
Package ‘vvauditor’
January 19, 2026

Title Creates Assertion Tests

Version 0.8.0

Description
Offers a comprehensive set of assertion tests to help users validate the integrity of their data.
These tests can be used to check for specific conditions or properties within a dataset and
help ensure that data is accurate and reliable.
The package is designed to make it easy to add quality control checks to data analysis
workflows and to aid in identifying and correcting any errors or inconsistencies in data.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports checkmate, cli, dplyr, findR, janitor, kit, lubridate,
magrittr, purrr, readr, stats, stringr, tibble, tidyr

Suggests devtools (>= 2.4.5), knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Tomer Iwan [cph],
Hajo Bons [aut, cph, cre]

Maintainer Hajo Bons <h.b.bons@vu.nl>

Repository CRAN

Date/Publication 2026-01-19 14:00:18 UTC

Contents
assertion_message . 3
assert_date_named . 3
assert_field_consistency . 4
assert_field_distinctness . 4
assert_field_existence . 5
assert_logical_named . 6

1

2 Contents

assert_missing_values . 6
assert_no_duplicates_in_group . 7
assert_range_validation . 8
assert_type_consistency . 8
calculate_category_percentages . 9
check_double_columns . 9
check_duplicates . 10
check_na_columns . 11
check_non_zero_rows . 11
check_no_duplicates_in_group . 12
check_no_duplicate_rows . 13
check_numeric_or_integer_type . 13
check_posixct_type . 14
check_rows . 15
check_zero_columns . 16
count_more_than_1 . 16
create_categorical_details . 17
create_dataset_summary_table . 17
create_data_types . 18
create_field_info . 18
create_numeric_details . 19
create_subset_fields . 20
drop_na_column_names . 20
duplicates_in_column . 21
find_common_columns . 21
find_maximum_value . 22
find_minimum_value . 23
find_pattern_r . 23
get_distribution_statistics . 24
get_first_element_class . 24
get_values . 25
identify_join_pairs . 26
identify_outliers . 26
is_unique_column . 27
md_complete_cases . 28
regex_content_parameter . 28
regex_time . 29
regex_year_date . 30
remove_duplicates_and_na . 31
retrieve_functions_and_packages . 31
retrieve_function_calls . 32
retrieve_package_usage . 32
retrieve_sourced_scripts . 33
retrieve_string_assignments . 33
return_assertions_message . 34
return_mtcars_testfile . 35
run_all_assertions . 35
str_detect_in_file . 36

assertion_message 3

test_all_equal . 36
unique_id . 37

Index 38

assertion_message Assert Message Based on Type

Description

This function asserts a message based on the type specified. It can either push the message to an
AssertCollection, print a warning, or stop execution with an error message.

Usage

assertion_message(message, assertion_fail = "stop")

Arguments

message A character string representing the message to be asserted.

assertion_fail A character string indicating the action to take if the assertion fails. Can be an
AssertCollection, "warning", or "stop" (default).

Value

None

assert_date_named Assert Date Value in Column

Description

This function asserts that the values in a specified column of a data frame are of Date type. It uses
the checkmate::assert_date function to perform the assertion.

Usage

assert_date_named(column, df, prefix_column = NULL, ...)

Arguments

column A character vector or string with the column name to be tested.

df The data frame that contains the column.

prefix_column A character string that will be prepended to the column name in the assertion
message. Default is NULL.

... Additional parameters are passed to the checkmate::assert_date function.

4 assert_field_distinctness

Value

None

assert_field_consistency

Check if the fieldnames of the dataset are the same

Description

Assert Field Consistency Between Data and Metadata

Usage

assert_field_consistency(new_data, field_info)

Arguments

new_data A data frame. The new dataset whose field names need to be checked.

field_info A data frame. Metadata containing a column named raw_field_name that lists
the expected field names.

Details

This function checks for consistency between the field names in new data and the field names
specified in a metadata reference. It warns if there are missing fields in the new data or if new
unexpected fields appear in the data that are not defined in the metadata.

Value

No return value. The function issues warnings if there are inconsistencies in field names.

assert_field_distinctness

Assert Field Uniqueness Consistency Between Data and Metadata

Description

This function checks whether the uniqueness of columns in a new dataset matches the expected
uniqueness defined in a metadata reference. It warns if any columns do not conform to the expected
uniqueness.

Usage

assert_field_distinctness(new_data, metadata)

assert_field_existence 5

Arguments

new_data A data frame. The dataset whose column uniqueness needs to be verified.

metadata A data frame. Metadata containing a column named is_unique_column, indi-
cating whether each field is expected to be unique.

Value

No return value. The function issues warnings if any columns deviate from their expected unique-
ness.

assert_field_existence

Assert Field Existence in New Data

Description

This function checks whether all fields that existed in a previous dataset are still present in a new
dataset, based on a metadata reference. It warns if any fields from the previous dataset are missing
in the new dataset.

Usage

assert_field_existence(new_data, previous_data, metadata)

Arguments

new_data A data frame. The new dataset whose field names need to be checked.

previous_data A data frame. The previous dataset used as a reference for expected fields.

metadata A data frame. Metadata containing a column named raw_field_name, which
defines the expected field names.

Value

No return value. The function issues warnings if any expected fields are missing in the new dataset.

6 assert_missing_values

assert_logical_named Assert Logical Value in Column

Description

This function asserts that the values in a specified column of a data frame are logical. It uses the
checkmate::assert_logical function to perform the assertion.

Usage

assert_logical_named(column, df, prefix_column = NULL, ...)

Arguments

column A character vector or string with the column name to be tested.

df The data frame that contains the column.

prefix_column A character string that will be prepended to the column name in the assertion
message. Default is NULL.

... Additional parameters are passed to the checkmate::assert_logical func-
tion.

Value

None

Examples

Create a data frame
df <- data.frame(a = c(TRUE, FALSE, TRUE, FALSE), b = c(1, 2, 3, 4))
Assert that the values in column "a" are logical
assert_logical_named("a", df)

assert_missing_values Assert Consistency of Missing Values in Data

Description

This function checks whether the percentage of missing values in a dataset matches the documented
percentage in a metadata reference. It warns if there are significant discrepancies.

Usage

assert_missing_values(data, metadata)

assert_no_duplicates_in_group 7

Arguments

data A data frame. The dataset to check for missing values.

metadata A data frame. Metadata containing expected missing value percentages and
valid value counts. It must include the columns raw_field_name, percentage_of_missing_values,
count_of_valid_values, and preferred_field_name.

Value

No return value. The function issues warnings if the actual missing value percentages deviate
significantly from the documented values.

assert_no_duplicates_in_group

Assert No Duplicates in Group

Description

This function asserts that there are no duplicate rows in the specified columns of a data frame. It
groups the data frame by the specified columns, counts the number of unique values for each group,
and checks if there are any groups with more than one row. If there are, it prints an error message
and stops the execution (unless assertion_fail is set to "warn").

Usage

assert_no_duplicates_in_group(df, group_vars, assertion_fail = "stop")

Arguments

df A data frame.

group_vars A character vector of column names.

assertion_fail A character string indicating the action to take if the assertion fails. Can be
"stop" (default) or "warn".

Value

The input data frame.

8 assert_type_consistency

assert_range_validation

Assert Range Validation for Data Fields

Description

This function checks whether the values in a dataset fall within the expected minimum and maxi-
mum range as specified in the metadata. It warns if any values violate the expected range.

Usage

assert_range_validation(data, metadata)

Arguments

data A data frame. The dataset containing the fields to validate.
metadata A data frame. Metadata containing expected minimum and maximum values

for each field. It must include the columns raw_field_name, min, max, and
preferred_field_name.

Value

No return value. The function issues warnings if any values fall outside the expected range.

assert_type_consistency

Assert Type Consistency Between Data and Metadata

Description

This function checks whether the data types of fields in a dataset match the expected types specified
in the metadata. It warns if any fields have a different type than expected.

Usage

assert_type_consistency(data, metadata)

Arguments

data A data frame. The dataset containing the fields to validate.
metadata A data frame. Metadata specifying the expected data types for each field. It must

include the columns raw_field_name, type_of_variable, and preferred_field_name.

Value

No return value. The function issues warnings if any fields have an unexpected type.

calculate_category_percentages 9

calculate_category_percentages

Calculate the percentage of categories in a data vector

Description

This function calculates the percentage of each category in a given data vector and returns the top
10 categories along with their percentages. If the data vector is of Date class, it is converted to
POSIXct. If the sum of the percentages is not 100%, an "Other" category is added to make up the
difference, but only if the number of unique values exceeds 10. If the data vector is of POSIXct
class and the smallest percentage is less than 1%, the function returns "Not enough occurrences."

Usage

calculate_category_percentages(data_vector)

Arguments

data_vector A vector of categorical data.

Value

A character string detailing the top 10 categories and their percentages, or a special message indi-
cating not enough occurrences or unsupported data type.

Examples

Example with a character vector
data_vector <- c("cat", "dog", "bird", "cat", "dog", "cat", "other")
calculate_category_percentages(data_vector)

Example with a Date vector
data_vector <- as.Date(c("2020-01-01", "2020-01-02", "2020-01-03"))
calculate_category_percentages(data_vector)

check_double_columns check double columns

Description

Check whether two dataframes have intersecting column names.

Usage

check_double_columns(x, y, connector = NULL)

10 check_duplicates

Arguments

x Data frame x.
y Data frame y.
connector The connector columns as strings. Also possible as vector.

Value

Message informing about overlap in columns between the dataframes.

See Also

Other tests: check_no_duplicates_in_group(), check_numeric_or_integer_type(), check_posixct_type(),
duplicates_in_column(), test_all_equal()

Examples

check_double_columns(mtcars, iris)

check_duplicates Check for Duplicate Rows in Selected Columns

Description

This function checks if there are any duplicate rows in the specified columns of a data frame. It
prints the unique rows and returns a boolean indicating whether the number of rows in the original
data frame is the same as the number of rows in the data frame with duplicate rows removed.

Usage

check_duplicates(data, columns)

Arguments

data A data frame.
columns A character vector of column names.

Value

A logical value indicating whether the number of rows in the original data frame is the same as the
number of rows in the data frame with duplicate rows removed.

Examples

Create a data frame
df <- data.frame(a = c(1, 2, 3, 1), b = c(4, 5, 6, 4), c = c(7, 8, 9, 7))
Check for duplicate rows in the first two columns
check_duplicates(df, c("a", "b"))

check_na_columns 11

check_na_columns Check for columns with only NA values

Description

This function checks if there are any columns in the provided dataframe that contain only NA values.
If such columns exist, their names are added to the provided collection.

Usage

check_na_columns(df, collection)

Arguments

df A dataframe.

collection A list to store the names of the columns with only NA values.

Value

The updated collection.

Examples

Create a dataframe with some columns containing only NA values
df <- data.frame(a = c(1, NA, 3), b = c(NA, NA, NA), c = c(4, 5, 6))
collection <- checkmate::makeAssertCollection()
check_na_columns(df, collection)

check_non_zero_rows Check for Non-Zero Rows

Description

This function checks if there are more than 0 rows in the provided dataframe. If there are 0 rows, a
message is added to the provided collection.

Usage

check_non_zero_rows(dataframe, collection)

Arguments

dataframe A dataframe.

collection A list to store the message if there are 0 rows.

12 check_no_duplicates_in_group

Value

The updated collection.

Examples

Create an empty dataframe
dataframe <- data.frame()
collection <- checkmate::makeAssertCollection()
check_non_zero_rows(dataframe, collection)

check_no_duplicates_in_group

Check for No Duplicates in Group

Description

This function checks if there is exactly one row per group in the provided dataframe. If there are
multiple rows per group, the assertion fails.

Usage

check_no_duplicates_in_group(
dataframe,
group_variables = NULL,
assertion_fail = "stop"

)

Arguments

dataframe The dataframe to be checked.
group_variables

The group variables as a character vector. The default is NULL.
assertion_fail How the function reacts to a failure. This can be a "warning", where only a

warning is given on the failure, or a "stop", where the function execution is
stopped and the message is displayed, or an "AssertCollection", where the fail-
ure message is added to an assertion collection.

See Also

Other assertions: check_numeric_or_integer_type(), check_posixct_type()
Other tests: check_double_columns(), check_numeric_or_integer_type(), check_posixct_type(),
duplicates_in_column(), test_all_equal()

Examples

Create a dataframe with some groups having more than one row
dataframe <- data.frame(a = c(1, 1, 2), b = c(2, 2, 3), c = c("x", "x", "y"))
Check the uniqueness of rows per group
check_no_duplicates_in_group(dataframe)

check_no_duplicate_rows 13

check_no_duplicate_rows

Check for No Duplicate Rows

Description

This function checks if there are any duplicate rows in the provided dataframe. If there are duplicate
rows, a message is added to the provided collection.

Usage

check_no_duplicate_rows(dataframe, collection, unique_columns = NULL)

Arguments

dataframe A dataframe.

collection A list to store the message if there are duplicate rows.

unique_columns Default is NULL. If provided, these are the columns to check for uniqueness.

Value

The updated collection.

Examples

Create a dataframe with some duplicate rows
dataframe <- data.frame(a = c(1, 1, 2), b = c(2, 2, 3))
collection <- checkmate::makeAssertCollection()
check_no_duplicate_rows(dataframe, collection, c("a", "b"))

check_numeric_or_integer_type

Check for Numeric or Integer Type

Description

This function checks if the specified column in the provided dataframe has a numeric or integer
type. It uses the checkmate::assert_numeric or checkmate::assert_integer function to perform the
assertion, depending on the value of the field_type parameter.

14 check_posixct_type

Usage

check_numeric_or_integer_type(
column_name,
dataframe,
column_prefix = NULL,
field_type = "numeric",
...

)

Arguments

column_name A character vector or string with the column name to be tested.

dataframe The dataframe that contains the column.

column_prefix Default is NULL. If provided, this text is prepended to the variable name in the
assertion message.

field_type Default is "numeric". Specify "integer" to check if the column has an integer
type. This parameter must be either "integer" or "numeric".

... The remaining parameters are passed to the function assert_numeric or assert_integer.

See Also

Other assertions: check_no_duplicates_in_group(), check_posixct_type()

Other tests: check_double_columns(), check_no_duplicates_in_group(), check_posixct_type(),
duplicates_in_column(), test_all_equal()

Examples

Create a dataframe with a numeric column
dataframe <- data.frame(a = c(1, 2, 3))
Check the numeric type of the 'a' column
check_numeric_or_integer_type("a", dataframe)

check_posixct_type Check for POSIXct Type

Description

This function checks if the specified column in the provided dataframe has a POSIXct type. It uses
the checkmate::assert_posixct function to perform the assertion.

Usage

check_posixct_type(column_name, dataframe, column_prefix = NULL, ...)

check_rows 15

Arguments

column_name A character vector or string with the column name to be tested.

dataframe The dataframe that contains the column.

column_prefix Default is NULL. If provided, this text is prepended to the variable name in the
assertion message.

... The remaining parameters are passed to the function assert_posixct.

See Also

Other assertions: check_no_duplicates_in_group(), check_numeric_or_integer_type()

Other tests: check_double_columns(), check_no_duplicates_in_group(), check_numeric_or_integer_type(),
duplicates_in_column(), test_all_equal()

Examples

Create a dataframe with a POSIXct column
dataframe <- data.frame(date = as.POSIXct("2023-10-04"))
Check the POSIXct type of the 'date' column
check_posixct_type("date", dataframe)

check_rows Check rows

Description

This function prints the number of rows of a data frame. This function is used to check that rows
are not deleted or doubled unless expected.

Usage

check_rows(df, name = NULL)

Arguments

df The data frame whose rows are to be counted

name The name of the data file (this will be printed)

Value

A message is printed to the console with the number of rows of the data

Examples

check_rows(mtcars)

16 count_more_than_1

check_zero_columns Check for Columns with Only 0s

Description

This function checks if there are any columns in the provided dataframe that contain only 0 values.
If such columns exist, their names are added to the provided collection.

Usage

check_zero_columns(dataframe, collection)

Arguments

dataframe A dataframe.

collection A list to store the names of the columns with only 0 values.

Value

The updated collection.

Examples

Create a dataframe with some columns containing only 0 values
dataframe <- data.frame(a = c(0, 0, 0), b = c(1, 2, 3), c = c(0, 0, 0))
collection <- checkmate::makeAssertCollection()
check_zero_columns(dataframe, collection)

count_more_than_1 Count more than 1

Description

Function to count the number of values greater than 1 in a vector This function is used in the
function Check_columns_for_double_rows to count duplicate values.

Usage

count_more_than_1(x)

Arguments

x The vector to test

Value

Number of values greater than 1.

create_categorical_details 17

Examples

count_more_than_1(c(1, 1, 4))

create_categorical_details

Create categorical details csv

Description

This function returns a categorical details csv. Containing categorical information about the dataset

Usage

create_categorical_details(data, mapping)

Arguments

data A dataframe for which to create a categorical details csv.

mapping A dataframe containing a mapping named vector, containing preferred field-
names Example: column_names <- c(mpg = "mpg", cyl = "cyl", disp = "disp",
hp = "hp", drat = "drat", wt = "wt", qsec = "qsec", vs = "vs", am = "am", gear =
"gear", carb = "carb", spare_tire = "spare_tire"

Value

Dataframe containing categorical details

create_dataset_summary_table

Create dataset summary statistics table

Description

This function creates a summary statistics table for a dataframe, providing insights into the na-
ture of the data contained within. It includes detailed statistics for each column, such as column
types, missing value percentages, minimum and maximum values for numeric columns, patterns for
character columns, uniqueness of identifiers, and distributions.

Usage

create_dataset_summary_table(df_input)

Arguments

df_input A dataframe for which to create a summary statistics table.

18 create_field_info

Value

A tibble with comprehensive summary statistics for each column in the input dataframe.

create_data_types Create data types tibble

Description

This function returns a data types tibble. Containing type information about the dataset.

Usage

create_data_types(data, mapping)

Arguments

data A dataframe for which to create a data types csv.

mapping A dataframe containing a mapping named vector, containing preferred field-
names Example: column_names <- c(mpg = "mpg", cyl = "cyl", disp = "disp",
hp = "hp", drat = "drat", wt = "wt", qsec = "qsec", vs = "vs", am = "am", gear =
"gear", carb = "carb", spare_tire = "spare_tire")

Value

Tibble containing data_types

create_field_info Create field info

Description

This function returns a dataframe containing field info information about the dataset

Usage

create_field_info(
data,
raw_data_path = NULL,
broker = NULL,
product = NULL,
public_dataset = NULL

)

create_numeric_details 19

Arguments

data A dataframe for which to create a field info csv.

raw_data_path A string containing the original location of the original raw file

broker The name of of the organisation or person that distributes the dataset

product The name of the product where this dataset is used in

public_dataset Boolean containing whether the dataset is publicly available is_primary_key
Is_primary_key is variable that can be manually set to TRUE if the dataset con-
tains a primary key.

Value

Dataframe containing subset info

create_numeric_details

Create numeric details csv

Description

This function returns a numeric details csv. Containing numeric information about the dataset

Usage

create_numeric_details(data, mapping)

Arguments

data A dataframe for which to create a numeric details csv.

mapping A dataframe containing a mapping named vector, containing preferred field-
names Example: column_names <- c(mpg = "mpg", cyl = "cyl", disp = "disp",
hp = "hp", drat = "drat", wt = "wt", qsec = "qsec", vs = "vs", am = "am", gear =
"gear", carb = "carb", spare_tire = "spare_tire")

Value

Dataframe containing numeric details.

20 drop_na_column_names

create_subset_fields Create subset fields

Description

This function returns a subsetfields info df. Containing subsetfields information about the dataset

Usage

create_subset_fields(data, mapping)

Arguments

data A dataframe for which to create a subsetfields csv.

mapping A dataframe containing a mapping named vector, containing preferred field-
names Example: column_names <- c(mpg = "mpg", cyl = "cyl", disp = "disp",
hp = "hp", drat = "drat", wt = "wt", qsec = "qsec", vs = "vs", am = "am", gear =
"gear", carb = "carb", spare_tire = "spare_tire")

Value

Dataframe containing subset info

drop_na_column_names Drop NA column names

Description

Deletes columns whose name is NA or whose name is empty

Usage

drop_na_column_names(x)

Arguments

x dataframe

Value

dataframe without columns that are NA

duplicates_in_column 21

duplicates_in_column Duplicates in column

Description

Searches for duplicates in a data frame column.

Usage

duplicates_in_column(df, col)

Arguments

df Data frame.

col Column name.

Value

Rows containing duplicated values.

See Also

Other tests: check_double_columns(), check_no_duplicates_in_group(), check_numeric_or_integer_type(),
check_posixct_type(), test_all_equal()

Examples

duplicates_in_column(mtcars, "mpg")

find_common_columns Find Common Columns Between Data Frames

Description

This function identifies common column names between multiple data frames. It takes a variable
number of data frames as input and returns a character vector containing the common column
names.

Usage

find_common_columns(...)

Arguments

... A variable length list of data frames.

22 find_maximum_value

Value

A character vector of column names found in common between all data frames.

Examples

df1 <- data.frame(a = c(1, 2, 3), b = c(4, 5, 6))
df2 <- data.frame(a = c(7, 8, 9), b = c(10, 11, 12), c = c(13, 14, 15))
common_columns <- find_common_columns(df1, df2)
print(common_columns)

find_maximum_value Find the maximum numeric value in a vector, ignoring non-numeric
values

Description

Find the maximum numeric value in a vector, ignoring non-numeric values

Usage

find_maximum_value(numeric_vector)

Arguments

numeric_vector A vector from which to find the maximum numeric value.

Value

The maximum numeric value in the input vector, or NA if none exist.

Examples

Find the maximum of a numeric vector
find_maximum_value(c(3, 1, 4, 1, 5, 9)) # Returns 9

Find the maximum of a mixed vector with non-numeric values
find_maximum_value(c(3, 1, 4, "two", 5, 9)) # Returns 9

Attempt to find the maximum of a vector with only non-numeric values
find_maximum_value(c("one", "two", "three")) # Returns NA

find_minimum_value 23

find_minimum_value Find the minimum numeric value in a vector, ignoring non-numeric
values

Description

Find the minimum numeric value in a vector, ignoring non-numeric values

Usage

find_minimum_value(numeric_vector)

Arguments

numeric_vector A vector from which to find the minimum numeric value.

Value

The minimum numeric value in the input vector, or NA if none exist.

Examples

Find the minimum of a numeric vector
find_minimum_value(c(3, 1, 4, 1, 5, 9)) # Returns 1

Find the minimum of a mixed vector with non-numeric values
find_minimum_value(c(3, 1, 4, "two", 5, 9)) # Returns 1

Attempt to find the minimum of a vector with only non-numeric values
find_minimum_value(c("one", "two", "three")) # Returns NA

find_pattern_r Find pattern in R scripts

Description

Function to search for a pattern in R scripts.

Usage

find_pattern_r(pattern, path = ".", case.sensitive = TRUE, comments = FALSE)

Arguments

pattern Pattern to search
path Directory to search in
case.sensitive Whether pattern is case sensitive or not
comments whether to search in commented lines

24 get_first_element_class

Value

Dataframe containing R script paths

get_distribution_statistics

Compute distribution statistics for a numeric vector

Description

This function computes summary statistics such as quartiles, mean, and standard deviation for a
numeric vector.

Usage

get_distribution_statistics(data_vector)

Arguments

data_vector A numeric vector for which to compute summary statistics.

Value

A character string describing the summary statistics of the input vector.

Examples

Compute summary statistics for a numeric vector
data_vector <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
get_distribution_statistics(data_vector)

get_first_element_class

Retrieve the class of the first element of a vector

Description

Retrieve the class of the first element of a vector

Usage

get_first_element_class(input_vector)

Arguments

input_vector A vector whose first element’s class is to be retrieved.

get_values 25

Value

The class of the first element of the input vector.

Examples

Get the class of the first element in a numeric vector
get_first_element_class(c(1, 2, 3)) # Returns "numeric"

Get the class of the first element in a character vector
get_first_element_class(c("apple", "banana", "cherry")) # Returns "character"

get_values Get values of column

Description

A function to determine what kind of values are present in columns.

Usage

get_values(df, column)

Arguments

df The dataframe

column Column to get values from.

Value

The class of the column values

Examples

get_values(mtcars, "mpg")

26 identify_outliers

identify_join_pairs Identify Possible Join Pairs Between Data Frames

Description

This function identifies potential join pairs between two data frames based on the overlap between
the distinct values in their columns. It returns a data frame showing the possible join pairs.

Usage

identify_join_pairs(..., similarity_cutoff = 0.2)

Arguments

... A list of two data frames.
similarity_cutoff

The minimal percentage of overlap between the distinct values in the columns.

Value

A data frame showing candidate join pairs.

Examples

identify_join_pairs(iris, iris3)

identify_outliers Identify Outliers in a Data Frame Column

Description

This function identifies outliers in a specified column of a data frame. It returns a tibble containing
the unique values, tally, and whether it is an outlier or not.

Usage

identify_outliers(df, var)

Arguments

df The data frame.

var The column to check for outliers.

Value

A tibble containing the unique values, tally, and whether each value is an outlier or not.

is_unique_column 27

Examples

df <- data.frame(a = c(1, 2, 3, 100, 101), b = c(4, 5, 6, 7, 8), c = c(7, 8, 9, 100, 101))
outliers <- identify_outliers(df, "a")
print(outliers)

is_unique_column Check if a column in a dataframe has unique values

Description

Check if a column in a dataframe has unique values

Usage

is_unique_column(column_name, data_frame)

Arguments

column_name The name of the column to check for uniqueness.

data_frame A dataframe containing the column to check.

Value

TRUE if the column has unique values, FALSE otherwise.

Examples

Create a dataframe with a unique ID column
data_frame <- tibble::tibble(

id = c(1, 2, 3, 4, 5),
value = c("a", "b", "c", "d", "e")

)
is_unique_column("id", data_frame) # Returns TRUE

Create a dataframe with duplicate values in the ID column
data_frame <- tibble::tibble(

id = c(1, 2, 3, 4, 5, 1),
value = c("a", "b", "c", "d", "e", "a")

)
is_unique_column("id", data_frame) # Returns FALSE

28 regex_content_parameter

md_complete_cases MD complete cases

Description

Print the complete cases of the data.

Usage

md_complete_cases(data, digits = 1)

Arguments

data The data frame.

digits Default: 1. number of digits for rounding.

Value

Message with the number of rows, number of rows with missing values and the percentage of
complete rows.

Examples

example code
md_complete_cases(iris)

iris$Sepal.Length[5] <- NA_character_
md_complete_cases(iris)

regex_content_parameter

Construct Regex for Matching Function Parameter Content

Description

This function constructs a regex pattern for matching the content of a parameter in a function. It
uses the base::paste0 function to construct the regex pattern.

Usage

regex_content_parameter(parameter)

Arguments

parameter The parameter whose value is to be searched in a function.

regex_time 29

Value

A regex pattern as a character string.

Examples

Create a parameter name
parameter <- "my_parameter"
Construct a regex pattern for matching the content of the parameter
pattern <- regex_content_parameter(parameter)

regex_time Generate regular expression of a time.

Description

This function generates a regular expression for time based on the input format.

Usage

regex_time(format = "hh:mm")

Arguments

format The format of the time. Possible values are:

• "hh:mm": to generate "09:05".
• "h:m": to generate "9:5".
• "hh:mm:ss": to generate "09:05:00".
• "h:m:s": to generate "9:5:0".
• "hh:mm:ss AM/PM": to generate "09:05:00 AM".
• "h:m:s AM/PM": to generate "9:5:0 AM".

Value

A regular expression.

Examples

regex_time("hh:mm")
regex_time("h:m")
regex_time("hh:mm:ss")
regex_time("h:m:s")
regex_time("hh:mm:ss AM/PM")
regex_time("h:m:s AM/PM")

30 regex_year_date

regex_year_date Generate regular expression of a year date.

Description

This function generates a regular expression for year date based on the input format.

Usage

regex_year_date(format = "yyyy")

Arguments

format The format of the year date. Possible values are:

• "yyyy": to generate "2023".
• "yyyy-MM-dd": to generate "2023-09-29".
• "yyyy/MM/dd": to generate "2023/09/29".
• "yyyy.MM.dd": to generate "2023.09.29".
• "yyyy-M-d": to generate "2023-9-29".
• "yyyy/M/d": to generate "2023/9/29".
• "yyyy.M.d": to generate "2023.9.29".
• "yyyy-MM-dd HH:mm:ss": to generate "2023-09-29 12:34:56".
• "yyyy/MM/dd HH:mm:ss": to generate "2023/09/29 12:34:56".
• "yyyy-MM-dd HH:mm": to generate "2023-09-29 12:34".
• "yyyy/MM/dd HH:mm": to generate "2023/09/29 12:34".

Value

A regular expression.

Examples

regex_year_date("yyyy")
regex_year_date("yyyy-MM-dd")
regex_year_date("yyyy/MM/dd")
regex_year_date("yyyy.MM.dd")
regex_year_date("yyyy-M-d")
regex_year_date("yyyy/M/d")
regex_year_date("yyyy.M.d")
regex_year_date("yyyy-MM-dd HH:mm:ss")
regex_year_date("yyyy/MM/dd HH:mm:ss")
regex_year_date("yyyy-MM-dd HH:mm")
regex_year_date("yyyy/MM/dd HH:mm")

remove_duplicates_and_na 31

remove_duplicates_and_na

Remove Duplicates and NA Values from Input

Description

This function removes duplicate values and NA values from the input. It first removes NA values
from the input using the na.omit function from the stats package. Then it removes duplicate
values from the result using the unique function.

Usage

remove_duplicates_and_na(input)

Arguments

input A vector or data frame.

Value

A vector or data frame with duplicate values and NA values removed.

Examples

Create a vector with duplicate values and NA values
input <- c(1, 2, NA, 2, NA, 3, 4, 4, NA, 5)
Remove duplicate values and NA values
output <- remove_duplicates_and_na(input)
print(output)

retrieve_functions_and_packages

Retrieve functions and packages

Description

Retrieves functions and their corresponding packages used in a given script.

Usage

retrieve_functions_and_packages(path)

Arguments

path The complete path of the script.

32 retrieve_package_usage

Value

Used_functions

retrieve_function_calls

retrieve_function_calls

Description

retrieve_function_calls

Usage

retrieve_function_calls(script_name)

Arguments

script_name The script to search functions in

Value

dataframe

retrieve_package_usage

Retrieve packages that are loaded in a script

Description

Retrieve packages that are loaded in a script

Usage

retrieve_package_usage(script_name)

Arguments

script_name The path to the R script

Value

dataframe

retrieve_sourced_scripts 33

retrieve_sourced_scripts

retrieve_sourced_scripts

Description

retrieve_sourced_scripts

Usage

retrieve_sourced_scripts(script_name)

Arguments

script_name The main script to search

Value

dataframe

retrieve_string_assignments

retrieve_string_assignments

Description

retrieve_string_assignments

Usage

retrieve_string_assignments(script_name)

Arguments

script_name The script to search objects in

Value

dataframe

34 return_assertions_message

return_assertions_message

Return Assertion Messages

Description

This function returns a message indicating whether an assertion test has passed or failed. An "as-
sertion collection" from the checkmate package must be provided. The message can be returned as
an error or a warning. For some assertions, only warnings are allowed, as an error would stop the
script from running. This is done for the following assertions: percentage missing values, dupli-
cates, subset, and set_equal.

Usage

return_assertions_message(
collection,
collection_name,
fail = "stop",
silent = FALSE,
output_map = NULL

)

Arguments

collection An object with the class "AssertCollection".

collection_name

The name of the collection. This name is mentioned in the messages.

fail "stop" or "warning". If the assertions fail, an error is returned and the script
output is stopped. If "warning", only a warning is returned.

silent If FALSE (default), the success message is printed in the console. If TRUE, it is
not shown.

output_map A map, like 1. Read data, where the file is stored.

Value

The message indicating whether the assertion test has passed or failed.

return_mtcars_testfile 35

return_mtcars_testfile

Read and return the mtcars testfile

Description

Gets the modified rds dataset for testing assertions.

Usage

return_mtcars_testfile()

Value

returns mtcars_test dataframe

run_all_assertions Run All Data Validation Assertions

Description

This function performs multiple validation checks on a dataset using various assertion functions. It
loads metadata from specified CSV files, validates the dataset against expected field properties, and
stops execution if any warnings are encountered.

Usage

run_all_assertions(new_data, output_dir)

Arguments

new_data A data frame. The dataset to validate.

output_dir A character string. The directory containing metadata CSV files (field_info.csv,
numeric_details.csv, data_types.csv).

Value

No return value. The function stops execution and displays warnings if any validation checks fail.

36 test_all_equal

str_detect_in_file Detect string in file

Description

Detect string in file

Usage

str_detect_in_file(file, pattern, only_comments = FALSE, collapse = FALSE)

Arguments

file Path to file.

pattern Pattern to match.

only_comments default FALSE. Whether to only search in commented lines.

collapse default: FALSE: search file line by line. If true, then pattern is search in the en-
tire file at once after collapsing. (only_comments does not work when collapse
is set to TRUE)

Value

Boolean whether pattern exists in file.

test_all_equal Test all equal

Description

Test whether all values in a vector are equal.

Usage

test_all_equal(x, na.rm = FALSE)

Arguments

x Vector to test.

na.rm default: FALSE. exclude NAs from the test.

Value

Boolean result of the test

unique_id 37

See Also

Other tests: check_double_columns(), check_no_duplicates_in_group(), check_numeric_or_integer_type(),
check_posixct_type(), duplicates_in_column()

Examples

test_all_equal(c(5, 5, 5))

test_all_equal(c(5, 6, 3))

unique_id unique id

Description

Check if parsed variable is a unique identifier. This function was adapted from: Source: https://edwinth.github.io/blog/unique_id/

Usage

unique_id(x, ...)

Arguments

x vector or dataframe.

... optional variables, e.g. name of column or a vector of names.

Value

Boolean whether variable is a unique identifier.

Examples

unique_id(iris, Species)

mtcars$name <- rownames(mtcars)
unique_id(mtcars, name)

Index

∗ assertions
check_no_duplicates_in_group, 12
check_numeric_or_integer_type, 13
check_posixct_type, 14

∗ tests
check_double_columns, 9
check_no_duplicates_in_group, 12
check_numeric_or_integer_type, 13
check_posixct_type, 14
duplicates_in_column, 21
test_all_equal, 36

∗ vector calculations
count_more_than_1, 16

assert_date_named, 3
assert_field_consistency, 4
assert_field_distinctness, 4
assert_field_existence, 5
assert_logical_named, 6
assert_missing_values, 6
assert_no_duplicates_in_group, 7
assert_range_validation, 8
assert_type_consistency, 8
assertion_message, 3

calculate_category_percentages, 9
check_double_columns, 9, 12, 14, 15, 21, 37
check_duplicates, 10
check_na_columns, 11
check_no_duplicate_rows, 13
check_no_duplicates_in_group, 10, 12, 14,

15, 21, 37
check_non_zero_rows, 11
check_numeric_or_integer_type, 10, 12,

13, 15, 21, 37
check_posixct_type, 10, 12, 14, 14, 21, 37
check_rows, 15
check_zero_columns, 16
count_more_than_1, 16
create_categorical_details, 17

create_data_types, 18
create_dataset_summary_table, 17
create_field_info, 18
create_numeric_details, 19
create_subset_fields, 20

drop_na_column_names, 20
duplicates_in_column, 10, 12, 14, 15, 21, 37

find_common_columns, 21
find_maximum_value, 22
find_minimum_value, 23
find_pattern_r, 23

get_distribution_statistics, 24
get_first_element_class, 24
get_values, 25

identify_join_pairs, 26
identify_outliers, 26
is_unique_column, 27

md_complete_cases, 28

regex_content_parameter, 28
regex_time, 29
regex_year_date, 30
remove_duplicates_and_na, 31
retrieve_function_calls, 32
retrieve_functions_and_packages, 31
retrieve_package_usage, 32
retrieve_sourced_scripts, 33
retrieve_string_assignments, 33
return_assertions_message, 34
return_mtcars_testfile, 35
run_all_assertions, 35

str_detect_in_file, 36

test_all_equal, 10, 12, 14, 15, 21, 36

unique_id, 37

38

	assertion_message
	assert_date_named
	assert_field_consistency
	assert_field_distinctness
	assert_field_existence
	assert_logical_named
	assert_missing_values
	assert_no_duplicates_in_group
	assert_range_validation
	assert_type_consistency
	calculate_category_percentages
	check_double_columns
	check_duplicates
	check_na_columns
	check_non_zero_rows
	check_no_duplicates_in_group
	check_no_duplicate_rows
	check_numeric_or_integer_type
	check_posixct_type
	check_rows
	check_zero_columns
	count_more_than_1
	create_categorical_details
	create_dataset_summary_table
	create_data_types
	create_field_info
	create_numeric_details
	create_subset_fields
	drop_na_column_names
	duplicates_in_column
	find_common_columns
	find_maximum_value
	find_minimum_value
	find_pattern_r
	get_distribution_statistics
	get_first_element_class
	get_values
	identify_join_pairs
	identify_outliers
	is_unique_column
	md_complete_cases
	regex_content_parameter
	regex_time
	regex_year_date
	remove_duplicates_and_na
	retrieve_functions_and_packages
	retrieve_function_calls
	retrieve_package_usage
	retrieve_sourced_scripts
	retrieve_string_assignments
	return_assertions_message
	return_mtcars_testfile
	run_all_assertions
	str_detect_in_file
	test_all_equal
	unique_id
	Index

