
Name
ST_GDALDrivers — Returns a list of raster formats supported by your lib gdal. These are the formats you can output your raster using ST_AsGDALRaster.

Synopsis
	setof record fsfuncST_GDALDrivers(OUT idx, 	
	 	OUT short_name, 	
	 	OUT long_name, 	
	 	OUT create_options);	

integer OUT idx;
text OUT short_name;
text OUT long_name;
text OUT create_options;

Description
Returns a list of raster formats short_name,long_name and creator options of each format supported by your lib gdal. Use the short_name as input in the format parameter of ST_AsGDALRaster.
		Options vary depending on what drivers your libgdal was compiled with. create_options returns an xml formatted set of CreationOptionList/Option consisting of name and optional type, description and set of VALUE for each creator option for the specific driver.
Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.
Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples: List of Drivers
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SELECT short_name, long_name
FROM st_gdaldrivers()
ORDER BY short_name;
 short_name | long_name
-----------------+--------------------------------------
 AAIGrid | Arc/Info ASCII Grid
 ARG | Azavea Raster Grid format
 DTED | DTED Elevation Raster
 EHdr | ESRI .hdr Labelled
 FIT | FIT Image
 GIF | Graphics Interchange Format (.gif)
 GPKG | GeoPackage
 GS7BG | Golden Software 7 Binary Grid (.grd)
 GSAG | Golden Software ASCII Grid (.grd)
 GSBG | Golden Software Binary Grid (.grd)
 GTiff | GeoTIFF
 HF2 | HF2/HFZ heightfield raster
 HFA | Erdas Imagine Images (.img)
 ILWIS | ILWIS Raster Map
 INGR | Intergraph Raster
 JPEG | JPEG JFIF
 KMLSUPEROVERLAY | Kml Super Overlay
 LCP | FARSITE v.4 Landscape File (.lcp)
 MFF | Vexcel MFF Raster
 NITF | National Imagery Transmission Format
 PNG | Portable Network Graphics
 R | R Object Data Store
 RST | Idrisi Raster A.1
 SAGA | SAGA GIS Binary Grid (.sdat)
 SRTMHGT | SRTMHGT File Format
 USGSDEM | USGS Optional ASCII DEM (and CDED)
 VRT | Virtual Raster
 WMS | OGC Web Map Service
 XPM | X11 PixMap Format
 XYZ | ASCII Gridded XYZ
 ZMap | ZMap Plus Grid
(31 rows)

Example: List of options for each driver
-- Output the create options XML column of JPEG as a table --
-- Note you can use these creator options in ST_AsGDALRaster options argument
SELECT (xpath('@name', g.opt))[1]::text As oname,
 (xpath('@type', g.opt))[1]::text As otype,
 (xpath('@description', g.opt))[1]::text As descrip
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM st_gdaldrivers()
WHERE short_name = 'JPEG') As g;

 oname | otype | descrip
--------------------+---------+---
 PROGRESSIVE | boolean | whether to generate a progressive JPEG
 QUALITY | int | good=100, bad=0, default=75
 WORLDFILE | boolean | whether to geneate a worldfile
 INTERNAL_MASK | boolean | whether to generate a validity mask
 COMMENT | string | Comment
 SOURCE_ICC_PROFILE | string | ICC profile encoded in Base64
 EXIF_THUMBNAIL | boolean | whether to generate an EXIF thumbnail(overview).
 By default its max dimension will be 128
 THUMBNAIL_WIDTH | int | Forced thumbnail width
 THUMBNAIL_HEIGHT | int | Forced thumbnail height
(9 rows)

-- raw xml output for creator options for GeoTiff --
SELECT create_options
FROM st_gdaldrivers()
WHERE short_name = 'GTiff';

<CreationOptionList>
 <Option name="COMPRESS" type="string-select">
 <Value>NONE</Value>
 <Value>LZW</Value>
 <Value>PACKBITS</Value>
 <Value>JPEG</Value>
 <Value>CCITTRLE</Value>
 <Value>CCITTFAX3</Value>
 <Value>CCITTFAX4</Value>
 <Value>DEFLATE</Value>
 </Option>
 <Option name="PREDICTOR" type="int" description="Predictor Type"/>
 <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
 <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="6"/>
 <Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)"/>
 <Option name="INTERLEAVE" type="string-select" default="PIXEL">
 <Value>BAND</Value>
 <Value>PIXEL</Value>
 </Option>
 <Option name="TILED" type="boolean" description="Switch to tiled format"/>
 <Option name="TFW" type="boolean" description="Write out world file"/>
 <Option name="RPB" type="boolean" description="Write out .RPB (RPC) file"/>
 <Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
 <Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
 <Option name="PHOTOMETRIC" type="string-select">
 <Value>MINISBLACK</Value>
 <Value>MINISWHITE</Value>
 <Value>PALETTE</Value>
 <Value>RGB</Value>
 <Value>CMYK</Value>
 <Value>YCBCR</Value>
 <Value>CIELAB</Value>
 <Value>ICCLAB</Value>
 <Value>ITULAB</Value>
 </Option>
 <Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE"/>
 <Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha"/>
 <Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
 <Value>GDALGeoTIFF</Value>
 <Value>GeoTIFF</Value>
 <Value>BASELINE</Value>
 </Option>
 <Option name="PIXELTYPE" type="string-select">
 <Value>DEFAULT</Value>
 <Value>SIGNEDBYTE</Value>
 </Option>
 <Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
 <Value>YES</Value>
 <Value>NO</Value>
 <Value>IF_NEEDED</Value>
 <Value>IF_SAFER</Value>
 </Option>
 <Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
 <Value>NATIVE</Value>
 <Value>INVERTED</Value>
 <Value>LITTLE</Value>
 <Value>BIG</Value>
 </Option>
 <Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())"/>
</CreationOptionList>

-- Output the create options XML column for GTiff as a table --
SELECT (xpath('@name', g.opt))[1]::text As oname,
 (xpath('@type', g.opt))[1]::text As otype,
 (xpath('@description', g.opt))[1]::text As descrip,
 array_to_string(xpath('Value/text()', g.opt),', ') As vals
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM st_gdaldrivers()
WHERE short_name = 'GTiff') As g;

 oname | otype | descrip | vals
--------------------+---------------+--+---
 COMPRESS | string-select | | NONE, LZW, PACKBITS, JPEG, CCITTRLE, CCITTFAX3, CCITTFAX4, DEFLATE
 PREDICTOR | int | Predictor Type |
 JPEG_QUALITY | int | JPEG quality 1-100 |
 ZLEVEL | int | DEFLATE compression level 1-9 |
 NBITS | int | BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31) |
 INTERLEAVE | string-select | | BAND, PIXEL
 TILED | boolean | Switch to tiled format |
 TFW | boolean | Write out world file |
 RPB | boolean | Write out .RPB (RPC) file |
 BLOCKXSIZE | int | Tile Width |
 BLOCKYSIZE | int | Tile/Strip Height |
 PHOTOMETRIC | string-select | | MINISBLACK, MINISWHITE, PALETTE, RGB, CMYK, YCBCR, CIELAB, ICCLAB, ITULAB
 SPARSE_OK | boolean | Can newly created files have missing blocks? |
 ALPHA | boolean | Mark first extrasample as being alpha |
 PROFILE | string-select | | GDALGeoTIFF, GeoTIFF, BASELINE
 PIXELTYPE | string-select | | DEFAULT, SIGNEDBYTE
 BIGTIFF | string-select | Force creation of BigTIFF file | YES, NO, IF_NEEDED, IF_SAFER
 ENDIANNESS | string-select | Force endianness of created file. For DEBUG purpose mostly | NATIVE, INVERTED, LITTLE, BIG
 COPY_SRC_OVERVIEWS | boolean | Force copy of overviews of source dataset (CreateCopy()) |
(19 rows)

See Also
ST_AsGDALRaster, ST_SRID, postgis.gdal_enabled_drivers

Name
ST_3DLength — Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			linestring or multi-linestring.

Synopsis
	float fsfuncST_3DLength(a_3dlinestring);	

geometry a_3dlinestring;

Description
Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			linestring or multi-linestring. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)
[image: Description]
 This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Length3D

Examples
Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength

122.704716741457
		

See Also
ST_Length, ST_Length2D

Name
ST_3DDWithin — For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.

Synopsis
	boolean fsfuncST_3DDWithin(g1, 	
	 	g2, 	
	 	distance_of_srid);	

geometry
			g1;
geometry
			g2;
double precision
			distance_of_srid;

Description
For geometry type returns true if the 3d distance between two objects is within distance_of_srid specified
		projected units (spatial ref units).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description] This method implements the SQL/MM specification. SQL-MM ?
Availability: 2.0.0

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDWithin(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163),
			126.8
) As within_dist_3d,
ST_DWithin(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163),
			126.8
) As within_dist_2d;

 within_dist_3d | within_dist_2d
----------------+----------------
 f | t

See Also
ST_3DDistance, ST_Distance, ST_DWithin, ST_3DMaxDistance, ST_Transform

Name
ST_Summary —
Returns a text summary of the contents of the geometry.
		

Synopsis
	text fsfuncST_Summary(g);	

geometry g;

	text fsfuncST_Summary(g);	

geography g;

Description
Returns a text summary of the contents of the geometry.

 Flags shown square brackets after the geometry type
 have the following meaning:

	M: has M ordinate

	Z: has Z ordinate

	B: has a cached bounding box

	G: is geodetic (geography)

	S: has spatial reference system

[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Availability: 1.2.2
Enhanced: 2.0.0 added support for geography
Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
Enhanced: 2.2.0 Added support for TIN and Curves

Examples

=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
 ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog;
 geom | geog
-----------------------------+--------------------------
 LineString[B] with 2 points | Polygon[BGS] with 1 rings
 | ring 0 has 5 points
 :
(1 row)

=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line,
 ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly;
;
 geog_line | geom_poly
-------------------------------- +--------------------------
 LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
 : ring 0 has 5 points
 :
(1 row)

See Also

PostGIS_DropBBox,
PostGIS_AddBBox,
ST_Force3DM,
ST_Force3DZ,
ST_Force2D,
geography
		

ST_IsValid,
ST_IsValid,
ST_IsValidReason,
ST_IsValidDetail
		

Release 2.1.0

Release date: 2013/08/17
This is a minor release addressing both bug fixes and performance and functionality enhancements addressing issues since 2.0.3 release.
 If you are upgrading from 2.0+, only a soft upgrade is required. If you are upgrading from 1.5 or earlier, a hard upgrade is required.
Important / Breaking Changes

#1653, Removed srid parameter from ST_Resample(raster) and variants
 with reference raster no longer apply reference raster's SRID.
#1962 ST_Segmentize - As a result of
 the introduction of geography support, The construct:
 SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5);
 will result in ambiguous function error
#2026, ST_Union(raster) now unions all bands of all rasters
#2089, liblwgeom: lwgeom_set_handlers replaces lwgeom_init_allocators.
#2150, regular_blocking is no longer a constraint. column of same name
 in raster_columns now checks for existance of spatially_unique
 and coverage_tile constraints
ST_Intersects(raster, geometry) behaves in the same manner as
 ST_Intersects(geometry, raster).
point variant of ST_SetValue(raster) previously did not check SRID
 of input geometry and raster.
ST_Hillshade parameters azimuth and altitude are now in degrees
 instead of radians.
ST_Slope and ST_Aspect return pixel values in degrees instead of radians.
#2104, ST_World2RasterCoord, ST_World2RasterCoordX and
 ST_World2RasterCoordY renamed to ST_WorldToRasterCoord,
 ST_WorldToRasterCoordX and ST_WorldToRasterCoordY.
 ST_Raster2WorldCoord, ST_Raster2WorldCoordX and
 ST_Raster2WorldCoordY renamed to ST_RasterToWorldCoord,
 ST_RasterToWorldCoordX and ST_RasterToWorldCoordY
ST_Estimated_Extent renamed to ST_EstimatedExtent
ST_Line_Interpolate_Point renamed to ST_LineInterpolatePoint
ST_Line_Substring renamed to ST_LineSubstring
ST_Line_Locate_Point renamed to ST_LineLocatePoint
ST_Force_XXX renamed to ST_ForceXXX
ST_MapAlgebraFctNgb and 1 and 2 raster variants of ST_MapAlgebraFct.
 Use ST_MapAlgebra instead
1 and 2 raster variants of ST_MapAlgebraExpr.
 Use expression variants of ST_MapAlgebra instead

New Features

- Refer to http://postgis.net/docs/manual-2.1/PostGIS_Special_Functions_Index.html#NewFunctions_2_1
 for complete list of new functions
#310, ST_DumpPoints converted to a C function (Nathan Wagner) and much faster
#739, UpdateRasterSRID()
#945, improved join selectivity, N-D selectivity calculations,
 user accessible selectivity and stats reader functions for
 testing (Paul Ramsey / OpenGeo)
toTopoGeom with TopoGeometry sink (Sandro Santilli / Vizzuality)
clearTopoGeom (Sandro Santilli / Vizzuality)
ST_Segmentize(geography) (Paul Ramsey / OpenGeo)
ST_DelaunayTriangles (Sandro Santilli / Vizzuality)
ST_NearestValue, ST_Neighborhood (Bborie Park / UC Davis)
ST_PixelAsPoint, ST_PixelAsPoints (Bborie Park / UC Davis)
ST_PixelAsCentroid, ST_PixelAsCentroids (Bborie Park / UC Davis)
ST_Raster2WorldCoord, ST_World2RasterCoord (Bborie Park / UC Davis)
Additional raster/raster spatial relationship functions
 (ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Disjoint,
 ST_Overlaps, ST_Touches, ST_Within, ST_DWithin, ST_DFullyWithin)
 (Bborie Park / UC Davis)
Added array variants of ST_SetValues() to set many pixel values of a band
 in one call (Bborie Park / UC Davis)
#1293, ST_Resize(raster) to resize rasters based upon width/height
#1627, package tiger_geocoder as a PostgreSQL extension
#1643, #2076, Upgrade tiger geocoder to support loading tiger 2011 and 2012
 (Regina Obe / Paragon Corporation) Funded by Hunter Systems Group
GEOMETRYCOLLECTION support for ST_MakeValid (Sandro Santilli / Vizzuality)
#1709, ST_NotSameAlignmentReason(raster, raster)
#1818, ST_GeomFromGeoHash and friends (Jason Smith (darkpanda))
#1856, reverse geocoder rating setting for prefer numbered highway name
ST_PixelOfValue (Bborie Park / UC Davis)
Casts to/from PostgreSQL geotypes (point/path/polygon).
Added geomval array variant of ST_SetValues() to set many pixel values of
 a band using a set of geometries and corresponding values in one call
 (Bborie Park / UC Davis)
ST_Tile(raster) to break up a raster into tiles (Bborie Park / UC Davis)
#1895, new r-tree node splitting algorithm (Alex Korotkov)
#2011, ST_DumpValues to output raster as array (Bborie Park / UC Davis)
#2018, ST_Distance support for CircularString, CurvePolygon, MultiCurve,
 MultiSurface, CompoundCurve
#2030, n-raster (and n-band) ST_MapAlgebra (Bborie Park / UC Davis)
#2193, Utilize PAGC parser as drop in replacement for tiger normalizer
 (Steve Woodbridge, Regina Obe)
#2210, ST_MinConvexHull(raster)
lwgeom_from_geojson in liblwgeom (Sandro Santilli / Vizzuality)
#1687, ST_Simplify for TopoGeometry (Sandro Santilli / Vizzuality)
#2228, TopoJSON output for TopoGeometry (Sandro Santilli / Vizzuality)
#2123, ST_FromGDALRaster
#613, ST_SetGeoReference with numerical parameters instead of text
#2276, ST_AddBand(raster) variant for out-db bands
#2280, ST_Summary(raster)
#2163, ST_TPI for raster (Nathaniel Clay)
#2164, ST_TRI for raster (Nathaniel Clay)
#2302, ST_Roughness for raster (Nathaniel Clay)
#2290, ST_ColorMap(raster) to generate RGBA bands
#2254, Add SFCGAL backend support.
 (Backend selection throught postgis.backend var)
 Functions available both throught GEOS or SFCGAL:
 ST_Intersects, ST_3DIntersects, ST_Intersection, ST_Area,
 ST_Distance, ST_3DDistance
 New functions available only with SFCGAL backend:
 ST_3DIntersection, ST_Tesselate, ST_3DArea, ST_Extrude, ST_ForceLHR
 ST_Orientation, ST_Minkowski, ST_StraightSkeleton
 postgis_sfcgal_version
 New function available in PostGIS: ST_ForceSFS
 (Olivier Courtin and Hugo Mercier / Oslandia)

Enhancements

For detail of new functions and function improvements, please refer to the section called “PostGIS Functions new or enhanced in 2.1”.
Much faster raster ST_Union, ST_Clip and many more function additions operations
For geometry/geography better planner selectivity and a lot more functions.
#823, tiger geocoder: Make loader_generate_script download portion
 less greedy
#826, raster2pgsql no longer defaults to padding tiles. Flag -P
 can be used to pad tiles
#1363, ST_AddBand(raster, ...) array version rewritten in C
#1364, ST_Union(raster, ...) aggregate function rewritten in C
#1655, Additional default values for parameters of ST_Slope
#1661, Add aggregate variant of ST_SameAlignment
#1719, Add support for Point and GeometryCollection ST_MakeValid inputs
#1780, support ST_GeoHash for geography
#1796, Big performance boost for distance calculations in geography
#1802, improved function interruptibility.
#1823, add parameter in ST_AsGML to use id column for GML 3 output
 (become mandatory since GML 3.2.1)
#1856, tiger geocoder: reverse geocoder rating setting for prefer
 numbered highway name
#1938, Refactor basic ST_AddBand to add multiple new bands in one call
#1978, wrong answer when calculating length of a closed circular
 arc (circle)
#1989, Preprocess input geometry to just intersection with raster
 to be clipped
#2021, Added multi-band support to ST_Union(raster, ...) aggregate function
#2006, better support of ST_Area(geography) over poles and dateline
#2065, ST_Clip(raster, ...) now a C function
#2069, Added parameters to ST_Tile(raster) to control padding of tiles
#2078, New variants of ST_Slope, ST_Aspect and ST_HillShade to provide
 solution to handling tiles in a coverage
#2097, Added RANGE uniontype option for ST_Union(raster)
#2105, Added ST_Transform(raster) variant for aligning output to
 reference raster
#2119, Rasters passed to ST_Resample(), ST_Rescale(), ST_Reskew(),
 and ST_SnapToGrid() no longer require an SRID
#2141, More verbose output when constraints fail to be added
 to a raster column
#2143, Changed blocksize constraint of raster to allow multiple values
#2148, Addition of coverage_tile constraint for raster
#2149, Addition of spatially_unique constraint for raster
TopologySummary output now includes unregistered layers and a count
 of missing TopoGeometry objects from their natural layer.
ST_HillShade(), ST_Aspect() and ST_Slope() have one new optional
 parameter to interpolate NODATA pixels before running the
 operation.
Point variant of ST_SetValue(raster) is now a wrapper around geomval
 variant of ST_SetValues(rast).
Proper support for raster band's isnodata flag in core API and loader.
Additional default values for parameters of ST_Aspect and ST_HillShade
#2178, ST_Summary now advertises presence of known srid with an [S] flag
#2202, Make libjson-c optional (--without-json configure switch)
#2213, Add support libjson-c 0.10+
#2231, raster2pgsql supports user naming of filename column with -n
#2200, ST_Union(raster, uniontype) unions all bands of all rasters
#2264, postgis_restore.pl support for restoring into databases
 with postgis in a custom schema
#2244, emit warning when changing raster's georeference if raster has
 out-db bands
#2222, add parameter OutAsIn to flag whether ST_AsBinary should
 return out-db bands as in-db bands

Fixes

#1839, handling of subdatasets in GeoTIFF in raster2pgsql.
#1840, fix logic of when to compute # of tiles in raster2pgsql.
#1870, align the docs and actual behavior of raster's ST_Intersects
#1872, fix ST_ApproxSummarystats to prevent division by zero
#1875, ST_SummaryStats returns NULL for all parameters except count
 when count is zero
#1932, fix raster2pgsql of syntax for index tablespaces
#1936, ST_GeomFromGML on CurvePolygon causes server crash
#1939, remove custom data types: summarystats, histogram, quantile,
 valuecount
#1951, remove crash on zero-length linestrings
#1957, ST_Distance to a one-point LineString returns NULL
#1976, Geography point-in-ring code overhauled for more reliability
#1981, cleanup of unused variables causing warnings with gcc 4.6+
#1996, support POINT EMPTY in GeoJSON output
#2062, improve performance of distance calculations
#2057, Fixed linking issue for raster2psql to libpq
#2077, Fixed incorrect values returning from ST_Hillshade()
#2019, ST_FlipCoordinates does not update bbox
#2100, ST_AsRaster may not return raster with specified pixel type
#2126, Better handling of empty rasters from ST_ConvexHull()
#2165, ST_NumPoints regression failure with CircularString
#2168, ST_Distance is not always commutative
#2182, Fix issue with outdb rasters with no SRID and ST_Resize
#2188, Fix function parameter value overflow that caused problems
 when copying data from a GDAL dataset
#2198, Fix incorrect dimensions used when generating bands of out-db
 rasters in ST_Tile()
#2201, ST_GeoHash wrong on boundaries
#2203, Changed how rasters with unknown SRID and default geotransform
 are handled when passing to GDAL Warp API
#2215, Fixed raster exclusion constraint for conflicting name of
 implicit index
#2251, Fix bad dimensions when rescaling rasters with default
 geotransform matrix
#2133, Fix performance regression in expression variant of ST_MapAlgebra
#2257, GBOX variables not initialized when testing with empty geometries
#2271, Prevent parallel make of raster
#2282, Fix call to undefined function nd_stats_to_grid() in debug mode
#2307, ST_MakeValid outputs invalid geometries
#2309, Remove confusing INFO message when trying to get SRS info
#2336, FIPS 20 (KS) causes wildcard expansion to wget all files
#2348, Provide raster upgrade path for 2.0 to 2.1
#2351, st_distance between geographies wrong
#2359, Fix handling of schema name when adding overview constraints
#2371, Support GEOS versions with more than 1 digit in micro
#2383, Remove unsafe use of \' from raster warning message
#2384, Incorrect variable datatypes for ST_Neighborhood

Known Issues

#2111, Raster bands can only reference the first 256 bands of out-db rasters

Name
TopoElementArray — An array of TopoElement objects

Description
An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples
SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
 tea

{{1,2},{4,3}}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

 tea

{{1,2},{4,3}}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
 tea
--
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}

SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement,
GetTopoGeomElementArray,
TopoElementArray_Agg

Name
GetRingEdges —
Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
				

Synopsis
	getfaceedges_returntype fsfuncGetRingEdges(atopology, 	
	 	aring, 	
	 	max_edges=null);	

varchar atopology;
integer aring;
integer max_edges=null;

Description

Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
Each output consists of a sequence and a signed edge id.
Sequence numbers start with value 1.

If you pass a positive edge id, the walk starts on the left side
of the corresponding edge and follows the edge direction.
If you pass a negative edge id, the walk starts on the right side
of it and goes backward.

If max_edges is not null no more than those records
are returned by that function. This is meant to be a safety parameter
when dealing with possibly invalid topologies.
		
Note

This function uses edge ring linking metadata.

Availability: 2.0.0

See Also

ST_GetFaceEdges,
GetNodeEdges
				

Name
ST_SetEffectiveArea —
			Sets the effective area for each vertex, storing the value in the M ordinate. A simplified geometry can then be generated by filtering on the M ordinate.
		

Synopsis
	geometry fsfuncST_SetEffectiveArea(geomA, 	
	 	threshold = 0, 	
	 	set_area = 1);	

geometry geomA;
float threshold = 0;
integer set_area = 1;

Description

			Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.
			The effective area is stored as the M-value of the vertex.
			If the optional "theshold" parameter is used, a simplified geometry will be returned, containing only vertices with an effective area
 greater than or equal to the threshold value.
			

			This function can be used for server-side simplification when a threshold is specified. Another option is to use a threshold value of zero.
			In this case, the full geometry will be returned with effective areas as M-values, which can be used by the client to simplify very quickly.
			

			Will actually do something only with
			(multi)lines and (multi)polygons but you can safely call it with
			any kind of geometry. Since simplification occurs on a
			object-by-object basis you can also feed a GeometryCollection to
			this function.
			
Note
Note that returned geometry might lose its
				simplicity (see ST_IsSimple)

Note
Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Note
The output geometry will lose all previous information in the M-values

Note
This function handles 3D and the third dimension will affect the effective area

Availability: 2.2.0

Examples

				Calculating the effective area of a LineString. Because we use a threshold value of zero, all vertices in the input geometry are returned.
			

select ST_AsText(ST_SetEffectiveArea(geom)) all_pts, ST_AsText(ST_SetEffectiveArea(geom,30)) thrshld_30
FROM (SELECT 'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 all_pts | thrshld_30
-----------+-------------------+
LINESTRING M (5 2 3.40282346638529e+38,3 8 29,6 20 1.5,7 25 49.5,10 10 3.40282346638529e+38) | LINESTRING M (5 2 3.40282346638529e+38,7 25 49.5,10 10 3.40282346638529e+38)

				

See Also
ST_SimplifyVW

Name
ST_EndPoint — Returns the last point of a LINESTRING or CIRCULARLINESTRING
		geometry as a POINT.

Synopsis
	boolean fsfuncST_EndPoint(g);	

geometry g;

Description
Returns the last point of a LINESTRING geometry
		as a POINT or NULL if the input
		parameter is not a LINESTRING.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	 The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0 now.

Examples
postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)'::geometry));
 st_astext

 POINT(3 3)
(1 row)

postgis=# SELECT ST_EndPoint('POINT(1 1)'::geometry) IS NULL AS is_null;
 is_null

 t
(1 row)

--3d endpoint
SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)'));
 st_asewkt

 POINT(0 0 5)
(1 row)

See Also
ST_PointN, ST_StartPoint

Raster Band Editors

Name
&&&(gidx,geometry) — Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.

Synopsis
	boolean fsfunc&&&(A, 	
	 	B);	

				 gidx

				 A
				;

				 geometry

				 B
				;

Description
The &&& operator returns TRUE if the n-D bounding box A intersects the cached n-D bounding box of geometry B, using float precision. This means that if A is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&&(geometry,gidx),
				&&&(gidx,gidx)

Name
TopoGeom_addElement — Add an element to the definition of a TopoGeometry

Synopsis
	topogeometry fsfuncTopoGeom_addElement(tg, 	
	 	el);	

topogeometry tg;
topoelement el;

Description

Adds a TopoElement to the definition of a
TopoGeometry object. Does not error out if the element is already
part of the definition.

Availability: 2.3

Examples

-- Add edge 5 to TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_addElement(tg, '{5,2}');
				

See Also

TopoGeom_remElement,
CreateTopoGeom

Name
ST_ConvexHull — Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue.
					For regular shaped and non-skewed
					rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.

Synopsis
	geometry fsfuncST_ConvexHull(rast);	

raster rast;

Description
Return the convex hull geometry of the raster including the NoDataBandValue band pixels. For regular shaped and non-skewed
					rasters, this gives more or less the same result as ST_Envelope
					so only useful for irregularly shaped or skewed rasters.
Note
ST_Envelope floors the coordinates and hence add a little buffer around the raster so the answer is subtly
						different from ST_ConvexHull which does not floor.

Examples
Refer to PostGIS Raster Specification for a diagram of this.

-- Note envelope and convexhull are more or less the same
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
	ST_AsText(ST_Envelope(rast)) As env
FROM dummy_rast WHERE rid=1;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 0.5,20.5 60.5,0.5 60.5,0.5 0.5)) | POLYGON((0 0,20 0,20 60,0 60,0 0))
				

-- now we skew the raster
-- note how the convex hull and envelope are now different
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
	ST_AsText(ST_Envelope(rast)) As env
FROM (SELECT ST_SetRotation(rast, 0.1, 0.1) As rast
	FROM dummy_rast WHERE rid=1) As foo;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 1.5,22.5 61.5,2.5 60.5,0.5 0.5)) | POLYGON((0 0,22 0,22 61,0 61,0 0))
					

See Also

						ST_Envelope,
						ST_MinConvexHull,
						ST_ConvexHull,
						ST_AsText
					

Name
ST_AsSVG — Returns a Geometry in SVG path data given a geometry or geography object.

Synopsis
	text fsfuncST_AsSVG(geom, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer rel=0;
integer maxdecimaldigits=15;

	text fsfuncST_AsSVG(geog, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geography geog;
integer rel=0;
integer maxdecimaldigits=15;

Description
Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second
			argument to have the path data implemented in terms of relative
			moves, the default (or 0) uses absolute moves. Third argument may
			be used to reduce the maximum number of decimal digits used in
			output (defaults to 15). Point geometries will be rendered as
			cx/cy when 'rel' arg is 0, x/y when 'rel' is 1. Multipoint
			geometries are delimited by commas (","), GeometryCollection
			geometries are delimited by semicolons (";").
Note
Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples
SELECT ST_AsSVG(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_assvg

		M 0 0 L 0 -1 1 -1 1 0 Z

Name
ST_SetUpperLeft — Sets the value of the upper left corner of the pixel to projected X and Y coordinates.

Synopsis
	raster fsfuncST_SetUpperLeft(rast, 	
	 	x, 	
	 	y);	

raster rast;
double precision x;
double precision y;

Description
Set the value of the upper left corner of raster to the projected X coordinates

Examples

SELECT ST_SetUpperLeft(rast,-71.01,42.37)
FROM dummy_rast
WHERE rid = 2;
					

See Also
ST_UpperLeftX, ST_UpperLeftY

Name
ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis
	geometry fsfuncST_GeomFromText(WKT);	

text WKT;

	geometry fsfuncST_GeomFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.
Note
There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry
					with no defined spatial reference system (SRID=0). The second takes a SRID as the second argument
					and returns a geometry that includes this SRID as part of its metadata.
				

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is from the conformance suite.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
[image: Description]
 This method supports Circular Strings and Curves
Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')

Examples
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)',4269);

SELECT ST_GeomFromText('MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');

SELECT ST_GeomFromText('POINT(-71.064544 42.28787)');

SELECT ST_GeomFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');

SELECT ST_GeomFromText('MULTIPOLYGON(((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
-71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))',4326);

SELECT ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)');
	

See Also
ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

Spatial Relationships and Measurements

Name
ST_DistanceSpheroid — Returns the minimum distance between two lon/lat geometries given a
			particular spheroid.
			PostGIS versions prior to 1.5 only support points.

Synopsis
	float fsfuncST_DistanceSpheroid(geomlonlatA, 	
	 	geomlonlatB, 	
	 	measurement_spheroid);	

geometry geomlonlatA;
geometry geomlonlatB;
spheroid measurement_spheroid;

Description
Returns minimum distance in meters between two lon/lat
				geometries given a particular spheroid. See the explanation of spheroids given for
			ST_LengthSpheroid. PostGIS version prior to 1.5 only support points.
Note
This function currently does not look at the SRID of a geometry and will always assume its represented in the coordinates of the passed in spheroid. Prior versions of this function only support points.

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.
Changed: 2.2.0 In prior versions this used to be called ST_Distance_Spheroid

Examples
SELECT round(CAST(
		ST_DistanceSpheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
			As numeric),2) As dist_meters_spheroid,
		round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
		ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
	(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
 dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
			 70454.92 | 70424.47 | 70438.00

	

See Also
ST_Distance, ST_DistanceSphere

Name
ST_WorldToRasterCoord — 	Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

Synopsis
	record fsfuncST_WorldToRasterCoord(rast, 	
	 	pt);	

raster rast;
geometry pt;

	record fsfuncST_WorldToRasterCoord(rast, 	
	 	longitude, 	
	 	latitude);	

raster rast;
double precision longitude;
double precision latitude;

Description

					Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry.
					This function works regardless of whether or not the geometric X and Y or point geometry is outside the extent of the raster.
					Geometric X and Y must be expressed in the spatial reference coordinate system of the raster.
				
Availability: 2.1.0

Examples

SELECT
	rid,
	(ST_WorldToRasterCoord(rast,3427927.8,20.5)).*,
	(ST_WorldToRasterCoord(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast)))).*
FROM dummy_rast;

 rid | columnx | rowy | columnx | rowy
-----+---------+-----------+---------+-----------
 1 | 1713964 | 7 | 1713964 | 7
 2 | 2 | 115864471 | 2 | 115864471
				

See Also

					ST_WorldToRasterCoordX,
					ST_WorldToRasterCoordY,
					ST_RasterToWorldCoordX,
					ST_RasterToWorldCoordY,
					ST_SRID
				

Release 1.0.0RC6

Release date: 2005/03/30
Sixth release candidate for 1.0.0. Contains a few bug fixes and
 cleanups.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX in multi()
early return [when noop] from multi()

Scripts changes

dropped {x,y}{min,max}(box2d) functions

Other changes

BUGFIX in postgis_restore.pl scrip
BUGFIX in dumper's 64bit support

Release 2.2.2

Release date: 2016/03/22
This is a bug fix and performance improvement release.
New Features

#3463, Fix crash on face-collapsing edge change
#3422, Improve ST_Split robustness on standard precision double systems (arm64, ppc64el, s390c, powerpc, ...)
#3427, Update spatial_ref_sys to EPSG version 8.8
#3433, ST_ClusterIntersecting incorrect for MultiPoints
#3435, ST_AsX3D fix rendering of concave geometries
#3436, memory handling mistake in ptarray_clone_deep
#3437, ST_Intersects incorrect for MultiPoints
#3461, ST_GeomFromKML crashes Postgres when there are innerBoundaryIs and no outerBoundaryIs
#3429, upgrading to 2.3 or from 2.1 can cause loop/hang on some platforms
#3460, ST_ClusterWithin 'Tolerance not defined' error after upgrade
#3490, Raster data restore issues, materialized views. Scripts postgis_proc_set_search_path.sql, rtpostgis_proc_set_search_path.sql refer to http://postgis.net/docs/manual-2.2/RT_FAQ.html#faq_raster_data_not_restore
#3426, failing POINT EMPTY tests on fun architectures

Raster Outputs

Name
ST_CoordDim — Return the coordinate dimension of the ST_Geometry value.

Synopsis
	integer fsfuncST_CoordDim(geomA);	

geometry geomA;

Description
Return the coordinate dimension of the ST_Geometry value.
This is the MM compliant alias name for ST_NDims
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
			---result--
				3

				SELECT ST_CoordDim(ST_Point(1,2));
			--result--
				2

		

See Also
ST_NDims

Name
ST_Scale — Scale a geometry by given factors.

Synopsis
	geometry fsfuncST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor, 	
	 	ZFactor);	

geometry geomA;
float XFactor;
float YFactor;
float ZFactor;

	geometry fsfuncST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor);	

geometry geomA;
float XFactor;
float YFactor;

	geometry fsfuncST_Scale(geom, 	
	 	factor);	

geometry geom;
geometry factor;

Description
Scales the geometry to a new size by multiplying the
			ordinates with the corresponding factor parameters.
		

The version taking a geometry as the factor parameter
allows passing a 2d, 3dm, 3dz or 4d point to set scaling factor for all
supported dimensions. Missing dimensions in the factor
point are equivalent to no scaling the corresponding dimension.

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.2.0 support for scaling all dimension (geometry parameter) was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports M coordinates.

Examples
--Version 1: scale X, Y, Z
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75, 0.8));
			 st_asewkt

 LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

--Version 2: Scale X Y
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75));
			st_asewkt

 LINESTRING(0.5 1.5 3,0.5 0.75 1)

--Version 3: Scale X Y Z M
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)'),
 ST_MakePoint(0.5, 0.75, 2, -1)));
			 st_asewkt
--
 LINESTRING(0.5 1.5 6 -4,0.5 0.75 2 -1)

See Also
ST_Affine, ST_TransScale

Name
~(box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).

Synopsis
	boolean fsfunc~(A, 	
	 	B);	

				 box2df

				 A
				;

				 box2df

				 B
				;

Description
The ~ operator returns TRUE if the 2D bounding box A contains the 2D bounding box B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints
		This ensures they will be registered correctly in geometry_columns view. By default will convert all geometry
		 columns with no type modifier to ones with type modifiers. To get old behavior set use_typmod=false

Synopsis
	text fsfuncPopulate_Geometry_Columns(use_typmod=true);	

boolean use_typmod=true;

	int fsfuncPopulate_Geometry_Columns(relation_oid, 	
	 	use_typmod=true);	

oid relation_oid;
boolean use_typmod=true;

Description
Ensures geometry columns have appropriate type modifiers or spatial constraints to ensure they are registered correctly in geometry_columns table.
For backwards compatibility and for spatial needs such as table inheritance where each child table may have different geometry type, the old check constraint behavior is still supported.
		If you need the old behavior, you need to pass in the new optional argument as false use_typmod=false. When this is done geometry columns will be created with no type modifiers
		but will have 3 constraints defined. In particular,
		this means that every geometry column belonging to a table has at least
		three constraints:
	enforce_dims_the_geom - ensures every
			geometry has the same dimension (see ST_NDims)

	enforce_geotype_the_geom - ensures every
			geometry is of the same type (see GeometryType)

	enforce_srid_the_geom - ensures every
			geometry is in the same projection (see ST_SRID)

If a table oid is provided, this function
		tries to determine the srid, dimension, and geometry type of all
		geometry columns in the table, adding constraints as necessary. If
		successful, an appropriate row is inserted into the geometry_columns
		table, otherwise, the exception is caught and an error notice is raised
		describing the problem.
If the oid of a view is provided, as with a
		table oid, this function tries to determine the srid, dimension, and
		type of all the geometries in the view, inserting appropriate entries
		into the geometry_columns table, but nothing is done
		to enforce constraints.
The parameterless variant is a simple wrapper for the parameterized
		variant that first truncates and repopulates the geometry_columns table
		for every spatial table and view in the database, adding spatial
		constraints to tables where appropriate. It returns a summary of the
		number of geometry columns detected in the database and the number that
		were inserted into the geometry_columns table. The
		parameterized version simply returns the number of rows inserted into
		the geometry_columns table.
Availability: 1.4.0
Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check
		 constraint behavior instead by using the new use_typmod and setting it to false.
Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints.

Examples

CREATE TABLE public.myspatial_table(gid serial, geom geometry);
INSERT INTO myspatial_table(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326));
-- This will now use typ modifiers. For this to work, there must exist data
SELECT Populate_Geometry_Columns('public.myspatial_table'::regclass);

populate_geometry_columns

 1

\d myspatial_table

 Table "public.myspatial_table"
 Column | Type | Modifiers
--------+---------------------------+---
 gid | integer | not null default nextval('myspatial_table_gid_seq'::regclass)
 geom | geometry(LineString,4326) |

-- This will change the geometry columns to use constraints if they are not typmod or have constraints already.
--For this to work, there must exist data
CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry);
INSERT INTO myspatial_table_cs(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326));
SELECT Populate_Geometry_Columns('public.myspatial_table_cs'::regclass, false);
populate_geometry_columns

 1
\d myspatial_table_cs

 Table "public.myspatial_table_cs"
 Column | Type | Modifiers
--------+----------+--
 gid | integer | not null default nextval('myspatial_table_cs_gid_seq'::regclass)
 geom | geometry |
Check constraints:
 "enforce_dims_geom" CHECK (st_ndims(geom) = 2)
 "enforce_geotype_geom" CHECK (geometrytype(geom) = 'LINESTRING'::text OR geom IS NULL)
 "enforce_srid_geom" CHECK (st_srid(geom) = 4326)

Name
Geocode — Takes in an address as a string (or other normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized address for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10, and restrict_region (defaults to NULL)

Synopsis
	setof record fsfuncgeocode(address, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

varchar address;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

	setof record fsfuncgeocode(in_addy, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

norm_addy in_addy;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

Description
Takes in an address as a string (or already normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized_address (addy) for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein) and PostGIS line interpolation functions to interpolate address along the Tiger edges. The higher the rating the less likely the geocode is right.
 The geocoded point is defaulted to offset 10 meters from center-line off to side (L/R) of street address is located on.
Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.

Examples: Basic
The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.1rc1/PostGIS 2.0 loaded with all of MA,MN,CA, RI state Tiger data loaded.
Exact matches are faster to compute (61ms)
SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('75 State Street, Boston MA 02109') As g;
 rating | lon | lat | stno | street | styp | city | st | zip
--------+-------------------+------------------+------+--------+------+--------+----+-------
 0 | -71.0556722990239 | 42.3589914927049 | 75 | State | St | Boston | MA | 02109

Even if zip is not passed in the geocoder can guess (took about 122-150 ms)
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('226 Hanover Street, Boston, MA',1) As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+---------+------+--------+----+-------
 1 | POINT(-71.05528 42.36316) | 226 | Hanover | St | Boston | MA | 02113

Can handle misspellings and provides more than one possible solution with ratings and takes longer (500ms).
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('31 - 37 Stewart Street, Boston, MA 02116') As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+--------+------+--------+----+-------
 70 | POINT(-71.06459 42.35113) | 31 | Stuart | St | Boston | MA | 02116

Using to do a batch geocode of addresses. Easiest is to set max_results=1. Only process those not yet geocoded (have no rating).
CREATE TABLE addresses_to_geocode(addid serial PRIMARY KEY, address text,
 lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

-- only update the first 3 addresses (323-704 ms - there are caching and shared memory effects so first geocode you do is always slower) --
-- for large numbers of addresses you don't want to update all at once
-- since the whole geocode must commit at once
-- For this example we rejoin with LEFT JOIN
-- and set to rating to -1 rating if no match
-- to ensure we don't regeocode a bad address
UPDATE addresses_to_geocode
 SET (rating, new_address, lon, lat)
 = (COALESCE((g.geo).rating,-1), pprint_addy((g.geo).addy),
 ST_X((g.geo).geomout)::numeric(8,5), ST_Y((g.geo).geomout)::numeric(8,5))
FROM (SELECT addid
 FROM addresses_to_geocode
 WHERE rating IS NULL ORDER BY addid LIMIT 3) As a
 LEFT JOIN (SELECT addid, (geocode(address,1)) As geo
 FROM addresses_to_geocode As ag
 WHERE ag.rating IS NULL ORDER BY addid LIMIT 3) As g ON a.addid = g.addid
WHERE a.addid = addresses_to_geocode.addid;

result

Query returned successfully: 3 rows affected, 480 ms execution time.

SELECT * FROM addresses_to_geocode WHERE rating is not null;

 addid | address | lon | lat | new_address | rating
-------+--+-----------+----------+---+--------
 1 | 529 Main Street, Boston MA, 02129 | -71.07181 | 42.38359 | 529 Main St, Boston, MA 02129 | 0
 2 | 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09428 | 42.35988 | 77 Massachusetts Ave, Cambridge, MA 02139 | 0
 3 | 25 Wizard of Oz, Walaford, KS 99912323 | | | | -1

Examples: Using Geometry filter

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp,
 (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('100 Federal Street, MA',
 3,
 (SELECT ST_Union(the_geom)
 FROM place WHERE statefp = '25' AND name = 'Lynn')::geometry
) As g;

 rating | wktlonlat | stno | street | styp | city | st | zip
--------+--------------------------+------+---------+------+------+----+-------
 8 | POINT(-70.96796 42.4659) | 100 | Federal | St | Lynn | MA | 01905
Total query runtime: 245 ms.

See Also
Normalize_Address, Pprint_Addy, ST_AsText, ST_SnapToGrid, ST_X, ST_Y

Name
ST_MapAlgebraExpr —
						2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
					

Synopsis
	raster fsfuncST_MapAlgebraExpr(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=same_as_rast1_band, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=same_as_rast1_band;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster fsfuncST_MapAlgebraExpr(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	expression, 	
	 	pixeltype=same_as_rast1_band, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer band1;
raster rast2;
integer band2;
text expression;
text pixeltype=same_as_rast1_band;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description
Warning

							ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra instead.
						

						Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.
					
	expression
	
									A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer
								

	pixeltype
	
									The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.
								

	extenttype
	Controls the extent of resulting raster
	
											INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.
										

	
											UNION - The extent of the new raster is the union of the two rasters.
										

	
											FIRST - The extent of the new raster is the same as the one of the first raster.
										

	
											SECOND - The extent of the new raster is the same as the one of the second raster.
										

	nodata1expr
	
									An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.
								

	nodata2expr
	
									An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.
								

	nodatanodataval
	
									A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.
								

						If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL or no pixel type specified, then the new raster band will have the same pixeltype as the input rast1 band.
					

						Use the term [rast1.val] [rast2.val] to refer to the pixel value of the original raster bands and [rast1.x], [rast1.y] etc. to refer to the column / row positions of the pixels.
					
Availability: 2.0.0

Example: 2 Band Intersection and Union
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

--Create a cool set of rasters --
DROP TABLE IF EXISTS fun_shapes;
CREATE TABLE fun_shapes(rid serial PRIMARY KEY, fun_name text, rast raster);

-- Insert some cool shapes around Boston in Massachusetts state plane meters --
INSERT INTO fun_shapes(fun_name, rast)
VALUES ('ref', ST_AsRaster(ST_MakeEnvelope(235229, 899970, 237229, 901930,26986),200,200,'8BUI',0,0));

INSERT INTO fun_shapes(fun_name,rast)
WITH ref(rast) AS (SELECT rast FROM fun_shapes WHERE fun_name = 'ref')
SELECT 'area' AS fun_name, ST_AsRaster(ST_Buffer(ST_SetSRID(ST_Point(236229, 900930),26986), 1000),
			ref.rast,'8BUI', 10, 0) As rast
FROM ref
UNION ALL
SELECT 'rand bubbles',
			ST_AsRaster(
			(SELECT ST_Collect(geom)
	FROM (SELECT ST_Buffer(ST_SetSRID(ST_Point(236229 + i*random()*100, 900930 + j*random()*100),26986), random()*20) As geom
			FROM generate_series(1,10) As i, generate_series(1,10) As j
) As foo), ref.rast,'8BUI', 200, 0)
FROM ref;

--map them -
SELECT ST_MapAlgebraExpr(
		area.rast, bub.rast, '[rast2.val]', '8BUI', 'INTERSECTION', '[rast2.val]', '[rast1.val]') As interrast,
		ST_MapAlgebraExpr(
			area.rast, bub.rast, '[rast2.val]', '8BUI', 'UNION', '[rast2.val]', '[rast1.val]') As unionrast
FROM
 (SELECT rast FROM fun_shapes WHERE
 fun_name = 'area') As area
CROSS JOIN (SELECT rast
FROM fun_shapes WHERE
 fun_name = 'rand bubbles') As bub
					
	
										
											
[image: Example: 2 Band Intersection and Union]mapalgebra intersection

										

										
										
											
[image: Example: 2 Band Intersection and Union]map algebra union

										

									

Example: Overlaying rasters on a canvas as separate bands

-- we use ST_AsPNG to render the image so all single band ones look grey --
WITH mygeoms
 AS (SELECT 2 As bnum, ST_Buffer(ST_Point(1,5),10) As geom
 UNION ALL
 SELECT 3 AS bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel') As geom
 UNION ALL
 SELECT 1 As bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 5,'join=bevel') As geom
),
 -- define our canvas to be 1 to 1 pixel to geometry
 canvas
 AS (SELECT ST_AddBand(ST_MakeEmptyRaster(200,
 200,
 ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0) , '8BUI'::text,0) As rast
 FROM (SELECT ST_Extent(geom) As e,
 Max(ST_SRID(geom)) As srid
 from mygeoms
) As foo
),
 rbands AS (SELECT ARRAY(SELECT ST_MapAlgebraExpr(canvas.rast, ST_AsRaster(m.geom, canvas.rast, '8BUI', 100),
 '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]') As rast
 FROM mygeoms AS m CROSS JOIN canvas
 ORDER BY m.bnum) As rasts
)
 SELECT rasts[1] As rast1 , rasts[2] As rast2, rasts[3] As rast3, ST_AddBand(
 ST_AddBand(rasts[1],rasts[2]), rasts[3]) As final_rast
 FROM rbands;
					
	
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast1

										

										
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast2

										

									
	
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast3

										

										
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]final_rast

										

									

Example: Overlay 2 meter boundary of select parcels over an aerial imagery
-- Create new 3 band raster composed of first 2 clipped bands, and overlay of 3rd band with our geometry
-- This query took 3.6 seconds on PostGIS windows 64-bit install
WITH pr AS
-- Note the order of operation: we clip all the rasters to dimensions of our region
(SELECT ST_Clip(rast,ST_Expand(geom,50)) As rast, g.geom
	FROM aerials.o_2_boston AS r INNER JOIN
-- union our parcels of interest so they form a single geometry we can later intersect with
		(SELECT ST_Union(ST_Transform(the_geom,26986)) AS geom
		 FROM landparcels WHERE pid IN('0303890000', '0303900000')) As g
		ON ST_Intersects(rast::geometry, ST_Expand(g.geom,50))
),
-- we then union the raster shards together
-- ST_Union on raster is kinda of slow but much faster the smaller you can get the rasters
-- therefore we want to clip first and then union
prunion AS
(SELECT ST_AddBand(NULL, ARRAY[ST_Union(rast,1),ST_Union(rast,2),ST_Union(rast,3)]) As clipped,geom
FROM pr
GROUP BY geom)
-- return our final raster which is the unioned shard with
-- with the overlay of our parcel boundaries
-- add first 2 bands, then mapalgebra of 3rd band + geometry
SELECT ST_AddBand(ST_Band(clipped,ARRAY[1,2])
	, ST_MapAlgebraExpr(ST_Band(clipped,3), ST_AsRaster(ST_Buffer(ST_Boundary(geom),2),clipped, '8BUI',250),
	 '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]')) As rast
FROM prunion;
					
	
										
											
[image: Example: Overlay 2 meter boundary of select parcels over an aerial imagery]The blue lines are the boundaries of select parcels

										

									

See Also

						ST_MapAlgebraExpr,
						ST_AddBand,
						ST_AsPNG,
						ST_AsRaster,
						ST_MapAlgebraFct,
						ST_BandPixelType,
						ST_GeoReference,
						ST_Value,
						ST_Union,
						ST_Union
					

Name
TopoGeo_AddPoint —
Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
				

Synopsis
	integer fsfuncTopoGeo_AddPoint(toponame, 	
	 	apoint, 	
	 	tolerance);	

varchar toponame;
geometry apoint;
float8 tolerance;

Description

Adds a point to an existing topology and return its identifier.
The given point will snap to existing nodes or edges within given tolerance.
An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString,
TopoGeo_AddPolygon,
AddNode,
CreateTopology

Topology Editors

Abstract
This section covers topology functions for adding, moving, deleting, and splitting edges, faces, and nodes. All of these functions are defined by ISO SQL/MM.

Name
ST_3DIntersects — Returns TRUE if the Geometries "spatially
			intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
			

Synopsis
	boolean fsfuncST_3DIntersects(geomA, 	
	 	geomB);	

						geometry
						geomA
					;

						geometry
						geomB
					;

Description
Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
				returns true, then the geometries also spatially intersect.
				Disjoint implies false for spatial intersection.
Availability: 2.0.0
Note
This function call will automatically include a bounding box
			 comparison that will make use of any indexes that are available on the
			 geometries.

Note
In order to take advantage of support for TINS, you need to enable the SFCGAL backend. This can be done at session time with: set postgis.backend = sfcgal; or at the database or system level. Database level can be done with ALTER DATABASE gisdb SET postgis.backend = sfcgal;.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description] This method is also provided by SFCGAL backend.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: ?

Geometry Examples
SELECT ST_3DIntersects(pt, line), ST_Intersects(pt,line)
	FROM (SELECT 'POINT(0 0 2)'::geometry As pt,
		'LINESTRING (0 0 1, 0 2 3)'::geometry As line) As foo;
 st_3dintersects | st_intersects
-----------------+---------------
 f | t
(1 row)
		

TIN Examples
set postgis.backend = sfcgal;
SELECT ST_3DIntersects('TIN(((0 0,1 0,0 1,0 0)))'::geometry, 'POINT(.1 .1)'::geometry);
 st_3dintersects

 t

See Also
ST_Intersects

Name
ST_ScaleX — Returns the X component of the pixel width in units of coordinate reference system.

Synopsis
	float8 fsfuncST_ScaleX(rast);	

raster rast;

Description
Returns the X component of the pixel width in units of coordinate reference system. Refer to World File
				for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.

Examples
SELECT rid, ST_ScaleX(rast) As rastpixwidth
FROM dummy_rast;

 rid | rastpixwidth
-----+--------------
 1 | 2
 2 | 0.05
				

See Also
ST_Width

Name
ST_IsSimple — Returns (TRUE) if this Geometry has no anomalous geometric
				points, such as self intersection or self tangency.

Synopsis
	boolean fsfuncST_IsSimple(geomA);	

geometry geomA;

Description
Returns true if this Geometry has no anomalous geometric
				points, such as self intersection or self tangency. For more
			information on the OGC's definition of geometry simplicity and validity, refer
			to "Ensuring OpenGIS compliancy of geometries"
Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0,
			while PostGIS returns NULL.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.8
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
 SELECT ST_IsSimple(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
 st_issimple

 t
(1 row)

 SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)'));
 st_issimple

 f
(1 row)

See Also
ST_IsValid

Name
ST_Node —
Node a set of linestrings.
		

Synopsis
	geometry fsfuncST_Node(geom);	

geometry geom;

Description

Fully node a set of linestrings using the least possible number of nodes
while preserving all of the input ones.
		
[image: Description]
 This function supports 3d and will not drop the z-index.
Availability: 2.0.0 - requires GEOS >= 3.3.0.
Note

Due to a bug in GEOS up to 3.3.1 this function fails to node self-intersecting
lines. This is fixed with GEOS 3.3.2 or higher.
		

Examples

SELECT ST_AsEWKT(
		ST_Node('LINESTRINGZ(0 0 0, 10 10 10, 0 10 5, 10 0 3)'::geometry)
) As output;
output

MULTILINESTRING((0 0 0,5 5 4.5),(5 5 4.5,10 10 10,0 10 5,5 5 4.5),(5 5 4.5,10 0 3))
		

See Also

			ST_UnaryUnion
		

Name
ST_Accum — Aggregate. Constructs an array of geometries.

Synopsis
	geometry[] fsfuncST_Accum(geomfield);	

geometry set geomfield;

Description
Aggregate. Constructs an array of geometries.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT (ST_Accum(the_geom)) As all_em, ST_AsText((ST_Accum(the_geom))[1]) As grabone,
(ST_Accum(the_geom))[2:4] as grab_rest
			FROM (SELECT ST_MakePoint(a*CAST(random()*10 As integer), a*CAST(random()*10 As integer), a*CAST(random()*10 As integer)) As the_geom
				FROM generate_series(1,4) a) As foo;

all_em|grabone | grab_rest

---+

 {0101000080000000000000144000000000000024400000000000001040:
 0101000080000000000
00018400000000000002C400000000000003040:
0101000080000000000000354000000000000038400000000000001840:
010100008000000000000040400000000000003C400000000000003040} |
 POINT(5 10) | {010100008000000000000018400000000000002C400000000000003040:
 0101000080000000000000354000000000000038400000000000001840:
 010100008000000000000040400000000000003C400000000000003040}
(1 row)
		

See Also
ST_Collect

PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data type object.
Note
Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the operation. As a result, they may not behave as expected when going over dateline, poles,
				and for large geometries or geometry pairs that cover more than one UTM zone. Basic transform - (favoring UTM, Lambert Azimuthal (North/South), and falling back on mercator in worst case scenario)

	ST_Area - Returns the area of the surface if it is a Polygon or MultiPolygon. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, area is determined on a curved surface with units in square meters.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Return the geometry as a GeoJSON element.
	ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default precision=15
	ST_AsSVG - Returns a Geometry in SVG path data given a geometry or geography object.
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Azimuth - Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to pointB.
	ST_Buffer - (T)Returns a geometry covering all points within a given distancefrom the input geometry.
	ST_CoveredBy - Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B
	ST_Covers - Returns 1 (TRUE) if no point in Geometry B is outside Geometry A
	ST_DWithin - Returns true if the geometries are within the specified distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.
	ST_Distance - For geometry type Returns the 2D Cartesian distance between two geometries in projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.
	ST_GeogFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
	ST_GeographyFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	= - Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.
	ST_Intersection - (T)Returns a geometry that represents the shared portion of geomA and geomB.
	ST_Intersects - Returns TRUE if the Geometries/Geography "spatially intersect in 2D" - (share any portion of space) and FALSE if they don't (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
	ST_Length - Returns the 2D length of the geometry if it is a LineString or MultiLineString. geometry are in units of spatial reference and geography are in meters (default spheroid)
	ST_Perimeter - Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface geometry or geography. (Polygon, MultiPolygon). geometry measurement is in units of spatial reference and geography is in meters.
	ST_Project - Returns a POINT projected from a start point using a distance in meters and bearing (azimuth) in radians.
	ST_Segmentize - Return a modified geometry/geography having no segment longer than the given distance.
	ST_Summary - Returns a text summary of the contents of the geometry.
	<-> - Returns the 2D distance between A and B.
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

Release 1.3.1

Release date: 2007/08/13
This release fixes some oversights in the previous release around
 version numbering, documentation, and tagging.

Name
ST_PointInsideCircle — Is the point geometry insert circle defined by center_x, center_y, radius

Synopsis
	boolean fsfuncST_PointInsideCircle(a_point, 	
	 	center_x, 	
	 	center_y, 	
	 	radius);	

geometry a_point;
float center_x;
float center_y;
float radius;

Description
The syntax for this functions is
			ST_PointInsideCircle(<geometry>,<circle_center_x>,<circle_center_y>,<radius>).
			Returns the true if the geometry is a point and is inside the
			circle. Returns false otherwise.
Note
This only works for points as the name suggests

Availability: 1.2
Changed: 2.2.0 In prior versions this used to be called ST_Point_Inside_Circle

Examples
SELECT ST_PointInsideCircle(ST_Point(1,2), 0.5, 2, 3);
 st_pointinsidecircle

 t

See Also
ST_DWithin

Name
ST_ForceLHR — Force LHR orientation

Synopsis
	geometry fsfuncST_ForceLHR(geom);	

geometry geom;

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Chapter 13. PostGIS Extras

This chapter documents features found in the extras folder of the PostGIS source tarballs and source repository. These
 are not always packaged with PostGIS binary releases, but are usually plpgsql based or standard shell scripts that can be run as is.
Tiger Geocoder

Abstract
A plpgsql based geocoder written to work with the TIGER (Topologically Integrated Geographic Encoding and Referencing system) / Line and Master Address database export released by the US Census Bureau.
There are four components to the geocoder: the data loader functions, the address normalizer, the address geocoder, and the reverse geocoder.
Although it is designed specifically for the US, a lot of the concepts and functions are applicable and can be adapted to work with other country address and road networks.
The script builds a schema called tiger to house all the tiger related functions, reusable lookup data such as road type prefixes, suffixes, states, various control tables for managing data load, and skeleton base tables from which all the tiger loaded tables inherit from.
Another schema called tiger_data is also created which houses all the census data for each state that the loader downloads from Census site and loads into the database. In the current model, each set of state tables is
 prefixed with the state code e.g ma_addr, ma_edges etc with constraints to enforce only that state data. Each of these tables inherits from the tables addr, faces, edges, etc located in the tiger schema.
All the geocode functions only reference the base tables, so there is no requirement that the data schema be called tiger_data or that data can't be further partitioned into other schemas -- e.g a different schema
 for each state, as long as all the tables inherit from the tables in the tiger schema.
For instructions on how to enable the extension in your database and also to load data using it, refer to the section called “Tiger Geocoder Enabling your PostGIS database: Using Extension”.

Note

If you are using tiger geocoder (tiger_2010),
you can upgrade the scripts using the accompanying upgrade_geocoder.bat
/ .sh scripts in extras/tiger. One major change between tiger_2010 and tiger_2011+ is that the county and state tables are no longer broken out by state. If you have data from tiger_2010 and want to replace with tiger_2015, refer to the section called “Upgrading your Tiger Geocoder Install”

Note
New in PostGIS 2.2.0 release is support for Tiger 2015 data and inclusion of Address Standardizer as part of PostGIS.
New in PostGIS 2.1.0 release is ability to install tiger geocoder with PostgreSQL extension model if you are running PostgreSQL 9.1+. Refer to the section called “Tiger Geocoder Enabling your PostGIS database: Using Extension” for details.

The Pagc_Normalize_Address function as a drop in replacement for in-built Normalize_Address. Refer to the section called “Installing and Using the address standardizer” for compile and installation instructions.
Design:
The goal of this project is to build a fully functional geocoder that can process an arbitrary
 United States address string and using normalized TIGER census data, produce a point geometry and rating reflecting the location of the given address and likeliness of the location. The higher the rating number the worse the result.
The reverse_geocode function, introduced in PostGIS 2.0.0 is useful for deriving the street address and cross streets of a GPS location.
The geocoder should be simple for anyone familiar with PostGIS to install and use, and should be easily installable and usable on all platforms supported by PostGIS.
It should be robust enough to function properly despite formatting and spelling errors.
It should be extensible enough to be used with future data updates, or alternate data sources with a minimum of coding changes.

Note
The tiger schema must be added to the database search path for the functions to work properly.

There are a couple other open source geocoders for PostGIS, that unlike tiger geocoder have the advantage of multi-country geocoding support
	Nominatim
 uses OpenStreetMap gazeteer formatted data. It requires osm2pgsql for loading the data, PostgreSQL 8.4+ and PostGIS 1.5+ to function. It is packaged as a webservice interface and seems designed to be called as a webservice.
 Just like the tiger geocoder, it has both a geocoder and a reverse geocoder component. From the documentation, it is unclear if it has a pure SQL interface like the tiger geocoder, or if a good deal of the logic is implemented in the web interface.

	GIS Graphy also utilizes PostGIS and like Nominatim works with OpenStreetMap (OSM) data. It comes with a loader to load OSM data and similar to Nominatim is capable of geocoding not just US. Much like Nominatim, it runs as a webservice and relies on Java 1.5, Servlet apps, Solr. GisGraphy is cross-platform and also has a reverse geocoder among some other neat features.

Name
ST_UpperLeftY — Returns the upper left Y coordinate of raster in projected spatial ref.

Synopsis
	float8 fsfuncST_UpperLeftY(rast);	

raster rast;

Description
Returns the upper left Y coordinate of raster in projected spatial ref.

Examples

SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;

 rid | uly
-----+---------
 1 | 0.5
 2 | 5793244
				

See Also
ST_UpperLeftX, ST_GeoReference, Box3D

Geometry Processing

Name
DropGeometryTable — Drops a table and all its references in
		geometry_columns.

Synopsis
	boolean fsfuncDropGeometryTable(table_name);	

varchar
			table_name;

	boolean fsfuncDropGeometryTable(schema_name, 	
	 	table_name);	

varchar
			schema_name;
varchar
			table_name;

	boolean fsfuncDropGeometryTable(catalog_name, 	
	 	schema_name, 	
	 	table_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;

Description
Drops a table and all its references in geometry_columns. Note:
		uses current_schema() on schema-aware pgsql installations if schema is
		not provided.
Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a table with geometry columns like any other table using DROP TABLE

Examples
SELECT DropGeometryTable ('my_schema','my_spatial_table');
----RESULT output ---
my_schema.my_spatial_table dropped.

-- The above is now equivalent to --
DROP TABLE my_schema.my_spatial_table;
		

See Also
AddGeometryColumn, DropGeometryColumn, the section called “The GEOMETRY_COLUMNS VIEW”

Name
ST_PixelAsPolygon — Returns the polygon geometry that bounds the pixel for a particular row and column.

Synopsis
	geometry fsfuncST_PixelAsPolygon(rast, 	
	 	columnx, 	
	 	rowy);	

raster rast;
integer columnx;
integer rowy;

Description
Returns the polygon geometry that bounds the pixel for a particular row and column.
Availability: 2.0.0

Examples

-- get raster pixel polygon
SELECT i,j, ST_AsText(ST_PixelAsPolygon(foo.rast, i,j)) As b1pgeom
FROM dummy_rast As foo
	CROSS JOIN generate_series(1,2) As i
	CROSS JOIN generate_series(1,1) As j
WHERE rid=2;

 i | j | b1pgeom
---+---+---
 1 | 1 | POLYGON((3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.95,...
 2 | 1 | POLYGON((3427927.8 5793244,3427927.85 5793244,3427927.85 5793243.95, ..

See Also

					ST_DumpAsPolygons,
					ST_PixelAsPolygons,
					ST_PixelAsPoint,
					ST_PixelAsPoints,
					ST_PixelAsCentroid,
					ST_PixelAsCentroids,
					ST_Intersection,
					ST_AsText
				

Name
ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default precision=15

Synopsis
	text fsfuncST_AsKML(geom, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer maxdecimaldigits=15;

	text fsfuncST_AsKML(geog, 	
	 	maxdecimaldigits=15);	

geography geog;
integer maxdecimaldigits=15;

	text fsfuncST_AsKML(version, 	
	 	geom, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

integer version;
geometry geom;
integer maxdecimaldigits=15;
text nprefix=NULL;

	text fsfuncST_AsKML(version, 	
	 	geog, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

integer version;
geography geog;
integer maxdecimaldigits=15;
text nprefix=NULL;

Description
Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function.
			maximum number of decimal places used in
			output (defaults to 15), version default to 2 and default namespace is no prefix.
Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15
Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL
Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.

Note
Availability: 1.2.2 - later variants that include version param came in 1.3.2

Note
Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

Note
Changed: 2.0.0 - uses default args and supports named args

Note
AsKML output will not work with geometries that do not have an SRID

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_askml

		<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

		--3d linestring
		SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
		<LineString><coordinates>1,2,3 4,5,6</coordinates></LineString>
		
		

See Also
ST_AsSVG, ST_AsGML

Name
ST_Y — Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.

Synopsis
	float fsfuncST_Y(a_point);	

geometry a_point;

Description
Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y

	2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z

Name
ST_PointFromGeoHash — Return a point from a GeoHash string.

Synopsis
	point fsfuncST_PointFromGeoHash(geohash, 	
	 	precision=full_precision_of_geohash);	

text geohash;
integer precision=full_precision_of_geohash;

Description
Return a point from a GeoHash string. The point represents the center point of the GeoHash.
If no precision is specified ST_PointFromGeoHash returns a point based on full precision of the input GeoHash string.
If precision is specified ST_PointFromGeoHash will use that many characters from the GeoHash to create the point.
Availability: 2.1.0

Examples
SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));
 st_astext

 POINT(-115.172816 36.114646)

SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4));
 st_astext

 POINT(-115.13671875 36.123046875)

SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));
 st_astext

 POINT(-115.172815918922 36.1146435141563)
		
		

See Also
 ST_GeoHash, ST_Box2dFromGeoHash, ST_GeomFromGeoHash

Name
ST_AsBinary — Return the Well-Known Binary (WKB) representation of the raster.

Synopsis
	bytea fsfuncST_AsBinary(rast, 	
	 	outasin=FALSE);	

raster rast;
boolean outasin=FALSE;

Description

					Returns the Binary representation of the raster. If outasin is TRUE, out-db bands are treated as in-db.
					Refer to raster/doc/RFC2-WellKnownBinaryFormat located in the PostGIS source folder for details of the representation.
				

					This is useful in binary cursors to pull data out of the database without converting it to a string representation.
				
Note

						By default, WKB output contains the external file path for out-db bands. If the client does not have access to the raster file underlying an out-db band, set outasin to TRUE.

Enhanced: 2.1.0 Addition of outasin

Examples

SELECT ST_AsBinary(rast) As rastbin FROM dummy_rast WHERE rid=1;

					 rastbin

\001\000\000\000\000\000\000\000\000\000\000\000@\000\000\000\000\000\000\010@\
000\000\000\000\000\000\340?\000\000\000\000\000\000\340?\000\000\000\000\000\00
0\000\000\000\000\000\000\000\000\000\000\012\000\000\000\012\000\024\000
				

Name
ST_CountAgg —
					Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.
				

Synopsis
	bigint fsfuncST_CountAgg(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	sample_percent);	

raster rast;
integer nband;
boolean exclude_nodata_value;
double precision sample_percent;

	bigint fsfuncST_CountAgg(rast, 	
	 	nband, 	
	 	exclude_nodata_value);	

raster rast;
integer nband;
boolean exclude_nodata_value;

	bigint fsfuncST_CountAgg(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

Description
Returns the number of pixels in a given band of a set of rasters. If no band is specified nband defaults to 1.

					If exclude_nodata_value is set to true, will only count pixels with value not equal to the NODATA value of the raster. Set exclude_nodata_value to false to get count all pixels
				
By default will sample all pixels. To get faster response, set sample_percent to value between zero (0) and one (1)
Availability: 2.2.0

Examples

WITH foo AS (
	SELECT
		rast.rast
	FROM (
		SELECT ST_SetValue(
			ST_SetValue(
				ST_SetValue(
					ST_AddBand(
						ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0,0)
						, 1, '64BF', 0, 0
)
					, 1, 1, 1, -10
)
				, 1, 5, 4, 0
)
			, 1, 5, 5, 3.14159
) AS rast
) AS rast
	FULL JOIN (
		SELECT generate_series(1, 10) AS id
) AS id
		ON 1 = 1
)
SELECT
	ST_CountAgg(rast, 1, TRUE)
FROM foo;

 st_countagg

 20
(1 row)
				

See Also

					ST_Count,
					ST_SummaryStats,
					ST_SetBandNoDataValue
				

Address Standardizer Types

Abstract
This section lists the PostgreSQL data types installed by Address Standardizer extension. Note we describe the casting behavior of these which is very
				important especially when designing your own functions.
			

Name
GetTopoGeomElements — Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements)

Synopsis
	setof topoelement fsfuncGetTopoGeomElements(toponame, 	
	 	layer_id, 	
	 	tg_id);	

varchar toponame;
integer layer_id;
integer tg_id;

	setof topoelement fsfuncGetTopoGeomElements(tg);	

topogeometry tg;

Description
Returns a set of element_id,element_type (topoelements) for a given topogeometry object in toponame schema.
tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.
Availability: 2.0.0

Examples

See Also

 GetTopoGeomElementArray,
 TopoElement,
 TopoGeom_addElement,
 TopoGeom_remElement

Name
ST_Slope — Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

Synopsis
	raster fsfuncST_Slope(rast, 	
	 	nband=1, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband=1;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

	raster fsfuncST_Slope(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

Description
Returns the slope (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the slope equation to neighboring pixels.

						units indicates the units of the slope. Possible values are: RADIANS, DEGREES (default), PERCENT.
					

						scale is the ratio of vertical units to horizontal. For Feet:LatLon use scale=370400, for Meters:LatLon use scale=111120.
					

						If interpolate_nodata is TRUE, values for NODATA pixels from the input raster will be interpolated using ST_InvDistWeight4ma before computing the surface slope.
					
Note

 For more information about Slope, Aspect and Hillshade, please refer to ESRI - How hillshade works and ERDAS Field Guide - Slope Images.
						

Availability: 2.0.0
Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS (
	SELECT ST_SetValues(
		ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
		1, 1, 1, ARRAY[
			[1, 1, 1, 1, 1],
			[1, 2, 2, 2, 1],
			[1, 2, 3, 2, 1],
			[1, 2, 2, 2, 1],
			[1, 1, 1, 1, 1]
]::double precision[][]
) AS rast
)
SELECT
	ST_DumpValues(ST_Slope(rast, 1, '32BF'))
FROM foo

 st_dumpvalues

--
--

 (1,"{{10.0249881744385,21.5681285858154,26.5650520324707,21.5681285858154,10.0249881744385},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},
{26.5650520324707,36.8698959350586,0,36.8698959350586,26.5650520324707},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},{10.0249881744385,21.
5681285858154,26.5650520324707,21.5681285858154,10.0249881744385}}")
(1 row)
					

Examples: Variant 2
Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
	SELECT ST_Tile(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
				1, '32BF', 0, -9999
),
			1, 1, 1, ARRAY[
				[1, 1, 1, 1, 1, 1],
				[1, 1, 1, 1, 2, 1],
				[1, 2, 2, 3, 3, 1],
				[1, 1, 3, 2, 1, 1],
				[1, 2, 2, 1, 2, 1],
				[1, 1, 1, 1, 1, 1]
]::double precision[]
),
		2, 2
) AS rast
)
SELECT
	t1.rast,
	ST_Slope(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
					

See Also

						ST_MapAlgebra,
						ST_TRI,
						ST_TPI,
						ST_Roughness,
						ST_HillShade,
						ST_Aspect
					

