLE;

 The userfunction may accept two or three arguments: a float value, an optional integer array, and a variadic text array. The first argument is the value of an individual raster cell (regardless of the raster datatype). The second argument is the position of the current processing cell in the form '{x,y}'. The third argument indicates that all remaining parameters to ST_MapAlgebraFct shall be passed through to the userfunction.

 Passing a regprodedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

'simple_function(float,integer[],text[])'::regprocedure

Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

 The third argument to the userfunction is a variadic text array. All trailing text arguments to any ST_MapAlgebraFct call are passed through to the specified userfunction, and are contained in the args argument.

Note
For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

Note
The text[] argument to the userfunction is required, regardless of whether you choose to pass any arguments to your user function for processing or not.

Availability: 2.0.0

Examples
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.
ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
CREATE FUNCTION mod_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS $$
BEGIN
 RETURN pixel::integer % 2;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

UPDATE dummy_rast SET map_rast = ST_MapAlgebraFct(rast,NULL,'mod_fct(float,integer[],text[])'::regprocedure) WHERE rid = 2;

SELECT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 253 | 1
 254 | 0
 254 | 0
 250 | 0
 254 | 0
 254 | 0

Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to a passed parameter to the user function (0).
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
CREATE FUNCTION classify_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
DECLARE
 nodata float := 0;
BEGIN
 IF NOT args[1] IS NULL THEN
 nodata := args[1];
 END IF;
 IF pixel < 251 THEN
 RETURN 1;
 ELSIF pixel = 252 THEN
 RETURN 2;
 ELSIF pixel > 252 THEN
 RETURN 3;
 ELSE
 RETURN nodata;
 END IF;
END;
$$
LANGUAGE 'plpgsql';
UPDATE dummy_rast SET map_rast2 = ST_MapAlgebraFct(rast,'2BUI','classify_fct(float,integer[],text[])'::regprocedure, '0') WHERE rid = 2;

SELECT DISTINCT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 5) AS i CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3

SELECT ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast WHERE rid = 2;

 b1pixtyp

 2BUI

	[image: Examples]original (column rast-view)

	[image: Examples]rast_view_ma

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.
CREATE FUNCTION rast_plus_tan(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
BEGIN
 RETURN tan(pixel) * pixel;
END;
$$
LANGUAGE 'plpgsql';

SELECT ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(rast_view),
 ST_MapAlgebraFct(rast_view,1,NULL,'rast_plus_tan(float,integer[],text[])'::regprocedure)
),
 ST_Band(rast_view,2)
),
 ST_Band(rast_view, 3) As rast_view_ma
)
FROM wind
WHERE rid=167;

See Also

 ST_MapAlgebraExpr,
 ST_BandPixelType,
 ST_GeoReference,
 ST_SetValue

Name
AsTopoJSON — Returns the TopoJSON representation of a topogeometry.

Synopsis
	text AsTopoJSON(tg, 	
	 	edgeMapTable);	

topogeometry tg;
regclass edgeMapTable;

Description
Returns the TopoJSON representation of a topogeometry. If edgeMapTable is not null, it will be used as a lookup/storage mapping of edge identifiers to arc indices. This is to be able to allow for a compact "arcs" array in the final document.

The table, if given, is expected to have an "arc_id" field of type "serial" and an "edge_id" of type integer; the code will query the table for "edge_id" so it is recommended to add an index on that field.

Note

Arc indices in the TopoJSON output are 0-based but they are 1-based
in the "edgeMapTable" table.

A full TopoJSON document will be need to contain, in
addition to the snippets returned by this function,
the actual arcs plus some headers. See the TopoJSON specification.
		
Availability: 2.1.0
Enhanced: 2.2.1 added support for puntal inputs

See Also
ST_AsGeoJSON

Examples

CREATE TEMP TABLE edgemap(arc_id serial, edge_id int unique);

-- header
SELECT '{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {'

-- objects
UNION ALL SELECT '"' || feature_name || '": ' || AsTopoJSON(feature, 'edgemap')
FROM features.big_parcels WHERE feature_name = 'P3P4';

-- arcs
WITH edges AS (
 SELECT m.arc_id, e.geom FROM edgemap m, city_data.edge e
 WHERE e.edge_id = m.edge_id
), points AS (
 SELECT arc_id, (st_dumppoints(geom)).* FROM edges
), compare AS (
 SELECT p2.arc_id,
 CASE WHEN p1.path IS NULL THEN p2.geom
 ELSE ST_Translate(p2.geom, -ST_X(p1.geom), -ST_Y(p1.geom))
 END AS geom
 FROM points p2 LEFT OUTER JOIN points p1
 ON (p1.arc_id = p2.arc_id AND p2.path[1] = p1.path[1]+1)
 ORDER BY arc_id, p2.path
), arcsdump AS (
 SELECT arc_id, (regexp_matches(ST_AsGeoJSON(geom), '\[.*\]'))[1] as t
 FROM compare
), arcs AS (
 SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM arcsdump
 GROUP BY arc_id
 ORDER BY arc_id
)
SELECT '}, "arcs": [' UNION ALL
SELECT array_to_string(array_agg(a), E',\n') from arcs

-- footer
UNION ALL SELECT ']}'::text as t;

-- Result:
{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
"P3P4": { "type": "MultiPolygon", "arcs": [[[-1]],[[6,5,-5,-4,-3,1]]]}
}, "arcs": [
 [[25,30],[6,0],[0,10],[-14,0],[0,-10],[8,0]],
 [[35,6],[0,8]],
 [[35,6],[12,0]],
 [[47,6],[0,8]],
 [[47,14],[0,8]],
 [[35,22],[12,0]],
 [[35,14],[0,8]]
]}

Name
ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.

Synopsis
	geometry ST_MakeValid(input);	

geometry input;

	geometry ST_MakeValid(input, 	
	 	params);	

geometry input;
text params;

Description

 The function attempts to create a valid representation of a given invalid
 geometry without losing any of the input vertices.
 Valid geometries are returned unchanged.

 Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS,
 MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS and GEOMETRYCOLLECTIONS
 containing any mix of them.

 In case of full or partial dimensional collapses, the output geometry
 may be a collection of lower-to-equal dimension geometries,
 or a geometry of lower dimension.

 Single polygons may become multi-geometries in case of self-intersections.

 The params argument can be used to supply an options
 string to select the method to use for building valid geometry.
 The options string is in the format "method=linework|structure keepcollapsed=true|false".
 If no "params" argument is provided, the "linework" algorithm will be used as the default.

The "method" key has two values.
	"linework" is the original algorithm, and builds valid geometries
 by first extracting all lines, noding that linework together, then building
 a value output from the linework.

	"structure" is an algorithm that distinguishes between
 interior and exterior rings, building new geometry by unioning
 exterior rings, and then differencing all interior rings.

The "keepcollapsed" key is only valid for the "structure" algorithm,
 and takes a value of "true" or "false". When set to "false",
 geometry components that collapse to a lower dimensionality,
 for example a one-point linestring would be dropped.

Performed by the GEOS module.
Availability: 2.0.0
Enhanced: 2.0.1, speed improvements
Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.
Enhanced: 3.1.0, added removal of Coordinates with NaN values.
Enhanced: 3.2.0, added algorithm options, 'linework' and 'structure' which requires GEOS >= 3.10.0.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
	[image: Examples]before_geom: MULTIPOLYGON of 2 overlapping polygons

[image: Examples]after_geom: MULTIPOLYGON of 4 non-overlapping polygons

[image: Examples]after_geom_structure: MULTIPOLYGON of 1 non-overlapping polygon

SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom, ST_MakeValid(f.geom, 'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON(((186 194,187 194,188 195,189 195,190 195,
191 195,192 195,193 194,194 194,194 193,195 192,195 191,
195 190,195 189,195 188,194 187,194 186,14 6,13 6,12 5,11 5,
10 5,9 5,8 5,7 6,6 6,6 7,5 8,5 9,5 10,5 11,5 12,6 13,6 14,186 194)),
((150 90,149 80,146 71,142 62,135 55,128 48,119 44,110 41,100 40,
90 41,81 44,72 48,65 55,58 62,54 71,51 80,50 90,51 100,
54 109,58 118,65 125,72 132,81 136,90 139,100 140,110 139,
119 136,128 132,135 125,142 118,146 109,149 100,150 90)))'::geometry AS geom) AS f;

	

[image: Examples]before_geom: MULTIPOLYGON of 6 overlapping polygons

[image: Examples]after_geom: MULTIPOLYGON of 14 Non-overlapping polygons

[image: Examples]after_geom_structure: MULTIPOLYGON of 1 Non-overlapping polygon

SELECT c.geom AS before_geom,
 ST_MakeValid(c.geom) AS after_geom,
 ST_MakeValid(c.geom, 'method=structure') AS after_geom_structure
	FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 50)),
		 ((91 100,79 72,51 60,23 72,11 100,23 128,51 140,79 128,91 100)),
		 ((91 150,79 122,51 110,23 122,11 150,23 178,51 190,79 178,91 150)),
		 ((141 50,129 22,101 10,73 22,61 50,73 78,101 90,129 78,141 50)),
		 ((141 100,129 72,101 60,73 72,61 100,73 128,101 140,129 128,141 100)),
		 ((141 150,129 122,101 110,73 122,61 150,73 178,101 190,129 178,141 150)))'::geometry AS geom) AS c;

Examples
SELECT ST_AsText(ST_MakeValid(
 'LINESTRING(0 0, 0 0)',
 'method=structure keepcollapsed=true'
));

 st_astext

 POINT(0 0)

SELECT ST_AsText(ST_MakeValid(
 'LINESTRING(0 0, 0 0)',
 'method=structure keepcollapsed=false'
));

 st_astext

 LINESTRING EMPTY

See Also

 ST_IsValid,
 ST_Collect,
 ST_CollectionExtract

Chapter 6. Performance Tips

Small tables of large geometries

Problem description

Current PostgreSQL versions (including 9.6) suffer from a query
 optimizer weakness regarding TOAST tables. TOAST tables are a kind of
 "extension room" used to store large (in the sense of data size) values
 that do not fit into normal data pages (like long texts, images or
 complex geometries with lots of vertices), see
 the PostgreSQL Documentation for TOAST for more
 information).
The problem appears if you happen to have a table with rather
 large geometries, but not too many rows of them (like a table containing
 the boundaries of all European countries in high resolution). Then the
 table itself is small, but it uses lots of TOAST space. In our example
 case, the table itself had about 80 rows and used only 3 data pages, but
 the TOAST table used 8225 pages.
Now issue a query where you use the geometry operator &&
 to search for a bounding box that matches only very few of those rows.
 Now the query optimizer sees that the table has only 3 pages and 80
 rows. It estimates that a sequential scan on such a small table is much
 faster than using an index. And so it decides to ignore the GIST index.
 Usually, this estimation is correct. But in our case, the &&
 operator has to fetch every geometry from disk to compare the bounding
 boxes, thus reading all TOAST pages, too.
To see whether your suffer from this issue, use the "EXPLAIN
 ANALYZE" postgresql command. For more information and the technical
 details, you can read the thread on the PostgreSQL performance mailing
 list:
 http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

Workarounds

The PostgreSQL people are trying to solve this issue by making the
 query estimation TOAST-aware. For now, here are two workarounds:
The first workaround is to force the query planner to use the
 index. Send "SET enable_seqscan TO off;" to the server before issuing
 the query. This basically forces the query planner to avoid sequential
 scans whenever possible. So it uses the GIST index as usual. But this
 flag has to be set on every connection, and it causes the query planner
 to make misestimations in other cases, so you should "SET enable_seqscan
 TO on;" after the query.
The second workaround is to make the sequential scan as fast as
 the query planner thinks. This can be achieved by creating an additional
 column that "caches" the bbox, and matching against this. In our
 example, the commands are like:
SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(geom));
Now change your query to use the && operator against bbox
 instead of geom_column, like:
SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);
Of course, if you change or add rows to mytable, you have to keep
 the bbox "in sync". The most transparent way to do this would be
 triggers, but you also can modify your application to keep the bbox
 column current or run the UPDATE query above after every
 modification.

Name
ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis
	geometry ST_GeomFromGML(geomgml);	

text geomgml;

	geometry ST_GeomFromGML(geomgml, 	
	 	srid);	

text geomgml;
integer srid;

Description
Constructs a PostGIS ST_Geometry object from the OGC GML representation.
ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.

			OGC GML versions supported:
			
	GML 3.2.1 Namespace

	GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)

	GML 2.1.2

			OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
		
Availability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
Enhanced: 2.0.0 default srid optional parameter added.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don't, ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.
GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don't, ST_GeomFromGML, in this case, reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an error.
ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for common usages. But you need it if you want to use XLink feature inside GML.
Note
ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName
SELECT ST_GeomFromGML('
		<gml:LineString srsName="EPSG:4269">
			<gml:coordinates>
				-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
			</gml:coordinates>
		</gml:LineString>');
		

Examples - XLink usage
SELECT ST_GeomFromGML('
		<gml:LineString xmlns:gml="http://www.opengis.net/gml"
				xmlns:xlink="http://www.w3.org/1999/xlink"
				srsName="urn:ogc:def:crs:EPSG::4269">
			<gml:pointProperty>
				<gml:Point gml:id="p1"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
			</gml:pointProperty>
			<gml:pos>42.259112 -71.160837</gml:pos>
			<gml:pointProperty>
				<gml:Point xlink:type="simple" xlink:href="#p1"/>
			</gml:pointProperty>
		</gml:LineString>'););
		

Examples - Polyhedral Surface
SELECT ST_AsEWKT(ST_GeomFromGML('
<gml:PolyhedralSurface>
<gml:polygonPatches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>'));

-- result --
 POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))
		

See Also
the section called “Build configuration”, ST_AsGML, ST_GMLToSQL

Name
ST_SetSkew — Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.

Synopsis
	raster ST_SetSkew(rast, 	
	 	skewxy);	

raster rast;
float8 skewxy;

	raster ST_SetSkew(rast, 	
	 	skewx, 	
	 	skewy);	

raster rast;
float8 skewx;
float8 skewy;

Description
Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value. Refer to World File
 for more details.

Examples

-- Example 1
UPDATE dummy_rast SET rast = ST_SetSkew(rast,1,2) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

rid | skewx | skewy | georef
----+-------+-------+--------------
 1 | 1 | 2 | 2.0000000000
 : 2.0000000000
 : 1.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000

-- Example 2 set both to same number:
UPDATE dummy_rast SET rast = ST_SetSkew(rast,0) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

 rid | skewx | skewy | georef
-----+-------+-------+--------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000

See Also
ST_GeoReference, ST_SetGeoReference, ST_SkewX, ST_SkewY

Name
rastbandarg — A composite type for use when needing to express a raster and a band index of that raster.

Description

 A composite type for use when needing to express a raster and a band index of that raster.

	
 rast
 raster

	
 The raster in question/

	
 nband
 integer

	
 1-based value indicating the band of raster

See Also

 ST_MapAlgebra (callback function version)

Name
&& — Returns TRUE if A's bounding box intersects B's bounding box.

Synopsis
	boolean &&(A, 	
	 	B);	

 raster
 A
 ;

 raster
 B
 ;

	boolean &&(A, 	
	 	B);	

 raster
 A
 ;

 geometry
 B
 ;

	boolean &&(B, 	
	 	A);	

 geometry
 B
 ;

 raster
 A
 ;

Description
The && operator returns TRUE if the bounding box of raster/geometr A intersects the bounding box of raster/geometr B.
Note
This operand will make use of any indexes that may be available on the
 rasters.

Availability: 2.0.0

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast && B.rast As intersect
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B LIMIT 3;

 a_rid | b_rid | intersect
-------+-------+---------
 2 | 2 | t
 2 | 3 | f
 2 | 1 | f

Name
DropGeometryColumn — Removes a geometry column from a spatial
		table.

Synopsis
	text DropGeometryColumn(table_name, 	
	 	column_name);	

varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

Description
Removes a geometry column from a spatial table. Note that
		schema_name will need to match the f_table_schema field of the table's
		row in the geometry_columns table.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE

Examples

			SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
			----RESULT output ---
			 dropgeometrycolumn
--
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ the above is also equivalent to the standard
-- the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;
		

See Also
AddGeometryColumn, DropGeometryTable, the section called “GEOMETRY_COLUMNS View”

Name
ST_Covers — Tests if every point of B lies in A

Synopsis
	boolean ST_Covers(geomA, 	
	 	geomB);	

geometry
 geomA;
geometry
 geomB;

	boolean ST_Covers(geogpolyA, 	
	 	geogpointB);	

geography
 geogpolyA;
geography
 geogpointB;

Description
Returns true if every point in Geometry/Geography B lies inside
 (i.e. intersects the interior or boundary of)
 Geometry/Geography A.
 Equivalently, tests that no point of B lies outside (in the exterior of) A.

In mathematical terms:
 ST_Covers(A, B) ⇔ A ⋂ B = B
ST_Covers is the converse of ST_CoveredBy.
 So, ST_Covers(A,B) = ST_CoveredBy(B,A).
Generally this function should be used instead of ST_Contains,
 since it has a simpler definition
 which does not have the quirk that "geometries do not contain their boundary".
Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_Covers.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

Performed by the GEOS module
Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type
Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Availability: 1.5 - support for geography was introduced.
Availability: 1.2.2
NOTE: this is the "allowable" version that returns a
 boolean, not an integer.
Not an OGC standard, but Oracle has it too.

Examples
 Geometry example

 --a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
 ST_Covers(smallc, bigc) As smallcoversbig,
 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
 ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
 --Result
 smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
--------------+----------------+-------------------+---------------------
 t | f | t | f
(1 row)
Geeography Example

-- a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers(geog_poly, geog_pt) As poly_covers_pt,
 ST_Covers(ST_Buffer(geog_pt,10), geog_pt) As buff_10m_covers_cent
 FROM (SELECT ST_Buffer(ST_GeogFromText('SRID=4326;POINT(-99.327 31.4821)'), 300) As geog_poly,
 ST_GeogFromText('SRID=4326;POINT(-99.33 31.483)') As geog_pt) As foo;

 poly_covers_pt | buff_10m_covers_cent
----------------+------------------
 f | t

See Also
ST_Contains, ST_CoveredBy, ST_Within

Name
PostGIS_GEOS_Version — Returns the version number of the GEOS
		library.

Synopsis
	text PostGIS_GEOS_Version();	

;

Description
Returns the version number of the GEOS library, or
		NULL if GEOS support is not enabled.

Examples
SELECT PostGIS_GEOS_Version();
 postgis_geos_version

3.12.0dev-CAPI-1.18.0
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

Name
ST_IsValidTrajectory — Tests if the geometry is a valid trajectory.

Synopsis
	boolean ST_IsValidTrajectory(line);	

geometry line;

Description

Tests if a geometry encodes a valid trajectory.
A valid trajectory is represented as a LINESTRING
with measures (M values).
The measure values must increase from each vertex to the next.
			

Valid trajectories are expected as input to spatio-temporal functions
like ST_ClosestPointOfApproach
			
Availability: 2.2.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- A valid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(
 ST_MakePointM(0,0,1),
 ST_MakePointM(0,1,2))
);
 t

-- An invalid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(ST_MakePointM(0,0,1), ST_MakePointM(0,1,0)));
NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
 st_isvalidtrajectory

 f

See Also

ST_ClosestPointOfApproach
			

Name
ST_ZMin — Returns the Z minima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_ZMin(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the Z minima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However it will not accept a geometry or box2d text representation, since those do not auto-cast.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_ZMin('BOX3D(1 2 3, 4 5 6)');
st_zmin

3

SELECT ST_ZMin(ST_GeomFromEWKT('LINESTRING(1 3 4, 5 6 7)'));
st_zmin

4

SELECT ST_ZMin('BOX3D(-3 2 1, 3 4 1)');
st_zmin

1
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_ZMin('LINESTRING(1 3 4, 5 6 7)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_ZMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_zmin

1
		

See Also
ST_GeomFromEWKT, ST_GeomFromText, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

Name
ST_DumpPoints — Returns a set of geometry_dump rows for the coordinates in a geometry.

Synopsis
	geometry_dump[] ST_DumpPoints(geom);	

geometry geom;

Description
A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry.
 It returns a set of
			 geometry_dump rows,
 each containing a geometry (geom field)
 and an array of integers (path field).

	the geom field
 POINTs represent the coordinates of the supplied geometry.

	the path field (an integer[])
 is an index enumerating the coordinate positions in the elements of the supplied geometry.
 The indices are 1-based.
 For example, for a LINESTRING the paths are {i}
 where i is the nth
 coordinate in the LINESTRING.
 For a POLYGON the paths are {i,j} where
 i is the ring number (1 is outer; inner rings follow)
 and j is the coordinate position in the ring.

 To obtain a single geometry containing the coordinates use ST_Points.

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.5.0

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes
SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
 UNION ALL
 SELECT 2 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
 edge_id | index | wktnode
---------+-------+--------------
 1 | 1 | POINT(1 2)
 1 | 2 | POINT(3 4)
 1 | 3 | POINT(10 10)
 2 | 1 | POINT(3 5)
 2 | 2 | POINT(5 6)
 2 | 3 | POINT(9 10)

Standard Geometry Examples
[image: Standard Geometry Examples]

SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpPoints(g.geom)).*
 FROM
 (SELECT
 'GEOMETRYCOLLECTION(
 POINT (0 1),
 LINESTRING (0 3, 3 4),
 POLYGON ((2 0, 2 3, 0 2, 2 0)),
 POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
 (5 1, 4 2, 5 2, 5 1)),
 MULTIPOLYGON (
 ((0 5, 0 8, 4 8, 4 5, 0 5),
 (1 6, 3 6, 2 7, 1 6)),
 ((5 4, 5 8, 6 7, 5 4))
)
)'::geometry AS geom
) AS g
) j;

 path | st_astext
-----------+------------
 {1,1} | POINT(0 1)
 {2,1} | POINT(0 3)
 {2,2} | POINT(3 4)
 {3,1,1} | POINT(2 0)
 {3,1,2} | POINT(2 3)
 {3,1,3} | POINT(0 2)
 {3,1,4} | POINT(2 0)
 {4,1,1} | POINT(3 0)
 {4,1,2} | POINT(3 3)
 {4,1,3} | POINT(6 3)
 {4,1,4} | POINT(6 0)
 {4,1,5} | POINT(3 0)
 {4,2,1} | POINT(5 1)
 {4,2,2} | POINT(4 2)
 {4,2,3} | POINT(5 2)
 {4,2,4} | POINT(5 1)
 {5,1,1,1} | POINT(0 5)
 {5,1,1,2} | POINT(0 8)
 {5,1,1,3} | POINT(4 8)
 {5,1,1,4} | POINT(4 5)
 {5,1,1,5} | POINT(0 5)
 {5,1,2,1} | POINT(1 6)
 {5,1,2,2} | POINT(3 6)
 {5,1,2,3} | POINT(2 7)
 {5,1,2,4} | POINT(1 6)
 {5,2,1,1} | POINT(5 4)
 {5,2,1,2} | POINT(5 8)
 {5,2,1,3} | POINT(6 7)
 {5,2,1,4} | POINT(5 4)
(29 rows)

Polyhedral Surfaces, TIN and Triangle Examples
-- Polyhedral surface cube --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 1)
 {1,1,4} | POINT(0 1 0)
 {1,1,5} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(1 0 0)
 {2,1,5} | POINT(0 0 0)
 {3,1,1} | POINT(0 0 0)
 {3,1,2} | POINT(1 0 0)
 {3,1,3} | POINT(1 0 1)
 {3,1,4} | POINT(0 0 1)
 {3,1,5} | POINT(0 0 0)
 {4,1,1} | POINT(1 1 0)
 {4,1,2} | POINT(1 1 1)
 {4,1,3} | POINT(1 0 1)
 {4,1,4} | POINT(1 0 0)
 {4,1,5} | POINT(1 1 0)
 {5,1,1} | POINT(0 1 0)
 {5,1,2} | POINT(0 1 1)
 {5,1,3} | POINT(1 1 1)
 {5,1,4} | POINT(1 1 0)
 {5,1,5} | POINT(0 1 0)
 {6,1,1} | POINT(0 0 1)
 {6,1,2} | POINT(1 0 1)
 {6,1,3} | POINT(1 1 1)
 {6,1,4} | POINT(0 1 1)
 {6,1,5} | POINT(0 0 1)
(30 rows)
-- Triangle --
SELECT (g.gdump).path, ST_AsText((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TRIANGLE ((
 0 0,
 0 9,
 9 0,
 0 0
))')) AS gdump
) AS g;
-- result --
 path | wkt
------+------------
 {1} | POINT(0 0)
 {2} | POINT(0 9)
 {3} | POINT(9 0)
 {4} | POINT(0 0)

-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 0)
 {1,1,4} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(0 0 0)
(8 rows)

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”,
 ST_Dump, ST_DumpRings, ST_Points

Name
ST_Volume — Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.

Synopsis
	float ST_Volume(geom1);	

geometry geom1;

Description
Availability: 2.2.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 9.1 (same as ST_3DVolume)

Example
When closed surfaces are created with WKT, they are treated as areal rather than solid. To make them solid, you need to use ST_MakeSolid.
	 Areal geometries have no volume. Here is an example to demonstrate.
SELECT ST_Volume(geom) As cube_surface_vol,
	ST_Volume(ST_MakeSolid(geom)) As solid_surface_vol
 FROM (SELECT 'POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'::geometry) As f(geom);

 cube_surface_vol | solid_surface_vol
------------------+-------------------
 0 | 1
	

See Also
ST_3DArea, ST_MakeSolid, ST_IsSolid

Name
ST_LengthSpheroid — Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.

Synopsis
	float ST_LengthSpheroid(a_geometry, 	
	 	a_spheroid);	

geometry a_geometry;
spheroid a_spheroid;

Description
Calculates the length or perimeter of a geometry on an ellipsoid. This
			is useful if the coordinates of the geometry are in
			longitude/latitude and a length is desired without reprojection.
			The spheroid is specified by a text value	as follows:
SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]

For example:
SPHEROID["GRS_1980",6378137,298.257222101]

Availability: 1.2.2
Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_LengthSpheroid(geometry_column,
			 'SPHEROID["GRS_1980",6378137,298.257222101]')
			 FROM geometry_table;

SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
			 FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
	(-71.05957 42.3589 , -71.061 43))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
	tot_len | len_line1 | len_line2
------------------+------------------+------------------
 85204.5207562955 | 13986.8725229309 | 71217.6482333646

 --3D
SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
			 FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
	(-71.05957 42.3589 75, -71.061 43 90))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;

	 tot_len | len_line1 | len_line2
------------------+-----------------+------------------
 85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also
ST_GeometryN, ST_Length

Name
&&(geometry,box2df) — Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

Synopsis
	boolean &&(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The && operator returns TRUE if the cached 2D bounding box of geometry A intersects the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_Point(1,1) && ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Raster Processing: DEM (Elevation)

Name
ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis
	geometry ST_GeomFromWKB(geom);	

bytea geom;

	geometry ST_GeomFromWKB(geom, 	
	 	srid);	

bytea geom;
integer srid;

Description
The ST_PointFromWKB function, takes a well-known binary
			representation of geometry and a Spatial Reference System ID (SRID)
			and creates an instance of the appropriate geometry type - in this case, a
			POINT geometry. This function plays the role of the Geometry
			Factory in SQL.
If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		POINT geometry.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.7.2

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 6.1.9

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('POINT(2 5)'::geometry)
)
);
 st_astext

 POINT(2 5)
(1 row)

SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('LINESTRING(2 5, 2 6)'::geometry)
)
);
 st_astext

(1 row)

See Also
ST_GeomFromWKB, ST_LineFromWKB

Name
ST_RotateZ — Rotates a geometry about the Z axis.

Synopsis
	geometry ST_RotateZ(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotates a geometry geomA - rotRadians about the Z axis.
Note
This is a synonym for ST_Rotate

Note
ST_RotateZ(geomA, rotRadians)
			is short-hand for SELECT ST_Affine(geomA, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0, 1, 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along z-axis
SELECT ST_AsEWKT(ST_RotateZ(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(-2 1 3,-1 1 1)

 --Rotate a curved circle around z-axis
SELECT ST_AsEWKT(ST_RotateZ(geom, pi()/2))
FROM (SELECT ST_LineToCurve(ST_Buffer(ST_GeomFromText('POINT(234 567)'), 3)) As geom) As foo;

													 st_asewkt
--
 CURVEPOLYGON(CIRCULARSTRING(-567 237,-564.87867965644 236.12132034356,-564 234,-569.12132034356 231.87867965644,-567 237))

See Also
ST_Affine, ST_RotateX, ST_RotateY

PostGIS 3.4.1

2023/11/19
NOTE: GEOS 3.12.1 details at GEOS 3.12.1 release notes
Bug Fixes

5541, Fix --without-gui configure switch (Chris Mayo)
5558, Fix uninitialized variable in ST_AsMVTGeom (Sandro Santilli)
5590, Fix script-based load of topology.sql (Sandro Santilli)
5574, #5575, #5576, #5577, #5578, #5579, #5569
 Fix restore of postgis dumps since 2.1 (Sandro Santilli)
5568, Improve robustness of topology face split handling (Sandro Santilli)
5548, Fix box-filtered validity check of topologies with edge-less faces
 (Sandro Santilli)
5485, Fix postgis script on OpenBSD (Sandro Santilli)
5516, Fix upgrade with views using deprecated function, among which:
 ST_AddBand (#5509), ST_AsGeoJSON (#5523) ST_AsKML (#5524)
 ST_Aspect (#5491), ST_BandIsNoData (#5510), ST_BandMetadata (#5502),
 ST_BandNoDataValue (#5503), ST_BandPath (#5511),
 ST_BandPixelType (#5512), ST_Clip (#5488), ST_Count (#5517),
 ST_GeoReference (#5514), ST_Intersects(raster, ...) (#5489),
 ST_LineCrossingDirection (#5518)
 ST_MakeEmptyRaster (#5508), ST_MapAlgebraFCT (#5500),
 ST_Polygon(raster, ...) (#5507), ST_SetBandIsNoData (#5505),
 ST_SetBandNoDataValue (#5506), ST_SetGeoreference (#5504),
 ST_SetValue (#5519),
 ST_Slope (#5490), ST_SummaryStats (#5515), ST_TileEnvelope (#5499)
 ST_Value (#5513, #5484), toTopoGeom (#5526).
 (Sandro Santilli)
5494, Fix double-upgrade with view using st_dwithin(text, ...)
 (Sandro Santilli)
5479, postgis_full_version() and postgis_gdal_version() sometimes
 warn of deprecated SRID: 2163 (Regina Obe)
Include elevation in output of ST_Contour when in polygonal mode (Paul Ramsey)
5482, New Proj output is only available for proj 7.1+ (Regina Obe)
Fix JsonB casting issue (Paul Ramsey)
5535, Cleanup String handling in debug_standardize_address
 and standardize_address (Regina Obe)
5605, Fix regression failure with GEOS 3.13, main branch (Regina Obe)
5603, [postgis_tiger_geocoder] Change to load 2023 Census Tiger/Line (Regina Obe)
5525, [postgis_tiger_geocoder],[postgis_topology] Regression failure
 when installed by non-superuser (Regina Obe, Sandro Santilli)
5581, ST_Project(geometry, float, float) is using
 longitudes as latitudes (Regina obe)

Enhancements

5492, Have postgis script report presence of deprecated functions
 (Sandro Santilli)
5493, Always try to drop deprecated function on upgrade
 (Sandro Santilli)

Name

				ST_QuantizeCoordinates
			 —
				Sets least significant bits of coordinates to zero
			

Synopsis
	
						geometry
						ST_QuantizeCoordinates
					(g, 	
	 	prec_x, 	
	 	prec_y, 	
	 	prec_z, 	
	 	prec_m);	

						geometry
						g
					;

						int
						prec_x
					;

						int
						prec_y
					;

						int
						prec_z
					;

						int
						prec_m
					;

Description

				ST_QuantizeCoordinates determines the number of bits
				(N) required to represent a coordinate value with a
				specified number of digits after the decimal point, and then sets
				all but the N most significant bits to zero. The
				resulting coordinate value will still round to the original value,
				but will have improved compressiblity. This can result in a
				significant disk usage reduction provided that the geometry column
				is using a
				compressible storage type. The function allows
				specification of a different number of digits after the decimal
				point in each dimension; unspecified dimensions are assumed to have
				the precision of the x dimension. Negative digits are
				interpreted to refer digits to the left of the decimal point, (i.e.,
				prec_x=-2 will preserve coordinate values to the
				nearest 100.
			

				The coordinates produced by ST_QuantizeCoordinates are
				independent of the geometry that contains those coordinates and the
				relative position of those coordinates within the geometry. As a result,
				existing topological relationships between geometries are unaffected
				by use of this function. The function may produce invalid geometry
				when it is called with a number of digits lower than the intrinsic
				precision of the geometry.
			
Availability: 2.5.0

Technical Background

				PostGIS stores all coordinate values as double-precision floating
				point integers, which can reliably represent 15 significant digits.
				However, PostGIS may be used to manage data that intrinsically has
				fewer than 15 significant digits. An example is TIGER data, which is
				provided as geographic coordinates with six digits of precision
				after the decimal point (thus requiring only nine significant digits
				of longitude and eight significant digits of latitude.)
			

				When 15 significant digits are available, there are many possible
				representations of a number with 9 significant digits. A double
				precision floating point number uses 52 explicit bits to represent
				the significand (mantissa) of the coordinate. Only 30 bits are needed
				to represent a mantissa with 9 significant digits, leaving 22
				insignificant bits; we can set their value to anything we like and
				still end up with a number that rounds to our input value. For
				example, the value 100.123456 can be represented by the floating
				point numbers closest to 100.123456000000, 100.123456000001, and
				100.123456432199. All are equally valid, in that
				ST_AsText(geom, 6) will return the same result with
				any of these inputs. As we can set these bits to any value,
				ST_QuantizeCoordinates sets the 22 insignificant
				bits to zero. For a long coordinate sequence this creates a
				pattern of blocks of consecutive zeros that is compressed
				by PostgreSQL more effeciently.
			
Note

					Only the on-disk size of the geometry is potentially affected by
					ST_QuantizeCoordinates. ST_MemSize,
					which reports the in-memory usage of the geometry, will return the
					the same value regardless of the disk space used by a geometry.
				

Examples
SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4));
st_astext

POINT(100.123455047607 0)
			
WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom)
SELECT
 digits,
 encode(ST_QuantizeCoordinates(geom, digits), 'hex'),
 ST_AsText(ST_QuantizeCoordinates(geom, digits))
FROM test, generate_series(15, -15, -1) AS digits;

digits | encode | st_astext
--------+--+--
15 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
14 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
13 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
12 | 01010000005c9a72083cdd5e405c9a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
11 | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT(123.456789123456 123.456789123456)
10 | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT(123.456789123455 123.456789123455)
9 | 0101000000009072083cdd5e40009072083cdd5e40 | POINT(123.456789123418 123.456789123418)
8 | 0101000000008072083cdd5e40008072083cdd5e40 | POINT(123.45678912336 123.45678912336)
7 | 0101000000000070083cdd5e40000070083cdd5e40 | POINT(123.456789121032 123.456789121032)
6 | 0101000000000040083cdd5e40000040083cdd5e40 | POINT(123.456789076328 123.456789076328)
5 | 0101000000000000083cdd5e40000000083cdd5e40 | POINT(123.456789016724 123.456789016724)
4 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
3 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375)
2 | 01010000000000000038dd5e400000000038dd5e40 | POINT(123.45654296875 123.45654296875)
1 | 01010000000000000000dd5e400000000000dd5e40 | POINT(123.453125 123.453125)
0 | 01010000000000000000dc5e400000000000dc5e40 | POINT(123.4375 123.4375)
-1 | 01010000000000000000c05e400000000000c05e40 | POINT(123 123)
-2 | 01010000000000000000005e400000000000005e40 | POINT(120 120)
-3 | 010100000000000000000058400000000000005840 | POINT(96 96)
-4 | 010100000000000000000058400000000000005840 | POINT(96 96)
-5 | 010100000000000000000058400000000000005840 | POINT(96 96)
-6 | 010100000000000000000058400000000000005840 | POINT(96 96)
-7 | 010100000000000000000058400000000000005840 | POINT(96 96)
-8 | 010100000000000000000058400000000000005840 | POINT(96 96)
-9 | 010100000000000000000058400000000000005840 | POINT(96 96)
-10 | 010100000000000000000058400000000000005840 | POINT(96 96)
-11 | 010100000000000000000058400000000000005840 | POINT(96 96)
-12 | 010100000000000000000058400000000000005840 | POINT(96 96)
-13 | 010100000000000000000058400000000000005840 | POINT(96 96)
-14 | 010100000000000000000058400000000000005840 | POINT(96 96)
-15 | 010100000000000000000058400000000000005840 | POINT(96 96)

See Also
ST_SnapToGrid

Name
PostGIS_Raster_Lib_Version — Reports full raster version and build configuration
 infos.

Synopsis
	text PostGIS_Raster_Lib_Version();	

;

Description
Reports full raster version and build configuration
 infos.

Examples
SELECT PostGIS_Raster_Lib_Version();
postgis_raster_lib_version

 2.0.0

See Also
 PostGIS_Lib_Version

Name
ST_WorldToRasterCoordX — Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented
 in world spatial reference system of raster.

Synopsis
	integer ST_WorldToRasterCoordX(rast, 	
	 	pt);	

raster rast;
geometry pt;

	integer ST_WorldToRasterCoordX(rast, 	
	 	xw);	

raster rast;
double precision xw;

	integer ST_WorldToRasterCoordX(rast, 	
	 	xw, 	
	 	yw);	

raster rast;
double precision xw;
double precision yw;

Description
Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster
 is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.
Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX

Examples
SELECT rid, ST_WorldToRasterCoordX(rast,3427927.8) As xcoord,
 ST_WorldToRasterCoordX(rast,3427927.8,20.5) As xcoord_xwyw,
 ST_WorldToRasterCoordX(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptxcoord
FROM dummy_rast;

 rid | xcoord | xcoord_xwyw | ptxcoord
-----+---------+---------+----------
 1 | 1713964 | 1713964 | 1713964
 2 | 1 | 1 | 1

See Also

 ST_RasterToWorldCoordX,
 ST_RasterToWorldCoordY,
 ST_SRID

Name
ST_DistanceCPA —
Returns the distance between the closest point of approach of two trajectories.

Synopsis
	float8 ST_DistanceCPA(track1, 	
	 	track2);	

geometry track1;
geometry track2;

Description

Returns the minimum distance two moving objects have ever been each other.

Inputs must be valid trajectories as checked by
ST_IsValidTrajectory.
Null is returned if the trajectories do not overlap in their M ranges.
			
Availability: 2.2.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Return the minimum distance of two objects moving between 10:00 and 11:00
WITH inp AS (SELECT
 ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) a,
 ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) b
)
SELECT ST_DistanceCPA(a,b) distance FROM inp;

 distance

 1.96036833151395

See Also

ST_IsValidTrajectory,
ST_ClosestPointOfApproach,
ST_AddMeasure,
|=|
			

Name
ST_Subdivide — Computes a rectilinear subdivision of a geometry.

Synopsis
	setof geometry ST_Subdivide(geom, 	
	 	max_vertices=256, 	
	 	gridSize = -1);	

geometry geom;
integer max_vertices=256;
float8 gridSize = -1;

Description

 Returns a set of geometries that are the result of dividing geom
 into parts using rectilinear lines,
 with each part containing no more than max_vertices.

 max_vertices must be 5 or more, as 5 points are needed to represent a closed box.
 gridSize can be specified to have clipping work in fixed-precision space (requires GEOS-3.9.0+).

 Point-in-polygon and other spatial operations are normally faster for indexed subdivided datasets.
 Since the bounding boxes for the parts usually cover a smaller area than the original geometry bbox,
 index queries produce fewer "hit" cases.
 The "hit" cases are faster because the spatial operations
 executed by the index recheck process fewer points.

Note

 This is a set-returning function
 (SRF) that return a set of rows containing single geometry values.
 It can be used in a SELECT list or a FROM clause
 to produce a result set with one record for each result geometry.

Performed by the GEOS module.
Availability: 2.2.0
Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5.
Enhanced: 3.1.0 accept a gridSize parameter.
Requires GEOS >= 3.9.0 to use the gridSize parameter

Examples
Example:
 Subdivide a polygon into parts with no more than 10 vertices,
 and assign each part a unique id.

[image: Examples]Subdivided to maximum 10 vertices

SELECT row_number() OVER() As rn, ST_AsText(geom) As wkt
 FROM (SELECT ST_SubDivide(
 'POLYGON((132 10,119 23,85 35,68 29,66 28,49 42,32 56,22 64,32 110,40 119,36 150,
 57 158,75 171,92 182,114 184,132 186,146 178,176 184,179 162,184 141,190 122,
 190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))'::geometry,10)) AS f(geom);

 rn │ wkt
────┼──
 1 │ POLYGON((119 23,85 35,68 29,66 28,32 56,22 64,29.8260869565217 100,119 100,119 23))
 2 │ POLYGON((132 10,119 23,119 56,186 56,186 52,178 34,168 18,147 13,132 10))
 3 │ POLYGON((119 56,119 100,190 100,185 79,186 56,119 56))
 4 │ POLYGON((29.8260869565217 100,32 110,40 119,36 150,57 158,75 171,92 182,114 184,114 100,29.8260869565217 100))
 5 │ POLYGON((114 184,132 186,146 178,176 184,179 162,184 141,190 122,190 100,114 100,114 184))

Example:
 Densify a long geography line using ST_Segmentize(geography, distance),
 and use ST_Subdivide to split the resulting line into sublines of 8 vertices.

[image: Examples]The densified and split lines.

SELECT ST_AsText(ST_Subdivide(
 ST_Segmentize('LINESTRING(0 0, 85 85)'::geography,
 1200000)::geometry, 8));

LINESTRING(0 0,0.487578359029357 5.57659056746196,0.984542144675897 11.1527721155093,1.50101059639722 16.7281035483571,1.94532113630331 21.25)
LINESTRING(1.94532113630331 21.25,2.04869538062779 22.3020741387339,2.64204641967673 27.8740533545155,3.29994062412787 33.443216802941,4.04836719489742 39.0084282520239,4.59890468420694 42.5)
LINESTRING(4.59890468420694 42.5,4.92498503922732 44.5680389206321,5.98737409390639 50.1195229244701,7.3290919767674 55.6587646879025,8.79638749938413 60.1969505994924)
LINESTRING(8.79638749938413 60.1969505994924,9.11375579533779 61.1785363177625,11.6558166691368 66.6648504160202,15.642041247655 72.0867690601745,22.8716627200212 77.3609628116894,24.6991785131552 77.8939011989848)
LINESTRING(24.6991785131552 77.8939011989848,39.4046096622744 82.1822848017636,44.7994523421035 82.5156766227011)
LINESTRING(44.7994523421035 82.5156766227011,85 85)

Example:
 Subdivide the complex geometries of a table in-place.
 The original geometry records are deleted from the source table,
 and new records for each subdivided result geometry are inserted.

WITH complex_areas_to_subdivide AS (
 DELETE from polygons_table
 WHERE ST_NPoints(geom) > 255
 RETURNING id, column1, column2, column3, geom
)
INSERT INTO polygons_table (fid, column1, column2, column3, geom)
 SELECT fid, column1, column2, column3,
 ST_Subdivide(geom, 255) as geom
 FROM complex_areas_to_subdivide;

Example:
 Create a new table containing subdivided geometries,
 retaining the key of the original geometry so that the new table
 can be joined to the source table.
 Since ST_Subdivide is a set-returning (table) function
 that returns a set of single-value rows,
 this syntax automatically produces a table with one row for each result part.

CREATE TABLE subdivided_geoms AS
 SELECT pkey, ST_Subdivide(geom) AS geom
 FROM original_geoms;

See Also

ST_ClipByBox2D,
ST_Segmentize,
ST_Split,
ST_NPoints

Name
ST_MemSize — Returns the amount of memory space a geometry takes.

Synopsis
	integer ST_MemSize(geomA);	

geometry geomA;

Description
Returns the amount of memory space (in bytes) the geometry takes.
This complements the PostgreSQL built-in database object functions
		 pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
Note
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
		pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

Examples

--Return how much byte space Boston takes up in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)*1.00 /
		SUM(ST_MemSize(geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum	bossum	perbos
----------	------	------
1522 kB		30 kB	1.99

SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(geom)) As geomsize,
sum(ST_MemSize(geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;
fulltable_size geomsize pergeom
--
262144 96238	 36.71188354492187500000
	

Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2 on, it is now bundled in.
		For more information about the address_standardize, what it does, and how to configure it for your needs, refer to the section called “Address Standardizer”.
This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the Normalize_Address discussed.
		To use as replacement refer to the section called “Using Address Standardizer Extension with Tiger geocoder”.
		You can also use it as a building block for your own geocoder or use it to standardize your addresses for easier compare of addresses.
The address standardizer relies on PCRE which is usually already installed on many Nix systems,
but you can download the latest at: http://www.pcre.org. If during the section called “Build configuration”, PCRE is found, then the address standardizer extension will automatically be built. If you have a custom pcre install you want to use instead, pass to configure --with-pcredir=/path/to/pcre where /path/to/pcre is the root folder for your pcre include and lib directories.
For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can move straight to CREATE EXTENSION step.
Once you have installed, you can connect to your database and run the SQL:
CREATE EXTENSION address_standardizer;
The following test requires no rules, gaz, or lex tables
SELECT num, street, city, state, zip
 FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');
Output should be
 num | street | city | state | zip
-----+------------------------+--------+-------+-------
 1 | Devonshire Place PH301 | Boston | MA | 02109

Name
Install_Missing_Indexes — Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.

Synopsis
	boolean Install_Missing_Indexes();	

;

Description
Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins and filters that are missing indexes on those columns and will output the SQL DDL to
 define the index for those tables and then execute the generated script. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load process.
 This function is a companion to Missing_Indexes_Generate_Script that in addition to generating the create index script, also executes it.
 It is called as part of the update_geocode.sql upgrade script.
Availability: 2.0.0

Examples
SELECT install_missing_indexes();
 install_missing_indexes

 t

See Also
Loader_Generate_Script, Missing_Indexes_Generate_Script

Name
ST_AddEdgeNewFaces — Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.

Synopsis
	integer ST_AddEdgeNewFaces(atopology, 	
	 	anode, 	
	 	anothernode, 	
	 	acurve);	

varchar atopology;
integer anode;
integer anothernode;
geometry acurve;

Description

Add a new edge and, if in doing so it splits a face, delete the original
face and replace it with two new faces.
Returns the id of the newly added edge.
		

Updates all existing joined edges and relationships accordingly.
		
If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) ,
 the acurve is not a LINESTRING, the anode and anothernode are not the start
 and endpoints of acurve then an error is thrown.
If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.
Availability: 2.0

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12

Examples

See Also
ST_RemEdgeNewFace
ST_AddEdgeModFace

Name
ST_MapAlgebra (expression version) —
 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Synopsis
	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description

 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Availability: 2.1.0

Description: Variants 1 and 2 (one raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If nband is not provided, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

 If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

	Keywords permitted for expression
	[rast] - Pixel value of the pixel of interest

	[rast.val] - Pixel value of the pixel of interest

	[rast.x] - 1-based pixel column of the pixel of interest

	[rast.y] - 1-based pixel row of the pixel of interest

Description: Variants 3 and 4 (two raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.

	expression
	
 A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer

	pixeltype
	
 The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.

	extenttype
	
 Controls the extent of resulting raster

	
 INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.

	
 UNION - The extent of the new raster is the union of the two rasters.

	
 FIRST - The extent of the new raster is the same as the one of the first raster.

	
 SECOND - The extent of the new raster is the same as the one of the second raster.

	nodata1expr
	
 An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.

	nodata2expr
	
 An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.

	nodatanodataval
	
 A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.

	Keywords permitted in expression, nodata1expr and nodata2expr
	[rast1] - Pixel value of the pixel of interest from rast1

	[rast1.val] - Pixel value of the pixel of interest from rast1

	[rast1.x] - 1-based pixel column of the pixel of interest from rast1

	[rast1.y] - 1-based pixel row of the pixel of interest from rast1

	[rast2] - Pixel value of the pixel of interest from rast2

	[rast2.val] - Pixel value of the pixel of interest from rast2

	[rast2.x] - 1-based pixel column of the pixel of interest from rast2

	[rast2.y] - 1-based pixel row of the pixel of interest from rast2

Examples: Variants 1 and 2

WITH foo AS (
 SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF'::text, 1, -1) AS rast
)
SELECT
 ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo;

Examples: Variant 3 and 4

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI'::text, 100, 0) AS rast UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI'::text, 300, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 t1.rast, 2,
 t2.rast, 1,
 '([rast2] + [rast1.val]) / 2'
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
 AND t2.rid = 2;

See Also

 rastbandarg,
 ST_Union,
 ST_MapAlgebra (callback function version)

Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but
 always access it using OpenGIS compliant ST_AsText() or ST_AsBinary()
 functions that only output 2D geometries. They do this by internally
 calling the ST_Force2D() function, which introduces a significant
 overhead for large geometries. To avoid this overhead, it may be feasible
 to pre-drop those additional dimensions once and forever:
UPDATE mytable SET geom = ST_Force2D(geom);
VACUUM FULL ANALYZE mytable;
Note that if you added your geometry column using
 AddGeometryColumn() there'll be a constraint on geometry dimension. To
 bypass it you will need to drop the constraint. Remember to update the
 entry in the geometry_columns table and recreate the constraint
 afterwards.
In case of large tables, it may be wise to divide this UPDATE into
 smaller portions by constraining the UPDATE to a part of the table via a
 WHERE clause and your primary key or another feasible criteria, and
 running a simple "VACUUM;" between your UPDATEs. This drastically reduces
 the need for temporary disk space. Additionally, if you have mixed
 dimension geometries, restricting the UPDATE by "WHERE
 dimension(geom)>2" skips re-writing of geometries that already are
 in 2D.

Name
ST_SetRotation — Set the rotation of the raster in radian.

Synopsis
	raster ST_SetRotation(rast, 	
	 	rotation);	

raster rast;
float8 rotation;

Description
Uniformly rotate the raster. Rotation is in radian. Refer to World File for more details.

Examples
SELECT
 ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
 ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (
 SELECT ST_SetRotation(rast, 15) AS rast1, rast as rast2 FROM dummy_rast
) AS foo;
 st_scalex | st_scaley | st_skewx | st_skewy | st_scalex | st_scaley | st_skewx | st_skewy
---------------------+---------------------+--------------------+--------------------+-----------+-----------+----------+----------
 -1.51937582571764 | -2.27906373857646 | 1.95086352047135 | 1.30057568031423 | 2 | 3 | 0 | 0
 -0.0379843956429411 | -0.0379843956429411 | 0.0325143920078558 | 0.0325143920078558 | 0.05 | -0.05 | 0 | 0

See Also
ST_Rotation, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

Name
ST_SetSRID — Set the SRID on a geometry.

Synopsis
	geometry ST_SetSRID(geom, 	
	 	srid);	

geometry
 geom;
integer
 srid;

Description
Sets the SRID on a geometry to a particular integer value.
 Useful in constructing bounding boxes for queries.
Note
This function does not transform the geometry coordinates in any way -
 it simply sets the meta data defining the spatial reference system the geometry is assumed to be in.
 Use ST_Transform if you want to transform the
 geometry into a new projection.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
-- Mark a point as WGS 84 long lat --
SELECT ST_SetSRID(ST_Point(-123.365556, 48.428611),4326) As wgs84long_lat;
-- the ewkt representation (wrap with ST_AsEWKT) -
SRID=4326;POINT(-123.365556 48.428611)

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --
SELECT ST_Transform(ST_SetSRID(ST_Point(-123.365556, 48.428611),4326),3785) As spere_merc;
-- the ewkt representation (wrap with ST_AsEWKT) -
SRID=3785;POINT(-13732990.8753491 6178458.96425423)

See Also
the section called “Spatial Reference Systems”, ST_SRID, ST_Transform, UpdateGeometrySRID

Name
TopologySummary — Takes a topology name and provides summary totals of types of objects in topology.

Synopsis
	text TopologySummary(topology_schema_name);	

varchar topology_schema_name;

Description
Takes a topology name and provides summary totals of types of objects in topology.
Availability: 2.0.0

Examples
SELECT topology.topologysummary('city_data');
 topologysummary
--
 Topology city_data (329), SRID 4326, precision: 0
 22 nodes, 24 edges, 10 faces, 29 topogeoms in 5 layers
 Layer 1, type Polygonal (3), 9 topogeoms
 Deploy: features.land_parcels.feature
 Layer 2, type Puntal (1), 8 topogeoms
 Deploy: features.traffic_signs.feature
 Layer 3, type Lineal (2), 8 topogeoms
 Deploy: features.city_streets.feature
 Layer 4, type Polygonal (3), 3 topogeoms
 Hierarchy level 1, child layer 1
 Deploy: features.big_parcels.feature
 Layer 5, type Puntal (1), 1 topogeoms
 Hierarchy level 1, child layer 2
 Deploy: features.big_signs.feature

See Also
Topology_Load_Tiger

Name
ST_NearestValue —
 Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.

Synopsis
	double precision ST_NearestValue(rast, 	
	 	bandnum, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
geometry pt;
boolean exclude_nodata_value=true;

	double precision ST_NearestValue(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision ST_NearestValue(rast, 	
	 	bandnum, 	
	 	columnx, 	
	 	rowy, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
integer columnx;
integer rowy;
boolean exclude_nodata_value=true;

	double precision ST_NearestValue(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	exclude_nodata_value=true);	

raster rast;
integer columnx;
integer rowy;
boolean exclude_nodata_value=true;

Description

 Returns the nearest non-NODATA value of a given band in a given columnx, rowy pixel or at a specific geometric point. If the columnx, rowy pixel or the pixel at the specified geometric point is NODATA, the function will find the nearest pixel to the columnx, rowy pixel or geometric point whose value is not NODATA.

 Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Availability: 2.1.0
Note

 ST_NearestValue is a drop-in replacement for ST_Value.

Examples

-- pixel 2x2 has value
SELECT
 ST_Value(rast, 2, 2) AS value,
 ST_NearestValue(rast, 2, 2) AS nearestvalue
FROM (
 SELECT
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 0.
),
 2, 3, 0.
),
 3, 5, 0.
),
 4, 2, 0.
),
 5, 4, 0.
) AS rast
) AS foo

 value | nearestvalue
-------+--------------
 1 | 1

-- pixel 2x3 is NODATA
SELECT
 ST_Value(rast, 2, 3) AS value,
 ST_NearestValue(rast, 2, 3) AS nearestvalue
FROM (
 SELECT
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 0.
),
 2, 3, 0.
),
 3, 5, 0.
),
 4, 2, 0.
),
 5, 4, 0.
) AS rast
) AS foo

 value | nearestvalue
-------+--------------
 | 1

See Also

 ST_Neighborhood,
 ST_Value

Name
ST_AsBinary/ST_AsWKB — Return the Well-Known Binary (WKB) representation of the raster.

Synopsis
	bytea ST_AsBinary(rast, 	
	 	outasin=FALSE);	

raster rast;
boolean outasin=FALSE;

	bytea ST_AsWKB(rast, 	
	 	outasin=FALSE);	

raster rast;
boolean outasin=FALSE;

Description

 Returns the Binary representation of the raster. If outasin is TRUE, out-db bands are treated as in-db.
 Refer to raster/doc/RFC2-WellKnownBinaryFormat located in the PostGIS source folder for details of the representation.

 This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Note

 By default, WKB output contains the external file path for out-db bands. If the client does not have access to the raster file underlying an out-db band, set outasin to TRUE.

Enhanced: 2.1.0 Addition of outasin
Enhanced: 2.5.0 Addition of ST_AsWKB

Examples

SELECT ST_AsBinary(rast) As rastbin FROM dummy_rast WHERE rid=1;

 rastbin

\001\000\000\000\000\000\000\000\000\000\000\000@\000\000\000\000\000\000\010@\000\000\000\000\000\000\340?\000\000\000\000\000\000\340?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\012\000\000\000\012\000\024\000

See Also

 ST_RastFromWKB,
 ST_AsHexWKB

Name
CreateTopoGeom — Creates a new topo geometry object from topo element array - tg_type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Synopsis
	topogeometry CreateTopoGeom(toponame, 	
	 	tg_type, 	
	 	layer_id, 	
	 	tg_objs);	

varchar toponame;
integer tg_type;
integer layer_id;
topoelementarray tg_objs;

	topogeometry CreateTopoGeom(toponame, 	
	 	tg_type, 	
	 	layer_id);	

varchar toponame;
integer tg_type;
integer layer_id;

Description
Creates a topogeometry object for layer denoted by layer_id and registers it in the relations table in the toponame schema.
tg_type is an integer: 1:[multi]point (punctal), 2:[multi]line (lineal), 3:[multi]poly (areal), 4:collection. layer_id is the layer id in the topology.layer table.
punctal layers are formed from set of nodes, lineal layers are formed from a set of edges, areal layers are formed from a set of faces,
	and collections can be formed from a mixture of nodes, edges, and faces.
Omitting the array of components generates an empty TopoGeometry object.
Availability: 1.1

Examples: Form from existing edges
Create a topogeom in ri_topo schema for layer 2 (our ri_roads), of type (2) LINE, for the first edge (we loaded in ST_CreateTopoGeo).
INSERT INTO ri.ri_roads(road_name, topo) VALUES('Unknown', topology.CreateTopoGeom('ri_topo',2,2,'{{1,2}}'::topology.topoelementarray);

Examples: Convert an areal geometry to best guess topogeometry
Lets say we have geometries that should be formed from a collection of faces. We have for example blockgroups table
					and want to know the topo geometry of each block group. If our data was perfectly aligned, we could do this:

-- create our topo geometry column --
SELECT topology.AddTopoGeometryColumn(
	'topo_boston',
	'boston', 'blockgroups', 'topo', 'POLYGON');

-- addtopgeometrycolumn --
1

-- update our column assuming
-- everything is perfectly aligned with our edges
UPDATE boston.blockgroups AS bg
	SET topo = topology.CreateTopoGeom('topo_boston'
 ,3,1
 , foo.bfaces)
FROM (SELECT b.gid, topology.TopoElementArray_Agg(ARRAY[f.face_id,3]) As bfaces
	FROM boston.blockgroups As b
 INNER JOIN topo_boston.face As f ON b.geom && f.mbr
 WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
 GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

--the world is rarely perfect allow for some error
--count the face if 50% of it falls
-- within what we think is our blockgroup boundary
UPDATE boston.blockgroups AS bg
	SET topo = topology.CreateTopoGeom('topo_boston'
 ,3,1
 , foo.bfaces)
FROM (SELECT b.gid, topology.TopoElementArray_Agg(ARRAY[f.face_id,3]) As bfaces
	FROM boston.blockgroups As b
 INNER JOIN topo_boston.face As f ON b.geom && f.mbr
 WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
	OR
 (ST_Intersects(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
 AND ST_Area(ST_Intersection(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))) >
 ST_Area(topology.ST_GetFaceGeometry('topo_boston', f.face_id))*0.5
)
 GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

-- and if we wanted to convert our topogeometry back
-- to a denormalized geometry aligned with our faces and edges
-- cast the topo to a geometry
-- The really cool thing is my new geometries
-- are now aligned with my tiger street centerlines
UPDATE boston.blockgroups SET new_geom = topo::geometry;

See Also

AddTopoGeometryColumn,
toTopoGeom
ST_CreateTopoGeo,
ST_GetFaceGeometry,
TopoElementArray,
TopoElementArray_Agg
				

Configuring raster support

	 If you enabled raster support you may want to read
 below how to properly configure it.
	
As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the following environment variables
	POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding the section called “Grand Unified Custom Variables (GUCs)”.
If you want to enable offline raster:
POSTGIS_ENABLE_OUTDB_RASTERS=1
Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows
POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL
If you want to only enable specific drivers, set your environment variable as follows:
POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
Note
If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the preferred way is to
	edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main refers to the cluster.
On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control Panel Items\System.
	Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new system variables.
After you set the environment variables, you'll need to restart your PostgreSQL service for the changes to take effect.

Name
ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis
	geography ST_GeographyFromText(EWKT);	

text EWKT;

Description
Returns a geography object from the well-known text representation. SRID 4326 is assumed if unspecified.

See Also
ST_GeogFromText, ST_AsText

Name
ST_ConvexHull — Computes the convex hull of a geometry.

Synopsis
	geometry ST_ConvexHull(geomA);	

geometry geomA;

Description
Computes the convex hull of a geometry.
 The convex hull is the smallest convex
 geometry that encloses all geometries in the input.
One can think of the convex hull as the geometry obtained by wrapping an rubber
 band around a set of geometries. This is different from a
 concave hull
 which is analogous to "shrink-wrapping" the geometries.
 A convex hull is often used to
 determine an affected area based on a set of point observations.
In the general case the convex hull is a Polygon.
 The convex hull of two or more collinear points is a two-point LineString.
 The convex hull of one or more identical points is a Point.
This is not an aggregate function.
 To compute the convex hull of a set of geometries, use ST_Collect
 to aggregate them into a geometry collection
 (e.g. ST_ConvexHull(ST_Collect(geom)).
Performed by the GEOS module

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1.16

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

[image: Examples]Convex Hull of a MultiLinestring and a MultiPoint

SELECT ST_AsText(ST_ConvexHull(
 ST_Collect(
 ST_GeomFromText('MULTILINESTRING((100 190,10 8),(150 10, 20 30))'),
 ST_GeomFromText('MULTIPOINT(50 5, 150 30, 50 10, 10 10)')
)));
---st_astext--
POLYGON((50 5,10 8,10 10,100 190,150 30,150 10,50 5))

Using with ST_Collect to compute the convex hulls of geometry sets.

--Get estimate of infected area based on point observations
SELECT d.disease_type,
 ST_ConvexHull(ST_Collect(d.geom)) As geom
 FROM disease_obs As d
 GROUP BY d.disease_type;

See Also
ST_Collect, ST_ConcaveHull, ST_MinimumBoundingCircle

Name
ST_ClusterIntersecting — Aggregate function that clusters input geometries into connected sets.

Synopsis
	geometry[] ST_ClusterIntersecting(g);	

geometry set g;

Description
An aggregate function that returns an array of GeometryCollections
 partitioning the input geometries into connected clusters that are disjoint.
 Each geometry in a cluster intersects at least one other geometry in the cluster,
 and does not intersect any geometry in other clusters.

Availability: 2.2.0

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
 'LINESTRING (5 5, 4 4)'::geometry,
 'LINESTRING (6 6, 7 7)'::geometry,
 'LINESTRING (0 0, -1 -1)'::geometry,
 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterIntersectingWin,
 ST_ClusterWithin,
 ST_ClusterWithinWin

Name
ST_Points — Returns a MultiPoint containing the coordinates of a geometry.
			

Synopsis
	geometry ST_Points(geom);	

						geometry
						geom
					;

Description

				Returns a MultiPoint containing all the coordinates of a geometry.
 Duplicate points are preserved,
				including the start and end points of ring geometries.
				(If desired, duplicate points can be removed by calling
				ST_RemoveRepeatedPoints on the result).
			

 To obtain information about the position of each coordinate in the parent geometry
 use ST_DumpPoints.

				M and Z coordinates are preserved if present.
			

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Availability: 2.3.0

Examples
SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z ((30 10 4),(10 30 5),(40 40 6),(30 10 4))
			

See Also
ST_RemoveRepeatedPoints, ST_DumpPoints

Name
<<| — Returns TRUE if A's bounding box is strictly below B's.

Synopsis
	boolean <<|(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The <<| operator returns TRUE if the bounding box of geometry A
			is strictly below the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 <<| tbl2.column2 AS below
FROM
 (VALUES
	(1, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (1 4, 1 7)'::geometry),
	(3, 'LINESTRING (6 1, 6 5)'::geometry),
	(4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | below
---------+---------+-------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | f
(3 rows)

See Also
<<, >>, |>>

Name
parse_address — Takes a 1 line address and breaks into parts

Synopsis
	record parse_address(address);	

text address;

Description
Returns takes an address as input, and returns a record output consisting of fields num, street, street2,
 address1, city, state, zip, zipplus, country.
Availability: 2.2.0

 [image: Description]
 This method needs address_standardizer extension.

Examples
Single Addresss
SELECT num, street, city, zip, zipplus
	FROM parse_address('1 Devonshire Place, Boston, MA 02109-1234') AS a;

 num | street | city | zip | zipplus
-----+------------------+--------+-------+---------
 1 | Devonshire Place | Boston | 02109 | 1234		
Table of addresses
-- basic table
CREATE TABLE places(addid serial PRIMARY KEY, address text);

INSERT INTO places(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

 -- parse the addresses
 -- if you want all fields you can use (a).*
SELECT addid, (a).num, (a).street, (a).city, (a).state, (a).zip, (a).zipplus
FROM (SELECT addid, parse_address(address) As a
 FROM places) AS p;
 addid | num | street | city | state | zip | zipplus
-------+-----+----------------------+-----------+-------+-------+---------
 1 | 529 | Main Street | Boston | MA | 02129 |
 2 | 77 | Massachusetts Avenue | Cambridge | MA | 02139 |
 3 | 25 | Wizard of Oz | Walaford | KS | 99912 | 323
 4 | 26 | Capen Street | Medford | MA | |
 5 | 124 | Mount Auburn St | Cambridge | MA | 02138 |
 6 | 950 | Main Street | Worcester | MA | 01610 |
(6 rows)

See Also

Table Management Functions

Abstract
These functions assist in defining tables containing geometry columns.

Name
ST_SkewY — Returns the georeference Y skew (or rotation parameter).

Synopsis
	float8 ST_SkewY(rast);	

raster rast;

Description
Returns the georeference Y skew (or rotation parameter). Refer to World File
 for more details.

Examples
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy | georef
-----+-------+-------+--------------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000
 :
 2 | 0 | 0 | 0.0500000000
 : 0.0000000000
 : 0.0000000000
 : -0.0500000000
 : 3427927.7500000000
 : 5793244.0000000000

See Also
ST_GeoReference, ST_SkewX, ST_SetSkew

Name
ST_ScaleY — Returns the Y component of the pixel height in units of coordinate reference system.

Synopsis
	float8 ST_ScaleY(rast);	

raster rast;

Description
Returns the Y component of the pixel height in units of coordinate reference system. May be negative. Refer to World File
 for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

Examples
SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;

 rid | rastpixheight
-----+---------------
 1 | 3
 2 | -0.05

See Also
ST_Height

Topology Constructors

Abstract
This section covers the topology functions for creating new topologies.

Name
EnableLongTransactions — Enables long transaction support.

Synopsis
	text EnableLongTransactions();	

;

Description
Enables long transaction support.
			This function creates the
			required metadata tables. It must be called once before using the
			other functions in this section. Calling it twice is
			harmless.
Creates a meta table called authorization_table and a view called authorized_tables
Availability: 1.1.3

Examples
SELECT EnableLongTransactions();
--result--
Long transactions support enabled
		

See Also
DisableLongTransactions

Name
ST_HausdorffDistance — Returns the Hausdorff distance between two geometries.

Synopsis
	float ST_HausdorffDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

	float ST_HausdorffDistance(g1, 	
	 	g2, 	
	 	densifyFrac);	

geometry
			g1;
geometry
			g2;
float
			densifyFrac;

Description
Returns the
 Hausdorff distance
 between two geometries.
 The Hausdorff distance is a measure of how similar or dissimilar 2 geometries are.
		
The function actually computes the "Discrete Hausdorff Distance".
 This is the Hausdorff distance computed at discrete points on the geometries.
 The densifyFrac parameter can be specified,
 to provide a more accurate answer by densifying
 segments before computing the discrete Hausdorff distance.
 Each segment is split into a number of equal-length subsegments
 whose fraction of the segment length is closest to the given fraction.
		
Units are in the units of the spatial reference system of the geometries.
		
Note

			This algorithm is NOT equivalent to the standard Hausdorff distance.
 However, it computes an approximation that is correct for a large subset of useful cases.
			One important case is Linestrings that are roughly parallel to each other,
 and roughly equal in length. This is a useful metric for line matching.
			

Availability: 1.5.0

Examples
[image: Examples]Hausdorff distance (red) and distance (yellow)
 between two lines

SELECT ST_HausdorffDistance(geomA, geomB),
 ST_Distance(geomA, geomB)
 FROM (SELECT 'LINESTRING (20 70, 70 60, 110 70, 170 70)'::geometry AS geomA,
 'LINESTRING (20 90, 130 90, 60 100, 190 100)'::geometry AS geomB) AS t;
 st_hausdorffdistance | st_distance
----------------------+-------------
 37.26206567625497 | 20

Example: Hausdorff distance with densification.

SELECT ST_HausdorffDistance(
 'LINESTRING (130 0, 0 0, 0 150)'::geometry,
 'LINESTRING (10 10, 10 150, 130 10)'::geometry,
 0.5);

 70

Example:
 For each building, find the parcel that best represents it.
 First we require that the parcel intersect with the building geometry.
 DISTINCT ON guarantees we get each building listed only once.
 ORDER BY .. ST_HausdorffDistance selects the parcel that is most similar to the building.

SELECT DISTINCT ON (buildings.gid) buildings.gid, parcels.parcel_id
 FROM buildings
 INNER JOIN parcels
 ON ST_Intersects(buildings.geom, parcels.geom)
 ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);

See Also
ST_FrechetDistance

Name
ST_BoundingDiagonal — Returns the diagonal of a geometry's bounding box.

Synopsis
	geometry ST_BoundingDiagonal(geom, 	
	 	fits=false);	

geometry geom;
boolean fits=false;

Description

Returns the diagonal of the supplied geometry's bounding box as a LineString.
The diagonal is a 2-point LineString with the minimum values of each dimension in its
start point and the maximum values in its end point.
If the input geometry is empty, the diagonal line is a LINESTRING EMPTY.
			

The optional fits parameter specifies if the best fit is needed.
If false, the diagonal of a somewhat larger bounding box can be accepted
(which is faster to compute for geometries with many vertices). In either case,
the bounding box of the returned diagonal line always covers the input
geometry.
			

The returned geometry retains the SRID and dimensionality
(Z and M presence) of the input geometry.
			
Note

In degenerate cases (i.e. a single vertex in input) the returned linestring
will be formally invalid (no interior).
The result is still topologically valid.
			

Availability: 2.2.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

Examples

-- Get the minimum X in a buffer around a point
SELECT ST_X(ST_StartPoint(ST_BoundingDiagonal(
 ST_Buffer(ST_Point(0,0),10)
)));
 st_x

 -10
		

See Also

ST_StartPoint,
ST_EndPoint,
ST_X,
ST_Y,
ST_Z,
ST_M,
ST_Envelope
		

Name
ST_ReducePrecision — Returns a valid geometry with points rounded to a grid tolerance.

Synopsis
	geometry ST_ReducePrecision(g, 	
	 	gridsize);	

geometry
 g;
float8
 gridsize;

Description
Returns a valid geometry with all points rounded to the provided grid tolerance, and features below the tolerance removed.
Unlike ST_SnapToGrid the returned geometry will be valid, with no ring self-intersections or collapsed components.

 Precision reduction can be used to:

	
 match coordinate precision to the data accuracy

	
 reduce the number of coordinates needed to represent a geometry

	
 ensure valid geometry output to formats which use lower precision
 (e.g. text formats such as WKT, GeoJSON or KML
 when the number of output decimal places is limited).

	
 export valid geometry to systems which use lower or limited precision
 (e.g. SDE, Oracle tolerance value)

		
Availability: 3.1.0.
Requires GEOS >= 3.9.0.

Examples
SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 0.1));
 st_astext

 POINT(1.4 19.3)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 1.0));
 st_astext

 POINT(1 19)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 10));
 st_astext

 POINT(0 20)

Precision reduction can reduce number of vertices
SELECT ST_AsText(ST_ReducePrecision('LINESTRING (10 10, 19.6 30.1, 20 30, 20.3 30, 40 40)', 1));
 st_astext

 LINESTRING (10 10, 20 30, 40 40)

Precision reduction splits polygons if needed to ensure validity
SELECT ST_AsText(ST_ReducePrecision('POLYGON ((10 10, 60 60.1, 70 30, 40 40, 50 10, 10 10))', 10));
 st_astext

 MULTIPOLYGON (((60 60, 70 30, 40 40, 60 60)), ((40 40, 50 10, 10 10, 40 40)))

See Also
ST_SnapToGrid, ST_Simplify, ST_SimplifyVW

Name
ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis
	geometry ST_Force3D(geomA, 	
	 	Zvalue = 0.0);	

geometry geomA;
float Zvalue = 0.0;

Description
Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
Changed: 3.1.0. Added support for supplying a non-zero Z value.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

		--Nothing happens to an already 3D geometry
		SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

Name
ST_Multi — Return the geometry as a MULTI* geometry.

Synopsis
	geometry ST_Multi(geom);	

geometry geom;

Description
Returns the geometry as a MULTI* geometry collection. If the geometry
				is already a collection, it is returned unchanged.

Examples

SELECT ST_AsText(ST_Multi('POLYGON ((10 30, 30 30, 30 10, 10 10, 10 30))'));
 st_astext

 MULTIPOLYGON(((10 30,30 30,30 10,10 10,10 30)))

See Also
ST_AsText

Raster Inputs

Name
ST_Affine — Apply a 3D affine transformation to a geometry.

Synopsis
	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	c, 	
	 	d, 	
	 	e, 	
	 	f, 	
	 	g, 	
	 	h, 	
	 	i, 	
	 	xoff, 	
	 	yoff, 	
	 	zoff);	

geometry geomA;
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
float i;
float xoff;
float yoff;
float zoff;

	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	d, 	
	 	e, 	
	 	xoff, 	
	 	yoff);	

geometry geomA;
float a;
float b;
float d;
float e;
float xoff;
float yoff;

Description
Applies a 3D affine transformation to the geometry to do things like translate, rotate, scale in one step.

		Version 1: The
			call
ST_Affine(geom, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff)

			represents the transformation matrix
/ a b c xoff \
| d e f yoff |
| g h i zoff |
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + c*z + xoff
y' = d*x + e*y + f*z + yoff
z' = g*x + h*y + i*z + zoff
 All of the translate / scale
			functions below are expressed via such an affine
			transformation.
Version 2: Applies a 2d affine transformation to the geometry. The
			call
ST_Affine(geom, a, b, d, e, xoff, yoff)

			represents the transformation matrix
/ a b 0 xoff \ / a b xoff \
| d e 0 yoff | rsp. | d e yoff |
| 0 0 1 0 | \ 0 0 1 /
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + xoff
y' = d*x + e*y + yoff
z' = z
 This method is a subcase of the 3D method
			above.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

--Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing ST_Rotate();
 SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0, 1, 0, 0, 0)) As using_affine,
	 ST_AsEWKT(ST_Rotate(geom, pi())) As using_rotate
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 using_affine | using_rotate
-----------------------------+-----------------------------
 LINESTRING(-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

--Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0))
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 st_asewkt

 LINESTRING(-1 -2 -3,-1 -4 -3)
(1 row)
		

See Also
ST_Rotate, ST_Scale, ST_Translate, ST_TransScale

Name
&&&(geometry,gidx) — Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).

Synopsis
	boolean &&&(A, 	
	 	B);	

				 geometry

				 A
				;

				 gidx

				 B
				;

Description
The &&& operator returns TRUE if the cached n-D bounding box of geometry A intersects the n-D bounding box B, using float precision. This means that if B is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_MakePoint(1,1,1) &&& ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&&(gidx,geometry),
				&&&(gidx,gidx)

Name
AddOverviewConstraints — Tag a raster column as being an overview of another.

Synopsis
	boolean AddOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn, 	
	 	refschema, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;
name
 refschema;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

	boolean AddOverviewConstraints(ovtable, 	
	 	ovcolumn, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovtable;
name
 ovcolumn;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

Description

Adds constraints on a raster column that are used to display information
in the raster_overviews raster catalog.

The ovfactor parameter represents the scale multiplier
in the overview column: higher overview factors have lower resolution.

When the ovschema and refschema
parameters are omitted, the first table found scanning the
search_path will be used.

Availability: 2.0.0

Examples

CREATE TABLE res1 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
 1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(500, 500, 0, 0, 4),
 1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- verify if registered correctly in the raster_overviews view --
SELECT o_table_name ot, o_raster_column oc,
 r_table_name rt, r_raster_column rc,
 overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
 ot | oc | rt | rc | f
------+----+------+----+---
 res2 | r2 | res1 | r1 | 2
(1 row)

See Also

 the section called “Raster Overviews”,
 DropOverviewConstraints,
 ST_CreateOverview,
 AddRasterConstraints

Name
ST_BandIsNoData — Returns true if the band is filled with only nodata values.

Synopsis
	boolean ST_BandIsNoData(rast, 	
	 	band, 	
	 	forceChecking=true);	

raster rast;
integer band;
boolean forceChecking=true;

	boolean ST_BandIsNoData(rast, 	
	 	forceChecking=true);	

raster rast;
boolean forceChecking=true;

Description
Returns true if the band is filled with only nodata
 values. Band 1 is assumed if not specified. If the last argument
 is TRUE, the entire band is checked pixel by pixel. Otherwise,
 the function simply returns the value of the isnodata flag for
 the band. The default value for this parameter is FALSE, if not
 specified.
Availability: 2.0.0
Note
If the flag is dirty (this is, the result is different
 using TRUE as last parameter and not using it) you should
 update the raster to set this flag to true, by using ST_SetBandIsNodata(),
 or ST_SetBandNodataValue() with TRUE as last argument. See ST_SetBandIsNoData.

Examples

-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value = 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'6' -- hasnodatavalue and isnodata value set to true.
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true
select st_bandisnodata(rast, 2) from dummy_rast where rid = 1; -- Expected false

See Also
ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_SetBandIsNoData

Other Contributors

	Individual Contributors
	
				
	Alex Bodnaru	Gino Lucrezi	Matthias Bay
	Alex Mayrhofer	Greg Troxel	Maxime Guillaud
	Andrea Peri	Guillaume Lelarge	Maxime van Noppen
	Andreas Forø Tollefsen	Giuseppe Broccolo	Maxime Schoemans
	Andreas Neumann	Han Wang	Michael Fuhr
	Andrew Gierth	Hans Lemuet	Mike Toews
	Anne Ghisla	Haribabu Kommi	Nathan Wagner
	Antoine Bajolet	Havard Tveite	Nathaniel Clay
	Arthur Lesuisse	IIDA Tetsushi	Nikita Shulga
	Artur Zakirov	Ingvild Nystuen	Norman Vine
	Barbara Phillipot	Jackie Leng	Patricia Tozer
	Ben Jubb	James Marca	Rafal Magda
	Bernhard Reiter	Jan Katins	Ralph Mason
	Björn Esser	Jason Smith	Rémi Cura
	Brian Hamlin	James Addison	Richard Greenwood
	Bruce Rindahl	Jeff Adams	Robert Coup
	Bruno Wolff III	Jelte Fennema	Roger Crew
	Bryce L. Nordgren	Jim Jones	Ron Mayer
	Carl Anderson	Joe Conway	Sebastiaan Couwenberg
	Charlie Savage	Jonne Savolainen	Sergei Shoulbakov
	Chris Mayo	Jose Carlos Martinez Llari	Sergey Fedoseev
	Christian Schroeder	Jörg Habenicht	Shinichi Sugiyama
	Christoph Berg	Julien Rouhaud	Shoaib Burq
	Christoph Moench-Tegeder	Kashif Rasul	Silvio Grosso
	Dane Springmeyer	Klaus Foerster	Stefan Corneliu Petrea
	Daryl Herzmann	Kris Jurka	Steffen Macke
	Dave Fuhry	Laurenz Albe	Stepan Kuzmin
	David Garnier	Lars Roessiger	Stephen Frost
	David Skea	Leo Hsu	Steven Ottens
	David Techer	Loic Dachary	Talha Rizwan
	Dmitry Vasilyev	Luca S. Percich	Teramoto Ikuhiro
	Eduin Carrillo	Lucas C. Villa Real	Tom Glancy
	Esteban Zimanyi	Maria Arias de Reyna	Tom van Tilburg
	Eugene Antimirov	Marc Ducobu	Victor Collod
	Even Rouault	Mark Sondheim	Vincent Bre
	Florian Weimer	Markus Schaber	Vincent Mora
	Frank Warmerdam	Markus Wanner	Vincent Picavet
	George Silva	Matt Amos	Volf Tomáš
	Gerald Fenoy	Matt Bretl	

			

	Corporate Sponsors
	These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the PostGIS project.
			 In alphabetical order:
			
	Aiven
	Arrival 3D
	Associazione Italiana per l'Informazione Geografica Libera (GFOSS.it)
	AusVet
	Avencia
	Azavea
	Boundless
	Cadcorp
	Camptocamp
	Carto
	Crunchy Data
	City of Boston (DND)
	City of Helsinki
	Clever Elephant Solutions
	Cooperativa Alveo
	Deimos Space
	Faunalia
	Geographic Data BC
	Hunter Systems Group
	ISciences, LLC
	Kontur
	Lidwala Consulting Engineers
	LISAsoft
	Logical Tracking & Tracing International AG
	Maponics
	Michigan Tech Research Institute
	Natural Resources Canada
	Norwegian Forest and Landscape Institue
	Norwegian Institute of Bioeconomy Research (NIBIO)
	OSGeo
	Oslandia
	Palantir Technologies
	Paragon Corporation
	R3 GIS
	Refractions Research
	Regione Toscana - SITA
	Safe Software
	Sirius Corporation plc
	Stadt Uster
	UC Davis Center for Vectorborne Diseases
	Université Laval
	U.S. Department of State (HIU)
	Zonar Systems

		

	Crowd Funding Campaigns
	Crowd funding campaigns are campaigns we run to get badly wanted features funded that can service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.
PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out of it.
postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology support in 2.0.0. It happened.
postgis64windows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS 64-bit issues on windows. It happened.

	Important Support Libraries
	The GEOS
		 geometry operations library
The GDAL
		 Geospatial Data Abstraction Library used to
		 power much of the raster functionality introduced in PostGIS 2. In kind, improvements needed in GDAL
		 to support PostGIS are contributed back to the GDAL project.
The PROJ
		 cartographic projection library
Last but not least, PostgreSQL,
		 the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be possible without
		 the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

Name
ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

Synopsis
	geometry ST_GMLToSQL(geomgml);	

text geomgml;

	geometry ST_GMLToSQL(geomgml, 	
	 	srid);	

text geomgml;
integer srid;

Description

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.50 (except for curves support).
Availability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
Enhanced: 2.0.0 default srid optional parameter added.

See Also
the section called “Build configuration”, ST_GeomFromGML, ST_AsGML

Chapter 2. PostGIS Installation

	This chapter details the steps required to install PostGIS.

Short Version

To compile assuming you have all the dependencies in your search path:
tar -xvzf postgis-3.4.3.tar.gz
cd postgis-3.4.3
./configure
make
make install

Once PostGIS is installed, it needs to be
enabled (the section called “Creating spatial databases”)
or upgraded (the section called “Upgrading spatial databases”)
in each individual database you want to use it in.

Name
ST_Rescale — Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline, Lanczos, Max or Min resampling algorithm. Default is NearestNeighbor.

Synopsis
	raster ST_Rescale(rast, 	
	 	scalexy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision scalexy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Rescale(rast, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using one of the following resampling algorithms:
	NearestNeighbor (english or american spelling)

	Bilinear

	Cubic

	CubicSpline

	Lanczos

	Max

	Min

The default is NearestNeighbor which is the fastest but results in the worst interpolation.
scalex and scaley define the new pixel size. scaley must often be negative to get well oriented raster.
When the new scalex or scaley is not a divisor of the raster width or height, the extent of the resulting raster is expanded to encompass the extent of the provided raster. If you want to be sure to retain exact input extent see ST_Resize
maxerr is the threshold for transformation approximation by the resampling algorithm (in pixel units). A default of 0.125 is used if no maxerr is specified, which is the same value used in GDAL gdalwarp utility. If set to zero, no approximation takes place.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Rescale is different from ST_SetScale in that ST_SetScale do not resample the raster to match the raster extent. ST_SetScale only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Enhanced: 3.4.0 max and min resampling options added
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example rescaling a raster from a pixel size of 0.001 degree to a pixel size of 0.0015 degree.
-- the original raster pixel size
SELECT ST_PixelWidth(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0)) width

 width

0.001

-- the rescaled raster raster pixel size
SELECT ST_PixelWidth(ST_Rescale(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015)) width

 width

0.0015

See Also

 ST_Resize,
 ST_Resample,
 ST_SetScale,
 ST_ScaleX,
 ST_ScaleY,
 ST_Transform

Name
Equals — Returns true if two topogeometries are composed of the same topology primitives.

Synopsis
	boolean Equals(tg1, 	
	 	tg2);	

topogeometry tg1;
topogeometry tg2;

Description
Returns true if two topogeometries are composed of the same topology primitives: faces, edges, nodes.
Note
This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies.

Availability: 1.1.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

See Also
GetTopoGeomElements, ST_Equals

Spatial Reference Systems

A Spatial Reference System (SRS)
 (also called a Coordinate Reference System (CRS))
 defines how geometry is referenced to locations on the Earth's surface.
 There are three types of SRS:

	A geodetic SRS uses angular coordinates
 (longitude and latitude) which map directly to the surface of the earth.

	A projected SRS
 uses a mathematical projection transformation
 to "flatten" the surface of the spheroidal earth onto a plane.
 It assigns location coordinates in a way that allows direct measurement
 of quantities such as distance, area, and angle.
 The coordinate system is Cartesian, which means it has a defined origin point
 and two perpendicular axes (usually oriented North and East).
 Each projected SRS uses a stated length unit (usually metres or feet).
 A projected SRS may be limited in its area of applicability to avoid distortion
 and fit within the defined coordinate bounds.

	A local SRS
 is a Cartesian coordinate system which is not referenced to the earth's surface.
 In PostGIS this is specified by a SRID value of 0.

 There are many different spatial reference systems in use.
 Common SRSes are standardized in the
 European Petroleum Survey Group
 EPSG database.
 For convenience PostGIS (and many other spatial systems) refers to SRS
 definitions using an integer identifier called a SRID.

A geometry is associated with a Spatial Reference System by its SRID value,
 which is accessed by ST_SRID.
 The SRID for a geometry can be assigned using ST_SetSRID.
 Some geometry constructor functions allow supplying a SRID
 (such as ST_Point and ST_MakeEnvelope).
 The EWKT format supports SRIDs with the SRID=n; prefix.

 Spatial functions processing pairs of geometries
 (such as overlay and
 relationship functions)
 require that the input geometries are in the same spatial reference system (have the same SRID).
 Geometry data can be transformed into a different spatial reference system using
 ST_Transform and ST_TransformPipeline.
 Geometry returned from functions has the same SRS as the input geometries.

SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table used by PostGIS
 is an OGC-compliant database table that defines the available
	spatial reference systems.
	It holds the numeric SRIDs and textual descriptions of the coordinate systems.

The spatial_ref_sys table definition is:
CREATE TABLE spatial_ref_sys (
 srid INTEGER NOT NULL PRIMARY KEY,
 auth_name VARCHAR(256),
 auth_srid INTEGER,
 srtext VARCHAR(2048),
 proj4text VARCHAR(2048)
)
The columns are:
	srid
	An integer code that uniquely identifies the Spatial
			Reference System (SRS) within the database.

	auth_name
	The name of the standard or standards body that is being
			cited for this reference system. For example, "EPSG" is a
			valid auth_name.

	auth_srid
	The ID of the Spatial Reference System as defined by the
			Authority cited in the auth_name. In the case
			of EPSG, this is the EPSG code.

	srtext
	The Well-Known Text representation of the Spatial Reference
			System. An example of a WKT SRS representation is:
PROJCS["NAD83 / UTM Zone 10N",
 GEOGCS["NAD83",
	DATUM["North_American_Datum_1983",
	 SPHEROID["GRS 1980",6378137,298.257222101]
],
	PRIMEM["Greenwich",0],
	UNIT["degree",0.0174532925199433]
],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",-123],
 PARAMETER["scale_factor",0.9996],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",0],
 UNIT["metre",1]
]
For a discussion of SRS WKT, see the OGC standard Well-known text representation of coordinate reference systems.

	proj4text
	PostGIS uses the PROJ library to provide coordinate
			transformation capabilities. The proj4text
			column contains the PROJ coordinate definition string for a
			particular SRID. For example:
+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m
For more information see the
 PROJ web site.
			The spatial_ref_sys.sql file contains both
			srtext and proj4text
			definitions for all EPSG projections.

When retrieving spatial reference system definitions for use in transformations,
 PostGIS uses fhe following strategy:

	If auth_name and auth_srid
 are present (non-NULL)
 use the PROJ SRS based on those entries (if one exists).

	If srtext is present
 create a SRS using it, if possible.

	If proj4text is present
 create a SRS using it, if possible.

User-Defined Spatial Reference Systems

The PostGIS spatial_ref_sys table contains over 3000 of
 the most common spatial reference system definitions that are handled by the
 PROJ projection library.
 But there are many coordinate systems that it does not contain.
 You can add SRS definitions to the table if you have
 the required information about the spatial reference system.
 Or, you can define your own custom spatial reference system if you are familiar with PROJ constructs.
 Keep in mind that most spatial reference systems are regional
 and have no meaning when used outside of the bounds they were intended for.
A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/
Some commonly used spatial reference systems are:
 4326 - WGS 84 Long Lat,
			4269 - NAD 83 Long Lat,
			3395 - WGS 84 World Mercator,
			2163 - US National Atlas Equal Area,
 and the 60 WGS84 UTM zones.
		UTM zones are one of the most ideal for measurement, but only cover 6-degree regions.
 (To determine which UTM zone to use for your area of interest, see the utmzone PostGIS plpgsql helper function.)
	

		US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state.
 Most of the meter-based ones are in the core set, but many of the
		feet-based ones or ESRI-created ones will need to be copied from spatialreference.org.
	
You can even define non-Earth-based coordinate systems,
 such as Mars 2000
 This Mars coordinate system is non-planar (it's in degrees spheroidal),
 but you can use it with the geography type
 to obtain length and proximity measurements in meters instead of degrees.
Here is an example of loading a custom coordinate system using
 an unassigned SRID and the PROJ definition for a US-centric Lambert Conformal projection:

INSERT INTO spatial_ref_sys (srid, proj4text)
VALUES (990000,
 '+proj=lcc +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs'
);

Name
@ — Returns TRUE if A's bounding box is contained by B's. Uses double precision bounding box.

Synopsis
	boolean @(A, 	
	 	B);	

 raster
 A
 ;

 raster
 B
 ;

	boolean @(A, 	
	 	B);	

 geometry
 A
 ;

 raster
 B
 ;

	boolean @(B, 	
	 	A);	

 raster
 B
 ;

 geometry
 A
 ;

Description
The @ operator returns TRUE if the bounding box of raster/geometry A
 is contained by bounding box of raster/geometr B.
Note
This operand will use spatial indexes on the rasters.

Availability: 2.0.0 raster @ raster, raster @ geometry introduced
Availability: 2.0.5 geometry @ raster introduced

See Also
~

Name
ST_ClipByBox2D — Computes the portion of a geometry falling within a rectangle.

Synopsis
	geometry ST_ClipByBox2D(geom, 	
	 	box);	

geometry geom;
box2d box;

Description

 Clips a geometry by a 2D box in a fast and tolerant but possibly invalid way.
 Topologically invalid input geometries do not result in exceptions being thrown.
 The output geometry is not guaranteed to be valid
 (in particular, self-intersections for a polygon may be introduced).

Performed by the GEOS module.
Availability: 2.2.0

Examples

-- Rely on implicit cast from geometry to box2d for the second parameter
SELECT ST_ClipByBox2D(geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;

See Also

ST_Intersection,
ST_MakeBox2D,
ST_MakeEnvelope

Name
ST_IsEmpty — Tests if a geometry is empty.

Synopsis
	boolean ST_IsEmpty(geomA);	

geometry geomA;

Description
Returns true if this Geometry is an empty geometry. If
				true, then this Geometry represents an empty geometry collection, polygon, point etc.
Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while
			PostGIS returns NULL.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.7

 [image: Description]
 This method supports Circular Strings and Curves.

Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
 st_isempty

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
 st_isempty

 t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));

 st_isempty

 f
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
 ?column?

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
 st_isempty

 t
(1 row)

		

Name
ST_3DIntersects — Tests if two geometries spatially
 intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area)

Synopsis
	boolean ST_3DIntersects(geomA, 	
	 	geomB);	

 geometry
 geomA
 ;

 geometry
 geomB
 ;

Description
Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
 returns true, then the geometries also spatially intersect.
 Disjoint implies false for spatial intersection.
Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs.
Availability: 2.0.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1

Geometry Examples
SELECT ST_3DIntersects(pt, line), ST_Intersects(pt, line)
 FROM (SELECT 'POINT(0 0 2)'::geometry As pt, 'LINESTRING (0 0 1, 0 2 3)'::geometry As line) As foo;
 st_3dintersects | st_intersects
-----------------+---------------
 f | t
(1 row)

TIN Examples
SELECT ST_3DIntersects('TIN(((0 0 0,1 0 0,0 1 0,0 0 0)))'::geometry, 'POINT(.1 .1 0)'::geometry);
 st_3dintersects

 t

See Also
ST_Intersects

Name
PostGIS_Lib_Build_Date — Returns build date of the PostGIS library.

Synopsis
	text PostGIS_Lib_Build_Date();	

;

Description
Returns build date of the PostGIS library.

Examples
SELECT PostGIS_Lib_Build_Date();
 postgis_lib_build_date

 2023-06-22 03:56:11
(1 row)

Name
geometry — The type representing spatial features with planar coordinate systems.

Description
geometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems.
All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior
This table lists the automatic and explicit casts allowed for this data type:
	Cast To	Behavior
	box	automatic
	box2d	automatic
	box3d	automatic
	bytea	automatic
	geography	automatic
	text	automatic

See Also
the section called “Spatial Data Model”, the section called “PostGIS SQL-MM Compliant Functions”

Name
ST_AsPNG — Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

Synopsis
	bytea ST_AsPNG(rast, 	
	 	options=NULL);	

raster rast;
text[] options=NULL;

	bytea ST_AsPNG(rast, 	
	 	nband, 	
	 	compression);	

raster rast;
integer nband;
integer compression;

	bytea ST_AsPNG(rast, 	
	 	nband, 	
	 	options=NULL);	

raster rast;
integer nband;
text[] options=NULL;

	bytea ST_AsPNG(rast, 	
	 	nbands, 	
	 	compression);	

raster rast;
integer[] nbands;
integer compression;

	bytea ST_AsPNG(rast, 	
	 	nbands, 	
	 	options=NULL);	

raster rast;
integer[] nbands;
text[] options=NULL;

Description
Returns the selected bands of the raster as a single Portable Network Graphics Image (PNG). Use ST_AsGDALRaster if you need to export as less common raster types. If no band is specified, then the first 3 bands are exported. There are many variants of the function with many options. If no srid is specified then then srid of the raster is used. These are itemized below:
	
 nband is for single band exports.

	
 nbands is an array of bands to export (note that max is 4 for PNG) and the order of the bands is RGBA. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue

	
 compression number from 1 to 9. The higher the number the greater the compression.

	
 options text Array of GDAL
 options as defined for PNG (look at create_options
 for PNG of ST_GDALDrivers). For PNG valid one is only ZLEVEL (amount
 of time to spend on compression -- default 6)
 e.g. ARRAY['ZLEVEL=9'].
 WORLDFILE is not allowed since the function
 would have to output two outputs. Refer to GDAL
 Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples
SELECT ST_AsPNG(rast) As rastpng
FROM dummy_rast WHERE rid=2;

-- export the first 3 bands and map band 3 to Red, band 1 to Green, band 2 to blue
SELECT ST_AsPNG(rast, ARRAY[3,1,2]) As rastpng
FROM dummy_rast WHERE rid=2;

See Also
ST_AsGDALRaster, ST_ColorMap, ST_GDALDrivers, the section called “Building Custom Applications with PostGIS Raster”

Name
AddEdge — Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.

Synopsis
	integer AddEdge(toponame, 	
	 	aline);	

varchar toponame;
geometry aline;

Description
Adds an edge to the edge table and associated nodes to the nodes table of the specified toponame schema using the specified linestring geometry and returns the edgeid of the new or existing record.
 The newly added edge has "universe" face on both sides and links to itself.
Note
If the aline geometry crosses, overlaps, contains or is contained by an existing linestring edge, then an error is thrown and the edge is not added.

Note
The geometry of aline must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Performed by the GEOS module.
Availability: 2.0.0

Examples
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575.8 893917.2,227591.9 893900.4)', 26986)) As edgeid;
-- result-
edgeid

 1

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.2,227641.6 893816.5,
 227704.5 893778.5)', 26986)) As edgeid;
-- result --
edgeid

 2

 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.2 893900, 227591.9 893900.4,
 227704.5 893778.5)', 26986)) As edgeid;
 -- gives error --
 ERROR: Edge intersects (not on endpoints) with existing edge 1

See Also

TopoGeo_AddLineString,
CreateTopology,
the section called “Spatial Reference Systems”

Name
ST_GeoReference — Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.

Synopsis
	text ST_GeoReference(rast, 	
	 	format=GDAL);	

raster rast;
text format=GDAL;

Description
Returns the georeference meta data including carriage return in GDAL or ESRI format as commonly seen in a world file. Default is GDAL if no type specified. type is string 'GDAL' or 'ESRI'.

Difference between format representations is as follows:
GDAL:

scalex
skewy
skewx
scaley
upperleftx
upperlefty
ESRI:

scalex
skewy
skewx
scaley
upperleftx + scalex*0.5
upperlefty + scaley*0.5

Examples
SELECT ST_GeoReference(rast, 'ESRI') As esri_ref, ST_GeoReference(rast, 'GDAL') As gdal_ref
 FROM dummy_rast WHERE rid=1;

 esri_ref | gdal_ref
--------------+--------------
 2.0000000000 | 2.0000000000
 0.0000000000 : 0.0000000000
 0.0000000000 : 0.0000000000
 3.0000000000 : 3.0000000000
 1.5000000000 : 0.5000000000
 2.0000000000 : 0.5000000000

See Also
ST_SetGeoReference, ST_ScaleX, ST_ScaleY

Name
ST_CoverageSimplify — Window function that simplifies the edges of a polygonal coverage.

Synopsis
	geometry ST_CoverageSimplify(geom, 	
	 	tolerance, 	
	 	simplifyBoundary = true);	

geometry winset
 geom;
float8
 tolerance;
boolean
 simplifyBoundary = true;

Description
A window function which simplifies the edges of polygons in a polygonal coverage.
 The simplification preserves the coverage topology.
 This means the simplified output polygons are consisent along shared edges, and still form a valid coverage.

The simplification uses a variant of the Visvalingam–Whyatt algorithm.
 The tolerance parameter has units of distance,
 and is roughly equal to the square root of triangular areas to be simplified.

To simplify only the "internal" edges of the coverage (those that are shared by two polygons) set the simplifyBoundary parameter to false.
Note
If the input is not a valid coverage there may be unexpected artifacts in the output (such as boundary intersections, or separated boundaries which appeared to be shared).
 Use ST_CoverageInvalidEdges to determine if a coverage is valid.

Availability: 3.4.0
Requires GEOS >= 3.12.0

Examples
	

[image: Examples]Input coverage

	

[image: Examples]Simplified coverage

WITH coverage(id, geom) AS (VALUES
 (1, 'POLYGON ((160 150, 110 130, 90 100, 90 70, 60 60, 50 10, 30 30, 40 50, 25 40, 10 60, 30 100, 30 120, 20 170, 60 180, 90 190, 130 180, 130 160, 160 150), (40 160, 50 140, 66 125, 60 100, 80 140, 90 170, 60 160, 40 160))'::geometry),
 (2, 'POLYGON ((40 160, 60 160, 90 170, 80 140, 60 100, 66 125, 50 140, 40 160))'::geometry),
 (3, 'POLYGON ((110 130, 160 50, 140 50, 120 33, 90 30, 50 10, 60 60, 90 70, 90 100, 110 130))'::geometry),
 (4, 'POLYGON ((160 150, 150 120, 160 90, 160 50, 110 130, 160 150))'::geometry)
)
SELECT id, ST_AsText(ST_CoverageSimplify(geom, 30) OVER ())
 FROM coverage;

 id | st_astext
----+---------------------------------------
 1 | POLYGON ((160 150, 110 130, 50 10, 10 60, 20 170, 90 190, 160 150), (40 160, 66 125, 90 170, 40 160))
 2 | POLYGON ((40 160, 66 125, 90 170, 40 160))
 3 | POLYGON ((110 130, 160 50, 50 10, 110 130))
 3 | POLYGON ((160 150, 160 50, 110 130, 160 150))

See Also

 ST_CoverageInvalidEdges

Raster Band Editors

Name
ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

Synopsis
	geometry ST_GeometryFromText(WKT);	

text WKT;

	geometry ST_GeometryFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.40

See Also
ST_GeomFromText

Name
ST_ForceCurve — Upcast a geometry into its curved type, if applicable.

Synopsis
	geometry
						ST_ForceCurve(g);	

geometry g;

Description

 Turns a geometry into its curved representation, if applicable:
 lines become compoundcurves, multilines become multicurves
 polygons become curvepolygons multipolygons become multisurfaces. If the geometry input is already a curved representation returns back same as input.

Availability: 2.2.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsText(
 ST_ForceCurve(
	'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'::geometry
)
);
 st_astext
--
 CURVEPOLYGON Z ((0 0 2,5 0 2,0 5 2,0 0 2),(1 1 2,1 3 2,3 1 2,1 1 2))
(1 row)

See Also
ST_LineToCurve

New, Enhanced or changed PostGIS Functions

PostGIS Functions new or enhanced in 3.4

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.4
	PostGIS_GEOS_Compiled_Version - Availability: 3.4.0 Returns the version number of the GEOS library against which PostGIS was built.
	ST_ClusterIntersectingWin - Availability: 3.4.0 Window function that returns a cluster id for each input geometry, clustering input geometries into connected sets.
	ST_ClusterWithinWin - Availability: 3.4.0 Window function that returns a cluster id for each input geometry, clustering using separation distance.
	ST_CoverageInvalidEdges - Availability: 3.4.0 Window function that finds locations where polygons fail to form a valid coverage.
	ST_CoverageSimplify - Availability: 3.4.0 Window function that simplifies the edges of a polygonal coverage.
	ST_CoverageUnion - Availability: 3.4.0 - requires GEOS >= 3.8.0 Computes the union of a set of polygons forming a coverage by removing shared edges.
	ST_InverseTransformPipeline - Availability: 3.4.0 Return a new geometry with coordinates transformed to a different spatial reference system using the inverse of a defined coordinate transformation pipeline.
	ST_LargestEmptyCircle - Availability: 3.4.0. Computes the largest circle not overlapping a geometry.
	ST_LineExtend - Availability: 3.4.0 Returns a line with the last and first segments extended the specified distance(s).
	ST_TransformPipeline - Availability: 3.4.0 Return a new geometry with coordinates transformed to a different spatial reference system using a defined coordinate transformation pipeline.
	postgis_srs - Availability: 3.4.0 Return a metadata record for the requested authority and srid.
	postgis_srs_all - Availability: 3.4.0 Return metadata records for every spatial reference system in the underlying Proj database.
	postgis_srs_codes - Availability: 3.4.0 Return the list of SRS codes associated with the given authority.
	postgis_srs_search - Availability: 3.4.0 Return metadata records for projected coordinate systems that have areas of useage that fully contain the bounds parameter.

Functions enhanced in PostGIS 3.4
	PostGIS_Full_Version - Enhanced: 3.4.0 now includes extra PROJ configurations NETWORK_ENABLED, URL_ENDPOINT and DATABASE_PATH of proj.db location Reports full PostGIS version and build configuration infos.
	PostGIS_PROJ_Version - Enhanced: 3.4.0 now includes NETWORK_ENABLED, URL_ENDPOINT and DATABASE_PATH of proj.db location Returns the version number of the PROJ4 library.
	ST_AsSVG - Enhanced: 3.4.0 to support all curve types Returns SVG path data for a geometry.
	ST_ClosestPoint - Enhanced: 3.4.0 - Support for geography. Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line from one geometry to the other.
	ST_LineSubstring - Enhanced: 3.4.0 - Support for geography was introduced. Returns the part of a line between two fractional locations.
	ST_Project - Enhanced: 3.4.0 Allow geometry arguments and two-point form omitting azimuth. Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_ShortestLine - Enhanced: 3.4.0 - support for geography. Returns the 2D shortest line between two geometries

Functions changed in PostGIS 3.4
	PostGIS_Extensions_Upgrade - Changed: 3.4.0 to add target_version argument. Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to given or latest version.

PostGIS Functions new or enhanced in 3.3

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.3
	ST_3DConvexHull - Availability: 3.3.0 Computes the 3D convex hull of a geometry.
	ST_3DUnion - Availability: 3.3.0 aggregate variant was added Perform 3D union.
	ST_AlphaShape - Availability: 3.3.0 - requires SFCGAL >= 1.4.1. Computes an Alpha-shape enclosing a geometry
	ST_AsMARC21 - Availability: 3.3.0 Returns geometry as a MARC21/XML record with a geographic datafield (034).
	ST_GeomFromMARC21 - Availability: 3.3.0, requires libxml2 2.6+ Takes MARC21/XML geographic data as input and returns a PostGIS geometry object.
	ST_Letters - Availability: 3.3.0 Returns the input letters rendered as geometry with a default start position at the origin and default text height of 100.
	ST_OptimalAlphaShape - Availability: 3.3.0 - requires SFCGAL >= 1.4.1. Computes an Alpha-shape enclosing a geometry using an "optimal" alpha value.
	ST_SimplifyPolygonHull - Availability: 3.3.0. Computes a simplifed topology-preserving outer or inner hull of a polygonal geometry.
	ST_TriangulatePolygon - Availability: 3.3.0. Computes the constrained Delaunay triangulation of polygons
	postgis_sfcgal_full_version - Availability: 3.3.0 Returns the full version of SFCGAL in use including CGAL and Boost versions

Functions enhanced in PostGIS 3.3
	ST_ConcaveHull - Enhanced: 3.3.0, GEOS native implementation enabled for GEOS 3.11+ Computes a possibly concave geometry that contains all input geometry vertices
	ST_LineMerge - Enhanced: 3.3.0 accept a directed parameter. Return the lines formed by sewing together a MultiLineString.

Functions changed in PostGIS 3.3
	PostGIS_Extensions_Upgrade - Changed: 3.3.0 support for upgrades from any PostGIS version. Does not work on all systems. Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to given or latest version.

PostGIS Functions new or enhanced in 3.2

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.2
	ST_AsFlatGeobuf - Availability: 3.2.0 Return a FlatGeobuf representation of a set of rows.
	ST_DumpSegments - Availability: 3.2.0 Returns a set of geometry_dump rows for the segments in a geometry.
	ST_FromFlatGeobuf - Availability: 3.2.0 Reads FlatGeobuf data.
	ST_FromFlatGeobufToTable - Availability: 3.2.0 Creates a table based on the structure of FlatGeobuf data.
	ST_Scroll - Availability: 3.2.0 Change start point of a closed LineString.
	postgis.gdal_vsi_options - Availability: 3.2.0 A string configuration to set options used when working with an out-db raster.

Functions enhanced in PostGIS 3.2
	ST_ClusterKMeans - Enhanced: 3.2.0 Support for max_radius Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_MakeValid - Enhanced: 3.2.0, added algorithm options, 'linework' and 'structure' which requires GEOS >= 3.10.0. Attempts to make an invalid geometry valid without losing vertices.
	ST_Point - Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry. Creates a Point with X, Y and SRID values.
	ST_PointM - Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry. Creates a Point with X, Y, M and SRID values.
	ST_PointZ - Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry. Creates a Point with X, Y, Z and SRID values.
	ST_PointZM - Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry. Creates a Point with X, Y, Z, M and SRID values.
	ST_RemovePoint - Enhanced: 3.2.0 Remove a point from a linestring.
	ST_RemoveRepeatedPoints - Enhanced: 3.2.0 Returns a version of a geometry with duplicate points removed.
	ST_StartPoint - Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString. Returns the first point of a LineString.

Functions changed in PostGIS 3.2
	ST_Boundary - Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves Returns the boundary of a geometry.

PostGIS Functions new or enhanced in 3.1

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.1
	ST_Hexagon - Availability: 3.1.0 Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.
	ST_HexagonGrid - Availability: 3.1.0 Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.
	ST_MaximumInscribedCircle - Availability: 3.1.0. Computes the largest circle contained within a geometry.
	ST_ReducePrecision - Availability: 3.1.0. Returns a valid geometry with points rounded to a grid tolerance.
	ST_Square - Availability: 3.1.0 Returns a single square, using the provided edge size and cell coordinate within the square grid space.
	ST_SquareGrid - Availability: 3.1.0 Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Functions enhanced in PostGIS 3.1
	ST_AsEWKT - Enhanced: 3.1.0 support for optional precision parameter. Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_ClusterKMeans - Enhanced: 3.1.0 Support for 3D geometries and weights Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_Difference - Enhanced: 3.1.0 accept a gridSize parameter. Computes a geometry representing the part of geometry A that does not intersect geometry B.
	ST_Intersection - Enhanced: 3.1.0 accept a gridSize parameter Computes a geometry representing the shared portion of geometries A and B.
	ST_MakeValid - Enhanced: 3.1.0, added removal of Coordinates with NaN values. Attempts to make an invalid geometry valid without losing vertices.
	ST_Subdivide - Enhanced: 3.1.0 accept a gridSize parameter. Computes a rectilinear subdivision of a geometry.
	ST_SymDifference - Enhanced: 3.1.0 accept a gridSize parameter. Computes a geometry representing the portions of geometries A and B that do not intersect.
	ST_TileEnvelope - Enhanced: 3.1.0 Added margin parameter. Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.
	ST_UnaryUnion - Enhanced: 3.1.0 accept a gridSize parameter. Computes the union of the components of a single geometry.
	ST_Union - Enhanced: 3.1.0 accept a gridSize parameter. Computes a geometry representing the point-set union of the input geometries.

Functions changed in PostGIS 3.1
	ST_Force3D - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DM - Changed: 3.1.0. Added support for supplying a non-zero M value. Force the geometries into XYM mode.
	ST_Force3DZ - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode.
	ST_Force4D - Changed: 3.1.0. Added support for supplying non-zero Z and M values. Force the geometries into XYZM mode.

PostGIS Functions new or enhanced in 3.0

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.0
	ST_3DLineInterpolatePoint - Availability: 3.0.0 Returns a point interpolated along a 3D line at a fractional location.
	ST_ConstrainedDelaunayTriangles - Availability: 3.0.0 Return a constrained Delaunay triangulation around the given input geometry.
	ST_TileEnvelope - Availability: 3.0.0 Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Functions enhanced in PostGIS 3.0
	ST_AsMVT - Enhanced: 3.0 - added support for Feature ID. Aggregate function returning a MVT representation of a set of rows.
	ST_Contains - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if every point of B lies in A, and their interiors have a point in common
	ST_ContainsProperly - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if every point of B lies in the interior of A
	ST_CoveredBy - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if every point of A lies in B
	ST_Covers - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if every point of B lies in A
	ST_Crosses - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have some, but not all, interior points in common
	ST_CurveToLine - Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse. Converts a geometry containing curves to a linear geometry.
	ST_Disjoint - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have no points in common
	ST_Equals - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries include the same set of points
	ST_GeneratePoints - Enhanced: 3.0.0, added seed parameter Generates random points contained in a Polygon or MultiPolygon.
	ST_GeomFromGeoJSON - Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_LocateBetween - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Returns the portions of a geometry that match a measure range.
	ST_LocateBetweenElevations - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Returns the portions of a geometry that lie in an elevation (Z) range.
	ST_Overlaps - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have the same dimension and intersect, but each has at least one point not in the other
	ST_Relate - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their Intersection Matrix
	ST_Segmentize - Enhanced: 3.0.0 Segmentize geometry now produces equal-length subsegments Returns a modified geometry/geography having no segment longer than a given distance.
	ST_Touches - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have at least one point in common, but their interiors do not intersect
	ST_Within - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if every point of A lies in B, and their interiors have a point in common

Functions changed in PostGIS 3.0
	PostGIS_Extensions_Upgrade - Changed: 3.0.0 to repackage loose extensions and support postgis_raster. Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to given or latest version.
	ST_3DDistance - Changed: 3.0.0 - SFCGAL version removed Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DIntersects - Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs. Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area)
	ST_Area - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the area of a polygonal geometry.
	ST_AsGeoJSON - Changed: 3.0.0 support records as input Return a geometry as a GeoJSON element.
	ST_AsGeoJSON - Changed: 3.0.0 output SRID if not EPSG:4326. Return a geometry as a GeoJSON element.
	ST_AsKML - Changed: 3.0.0 - Removed the "versioned" variant signature Return the geometry as a KML element.
	ST_Distance - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the distance between two geometry or geography values.
	ST_Intersection - Changed: 3.0.0 does not depend on SFCGAL. Computes a geometry representing the shared portion of geometries A and B.
	ST_Intersects - Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added. Tests if two geometries intersect (they have at least one point in common)
	ST_Union - Changed: 3.0.0 does not depend on SFCGAL. Computes a geometry representing the point-set union of the input geometries.

PostGIS Functions new or enhanced in 2.5

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.5
	
				ST_QuantizeCoordinates
			 - Availability: 2.5.0 Sets least significant bits of coordinates to zero
	PostGIS_Extensions_Upgrade - Availability: 2.5.0 Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to given or latest version.
	ST_Angle - Availability: 2.5.0 Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.
	ST_ChaikinSmoothing - Availability: 2.5.0 Returns a smoothed version of a geometry, using the Chaikin algorithm
	ST_FilterByM - Availability: 2.5.0 Removes vertices based on their M value
	ST_LineInterpolatePoints - Availability: 2.5.0 Returns points interpolated along a line at a fractional interval.
	ST_OrientedEnvelope -
 Availability: 2.5.0.
 Returns a minimum-area rectangle containing a geometry.

Functions enhanced in PostGIS 2.5
	
 ST_GeometricMedian
 - Enhanced: 2.5.0 Added support for M as weight of points. Returns the geometric median of a MultiPoint.
	ST_AsMVT - Enhanced: 2.5.0 - added support parallel query. Aggregate function returning a MVT representation of a set of rows.
	ST_AsText - Enhanced: 2.5 - optional parameter precision introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Buffer - Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right. Computes a geometry covering all points within a given distance from a geometry.
	ST_GeomFromGeoJSON - Enhanced: 2.5.0 can now accept json and jsonb as inputs. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_Intersects - Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION. Tests if two geometries intersect (they have at least one point in common)
	ST_OffsetCurve - Enhanced: 2.5 - added support for GEOMETRYCOLLECTION and MULTILINESTRING Returns an offset line at a given distance and side from an input line.
	ST_Scale - Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced. Scales a geometry by given factors.
	ST_Split - Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced. Returns a collection of geometries created by splitting a geometry by another geometry.
	ST_Subdivide - Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5. Computes a rectilinear subdivision of a geometry.

PostGIS Functions new or enhanced in 2.4

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.4
	
				ST_ForcePolygonCCW
			 - Availability: 2.4.0 Orients all exterior rings counter-clockwise and all interior rings clockwise.
	
				ST_ForcePolygonCW
			 - Availability: 2.4.0 Orients all exterior rings clockwise and all interior rings counter-clockwise.
	
				ST_IsPolygonCCW
			 - Availability: 2.4.0 Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
	
				ST_IsPolygonCW
			 - Availability: 2.4.0 Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
	ST_AsGeobuf - Availability: 2.4.0 Return a Geobuf representation of a set of rows.
	ST_AsMVT - Availability: 2.4.0 Aggregate function returning a MVT representation of a set of rows.
	ST_AsMVTGeom - Availability: 2.4.0 Transforms a geometry into the coordinate space of a MVT tile.
	ST_Centroid - Availability: 2.4.0 support for geography was introduced. Returns the geometric center of a geometry.
	ST_FrechetDistance - Availability: 2.4.0 - requires GEOS >= 3.7.0 Returns the Fréchet distance between two geometries.

Functions enhanced in PostGIS 2.4
	ST_AsTWKB - Enhanced: 2.4.0 memory and speed improvements. Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_Covers - Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type Tests if every point of B lies in A
	ST_CurveToLine - Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output. Converts a geometry containing curves to a linear geometry.
	ST_Project - Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth. Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_Reverse - Enhanced: 2.4.0 support for curves was introduced. Return the geometry with vertex order reversed.

Functions changed in PostGIS 2.4
	= - Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use instead. Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
	ST_Node -
Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion.
This may cause the resulting linestrings to have a different order and direction compared to PostGIS < 2.4.
 Nodes a collection of lines.

PostGIS Functions new or enhanced in 2.3

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.3
	
 ST_GeometricMedian
 - Availability: 2.3.0 Returns the geometric median of a MultiPoint.
	&&&(geometry,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	&&(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	@(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	ST_ClusterDBSCAN - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
	ST_ClusterKMeans - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_GeneratePoints - Availability: 2.3.0 Generates random points contained in a Polygon or MultiPolygon.
	ST_MakeLine - Availability: 2.3.0 - Support for MultiPoint input elements was introduced Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MinimumBoundingRadius - Availability - 2.3.0 Returns the center point and radius of the smallest circle that contains a geometry.
	ST_MinimumClearance - Availability: 2.3.0 Returns the minimum clearance of a geometry, a measure of a geometry's robustness.
	ST_MinimumClearanceLine - Availability: 2.3.0 - requires GEOS >= 3.6.0 Returns the two-point LineString spanning a geometry's minimum clearance.
	ST_Normalize - Availability: 2.3.0 Return the geometry in its canonical form.
	ST_Points - Availability: 2.3.0 Returns a MultiPoint containing the coordinates of a geometry.
	ST_VoronoiLines - Availability: 2.3.0 Returns the boundaries of the Voronoi diagram of the vertices of a geometry.
	ST_VoronoiPolygons - Availability: 2.3.0 Returns the cells of the Voronoi diagram of the vertices of a geometry.
	ST_WrapX - Availability: 2.3.0 requires GEOS Wrap a geometry around an X value.
	~(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).

Functions enhanced in PostGIS 2.3
	ST_Contains - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon. Tests if every point of B lies in A, and their interiors have a point in common
	ST_Covers - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon. Tests if every point of B lies in A
	ST_Expand - Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions. Returns a bounding box expanded from another bounding box or a geometry.
	ST_Intersects - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon. Tests if two geometries intersect (they have at least one point in common)
	ST_Segmentize - Enhanced: 2.3.0 Segmentize geography now produces equal-length subsegments Returns a modified geometry/geography having no segment longer than a given distance.
	ST_Transform - Enhanced: 2.3.0 support for direct PROJ.4 text was introduced. Return a new geometry with coordinates transformed to a different spatial reference system.
	ST_Within - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon. Tests if every point of A lies in B, and their interiors have a point in common

Functions changed in PostGIS 2.3
	ST_PointN - Changed: 2.3.0 : negative indexing available (-1 is last point)
 Returns the Nth point in the first LineString or circular LineString in a geometry.

PostGIS Functions new or enhanced in 2.2

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.2
	<<#>> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between A and B bounding boxes.
	<<->> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between the centroids of A and B boundingboxes.
	ST_3DDifference - Availability: 2.2.0 Perform 3D difference
	ST_3DUnion - Availability: 2.2.0 Perform 3D union.
	ST_ApproximateMedialAxis - Availability: 2.2.0 Compute the approximate medial axis of an areal geometry.
	ST_AsEncodedPolyline - Availability: 2.2.0 Returns an Encoded Polyline from a LineString geometry.
	ST_AsTWKB - Availability: 2.2.0 Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_BoundingDiagonal - Availability: 2.2.0 Returns the diagonal of a geometry's bounding box.
	ST_CPAWithin - Availability: 2.2.0 Tests if the closest point of approach of two trajectoriesis within the specified distance.
	ST_ClipByBox2D - Availability: 2.2.0 Computes the portion of a geometry falling within a rectangle.
	ST_ClosestPointOfApproach - Availability: 2.2.0 Returns a measure at the closest point of approach of two trajectories.
	ST_ClusterIntersecting - Availability: 2.2.0 Aggregate function that clusters input geometries into connected sets.
	ST_ClusterWithin - Availability: 2.2.0 Aggregate function that clusters geometries by separation distance.
	ST_DistanceCPA - Availability: 2.2.0 Returns the distance between the closest point of approach of two trajectories.
	ST_ForceCurve - Availability: 2.2.0 Upcast a geometry into its curved type, if applicable.
	ST_IsPlanar - Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release. Check if a surface is or not planar
	ST_IsSolid - Availability: 2.2.0 Test if the geometry is a solid. No validity check is performed.
	ST_IsValidTrajectory - Availability: 2.2.0 Tests if the geometry is a valid trajectory.
	ST_LineFromEncodedPolyline - Availability: 2.2.0 Creates a LineString from an Encoded Polyline.
	ST_MakeSolid - Availability: 2.2.0 Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_RemoveRepeatedPoints - Availability: 2.2.0 Returns a version of a geometry with duplicate points removed.
	ST_SetEffectiveArea - Availability: 2.2.0 Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.
	ST_SimplifyVW - Availability: 2.2.0 Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm
	ST_Subdivide - Availability: 2.2.0 Computes a rectilinear subdivision of a geometry.
	ST_SwapOrdinates - Availability: 2.2.0 Returns a version of the given geometry with given ordinate values swapped.
	ST_Volume - Availability: 2.2.0 Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	postgis.enable_outdb_rasters - Availability: 2.2.0 A boolean configuration option to enable access to out-db raster bands.
	postgis.gdal_datapath - Availability: 2.2.0 A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.
	postgis.gdal_enabled_drivers - Availability: 2.2.0 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.
	|=| - Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+ Returns the distance between A and B trajectories at their closest point of approach.

Functions enhanced in PostGIS 2.2
	<-> - Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box. Returns the 2D distance between A and B.
	ST_Area - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature. Returns the area of a polygonal geometry.
	ST_AsX3D - Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details. Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_Azimuth - Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature. Returns the north-based azimuth of a line between two points.
	ST_Distance - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature. Returns the distance between two geometry or geography values.
	ST_Scale - Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced. Scales a geometry by given factors.
	ST_Split - Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced. Returns a collection of geometries created by splitting a geometry by another geometry.
	ST_Summary - Enhanced: 2.2.0 Added support for TIN and Curves Returns a text summary of the contents of a geometry.

Functions changed in PostGIS 2.2
	<-> - Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below. Returns the 2D distance between A and B.
	ST_3DClosestPoint - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z. Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z. Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DLongestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z. Returns the 3D longest line between two geometries
	ST_3DMaxDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z. Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z. Returns the 3D shortest line between two geometries
	ST_DistanceSphere - Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.
	ST_DistanceSpheroid - Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.
	ST_Equals - Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal Tests if two geometries include the same set of points
	ST_LengthSpheroid - Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.
	ST_MemSize - Changed: 2.2.0 name changed to ST_MemSize to follow naming convention. Returns the amount of memory space a geometry takes.
	ST_PointInsideCircle - Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle Tests if a point geometry is inside a circle defined by a center and radius

PostGIS Functions new or enhanced in 2.1

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.1
	ST_3DArea - Availability: 2.1.0 Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DIntersection - Availability: 2.1.0 Perform 3D intersection
	ST_Box2dFromGeoHash - Availability: 2.1.0 Return a BOX2D from a GeoHash string.
	ST_DelaunayTriangles - Availability: 2.1.0 Returns the Delaunay triangulation of the vertices of a geometry.
	ST_Extrude - Availability: 2.1.0 Extrude a surface to a related volume
	ST_ForceLHR - Availability: 2.1.0 Force LHR orientation
	ST_GeomFromGeoHash - Availability: 2.1.0 Return a geometry from a GeoHash string.
	ST_MinkowskiSum - Availability: 2.1.0 Performs Minkowski sum
	ST_Orientation - Availability: 2.1.0 Determine surface orientation
	ST_PointFromGeoHash - Availability: 2.1.0 Return a point from a GeoHash string.
	ST_StraightSkeleton - Availability: 2.1.0 Compute a straight skeleton from a geometry
	ST_Tesselate - Availability: 2.1.0 Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	postgis.backend - Availability: 2.1.0 The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.
	postgis_sfcgal_version - Availability: 2.1.0 Returns the version of SFCGAL in use

Functions enhanced in PostGIS 2.1
	ST_AsGML - Enhanced: 2.1.0 id support was introduced, for GML 3. Return the geometry as a GML version 2 or 3 element.
	ST_Boundary - Enhanced: 2.1.0 support for Triangle was introduced Returns the boundary of a geometry.
	ST_DWithin - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details. Tests if two geometries are within a given distance
	ST_DWithin - Enhanced: 2.1.0 support for curved geometries was introduced. Tests if two geometries are within a given distance
	ST_Distance - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details. Returns the distance between two geometry or geography values.
	ST_Distance - Enhanced: 2.1.0 - support for curved geometries was introduced. Returns the distance between two geometry or geography values.
	ST_DumpPoints - Enhanced: 2.1.0 Faster speed. Reimplemented as native-C. Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_MakeValid - Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT. Attempts to make an invalid geometry valid without losing vertices.
	ST_Segmentize - Enhanced: 2.1.0 support for geography was introduced. Returns a modified geometry/geography having no segment longer than a given distance.
	ST_Summary - Enhanced: 2.1.0 S flag to denote if has a known spatial reference system Returns a text summary of the contents of a geometry.

Functions changed in PostGIS 2.1
	ST_EstimatedExtent - Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent. Returns the estimated extent of a spatial table.
	ST_Force2D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D. Force the geometries into a "2-dimensional mode".
	ST_Force3D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D. Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DM - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM. Force the geometries into XYM mode.
	ST_Force3DZ - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ. Force the geometries into XYZ mode.
	ST_Force4D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D. Force the geometries into XYZM mode.
	ST_ForceCollection - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection. Convert the geometry into a GEOMETRYCOLLECTION.
	ST_LineInterpolatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point. Returns a point interpolated along a line at a fractional location.
	ST_LineLocatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point. Returns the fractional location of the closest point on a line to a point.
	ST_LineSubstring - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring. Returns the part of a line between two fractional locations.
	ST_Segmentize - Changed: 2.1.0 As a result of the introduction of geography support,
 the usage ST_Segmentize('LINESTRING(1 2, 3 4)', 0.5) causes an ambiguous function error.
 The input needs to be properly typed as a geometry or geography.
 Use ST_GeomFromText, ST_GeogFromText or a cast to the required type
			(e.g. ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry, 0.5)) Returns a modified geometry/geography having no segment longer than a given distance.

PostGIS Functions new or enhanced in 2.0

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.0
	&&& - Availability: 2.0.0 Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	<#> - Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+ Returns the 2D distance between A and B bounding boxes.
	<-> - Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+ Returns the 2D distance between A and B.
	ST_3DClosestPoint - Availability: 2.0.0 Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDFullyWithin - Availability: 2.0.0 Tests if two 3D geometries are entirely within a given 3D distance
	ST_3DDWithin - Availability: 2.0.0 Tests if two 3D geometries are within a given 3D distance
	ST_3DDistance - Availability: 2.0.0 Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DIntersects - Availability: 2.0.0 Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area)
	ST_3DLongestLine - Availability: 2.0.0 Returns the 3D longest line between two geometries
	ST_3DMaxDistance - Availability: 2.0.0 Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Availability: 2.0.0 Returns the 3D shortest line between two geometries
	ST_AsLatLonText - Availability: 2.0 Return the Degrees, Minutes, Seconds representation of the given point.
	ST_AsX3D - Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_CollectionHomogenize - Availability: 2.0.0 Returns the simplest representation of a geometry collection.
	ST_ConcaveHull - Availability: 2.0.0 Computes a possibly concave geometry that contains all input geometry vertices
	ST_FlipCoordinates - Availability: 2.0.0 Returns a version of a geometry with X and Y axis flipped.
	ST_GeomFromGeoJSON - Availability: 2.0.0 requires - JSON-C >= 0.9 Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_InterpolatePoint - Availability: 2.0.0 Returns the interpolated measure of a geometry closest to a point.
	ST_IsValidDetail - Availability: 2.0.0 Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.
	ST_IsValidReason - Availability: 2.0 version taking flags. Returns text stating if a geometry is valid, or a reason for invalidity.
	ST_MakeLine - Availability: 2.0.0 - Support for LineString input elements was introduced Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MakeValid - Availability: 2.0.0 Attempts to make an invalid geometry valid without losing vertices.
	ST_Node - Availability: 2.0.0 Nodes a collection of lines.
	ST_NumPatches - Availability: 2.0.0 Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_OffsetCurve - Availability: 2.0 Returns an offset line at a given distance and side from an input line.
	ST_PatchN - Availability: 2.0.0 Returns the Nth geometry (face) of a PolyhedralSurface.
	ST_Perimeter - Availability 2.0.0: Support for geography was introduced Returns the length of the boundary of a polygonal geometry or geography.
	ST_Project - Availability: 2.0.0 Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_RelateMatch - Availability: 2.0.0 Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern
	ST_SharedPaths - Availability: 2.0.0 Returns a collection containing paths shared by the two input linestrings/multilinestrings.
	ST_Snap - Availability: 2.0.0 Snap segments and vertices of input geometry to vertices of a reference geometry.
	ST_Split - Availability: 2.0.0 requires GEOS Returns a collection of geometries created by splitting a geometry by another geometry.
	ST_UnaryUnion - Availability: 2.0.0 Computes the union of the components of a single geometry.

Functions enhanced in PostGIS 2.0
	&& - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	AddGeometryColumn - Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based. Adds a geometry column to an existing table.
	Box2D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns a BOX2D representing the 2D extent of a geometry.
	Box3D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns a BOX3D representing the 3D extent of a geometry.
	GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns the type of a geometry as text.
	Populate_Geometry_Columns - Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints. Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
	ST_3DExtent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Aggregate function that returns the 3D bounding box of geometries.
	ST_Affine - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Apply a 3D affine transformation to a geometry.
	ST_Area - Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced. Returns the area of a polygonal geometry.
	ST_AsBinary - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsBinary - Enhanced: 2.0.0 support for higher coordinate dimensions was introduced. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsBinary - Enhanced: 2.0.0 support for specifying endian with geography was introduced. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced. Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box. Return the geometry as a GML version 2 or 3 element.
	ST_AsKML - Enhanced: 2.0.0 - Add prefix namespace, use default and named args Return the geometry as a KML element.
	ST_Azimuth - Enhanced: 2.0.0 support for geography was introduced. Returns the north-based azimuth of a line between two points.
	ST_Dimension - Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry. Returns the topological dimension of a geometry.
	ST_Dump - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_Expand - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns a bounding box expanded from another bounding box or a geometry.
	ST_Extent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Aggregate function that returns the bounding box of geometries.
	ST_Force2D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Force the geometries into a "2-dimensional mode".
	ST_Force3D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DZ - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Force the geometries into XYZ mode.
	ST_ForceCollection - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Convert the geometry into a GEOMETRYCOLLECTION.
	ST_ForceRHR - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
	ST_GMLToSQL - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced. Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
	ST_GMLToSQL - Enhanced: 2.0.0 default srid optional parameter added. Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
	ST_GeomFromEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced. Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced. Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromGML - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced. Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromGML - Enhanced: 2.0.0 default srid optional parameter added. Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeometryN - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Return an element of a geometry collection.
	ST_GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Returns the SQL-MM type of a geometry as text.
	ST_IsClosed - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
	ST_MakeEnvelope - Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced. Creates a rectangular Polygon from minimum and maximum coordinates.
	ST_MakeValid - Enhanced: 2.0.1, speed improvements Attempts to make an invalid geometry valid without losing vertices.
	ST_NPoints - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Returns the number of points (vertices) in a geometry.
	ST_NumGeometries - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Returns the number of elements in a geometry collection.
	ST_Relate - Enhanced: 2.0.0 - added support for specifying boundary node rule. Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their Intersection Matrix
	ST_Rotate - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Rotates a geometry about an origin point.
	ST_Rotate - Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added. Rotates a geometry about an origin point.
	ST_RotateX - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Rotates a geometry about the X axis.
	ST_RotateY - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Rotates a geometry about the Y axis.
	ST_RotateZ - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Rotates a geometry about the Z axis.
	ST_Scale - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced. Scales a geometry by given factors.
	ST_ShiftLongitude - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced. Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
	ST_Summary - Enhanced: 2.0.0 added support for geography Returns a text summary of the contents of a geometry.
	ST_Transform - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced. Return a new geometry with coordinates transformed to a different spatial reference system.

Functions changed in PostGIS 2.0
	AddGeometryColumn - Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from system catalogs. It by default
			also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now
			equivalent to: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326); Adds a geometry column to an existing table.
	AddGeometryColumn - Changed: 2.0.0 If you require the old behavior of constraints use the default use_typmod, but set it to false. Adds a geometry column to an existing table.
	AddGeometryColumn - Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly
		 because they inherit the typmod behavior of their parent table column.
		 Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly
		 in geometry_columns. Refer to .
			 Adds a geometry column to an existing table.
	DropGeometryColumn - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE Removes a geometry column from a spatial table.
	DropGeometryTable - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a table with geometry columns like any other table using DROP TABLE Drops a table and all its references in geometry_columns.
	Populate_Geometry_Columns - Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check
		 constraint behavior instead by using the new use_typmod and setting it to false. Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
	ST_3DExtent - Changed: 2.0.0 In prior versions this used to be called ST_Extent3D Aggregate function that returns the 3D bounding box of geometries.
	ST_3DLength - Changed: 2.0.0 In prior versions this used to be called ST_Length3D Returns the 3D length of a linear geometry.
	ST_3DMakeBox - Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D Creates a BOX3D defined by two 3D point geometries.
	ST_3DPerimeter - Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D Returns the 3D perimeter of a polygonal geometry.
	ST_AsBinary - Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that
			needs to be changed to ST_AsBinary('POINT(1 2)'::geometry);. If that is not possible, then install legacy.sql. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsGML - Changed: 2.0.0 use default named args Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Changed: 2.0.0 support default args and named args. Return a geometry as a GeoJSON element.
	ST_AsSVG - Changed: 2.0.0 to use default args and support named args Returns SVG path data for a geometry.
	ST_EndPoint - Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work with this
	 function and return the end point. In 2.0.0 it returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0. Returns the last point of a LineString or CircularLineString.
	ST_GeomFromText - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY') Return a specified ST_Geometry value from Well-Known Text representation (WKT).
	ST_GeometryN - Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(..,1) case. Return an element of a geometry collection.
	ST_IsEmpty - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards Tests if a geometry is empty.
	ST_Length - Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
			this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon Returns the 2D length of a linear geometry.
	ST_LocateAlong - Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure. Returns the point(s) on a geometry that match a measure value.
	ST_LocateBetween - Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures. Returns the portions of a geometry that match a measure range.
	ST_NumGeometries - Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT. Returns the number of elements in a geometry collection.
	ST_NumInteriorRings - Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON. Returns the number of interior rings (holes) of a Polygon.
	ST_PointN - Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring. Returns the Nth point in the first LineString or circular LineString in a geometry.
	ST_StartPoint - Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0. Returns the first point of a LineString.

PostGIS Functions new or enhanced in 1.5

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 1.5
	&& - Availability: 1.5.0 support for geography was introduced. Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	PostGIS_LibXML_Version - Availability: 1.5 Returns the version number of the libxml2 library.
	ST_AddMeasure - Availability: 1.5.0 Interpolates measures along a linear geometry.
	ST_AsBinary - Availability: 1.5.0 geography support was introduced. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsGML - Availability: 1.5.0 geography support was introduced. Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Availability: 1.5.0 geography support was introduced. Return a geometry as a GeoJSON element.
	ST_AsText - Availability: 1.5 - support for geography was introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Buffer - Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
 into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.
 Computes a geometry covering all points within a given distance from a geometry.
	ST_ClosestPoint - Availability: 1.5.0 Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line from one geometry to the other.
	ST_CollectionExtract - Availability: 1.5.0 Given a geometry collection, returns a multi-geometry containing only elements of a specified type.
	ST_Covers - Availability: 1.5 - support for geography was introduced. Tests if every point of B lies in A
	ST_DFullyWithin - Availability: 1.5.0 Tests if two geometries are entirely within a given distance
	ST_DWithin - Availability: 1.5.0 support for geography was introduced Tests if two geometries are within a given distance
	ST_Distance - Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries Returns the distance between two geometry or geography values.
	ST_DistanceSphere - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.
	ST_DistanceSpheroid - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.
	ST_DumpPoints - Availability: 1.5.0 Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_Envelope - Availability: 1.5.0 behavior changed to output double precision instead of float4 Returns a geometry representing the bounding box of a geometry.
	ST_Expand - Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates. Returns a bounding box expanded from another bounding box or a geometry.
	ST_GMLToSQL - Availability: 1.5, requires libxml2 1.6+ Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
	ST_GeomFromGML - Availability: 1.5, requires libxml2 1.6+ Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromKML - Availability: 1.5, requires libxml2 2.6+ Takes as input KML representation of geometry and outputs a PostGIS geometry object
	ST_HausdorffDistance - Availability: 1.5.0 Returns the Hausdorff distance between two geometries.
	ST_Intersection - Availability: 1.5 support for geography data type was introduced. Computes a geometry representing the shared portion of geometries A and B.
	ST_Intersects - Availability: 1.5 support for geography was introduced. Tests if two geometries intersect (they have at least one point in common)
	ST_Length - Availability: 1.5.0 geography support was introduced in 1.5. Returns the 2D length of a linear geometry.
	ST_LongestLine - Availability: 1.5.0 Returns the 2D longest line between two geometries.
	ST_MakeEnvelope - Availability: 1.5 Creates a rectangular Polygon from minimum and maximum coordinates.
	ST_MaxDistance - Availability: 1.5.0 Returns the 2D largest distance between two geometries in projected units.
	ST_ShortestLine - Availability: 1.5.0 Returns the 2D shortest line between two geometries
	~= - Availability: 1.5.0 changed behavior Returns TRUE if A's bounding box is the same as B's.

PostGIS Functions new or enhanced in 1.4

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 1.4
	Populate_Geometry_Columns - Availability: 1.4.0 Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.
	ST_Collect - Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster. Creates a GeometryCollection or Multi* geometry from a set of geometries.
	ST_ContainsProperly - Availability: 1.4.0 Tests if every point of B lies in the interior of A
	ST_GeoHash - Availability: 1.4.0 Return a GeoHash representation of the geometry.
	ST_IsValidReason - Availability: 1.4 Returns text stating if a geometry is valid, or a reason for invalidity.
	ST_LineCrossingDirection - Availability: 1.4 Returns a number indicating the crossing behavior of two LineStrings
	ST_LocateBetweenElevations - Availability: 1.4.0 Returns the portions of a geometry that lie in an elevation (Z) range.
	ST_MakeLine - Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster. Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MinimumBoundingCircle - Availability: 1.4.0 Returns the smallest circle polygon that contains a geometry.
	ST_Union - Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL. Computes a geometry representing the point-set union of the input geometries.

PostGIS Functions new or enhanced in 1.3

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 1.3
	ST_AsGML - Availability: 1.3.2 Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Availability: 1.3.4 Return a geometry as a GeoJSON element.
	ST_CurveToLine - Availability: 1.3.0 Converts a geometry containing curves to a linear geometry.
	ST_LineToCurve - Availability: 1.3.0 Converts a linear geometry to a curved geometry.
	ST_SimplifyPreserveTopology - Availability: 1.3.3 Returns a simplified and valid version of a geometry, using the Douglas-Peucker algorithm.

Name
@(geometry,box2df) — Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).

Synopsis
	boolean @(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The @ operator returns TRUE if the A geometry's 2D bounding box is contained the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) @ ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) AS is_contained;

 is_contained

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis
	integer ST_NumPatches(g1);	

geometry g1;

Description
Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is
		an alias for ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don't care about MM convention.
Availability: 2.0.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM ISO/IEC 13249-3: 8.5

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
		--result
		6
		

See Also
ST_GeomFromEWKT, ST_NumGeometries

Name
ST_BuildArea — Creates a polygonal geometry formed by the linework of a geometry.

Synopsis
	geometry ST_BuildArea(geom);	

geometry geom;

Description
Creates an areal geometry formed by the constituent linework
 of the input geometry.
 The input can be a LineString, MultiLineString, Polygon, MultiPolygon or a GeometryCollection.
 The result is a Polygon or MultiPolygon, depending on input.
 If the input linework does not form polygons, NULL is returned.

Unlike ST_MakePolygon,
 this function accepts rings formed by multiple lines, and can form any number of polygons.

This function converts inner rings into holes.
 To turn inner rings into polygons as well, use ST_Polygonize.

Note
Input linework must be correctly noded for this function to work properly.
 ST_Node can be used to node lines.

If the input linework crosses, this function will produce invalid polygons.
 ST_MakeValid can be used to ensure the output is valid.

Availability: 1.1.0

Examples
	

[image: Examples]Input lines

	

[image: Examples]Area result

WITH data(geom) AS (VALUES
 ('LINESTRING (180 40, 30 20, 20 90)'::geometry)
 ,('LINESTRING (180 40, 160 160)'::geometry)
 ,('LINESTRING (160 160, 80 190, 80 120, 20 90)'::geometry)
 ,('LINESTRING (80 60, 120 130, 150 80)'::geometry)
 ,('LINESTRING (80 60, 150 80)'::geometry)
)
SELECT ST_AsText(ST_BuildArea(ST_Collect(geom)))
 FROM data;

--
POLYGON((180 40,30 20,20 90,80 120,80 190,160 160,180 40),(150 80,120 130,80 60,150 80))

[image: Examples]Create a donut from two circular polygons

SELECT ST_BuildArea(ST_Collect(inring,outring))
FROM (SELECT
 ST_Buffer('POINT(100 90)', 25) As inring,
 ST_Buffer('POINT(100 90)', 50) As outring) As t;

See Also

 ST_Collect,
 ST_MakePolygon,
 ST_MakeValid,
 ST_Node,
 ST_Polygonize,
 ST_BdPolyFromText,
 ST_BdMPolyFromText (wrappers to
 this function with standard OGC interface)

Name
ST_ClusterWithinWin — Window function that returns a cluster id for each input geometry, clustering using separation distance.

Synopsis
	integer ST_ClusterWithinWin(geom, 	
	 	distance);	

geometry winset geom;
float8 distance;

Description
A window function that returns a cluster number for each input geometry.
 Clustering partitions the geometries into sets
 in which each geometry is within the specified distance
 of at least one other geometry in the same cluster.
 Distances are Cartesian distances in the units of the SRID.

ST_ClusterWithinWin is equivalent to running ST_ClusterDBSCAN with minpoints := 0.
Availability: 3.4.0

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

WITH testdata AS (
 SELECT id, geom::geometry FROM (
 VALUES (1, 'LINESTRING (0 0, 1 1)'),
 (2, 'LINESTRING (5 5, 4 4)'),
 (3, 'LINESTRING (6 6, 7 7)'),
 (4, 'LINESTRING (0 0, -1 -1)'),
 (5, 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))')) AS t(id, geom)
)
SELECT id,
 ST_AsText(geom),
 ST_ClusterWithinWin(geom, 1.4) OVER () AS cluster
FROM testdata;

 id | st_astext | cluster
----+--------------------------------+---------
 1 | LINESTRING(0 0,1 1) | 0
 2 | LINESTRING(5 5,4 4) | 0
 3 | LINESTRING(6 6,7 7) | 1
 4 | LINESTRING(0 0,-1 -1) | 0
 5 | POLYGON((0 0,4 0,4 4,0 4,0 0)) | 0

See Also

 ST_ClusterWithin,
 ST_ClusterDBSCAN,
 ST_ClusterIntersecting,
 ST_ClusterIntersectingWin,

Name
ST_RasterToWorldCoordX — Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns
 and rows starts at 1.

Synopsis
	float8 ST_RasterToWorldCoordX(rast, 	
	 	xcolumn);	

raster rast;
integer xcolumn;

	float8 ST_RasterToWorldCoordX(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description
Returns the upper left X coordinate of a raster column row in geometric units of the georeferenced raster.
 Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of
 columns in raster, it will give you
 coordinates outside of the raster file to left or right with the assumption that the
 skew and pixel sizes are same as selected raster.
Note
For non-skewed rasters, providing the X column is sufficient. For skewed rasters,
 the georeferenced coordinate is a function of the ST_ScaleX and ST_SkewX and row and column.
 An error will be raised if you give just the X column for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX

Examples

-- non-skewed raster providing column is sufficient
SELECT rid, ST_RasterToWorldCoordX(rast,1) As x1coord,
 ST_RasterToWorldCoordX(rast,2) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM dummy_rast;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 2.5 | 2
 2 | 3427927.75 | 3427927.8 | 0.05

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordX(rast, 1, 1) As x1coord,
 ST_RasterToWorldCoordX(rast, 2, 3) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM (SELECT rid, ST_SetSkew(rast, 100.5, 0) As rast FROM dummy_rast) As foo;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 203.5 | 2
 2 | 3427927.75 | 3428128.8 | 0.05

See Also
ST_ScaleX, ST_RasterToWorldCoordY, ST_SetSkew, ST_SkewX

Geometry Validation

Abstract
These functions test whether geometries are valid according to
			the OGC SFS standard.
 They also provide information about the nature and location of invalidity.
 There is also a function to create a valid geometry out of an invalid one.
			

Name
rules table — The rules table contains a set of rules that maps address input sequence tokens to standardized output sequence. A rule is defined as a set of input tokens followed by -1 (terminator) followed by set of output tokens followed by -1 followed by number denoting kind of rule followed by ranking of rule.

Description
A rules table must have at least the following columns, though you are allowed to add more for your own uses.
	id
	Primary key of table

	rule
	text field denoting the rule. Details at PAGC Address Standardizer Rule records.
A rule consists of a set of non-negative integers representing input tokens, terminated by a -1, followed by an equal number of non-negative integers representing postal attributes, terminated by a -1, followed by an integer representing a rule type, followed by an integer representing the rank of the rule. The rules are ranked from 0 (lowest) to 17 (highest).
So for example the rule 2 0 2 22 3 -1 5 5 6 7 3 -1 2 6 maps to sequence of output tokens TYPE NUMBER TYPE DIRECT QUALIF to the output sequence STREET STREET SUFTYP SUFDIR QUALIF. The rule is an ARC_C rule of rank 6.
Numbers for corresponding output tokens are listed in stdaddr.

Input Tokens
Each rule starts with a set of input tokens followed by a terminator -1. Valid input tokens excerpted from PAGC Input Tokens are as follows:
Form-Based Input Tokens
	AMPERS
	(13). The ampersand (&) is frequently used to abbreviate the word "and".

	DASH
	(9). A punctuation character.

	DOUBLE
	(21). A sequence of two letters. Often used as identifiers.

	FRACT
	(25). Fractions are sometimes used in civic numbers or unit numbers.

	MIXED
	(23). An alphanumeric string that contains both letters and digits. Used for identifiers.

	NUMBER
	(0). A string of digits.

	ORD
	(15). Representations such as First or 1st. Often used in street names.

	ORD
	(18). A single letter.

	WORD
	(1). A word is a string of letters of arbitrary length. A single letter can be both a SINGLE and a WORD.

Function-based Input Tokens
	BOXH
	(14). Words used to denote post office boxes. For example Box or PO Box.

	BUILDH
	(19). Words used to denote buildings or building complexes, usually as a prefix. For example: Tower in Tower 7A.

	BUILDT
	(24). Words and abbreviations used to denote buildings or building complexes, usually as a suffix. For example: Shopping Centre.

	DIRECT
	(22). Words used to denote directions, for example North.

	MILE
	(20). Words used to denote milepost addresses.

	ROAD
	(6). Words and abbreviations used to denote highways and roads. For example: the Interstate in Interstate 5

	RR
	(8). Words and abbreviations used to denote rural routes. RR.

	TYPE
	(2). Words and abbreviation used to denote street typess. For example: ST or AVE.

	UNITH
	(16). Words and abbreviation used to denote internal subaddresses. For example, APT or UNIT.

Postal Type Input Tokens
	QUINT
	(28). A 5 digit number. Identifies a Zip Code

	QUAD
	(29). A 4 digit number. Identifies ZIP4.

	PCH
	(27). A 3 character sequence of letter number letter. Identifies an FSA, the first 3 characters of a Canadian postal code.

	PCT
	(26). A 3 character sequence of number letter number. Identifies an LDU, the last 3 characters of a Canadian postal code.

Stopwords
STOPWORDS combine with WORDS. In rules a string of multiple WORDs and STOPWORDs will be represented by a single WORD token.
	STOPWORD
	(7). A word with low lexical significance, that can be omitted in parsing. For example: THE.

Output Tokens
After the first -1 (terminator), follows the output tokens and their order, followed by a terminator -1. Numbers for corresponding output tokens are listed in stdaddr. What are allowed is dependent on kind of rule. Output tokens valid for each rule type are listed in the section called “Rule Types and Rank”.

Rule Types and Rank
The final part of the rule is the rule type which is denoted by one of the following, followed by a rule rank. The rules are ranked from 0 (lowest) to 17 (highest).
MACRO_C
(token number = "0"). The class of rules for parsing MACRO clauses such as PLACE STATE ZIP
MACRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.
	CITY
	(token number "10"). Example "Albany"

	STATE
	(token number "11"). Example "NY"

	NATION
	(token number "12"). This attribute is not used in most reference files. Example "USA"

	POSTAL
	(token number "13"). (SADS elements "ZIP CODE" , "PLUS 4"). This attribute is used for both the US Zip and the Canadian Postal Codes.

MICRO_C
(token number = "1"). The class of rules for parsing full MICRO clauses (such as House, street, sufdir, predir, pretyp, suftype, qualif) (ie ARC_C plus CIVIC_C). These rules are not used in the build phase.
MICRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.
	HOUSE
	is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

	predir
	 is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

	qual
	is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

	pretype
	 is text (token number 4): STREET PREFIX TYPE

	street
	is text (token number 5): STREET NAME

	suftype
	is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example STREET in 75 State Street.

	sufdir
	is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

ARC_C
(token number = "2"). The class of rules for parsing MICRO clauses, excluding the HOUSE attribute. As such uses same set of output tokens as MICRO_C minus the HOUSE token.
CIVIC_C
(token number = "3"). The class of rules for parsing the HOUSE attribute.
EXTRA_C
(token number = "4"). The class of rules for parsing EXTRA attributes - attributes excluded from geocoding. These rules are not used in the build phase.
EXTRA_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.
	BLDNG
	(token number 0): Unparsed building identifiers and types.

	BOXH
	(token number 14): The BOX in BOX 3B

	BOXT
	(token number 15): The 3B in BOX 3B

	RR
	(token number 8): The RR in RR 7

	UNITH
	(token number 16): The APT in APT 3B

	UNITT
	(token number 17): The 3B in APT 3B

	UNKNWN
	(token number 9): An otherwise unclassified output.

Name

				ST_IsPolygonCW
			 — Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
			

Synopsis
	
						boolean
						ST_IsPolygonCW
					(geom);	

						geometry
						geom
					;

Description

				Returns true if all polygonal components of the input geometry use a clockwise
				orientation for their exterior ring, and a counter-clockwise direction
				for all interior rings.
			

				Returns true if the geometry has no polygonal components.
			
Note

					Closed linestrings are not considered polygonal components,
					so you would still get a true return by passing
 a single closed linestring no matter its orientation.
				

Note

					If a polygonal geometry does not use reversed orientation
					for interior rings (i.e., if one or more interior rings
					are oriented in the same direction as an exterior ring)
					then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.
				

Availability: 2.4.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCW
			,
				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Name
ST_3DArea — Computes area of 3D surface geometries. Will return 0 for solids.

Synopsis
	floatST_3DArea(geom1);	

geometry geom1;

Description
Availability: 2.1.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 8.1, 10.5

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note: By default a PolyhedralSurface built from WKT is a surface geometry, not solid. It therefore has surface area. Once converted to a solid, no area.
SELECT ST_3DArea(geom) As cube_surface_area,
	ST_3DArea(ST_MakeSolid(geom)) As solid_surface_area
 FROM (SELECT 'POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'::geometry) As f(geom);

 cube_surface_area | solid_surface_area
-------------------+--------------------
 6 | 0

See Also
ST_Area, ST_MakeSolid, ST_IsSolid, ST_Area

Name
ST_Intersection —
Computes a geometry representing the shared portion of geometries A and B.

Synopsis
	geometry ST_Intersection(geomA, 	
	 	geomB, 	
	 	gridSize = -1);	

 geometry
 geomA
 ;

 geometry
 geomB
 ;

 float8
 gridSize = -1
 ;

	geography ST_Intersection(geogA, 	
	 	geogB);	

 geography
 geogA
 ;

 geography
 geogB
 ;

Description
Returns a geometry representing the point-set
 intersection of two geometries.
 In other words, that portion of geometry A and geometry B
 that is shared between the two geometries.
If the geometries have no points in common (i.e. are disjoint)
 then an empty atomic geometry of appropriate type is returned.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

ST_Intersection in conjunction with ST_Intersects is useful for clipping geometries such as in bounding box, buffer, or region
 queries where you only require the portion of a geometry that is inside a country or region of interest.
Note

 [image: Description] For geography this is a thin wrapper around the geometry implementation.

 It first determines the best SRID that
 fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms back to WGS84 geography.

Warning
This function will drop the M coordinate values if present.

Warning
If working with 3D geometries, you may want to use SFGCAL based ST_3DIntersection which does a proper 3D intersection for 3D geometries. Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter
Requires GEOS >= 3.9.0 to use the gridSize parameter
Changed: 3.0.0 does not depend on SFCGAL.
Availability: 1.5 support for geography data type was introduced.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.18

 [image: Description]
 This function supports 3d and will not drop the z-index.

 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry));
 st_astext

GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry));
 st_astext

POINT(0 0)

Clip all lines (trails) by country. Here we assume country geom are POLYGON or MULTIPOLYGONS.
NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING because we don't
care about trails that just share a point. The dump is needed to expand a geometry collection into individual single MULT* parts.
The below is fairly generic and will work for polys, etc. by just changing the where clause.
select clipped.gid, clipped.f_name, clipped_geom
from (
 select trails.gid, trails.f_name,
 (ST_Dump(ST_Intersection(country.geom, trails.geom))).geom clipped_geom
 from country
 inner join trails on ST_Intersects(country.geom, trails.geom)
) as clipped
where ST_Dimension(clipped.clipped_geom) = 1;
For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon results in an empty geometry collection.
(So a geometry collection containing polys, lines and points buffered by 0.0 would only leave the polygons and dissolve the collection shell.)
select poly.gid,
 ST_Multi(
 ST_Buffer(
 ST_Intersection(country.geom, poly.geom),
 0.0
)
) clipped_geom
from country
 inner join poly on ST_Intersects(country.geom, poly.geom)
where not ST_IsEmpty(ST_Buffer(ST_Intersection(country.geom, poly.geom), 0.0));

Examples: 2.5Dish
Note this is not a true intersection, compare to the same example using ST_3DIntersection.

select ST_AsText(ST_Intersection(linestring, polygon)) As wkt
from ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

 st_astext

 LINESTRING Z (1 1 8,0.5 0.5 8,0 0 10)

See Also
ST_3DIntersection, ST_Difference, ST_Union, ST_Dimension, ST_Dump, ST_Force2D, ST_SymDifference, ST_Intersects, ST_Multi

Name
Geocode — Takes in an address as a string (or other normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized address for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10, and restrict_region (defaults to NULL)

Synopsis
	setof record geocode(address, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

varchar address;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

	setof record geocode(in_addy, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

norm_addy in_addy;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

Description
Takes in an address as a string (or already normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized_address (addy) for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein) and PostGIS line interpolation functions to interpolate address along the Tiger edges. The higher the rating the less likely the geocode is right.
 The geocoded point is defaulted to offset 10 meters from center-line off to side (L/R) of street address is located on.
Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.

Examples: Basic
The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.1rc1/PostGIS 2.0 loaded with all of MA,MN,CA, RI state Tiger data loaded.
Exact matches are faster to compute (61ms)
SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('75 State Street, Boston MA 02109', 1) As g;
 rating | lon | lat | stno | street | styp | city | st | zip
--------+-------------------+----------------+------+--------+------+--------+----+-------
 0 | -71.0557505845646 | 42.35897920691 | 75 | State | St | Boston | MA | 02109

Even if zip is not passed in the geocoder can guess (took about 122-150 ms)
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('226 Hanover Street, Boston, MA',1) As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+---------+------+--------+----+-------
 1 | POINT(-71.05528 42.36316) | 226 | Hanover | St | Boston | MA | 02113

Can handle misspellings and provides more than one possible solution with ratings and takes longer (500ms).
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('31 - 37 Stewart Street, Boston, MA 02116',1) As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+--------+------+--------+----+-------
 70 | POINT(-71.06466 42.35114) | 31 | Stuart | St | Boston | MA | 02116

Using to do a batch geocode of addresses. Easiest is to set max_results=1. Only process those not yet geocoded (have no rating).
CREATE TABLE addresses_to_geocode(addid serial PRIMARY KEY, address text,
 lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

-- only update the first 3 addresses (323-704 ms - there are caching and shared memory effects so first geocode you do is always slower) --
-- for large numbers of addresses you don't want to update all at once
-- since the whole geocode must commit at once
-- For this example we rejoin with LEFT JOIN
-- and set to rating to -1 rating if no match
-- to ensure we don't regeocode a bad address
UPDATE addresses_to_geocode
 SET (rating, new_address, lon, lat)
 = (COALESCE(g.rating,-1), pprint_addy(g.addy),
 ST_X(g.geomout)::numeric(8,5), ST_Y(g.geomout)::numeric(8,5))
FROM (SELECT addid, address
 FROM addresses_to_geocode
 WHERE rating IS NULL ORDER BY addid LIMIT 3) As a
 LEFT JOIN LATERAL geocode(a.address,1) As g ON true
WHERE a.addid = addresses_to_geocode.addid;

result

Query returned successfully: 3 rows affected, 480 ms execution time.

SELECT * FROM addresses_to_geocode WHERE rating is not null;

 addid | address | lon | lat | new_address | rating
-------+--+-----------+----------+---+--------
 1 | 529 Main Street, Boston MA, 02129 | -71.07177 | 42.38357 | 529 Main St, Boston, MA 02129 | 0
 2 | 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09396 | 42.35961 | 77 Massachusetts Ave, Cambridge, MA 02139 | 0
 3 | 25 Wizard of Oz, Walaford, KS 99912323 | -97.92913 | 38.12717 | Willowbrook, KS 67502 | 108
(3 rows)

Examples: Using Geometry filter

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp,
 (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('100 Federal Street, MA',
 3,
 (SELECT ST_Union(the_geom)
 FROM place WHERE statefp = '25' AND name = 'Lynn')::geometry
) As g;

 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+---------+------+------+----+-------
 7 | POINT(-70.96796 42.4659) | 100 | Federal | St | Lynn | MA | 01905
 16 | POINT(-70.96786 42.46853) | NULL | Federal | St | Lynn | MA | 01905
(2 rows)

Time: 622.939 ms

See Also
Normalize_Address, Pprint_Addy, ST_AsText, ST_SnapToGrid, ST_X, ST_Y

Name
AsGML — Returns the GML representation of a topogeometry.

Synopsis
	text AsGML(tg);	

topogeometry tg;

	text AsGML(tg, 	
	 	nsprefix_in);	

topogeometry tg;
text nsprefix_in;

	text AsGML(tg, 	
	 	visitedTable);	

topogeometry tg;
regclass visitedTable;

	text AsGML(tg, 	
	 	visitedTable, 	
	 	nsprefix);	

topogeometry tg;
regclass visitedTable;
text nsprefix;

	text AsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;

	text AsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;

	text AsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable, 	
	 	idprefix);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;
text idprefix;

	text AsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable, 	
	 	idprefix, 	
	 	gmlversion);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;
text idprefix;
int gmlversion;

Description
Returns the GML representation of a topogeometry in version GML3 format. If no nsprefix_in is specified then gml is used. Pass in an empty string for nsprefix to get a non-qualified name space. The precision (default: 15) and options (default 1) parameters, if given, are passed untouched to the underlying call to ST_AsGML.

The visitedTable parameter, if given, is used for keeping track of the visited Node and Edge elements so to use cross-references (xlink:xref) rather than duplicating definitions. The table is expected to have (at least) two integer fields: 'element_type' and 'element_id'. The calling user must have both read and write privileges on the given table.
For best performance, an index should be defined on
element_type and element_id,
in that order. Such index would be created automatically by adding a unique
constraint to the fields. Example:

CREATE TABLE visited (
 element_type integer, element_id integer,
 unique(element_type, element_id)
);

		
The idprefix parameter, if given, will be prepended to Edge and Node tag identifiers.
The gmlver parameter, if given, will be passed to the underlying ST_AsGML. Defaults to 3.
Availability: 2.0.0

Examples
This uses the topo geometry we created in CreateTopoGeom
SELECT topology.AsGML(topo) As rdgml
 FROM ri.roads
 WHERE road_name = 'Unknown';

-- rdgml--
<gml:TopoCurve>
 <gml:directedEdge>
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1"/>
 </gml:directedNode>
 <gml:directedNode></gml:directedNode>
 <gml:curveProperty>
 <gml:Curve srsName="urn:ogc:def:crs:EPSG::3438">
 <gml:segments>
 <gml:LineStringSegment>
 <gml:posList srsDimension="2">384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
 384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
 385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
 385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
 385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
 385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
 385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
 385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
 385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</gml:posList>
 </gml:LineStringSegment>
 </gml:segments>
 </gml:Curve>
 </gml:curveProperty>
 </gml:Edge>
 </gml:directedEdge>
</gml:TopoCurve>

Same exercise as previous without namespace
SELECT topology.AsGML(topo,'') As rdgml
 FROM ri.roads
 WHERE road_name = 'Unknown';

-- rdgml--
<TopoCurve>
 <directedEdge>
 <Edge id="E1">
 <directedNode orientation="-">
 <Node id="N1"/>
 </directedNode>
 <directedNode></directedNode>
 <curveProperty>
 <Curve srsName="urn:ogc:def:crs:EPSG::3438">
 <segments>
 <LineStringSegment>
 <posList srsDimension="2">384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
 384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
 385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
 385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
 385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
 385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
 385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
 385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
 385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</posList>
 </LineStringSegment>
 </segments>
 </Curve>
 </curveProperty>
 </Edge>
 </directedEdge>
</TopoCurve>

See Also
CreateTopoGeom, ST_CreateTopoGeo

Name
TopoGeo_AddLineString — Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.

Synopsis
	SETOF integer TopoGeo_AddLineString(atopology, 	
	 	aline, 	
	 	tolerance);	

varchar atopology;
geometry aline;
float8 tolerance;

Description

Adds a linestring to an existing topology and returns a set of edge identifiers forming it up.
The given line will snap to existing nodes or edges within given tolerance.
Existing edges and faces may be split by the line.

Note

Updating statistics about topologies being loaded via this function is
up to caller, see maintaining statistics during topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint,
TopoGeo_AddPolygon,
AddEdge,
CreateTopology
				

Name
ST_MapAlgebraFct — 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodived. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.

Synopsis
	raster ST_MapAlgebraFct(rast1, 	
	 	rast2, 	
	 	tworastuserfunc, 	
	 	pixeltype=same_as_rast1, 	
	 	extenttype=INTERSECTION, 	
	 	VARIADIC userargs);	

raster rast1;
raster rast2;
regprocedure tworastuserfunc;
text pixeltype=same_as_rast1;
text extenttype=INTERSECTION;
text[] VARIADIC userargs;

	raster ST_MapAlgebraFct(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	tworastuserfunc, 	
	 	pixeltype=same_as_rast1, 	
	 	extenttype=INTERSECTION, 	
	 	VARIADIC userargs);	

raster rast1;
integer band1;
raster rast2;
integer band2;
regprocedure tworastuserfunc;
text pixeltype=same_as_rast1;
text extenttype=INTERSECTION;
text[] VARIADIC userargs;

Description
Warning

 ST_MapAlgebraFct is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.

Creates a new one band raster formed by applying a valid PostgreSQL function specified by the tworastuserfunc on the input raster rast1, rast2. If no band1 or band2 is specified, band 1 is assumed. The new raster will have the same georeference, width, and height as the original rasters but will only have one band.

If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL or left out, then the new raster band will have the same pixeltype as the input rast1 band.

The tworastuserfunc parameter must be the name and signature of an SQL or PL/pgSQL function, cast to a regprocedure. An example PL/pgSQL function example is:

CREATE OR REPLACE FUNCTION simple_function_for_two_rasters(pixel1 FLOAT, pixel2 FLOAT, pos INTEGER[], VARIADIC args TEXT[])
 RETURNS FLOAT
 AS $$ BEGIN
 RETURN 0.0;
 END; $$
 LANGUAGE 'plpgsql' IMMUTABLE;

 The tworastuserfunc may accept three or four arguments: a double precision value, a double precision value, an optional integer array, and a variadic text array. The first argument is the value of an individual raster cell in rast1 (regardless of the raster datatype). The second argument is an individual raster cell value in rast2. The third argument is the position of the current processing cell in the form '{x,y}'. The fourth argument indicates that all remaining parameters to ST_MapAlgebraFct shall be passed through to the tworastuserfunc.

Passing a regprodedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

'simple_function(double precision, double precision, integer[], text[])'::regprocedure

Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

The fourth argument to the tworastuserfunc is a variadic text array. All trailing text arguments to any ST_MapAlgebraFct call are passed through to the specified tworastuserfunc, and are contained in the userargs argument.

Note
For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

Note
The text[] argument to the tworastuserfunc is required, regardless of whether you choose to pass any arguments to your user function for processing or not.

Availability: 2.0.0

Example: Overlaying rasters on a canvas as separate bands

-- define our user defined function --
CREATE OR REPLACE FUNCTION raster_mapalgebra_union(
 rast1 double precision,
 rast2 double precision,
 pos integer[],
 VARIADIC userargs text[]
)
 RETURNS double precision
 AS $$
 DECLARE
 BEGIN
 CASE
 WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
 RETURN ((rast1 + rast2)/2.);
 WHEN rast1 IS NULL AND rast2 IS NULL THEN
 RETURN NULL;
 WHEN rast1 IS NULL THEN
 RETURN rast2;
 ELSE
 RETURN rast1;
 END CASE;

 RETURN NULL;
 END;
 $$ LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- prep our test table of rasters
DROP TABLE IF EXISTS map_shapes;
CREATE TABLE map_shapes(rid serial PRIMARY KEY, rast raster, bnum integer, descrip text);
INSERT INTO map_shapes(rast,bnum, descrip)
WITH mygeoms
 AS (SELECT 2 As bnum, ST_Buffer(ST_Point(90,90),30) As geom, 'circle' As descrip
 UNION ALL
 SELECT 3 AS bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 15) As geom, 'big road' As descrip
 UNION ALL
 SELECT 1 As bnum,
 ST_Translate(ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 8,'join=bevel'), 10,-6) As geom, 'small road' As descrip
),
 -- define our canvas to be 1 to 1 pixel to geometry
 canvas
 AS (SELECT ST_AddBand(ST_MakeEmptyRaster(250,
 250,
 ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0) , '8BUI'::text,0) As rast
 FROM (SELECT ST_Extent(geom) As e,
 Max(ST_SRID(geom)) As srid
 from mygeoms
) As foo
)
-- return our rasters aligned with our canvas
SELECT ST_AsRaster(m.geom, canvas.rast, '8BUI', 240) As rast, bnum, descrip
 FROM mygeoms AS m CROSS JOIN canvas
UNION ALL
SELECT canvas.rast, 4, 'canvas'
FROM canvas;

-- Map algebra on single band rasters and then collect with ST_AddBand
INSERT INTO map_shapes(rast,bnum,descrip)
SELECT ST_AddBand(ST_AddBand(rasts[1], rasts[2]),rasts[3]), 4, 'map bands overlay fct union (canvas)'
 FROM (SELECT ARRAY(SELECT ST_MapAlgebraFct(m1.rast, m2.rast,
 'raster_mapalgebra_union(double precision, double precision, integer[], text[])'::regprocedure, '8BUI', 'FIRST')
 FROM map_shapes As m1 CROSS JOIN map_shapes As m2
 WHERE m1.descrip = 'canvas' AND m2.descrip <> 'canvas' ORDER BY m2.bnum) As rasts) As foo;

	

[image: Example: Overlaying rasters on a canvas as separate bands]map bands overlay (canvas) (R: small road, G: circle, B: big road)

User Defined function that takes extra args

CREATE OR REPLACE FUNCTION raster_mapalgebra_userargs(
 rast1 double precision,
 rast2 double precision,
 pos integer[],
 VARIADIC userargs text[]
)
 RETURNS double precision
 AS $$
 DECLARE
 BEGIN
 CASE
 WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
 RETURN least(userargs[1]::integer,(rast1 + rast2)/2.);
 WHEN rast1 IS NULL AND rast2 IS NULL THEN
 RETURN userargs[2]::integer;
 WHEN rast1 IS NULL THEN
 RETURN greatest(rast2,random()*userargs[3]::integer)::integer;
 ELSE
 RETURN greatest(rast1, random()*userargs[4]::integer)::integer;
 END CASE;

 RETURN NULL;
 END;
 $$ LANGUAGE 'plpgsql' VOLATILE COST 1000;

SELECT ST_MapAlgebraFct(m1.rast, 1, m1.rast, 3,
 'raster_mapalgebra_userargs(double precision, double precision, integer[], text[])'::regprocedure,
 '8BUI', 'INTERSECT', '100','200','200','0')
 FROM map_shapes As m1
 WHERE m1.descrip = 'map bands overlay fct union (canvas)';

[image: User Defined function that takes extra args]user defined with extra args and different bands from same raster

See Also

 ST_MapAlgebraExpr,
 ST_BandPixelType,
 ST_GeoReference,
 ST_SetValue

Name
FindLayer — Returns a topology.layer record by different means.

Synopsis
	topology.layer FindLayer(tg);	

TopoGeometry tg;

	topology.layer FindLayer(layer_table, 	
	 	feature_column);	

regclass layer_table;
name feature_column;

	topology.layer FindLayer(schema_name, 	
	 	table_name, 	
	 	feature_column);	

name schema_name;
name table_name;
name feature_column;

	topology.layer FindLayer(topology_id, 	
	 	layer_id);	

integer topology_id;
integer layer_id;

Description
Takes a layer identifier or the identifier of
a topology-related object and returns a topology.layer record.
Availability: 3.2.0

Examples

SELECT layer_id(findLayer('features.land_parcels', 'feature'));
 layer_id

 1
(1 row)

See Also
FindTopology

Name
postgis_srs_codes — Return the list of SRS codes associated with the given authority.

Synopsis
	setof text postgis_srs_codes(auth_name);	

text auth_name;

Description
Returns a set of all auth_srid for the given auth_name.
Availability: 3.4.0
Proj version 6+

Examples
List the first ten codes associated with the EPSG authority.

SELECT * FROM postgis_srs_codes('EPSG') LIMIT 10;

 postgis_srs_codes

 2000
 20004
 20005
 20006
 20007
 20008
 20009
 2001
 20010
 20011

See Also
postgis_srs, postgis_srs_all, postgis_srs_search

Name
ST_Roughness — Returns a raster with the calculated "roughness" of a DEM.

Synopsis
	raster ST_Roughness(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype="32BF", 	
	 	 interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype="32BF" ;
boolean interpolate_nodata=FALSE ;

Description
Calculates the "roughness" of a DEM, by subtracting the maximum from the minimum for a given area.
Availability: 2.1.0

Examples

-- needs examples

See Also

 ST_MapAlgebra (callback function version),
 ST_TRI,
 ST_TPI,
 ST_Slope,
 ST_HillShade,
 ST_Aspect

Name
ST_3DUnion — Perform 3D union.

Synopsis
	geometry ST_3DUnion(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

	geometry ST_3DUnion(g1field);	

geometry set g1field;

Description
Availability: 2.2.0
Availability: 3.3.0 aggregate variant was added

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

 Aggregate variant:
 returns a geometry that is the 3D union of a rowset of geometries.
 The ST_3DUnion() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is the one with transparency.

 	

SELECT ST_3DUnion(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]Union of geom1 and geom2

See Also

 ST_Extrude,
 ST_AsX3D, ST_3DIntersection
 ST_3DDifference

Name
ST_Touches — Tests if two geometries have at least one point in common,
 but their interiors do not intersect

Synopsis
	boolean ST_Touches(A, 	
	 	B);	

geometry
 A;
geometry
 B;

Description
Returns TRUE if A and B intersect,
 but their interiors do not intersect. Equivalently, A and B have at least one point in common,
 and the common points lie in at least one boundary.
 For Point/Point inputs the relationship is always FALSE,
 since points do not have a boundary.
In mathematical terms:
 ST_Touches(A, B) ⇔ (Int(A) ⋂ Int(B) ≠ ∅) ∧ (A ⋂ B ≠ ∅)
This relationship holds if the DE-9IM Intersection Matrix for the two geometries matches one of:
	FT*******

	F**T*****

	F***T****

Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid using an index, use _ST_Touches instead.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.2 // s2.1.13.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.28

Examples
The ST_Touches predicate returns TRUE in the following examples.
	[image: Examples]POLYGON / POLYGON

	[image: Examples]POLYGON / POLYGON

	[image: Examples]POLYGON / LINESTRING

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]POLYGON / POINT

SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(1 1)'::geometry);
 st_touches

 f
(1 row)

SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(0 2)'::geometry);
 st_touches

 t
(1 row)

Name
PostGIS_Scripts_Released — Returns the version number of the postgis.sql script
		released with the installed PostGIS lib.

Synopsis
	text PostGIS_Scripts_Released();	

;

Description
Returns the version number of the postgis.sql script
		released with the installed PostGIS lib.
Note
Starting with version 1.1.0 this function returns the same
		 value of PostGIS_Lib_Version. Kept
		 for backward compatibility.

Availability: 0.9.0

Examples
SELECT PostGIS_Scripts_Released();
 postgis_scripts_released

 3.4.0dev 3.3.0rc2-993-g61bdf43a7
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Scripts_Installed, PostGIS_Lib_Version

Name
ST_MakePointM — Creates a Point from X, Y and M values.

Synopsis
	geometry ST_MakePointM(x, 	
	 	y, 	
	 	m);	

float x;
float y;
float m;

Description
Creates a point with X, Y and M (measure) coordinates.
Use ST_MakePoint to make points with XY, XYZ, or XYZM coordinates.
Note
For geodetic coordinates, X is longitude and Y is latitude

Examples
Note
ST_AsEWKT is used for text output
			because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_AsEWKT(ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));

				 st_asewkt

 POINTM(-71.1043443253471 42.3150676015829 10)

Create point with a measure in the WGS 84 geodetic coordinate system.

SELECT ST_AsEWKT(ST_SetSRID(ST_MakePointM(-71.104, 42.315, 10), 4326));

						st_asewkt

SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(ST_MakePointM(-71.104, 42.315, 10));

result

10

See Also
ST_AsEWKT, ST_MakePoint, ST_SetSRID

Name
ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

Synopsis
	text ST_AsText(g1);	

geometry g1;

	text ST_AsText(g1, 	
	 	maxdecimaldigits = 15);	

geometry g1;
integer maxdecimaldigits = 15;

	text ST_AsText(g1);	

geography g1;

	text ST_AsText(g1, 	
	 	maxdecimaldigits = 15);	

geography g1;
integer maxdecimaldigits = 15;

Description
Returns the OGC Well-Known Text (WKT) representation of the geometry/geography.
 The optional maxdecimaldigits argument may be used to limit the number
			of digits after the decimal point in output ordinates (defaults to 15).
To perform the inverse conversion of WKT representation to PostGIS geometry
 use ST_GeomFromText.
Note
The standard OGC WKT representation does not include the SRID.
 To include the SRID as part of the output representation, use the non-standard
				PostGIS function ST_AsEWKT

Warning
The textual representation of numbers in WKT may not maintain full floating-point precision.
 To ensure full accuracy for data storage or transport it is best to use
 Well-Known Binary (WKB) format
 (see ST_AsBinary and maxdecimaldigits).

Warning
Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

Availability: 1.5 - support for geography was introduced.
Enhanced: 2.5 - optional parameter precision introduced.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.25

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsText('01030000000100000005000000000000000000
00
F03F000000000000F03F000000000000F03F000000000000F03
F00');

 st_astext

 POLYGON((0 0,0 1,1 1,1 0,0 0))

Full precision output is the default.
SELECT ST_AsText('POINT(111.1111111 1.1111111)'));
 st_astext

 POINT(111.1111111 1.1111111)

The maxdecimaldigits argument can be used to limit output precision.
SELECT ST_AsText('POINT(111.1111111 1.1111111)'), 2);
 st_astext

 POINT(111.11 1.11)

See Also
ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

Name
ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.

Synopsis
	geometry ST_BdPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.
Note
Throws an error if WKT is not a MULTILINESTRING. Throws an
			error if output is a MULTIPOLYGON; use ST_BdMPolyFromText in that case, or
			see ST_BuildArea() for a
			postgis-specific approach.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2
Performed by the GEOS module.
Availability: 1.1.0

See Also
ST_BuildArea, ST_BdMPolyFromText

Name
ST_SetZ — Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimension using the requested resample algorithm.

Synopsis
	geometry ST_SetZ(rast, 	
	 	geom, 	
	 	resample=nearest, 	
	 	band=1);	

raster rast;
geometry geom;
text resample=nearest;
integer band=1;

Description
Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimensions using the requested resample algorithm.
The resample parameter can be set to "nearest" to copy the values from the cell each vertex falls within, or "bilinear" to use bilinear interpolation to calculate a value that takes neighboring cells into account also.
Availability: 3.2.0

Examples
--
-- 2x2 test raster with values
--
-- 10 50
-- 40 20
--
WITH test_raster AS (
SELECT
ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(width => 2, height => 2,
 upperleftx => 0, upperlefty => 2,
 scalex => 1.0, scaley => -1.0,
 skewx => 0, skewy => 0, srid => 4326),
 index => 1, pixeltype => '16BSI',
 initialvalue => 0,
 nodataval => -999),
 1,1,1,
 newvalueset =>ARRAY[ARRAY[10.0::float8, 50.0::float8], ARRAY[40.0::float8, 20.0::float8]]) AS rast
)
SELECT
ST_AsText(
 ST_SetZ(
 rast,
 band => 1,
 geom => 'SRID=4326;LINESTRING(1.0 1.9, 1.0 0.2)'::geometry,
 resample => 'bilinear'
))
FROM test_raster

 st_astext

 LINESTRING Z (1 1.9 38,1 0.2 27)

See Also

 ST_Value,
 ST_SetM

Name
toTopoGeom — Adds a geometry shape to an existing topo geometry.

Description

Refer to toTopoGeom.

Name
ST_ForceCollection — Convert the geometry into a GEOMETRYCOLLECTION.

Synopsis
	geometry ST_ForceCollection(geomA);	

geometry geomA;

Description
Converts the geometry into a GEOMETRYCOLLECTION. This is
			useful for simplifying the WKB representation.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Availability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

SELECT ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

								 st_asewkt
--
 GEOMETRYCOLLECTION(POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1)))

 SELECT ST_AsText(ST_ForceCollection('CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));
								 st_astext
--
 GEOMETRYCOLLECTION(CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
(1 row)

		

-- POLYHEDRAL example --
SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))'))

								 st_asewkt
--
GEOMETRYCOLLECTION(
 POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1))
)
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

Name
ST_TriangulatePolygon — Computes the constrained Delaunay triangulation of polygons

Synopsis
	geometry ST_TriangulatePolygon(geom);	

geometry geom;

Description
Computes the constrained Delaunay triangulation of polygons.
 Holes and Multipolygons are supported.

 The "constrained Delaunay triangulation" of a polygon is a set of triangles formed from the vertices of the polygon,
 and covering it exactly, with the maximum total interior angle over all possible triangulations.
 It provides the "best quality" triangulation of the polygon.
Availability: 3.3.0.
Requires GEOS >= 3.11.0.

Example
Triangulation of a square.

SELECT ST_AsText(
 ST_TriangulatePolygon('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'));

 st_astext

 GEOMETRYCOLLECTION(POLYGON((0 0,0 1,1 1,0 0)),POLYGON((1 1,1 0,0 0,1 1)))

Example
Triangulation of the letter P.
SELECT ST_AsText(ST_TriangulatePolygon(
 'POLYGON ((26 17, 31 19, 34 21, 37 24, 38 29, 39 43, 39 161, 38 172, 36 176, 34 179, 30 181, 25 183, 10 185, 10 190, 100 190, 121 189, 139 187, 154 182, 167 177, 177 169, 184 161, 189 152, 190 141, 188 128, 186 123, 184 117, 180 113, 176 108, 170 104, 164 101, 151 96, 136 92, 119 89, 100 89, 86 89, 73 89, 73 39, 74 32, 75 27, 77 23, 79 20, 83 18, 89 17, 106 15, 106 10, 10 10, 10 15, 26 17), (152 147, 151 152, 149 157, 146 162, 142 166, 137 169, 132 172, 126 175, 118 177, 109 179, 99 180, 89 180, 80 179, 76 178, 74 176, 73 171, 73 100, 85 99, 91 99, 102 99, 112 100, 121 102, 128 104, 134 107, 139 110, 143 114, 147 118, 149 123, 151 128, 153 141, 152 147))'
));

[image: Example]Polygon Triangulation

See Also

				ST_DelaunayTriangles,
				ST_ConstrainedDelaunayTriangles,
				ST_Tesselate

Name
ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis
	geometry ST_MPointFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry ST_MPointFromText(WKT);	

text WKT;

Description
Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite
Returns null if the WKT is not a MULTIPOINT
Note
If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 3.2.6.2

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 9.2.4

Examples
SELECT ST_MPointFromText('MULTIPOINT((1 2),(3 4))');
SELECT ST_MPointFromText('MULTIPOINT((-70.9590 42.1180),(-70.9611 42.1223))', 4326);

See Also
ST_GeomFromText

Raster Accessors

Name
ST_AsKML — Return the geometry as a KML element.

Synopsis
	text ST_AsKML(geom, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

geometry geom;
integer maxdecimaldigits=15;
text nprefix=NULL;

	text ST_AsKML(geog, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

geography geog;
integer maxdecimaldigits=15;
text nprefix=NULL;

Description
Return the geometry as a Keyhole Markup Language (KML) element.
			default maximum number of decimal places is 15,
			default namespace is no prefix.
Warning
Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.

Note
Availability: 1.2.2 - later variants that include version param came in 1.3.2

Note
Enhanced: 2.0.0 - Add prefix namespace, use default and named args

Note
Changed: 3.0.0 - Removed the "versioned" variant signature

Note
AsKML output will not work with geometries that do not have an SRID

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_askml

		<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

		--3d linestring
		SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
		<LineString><coordinates>1,2,3 4,5,6</coordinates></LineString>
		
		

See Also
ST_AsSVG, ST_AsGML

Name
ST_MakeEmptyRaster — Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
 If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).

Synopsis
	raster ST_MakeEmptyRaster(rast);	

raster rast;

	raster ST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy, 	
	 	srid=unknown);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 scalex;
float8 scaley;
float8 skewx;
float8 skewy;
integer srid=unknown;

	raster ST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	pixelsize);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 pixelsize;

Description
Returns an empty raster (having no band) of given dimensions (width & height) and georeferenced in spatial (or world) coordinates with upper left X (upperleftx), upper left Y (upperlefty),
 pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
The last version use a single parameter to specify the pixel size (pixelsize). scalex is set to this argument and scaley is set to the negative value of this argument. skewx and skewy are set to 0.
If an existing raster is passed in, it returns a new raster with the same meta data settings (without the bands).
If no srid is specified it defaults to 0. After you create an empty raster you probably want to add bands to it and maybe edit it. Refer to ST_AddBand to define bands and ST_SetValue to set initial pixel values.

Examples

INSERT INTO dummy_rast(rid,rast)
VALUES(3, ST_MakeEmptyRaster(100, 100, 0.0005, 0.0005, 1, 1, 0, 0, 4326));

--use an existing raster as template for new raster
INSERT INTO dummy_rast(rid,rast)
SELECT 4, ST_MakeEmptyRaster(rast)
FROM dummy_rast WHERE rid = 3;

-- output meta data of rasters we just added
SELECT rid, (md).*
FROM (SELECT rid, ST_MetaData(rast) As md
 FROM dummy_rast
 WHERE rid IN(3,4)) As foo;

-- output --
 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 3 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0
 4 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0

See Also
ST_AddBand, ST_MetaData, ST_ScaleX, ST_ScaleY, ST_SetValue, ST_SkewX, , ST_SkewY

Name
ST_HasNoBand — Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

Synopsis
	boolean ST_HasNoBand(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
Availability: 2.0.0

Examples
SELECT rid, ST_HasNoBand(rast) As hb1, ST_HasNoBand(rast,2) as hb2,
ST_HasNoBand(rast,4) as hb4, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | hb1 | hb2 | hb4 | numbands
-----+-----+-----+-----+----------
1 | t | t | t | 0
2 | f | f | t | 3

See Also
ST_NumBands

TopoGeometry Accessors

Name
ST_Extrude — Extrude a surface to a related volume

Synopsis
	geometry ST_Extrude(geom, 	
	 	x, 	
	 	y, 	
	 	z);	

geometry geom;
float x;
float y;
float z;

Description
Availability: 2.1.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	
						
SELECT ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30);

						
[image: Examples]Original octagon formed from buffering point

					 	
					
ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30);

					
[image: Examples]Hexagon extruded 30 units along Z produces a PolyhedralSurfaceZ

					
	
						
SELECT ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)')

						
[image: Examples]Original linestring

					 	
					
SELECT ST_Extrude(
 ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)'),0,0,10));

					
[image: Examples]LineString Extruded along Z produces a PolyhedralSurfaceZ

					

See Also
ST_AsX3D

Name
ST_3DClosestPoint — Returns the 3D point on g1 that is closest to g2. This is the first point of
				the 3D shortest line.

Synopsis
	geometry ST_3DClosestPoint(g1, 	
	 	g2);	

geometry
				g1;
geometry
				g2;

Description
Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of
				the 3D shortest line. The 3D length of the 3D shortest line is the 3D distance.
			

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

Availability: 2.0.0
Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples
	linestring and point -- both 3d and 2d closest point
					

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
		ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
	FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;

 cp3d_line_pt						| cp2d_line_pt
---+--
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(73.0769230769231 115.384615384615)
					

							

	linestring and multipoint -- both 3d and 2d closest point
					
SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
		ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
	FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;

 cp3d_line_pt | cp2d_line_pt
---+--------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(50 75)
					

							

	Multilinestring and polygon both 3d and 2d closest point
					
SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
 ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 cp3d | cp2d
---+--------------
 POINT(39.993580415989 54.1889925532825 5) | POINT(20 40)

							

See Also
ST_AsEWKT, ST_ClosestPoint, ST_3DDistance, ST_3DShortestLine

Name
ST_Hexagon — Returns a single hexagon, using the provided edge size and
			cell coordinate within the hexagon grid space.

Synopsis
	geometry ST_Hexagon(size, 	
	 	cell_i, 	
	 	cell_j, 	
	 	origin);	

float8 size;
integer cell_i;
integer cell_j;
geometry origin;

Description
Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Optionally,
			can adjust origin coordinate of the tiling, the default origin is at 0,0.
			
Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.
Availability: 3.1.0

Example: Creating a hexagon at the origin
SELECT ST_AsText(ST_SetSRID(ST_Hexagon(1.0, 0, 0), 3857));

POLYGON((-1 0,-0.5
 -0.866025403784439,0.5
 -0.866025403784439,1
 0,0.5
 0.866025403784439,-0.5
 0.866025403784439,-1 0))

See Also
ST_TileEnvelope, ST_HexagonGrid, ST_Square

Name
ST_Expand — Returns a bounding box expanded from another bounding box or a geometry.

Synopsis
	geometry ST_Expand(geom, 	
	 	units_to_expand);	

geometry geom;
float units_to_expand;

	geometry ST_Expand(geom, 	
	 	dx, 	
	 	dy, 	
	 	dz=0, 	
	 	dm=0);	

geometry geom;
float dx;
float dy;
float dz=0;
float dm=0;

	box2d ST_Expand(box, 	
	 	units_to_expand);	

box2d box;
float units_to_expand;

	box2d ST_Expand(box, 	
	 	dx, 	
	 	dy);	

box2d box;
float dx;
float dy;

	box3d ST_Expand(box, 	
	 	units_to_expand);	

box3d box;
float units_to_expand;

	box3d ST_Expand(box, 	
	 	dx, 	
	 	dy, 	
	 	dz=0);	

box3d box;
float dx;
float dy;
float dz=0;

Description
Returns a bounding box expanded from the bounding box of the input,
			either by specifying a single distance with which the box should be expanded on both
			axes, or by specifying an expansion distance for each axis.

			Uses double-precision. Can be used for distance queries, or to add a bounding box
			filter to a query to take advantage of a spatial index.
In addition to the version of ST_Expand accepting and returning a geometry, variants
			are provided that accept and return
 box2d and box3d data types.
		
Distances are in the units of the spatial reference system of the input.
ST_Expand is similar to ST_Buffer,
			except while buffering expands a geometry in all directions,
			ST_Expand expands the bounding box along each axis.
Note
Pre version 1.3, ST_Expand was used in conjunction with ST_Distance to do indexable distance queries. For example,
			geom && ST_Expand('POINT(10 20)', 10) AND ST_Distance(geom, 'POINT(10 20)') < 10.
			This has been replaced by the simpler and more efficient ST_DWithin function.

Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

		
--10 meter expanded box around bbox of a linestring
SELECT CAST(ST_Expand(ST_GeomFromText('LINESTRING(2312980 110676,2312923 110701,2312892 110714)', 2163),10) As box2d);
					 st_expand

 BOX(2312882 110666,2312990 110724)

--10 meter expanded 3D box of a 3D box
SELECT ST_Expand(CAST('BOX3D(778783 2951741 1,794875 2970042.61545891 10)' As box3d),10)
							 st_expand

 BOX3D(778773 2951731 -9,794885 2970052.61545891 20)

 --10 meter geometry astext rep of a expand box around a point geometry
 SELECT ST_AsEWKT(ST_Expand(ST_GeomFromEWKT('SRID=2163;POINT(2312980 110676)'),10));
											st_asewkt

 SRID=2163;POLYGON((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 110666))

		

See Also
ST_Buffer, ST_DWithin, ST_SRID

Spatial Indexes

Spatial indexes make using a spatial database for large data sets
	possible. Without indexing, a search for features requires a
	sequential scan of every record in the database. Indexing speeds up
	searching by organizing the data into a structure which can be quickly
	traversed to find matching records.

The B-tree index method commonly used for attribute data
 is not very useful for spatial data, since it only supports storing and querying
 data in a single dimension.
 Data such as geometry (which has 2 or more dimensions)
 requires an index method that supports range query across all the data dimensions.
 One of the key advantages of PostgreSQL for spatial data handling is that it offers several kinds of
	index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.
	GiST (Generalized Search Tree) indexes break up data into
		"things to one side", "things which overlap", "things which are
		inside" and can be used on a wide range of data-types, including GIS
		data. PostGIS uses an R-Tree index implemented on top of GiST to index
		spatial data. GiST is the most commonly-used and versatile spatial index method,
 and offers very good query performance.

	BRIN (Block Range Index) indexes operate by summarizing
 the spatial extent of ranges of table records.
 Search is done via a scan of the ranges.
 BRIN is only appropriate for use for some kinds of data
 (spatially sorted, with infrequent or no update).
 But it provides much faster index create time, and much smaller index size.

	SP-GiST (Space-Partitioned Generalized Search Tree)
 is a generic index method that supports partitioned search trees
 such as quad-trees, k-d trees, and radix trees (tries).

Spatial indexes store only the bounding box of geometries.
 Spatial queries use the index as a primary filter
 to quickly determine a set of geometries potentially matching the query condition.
 Most spatial queries require a secondary filter
 that uses a spatial predicate function to test a more specific spatial condition.
 For more information on queying with spatial predicates see the section called “Using Spatial Indexes”.

See also the
 PostGIS Workshop section on spatial indexes,
 and the PostgreSQL manual.

GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of
	 indexing for multi-dimensional data.
 PostGIS uses an R-Tree index implemented on top of GiST to index spatial data.
 GiST is the most commonly-used and versatile spatial index method, and offers very good query performance.
 Other implementations of GiST are used to speed up searches
	 on all kinds of irregular data structures (integer arrays, spectral
	 data, etc) which are not amenable to normal B-Tree indexing.
 For more information see the PostgreSQL manual.

Once a spatial data table exceeds a few thousand rows, you will want
	 to build an index to speed up spatial searches of the data (unless all
	 your searches are based on attributes, in which case you'll want to
	 build a normal index on the attribute fields).
The syntax for building a GiST index on a "geometry" column is as
	 follows:
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);
The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one using this syntax:
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);
Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates, so on a production system you may want to do in in a slower CONCURRENTLY-aware way:
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ([geometryfield]);
After building an index, it is sometimes helpful to force PostgreSQL to collect
		table statistics, which are used to optimize query plans:
VACUUM ANALYZE [table_name] [(column_name)];

BRIN Indexes

BRIN stands for "Block Range Index". It is a general-purpose
 index method introduced in PostgreSQL 9.5.
 BRIN is a lossy
 index method, meaning that a secondary check is required to confirm
 that a record matches a given search condition
 (which is the case for all provided spatial indexes).
 It provides much faster index creation and much smaller index size,
 with reasonable read performance.
 Its primary purpose is to support indexing very large tables
 on columns which have a correlation with their
 physical location within the table. In addition to spatial indexing,
 BRIN can speed up searches on various kinds of attribute data
 structures (integer, arrays etc).
 For more information see the PostgreSQL manual.

Once a spatial table exceeds a few thousand rows, you will want
 to build an index to speed up spatial searches of the data.
 GiST indexes are very performant as long as their size doesn't exceed the amount of RAM
 available for the database, and as long as you can afford the index storage
 size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
 considered as an alternative.
A BRIN index stores the bounding box enclosing
 all the geometries contained in the rows in a contiguous set of table blocks,
 called a block range.
 When executing a query using the index the block ranges are scanned to
 find the ones that intersect the query extent.
 This is efficient only if the data is physically ordered so that the bounding
 boxes for block ranges have minimal overlap (and ideally are mutually exclusive).
 The resulting index is very small in size,
 but is typically less performant for read than a GiST index over the same data.
Building a BRIN index is much less CPU-intensive than building a GiST index.
 It's common to find that a BRIN index is ten times faster to build
 than a GiST index over the same data. And because a BRIN index stores only one
 bounding box for each range of table blocks, it's common to use
 up to a thousand times less disk space than a GiST index.
You can choose the number of blocks to summarize in a range. If you
 decrease this number, the index will be bigger but will probably provide
 better performance.
For BRIN to be effective, the table data should be stored in
 a physical order which minimizes the amount of block extent overlap.
 It may be that the data is already sorted appropriately
 (for instance, if it is loaded from another dataset that is already sorted in spatial order).
 Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key.
 One way to do this is to create a new table sorted by the geometry values
 (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

CREATE TABLE table_sorted AS
 SELECT * FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index,
 and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
 USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geometry column is:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);
The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
 USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);
You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
 USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);
The above commands use the default number of blocks in a range, which is 128.
 To specify the number of blocks to summarise in a range, use this syntax

CREATE INDEX [indexname] ON [tablename]
 USING BRIN ([geome_col]) WITH (pages_per_range = [number]);
Keep in mind that a BRIN index only stores one index
 entry for a large number of rows. If your table stores geometries with
 a mixed number of dimensions, it's likely that the resulting index will
 have poor performance. You can avoid this performance penalty by
 choosing the operator class with the least number of dimensions of the
 stored geometries

The geography datatype is supported for BRIN indexing. The
 syntax for building a BRIN index on a geography column is:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);
The above syntax builds a 2D-index for geospatial objects on the spheroid.
Currently, only "inclusion support" is provided, meaning
 that just the &&, ~ and
 @ operators can be used for the 2D cases (for both
 geometry and geography), and just the &&&
 operator for 3D geometries.
 There is currently no support for kNN searches.
An important difference between BRIN and other index types is that the database does not
 maintain the index dynamically. Changes to spatial data in the table
 are simply appended to the end of the index. This will cause index search performance to
 degrade over time. The index can be updated by performing a VACUUM,
 or by using a special function brin_summarize_new_values(regclass).
 For this reason BRIN may be most appropriate for use with data that is read-only,
 or only rarely changing. For more information refer to the
 manual.

To summarize using BRIN for spatial data:

	Index build time is very fast, and index size is very small.

	Index query time is slower than GiST, but can still be very acceptable.

	Requires table data to be sorted in a spatial ordering.

	Requires manual index maintenance.

	Most appropriate for very large tables,
 with low or no overlap (e.g. points),
 which are static or change infrequently.

	More effective for queries which return relatively large numbers of data records.

SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is
		a generic form of indexing for multi-dimensional data types
 that supports partitioned search trees, such as
		quad-trees, k-d trees, and radix trees (tries).
 The common feature of these
		data structures is that they repeatedly divide the search space into
		partitions that need not be of equal size. In addition to spatial indexing,
		SP-GiST is used to speed up searches on many kinds of data, such as phone
		routing, ip routing, substring search, etc.
 For more information see the PostgreSQL manual.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the
		sense that they store the bounding box enclosing spatial objects.
		SP-GiST indexes can be considered as an alternative to GiST indexes.
Once a GIS data table exceeds a few thousand rows, an SP-GiST index
		may be used to speed up spatial searches of the data. The syntax for
		building an SP-GiST index on a "geometry" column is as follows:
CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield]);
The above syntax will build a 2-dimensional index. A 3-dimensional
		index for the geometry type can be created using the 3D operator class:
CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] spgist_geometry_ops_3d);
Building a spatial index is a computationally intensive operation.
		It also blocks write access to your table for the time it creates, so on a
		production system you may want to do in in a slower CONCURRENTLY-aware way:
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ([geometryfield]);
After building an index, it is sometimes helpful to force PostgreSQL to
		collect table statistics, which are used to optimize query plans:
VACUUM ANALYZE [table_name] [(column_name)];
An SP-GiST index can accelerate queries involving the following operators:
	<<, &<, &>, >>, <<|, &<|, |&>, |>>, &&, @>, <@, and ~=, for 2-dimensional indexes,

	 &/&, ~==, @>>, and <<@, for 3-dimensional indexes.

There is no support for kNN searches at the moment.

Tuning Index Usage

Ordinarily, indexes invisibly speed up data access: once an index
	 is built, the PostgreSQL query planner automatically decides when to use it
 to improve query performance. But there are some situations
	 where the planner does not choose to use existing indexes,
 so queries end up using slow sequential scans instead of a spatial index.
If you find your spatial indexes are not being used,
 there are a few things you can do:
	Examine the query plan and check your query actually computes the
			thing you need. An erroneous JOIN, either forgotten or to the wrong table,
			can unexpectedly retrieve table records multiple times.
 To get the query plan, execute with EXPLAIN in front of the query.

	Make sure statistics are gathered about the number
		 and distributions of values in a table, to provide the query planner
		 with better information to make decisions around index usage.
			VACUUM ANALYZE will compute both.
You should regularly vacuum your databases anyways. Many PostgreSQL DBAs run
			VACUUM as an off-peak cron job on a regular basis.

	If vacuuming does not help, you can temporarily force the planner to use
		 the index information by using the command SET ENABLE_SEQSCAN TO OFF;.
		 This way you can check whether the planner is at all able to generate
			an index-accelerated query plan for your query.
			You should only use this command for debugging; generally
		 speaking, the planner knows better than you do about when to use
		 indexes. Once you have run your query, do not forget to run
			SET ENABLE_SEQSCAN TO ON; so that the planner
 will operate normally for other queries.

	If SET ENABLE_SEQSCAN TO OFF; helps your query to run faster,
		 your Postgres is likely not tuned for your hardware.
			If you find the planner wrong about the cost of sequential versus
		 index scans try reducing the value of RANDOM_PAGE_COST in
		 postgresql.conf, or use SET RANDOM_PAGE_COST TO 1.1;.
 The default value for RANDOM_PAGE_COST is 4.0.
 Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks).
		 Decreasing the value makes the planner more likely to use index scans.

	If SET ENABLE_SEQSCAN TO OFF; does not help your query,
			the query may be using a SQL construct that the Postgres planner is not yet able to optimize.
 It may be possible to rewrite the query in a way that the planner is able to handle.
			For example, a subquery with an inline SELECT may not produce an efficient plan,
 but could possibly be rewritten using a LATERAL JOIN.

 For more information see the Postgres manual section on
 Query Planning.

Name
ST_Transform — Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.

Synopsis
	raster ST_Transform(rast, 	
	 	srid, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125, 	
	 	scalex, 	
	 	scaley);	

raster rast;
integer srid;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;
double precision scalex;
double precision scaley;

	raster ST_Transform(rast, 	
	 	srid, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer srid;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Transform(rast, 	
	 	alignto, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
raster alignto;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Reprojects a raster in a known spatial reference system to another known spatial reference system using specified pixel warping algorithm.
 Uses 'NearestNeighbor' if no algorithm is specified and maxerror percent of 0.125 if no maxerr is specified.
Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.

 ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a raster (and resamples the pixel values) from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the raster.

 Unlike the other variants, Variant 3 requires a reference raster as alignto. The transformed raster will be transformed to the spatial reference system (SRID) of the reference raster and be aligned (ST_SameAlignment = TRUE) to the reference raster.

Note

 If you find your transformation support is not working right, you may need to set the environment variable PROJSO to the .so or .dll projection library your PostGIS is using. This just needs to have the name of the file. So for example on windows, you would in Control Panel -> System -> Environment Variables add a system variable called PROJSO and set it to libproj.dll (if you are using proj 4.6.1). You'll have to restart your PostgreSQL service/daemon after this change.

Warning

 When transforming a coverage of tiles, you almost always want to use a reference raster to insure same alignment and no gaps in your tiles as demonstrated in example: Variant 3.

Availability: 2.0.0 Requires GDAL 1.6.1+
Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant

Examples
SELECT ST_Width(mass_stm) As w_before, ST_Width(wgs_84) As w_after,
 ST_Height(mass_stm) As h_before, ST_Height(wgs_84) As h_after
 FROM
 (SELECT rast As mass_stm, ST_Transform(rast,4326) As wgs_84
 , ST_Transform(rast,4326, 'Bilinear') AS wgs_84_bilin
 FROM aerials.o_2_boston
 WHERE ST_Intersects(rast,
 ST_Transform(ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986))
 LIMIT 1) As foo;

 w_before | w_after | h_before | h_after
----------+---------+----------+---------
 200 | 228 | 200 | 170

	[image: Examples]original mass state plane meters (mass_stm)

 	[image: Examples]After transform to wgs 84 long lat (wgs_84)

 	[image: Examples]After transform to wgs 84 long lat with bilinear algorithm instead of NN default (wgs_84_bilin)

Examples: Variant 3
The following shows the difference between using ST_Transform(raster, srid) and ST_Transform(raster, alignto)

WITH foo AS (
 SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 1, 0) AS rast UNION ALL
 SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 2, 0) AS rast UNION ALL
 SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 3, 0) AS rast UNION ALL

 SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 10, 0) AS rast UNION ALL
 SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 20, 0) AS rast UNION ALL
 SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 30, 0) AS rast UNION ALL

 SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 100, 0) AS rast UNION ALL
 SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 200, 0) AS rast UNION ALL
 SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 300, 0) AS rast
), bar AS (
 SELECT
 ST_Transform(rast, 4269) AS alignto
 FROM foo
 LIMIT 1
), baz AS (
 SELECT
 rid,
 rast,
 ST_Transform(rast, 4269) AS not_aligned,
 ST_Transform(rast, alignto) AS aligned
 FROM foo
 CROSS JOIN bar
)
SELECT
 ST_SameAlignment(rast) AS rast,
 ST_SameAlignment(not_aligned) AS not_aligned,
 ST_SameAlignment(aligned) AS aligned
FROM baz

 rast | not_aligned | aligned
------+-------------+---------
 t | f | t

	[image: Examples: Variant 3]not_aligned

	[image: Examples: Variant 3]aligned

See Also
ST_Transform, ST_SetSRID

Name
ST_RemoveIsoNode — Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.

Synopsis
	text ST_RemoveIsoNode(atopology, 	
	 	anode);	

varchar atopology;
integer anode;

Description
Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.
Availability: 1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples

-- Remove an isolated node with no face --
SELECT topology.ST_RemoveIsoNode('ma_topo', 7) As result;
 result

 Isolated node 7 removed

See Also
ST_AddIsoNode

Name
ST_Max4ma — Raster processing function that calculates the maximum pixel value in a neighborhood.

Synopsis
	float8 ST_Max4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision ST_Max4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the maximum pixel value in a neighborhood of pixels.

 For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

 Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Warning

 Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_max4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 254
(1 row)

See Also

 ST_MapAlgebraFctNgb,
 ST_MapAlgebra (callback function version),
 ST_Min4ma,
 ST_Sum4ma,
 ST_Mean4ma,
 ST_Range4ma,
 ST_Distinct4ma,
 ST_StdDev4ma

Name
TopoGeometry — A composite type representing a topologically defined geometry.

Description
A composite type that refers to a topology geometry in a specific topology layer, having a specific type and a specific id. The elements of a TopoGeometry are the properties: topology_id, layer_id, id integer, type integer.
	topology_id is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema and srid.

	layer_id is an integer: The layer_id in the layers table that the TopoGeometry belongs to. The combination of topology_id, layer_id provides a unique reference in the topology.layers table.

	id is an integer: The id is the autogenerated sequence number that uniquely defines the topogeometry in the respective topology layer.

	type integer between 1 - 4 that defines the geometry type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	geometry	automatic

See Also
CreateTopoGeom

Name
ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

Synopsis
	geometry ST_ShiftLongitude(geom);	

geometry geom;

Description
Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between these ranges.
 This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representation of a 0..360 data.

Note
This is only useful for data with coordinates in
 longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

Warning
Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
--single point forward transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(270 0)'::geometry))

st_astext

POINT(-90 0)

--single point reverse transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(-90 0)'::geometry))

st_astext

POINT(270 0)

--for linestrings the functions affects only to the sufficient coordinates
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;LINESTRING(174 12, 182 13)'::geometry))

st_astext

LINESTRING(174 12,-178 13)

See Also

 ST_WrapX

Name
ST_HasArc — Tests if a geometry contains a circular arc

Synopsis
	boolean ST_HasArc(geomA);	

geometry geomA;

Description
Returns true if a geometry or geometry collection contains a circular string
Availability: 1.2.3?

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 7, 5 6)'));
		st_hasarc

		t
		

See Also
ST_CurveToLine, ST_LineToCurve

Name
ST_LineInterpolatePoints —
				Returns points interpolated along a line at a fractional interval.
			

Synopsis
	geometry ST_LineInterpolatePoints(a_linestring, 	
	 	a_fraction, 	
	 	repeat);	

geometry a_linestring;
float8 a_fraction;
boolean repeat;

	geography ST_LineInterpolatePoints(a_linestring, 	
	 	a_fraction, 	
	 	use_spheroid = true, 	
	 	repeat = true);	

geography a_linestring;
float8 a_fraction;
boolean use_spheroid = true;
boolean repeat = true;

Description
Returns one or more points interpolated along a line at a fractional interval.
 The first argument
			must be a LINESTRING. The second argument is a float8 between 0 and 1
			representing the spacing between the points as a fraction of
			line length. If the third argument is false, at most one point
			will be constructed (which is equivalent to ST_LineInterpolatePoint.)
		

			If the result has zero or one points, it is returned as a POINT.
			If it has two or more points, it is returned as a MULTIPOINT.
		
Availability: 2.5.0

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

Examples
[image: Examples]A LineString with points interpolated every 20%

--Return points each 20% along a 2D line
SELECT ST_AsText(ST_LineInterpolatePoints('LINESTRING(25 50, 100 125, 150 190)', 0.20))

 MULTIPOINT((51.5974135047432 76.5974135047432),(78.1948270094864 103.194827009486),(104.132163186446 130.37181214238),(127.066081593223 160.18590607119),(150 190))

See Also

				ST_LineInterpolatePoint,
				ST_LineLocatePoint
			

Name
ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry.
		Alias for ST_Perimeter.

Synopsis
	float ST_Perimeter2D(geomA);	

geometry geomA;

Description
Returns the 2-dimensional perimeter of a polygonal geometry.
Note
 This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration

See Also
ST_Perimeter

Name
Set_Geocode_Setting — Sets a setting that affects behavior of geocoder functions.

Synopsis
	text Set_Geocode_Setting(setting_name, 	
	 	 setting_value);	

text setting_name;
text setting_value;

Description
Sets value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are listed in Get_Geocode_Setting.
Availability: 2.1.0

Example return debugging setting
If you run Geocode when this function is true, the NOTICE log will output timing and queries.
SELECT set_geocode_setting('debug_geocode_address', 'true') As result;
result

true

See Also
Get_Geocode_Setting

PostGIS 3.4.3 Manual

The PostGIS Development Group

Abstract
PostGIS is an extension to the PostgreSQL object-relational
 database system which allows GIS (Geographic Information Systems)
 objects to be stored in the database. PostGIS includes support for
 GiST-based R-Tree spatial indexes, and functions for analysis and
 processing of GIS objects.
[image: PostGIS 3.4.3 Manual]
 [image: PostGIS 3.4.3 Manual]

This is the manual for version 3.4.3
[image: PostGIS 3.4.3 Manual] This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.
 Feel free to use this material any way you like, but we ask that you attribute credit to the PostGIS Project
 and wherever possible, a link back to https://postgis.net.

Version Functions

Abstract
These functions report and upgrade PostGIS versions.

Name
~(geometry,box2df) — Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).

Synopsis
	boolean ~(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The ~ operator returns TRUE if the 2D bounding box of a geometry A contains the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) ~ ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis
	geometry ST_CurveToLine(curveGeom, 	
	 	tolerance, 	
	 	tolerance_type, 	
	 	flags);	

geometry curveGeom;
float tolerance;
integer tolerance_type;
integer flags;

Description
Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MULTIPOLYGON. Useful for outputting to devices that can't support CIRCULARSTRING geometry types
Converts a given geometry to a linear geometry.
 Each curved geometry or segment is converted into a linear
approximation using the given `tolerance` and options (32 segments per
quadrant and no options by default).

The 'tolerance_type' argument determines interpretation of the
`tolerance` argument. It can take the following values:

	0 (default): Tolerance is max segments per quadrant.

	1: Tolerance is max-deviation of line from curve, in source units.

	2: Tolerance is max-angle, in radians, between generating radii.

The 'flags' argument is a bitfield. 0 by default.
Supported bits are:

	1: Symmetric (orientation idependent) output.

	2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric flag is off.

Availability: 1.3.0
Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.
Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 7.1.7

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)')));

--Result --
 LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575 150418.17258804,220273.613787707 150419.895736857,
 220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 150425.562198489,
 220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 150431.876723113,
 220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 150438.702620341,220286.147650624 150441.066277505,
 220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 150448.342699654,
 220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 150455.77405574,
 220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 150463.199479347,
 220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 150470.458232479,220285.196316903 150472.81345077,
 220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 150479.606668057,
 220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 150485.87804878,
 220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 150491.491836488,
 220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 150496.326509628,
 220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 150500.277412127,
 220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 150503.259018879,
 220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 150505.206787101,
 220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 150506.078553494,
 220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 150505.855446946,
 220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 150504.542297043,
 220222.663718741 150503.86659104,220220.308500449 150503.074365683,
 220217.994991777 150502.167529512,220215.72876617 150501.148267175,
 220213.515283163 150500.019034164,220211.35987523 150498.7825509,
 220209.267734939 150497.441796181,220207.243902439 150496,
 220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 150491.104263143,
 220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 150485.437801511,
 220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 150479.123276887,220191.739336189 150476.89769814,
 220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 150469.933722495,
 220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 150462.657300346,
 220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 150455.22594426,
 220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 150447.800520653,
 220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 150440.541767521,
 220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 150433.60681495,
 220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 150427.14578372,220197.12195122 150425.12195122,
 220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 150419.508163512,220203.826610682 150417.804498867,
 220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 150413.253689397,220211.830006129 150411.935663483,
 220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 150408.622717305,220220.824571561 150407.740981121,
 220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

--3d example
SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)')));
Output

 LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 1.05435185700189,....AD INFINITUM
 220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--use only 2 segments to approximate quarter circle
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'),2));
st_astext

 LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 150485.87804878,
 220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
 220197.12195122 150425.12195122,220227 150406)

-- Ensure approximated line is no further than 20 units away from
-- original curve, and make the result direction-neutral
SELECT ST_AsText(ST_CurveToLine(
 'CIRCULARSTRING(0 0,100 -100,200 0)'::geometry,
 20, -- Tolerance
 1, -- Above is max distance between curve and line
 1 -- Symmetric flag
));
st_astext

 LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)

See Also
ST_LineToCurve

Name
ST_OrientedEnvelope — Returns a minimum-area rectangle containing a geometry.

Synopsis
	geometry ST_OrientedEnvelope(geom);	

 geometry
 geom
 ;

Description

 Returns the minimum-area rotated rectangle enclosing a geometry.
 Note that more than one such rectangle may exist.
 May return a Point or LineString in the case of degenerate inputs.

 Availability: 2.5.0.

Requires GEOS >= 3.6.0.

Examples

 SELECT ST_AsText(ST_OrientedEnvelope('MULTIPOINT ((0 0), (-1 -1), (3 2))'));

 st_astext
 --
 POLYGON((3 2,2.88 2.16,-1.12 -0.84,-1 -1,3 2))

[image: Examples]Oriented envelope of a point and linestring.

SELECT ST_AsText(ST_OrientedEnvelope(
 ST_Collect(
 ST_GeomFromText('LINESTRING(55 75,125 150)'),
 ST_Point(20, 80))
)) As wktenv;
wktenv

POLYGON((19.9999999999997 79.9999999999999,33.0769230769229 60.3846153846152,138.076923076924 130.384615384616,125.000000000001 150.000000000001,19.9999999999997 79.9999999999999))

See Also

 ST_Envelope
 ST_MinimumBoundingCircle

Name
ST_3DExtent — Aggregate function that returns the 3D bounding box of geometries.

Synopsis
	box3d ST_3DExtent(geomfield);	

geometry set geomfield;

Description
An aggregate function that returns a box3d (includes Z ordinate) bounding box
 that bounds a set of geometries.

The bounding box coordinates are in the spatial reference system of the input geometries.
Note
The returned box3d value does not include a SRID.
 Use ST_SetSRID to convert it into a geometry with SRID metadata.
 The SRID is the same as the input geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Changed: 2.0.0 In prior versions this used to be called ST_Extent3D

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_3DExtent(foo.geom) As b3extent
FROM (SELECT ST_MakePoint(x,y,z) As geom
	FROM generate_series(1,3) As x
		CROSS JOIN generate_series(1,2) As y
		CROSS JOIN generate_series(0,2) As Z) As foo;
	 b3extent

 BOX3D(1 1 0,3 2 2)

--Get the extent of various elevated circular strings
SELECT ST_3DExtent(foo.geom) As b3extent
FROM (SELECT ST_Translate(ST_Force_3DZ(ST_LineToCurve(ST_Buffer(ST_Point(x,y),1))),0,0,z) As geom
	FROM generate_series(1,3) As x
		CROSS JOIN generate_series(1,2) As y
		CROSS JOIN generate_series(0,2) As Z) As foo;

	b3extent

 BOX3D(1 0 0,4 2 2)
		

See Also
ST_Extent, ST_Force3DZ, ST_SetSRID

Name
ST_NumBands — Returns the number of bands in the raster object.

Synopsis
	integer ST_NumBands(rast);	

raster rast;

Description
Returns the number of bands in the raster object.

Examples
SELECT rid, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | numbands
----+----------
 1 | 0
 2 | 3

See Also
ST_Value

Measurement Functions

Abstract
These functions compute measurements of distance, area and angles.
		There are also functions to compute geometry values determined by measurements.

TopoGeometry Constructors

Abstract
This section covers the topology functions for creating new topogeometries.

Name
ST_SameAlignment — Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.

Synopsis
	boolean ST_SameAlignment(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

	boolean ST_SameAlignment(ulx1, 	
	 	uly1, 	
	 	scalex1, 	
	 	scaley1, 	
	 	skewx1, 	
	 	skewy1, 	
	 	ulx2, 	
	 	uly2, 	
	 	scalex2, 	
	 	scaley2, 	
	 	skewx2, 	
	 	skewy2);	

 double precision
 ulx1
 ;

 double precision
 uly1
 ;

 double precision
 scalex1
 ;

 double precision
 scaley1
 ;

 double precision
 skewx1
 ;

 double precision
 skewy1
 ;

 double precision
 ulx2
 ;

 double precision
 uly2
 ;

 double precision
 scalex2
 ;

 double precision
 scaley2
 ;

 double precision
 skewx2
 ;

 double precision
 skewy2
 ;

	boolean ST_SameAlignment(rastfield);	

 raster set
 rastfield
 ;

Description

 Non-Aggregate version (Variants 1 and 2): Returns true if the two rasters (either provided directly or made using the values for upperleft, scale, skew and srid) have the same scale, skew, srid and at least one of any of the four corners of any pixel of one raster falls on any corner of the grid of the other raster. Returns false if they don't and a NOTICE detailing the alignment issue.

 Aggregate version (Variant 3): From a set of rasters, returns true if all rasters in the set are aligned. The ST_SameAlignment() function is an "aggregate" function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same way the SUM() and AVG() functions do.

Availability: 2.0.0
Enhanced: 2.1.0 addition of Aggegrate variant

Examples: Rasters
SELECT ST_SameAlignment(
 ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
 ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0)
) as sm;

sm

t

SELECT ST_SameAlignment(A.rast,b.rast)
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

 NOTICE: The two rasters provided have different SRIDs
NOTICE: The two rasters provided have different SRIDs
 st_samealignment

 t
 f
 f
 f

See Also

 the section called “Loading and Creating Rasters”,
 ST_NotSameAlignmentReason,
 ST_MakeEmptyRaster

Name
ST_SetBandIndex — Update the external band number of an out-db band

Synopsis
	raster ST_SetBandIndex(rast, 	
	 	band, 	
	 	outdbindex, 	
	 	force=false);	

raster rast;
integer band;
integer outdbindex;
boolean force=false;

Description
Updates an out-db band's external band number. This does not touch the external raster file associated with the out-db band
Note

 If force is set to true, no tests are done to ensure compatibility (e.g. alignment, pixel support) between the external raster file and the PostGIS raster. This mode is intended for where bands are moved around in the external raster file.

Note

 Internally, this method replaces the PostGIS raster's band at index band with a new band instead of updating the existing path information.

Availability: 2.5.0

Examples

WITH foo AS (
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
 1 AS query,
 *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
)
UNION ALL
SELECT
 2,
 *
FROM ST_BandMetadata(
 (
 SELECT
 ST_SetBandIndex(
 rast,
 2,
 1
) AS rast
 FROM foo
),
 ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;

 query | bandnum | pixeltype | nodatavalue | isoutdb | path | outdbbandnum
-------+---------+-----------+-------------+---------+---+--------------
 1 | 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1
 1 | 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 2
 1 | 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3
 2 | 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1
 2 | 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1
 2 | 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3

See Also

 ST_BandMetaData,
 ST_SetBandPath

Name
ST_GetFaceEdges — Returns a set of ordered edges that bound aface.

Synopsis
	getfaceedges_returntype ST_GetFaceEdges(atopology, 	
	 	aface);	

varchar atopology;
integer aface;

Description
Returns a set of ordered edges that bound aface. Each output consists of a sequence and edgeid. Sequence numbers start with value 1.

Enumeration of each ring edges start from the edge with smallest identifier.
Order of edges follows a left-hand-rule (bound face is on the left of each directed edge).
		
Availability: 2.0

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

Examples

-- Returns the edges bounding face 1
SELECT (topology.ST_GetFaceEdges('tt', 1)).*;
-- result --
 sequence | edge
----------+------
 1 | -4
 2 | 5
 3 | 7
 4 | -6
 5 | 1
 6 | 2
 7 | 3
(7 rows)

-- Returns the sequence, edge id
-- and geometry of the edges that bound face 1
-- If you just need geom and seq, can use ST_GetFaceGeometry
SELECT t.seq, t.edge, geom
FROM topology.ST_GetFaceEdges('tt',1) As t(seq,edge)
	INNER JOIN tt.edge AS e ON abs(t.edge) = e.edge_id;

See Also

GetRingEdges,
AddFace,
ST_GetFaceGeometry
				

Name
ST_BandPixelType — Returns the type of pixel for given band. If no bandnum specified, 1 is assumed.

Synopsis
	text ST_BandPixelType(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns name describing data type and size of values stored in each cell of given band.
There are 11 pixel types. Pixel Types supported are as follows:

	1BB - 1-bit boolean

	2BUI - 2-bit unsigned integer

	4BUI - 4-bit unsigned integer

	8BSI - 8-bit signed integer

	8BUI - 8-bit unsigned integer

	16BSI - 16-bit signed integer

	16BUI - 16-bit unsigned integer

	32BSI - 32-bit signed integer

	32BUI - 32-bit unsigned integer

	32BF - 32-bit float

	64BF - 64-bit float

Examples
SELECT ST_BandPixelType(rast,1) As btype1,
 ST_BandPixelType(rast,2) As btype2, ST_BandPixelType(rast,3) As btype3
FROM dummy_rast
WHERE rid = 2;

 btype1 | btype2 | btype3
--------+--------+--------
 8BUI | 8BUI | 8BUI

See Also
ST_NumBands

Name
ST_PointFromText — Makes a point Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to unknown.

Synopsis
	geometry ST_PointFromText(WKT);	

text WKT;

	geometry ST_PointFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is
			not given, it defaults to unknown (currently 0). If geometry is not a WKT point representation, returns null.
			If completely invalid WKT, then throws an error.
Note
There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry
					with no defined spatial reference system. The second takes a spatial reference id as the second argument
					and returns an ST_Geometry that includes this srid as part of its meta-data. The srid must be defined
					in the spatial_ref_sys table.

Note
If you are absolutely sure all your WKT geometries are points, don't use this function.
					It is slower than ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias ST_Point.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s3.2.6.2 - option SRID is from the conformance suite.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 6.1.8

Examples

SELECT ST_PointFromText('POINT(-71.064544 42.28787)');
SELECT ST_PointFromText('POINT(-71.064544 42.28787)', 4326);
	

See Also
ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

PostGIS Geometry / Geography / Raster Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single geometry_dump or geomval data type object.
	ST_DumpAsPolygons - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.
	ST_Intersection - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
	ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_DumpRings - Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
	ST_DumpSegments - Returns a set of geometry_dump rows for the segments in a geometry.

Name
ST_AsMVT — Aggregate function returning a MVT representation of a set of rows.

Synopsis
	bytea ST_AsMVT(row);	

anyelement set row;

	bytea ST_AsMVT(row, 	
	 	name);	

anyelement row;
text name;

	bytea ST_AsMVT(row, 	
	 	name, 	
	 	extent);	

anyelement row;
text name;
integer extent;

	bytea ST_AsMVT(row, 	
	 	name, 	
	 	extent, 	
	 	geom_name);	

anyelement row;
text name;
integer extent;
text geom_name;

	bytea ST_AsMVT(row, 	
	 	name, 	
	 	extent, 	
	 	geom_name, 	
	 	feature_id_name);	

anyelement row;
text name;
integer extent;
text geom_name;
text feature_id_name;

Description
An aggregate function which returns a binary Mapbox Vector Tile
		representation of a set of rows corresponding to a tile layer.
		The rows must contain a geometry column which will be encoded as a feature geometry.
		The geometry must be in tile coordinate space
		and valid as per the MVT specification.
		ST_AsMVTGeom can be used to transform geometry into tile coordinate space.
		Other row columns are encoded as feature attributes.
		
The Mapbox Vector Tile format
		can store features with varying	sets of attributes.
		To use this capability supply a JSONB column in the row data containing Json objects one level deep.
		The keys and values in the JSONB values will be encoded as feature attributes.
		

		Tiles with multiple layers can be created by concatenating multiple calls to this function
		using || or STRING_AGG.
		
Important
Do not call with a GEOMETRYCOLLECTION as an element in the row.
			However you can use ST_AsMVTGeom to prepare a geometry collection for inclusion.

row row data with at least a geometry column.
name is the name of the layer. Default is the string "default".
extent is the tile extent in screen space as defined by the specification. Default is 4096.
geom_name is the name of the geometry column in the row data. Default is the first geometry column. Note that PostgreSQL by default automatically folds unquoted identifiers to lower case, which means that unless the geometry column is quoted, e.g. "MyMVTGeom", this parameter must be provided as lowercase.
feature_id_name is the name of the Feature ID column in the row data. If NULL or negative the Feature ID is not set. The first column matching name and valid type (smallint, integer, bigint) will be used as Feature ID, and any subsequent column will be added as a property. JSON properties are not supported.
Enhanced: 3.0 - added support for Feature ID.
Enhanced: 2.5.0 - added support parallel query.
Availability: 2.4.0

Examples
WITH mvtgeom AS
(
 SELECT ST_AsMVTGeom(geom, ST_TileEnvelope(12, 513, 412), extent => 4096, buffer => 64) AS geom, name, description
 FROM points_of_interest
 WHERE geom && ST_TileEnvelope(12, 513, 412, margin => (64.0 / 4096))
)
SELECT ST_AsMVT(mvtgeom.*)
FROM mvtgeom;

See Also

					ST_AsMVTGeom, ST_TileEnvelope
				

Name
ST_SimplifyPreserveTopology — Returns a simplified and valid version of a geometry, using
 the Douglas-Peucker algorithm.

Synopsis
	geometry ST_SimplifyPreserveTopology(geomA, 	
	 	tolerance);	

geometry geomA;
float tolerance;

Description
Returns a "simplified" version of the given geometry using
 the Douglas-Peucker algorithm. Will avoid creating derived
 geometries (polygons in particular) that are invalid. Will actually do something only with
 (multi)lines and (multi)polygons but you can safely call it with
 any kind of geometry. Since simplification occurs on a
 object-by-object basis you can also feed a GeometryCollection to
 this function.
Performed by the GEOS module.
Availability: 1.3.3

Examples
Same example as Simplify, but we see Preserve Topology prevents oversimplification. The circle can at most become a square.

SELECT ST_Npoints(geom) As np_before, ST_NPoints(ST_SimplifyPreserveTopology(geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_SimplifyPreserveTopology(geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_SimplifyPreserveTopology(geom,1)) As np1_octagon, ST_NPoints(ST_SimplifyPreserveTopology(geom,10)) As np10_square,
ST_NPoints(ST_SimplifyPreserveTopology(geom,100)) As np100_stillsquare
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As geom) As foo;

--result--
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_square | np100_stillsquare
-----------+-------------------+---------------------+-------------+---------------+-------------------
 49 | 33 | 17 | 9 | 5 | 5

See Also
ST_Simplify

Name
ST_Force3DZ — Force the geometries into XYZ mode.

Synopsis
	geometry ST_Force3DZ(geomA, 	
	 	Zvalue = 0.0);	

geometry geomA;
float Zvalue = 0.0;

Description
Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
Changed: 3.1.0. Added support for supplying a non-zero Z value.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D

Name
ST_AddBand —
 Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.

Synopsis
	(1) raster ST_AddBand(rast, 	
	 	addbandargset);	

raster rast;
addbandarg[] addbandargset;

	(2) raster ST_AddBand(rast, 	
	 	index, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(3) raster ST_AddBand(rast, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(4) raster ST_AddBand(torast, 	
	 	fromrast, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster fromrast;
integer fromband=1;
integer torastindex=at_end;

	(5) raster ST_AddBand(torast, 	
	 	fromrasts, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster[] fromrasts;
integer fromband=1;
integer torastindex=at_end;

	(6) raster ST_AddBand(rast, 	
	 	index, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text outdbfile;
integer[] outdbindex;
double precision nodataval=NULL;

	(7) raster ST_AddBand(rast, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	index=at_end, 	
	 	nodataval=NULL);	

raster rast;
text outdbfile;
integer[] outdbindex;
integer index=at_end;
double precision nodataval=NULL;

Description

 Returns a raster with a new band added in given position (index), of given type, of given initial value, and of given nodata value. If no index is specified, the band is added to the end. If no fromband is specified, band 1 is assumed. Pixel type is a string representation of one of the pixel types specified in ST_BandPixelType. If an existing index is specified all subsequent bands >= that index are incremented by 1. If an initial value greater than the max of the pixel type is specified, then the initial value is set to the highest value allowed by the pixel type.

 For the variant that takes an array of addbandarg (Variant 1), a specific addbandarg's index value is relative to the raster at the time when the band described by that addbandarg is being added to the raster. See the Multiple New Bands example below.

 For the variant that takes an array of rasters (Variant 5), if torast is NULL then the fromband band of each raster in the array is accumulated into a new raster.

 For the variants that take outdbfile (Variants 6 and 7), the value must include the full path to the raster file. The file must also be accessible to the postgres server process.

Enhanced: 2.1.0 support for addbandarg added.
Enhanced: 2.1.0 support for new out-db bands added.

Examples: Single New Band

-- Add another band of type 8 bit unsigned integer with pixels initialized to 200
UPDATE dummy_rast
 SET rast = ST_AddBand(rast,'8BUI'::text,200)
WHERE rid = 1;

-- Create an empty raster 100x100 units, with upper left right at 0, add 2 bands (band 1 is 0/1 boolean bit switch, band2 allows values 0-15)
-- uses addbandargs
INSERT INTO dummy_rast(rid,rast)
 VALUES(10, ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 1, -1, 0, 0, 0),
 ARRAY[
 ROW(1, '1BB'::text, 0, NULL),
 ROW(2, '4BUI'::text, 0, NULL)
]::addbandarg[]
)
);

-- output meta data of raster bands to verify all is right --
SELECT (bmd).*
FROM (SELECT ST_BandMetaData(rast,generate_series(1,2)) As bmd
 FROM dummy_rast WHERE rid = 10) AS foo;
 --result --
 pixeltype | nodatavalue | isoutdb | path
-----------+----------------+-------------+---------+------
 1BB | | f |
 4BUI | | f |

-- output meta data of raster -
SELECT (rmd).width, (rmd).height, (rmd).numbands
FROM (SELECT ST_MetaData(rast) As rmd
 FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 0 | 0 | 100 | 100 | 1 | -1 | 0 | 0 | 0 | 2

Examples: Multiple New Bands

SELECT
 *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 ARRAY[
 ROW(NULL, '8BUI', 255, 0),
 ROW(NULL, '16BUI', 1, 2),
 ROW(2, '32BUI', 100, 12),
 ROW(2, '32BF', 3.14, -1)
]::addbandarg[]
),
 ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | 0 | f |
 2 | 32BF | -1 | f |
 3 | 32BUI | 12 | f |
 4 | 16BUI | 2 | f |

-- Aggregate the 1st band of a table of like rasters into a single raster
-- with as many bands as there are test_types and as many rows (new rasters) as there are mice
-- NOTE: The ORDER BY test_type is only supported in PostgreSQL 9.0+
-- for 8.4 and below it usually works to order your data in a subselect (but not guaranteed)
-- The resulting raster will have a band for each test_type alphabetical by test_type
-- For mouse lovers: No mice were harmed in this exercise
SELECT
 mouse,
 ST_AddBand(NULL, array_agg(rast ORDER BY test_type), 1) As rast
FROM mice_studies
GROUP BY mouse;

Examples: New Out-db band

SELECT
 *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 '/home/raster/mytestraster.tif'::text, NULL::int[]
),
 ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | | t | /home/raster/mytestraster.tif
 2 | 8BUI | | t | /home/raster/mytestraster.tif
 3 | 8BUI | | t | /home/raster/mytestraster.tif

See Also

 ST_BandMetaData,
 ST_BandPixelType,
 ST_MakeEmptyRaster,
 ST_MetaData,
 ST_NumBands,
 ST_Reclass

Name
ST_PixelAsPoints —
 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.

Synopsis
	setof record ST_PixelAsPoints(rast, 	
	 	band=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band=1;
boolean exclude_nodata_value=TRUE;

Description

 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.

 Return record format: geom geometry, val double precision, x integer, y integers.

Note

 When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.

Availability: 2.1.0
Changed: 2.1.1 Changed behavior of exclude_nodata_value.

Examples

SELECT x, y, val, ST_AsText(geom) FROM (SELECT (ST_PixelAsPoints(rast, 1)).* FROM dummy_rast WHERE rid = 2) foo;

 x | y | val | st_astext
---+---+-----+------------------------------
 1 | 1 | 253 | POINT(3427927.75 5793244)
 2 | 1 | 254 | POINT(3427927.8 5793244)
 3 | 1 | 253 | POINT(3427927.85 5793244)
 4 | 1 | 254 | POINT(3427927.9 5793244)
 5 | 1 | 254 | POINT(3427927.95 5793244)
 1 | 2 | 253 | POINT(3427927.75 5793243.95)
 2 | 2 | 254 | POINT(3427927.8 5793243.95)
 3 | 2 | 254 | POINT(3427927.85 5793243.95)
 4 | 2 | 253 | POINT(3427927.9 5793243.95)
 5 | 2 | 249 | POINT(3427927.95 5793243.95)
 1 | 3 | 250 | POINT(3427927.75 5793243.9)
 2 | 3 | 254 | POINT(3427927.8 5793243.9)
 3 | 3 | 254 | POINT(3427927.85 5793243.9)
 4 | 3 | 252 | POINT(3427927.9 5793243.9)
 5 | 3 | 249 | POINT(3427927.95 5793243.9)
 1 | 4 | 251 | POINT(3427927.75 5793243.85)
 2 | 4 | 253 | POINT(3427927.8 5793243.85)
 3 | 4 | 254 | POINT(3427927.85 5793243.85)
 4 | 4 | 254 | POINT(3427927.9 5793243.85)
 5 | 4 | 253 | POINT(3427927.95 5793243.85)
 1 | 5 | 252 | POINT(3427927.75 5793243.8)
 2 | 5 | 250 | POINT(3427927.8 5793243.8)
 3 | 5 | 254 | POINT(3427927.85 5793243.8)
 4 | 5 | 254 | POINT(3427927.9 5793243.8)
 5 | 5 | 254 | POINT(3427927.95 5793243.8)

See Also

 ST_DumpAsPolygons,
 ST_PixelAsPolygon,
 ST_PixelAsPolygons,
 ST_PixelAsPoint,
 ST_PixelAsCentroid,
 ST_PixelAsCentroids

Name
ST_UpperLeftY — Returns the upper left Y coordinate of raster in projected spatial ref.

Synopsis
	float8 ST_UpperLeftY(rast);	

raster rast;

Description
Returns the upper left Y coordinate of raster in projected spatial ref.

Examples

SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;

 rid | uly
-----+---------
 1 | 0.5
 2 | 5793244

See Also
ST_UpperLeftX, ST_GeoReference, Box3D

Name
ST_Y — Returns the Y coordinate of a Point.

Synopsis
	float ST_Y(a_point);	

geometry a_point;

Description
Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum Y value of geometry coordinates use the functions
		ST_YMin and ST_YMax.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 6.1.4

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y

	2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z

Name

 ST_GeometricMedian
 —
 Returns the geometric median of a MultiPoint.

Synopsis
	geometry ST_GeometricMedian (geom, 	
	 	tolerance = NULL, 	
	 	max_iter = 10000, 	
	 	fail_if_not_converged = false);	

 geometry geom;
float8 tolerance = NULL;
int max_iter = 10000;
boolean fail_if_not_converged = false;

Description

 Computes the approximate geometric median of a MultiPoint geometry
 using the Weiszfeld algorithm.
 The geometric median is the point minimizing the sum of distances to the input points.
 It provides a centrality measure
 that is less sensitive to outlier points than the centroid (center of mass).

 The algorithm iterates until the distance change between
 successive iterations is less than the supplied tolerance
 parameter. If this condition has not been met after max_iterations
 iterations, the function produces an error and exits,
 unless fail_if_not_converged is set to false (the default).

 If a tolerance argument is not provided, the tolerance value
 is calculated based on the extent of the input geometry.

 If present, the input point M values are interpreted as their relative weights.

Availability: 2.3.0
Enhanced: 2.5.0 Added support for M as weight of points.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

Examples

[image: Examples]
 Comparison of the geometric median (red)
 and centroid (turquoise) of a MultiPoint.

WITH test AS (
SELECT 'MULTIPOINT((10 10), (10 40), (40 10), (190 190))'::geometry geom)
SELECT
 ST_AsText(ST_Centroid(geom)) centroid,
 ST_AsText(ST_GeometricMedian(geom)) median
FROM test;

 centroid | median
--------------------+--
 POINT(62.5 62.5) | POINT(25.01778421249728 25.01778421249728)
(1 row)

See Also
ST_Centroid

Name
ST_PointZM — Creates a Point with X, Y, Z, M and SRID values.

Synopsis
	geometry ST_PointZM(x, 	
	 	y, 	
	 	z, 	
	 	m, 	
	 	srid=unknown);	

float x;
float y;
float z;
float m;
integer srid=unknown;

Description
Returns an Point with the given X, Y, Z and M coordinate values, and optionally an SRID number.
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.

Examples
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, srid => 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5)

See Also
ST_MakePoint, ST_Point, ST_PointM, ST_PointZ, ST_SetSRID

Name
ST_MakeSolid — Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.

Synopsis
	geometry ST_MakeSolid(geom1);	

geometry geom1;

Description
Availability: 2.2.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_Area — Returns the area of a polygonal geometry.
			

Synopsis
	float ST_Area(g1);	

geometry g1;

	float ST_Area(geog, 	
	 	use_spheroid = true);	

geography geog;
boolean use_spheroid = true;

Description
Returns the area of a polygonal geometry.
			For geometry types a 2D Cartesian (planar) area is computed, with units specified by the SRID.
			For geography types by default area is determined on a spheroid with units in square meters.
		 To compute the area using the faster but less accurate spherical model use ST_Area(geog,false).
		
Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
Changed: 3.0.0 - does not depend on SFCGAL anymore.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 8.1.2, 9.5.3

 [image: Description]
 This function supports Polyhedral surfaces.

Note
For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but only for the faces that
			sit completely in XY plane.

Examples
Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters.
				Note this is in square feet because EPSG:2249 is
				Massachusetts State Plane Feet

select ST_Area(geom) sqft,
 ST_Area(geom) * 0.3048 ^ 2 sqm
from (
 select 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
				 743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
) subquery;
┌─────────┬─────────────┐
│ sqft │ sqm │
├─────────┼─────────────┤
│ 928.625 │ 86.27208552 │
└─────────┴─────────────┘

Return area square feet and transform to Massachusetts state plane meters (EPSG:26986) to get square meters.
				Note this is in square feet because 2249 is
				Massachusetts State Plane Feet and transformed area is in square meters since EPSG:26986 is state plane Massachusetts meters
select ST_Area(geom) sqft,
 ST_Area(ST_Transform(geom, 26986)) As sqm
from (
 select
 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
 743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
) subquery;
┌─────────┬─────────────────┐
│ sqft │ sqm │
├─────────┼─────────────────┤
│ 928.625 │ 86.272430607008 │
└─────────┴─────────────────┘

Return area square feet and square meters using geography data type. Note that we transform to our geometry to geography
	(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters.
	This is just for demonstration to compare. Normally your table will be stored in geography data type already.

select ST_Area(geog) / 0.3048 ^ 2 sqft_spheroid,
 ST_Area(geog, false) / 0.3048 ^ 2 sqft_sphere,
 ST_Area(geog) sqm_spheroid
from (
 select ST_Transform(
 'SRID=2249;POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))'::geometry,
 4326
) :: geography geog
) as subquery;
┌──────────────────┬──────────────────┬──────────────────┐
│ sqft_spheroid │ sqft_sphere │ sqm_spheroid │
├──────────────────┼──────────────────┼──────────────────┤
│ 928.684405784452 │ 927.049336105925 │ 86.2776044979692 │
└──────────────────┴──────────────────┴──────────────────┘

If your data is in geography already:

select ST_Area(geog) / 0.3048 ^ 2 sqft,
 ST_Area(the_geog) sqm
from somegeogtable;

See Also
ST_3DArea, ST_GeomFromText, ST_GeographyFromText, ST_SetSRID, ST_Transform

Name
Box3D — Returns the box 3d representation of the enclosing box of the raster.

Synopsis
	box3d Box3D(rast);	

raster rast;

Description
Returns the box representing the extent of the raster.

 The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MAXY))

Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.

Examples

SELECT
 rid,
 Box3D(rast) AS rastbox
FROM dummy_rast;

rid | rastbox
----+---
1 | BOX3D(0.5 0.5 0,20.5 60.5 0)
2 | BOX3D(3427927.75 5793243.5 0,3427928 5793244 0)

See Also

 ST_Envelope

Name
ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis
	geometry ST_LineFromMultiPoint(aMultiPoint);	

geometry aMultiPoint;

Description
Creates a LineString from a MultiPoint geometry.
Use ST_MakeLine to create lines from Point or LineString inputs.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Create a 3D line string from a 3D MultiPoint

SELECT ST_AsEWKT(ST_LineFromMultiPoint('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));

--result--
LINESTRING(1 2 3,4 5 6,7 8 9)

See Also
ST_AsEWKT, ST_MakeLine

Name
ST_OrderingEquals — Tests if two geometries represent the same geometry and have points in the same directional order

Synopsis
	boolean ST_OrderingEquals(A, 	
	 	B);	

geometry A;
geometry B;

Description
ST_OrderingEquals compares two geometries and returns t (TRUE) if the
 geometries are equal and the coordinates are in the same order;
 otherwise it returns f (FALSE).
Note
This function is implemented as per the ArcSDE SQL
 specification rather than SQL-MM.
 http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.43

Examples
SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
 ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
 st_orderingequals

 f
(1 row)

SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
 ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
 st_orderingequals

 t
(1 row)

SELECT ST_OrderingEquals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
 ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
 st_orderingequals

 f
(1 row)

See Also
&&, ST_Equals, ST_Reverse

Name
postgis.gdal_enabled_drivers —
 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.

Description

 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP. This option can be set in PostgreSQL's configuration file: postgresql.conf. It can also be set by connection or transaction.

 The initial value of postgis.gdal_enabled_drivers may also be set by passing the environment variable POSTGIS_GDAL_ENABLED_DRIVERS with the list of enabled drivers to the process starting PostgreSQL.

 Enabled GDAL specified drivers can be specified by the driver's short-name or code. Driver short-names or codes can be found at GDAL Raster Formats. Multiple drivers can be specified by putting a space between each driver.

Note

 There are three special codes available for postgis.gdal_enabled_drivers. The codes are case-sensitive.

	DISABLE_ALL disables all GDAL drivers. If present, DISABLE_ALL overrides all other values in postgis.gdal_enabled_drivers.

	ENABLE_ALL enables all GDAL drivers.

	VSICURL enables GDAL's /vsicurl/ virtual file system.

 When postgis.gdal_enabled_drivers is set to DISABLE_ALL, attempts to use out-db rasters, ST_FromGDALRaster(), ST_AsGDALRaster(), ST_AsTIFF(), ST_AsJPEG() and ST_AsPNG() will result in error messages.

Note

 In the standard PostGIS installation, postgis.gdal_enabled_drivers is set to DISABLE_ALL.

Note

 Additional information about GDAL_SKIP is available at GDAL's Configuration Options.

Availability: 2.2.0

Examples
Set and reset postgis.gdal_enabled_drivers
Sets backend for all new connections to database
ALTER DATABASE mygisdb SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
Sets default enabled drivers for all new connections to server. Requires super user access and PostgreSQL 9.4+.
 Also note that database, session, and user settings override this.
ALTER SYSTEM SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SELECT pg_reload_conf();

SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SET postgis.gdal_enabled_drivers = default;

Enable all GDAL Drivers

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';

Disable all GDAL Drivers

SET postgis.gdal_enabled_drivers = 'DISABLE_ALL';

See Also

 ST_FromGDALRaster,
 ST_AsGDALRaster,
 ST_AsTIFF,
 ST_AsPNG,
 ST_AsJPEG,
 postgis.enable_outdb_rasters

Name
ST_NumGeometries — Returns the number of elements in a geometry collection.

Synopsis
	integer ST_NumGeometries(geom);	

geometry geom;

Description
Returns the number of elements in a geometry collection (GEOMETRYCOLLECTION or MULTI*).
			For non-empty atomic geometries returns 1. For empty geometries returns 0.
			
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 9.1.4

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Prior versions would have returned NULL for this -- in 2.0.0 this returns 1
SELECT ST_NumGeometries(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
1

--Geometry Collection Example - multis count as one geom in a collection
SELECT ST_NumGeometries(ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT((-2 3),(-2 2)),
LINESTRING(5 5 ,10 10),
POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))'));
--result
3

See Also
ST_GeometryN, ST_Multi

Name
ST_Buffer —
Computes a geometry covering all points within a given distance from a geometry.

Synopsis
	geometry ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	buffer_style_parameters = '');	

geometry g1;
float radius_of_buffer;
text buffer_style_parameters = '';

	geometry ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	num_seg_quarter_circle);	

geometry g1;
float radius_of_buffer;
integer num_seg_quarter_circle;

	geography ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	buffer_style_parameters);	

geography g1;
float radius_of_buffer;
text buffer_style_parameters;

	geography ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	num_seg_quarter_circle);	

geography g1;
float radius_of_buffer;
integer num_seg_quarter_circle;

Description
Computes a POLYGON or MULTIPOLYGON that represents all points whose distance
 from a geometry/geography is less than or equal to a given distance.
 A negative distance shrinks the geometry rather than expanding it.
 A negative distance may shrink a polygon completely, in which case POLYGON EMPTY is returned.
 For points and lines negative distances always return empty results.

For geometry, the distance is specified in the units of the
 Spatial Reference System of the geometry.
 For geography, the distance is specified in meters.
The optional third parameter controls the buffer accuracy and style.
The accuracy of circular arcs in the buffer is specified as the number of line segments
used to approximate a quarter circle (default is 8).
The buffer style can be specifed by
providing a list of blank-separated key=value pairs as follows:

	'quad_segs=#' : number of line segments used to approximate a quarter circle (default is 8).

	'endcap=round|flat|square' : endcap style (defaults to "round"). 'butt' is accepted as a synonym for 'flat'.

	'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is accepted as a synonym for 'mitre'.

	'mitre_limit=#.#' : mitre ratio limit (only affects mitered join style). 'miter_limit' is accepted as a synonym for 'mitre_limit'.

	'side=both|left|right' : 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line.
This is only applicable to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

Note

 [image: Description] For geography this is a thin wrapper around the geometry implementation.

 It determines a planar spatial reference system that best fits the bounding box of the geography object
 (trying UTM, Lambert Azimuthal Equal Area (LAEA) North/South pole, and finally Mercator).
 The buffer is computed in the planar space, and then transformed back to WGS84.
 This may not produce the desired behavior if the input object is much larger than a UTM zone or crosses the dateline

Note
Buffer output is always a valid polygonal geometry.
 Buffer can handle invalid inputs,
 so buffering by distance 0 is sometimes used as a way of repairing invalid polygons.
 ST_MakeValid can also be used for this purpose.

Note
Buffering is sometimes used to perform a within-distance search.
 For this use case it is more efficient to use ST_DWithin.

Note
This function ignores the Z dimension.
It always gives a 2D result even when used on a 3D geometry.

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.
Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
 into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.

Performed by the GEOS module.

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.3

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1.30

Examples
	[image: Examples]quad_segs=8 (default)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=8');

	[image: Examples]quad_segs=2 (lame)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2');

	[image: Examples]endcap=round join=round (default)

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=round join=round');

	[image: Examples]endcap=square

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=square join=round');

	[image: Examples]endcap=flat

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=flat join=round');

	[image: Examples]join=bevel

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=bevel');

	[image: Examples]join=mitre mitre_limit=5.0 (default mitre limit)

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=mitre mitre_limit=5.0');

	[image: Examples]join=mitre mitre_limit=1

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=mitre mitre_limit=1.0');

	[image: Examples]side=left

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=left');

	[image: Examples]side=right

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=right');

	[image: Examples]side=left join=mitre

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=left join=mitre');

	[image: Examples]right-hand-winding, polygon boundary side=left

SELECT ST_Buffer(
ST_ForceRHR(
ST_Boundary(
 ST_GeomFromText(
'POLYGON ((50 50, 50 150, 150 150, 150 50, 50 50))'))),
), 20, 'side=left');

	[image: Examples]right-hand-winding, polygon boundary side=right

SELECT ST_Buffer(
ST_ForceRHR(
ST_Boundary(
 ST_GeomFromText(
'POLYGON ((50 50, 50 150, 150 150, 150 50, 50 50))'))
), 20,'side=right')

--A buffered point approximates a circle
-- A buffered point forcing approximation of (see diagram)
-- 2 points per quarter circle is poly with 8 sides (see diagram)
SELECT ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As promisingcircle_pcount,
ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
------------------------+-------------------
 33 | 9

--A lighter but lamer circle
-- only 2 points per quarter circle is an octagon
--Below is a 100 meter octagon
-- Note coordinates are in NAD 83 long lat which we transform
to Mass state plane meter and then buffer to get measurements in meters;
SELECT ST_AsText(ST_Buffer(
ST_Transform(
ST_SetSRID(ST_Point(-71.063526, 42.35785),4269), 26986)
,100,2)) As octagon;

POLYGON((236057.59057465 900908.759918696,236028.301252769 900838.049240578,235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))

See Also
ST_Collect, ST_DWithin, ST_SetSRID, ST_Transform, ST_Union, ST_MakeValid

Chapter 12. PostGIS Special Functions Index

PostGIS Aggregate Functions

The functions below are spatial aggregate functions that are used in the same way as SQL aggregate function such as sum and average.
	ST_3DExtent - Aggregate function that returns the 3D bounding box of geometries.
	ST_3DUnion - Perform 3D union.
	ST_AsFlatGeobuf - Return a FlatGeobuf representation of a set of rows.
	ST_AsGeobuf - Return a Geobuf representation of a set of rows.
	ST_AsMVT - Aggregate function returning a MVT representation of a set of rows.
	ST_ClusterIntersecting - Aggregate function that clusters input geometries into connected sets.
	ST_ClusterWithin - Aggregate function that clusters geometries by separation distance.
	ST_Collect - Creates a GeometryCollection or Multi* geometry from a set of geometries.
	ST_CoverageUnion - Computes the union of a set of polygons forming a coverage by removing shared edges.
	ST_Extent - Aggregate function that returns the bounding box of geometries.
	ST_MakeLine - Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MemUnion - Aggregate function which unions geometries in a memory-efficent but slower way
	ST_Polygonize - Computes a collection of polygons formed from the linework of a set of geometries.
	ST_SameAlignment - Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.
	ST_Union - Computes a geometry representing the point-set union of the input geometries.
	TopoElementArray_Agg - Returns a topoelementarray for a set of element_id, type arrays (topoelements).

Name
ST_AsEncodedPolyline — Returns an Encoded Polyline from a LineString geometry.

Synopsis
	text ST_AsEncodedPolyline(geom, 	
	 	precision=5);	

geometry geom;
integer precision=5;

Description
Returns the geometry as an Encoded Polyline. This format is used by Google Maps with precision=5 and by Open Source Routing Machine with precision=5 and 6.
Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.
Availability: 2.2.0

Examples
Basic

	SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)'));
	--result--
	|_p~iF~ps|U_ulLnnqC_mqNvxq`@
	
Use in conjunction with geography linestring and geography segmentize, and put on google maps
-- the SQL for Boston to San Francisco, segments every 100 KM
	SELECT ST_AsEncodedPolyline(
		ST_Segmentize(
			ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'),
				100000)::geometry) As encodedFlightPath;
javascript will look something like this where $ variable you replace with query result
<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry"></script>
<script type="text/javascript">
	 flightPath = new google.maps.Polyline({
			path: google.maps.geometry.encoding.decodePath("$encodedFlightPath"),
			map: map,
			strokeColor: '#0000CC',
			strokeOpacity: 1.0,
			strokeWeight: 4
		});
</script>
	

See Also
ST_LineFromEncodedPolyline, ST_Segmentize

Name
ST_SetValues — Returns modified raster resulting from setting the values of a given band.

Synopsis
	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	noset=NULL, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
boolean[][] noset=NULL;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	nosetvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
double precision nosetvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	geomvalset, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
geomval[] geomvalset;
boolean keepnodata=FALSE;

Description

 Returns modified raster resulting from setting specified pixels to new value(s) for the designated band. columnx and rowy are 1-indexed.

 If keepnodata is TRUE, those pixels whose values are NODATA will not be set with the corresponding value in newvalueset.

 For Variant 1, the specific pixels to be set are determined by the columnx, rowy pixel coordinates and the dimensions of the newvalueset array. noset can be used to prevent pixels with values present in newvalueset from being set (due to PostgreSQL not permitting ragged/jagged arrays). See example Variant 1.

 Variant 2 is like Variant 1 but with a simple double precision nosetvalue instead of a boolean noset array. Elements in newvalueset with the nosetvalue value with be skipped. See example Variant 2.

 For Variant 3, the specific pixels to be set are determined by the columnx, rowy pixel coordinates, width and height. See example Variant 3.

 Variant 4 is the same as Variant 3 with the exception that it assumes that the first band's pixels of rast will be set.

 For Variant 5, an array of geomval is used to determine the specific pixels to be set. If all the geometries in the array are of type POINT or MULTIPOINT, the function uses a shortcut where the longitude and latitude of each point is used to set a pixel directly. Otherwise, the geometries are converted to rasters and then iterated through in one pass. See example Variant 5.

Availability: 2.1.0

Examples: Variant 1

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, ARRAY[[9, 9], [9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 9 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 9
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1,
 ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
 ARRAY[[false], [true]]::boolean[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| | 1 | 1 | | | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, NULL
),
 1, 1, 1,
 ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
 ARRAY[[false], [true]]::boolean[][],
 TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 2

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[-1, -1, -1], [-1, 9, 9], [-1, 9, 9]]::double precision[][], -1
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
This example is like the previous one. Instead of nosetvalue = -1, nosetvalue = NULL

The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[NULL, NULL, NULL], [NULL, 9, 9], [NULL, 9, 9]]::double precision[][], NULL::double precision
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 3

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, 2, 2, 9
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, NULL
),
 1, 2, 2, 2, 2, 9, TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 5

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 rid, gid, ST_DumpValues(ST_SetValue(rast, 1, geom, gid))
FROM foo t1
CROSS JOIN bar t2
ORDER BY rid, gid;

 rid | gid | st_dumpvalues
-----+-----+---
 1 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,1,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 3 | (1,"{{3,3,3,3,3},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 4 | (1,"{{4,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,4}}")
(4 rows)

The following shows that geomvals later in the array can overwrite prior geomvals

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 1
 AND t3.gid = 2
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)

This example is the opposite of the prior example

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 2
 AND t3.gid = 1
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 2 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,1,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)

See Also

 ST_Value,
 ST_SetValue,
 ST_PixelAsPolygons

Name
clearTopoGeom — Clears the content of a topo geometry.

Synopsis
	topogeometry clearTopoGeom(topogeom);	

topogeometry topogeom;

Description

Clears the content a TopoGeometry
turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the shape of existing
objects and any dependent object in higher hierarchical levels.

Availability: 2.1

Examples

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
				

See Also

toTopoGeom

Name
ST_MaximumInscribedCircle — Computes the largest circle contained within a geometry.

Synopsis
	(geometry, geometry, double precision) ST_MaximumInscribedCircle(geom);	

geometry geom;

Description
Finds the largest circle that is contained within a (multi)polygon,
 or which does not overlap any lines and points.
 Returns a record with fields:

	 center - center point of the circle

	 nearest - a point on the geometry nearest to the center

	 radius - radius of the circle

For polygonal inputs, the circle is inscribed within the boundary rings, using the internal rings as boundaries.
 For linear and point inputs, the circle is inscribed within the convex hull of the input,
 using the input lines and points as further boundaries.
Availability: 3.1.0.
Requires GEOS >= 3.9.0.

Examples
[image: Examples]Maximum inscribed circle of a polygon. Center, nearest point, and radius are returned.

SELECT radius, ST_AsText(center) AS center, ST_AsText(nearest) AS nearest
 FROM ST_MaximumInscribedCircle(
 'POLYGON ((40 180, 110 160, 180 180, 180 120, 140 90, 160 40, 80 10, 70 40, 20 50, 40 180),
 (60 140, 50 90, 90 140, 60 140))');

 radius | center | nearest
-----------------+----------------------------+---------------
 45.165845650018 | POINT(96.953125 76.328125) | POINT(140 90)

[image: Examples]Maximum inscribed circle of a multi-linestring. Center, nearest point, and radius are returned.

See Also
ST_MinimumBoundingRadius, ST_LargestEmptyCircle

Name
ST_XMin — Returns the X minima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_XMin(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the X minima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However it will not accept a geometry or box2d text representation, since those do not auto-cast.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_XMin('BOX3D(1 2 3, 4 5 6)');
st_xmin

1

SELECT ST_XMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_xmin

1

SELECT ST_XMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_xmin

-3
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_XMin('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_XMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_xmin

220186.995121892
		

See Also
ST_XMax, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

Name
ST_Zmflag — Returns a code indicating the ZM coordinate dimension of a geometry.

Synopsis
	smallint ST_Zmflag(geomA);	

geometry geomA;

Description
Returns a code indicating the ZM coordinate dimension of a geometry.
Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2, 3 4)'));
 st_zmflag

		 0

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)'));
 st_zmflag

		 1

SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)'));
 st_zmflag

		 2
SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_zmflag

		 3

See Also
ST_CoordDim, ST_NDims, ST_Dimension

Name
<-> —
Returns the 2D distance between A and B.
			

Synopsis
	double precision <->(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

	double precision <->(A, 	
	 	B);	

				 geography

				 A
				;

				 geography

				 B
				;

Description

The <-> operator returns the 2D distance between
two geometries. Used in the "ORDER BY" clause provides index-assisted
nearest-neighbor result sets. For PostgreSQL below 9.5 only gives
centroid distance of bounding boxes and for PostgreSQL 9.5+, does true
KNN distance search giving true distance between geometries, and distance
sphere for geographies.

Note
This operand will make use of 2D GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)'::geometry instead of a.geom

Refer to PostGIS workshop: Nearest-Neighbor Searching for a detailed example.
Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.
Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.
Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+

Examples
SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

Then the KNN raw answer:

SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

If you run "EXPLAIN ANALYZE" on the two queries you would see a performance improvement for the second.

For users running with PostgreSQL < 9.5, use a hybrid query to find the true nearest neighbors. First a CTE query using the index-assisted KNN, then an exact query to get correct ordering:

WITH index_query AS (
 SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
	FROM va2005
 ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
 SELECT *
	FROM index_query
 ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

			

See Also
ST_DWithin, ST_Distance, <#>

Name
ST_Disjoint —
 Return true if raster rastA does not spatially intersect rastB.

Synopsis
	boolean ST_Disjoint(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Disjoint(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA and rastB are disjointed if they do not share any space together. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function does NOT use any indexes.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Disjoint(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

-- rid = 1 has no bands, hence the NOTICE and the NULL value for st_disjoint
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

NOTICE: The second raster provided has no bands
 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 |
 2 | 2 | f

-- this time, without specifying band numbers
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 | t
 2 | 2 | f

See Also

 ST_Intersects

Affine Transformations

Abstract
These functions change the position and shape of geometries using
	affine transformations.

Name
ST_Height — Returns the height of the raster in pixels.

Synopsis
	integer ST_Height(rast);	

raster rast;

Description
Returns the height of the raster.

Examples
SELECT rid, ST_Height(rast) As rastheight
FROM dummy_rast;

 rid | rastheight
-----+------------
 1 | 20
 2 | 5

See Also
ST_Width

Name
UpdateRasterSRID —
 Change the SRID of all rasters in the user-specified column and table.

Synopsis
	raster UpdateRasterSRID(schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	new_srid);	

name schema_name;
name table_name;
name column_name;
integer new_srid;

	raster UpdateRasterSRID(table_name, 	
	 	column_name, 	
	 	new_srid);	

name table_name;
name column_name;
integer new_srid;

Description

 Change the SRID of all rasters in the user-specified column and table. The function will drop all appropriate column constraints (extent, alignment and SRID) before changing the SRID of the specified column's rasters.

Note

 The data (band pixel values) of the rasters are not touched by this function. Only the raster's metadata is changed.

Availability: 2.1.0

See Also

 UpdateGeometrySRID

Name
ST_Quantile — Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.

Synopsis
	SETOF record ST_Quantile(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	quantiles=NULL);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;
double precision[] quantiles=NULL;

	SETOF record ST_Quantile(rast, 	
	 	quantiles);	

raster rast;
double precision[] quantiles;

	SETOF record ST_Quantile(rast, 	
	 	nband, 	
	 	quantiles);	

raster rast;
integer nband;
double precision[] quantiles;

	double precision ST_Quantile(rast, 	
	 	quantile);	

raster rast;
double precision quantile;

	double precision ST_Quantile(rast, 	
	 	exclude_nodata_value, 	
	 	quantile=NULL);	

raster rast;
boolean exclude_nodata_value;
double precision quantile=NULL;

	double precision ST_Quantile(rast, 	
	 	nband, 	
	 	quantile);	

raster rast;
integer nband;
double precision quantile;

	double precision ST_Quantile(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	quantile);	

raster rast;
integer nband;
boolean exclude_nodata_value;
double precision quantile;

	double precision ST_Quantile(rast, 	
	 	nband, 	
	 	quantile);	

raster rast;
integer nband;
double precision quantile;

Description
Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.
Note
If exclude_nodata_value is set to false, will also count pixels with no data.

Changed: 3.1.0 Removed ST_Quantile(table_name, column_name) variant.
Availability: 2.0.0

Examples

UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
--Example will consider only pixels of band 1 that are not 249 and in named quantiles --

SELECT (pvq).*
FROM (SELECT ST_Quantile(rast, ARRAY[0.25,0.75]) As pvq
 FROM dummy_rast WHERE rid=2) As foo
 ORDER BY (pvq).quantile;

 quantile | value
----------+-------
 0.25 | 253
 0.75 | 254

SELECT ST_Quantile(rast, 0.75) As value
 FROM dummy_rast WHERE rid=2;

value

 254

--real live example. Quantile of all pixels in band 2 intersecting a geometry
SELECT rid, (ST_Quantile(rast,2)).* As pvc
 FROM o_4_boston
 WHERE ST_Intersects(rast,
 ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
)
ORDER BY value, quantile,rid
;

 rid | quantile | value
-----+----------+-------
 1 | 0 | 0
 2 | 0 | 0
 14 | 0 | 1
 15 | 0 | 2
 14 | 0.25 | 37
 1 | 0.25 | 42
 15 | 0.25 | 47
 2 | 0.25 | 50
 14 | 0.5 | 56
 1 | 0.5 | 64
 15 | 0.5 | 66
 2 | 0.5 | 77
 14 | 0.75 | 81
 15 | 0.75 | 87
 1 | 0.75 | 94
 2 | 0.75 | 106
 14 | 1 | 199
 1 | 1 | 244
 2 | 1 | 255
 15 | 1 | 255

See Also

 ST_Count,
 ST_SummaryStats,
 ST_SummaryStatsAgg,
 ST_SetBandNoDataValue

Name
GetNodeByPoint — Finds the node-id of a node at a point location.

Synopsis
	integer GetNodeByPoint(atopology, 	
	 	apoint, 	
	 	tol1);	

varchar atopology;
geometry apoint;
float8 tol1;

Description
Retrieves the id of a node at a point location.
The function returns an integer (id-node) given a topology, a POINT and a tolerance. If tolerance = 0 means exact intersection, otherwise retrieves the node from an interval.
If apoint doesn't intersect a node, returns 0 (zero).
If use tolerance > 0 and there is more than one node near the point then an exception is thrown.
Note
If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Availability: 2.0.0

Examples
These examples use edges we created in AddEdge
SELECT topology.GetNodeByPoint('ma_topo',geom, 1) As nearnode
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
 nearnode

 2

SELECT topology.GetNodeByPoint('ma_topo',geom, 1000) As too_much_tolerance
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

 ----get error--
 ERROR: Two or more nodes found

See Also

AddEdge,
GetEdgeByPoint,
GetFaceByPoint

PostGIS Window Functions

The functions below are spatial window functions that are used in the same way as SQL window functions such as row_number(), lead(), and lag(). They must be followed by an OVER() clause.
	ST_ClusterDBSCAN - Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
	ST_ClusterIntersectingWin - Window function that returns a cluster id for each input geometry, clustering input geometries into connected sets.
	ST_ClusterKMeans - Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_ClusterWithinWin - Window function that returns a cluster id for each input geometry, clustering using separation distance.
	ST_CoverageInvalidEdges - Window function that finds locations where polygons fail to form a valid coverage.
	ST_CoverageSimplify - Window function that simplifies the edges of a polygonal coverage.

Name
ST_Segmentize — Returns a modified geometry/geography having no segment longer than a
			given distance.

Synopsis
	geometry ST_Segmentize(geom, 	
	 	max_segment_length);	

geometry geom;
float max_segment_length;

	geography ST_Segmentize(geog, 	
	 	max_segment_length);	

geography geog;
float max_segment_length;

Description
Returns a modified geometry/geography having no segment longer than
			max_segment_length.
 Length is computed in 2D.
 Segments are always split into equal-length subsegments.

	For geometry, the maximum length is in the units of the spatial reference system.

	For geography, the maximum length is in meters.
 Distances are computed on the sphere.
 Added vertices are created along the spherical great-circle arcs
 defined by segment endpoints.

Note
This only shortens long segments.
 It does not lengthen segments shorter than the maximum length.

Warning
For inputs containing long segments,
 specifying a relatively short max_segment_length
 can cause a very large number of vertices to be added.
 This can happen unintentionally if the argument is specified accidentally as a number of segments,
 rather than a maximum length.

Availability: 1.2.2
Enhanced: 3.0.0 Segmentize geometry now produces equal-length subsegments
Enhanced: 2.3.0 Segmentize geography now produces equal-length subsegments
Enhanced: 2.1.0 support for geography was introduced.
Changed: 2.1.0 As a result of the introduction of geography support,
 the usage ST_Segmentize('LINESTRING(1 2, 3 4)', 0.5) causes an ambiguous function error.
 The input needs to be properly typed as a geometry or geography.
 Use ST_GeomFromText, ST_GeogFromText or a cast to the required type
			(e.g. ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry, 0.5))

Examples
Segmentizing a line. Long segments are split evenly, and short segments are not split.
SELECT ST_AsText(ST_Segmentize(
 'MULTILINESTRING((0 0, 0 1, 0 9),(1 10, 1 18))'::geometry,
	5));

MULTILINESTRING((0 0,0 1,0 5,0 9),(1 10,1 14,1 18))

Segmentizing a polygon:

SELECT ST_AsText(
 ST_Segmentize(('POLYGON((0 0, 0 8, 30 0, 0 0))'::geometry), 10));

POLYGON((0 0,0 8,7.5 6,15 4,22.5 2,30 0,20 0,10 0,0 0))

Segmentizing a geographic line, using a maximum segment length of 2000 kilometers.
 Vertices are added along the great-circle arc connecting the endpoints.

SELECT ST_AsText(
 ST_Segmentize(('LINESTRING (0 0, 60 60)'::geography), 2000000));

LINESTRING(0 0,4.252632294621186 8.43596525986862,8.69579947419404 16.824093489701564,13.550465473227048 25.107950473646188,19.1066053508691 33.21091076089908,25.779290201459894 41.01711439406505,34.188839517966954 48.337222885886,45.238153936612264 54.84733442373889,60 60)

[image: Examples]A geographic line segmentized along a great circle arc

See Also
ST_LineSubstring

Name
ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis
	geometry ST_GeomFromEWKB(EWKB);	

bytea EWKB;

Description
Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.
Note
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system (SRID)
			identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
line string binary rep 0f
		LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat (4269).
Note
NOTE: Even though byte arrays are delimited with \ and may have ', we need to escape both out with \ and '' if standard_conforming_strings is off. So it does not
			look exactly like its AsEWKB representation.

SELECT ST_GeomFromEWKB(E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344J=
\\013B\\312Q\\300n\\303(\\010\\036!E@''\\277E''K
\\312Q\\300\\366{b\\235*!E@\\225|\\354.P\\312Q
\\300p\\231\\323e1!E@');
Note
In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to off. You can change defaults as needed
		 for a single query or at the database or server level. Below is how you would do it with standard_conforming_strings = on. In this case we escape the ' with standard ansi ',
		 but slashes are not escaped

	 set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
 \312Q\300n\303(\010\036!E@''\277E''K\012\312Q\300\366{b\235*!E@\225|\354.P\312Q\012\300p\231\323e1')

See Also
ST_AsBinary, ST_AsEWKB, ST_GeomFromWKB

Raster Tips

Abstract
This section documents various gotchas and tips related to PostGIS Raster.

Out-DB Rasters

Directory containing many files

 When GDAL opens a file, GDAL eagerly scans the directory of that file to build a catalog of other files. If this directory contains many files (e.g. thousands, millions), opening that file becomes extremely slow (especially if that file happens to be on a network drive such as NFS).

 To control this behavior, GDAL provides the following environment variable: GDAL_DISABLE_READDIR_ON_OPEN. Set GDAL_DISABLE_READDIR_ON_OPEN to TRUE to disable directory scanning.

 In Ubuntu (and assuming you are using PostgreSQL's packages for Ubuntu), GDAL_DISABLE_READDIR_ON_OPEN can be set in /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/environment (where POSTGRESQL_VERSION is the version of PostgreSQL, e.g. 9.6 and CLUSTER_NAME is the name of the cluster, e.g. maindb). You can also set PostGIS environment variables here as well.

environment variables for postmaster process
This file has the same syntax as postgresql.conf:
VARIABLE = simple_value
VARIABLE2 = 'any value!'
I. e. you need to enclose any value which does not only consist of letters,
numbers, and '-', '_', '.' in single quotes. Shell commands are not
evaluated.
POSTGIS_GDAL_ENABLED_DRIVERS = 'ENABLE_ALL'

POSTGIS_ENABLE_OUTDB_RASTERS = 1

GDAL_DISABLE_READDIR_ON_OPEN = 'TRUE'

Maximum Number of Open Files

 The maximum number of open files permitted by Linux and PostgreSQL are typically conservative (typically 1024 open files per process) given the assumption that the system is consumed by human users. For Out-DB Rasters, a single valid query can easily exceed this limit (e.g. a dataset of 10 year's worth of rasters with one raster for each day containing minimum and maximum temperatures and we want to know the absolute min and max value for a pixel in that dataset).

 The easiest change to make is the following PostgreSQL setting: max_files_per_process. The default is set to 1000, which is far too low for Out-DB Rasters. A safe starting value could be 65536 but this really depends on your datasets and the queries run against those datasets. This setting can only be made on server start and probably only in the PostgreSQL configuration file (e.g. /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/postgresql.conf in Ubuntu environments).

...
- Kernel Resource Usage -

max_files_per_process = 65536 # min 25
 # (change requires restart)
...

 The major change to make is the Linux kernel's open files limits. There are two parts to this:

	Maximum number of open files for the entire system

	Maximum number of open files per process

Maximum number of open files for the entire system

 You can inspect the current maximum number of open files for the entire system with the following example:

$ sysctl -a | grep fs.file-max
fs.file-max = 131072

 If the value returned is not large enough, add a file to /etc/sysctl.d/ as per the following example:

$ echo "fs.file-max = 6145324" >> /etc/sysctl.d/fs.conf

$ cat /etc/sysctl.d/fs.conf
fs.file-max = 6145324

$ sysctl -p --system
* Applying /etc/sysctl.d/fs.conf ...
fs.file-max = 2097152
* Applying /etc/sysctl.conf ...

$ sysctl -a | grep fs.file-max
fs.file-max = 6145324

Maximum number of open files per process

 We need to increase the maximum number of open files per process for the PostgreSQL server processes.

 To see what the current PostgreSQL service processes are using for maximum number of open files, do as per the following example (make sure to have PostgreSQL running):

$ ps aux | grep postgres
postgres 31713 0.0 0.4 179012 17564 pts/0 S Dec26 0:03 /home/dustymugs/devel/postgresql/sandbox/10/usr/local/bin/postgres -D /home/dustymugs/devel/postgresql/sandbox/10/pgdata
postgres 31716 0.0 0.8 179776 33632 ? Ss Dec26 0:01 postgres: checkpointer process
postgres 31717 0.0 0.2 179144 9416 ? Ss Dec26 0:05 postgres: writer process
postgres 31718 0.0 0.2 179012 8708 ? Ss Dec26 0:06 postgres: wal writer process
postgres 31719 0.0 0.1 179568 7252 ? Ss Dec26 0:03 postgres: autovacuum launcher process
postgres 31720 0.0 0.1 34228 4124 ? Ss Dec26 0:09 postgres: stats collector process
postgres 31721 0.0 0.1 179308 6052 ? Ss Dec26 0:00 postgres: bgworker: logical replication launcher

$ cat /proc/31718/limits
Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8388608 unlimited bytes
Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes 15738 15738 processes
Max open files 1024 4096 files
Max locked memory 65536 65536 bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 15738 15738 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 0 0
Max realtime priority 0 0
Max realtime timeout unlimited unlimited us

 In the example above, we inspected the open files limit for Process 31718. It doesn't matter which PostgreSQL process, any of them will do. The response we are interested in is Max open files.

 We want to increase Soft Limit and Hard Limit of Max open files to be greater than the value we specified for the PostgreSQL setting max_files_per_process. In our example, we set max_files_per_process to 65536.

 In Ubuntu (and assuming you are using PostgreSQL's packages for Ubuntu), the easiest way to change the Soft Limit and Hard Limit is to edit /etc/init.d/postgresql (SysV) or /lib/systemd/system/postgresql*.service (systemd).

 Let's first address the SysV Ubuntu case where we add ulimit -H -n 262144 and ulimit -n 131072 to /etc/init.d/postgresql.

...
case "$1" in
 start|stop|restart|reload)
 if ["$1" = "start"]; then
 create_socket_directory
 fi
 if [-z "`pg_lsclusters -h`"]; then
 log_warning_msg 'No PostgreSQL clusters exist; see "man pg_createcluster"'
 exit 0
 fi

 ulimit -H -n 262144
 ulimit -n 131072

 for v in $versions; do
 $1 $v || EXIT=$?
 done
 exit ${EXIT:-0}
 ;;
 status)
...

 Now to address the systemd Ubuntu case. We will add LimitNOFILE=131072 to every /lib/systemd/system/postgresql*.service file in the [Service] section.

...
[Service]

LimitNOFILE=131072

...

[Install]
WantedBy=multi-user.target
...

 After making the necessary systemd changes, make sure to reload the daemon

systemctl daemon-reload

Name
ST_ClusterDBSCAN — Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.

Synopsis
	integer ST_ClusterDBSCAN(geom, 	
	 	eps, 	
	 	minpoints);	

geometry winset
			geom;
float8
			eps;
integer
			minpoints;

Description

		 A window function that returns a cluster number for each input geometry, using the 2D
 Density-based spatial clustering of applications with noise (DBSCAN)
		 algorithm. Unlike ST_ClusterKMeans, it does not require the number of clusters to be specified, but instead
		 uses the desired distance (eps) and density (minpoints) parameters to determine each cluster.
	

		 An input geometry is added to a cluster if it is either:
		
	
 A "core" geometry, that is within eps distance of at least minpoints input geometries (including itself); or

	
 A "border" geometry, that is within eps distance of a core geometry.

		

		 Note that border geometries may be within eps distance of core geometries in more than one cluster.
 Either assignment would be correct, so the border geometry will be arbitrarily asssigned to one of the available clusters.
		 In this situation it is possible for a correct cluster to be generated with fewer than minpoints geometries.
		 To ensure deterministic assignment of border geometries
 (so that repeated calls to ST_ClusterDBSCAN will produce identical results)
 use an ORDER BY clause in the window definition.
 Ambiguous cluster assignments may differ from other DBSCAN implementations.
	
Note

		 Geometries that do not meet the criteria to join any cluster are assigned a cluster number of NULL.
	

Availability: 2.3.0

 [image: Description]
 This method supports Circular Strings and Curves.

Examples

 Clustering polygon within 50 meters of each other, and requiring at least 2 polygons per cluster.

	[image: Examples]Clusters within 50 meters with at least 2 items per cluster. Singletons have NULL for cid

SELECT name, ST_ClusterDBSCAN(geom, eps := 50, minpoints := 2) over () AS cid
FROM boston_polys
WHERE name > '' AND building > ''
	AND ST_DWithin(geom,
 ST_Transform(
 ST_GeomFromText('POINT(-71.04054 42.35141)', 4326), 26986),
 500);

						
	 name | bucket
-------------------------------------+--------
 Manulife Tower | 0
 Park Lane Seaport I | 0
 Park Lane Seaport II | 0
 Renaissance Boston Waterfront Hotel | 0
 Seaport Boston Hotel | 0
 Seaport Hotel & World Trade Center | 0
 Waterside Place | 0
 World Trade Center East | 0
 100 Northern Avenue | 1
 100 Pier 4 | 1
 The Institute of Contemporary Art | 1
 101 Seaport | 2
 District Hall | 2
 One Marina Park Drive | 2
 Twenty Two Liberty | 2
 Vertex | 2
 Vertex | 2
 Watermark Seaport | 2
 Blue Hills Bank Pavilion | NULL
 World Trade Center West | NULL
(20 rows)

				

 A example showing combining parcels with the same cluster number into geometry collections.

SELECT cid, ST_Collect(geom) AS cluster_geom, array_agg(parcel_id) AS ids_in_cluster FROM (
 SELECT parcel_id, ST_ClusterDBSCAN(geom, eps := 0.5, minpoints := 5) over () AS cid, geom
 FROM parcels) sq
GROUP BY cid;

See Also
ST_DWithin,
 ST_ClusterKMeans,
 ST_ClusterIntersecting,
 ST_ClusterIntersectingWin,
 ST_ClusterWithin,
 ST_ClusterWithinWin

Name
ST_ModEdgeHeal —
Heals two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge. Returns the id of the deleted node.
				

Synopsis
	int ST_ModEdgeHeal(atopology, 	
	 	anedge, 	
	 	anotheredge);	

varchar atopology;
integer anedge;
integer anotheredge;

Description

Heals two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge.
Returns the id of the deleted node.
Updates all existing joined edges and relationships accordingly.
		
Availability: 2.0

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

				ST_ModEdgeSplit
				ST_NewEdgesSplit
				

Name
ST_Range4ma — Raster processing function that calculates the range of pixel values in a neighborhood.

Synopsis
	float8 ST_Range4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision ST_Range4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the range of pixel values in a neighborhood of pixels.

 For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

 Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Warning

 Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_range4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 4
(1 row)

See Also

 ST_MapAlgebraFctNgb,
 ST_MapAlgebra (callback function version),
 ST_Min4ma,
 ST_Max4ma,
 ST_Sum4ma,
 ST_Mean4ma,
 ST_Distinct4ma,
 ST_StdDev4ma

Name
unionarg — A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

Description

 A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

	
 nband
 integer

	
 1-based value indicating the band of each input raster to be processed.

	
 uniontype
 text

	
 Type of UNION operation. One of defined types as described in ST_Union.

See Also

 ST_Union

Name
ST_SwapOrdinates — Returns a version of the given geometry with
				given ordinate values swapped.

Synopsis
	geometry ST_SwapOrdinates(geom, 	
	 	ords);	

geometry geom;
cstring ords;

Description

Returns a version of the given geometry with given ordinates swapped.

The ords parameter is a 2-characters string naming
the ordinates to swap. Valid names are: x,y,z and m.

Availability: 2.2.0

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports M coordinates.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

-- Scale M value by 2
SELECT ST_AsText(
 ST_SwapOrdinates(
 ST_Scale(
 ST_SwapOrdinates(g,'xm'),
 2, 1
),
 'xm')
) FROM (SELECT 'POINT ZM (0 0 0 2)'::geometry g) foo;
 st_astext

 POINT ZM (0 0 0 4)
		

See Also
 ST_FlipCoordinates

Name
AddTopoGeometryColumn — Adds a topogeometry column to an existing table, registers this new column as a layer in topology.layer and returns the new layer_id.

Synopsis
	integer AddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;

	integer AddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type, 	
	 	child_layer);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;
integer
 child_layer;

Description
Each TopoGeometry object belongs to a specific Layer of a specific Topology. Before creating a TopoGeometry object you need to create its TopologyLayer.
 A Topology Layer is an association of a feature-table with the topology. It also contain type and hierarchy information. We create a layer using the AddTopoGeometryColumn() function:
This function will both add the requested column to the table and add a record to the topology.layer table with all the given info.
If you don't specify [child_layer] (or set it to NULL) this layer would contain Basic TopoGeometries (composed by primitive topology elements).
 Otherwise this layer will contain hierarchical TopoGeometries (composed by TopoGeometries from the child_layer).
Once the layer is created (its id is returned by the AddTopoGeometryColumn function) you're ready to construct TopoGeometry objects in it
Valid feature_types are: POINT, MULTIPOINT, LINE, MULTILINE, POLYGON, MULTIPOLYGON, COLLECTION
Availability: 1.1

Examples
-- Note for this example we created our new table in the ma_topo schema
-- though we could have created it in a different schema -- in which case topology_name and schema_name would be different
CREATE SCHEMA ma;
CREATE TABLE ma.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON');

CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');

See Also

				 DropTopoGeometryColumn,
				 toTopoGeom,
				 CreateTopology,
				 CreateTopoGeom
				

Name
ST_LocateBetween — Returns the portions of a geometry that match a measure range.

Synopsis
	geometry ST_LocateBetween(geom, 	
	 	measure_start, 	
	 	measure_end, 	
	 	offset = 0);	

geometry geom;
float8 measure_start;
float8 measure_end;
float8 offset = 0;

Description
Return a geometry (collection) with the portions of the input measured geometry
 that match the specified measure range (inclusively).
If the offset is provided, the result
 is offset to the left or right of the input line by the specified distance.
 A positive offset will be to the left, and a negative one to the right.
Clipping a non-convex POLYGON may produce invalid geometry.
The semantic is specified by the ISO/IEC 13249-3 SQL/MM Spatial standard.
Availability: 1.1.0 by old name ST_Locate_Between_Measures.
Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures.
Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

 [image: Description]
 This function supports M coordinates.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM IEC 13249-3: 5.1

Examples

SELECT ST_AsText(
 ST_LocateBetween(
 'MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),(1 2 3, 5 4 5))':: geometry,
 1.5, 3));
--
 GEOMETRYCOLLECTION M (LINESTRING M (1 2 3,3 4 2,9 4 3),POINT M (1 2 3))

[image: Examples]A LineString with the section between measures 2 and 8, offset to the left

SELECT ST_AsText(ST_LocateBetween(
 ST_AddMeasure('LINESTRING (20 180, 50 20, 100 120, 180 20)', 0, 10),
 2, 8,
 20
));
--
MULTILINESTRING((54.49835019899045 104.53426957938231,58.70056060327303 82.12248075654186,69.16695286779743 103.05526528559065,82.11145618000168 128.94427190999915,84.24893681714357 132.32493442618113,87.01636951231555 135.21267035596549,90.30307285299679 137.49198684843182,93.97759758337769 139.07172433557758,97.89298381958797 139.8887023914453,101.89263860095893 139.9102465862721,105.81659870902816 139.13549527600819,109.50792827749828 137.5954340631298,112.81899532549731 135.351656550512,115.6173761888606 132.49390095108848,145.31017306064817 95.37790486135405))

See Also
ST_LocateAlong, ST_LocateBetweenElevations

Name
ST_3DMaxDistance — Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in
		projected units.

Synopsis
	float ST_3DMaxDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 3-dimensional maximum cartesian distance between two geometries in
		projected units (spatial ref units).

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

Availability: 2.0.0
Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DMaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
		ST_MaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_2d;

 dist_3d | dist_2d
------------------+------------------
 24383.7467488441 | 22247.8472107251

See Also
ST_Distance, ST_3DDWithin, ST_3DMaxDistance, ST_Transform

Name
ST_Envelope — Returns a geometry representing the bounding box of a geometry.

Synopsis
	geometry ST_Envelope(g1);	

geometry g1;

Description
Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry.
			The polygon is defined by the corner points of the bounding box
			((MINX, MINY),
			(MINX, MAXY),
			(MAXX, MAXY),
			(MAXX, MINY),
			(MINX, MINY)). (PostGIS will add a
			ZMIN/ZMAX coordinate as
			well).
Degenerate cases (vertical lines, points) will return a geometry of
			lower dimension than POLYGON, ie.
			POINT or LINESTRING.
Availability: 1.5.0 behavior changed to output double precision instead of float4

 [image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.

 s2.1.1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.19

Examples

SELECT ST_AsText(ST_Envelope('POINT(1 3)'::geometry));
 st_astext

 POINT(1 3)
(1 row)

SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3)'::geometry));
		 st_astext

 POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)

SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000001 1, 1.0000001 0, 0 0))'::geometry));
						 st_astext
--
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))'::geometry));
						 st_astext
--
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt
	FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;

	
[image: Examples]Envelope of a point and linestring.

SELECT ST_AsText(ST_Envelope(
		ST_Collect(
			ST_GeomFromText('LINESTRING(55 75,125 150)'),
				ST_Point(20, 80))
)) As wktenv;
wktenv

POLYGON((20 75,20 150,125 150,125 75,20 75))

See Also
Box2D, Box3D, ST_OrientedEnvelope

Name
Pagc_Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function
 will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

Synopsis
	norm_addy pagc_normalize_address(in_address);	

varchar in_address;

Description
Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to
 get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.
This function just uses the various pagc_* lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn't need you to download tiger census data or any other additional data to make use of it.
 You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.
It uses various control lookup tables located in tiger schema to normalize the input address.
Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:
There are slight variations in casing and formatting over the Normalize_Address.
Availability: 2.1.0

 [image: Description]
 This method needs address_standardizer extension.

(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]
The native standardaddr of address_standardizer extension is at this time a bit richer than norm_addy since its designed to support international addresses (including country). standardaddr equivalent fields are:
house_num,predir, name, suftype, sufdir, unit, city, state, postcode
Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.
	address is an integer: The street number

	predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_lookup table.

	streetName varchar

	streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the street_type_lookup table.

	postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lookup table.

	internal varchar internal address such as an apartment or suite number.

	location varchar usually a city or governing province.

	stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

	zip varchar 5-digit zipcode. e.g. 02109.

	parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true before returning the address.

	zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

	address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using Pagc_Normalize_Address function. Availability: PostGIS 2.4.0.

Examples
Single call example

SELECT addy.*
FROM pagc_normalize_address('9000 E ROO ST STE 999, Springfield, CO') AS addy;

 address | predirabbrev | streetname | streettypeabbrev | postdirabbrev | internal | location | stateabbrev | zip | parsed
---------+--------------+------------+------------------+---------------+-----------+-------------+-------------+-----+--------
 9000 | E | ROO | ST | | SUITE 999 | SPRINGFIELD | CO | | t
Batch call. There are currently speed issues with the way postgis_tiger_geocoder wraps the address_standardizer. These will hopefully
be resolved in later editions. To work around them, if you need speed for batch geocoding to call generate a normaddy in batch mode, you are encouraged
to directly call the address_standardizer standardize_address function as shown below which is similar exercise to what we did in Normalize_Address that uses data created in Geocode.
WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa).name
 , (sa).suftype, (sa).sufdir, (sa).unit , (sa).city, (sa).state, (sa).postcode, true)::norm_addy As na
 FROM (SELECT address, standardize_address('tiger.pagc_lex'
 , 'tiger.pagc_gaz'
 , 'tiger.pagc_rules', address) As sa
 FROM addresses_to_geocode) As g)
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM g;

 orig | streetname | streettypeabbrev
---+---------------+------------------
 529 Main Street, Boston MA, 02129 | MAIN | ST
 77 Massachusetts Avenue, Cambridge, MA 02139 | MASSACHUSETTS | AVE
 25 Wizard of Oz, Walaford, KS 99912323 | WIZARD OF |
 26 Capen Street, Medford, MA | CAPEN | ST
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | MOUNT AUBURN | ST
 950 Main Street, Worcester, MA 01610 | MAIN | ST

See Also
Normalize_Address, Geocode

Name
geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Description
geography is a spatial data type used to represent a feature in geodetic coordinate systems.
		Geodetic coordinate systems model the earth using an ellipsoid.
		

		Spatial operations on the geography type provide more accurate results
		by taking the ellipsoidal model into account.
		

Casting Behavior
This table lists the automatic and explicit casts allowed for this data type:
	Cast To	Behavior
	geometry	explicit

See Also
the section called “Geography Data Type”, the section called “PostGIS Geography Support Functions”

Name
ST_ContainsProperly — Tests if every point of B lies in the interior of A

Synopsis
	boolean ST_ContainsProperly(geomA, 	
	 	geomB);	

geometry
 geomA;
geometry
 geomB;

Description
Returns true if every point of B lies in the interior of A
 (or equivalently, no point of B lies in the the boundary or exterior of A).
In mathematical terms:
 ST_ContainsProperly(A, B) ⇔ Int(A) ⋂ B = B
A contains B properly if the DE-9IM Intersection Matrix for the two geometries matches
 [T**FF*FF*]
A does not properly contain itself, but does contain itself.

 A use for this predicate is computing the intersections of a set of geometries with a large polygonal geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test geometries which lie
 fully inside the area. In these cases the intersection is known a priori to be exactly the original test geometry.

Note

 This function automatically includes a bounding box comparison
 that makes use of any spatial indexes that are available on the geometries.

 To avoid index use, use the function _ST_ContainsProperly.

Note
The advantage of this predicate over ST_Contains and ST_Intersects is that it can be computed
 more efficiently, with no need to compute topology at individual points.

Performed by the GEOS module.
Availability: 1.4.0
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

Examples

 --a circle within a circle
 SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
 ST_ContainsProperly(bigc,smallc) As bigcontainspropsmall,
 ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,
 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
 ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
 FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
 --Result
 smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | f | t | t | f

 --example demonstrating difference between contains and contains properly
 SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
 FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also
ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

Name
PostGIS_Extensions_Upgrade —
Packages and upgrades PostGIS extensions (e.g. postgis_raster,
postgis_topology, postgis_sfcgal) to given or latest version.

Synopsis
	text PostGIS_Extensions_Upgrade(target_version=null);	

text target_version=null;

Description
Packages and upgrades PostGIS extensions
		to given or latest version. Only extensions you have installed in the
 database will be packaged and upgraded if needed.
		Reports full PostGIS version and build configuration infos after.
 This is short-hand for doing multiple CREATE EXTENSION .. FROM
 unpackaged and ALTER EXTENSION .. UPDATE for each PostGIS extension.
		Currently only tries to upgrade extensions postgis,
 postgis_raster, postgis_sfcgal, postgis_topology, and postgis_tiger_geocoder.
Availability: 2.5.0
Note
Changed: 3.4.0 to add target_version argument.
Changed: 3.3.0 support for upgrades from any PostGIS version. Does not work on all systems.
Changed: 3.0.0 to repackage loose extensions and support postgis_raster.

Examples
SELECT PostGIS_Extensions_Upgrade();

NOTICE: Packaging extension postgis
NOTICE: Packaging extension postgis_raster
NOTICE: Packaging extension postgis_sfcgal
NOTICE: Extension postgis_topology is not available or not packagable for some reason
NOTICE: Extension postgis_tiger_geocoder is not available or not packagable for some reason

 postgis_extensions_upgrade

 Upgrade completed, run SELECT postgis_full_version(); for details
(1 row)

See Also

		the section called “Upgrading spatial databases”,
		PostGIS_GEOS_Version,
		PostGIS_Lib_Version,
		PostGIS_LibXML_Version,
		PostGIS_PROJ_Version,
		PostGIS_Version
		

Name
ST_MinConvexHull —
 Return the convex hull geometry of the raster excluding NODATA pixels.

Synopsis
	geometry ST_MinConvexHull(rast, 	
	 	nband=NULL);	

raster rast;
integer nband=NULL;

Description

 Return the convex hull geometry of the raster excluding NODATA pixels. If nband is NULL, all bands of the raster are considered.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT
 ST_SetValues(
 ST_SetValues(
 ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(9, 9, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0), 2, '8BUI', 1, 0),
 1, 1, 1,
 ARRAY[
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 1],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]
]::double precision[][]
),
 2, 1, 1,
 ARRAY[
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0]
]::double precision[][]
) AS rast
)
SELECT
 ST_AsText(ST_ConvexHull(rast)) AS hull,
 ST_AsText(ST_MinConvexHull(rast)) AS mhull,
 ST_AsText(ST_MinConvexHull(rast, 1)) AS mhull_1,
 ST_AsText(ST_MinConvexHull(rast, 2)) AS mhull_2
FROM foo

 hull | mhull | mhull_1 | mhull_2
----------------------------------+-------------------------------------+-------------------------------------+-------------------------------------
 POLYGON((0 0,9 0,9 -9,0 -9,0 0)) | POLYGON((0 -3,9 -3,9 -9,0 -9,0 -3)) | POLYGON((3 -3,9 -3,9 -6,3 -6,3 -3)) | POLYGON((0 -3,6 -3,6 -9,0 -9,0 -3))

See Also

 ST_Envelope,
 ST_ConvexHull,
 ST_ConvexHull,
 ST_AsText

Name
ST_Sum4ma — Raster processing function that calculates the sum of all pixel values in a neighborhood.

Synopsis
	float8 ST_Sum4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision ST_Sum4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the sum of all pixel values in a neighborhood of pixels.

 For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

 Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Warning

 Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_sum4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 2279
(1 row)

See Also

 ST_MapAlgebraFctNgb,
 ST_MapAlgebra (callback function version),
 ST_Min4ma,
 ST_Max4ma,
 ST_Mean4ma,
 ST_Range4ma,
 ST_Distinct4ma,
 ST_StdDev4ma

Geography Data Type

The PostGIS geography data type provides native support for spatial features represented on "geographic" coordinates (sometimes called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units (degrees).
The basis for the PostGIS geometry data type is a plane.
 The shortest path between two points on the plane is a straight line.
 That means functions on geometries (areas, distances, lengths, intersections, etc)
 are calculated using straight line vectors and cartesian mathematics.
 This makes them simpler to implement and faster to execute,
 but also makes them inaccurate for data on the spheroidal surface of the earth.

The PostGIS geography data type is based on a spherical model.
 The shortest path between two points on the sphere is a great circle arc.
 Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere.
 By taking the spheroidal shape of the world into account, the functions provide more accurate results.
Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the geometry type.
 Over time, as new algorithms are added the capabilities of the geography type will expand.
 As a workaround one can convert back and forth between geometry and geography types.
Like the geometry data type, geography data is associated
 with a spatial reference system via a spatial reference system identifier (SRID).
 Any geodetic (long/lat based) spatial reference system defined in the spatial_ref_sys table can be used.
 (Prior to PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)).
		You can add your own custom geodetic spatial reference system as described in the section called “User-Defined Spatial Reference Systems”.
For all spatial reference systems the units returned by measurement functions
 (e.g. ST_Distance, ST_Length, ST_Perimeter, ST_Area)
 and for the distance argument of ST_DWithin are in meters.
Creating Geography Tables

You can create a table to store geography data using the
 CREATE TABLE
 SQL statement with a column of type geography.
 The following example creates a table with a geography column storing 2D LineStrings
 in the WGS84 geodetic coordinate system (SRID 4326):
CREATE TABLE global_points (
 id SERIAL PRIMARY KEY,
 name VARCHAR(64),
 location geography(POINT,4326)
);
The geography type supports two optional type modifiers:
	the spatial type modifier restricts the kind of shapes and dimensions allowed in the column.
		Values allowed for the spatial type are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION.
 The geography type does not support curves, TINS, or POLYHEDRALSURFACEs.
 The modifier supports coordinate dimensionality restrictions by adding suffixes: Z, M and ZM.
 For example, a modifier of 'LINESTRINGM' only allows linestrings with three dimensions, and treats the third dimension as a measure.
		Similarly, 'POINTZM' requires four dimensional (XYZM) data.

	the SRID modifier restricts the spatial reference system SRID to a particular number.
 If omitted, the SRID defaults to 4326 (WGS84 geodetic), and all calculations are performed using WGS84.

Examples of creating tables with geography columns:
	Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):
CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT));

	Create a table with 2D POINT geography in NAD83 longlat:
CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269));

	Create a table with 3D (XYZ) POINTs and an explicit SRID of 4326:
CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326));

	Create a table with 2D LINESTRING geography with the default SRID 4326:
CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING));

	Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):
CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267));

Geography fields are registered in the geography_columns system view.
		You can query the geography_columns view and see that the table is listed:

SELECT * FROM geography_columns;
Creating a spatial index works the same as for geometry columns.
	PostGIS will note that the column type is GEOGRAPHY and create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.
-- Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST (location);

Using Geography Tables

You can insert data into geography tables in the same way as geometry.
Geometry data will autocast to the geography type if it has SRID 4326.
The EWKT and EWKB formats can also be used
to specify geography values.
-- Add some data into the test table
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');

Any geodetic (long/lat) spatial reference system listed in
spatial_ref_sys table may be specified as a geography SRID.
Non-geodetic coordinate systems raise an error if used.

-- NAD 83 lon/lat
SELECT 'SRID=4269;POINT(-123 34)'::geography;
 geography
--
 0101000020AD1000000000000000C05EC00000000000004140

-- NAD27 lon/lat
SELECT 'SRID=4267;POINT(-123 34)'::geography;
 geography
--
 0101000020AB1000000000000000C05EC00000000000004140

-- NAD83 UTM zone meters - gives an error since it is a meter-based planar projection
SELECT 'SRID=26910;POINT(-123 34)'::geography;

ERROR: Only lon/lat coordinate systems are supported in geography.

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values should be expected in meters (or square meters for areas).
-- A distance query using a 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);
You can see the power of geography in action by calculating how close a plane flying
a great circle route from Seattle to London (LINESTRING(-122.33 47.606, 0.0 51.5))
comes to Reykjavik (POINT(-21.96 64.15))
(map the route).

The geography type calculates the true shortest distance of 122.235 km over the sphere
between Reykjavik and the great circle flight path between Seattle and London.
-- Distance calculation using GEOGRAPHY
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)'::geography);
 st_distance

 122235.23815667

The geometry type calculates a meaningless cartesian distance between Reykjavik
and the straight line path from Seattle to London plotted on a flat map of the world.
The nominal units of the result is "degrees",
but the result doesn't correspond to any true angular difference between the points,
so even calling them "degrees" is inaccurate.
-- Distance calculation using GEOMETRY
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)'::geometry);
 st_distance

 13.342271221453624

When to use the Geography data type

The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.
The data type you choose should be determined by the expected working area of the application you are building. Will your data span the globe or a large continental area, or is it local to a state, county or municipality?
	If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the best solution, in terms of performance and functionality available.

	If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without having to worry about projection details.
				You store your data in longitude/latitude, and use the functions that have been defined on GEOGRAPHY.

	If you don't understand projections, and you don't want to learn about them, and you're prepared to accept the limitations in functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY.
		Simply load your data up as longitude/latitude and go from there.

Refer to the section called “PostGIS Function Support Matrix” for compare between
		what is supported for Geography vs. Geometry. For a brief listing and description of Geography functions, refer to
		the section called “PostGIS Geography Support Functions”
		

Geography Advanced FAQ

	1.
	Do you calculate on the sphere or the spheroid?

		 By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in local areas match up will with local planar results in good local projections.
					Over larger areas, the spheroidal calculations will be more accurate than any calculation done on a projected plane.
					
All the geography functions have the option of using a sphere calculation, by setting a final boolean parameter to 'FALSE'. This will somewhat speed up calculations, particularly for cases where the geometries are very simple.

	2.
	What about the date-line and the poles?

		 All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude)
					so a shape that crosses the dateline is, from a calculation point of view, no different from any other shape.
					

	3.
	What is the longest arc you can process?

		We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined by the *shorter* of the two paths along the great circle.
					As a consequence, shapes that have arcs of more than 180 degrees will not be correctly modelled.

	4.
	Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

		Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge,
						so the index tends to pull the feature no matter what query you run; the number of vertices is huge,
						and tests (distance, containment) have to traverse the vertex list at least once and sometimes N times
						(with N being the number of vertices in the other candidate feature).
					
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you "denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and so queries don't have to pull out the whole object every time. Please consult ST_Subdivide function documentation.
					Just because you *can* store all of Europe in one polygon doesn't mean you *should*.

Name
ST_SetUpperLeft — Sets the value of the upper left corner of the pixel of the raster to projected X and Y coordinates.

Synopsis
	raster ST_SetUpperLeft(rast, 	
	 	x, 	
	 	y);	

raster rast;
double precision x;
double precision y;

Description
Set the value of the upper left corner of raster to the projected X and Y coordinates

Examples

SELECT ST_SetUpperLeft(rast,-71.01,42.37)
FROM dummy_rast
WHERE rid = 2;

See Also
ST_UpperLeftX, ST_UpperLeftY

Name
reclassarg — A composite type used as input into the ST_Reclass function defining the behavior of reclassification.

Description
A composite type used as input into the ST_Reclass function defining the behavior of reclassification.
	nband integer
	The band number of band to reclassify.

	reclassexpr text
	range expression consisting of comma delimited range:map_range mappings. : to define mapping that defines how to map old band values to new band values. (means >,) means less than,] < or equal, [means > or equal
1. [a-b] = a <= x <= b

2. (a-b] = a < x <= b

3. [a-b) = a <= x < b

4. (a-b) = a < x < b
(notation is optional so a-b means the same as (a-b)

	pixeltype text
	One of defined pixel types as described in ST_BandPixelType

	nodataval double precision
	Value to treat as no data. For image outputs that support transparency, these will be blank.

Example: Reclassify band 2 as an 8BUI where 255 is nodata value
SELECT ROW(2, '0-100:1-10, 101-500:11-150,501 - 10000: 151-254', '8BUI', 255)::reclassarg;

Example: Reclassify band 1 as an 1BB and no nodata value defined
SELECT ROW(1, '0-100]:0, (100-255:1', '1BB', NULL)::reclassarg;

See Also
ST_Reclass

Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints of the raster tables. As a result
		the catalog views are always consistent with the raster data in the tables since the constraints are enforced.
	raster_columns this view catalogs all the raster table columns in your database.

	raster_overviews this view catalogs all the raster table columns in your database that serve as overviews for a finer grained table. Tables of this type are generated when you use the -l switch during load.

Raster Columns Catalog

The raster_columns is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the constraints on the tables
	so the information is always consistent even if you restore one raster table from a backup of another database. The following columns exist in the raster_columns catalog.
If you created your tables not with the loader or forgot to specify the -C flag during load, you can enforce the constraints after the
	fact using AddRasterConstraints so that the raster_columns catalog registers the common information about your raster tiles.
	r_table_catalog The database the table is in. This will always read the current database.

	r_table_schema The database schema the raster table belongs to.

	r_table_name raster table

	r_raster_column the column in the r_table_name table that is of type raster. There is nothing in PostGIS preventing you from having multiple raster columns per table so its possible to have a raster table listed multiple times with a different raster column for each.

	srid The spatial reference identifier of the raster. Should be an entry in the the section called “Spatial Reference Systems”.

	scale_x The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_x and this constraint is applied. Refer to ST_ScaleX for more details.

	scale_y The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_y and the scale_y constraint is applied. Refer to ST_ScaleY for more details.

	blocksize_x The width (number of pixels across) of each raster tile . Refer to ST_Width for more details.

	blocksize_y The width (number of pixels down) of each raster tile . Refer to ST_Height for more details.

	same_alignment A boolean that is true if all the raster tiles have the same alignment . Refer to ST_SameAlignment for more details.

	regular_blocking If the raster column has the spatially unique and coverage tile constraints, the value with be TRUE. Otherwise, it will be FALSE.

	num_bands The number of bands in each tile of your raster set. This is the same information as what is provided by ST_NumBands

	pixel_types An array defining the pixel type for each band. You will have the same number of elements in this array as you have number of bands. The pixel_types are one of the following defined in ST_BandPixelType.

	nodata_values An array of double precision numbers denoting the nodata_value for each band. You will have the same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that should be ignored for most operations. This is similar information provided by ST_BandNoDataValue.

	out_db An array of boolean flags indicating if the raster bands data is maintained outside the database. You will have the same number of elements in this array as you have number of bands.

	extent This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the set, you'll want to run the DropRasterConstraints function before load and then reapply constraints with AddRasterConstraints after load.

	spatial_index A boolean that is true if raster column has a spatial index.

Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster_overviews because they are rasters in their own right but also serve an additional special purpose of being a lower resolution caricature of a higher resolution table. These are generated along-side the main raster table when you use the -l switch in raster loading or can be generated manually using AddOverviewConstraints.
Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to overviews.
Note
The information in raster_overviews does not duplicate the information in raster_columns. If you need the information about an overview table present in raster_columns you can join the raster_overviews and raster_columns together to get the full set of information you need.

Two main reasons for overviews are:
	Low resolution representation of the core tables commonly used for fast mapping zoom-out.

	Computations are generally faster to do on them than their higher resolution parents because there are fewer records and each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.
	o_table_catalog The database the overview table is in. This will always read the current database.

	o_table_schema The database schema the overview raster table belongs to.

	o_table_name raster overview table name

	o_raster_column the raster column in the overview table.

	r_table_catalog The database the raster table that this overview services is in. This will always read the current database.

	r_table_schema The database schema the raster table that this overview services belongs to.

	r_table_name raster table that this overview services.

	r_raster_column the raster column that this overview column services.

	overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of the table.
					raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1 is assumed and always the original file. Level 2 is
					will have each tile represent 4 of the original. So for example if you have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will
						have (5000*5000)/(125*125) records = 1600, your (l=2) o_2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (l=3) o_3 will have ceiling(1600/Power(2,3)) = 200 rows.
						If your pixels aren't divisible by the size of your tiles, you'll get some scrap tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of
						pixels as its parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

Chapter 4. Data Management

Spatial Data Model

OGC Geometry

The Open Geospatial Consortium (OGC) developed the
 Simple Features Access
 standard (SFA) to provide a model for geospatial data.
 It defines the fundamental spatial type of Geometry,
 along with operations which manipulate and transform geometry values
 to perform spatial analysis tasks.
 PostGIS implements the OGC Geometry model as the PostgreSQL data types
 geometry and
 geography.

 Geometry is an abstract type.
 Geometry values belong to one of its concrete subtypes
 which represent various kinds and dimensions of geometric shapes.
 These include the atomic types
 Point,
 LineString,
 LinearRing and
 Polygon,
 and the collection types
 MultiPoint,
 MultiLineString,
 MultiPolygon and
 GeometryCollection.
 The Simple Features Access - Part 1: Common architecture v1.2.1
 adds subtypes for the structures
 PolyhedralSurface,
 Triangle and
 TIN.

Geometry models shapes in the 2-dimensional Cartesian plane.
 The PolyhedralSurface, Triangle, and TIN types can also represent shapes in 3-dimensional space.
 The size and location of shapes are specified by their coordinates.
 Each coordinate has a X and Y ordinate value determining its location in the plane.
 Shapes are constructed from points or line segments, with points specified by a single coordinate,
 and line segments by two coordinates.

Coordinates may contain optional Z and M ordinate values.
 The Z ordinate is often used to represent elevation.
 The M ordinate contains a measure value, which may represent time or distance.
 If Z or M values are present in a geometry value, they must be defined for each point in the geometry.
 If a geometry has Z or M ordinates the coordinate dimension is 3D;
 if it has both Z and M the coordinate dimension is 4D.

Geometry values are associated with a
 spatial reference system
 indicating the coordinate system in which it is embedded.
 The spatial reference system is identified by the geometry SRID number.
 The units of the X and Y axes are determined by the spatial reference system.
 In planar reference systems the X and Y coordinates typically
 represent easting and northing,
 while in geodetic systems
 they represent longitude and latitude.
 SRID 0 represents an infinite Cartesian plane with no units assigned to its axes.
 See the section called “Spatial Reference Systems”.

The geometry dimension is a property of geometry types.
 Point types have dimension 0, linear types have dimension 1,
 and polygonal types have dimension 2.
 Collections have the dimension of the maximum element dimension.

A geometry value may be empty.
 Empty values contain no vertices (for atomic geometry types)
 or no elements (for collections).

An important property of geometry values is their spatial
 extent or bounding box,
 which the OGC model calls envelope.
 This is the 2 or 3-dimensional box which encloses the coordinates of a geometry.
 It is an efficient way to represent a geometry's
 extent in coordinate space and to check whether two geometries interact.

The geometry model allows evaluating topological spatial relationships as
 described in the section called “Dimensionally Extended 9-Intersection Model”.
 To support this the concepts of
 interior,
 boundary and
 exterior
 are defined for each geometry type.
 Geometries are topologically closed, so they always contain their boundary.
 The boundary is a geometry of dimension one less than that of the geometry itself.

The OGC geometry model defines validity rules for each geometry type.
 These rules ensure that geometry values represents realistic
 situations (e.g. it is possible to specify a polygon
 with a hole lying outside the shell, but this makes no sense geometrically
 and is thus invalid).
 PostGIS also allows storing and manipulating invalid geometry values.
 This allows detecting and fixing them if needed.
 See the section called “Geometry Validation”

Point

A Point is a 0-dimensional geometry that represents a single location in coordinate space.
POINT (1 2)
POINT Z (1 2 3)
POINT ZM (1 2 3 4)

LineString

A LineString is a 1-dimensional line formed by a contiguous sequence of line segments.
 Each line segment is defined by two points, with the end point of one segment
 forming the start point of the next segment.
 An OGC-valid LineString has either zero or two or more points,
 but PostGIS also allows single-point LineStrings.
 LineStrings may cross themselves (self-intersect).
 A LineString is closed if the start and end points are the same.
 A LineString is simple if it does not self-intersect.

LINESTRING (1 2, 3 4, 5 6)

LinearRing

A LinearRing is a LineString which is both closed and simple.
 The first and last points must be equal, and the line must not self-intersect.
LINEARRING (0 0 0, 4 0 0, 4 4 0, 0 4 0, 0 0 0)

Polygon

A Polygon is a 2-dimensional planar region,
 delimited by an exterior boundary (the shell)
 and zero or more interior boundaries (holes).
 Each boundary is a LinearRing.

POLYGON ((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))

MultiPoint

A MultiPoint is a collection of Points.
MULTIPOINT ((0 0), (1 2))

MultiLineString

A MultiLineString is a collection of LineStrings.
 A MultiLineString is closed if each of its elements is closed.

MULTILINESTRING ((0 0,1 1,1 2), (2 3,3 2,5 4))

MultiPolygon

A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons.
 Polygons in the collection may touch only at a finite number of points.

MULTIPOLYGON (((1 5, 5 5, 5 1, 1 1, 1 5)), ((6 5, 9 1, 6 1, 6 5)))

GeometryCollection

A GeometryCollection is a heterogeneous (mixed) collection of geometries.
GEOMETRYCOLLECTION (POINT(2 3), LINESTRING(2 3, 3 4))

PolyhedralSurface

A PolyhedralSurface is a contiguous collection of patches or facets which share some edges.
 Each patch is a planar Polygon.
 If the Polygon coordinates have Z ordinates then the surface is 3-dimensional.
POLYHEDRALSURFACE Z (
 ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))

Triangle

A Triangle is a polygon defined by three distinct non-collinear vertices.
 Because a Triangle is a polygon it is specified by four coordinates,
 with the first and fourth being equal.

TRIANGLE ((0 0, 0 9, 9 0, 0 0))

TIN

A TIN is a collection of non-overlapping
 Triangles representing a
 Triangulated Irregular Network.

TIN Z (((0 0 0, 0 0 1, 0 1 0, 0 0 0)), ((0 0 0, 0 1 0, 1 1 0, 0 0 0)))

SQL/MM Part 3 - Curves

The
 ISO/IEC 13249-3 SQL Multimedia - Spatial
 standard (SQL/MM) extends the
	 OGC SFA to define Geometry subtypes containing curves with circular arcs.
 The SQL/MM types support 3DM, 3DZ and 4D coordinates.
	
Note
All floating point comparisons within the SQL-MM implementation
		are performed to a specified tolerance, currently 1E-8.

CircularString

CircularString is the basic curve type, similar to a
 LineString in the linear world. A single arc segment is specified by three
 points: the start and end points (first and third) and some other
 point on the arc.
 To specify a closed circle the start and end points are the same
 and the middle point is the opposite point on the circle diameter
 (which is the center of the arc).
 In a sequence of arcs the end point of the previous
 arc is the start point of the next arc, just like the segments of a LineString.
 This means that a CircularString must have an
 odd number of points greater than 1.
CIRCULARSTRING(0 0, 1 1, 1 0)

CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

CompoundCurve

A CompoundCurve is a single continuous curve that may contain both
 circular arc segments and linear segments. That means that
 in addition to having well-formed components, the end point of
 every component (except the last) must be coincident with the
 start point of the following component.
COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

CurvePolygon

A CurvePolygon is like a polygon, with an outer ring
 and zero or more inner rings. The difference is that a ring can be a
 CircularString or CompoundCurve as well as a LineString.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.
CURVEPOLYGON(
 CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),
 (1 1, 3 3, 3 1, 1 1))
Example: A CurvePolygon with the shell defined by a CompoundCurve
 containing a CircularString and a LineString,
 and a hole defined by a CircularString
CURVEPOLYGON(
 COMPOUNDCURVE(CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),
 (4 3, 4 5, 1 4, 0 0)),
 CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1))

MultiCurve

A MultiCurve is a collection of curves which can include
 LineStrings, CircularStrings or CompoundCurves.
MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

MultiSurface

A MultiSurface is a collection of surfaces, which can be (linear)
 Polygons or CurvePolygons.
MULTISURFACE(
 CURVEPOLYGON(
 CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),
 (1 1, 3 3, 3 1, 1 1)),
 ((10 10, 14 12, 11 10, 10 10), (11 11, 11.5 11, 11 11.5, 11 11)))

WKT and WKB

The OGC SFA specification defines two formats for representing
	 geometry values for external use: Well-Known Text (WKT) and Well-Known
	 Binary (WKB). Both WKT and WKB include information about the type
	 of the object and the coordinates which define it.
Well-Known Text (WKT) provides a standard textual representation of spatial data.
 Examples of WKT representations of spatial objects are:
	POINT(0 0)

	POINT Z (0 0 0)

	POINT ZM (0 0 0 0)

	POINT EMPTY

	LINESTRING(0 0,1 1,1 2)

	LINESTRING EMPTY

	POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

	MULTIPOINT((0 0),(1 2))

	MULTIPOINT Z ((0 0 0),(1 2 3))

	MULTIPOINT EMPTY

	MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

	MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
		 ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

	GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

	GEOMETRYCOLLECTION EMPTY

Input and output of WKT is provided by the functions
 ST_AsText and ST_GeomFromText:
text WKT = ST_AsText(geometry);
geometry = ST_GeomFromText(text WKT, SRID);
For example, a statement to create and insert a spatial object from WKT and a SRID is:
INSERT INTO geotable (geom, name)
 VALUES (ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');
Well-Known Binary (WKB) provides a portable, full-precision representation
 of spatial data as binary data (arrays of bytes).
 Examples of the WKB representations of spatial objects are:
	WKT: POINT(1 1)
WKB: 0101000000000000000000F03F000000000000F03

	WKT: LINESTRING (2 2, 9 9)
WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240

Input and output of WKB is provided by the functions
 ST_AsBinary and ST_GeomFromWKB:

bytea WKB = ST_AsBinary(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);

For example, a statement to create and insert a
	 spatial object from WKB is:
INSERT INTO geotable (geom, name)
 VALUES (ST_GeomFromWKB('\x0101000000000000000000f03f000000000000f03f', 312), 'A Place');

Name
ST_Box2dFromGeoHash — Return a BOX2D from a GeoHash string.

Synopsis
	box2d ST_Box2dFromGeoHash(geohash, 	
	 	precision=full_precision_of_geohash);	

text geohash;
integer precision=full_precision_of_geohash;

Description
Return a BOX2D from a GeoHash string.
If no precision is specified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.
If precision is specified ST_Box2dFromGeoHash will use that many characters from the GeoHash to create the BOX2D. Lower precision values results in larger BOX2Ds and larger values increase the precision.
Availability: 2.1.0

Examples
SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0');

 st_geomfromgeohash
--
 BOX(-115.172816 36.114646,-115.172816 36.114646)

SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 0);

 st_box2dfromgeohash

 BOX(-180 -90,180 90)

 SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10);
 st_box2dfromgeohash

 BOX(-115.17282128334 36.1146408319473,-115.172810554504 36.1146461963654)
		
		

See Also
ST_GeoHash, ST_GeomFromGeoHash, ST_PointFromGeoHash

Name
DropTopology — Use with caution: Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table.

Synopsis
	integer DropTopology(topology_schema_name);	

varchar topology_schema_name;

Description
Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table.
 This function should be USED WITH CAUTION, as it could destroy data you care about. If the schema does not exist, it just removes reference entries the named schema.
Availability: 1.1

Examples
Cascade drops the ma_topo schema and removes all references to it in topology.topology and geometry_columns.
SELECT topology.DropTopology('ma_topo');

See Also
DropTopoGeometryColumn

Core Contributors Present

	Nicklas Avén
	Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB (TWKB) output format and general user support

	Loïc Bartoletti
	SFCGAL enhancements and maintenance and ci support

	Dan Baston
	Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general user support

	Martin Davis
	GEOS enhancements and documentation

	Björn Harrtell
	MapBox Vector Tile and GeoBuf functions. Gogs testing and GitLab experimentation.

	Aliaksandr Kalenik
	Geometry Processing, PostgreSQL gist, general bug fixing

Name
ST_Contour — Generates a set of vector contours from the provided raster
 band, using the GDAL contouring algorithm.

Synopsis
	setof record ST_Contour(rast, 	
	 	bandnumber=1, 	
	 	level_interval=100.0, 	
	 	level_base=0.0, 	
	 	fixed_levels=ARRAY[], 	
	 	polygonize=false);	

raster rast;
integer bandnumber=1;
double precision level_interval=100.0;
double precision level_base=0.0;
double precision[] fixed_levels=ARRAY[];
boolean polygonize=false;

Description

 Generates a set of vector contours from the provided raster
 band, using the GDAL contouring algorithm.

 When the fixed_levels parameter is a non-empty
 array, the level_interval and level_base parameters are ignored.

 Input parameters are:

	rast
	The raster to generate the contour of

	bandnumber
	The band to generate the contour of

	level_interval
	The elevation interval between contours generated

	level_base
	The "base" relative to which contour intervals are applied,
 this is normally zero, but could be different.
 To generate 10m contours at 5, 15, 25, ... the LEVEL_BASE would be 5.

	fixed_levels
	The elevation interval between contours generated

	polygonize
	If true, contour polygons will be created, rather than polygon lines.

 Return values are a set of records with the following attributes:

	geom
	The geometry of the contour line.

	id
	A unique identifier given to the contour line by GDAL.

	value
	The raster value the line represents. For an elevation DEM input, this would be the elevation of the output contour.

Availability: 3.2.0

Example
WITH c AS (
SELECT (ST_Contour(rast, 1, fixed_levels => ARRAY[100.0, 200.0, 300.0])).*
FROM dem_grid WHERE rid = 1
)
SELECT st_astext(geom), id, value
FROM c;

See Also

 ST_InterpolateRaster

Name
ST_BandMetaData — Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.

Synopsis
	(1) record ST_BandMetaData(rast, 	
	 	band=1);	

raster rast;
integer band=1;

	(2) record ST_BandMetaData(rast, 	
	 	band);	

raster rast;
integer[] band;

Description
Returns basic meta data about a raster band. Columns returned: pixeltype, nodatavalue, isoutdb, path, outdbbandnum, filesize, filetimestamp.

Note

 If raster contains no bands then an error is thrown.

Note

 If band has no NODATA value, nodatavalue are NULL.

Note

 If isoutdb is False, path, outdbbandnum, filesize and filetimestamp are NULL. If outdb access is disabled, filesize and filetimestamp will also be NULL.

Enhanced: 2.5.0 to include outdbbandnum, filesize and filetimestamp for outdb rasters.

Examples: Variant 1

SELECT
 rid,
 (foo.md).*
FROM (
 SELECT
 rid,
 ST_BandMetaData(rast, 1) AS md
 FROM dummy_rast
 WHERE rid=2
) As foo;

 rid | pixeltype | nodatavalue | isoutdb | path | outdbbandnum
-----+-----------+---- --------+---------+------+--------------
 2 | 8BUI | 0 | f | |

Examples: Variant 2

WITH foo AS (
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
 *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path | outdbbandnum | filesize | filetimestamp |
---------+-----------+-------------+---------+--+---------------+----------+---------------+-
 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1 | 12345 | 1521807257 |
 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3 | 12345 | 1521807257 |
 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 2 | 12345 | 1521807257 |

See Also
ST_MetaData, ST_BandPixelType

Name
ST_SummaryStatsAgg — Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.

Synopsis
	summarystats ST_SummaryStatsAgg(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	sample_percent);	

raster rast;
integer nband;
boolean exclude_nodata_value;
double precision sample_percent;

	summarystats ST_SummaryStatsAgg(rast, 	
	 	exclude_nodata_value, 	
	 	sample_percent);	

raster rast;
boolean exclude_nodata_value;
double precision sample_percent;

	summarystats ST_SummaryStatsAgg(rast, 	
	 	nband, 	
	 	exclude_nodata_value);	

raster rast;
integer nband;
boolean exclude_nodata_value;

Description
Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the NODATA value. Set exclude_nodata_value to False to get count of all pixels.

Note
By default will sample all pixels. To get faster response, set sample_percent to value between 0 and 1

Availability: 2.2.0

Examples

WITH foo AS (
 SELECT
 rast.rast
 FROM (
 SELECT ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0,0)
 , 1, '64BF', 0, 0
)
 , 1, 1, 1, -10
)
 , 1, 5, 4, 0
)
 , 1, 5, 5, 3.14159
) AS rast
) AS rast
 FULL JOIN (
 SELECT generate_series(1, 10) AS id
) AS id
 ON 1 = 1
)
SELECT
 (stats).count,
 round((stats).sum::numeric, 3),
 round((stats).mean::numeric, 3),
 round((stats).stddev::numeric, 3),
 round((stats).min::numeric, 3),
 round((stats).max::numeric, 3)
FROM (
 SELECT
 ST_SummaryStatsAgg(rast, 1, TRUE, 1) AS stats
 FROM foo
) bar;

 count | round | round | round | round | round
-------+---------+--------+-------+---------+-------
 20 | -68.584 | -3.429 | 6.571 | -10.000 | 3.142
(1 row)

See Also

 summarystats,
 ST_SummaryStats,
 ST_Count,
 ST_Clip

Name
ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis
	text ST_GeoHash(geom, 	
	 	maxchars=full_precision_of_point);	

geometry geom;
integer maxchars=full_precision_of_point;

Description
Computes a GeoHash representation of a geometry.
 A GeoHash encodes a geographic Point into a text form that is sortable and searchable based on prefixing.
 A shorter GeoHash is a less precise representation of a point.
 It can be thought of as a box that contains the point.

Non-point geometry values with non-zero extent can also be mapped to GeoHash codes.
 The precision of the code depends on the geographic extent of the geometry.

If maxchars is not specified, the returned GeoHash code is for the smallest cell containing the input geometry.
 Points return a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input).
 Other geometric types may return a GeoHash with less precision, depending on the extent of the geometry.
 Larger geometries are represented with less precision, smaller ones with more precision.
 The box determined by the GeoHash code always contains the input feature.
If maxchars is specified the returned GeoHash code has at most that many characters.
 It maps to a (possibly) lower precision representation of the input geometry.
 For non-points, the starting point of the calculation is the center of the bounding box of the geometry.
Availability: 1.4.0
Note
ST_GeoHash requires input geometry to be in geographic (lon/lat) coordinates.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
SELECT ST_GeoHash(ST_Point(-126,48));

	 st_geohash

 c0w3hf1s70w3hf1s70w3

SELECT ST_GeoHash(ST_Point(-126,48), 5);

 st_geohash

 c0w3h

-- This line contains the point, so the GeoHash is a prefix of the point code
SELECT ST_GeoHash('LINESTRING(-126 48, -126.1 48.1)'::geometry);

 st_geohash

 c0w3
		
		

See Also
ST_GeomFromGeoHash, ST_PointFromGeoHash, ST_Box2dFromGeoHash

Raster Operators

Name
ST_Translate — Translates a geometry by given offsets.

Synopsis
	geometry ST_Translate(g1, 	
	 	deltax, 	
	 	deltay);	

geometry g1;
float deltax;
float deltay;

	geometry ST_Translate(g1, 	
	 	deltax, 	
	 	deltay, 	
	 	deltaz);	

geometry g1;
float deltax;
float deltay;
float deltaz;

Description
Returns a new geometry whose coordinates are translated delta x,delta y,delta z units. Units are
		based on the units defined in spatial reference (SRID) for this geometry.
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.2.2

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

Examples
Move a point 1 degree longitude

	SELECT ST_AsText(ST_Translate(ST_GeomFromText('POINT(-71.01 42.37)',4326),1,0)) As wgs_transgeomtxt;

	wgs_transgeomtxt

	POINT(-70.01 42.37)
		
Move a linestring 1 degree longitude and 1/2 degree latitude
SELECT ST_AsText(ST_Translate(ST_GeomFromText('LINESTRING(-71.01 42.37,-71.11 42.38)',4326),1,0.5)) As wgs_transgeomtxt;
		 wgs_transgeomtxt

	LINESTRING(-70.01 42.87,-70.11 42.88)
		
Move a 3d point
SELECT ST_AsEWKT(ST_Translate(CAST('POINT(0 0 0)' As geometry), 5, 12,3));
	st_asewkt

	POINT(5 12 3)
		
Move a curve and a point
SELECT ST_AsText(ST_Translate(ST_Collect('CURVEPOLYGON(CIRCULARSTRING(4 3,3.12 0.878,1 0,-1.121 5.1213,6 7, 8 9,4 3))','POINT(1 3)'),1,2));
														 st_astext
--
 GEOMETRYCOLLECTION(CURVEPOLYGON(CIRCULARSTRING(5 5,4.12 2.878,2 2,-0.121 7.1213,7 9,9 11,5 5)),POINT(2 5))

See Also
ST_Affine, ST_AsText, ST_GeomFromText

Name
ST_RemoveRepeatedPoints — Returns a version of a geometry with
 duplicate points removed.

Synopsis
	geometry ST_RemoveRepeatedPoints(geom, 	
	 	tolerance);	

geometry geom;
float8 tolerance;

Description
Returns a version of the given geometry with duplicate consecutive points removed.
 The function processes only (Multi)LineStrings, (Multi)Polygons and MultiPoints
 but it can be called with any kind of geometry.
 Elements of GeometryCollections are processed individually.
 The endpoints of LineStrings are preserved.

If the tolerance parameter is provided, vertices within the tolerance distance
 of one another are considered to be duplicates.
Enhanced: 3.2.0
Availability: 2.2.0

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText(ST_RemoveRepeatedPoints('MULTIPOINT ((1 1), (2 2), (3 3), (2 2))'));

 MULTIPOINT(1 1,2 2,3 3)

SELECT ST_AsText(ST_RemoveRepeatedPoints('LINESTRING (0 0, 0 0, 1 1, 0 0, 1 1, 2 2)'));

 LINESTRING(0 0,1 1,0 0,1 1,2 2)

Example:
 Collection elements are processed individually.

SELECT ST_AsText(ST_RemoveRepeatedPoints('GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2, 2 2, 3 3), POINT (4 4), POINT (4 4), POINT (5 5))'));
--
 GEOMETRYCOLLECTION(LINESTRING(1 1,2 2,3 3),POINT(4 4),POINT(4 4),POINT(5 5))

Example:
 Repeated point removal with a distance tolerance.

SELECT ST_AsText(ST_RemoveRepeatedPoints('LINESTRING (0 0, 0 0, 1 1, 5 5, 1 1, 2 2)', 2));

 LINESTRING(0 0,5 5,2 2)

See Also
ST_Simplify

Name
ST_Dimension — Returns the topological dimension of a geometry.

Synopsis
	integer ST_Dimension(g);	

geometry g;

Description
Return the topological dimension of this Geometry object, which must
			be less than or equal to the coordinate dimension. OGC SPEC
			s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and
			the largest dimension of the components of a
			GEOMETRYCOLLECTION.
			If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) 0 is returned.
		

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.2
Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
Note
Prior to 2.0.0, this function throws an exception if used with empty geometry.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
ST_Dimension

1

See Also
ST_NDims

Name
ST_StraightSkeleton — Compute a straight skeleton from a geometry

Synopsis
	geometry ST_StraightSkeleton(geom);	

geometry geom;

Description
Availability: 2.1.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
	[image: Examples]Original polygon

					 	[image: Examples]Straight Skeleton of polygon

					

Name
ST_Length2D — Returns the 2D length of a linear geometry. Alias for ST_Length

Synopsis
	float ST_Length2D(a_2dlinestring);	

geometry a_2dlinestring;

Description
Returns the 2D length of the geometry if it is a
				linestring or multi-linestring. This is an alias for ST_Length

See Also
ST_Length, ST_3DLength

Name
<#> —
Returns the 2D distance between A and B bounding boxes.
			

Synopsis
	double precision <#>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The <#> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.
Note
This operand will make use of any indexes that may be available on the
			 geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator
			 is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) instead of g1.geom <#>.

Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+

Examples
SELECT *
FROM (
SELECT b.tlid, b.mtfcc,
	b.geom <#> ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
		745787 2948499,745740 2948468,745712 2948438,
		745690 2948384,745677 2948319)',2249) As b_dist,
		ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
		745787 2948499,745740 2948468,745712 2948438,
		745690 2948384,745677 2948319)',2249)) As act_dist
 FROM bos_roads As b
 ORDER BY b_dist, b.tlid
 LIMIT 100) As foo
 ORDER BY act_dist, tlid LIMIT 10;

 tlid | mtfcc | b_dist | act_dist
-----------+-------+------------------+------------------
 85732027 | S1400 | 0 | 0
 85732029 | S1400 | 0 | 0
 85732031 | S1400 | 0 | 0
 85734335 | S1400 | 0 | 0
 85736037 | S1400 | 0 | 0
 624683742 | S1400 | 0 | 128.528874268666
 85719343 | S1400 | 260.839270432962 | 260.839270432962
 85741826 | S1400 | 164.759294123275 | 260.839270432962
 85732032 | S1400 | 277.75 | 311.830282365264
 85735592 | S1400 | 222.25 | 311.830282365264
(10 rows)

See Also
ST_DWithin, ST_Distance, <->

Topology and TopoGeometry Management

Abstract
This section lists the Topology functions for building new Topology schemas, validating topologies, and managing TopoGeometry Columns

Using Spatial Indexes

When constructing queries using spatial conditions,
 for best performance it is important to
 ensure that a spatial index is used, if one exists (see the section called “Spatial Indexes”).
 To do this, a spatial operator or index-aware function must be used
 in a WHERE or ON clause of the query.

Spatial operators include
 the bounding box operators
 (of which the most commonly used is &&;
 see the section called “Bounding Box Operators” for the full list)
 and the distance operators used in nearest-neighbor queries
 (the most common being <->;
 see the section called “Distance Operators” for the full list.)

Index-aware functions automatically add a bounding box operator
 to the spatial condition.
 Index-aware functions include the named spatial relationship predicates
 ST_Contains,
 ST_ContainsProperly,
 ST_CoveredBy,
 ST_Covers,
 ST_Crosses,
 ST_Intersects,
 ST_Overlaps,
 ST_Touches,
 ST_Within,
 ST_Within,
 and ST_3DIntersects,
 and the distance predicates
 ST_DWithin,
 ST_DFullyWithin,
 ST_3DDFullyWithin,
 and ST_3DDWithin
 .)

Functions such as
 ST_Distance do not use indexes to optimize their
 operation. For example, the following query would be quite slow on a
 large table:
SELECT geom
FROM geom_table
WHERE ST_Distance(geom, 'SRID=312;POINT(100000 200000)') < 100
This query selects all the geometries in geom_table which are
 within 100 units of the point (100000, 200000). It will be slow because
 it is calculating the distance between each point in the table and the
 specified point, ie. one ST_Distance() calculation
 is computed for every row in the table.

 The number of rows processed can be reduced substantially by using the
	index-aware function ST_DWithin:
SELECT geom
FROM geom_table
WHERE ST_DWithin(geom, 'SRID=312;POINT(100000 200000)', 100)

This query selects the same geometries, but it does it in a more
 efficient way.
 This is enabled by ST_DWithin() using the
 && operator internally on an expanded bounding box
 of the query geometry.
 If there is a spatial index on geom, the query
 planner will recognize that it can use the index to reduce the number of
 rows scanned before calculating the distance.
 The spatial index allows retrieving only records with geometries
 whose bounding boxes overlap the expanded extent
 and hence which might be within the required distance.
 The actual distance is then computed to confirm whether to include the record in the result set.

For more information and examples see the
 PostGIS Workshop.

Bounding Box Functions

Abstract
These functions produce or operate on bounding boxes.
			They can also provide and accept geometry values, by using automatic or explicit casts.
			
See also the section called “PostGIS Box Functions”.

Name
ST_Transform — Return a new geometry with coordinates transformed to
 a different spatial reference system.

Synopsis
	geometry ST_Transform(g1, 	
	 	srid);	

geometry g1;
integer srid;

	geometry ST_Transform(geom, 	
	 	to_proj);	

geometry geom;
text to_proj;

	geometry ST_Transform(geom, 	
	 	from_proj, 	
	 	to_proj);	

geometry geom;
text from_proj;
text to_proj;

	geometry ST_Transform(geom, 	
	 	from_proj, 	
	 	to_srid);	

geometry geom;
text from_proj;
integer to_srid;

Description
Returns a new geometry with its coordinates transformed to
 a different spatial reference system. The destination spatial
 reference to_srid may be identified by a valid
 SRID integer parameter (i.e. it must exist in the
 spatial_ref_sys table).
 Alternatively, a spatial reference defined as a PROJ.4 string
 can be used for to_proj and/or
 from_proj, however these methods are not
 optimized. If the destination spatial reference system is
 expressed with a PROJ.4 string instead of an SRID, the SRID of the
 output geometry will be set to zero. With the exception of functions with
 from_proj, input geometries must have a defined SRID.

ST_Transform is often confused with ST_SetSRID. ST_Transform actually changes the coordinates
 of a geometry from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of
 the geometry.
ST_Transform automatically selects a suitable conversion pipeline given the source and target spatial
 reference systems. To use a specific conversion method, use ST_TransformPipeline.
Note
Requires PostGIS be compiled with PROJ support. Use PostGIS_Full_Version to confirm you have PROJ support compiled in.

Note
If using more than one transformation, it is useful to have a functional index on the commonly used
 transformations to take advantage of index usage.

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM 3: 5.1.6

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
Change Massachusetts state plane US feet geometry to WGS 84 long lat

SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
 743265 2967450,743265.625 2967416,743238 2967416))',2249),4326)) As wgs_geom;

 wgs_geom

 POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684
8522251 42.3902896512902));
(1 row)

--3D Circular String example
SELECT ST_AsEWKT(ST_Transform(ST_GeomFromEWKT('SRID=2249;CIRCULARSTRING(743238 2967416 1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)'),4326));

 st_asewkt
--
 SRID=4326;CIRCULARSTRING(-71.1776848522251 42.3902896512902 1,-71.1776843766326 42.3903829478009 2,
 -71.1775844305465 42.3903826677917 3,
 -71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)

Example of creating a partial functional index. For tables where you are not sure all the geometries
 will be filled in, its best to use a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

CREATE INDEX idx_geom_26986_parcels
 ON parcels
 USING gist
 (ST_Transform(geom, 26986))
 WHERE geom IS NOT NULL;

Examples of using PROJ.4 text to transform with custom spatial references.

-- Find intersection of two polygons near the North pole, using a custom Gnomic projection
-- See http://boundlessgeo.com/2012/02/flattening-the-peel/
 WITH data AS (
 SELECT
 ST_GeomFromText('POLYGON((170 50,170 72,-130 72,-130 50,170 50))', 4326) AS p1,
 ST_GeomFromText('POLYGON((-170 68,-170 90,-141 90,-141 68,-170 68))', 4326) AS p2,
 '+proj=gnom +ellps=WGS84 +lat_0=70 +lon_0=-160 +no_defs'::text AS gnom
)
 SELECT ST_AsText(
 ST_Transform(
 ST_Intersection(ST_Transform(p1, gnom), ST_Transform(p2, gnom)),
 gnom, 4326))
 FROM data;
 st_astext
 --
 POLYGON((-170 74.053793645338,-141 73.4268621378904,-141 68,-170 68,-170 74.053793645338))

Configuring transformation behavior
Sometimes coordinate transformation involving a grid-shift
 can fail, for example if PROJ.4 has not been built with
 grid-shift files or the coordinate does not lie within the
 range for which the grid shift is defined. By default, PostGIS
 will throw an error if a grid shift file is not present, but
 this behavior can be configured on a per-SRID basis either
 by testing different to_proj values of
 PROJ.4 text, or altering the proj4text value
 within the spatial_ref_sys table.

For example, the proj4text parameter +datum=NAD87 is a shorthand form for the following +nadgrids parameter:
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat
The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been appropriate (ie. found and overlapping) then an error is issued.
If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a null transformation is applied you could use:
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat,null
The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you wanted to alter PostGIS so that transformations to SRID 4267 that didn't lie within the correct range did not throw an ERROR, you would use the following:
UPDATE spatial_ref_sys SET proj4text = '+proj=longlat +ellps=clrk66 +nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat,null +no_defs' WHERE srid = 4267;

See Also
the section called “Spatial Reference Systems”, ST_SetSRID, ST_SRID, UpdateGeometrySRID, ST_TransformPipeline

Name
DropTopoGeometryColumn — Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table.

Synopsis
	text DropTopoGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar schema_name;
varchar table_name;
varchar column_name;

Description
Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table. Returns summary
 of drop status. NOTE: it first sets all values to NULL before dropping to bypass referential integrity checks.
Availability: 1.1

Examples
SELECT topology.DropTopoGeometryColumn('ma_topo', 'parcel_topo', 'topo');

See Also
AddTopoGeometryColumn

Name
ST_AsGeobuf — Return a Geobuf representation of a set of rows.

Synopsis
	bytea ST_AsGeobuf(row);	

anyelement set row;

	bytea ST_AsGeobuf(row, 	
	 	geom_name);	

anyelement row;
text geom_name;

Description

			Return a Geobuf representation (https://github.com/mapbox/geobuf) of a set of rows corresponding to a FeatureCollection.
			Every input geometry is analyzed to determine maximum precision for optimal storage.
			Note that Geobuf in its current form cannot be streamed so the full output will be assembled in memory.
		
row row data with at least a geometry column.
geom_name is the name of the geometry column in the row data. If NULL it will default to the first found geometry column.
Availability: 2.4.0

Examples
SELECT encode(ST_AsGeobuf(q, 'geom'), 'base64')
 FROM (SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))') AS geom) AS q;
 st_asgeobuf

 GAAiEAoOCgwIBBoIAAAAAgIAAAE=

		
		

Name
ST_AddIsoNode — Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the node is still created.

Synopsis
	integer ST_AddIsoNode(atopology, 	
	 	aface, 	
	 	apoint);	

varchar atopology;
integer aface;
geometry apoint;

Description
Adds an isolated node with point location apoint to an existing face with faceid aface to a topology atopology and returns the nodeid of the new node.
If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, or the point intersects an existing edge
 (even at the boundaries) then an exception is thrown. If the point already exists as a node, an exception is thrown.
If aface is not null and the apoint is not within the face, then an exception is thrown.
Availability: 1.1

 [image: Description]
 This method implements the SQL/MM specification.

 SQL-MM: Topo-Net Routines: X+1.3.1

Examples

See Also
AddNode, CreateTopology, DropTopology, ST_Intersects

Name
ST_Intersection — Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

Synopsis
	setof geomval ST_Intersection(geom, 	
	 	rast, 	
	 	band_num=1);	

geometry geom;
raster rast;
integer band_num=1;

	setof geomval ST_Intersection(rast, 	
	 	geom);	

raster rast;
geometry geom;

	setof geomval ST_Intersection(rast, 	
	 	band, 	
	 	geomin);	

raster rast;
integer band;
geometry geomin;

	raster ST_Intersection(rast1, 	
	 	rast2, 	
	 	nodataval);	

raster rast1;
raster rast2;
double precision[] nodataval;

	raster ST_Intersection(rast1, 	
	 	rast2, 	
	 	returnband, 	
	 	nodataval);	

raster rast1;
raster rast2;
text returnband;
double precision[] nodataval;

	raster ST_Intersection(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	nodataval);	

raster rast1;
integer band1;
raster rast2;
integer band2;
double precision[] nodataval;

	raster ST_Intersection(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	returnband, 	
	 	nodataval);	

raster rast1;
integer band1;
raster rast2;
integer band2;
text returnband;
double precision[] nodataval;

Description

 Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

 The first three variants, returning a setof geomval, works in vector space. The raster is first vectorized (using ST_DumpAsPolygons) into a set of geomval rows and those rows are then intersected with the geometry using the ST_Intersection (geometry, geometry) PostGIS function. Geometries intersecting only with a nodata value area of a raster returns an empty geometry. They are normally excluded from the results by the proper usage of ST_Intersects in the WHERE clause.

 You can access the geometry and the value parts of the resulting set of geomval by surrounding them with parenthesis and adding '.geom' or '.val' at the end of the expression. e.g. (ST_Intersection(rast, geom)).geom

 The other variants, returning a raster, works in raster space. They are using the two rasters version of ST_MapAlgebraExpr to perform the intersection.

 The extent of the resulting raster corresponds to the geometrical intersection of the two raster extents. The resulting raster includes 'BAND1', 'BAND2' or 'BOTH' bands, following what is passed as the returnband parameter. Nodata value areas present in any band results in nodata value areas in every bands of the result. In other words, any pixel intersecting with a nodata value pixel becomes a nodata value pixel in the result.

 Rasters resulting from ST_Intersection must have a nodata value assigned for areas not intersecting. You can define or replace the nodata value for any resulting band by providing a nodataval[] array of one or two nodata values depending if you request 'BAND1', 'BAND2' or 'BOTH' bands. The first value in the array replace the nodata value in the first band and the second value replace the nodata value in the second band. If one input band do not have a nodata value defined and none are provided as an array, one is chosen using the ST_MinPossibleValue function. All variant accepting an array of nodata value can also accept a single value which will be assigned to each requested band.

 In all variants, if no band number is specified band 1 is assumed. If you need an intersection between a raster and geometry that returns a raster, refer to ST_Clip.

Note

 To get more control on the resulting extent or on what to return when encountering a nodata value, use the two rasters version of ST_MapAlgebraExpr.

Note

 To compute the intersection of a raster band with a geometry in raster space, use ST_Clip. ST_Clip works on multiple bands rasters and does not return a band corresponding to the rasterized geometry.

Note

 ST_Intersection should be used in conjunction with ST_Intersects and an index on the raster column and/or the geometry column.

 Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.

Examples: Geometry, Raster -- resulting in geometry vals

SELECT
 foo.rid,
 foo.gid,
 ST_AsText((foo.geomval).geom) As geomwkt,
 (foo.geomval).val
FROM (
 SELECT
 A.rid,
 g.gid,
 ST_Intersection(A.rast, g.geom) As geomval
 FROM dummy_rast AS A
 CROSS JOIN (
 VALUES
 (1, ST_Point(3427928, 5793243.85)),
 (2, ST_GeomFromText('LINESTRING(3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8)')),
 (3, ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) As g(gid,geom)
 WHERE A.rid = 2
) As foo;

 rid | gid | geomwkt | val
-----+-----+---
 2 | 1 | POINT(3427928 5793243.85) | 249
 2 | 1 | POINT(3427928 5793243.85) | 253
 2 | 2 | POINT(3427927.85 5793243.75) | 254
 2 | 2 | POINT(3427927.8 5793243.8) | 251
 2 | 2 | POINT(3427927.8 5793243.8) | 253
 2 | 2 | LINESTRING(3427927.8 5793243.75,3427927.8 5793243.8) | 252
 2 | 2 | MULTILINESTRING((3427927.8 5793243.8,3427927.8 5793243.75),...) | 250
 2 | 3 | GEOMETRYCOLLECTION EMPTY

See Also

 geomval,
 ST_Intersects,
 ST_MapAlgebraExpr,
 ST_Clip,
 ST_AsText

Name
ST_DumpAsPolygons — Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.

Synopsis
	setof geomval ST_DumpAsPolygons(rast, 	
	 	band_num=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band_num=1;
boolean exclude_nodata_value=TRUE;

Description
This is a set-returning function (SRF). It returns a set of
 geomval rows, formed by a geometry (geom) and a pixel band value (val).
 Each polygon is the union of all pixels for that band that have the same pixel value denoted by val.
ST_DumpAsPolygon is useful for polygonizing rasters. It is the
 reverse of a GROUP BY in that it creates new rows. For example it
 can be used to expand a single raster into multiple POLYGONS/MULTIPOLYGONS.
Changed 3.3.0, validation and fixing is disabled to improve performance. May result invalid geometries.
Availability: Requires GDAL 1.7 or higher.
Note
If there is a no data value set for a band, pixels with that value will not be returned except in the case of exclude_nodata_value=false.

Note
If you only care about count of pixels with a given value in a raster, it is faster to use ST_ValueCount.

Note

 This is different than ST_PixelAsPolygons where one geometry is returned for each pixel regardless of pixel value.

Examples
 -- this syntax requires PostgreSQL 9.3+
SELECT val, ST_AsText(geom) As geomwkt
FROM (
SELECT dp.*
FROM dummy_rast, LATERAL ST_DumpAsPolygons(rast) AS dp
WHERE rid = 2
) As foo
WHERE val BETWEEN 249 and 251
ORDER BY val;

 val | geomwkt
-----+--
 249 | POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 5793243.85,
 3427928 5793243.95,3427927.95 5793243.95))
 250 | POLYGON((3427927.75 5793243.9,3427927.75 5793243.85,3427927.8 5793243.85,
 3427927.8 5793243.9,3427927.75 5793243.9))
 250 | POLYGON((3427927.8 5793243.8,3427927.8 5793243.75,3427927.85 5793243.75,
 3427927.85 5793243.8, 3427927.8 5793243.8))
 251 | POLYGON((3427927.75 5793243.85,3427927.75 5793243.8,3427927.8 5793243.8,
 3427927.8 5793243.85,3427927.75 5793243.85))

See Also

 geomval,
 ST_Value,
 ST_Polygon,
 ST_ValueCount

Name
Get_Geocode_Setting — Returns value of specific setting stored in tiger.geocode_settings table.

Synopsis
	text Get_Geocode_Setting(setting_name);	

text setting_name;

Description
Returns value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are as follows:
 name | setting | unit | category | short_desc
--------------------------------+---------+---------+-----------+--
 debug_geocode_address | false | boolean | debug | outputs debug information in notice log such as queries when geocode_address is called if true
 debug_geocode_intersection | false | boolean | debug | outputs debug information in notice log such as queries when geocode_intersection is called if true
 debug_normalize_address | false | boolean | debug | outputs debug information in notice log such as queries and intermediate expressions when normalize_address is called if true
 debug_reverse_geocode | false | boolean | debug | if true, outputs debug information in notice log such as queries and intermediate expressions when reverse_geocode
 reverse_geocode_numbered_roads | 0 | integer | rating | For state and county highways, 0 - no preference in name,
 1 - prefer the numbered highway name, 2 - prefer local state/county name
 use_pagc_address_parser | false | boolean | normalize | If set to true, will try to use the address_standardizer extension (via pagc_normalize_address)
 instead of tiger normalize_address built one
Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in geocode_settings and only contain those that have been set by user.
Availability: 2.1.0

Example return debugging setting
SELECT get_geocode_setting('debug_geocode_address) As result;
result

false

See Also
Set_Geocode_Setting

Name
postgis.gdal_vsi_options —
 A string configuration to set options used when working with an out-db raster.

Description

 A string configuration to set options used when working with an out-db raster. Configuration options control things like how much space GDAL allocates to local data cache, whether to read overviews, and what access keys to use for remote out-db data sources.

Availability: 3.2.0

Examples
Set postgis.gdal_vsi_options for current session:

SET postgis.gdal_vsi_options = 'AWS_ACCESS_KEY_ID=xxxxxxxxxxxxxxx AWS_SECRET_ACCESS_KEY=yyyyyyyyyyyyyyyyyyyyyyyyyy';

Set postgis.gdal_vsi_options just for the current transaction using the LOCAL keyword:

SET LOCAL postgis.gdal_vsi_options = 'AWS_ACCESS_KEY_ID=xxxxxxxxxxxxxxx AWS_SECRET_ACCESS_KEY=yyyyyyyyyyyyyyyyyyyyyyyyyy';

See Also

 postgis.enable_outdb_rasters
 postgis.gdal_enabled_drivers

Name
postgis_sfcgal_version — Returns the version of SFCGAL in use

Synopsis
	text postgis_sfcgal_version();	

Description
Returns the version of SFCGAL in use
Availability: 2.1.0

 [image: Description]
 This method needs SFCGAL backend.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

See Also
postgis_sfcgal_full_version

Name
ST_UnaryUnion — Computes the union of the components of a single geometry.

Synopsis
	geometry ST_UnaryUnion(geom, 	
	 	gridSize = -1);	

geometry geom;
float8 gridSize = -1;

Description

 A single-input variant of ST_Union.
 The input may be a single geometry, a MultiGeometry, or a GeometryCollection.
 The union is applied to the individual elements of the input.

 This function can be used to fix MultiPolygons which are
 invalid due to overlapping components.
 However, the input components must each be valid.
 An invalid input component such as a bow-tie polygon may cause an error.
 For this reason it may be better to use ST_MakeValid.

 Another use of this function is to node and dissolve a collection of
 linestrings which cross or overlap
 to make them simple.
 (ST_Node also does this,
 but it does not provide the gridSize option.)

 It is possible to combine ST_UnaryUnion with ST_Collect to fine-tune
 how many geometries are be unioned at once.
 This allows trading off between memory usage and compute time,
 striking a balance between ST_Union and ST_MemUnion.

 If the optional gridSize argument is provided, the inputs are
 snapped to a grid of the given size, and the result vertices are computed
 on that same grid. (Requires GEOS-3.9.0 or higher)

 [image: Description]
 This function supports 3d and will not drop the z-index.

 However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.
Enhanced: 3.1.0 accept a gridSize parameter.
Requires GEOS >= 3.9.0 to use the gridSize parameter
Availability: 2.0.0

See Also

 ST_Union,
 ST_MemUnion,
 ST_MakeValid,
 ST_Collect,
 ST_Node

Name
ST_NPoints — Returns the number of points (vertices) in a geometry.

Synopsis
	integer ST_NPoints(g1);	

geometry g1;

Description
Return the number of points in a geometry. Works for all geometries.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
4

--Polygon in 3D space
SELECT ST_NPoints(ST_GeomFromEWKT('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 -1,77.29 29.07 3)'))
--result
4

See Also
ST_NumPoints

Name
gaz table — A gaz table is used to standardize place names and associate that input with (a) input tokens (See the section called “Input Tokens”) and (b) standardized representations.

Description
A gaz (short for gazeteer) table is used to standardize place names and associate that input with the section called “Input Tokens” and (b) standardized representations. For example if you are in US, you may load these with State Names and associated abbreviations.
A gaz table has at least the following columns in the table. You may add more columns if you wish for your own purposes.
	id
	Primary key of table

	seq
	integer: definition number? - identifer used for that instance of the word

	word
	text: the input word

	stdword
	text: the standardized replacement word

	token
	integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

Name
ST_Summary — Returns a text summary of the contents of the raster.

Synopsis
	text ST_Summary(rast);	

raster rast;

Description
Returns a text summary of the contents of the raster.
Availability: 2.1.0

Examples

SELECT ST_Summary(
 ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 1, 0
)
 , 2, '32BF', 0, -9999
)
 , 3, '16BSI', 0, NULL
)
);

 st_summary
--
 Raster of 10x10 pixels has 3 bands and extent of BOX(0 -10,10 0)+
 band 1 of pixtype 8BUI is in-db with NODATA value of 0 +
 band 2 of pixtype 32BF is in-db with NODATA value of -9999 +
 band 3 of pixtype 16BSI is in-db with no NODATA value
(1 row)

See Also

 ST_MetaData,
 ST_BandMetaData,
 ST_Summary
 ST_Extent

Name
ST_FilterByM — Removes vertices based on their M value

Synopsis
	geometry ST_FilterByM(geom, 	
	 	min, 	
	 	max = null, 	
	 	returnM = false);	

geometry geom;
double precision min;
double precision max = null;
boolean returnM = false;

Description
Filters out vertex points based on their M-value. Returns a geometry with only
 vertex points that have a M-value larger or equal to the min value and smaller or equal to
 the max value. If max-value argument is left out only min value is considered. If fourth argument is left out the m-value
 will not be in the resulting geometry. If resulting geometry have too few vertex points left for its geometry type an empty
 geometry will be returned. In a geometry collection
 geometries without enough points will just be left out silently.
This function is mainly intended to be used in conjunction with ST_SetEffectiveArea. ST_EffectiveArea sets the effective area
 of a vertex in its m-value. With ST_FilterByM it then is possible to get a simplified version of the geometry without any calculations, just by filtering
Note
There is a difference in what ST_SimplifyVW returns when not enough points meet the criteria compared to ST_FilterByM.
 ST_SimplifyVW returns the geometry with enough points while ST_FilterByM returns an empty geometry

Note
Note that the returned geometry might be invalid

Note
This function returns all dimensions, including the Z and M values

Availability: 2.5.0

Examples
A linestring is filtered

SELECT ST_AsText(ST_FilterByM(geom,30)) simplified
FROM (SELECT ST_SetEffectiveArea('LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry) geom) As foo;

result

 simplified

 LINESTRING(5 2,7 25,10 10)

See Also
ST_SetEffectiveArea, ST_SimplifyVW

Name
ST_ClusterKMeans — Window function that returns a cluster id for each input geometry using the K-means algorithm.

Synopsis
	integer ST_ClusterKMeans(geom, 	
	 	number_of_clusters, 	
	 	max_radius);	

geometry winset
			geom;
integer
			number_of_clusters;
float
			max_radius;

Description
Returns K-means
 cluster number for each input geometry. The distance used for clustering is the
 distance between the centroids for 2D geometries, and distance between bounding box centers for 3D geometries.
 For POINT inputs, M coordinate will be treated as weight of input and has to be larger than 0.

max_radius, if set, will cause ST_ClusterKMeans to generate more clusters than
 k ensuring that no cluster in output has radius larger than max_radius.
 This is useful in reachability analysis.
Enhanced: 3.2.0 Support for max_radius
Enhanced: 3.1.0 Support for 3D geometries and weights
Availability: 2.3.0

Examples
Generate dummy set of parcels for examples:
CREATE TABLE parcels AS
SELECT lpad((row_number() over())::text,3,'0') As parcel_id, geom,
('{residential, commercial}'::text[])[1 + mod(row_number()OVER(),2)] As type
FROM
 ST_Subdivide(ST_Buffer('SRID=3857;LINESTRING(40 100, 98 100, 100 150, 60 90)'::geometry,
 40, 'endcap=square'),12) As geom;

[image: Examples]Parcels color-coded by cluster number (cid)

SELECT ST_ClusterKMeans(geom, 3) OVER() AS cid, parcel_id, geom
 FROM parcels;

 cid | parcel_id | geom
-----+-----------+---------------
 0 | 001 | 0103000000...
 0 | 002 | 0103000000...
 1 | 003 | 0103000000...
 0 | 004 | 0103000000...
 1 | 005 | 0103000000...
 2 | 006 | 0103000000...
 2 | 007 | 0103000000...

Partitioning parcel clusters by type:

SELECT ST_ClusterKMeans(geom, 3) over (PARTITION BY type) AS cid, parcel_id, type
 FROM parcels;
 cid | parcel_id | type
-----+-----------+-------------
 1 | 005 | commercial
 1 | 003 | commercial
 2 | 007 | commercial
 0 | 001 | commercial
 1 | 004 | residential
 0 | 002 | residential
 2 | 006 | residential

Example: Clustering a preaggregated planetary-scale data population dataset
using 3D clusering and weighting.
Identify at least 20 regions based on
Kontur Population Data
that do not span more than 3000 km from their center:
create table kontur_population_3000km_clusters as
select
 geom,
 ST_ClusterKMeans(
 ST_Force4D(
 ST_Transform(ST_Force3D(geom), 4978), -- cluster in 3D XYZ CRS
 mvalue := population -- set clustering to be weighed by population
),
 20, -- aim to generate at least 20 clusters
 max_radius := 3000000 -- but generate more to make each under 3000 km radius
) over () as cid
from
 kontur_population;

[image: Examples]World population clustered to above specs produces 46 clusters.
 Clusters are centered at well-populated regions (New York, Moscow).
 Greenland is one cluster.
 There are island clusters that span across the antimeridian.
 Cluster edges follow Earth's curvature.

See Also

 ST_ClusterDBSCAN,
 ST_ClusterIntersectingWin,
 ST_ClusterWithinWin,
 ST_ClusterIntersecting,
 ST_ClusterWithin,
 ST_Subdivide,
 ST_Force3D,
 ST_Force4D,

Name
ST_Summary — Returns a text summary of the contents of a geometry.
		

Synopsis
	text ST_Summary(g);	

geometry g;

	text ST_Summary(g);	

geography g;

Description
Returns a text summary of the contents of the geometry.

 Flags shown square brackets after the geometry type
 have the following meaning:

	M: has M coordinate

	Z: has Z coordinate

	B: has a cached bounding box

	G: is geodetic (geography)

	S: has spatial reference system

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Availability: 1.2.2
Enhanced: 2.0.0 added support for geography
Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
Enhanced: 2.2.0 Added support for TIN and Curves

Examples

=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
 ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog;
 geom | geog
-----------------------------+--------------------------
 LineString[B] with 2 points | Polygon[BGS] with 1 rings
 | ring 0 has 5 points
 :
(1 row)

=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line,
 ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly;
;
 geog_line | geom_poly
-------------------------------- +--------------------------
 LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
 : ring 0 has 5 points
 :
(1 row)

See Also

PostGIS_DropBBox,
PostGIS_AddBBox,
ST_Force3DM,
ST_Force3DZ,
ST_Force2D,
geography
		

ST_IsValid,
ST_IsValid,
ST_IsValidReason,
ST_IsValidDetail
		

Name
&> — Returns TRUE if A' bounding box overlaps or is to the right of B's.

Synopsis
	boolean &>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The &> operator returns TRUE if the bounding box of geometry A
			overlaps or is to the right of the bounding box of geometry B, or more accurately, overlaps or is NOT to the left
			of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright
FROM
 (VALUES
	(1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING(0 0, 3 3)'::geometry),
	(3, 'LINESTRING(0 1, 0 5)'::geometry),
	(4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overright
---------+---------+-----------
	 1 | 2 | t
	 1 | 3 | t
	 1 | 4 | f
(3 rows)

See Also

				&&,
				|&>,
				&<|,
				&<

Name
ST_OptimalAlphaShape — Computes an Alpha-shape enclosing a geometry using an "optimal" alpha value.

Synopsis
	geometry ST_OptimalAlphaShape(geom, 	
	 	allow_holes = false, 	
	 	nb_components = 1);	

geometry geom;
boolean allow_holes = false;
integer nb_components = 1;

Description
Computes the "optimal" alpha-shape of the points in a geometry.
 The alpha-shape is computed using a value of α chosen so that:

	the number of polygon elements is equal to or smaller than nb_components
 (which defaults to 1)

	all input points are contained in the shape

 The result will not contain holes unless the optional allow_holes argument is specified as true.

Availability: 3.3.0 - requires SFCGAL >= 1.4.1.

 [image: Description]
 This method needs SFCGAL backend.

Examples

[image: Examples]Optimal alpha-shape of a MultiPoint (same example as ST_AlphaShape)

SELECT ST_AsText(ST_OptimalAlphaShape('MULTIPOINT((63 84),(76 88),(68 73),(53 18),(91 50),(81 70),
 (88 29),(24 82),(32 51),(37 23),(27 54),(84 19),(75 87),(44 42),(77 67),(90 30),(36 61),(32 65),
 (81 47),(88 58),(68 73),(49 95),(81 60),(87 50),
 (78 16),(79 21),(30 22),(78 43),(26 85),(48 34),(35 35),(36 40),(31 79),(83 29),(27 84),(52 98),(72 95),(85 71),
 (75 84),(75 77),(81 29),(77 73),(41 42),(83 72),(23 36),(89 53),(27 57),(57 97),(27 77),(39 88),(60 81),
 (80 72),(54 32),(55 26),(62 22),(70 20),(76 27),(84 35),(87 42),(82 54),(83 64),(69 86),(60 90),(50 86),(43 80),(36 73),
 (36 68),(40 75),(24 67),(23 60),(26 44),(28 33),(40 32),(43 19),(65 16),(73 16),(38 46),(31 59),(34 86),(45 90),(64 97))'::geometry));

POLYGON((89 53,91 50,87 42,90 30,88 29,84 19,78 16,73 16,65 16,53 18,43 19,37 23,30 22,28 33,23 36,
 26 44,27 54,23 60,24 67,27 77,24 82,26 85,34 86,39 88,45 90,49 95,52 98,57 97,64 97,72 95,76 88,75 84,75 77,83 72,85 71,83 64,88 58,89 53))

[image: Examples]Optimal alpha-shape of a MultiPoint, allowing holes (same example as ST_AlphaShape)

SELECT ST_AsText(ST_OptimalAlphaShape('MULTIPOINT((63 84),(76 88),(68 73),(53 18),(91 50),(81 70),(88 29),(24 82),(32 51),(37 23),(27 54),(84 19),(75 87),(44 42),(77 67),(90 30),(36 61),(32 65),(81 47),(88 58),(68 73),(49 95),(81 60),(87 50),
 (78 16),(79 21),(30 22),(78 43),(26 85),(48 34),(35 35),(36 40),(31 79),(83 29),(27 84),(52 98),(72 95),(85 71),
 (75 84),(75 77),(81 29),(77 73),(41 42),(83 72),(23 36),(89 53),(27 57),(57 97),(27 77),(39 88),(60 81),
 (80 72),(54 32),(55 26),(62 22),(70 20),(76 27),(84 35),(87 42),(82 54),(83 64),(69 86),(60 90),(50 86),(43 80),(36 73),
 (36 68),(40 75),(24 67),(23 60),(26 44),(28 33),(40 32),(43 19),(65 16),(73 16),(38 46),(31 59),(34 86),(45 90),(64 97))'::geometry, allow_holes => true));

POLYGON((89 53,91 50,87 42,90 30,88 29,84 19,78 16,73 16,65 16,53 18,43 19,37 23,30 22,28 33,23 36,26 44,27 54,23 60,24 67,27 77,24 82,26 85,34 86,39 88,45 90,49 95,52 98,57 97,64 97,72 95,76 88,75 84,75 77,83 72,85 71,83 64,88 58,89 53),(36 61,36 68,40 75,43 80,50 86,60 81,68 73,77 67,81 60,82 54,81 47,78 43,81 29,76 27,70 20,62 22,55 26,54 32,48 34,44 42,38 46,36 61))

See Also
ST_ConcaveHull, ST_AlphaShape

Name
ST_AsTWKB — Returns the geometry as TWKB, aka "Tiny Well-Known Binary"

Synopsis
	bytea ST_AsTWKB(geom, 	
	 	prec=0, 	
	 	prec_z=0, 	
	 	prec_m=0, 	
	 	with_sizes=false, 	
	 	with_boxes=false);	

geometry geom;
integer prec=0;
integer prec_z=0;
integer prec_m=0;
boolean with_sizes=false;
boolean with_boxes=false;

	bytea ST_AsTWKB(geom, 	
	 	ids, 	
	 	prec=0, 	
	 	prec_z=0, 	
	 	prec_m=0, 	
	 	with_sizes=false, 	
	 	with_boxes=false);	

geometry[] geom;
bigint[] ids;
integer prec=0;
integer prec_z=0;
integer prec_m=0;
boolean with_sizes=false;
boolean with_boxes=false;

Description
Returns the geometry in TWKB (Tiny Well-Known Binary) format. TWKB is a compressed binary format with a focus on minimizing the size of the output.
The decimal digits parameters control how much precision is stored in the output. By default, values are rounded to the nearest unit before encoding. If you want to transfer more precision, increase the number. For example, a value of 1 implies that the first digit to the right of the decimal point will be preserved.
The sizes and bounding boxes parameters control whether optional information about the encoded length of the object and the bounds of the object are included in the output. By default they are not. Do not turn them on unless your client software has a use for them, as they just use up space (and saving space is the point of TWKB).
The array-input form of the function is used to convert a collection of geometries and unique identifiers into a TWKB collection that preserves the identifiers. This is useful for clients that expect to unpack a collection and then access further information about the objects inside. You can create the arrays using the array_agg function. The other parameters operate the same as for the simple form of the function.
Note
The format specification is available online at https://github.com/TWKB/Specification, and code for building a JavaScript client can be found at https://github.com/TWKB/twkb.js.

Enhanced: 2.4.0 memory and speed improvements.
Availability: 2.2.0

Examples

SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry);
 st_astwkb
--
\x02000202020808

To create an aggregate TWKB object including identifiers aggregate the desired geometries and objects first, using "array_agg()", then call the appropriate TWKB function.

SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable;
 st_astwkb
--
\x040402020400000202

See Also
ST_GeomFromTWKB, ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

Name
ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis
	geometry ST_GeomFromEWKT(EWKT);	

text EWKT;

Description
Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.
Note
The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system (SRID)
			identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

 [image: Description]
 This function supports 3d and will not drop the z-index.

 [image: Description]
 This method supports Circular Strings and Curves.

 [image: Description]
 This function supports Polyhedral surfaces.

 [image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_GeomFromEWKT('SRID=4269;LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromEWKT('SRID=4269;MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');

SELECT ST_GeomFromEWKT('SRID=4269;POINT(-71.064544 42.28787)');

SELECT ST_GeomFromEWKT('SRID=4269;POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');

SELECT ST_GeomFromEWKT('SRID=4269;MULTIPOLYGON(((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
-71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))');

--3d circular string
SELECT ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)');

--Polyhedral Surface example
SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
	((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
	((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
	((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)');

See Also
ST_AsEWKT, ST_GeomFromText

