Package ‘vroom’

January 27, 2026

Title Read and Write Rectangular Text Data Quickly
Version 1.7.0

Description The goal of 'vroom' is to read and write data (like 'csv',
'tsv' and 'fwf’) quickly. When reading it uses a quick initial
indexing step, then reads the values lazily , so only the data you
actually use needs to be read. The writer formats the data in
parallel and writes to disk asynchronously from formatting.

License MIT + file LICENSE
URL https://vroom.tidyverse.org, https://github.com/tidyverse/vroom

BugReports https://github.com/tidyverse/vroom/issues
Depends R (>=4.1)

Imports bit64, cli (>= 3.2.0), crayon, glue, hms, lifecycle (>=
1.0.3), methods, rlang (>= 1.1.0), stats, tibble (>= 2.0.0),
tidyselect, tzdb (>= 0.1.1), vctrs (>= 0.2.0), withr

Suggests archive, bench (>= 1.1.0), covr, curl, dplyr, forcats, fs,
ggplot2, knitr, patchwork, prettyunits, purrr, rmarkdown,
rstudioapi, scales, spelling, testthat (>= 2.1.0), tidyr,
utils, waldo, xml2

LinkingTo cppll (>=0.2.0), progress (>= 1.2.3), tzdb (>=0.1.1)
VignetteBuilder knitr

Config/Needs/website nycflights13, tidyverse/tidytemplate
Config/testthat/edition 3

Config/testthat/parallel false
Config/usethis/last-upkeep 2025-11-25

Copyright file COPYRIGHTS

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Config/build/compilation-database true

https://vroom.tidyverse.org
https://github.com/tidyverse/vroom
https://github.com/tidyverse/vroom/issues

cols

NeedsCompilation yes

Author Jim Hester [aut] (ORCID: <https://orcid.org/0000-0002-2739-7082>),
Hadley Wickham [aut] (ORCID: <https://orcid.org/0000-0003-4757-117X>),
Jennifer Bryan [aut, cre] (ORCID:

<https://orcid.org/0000-0002-6983-2759>),
Shelby Bearrows [ctb],
https://github.com/mandreyel/ [cph] (mio library),
Jukka Jyldnki [cph] (grisu3 implementation),
Mikkel Jgrgensen [cph] (grisu3 implementation),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/@3wc8by49>)

Maintainer Jennifer Bryan <jenny@posit.co>
Repository CRAN
Date/Publication 2026-01-27 11:40:02 UTC

Contents
COIS . . e e e e 2
cols_condense e e 6
date_ names e e e 6
GENETALOTS . .« . v v v v v e 7
gen_tbl . . Lo 9
GUESS_LYPE « v v v v e 10
locale e e 11
problems 12
VIOOIML & & v v v v v e e e e e e e e e e e e e e e e e e 13
vroom_altrep e e 17
VIOOM_eXample o e e e e e e e 18
vroom_format e e 19
vroom_fwif . . L L e e e 20
vroom_lINeS e e 24
VIOOM_PIOZIESS « . o v v v e e e e e v e e e e e e e e e e e e e 26
172 1070758 T & 26
VIOOIM__WIILE o o o o e e e e e e e e 27
vroom_write_lINES e e e e e e e 28

Index 30

cols Create column specification
Description

cols() includes all columns in the input data, guessing the column types as the default. cols_only()
includes only the columns you explicitly specify, skipping the rest.

https://orcid.org/0000-0002-2739-7082
https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-6983-2759
https://ror.org/03wc8by49

cols

Usage

cols(..., .default = col_guess(), .delim = NULL)

cols_only(...)

col_logical(...)

col_integer(...)

col_big_integer(...)

col_double(...)
col_character(.
col_skip(...)

col_number(...)

col_guess(...)

)

col_factor(levels = NULL, ordered = FALSE, include_na = FALSE, ...)

col_datetime(format = "", ...)

col_date(format

col_time(format

Arguments

.default
.delim
levels
ordered
include_na

format

— nn)
- y e
— nn)
- y ...

Either column objects created by col_=* (), or their abbreviated character names
(as described in the col_types argument of vroom()). If you’re only overriding
a few columns, it’s best to refer to columns by name. If not named, the column
types must match the column names exactly. In col_x() functions these are
stored in the object.

Any named columns not explicitly overridden in . . . will be read with this col-
umn type.

The delimiter to use when parsing. If the delim argument used in the call to
vroom() it takes precedence over the one specified in col_types.

Character vector of the allowed levels. When levels =NULL (the default),
levels are discovered from the unique values of the data, in the order in which
they are encountered.

Is it an ordered factor?

If TRUE and the data contains at least one NA, then NA is included in the levels of
the constructed factor.

A format specification. If setto "":

Details

cols

e col_datetime() expects ISO8601 datetimes. Here are some examples of
input that should just work: "2024-01-15", "2024-01-15 14:30:00", "2024-

01-15T14:30:00Z".

e col_date() uses the date_format from locale() (default "%AD"). These
inputs should just work: "2024-01-15", "01/15/2024".

e col_time() uses the time_format from locale() (default "%AT"). These
inputs should just work: "14:30:00", "2:30:00 PM".

Unlike strptime(), the format specification must match the complete string.

For more details, see below.

The available specifications are: (long names in quotes and string abbreviations in brackets)

function long name short name
col_logical () "logical" ne
col_integer() "integer" "
col_big_integer() "big_integer" "
col_double() "double", "numeric" nd"
col_character() "character" st
col_factor(levels, ordered) "factor" g
col_date(format ="") "date" "D
col_time(format="") "time" g
col_datetime(format = "") "datetime", "POSIXct" "T"
col_number() "number" "
col_skip() "skip”, "NULL" "
col_guess() "guess", "NA" nou

Date, time, and datetime formats::

non

description

Logical values containing only T, F, TRUE or FALSI
Integer numbers.

Big Integers (64bit), requires the bit64 package.
64-bit double floating point numbers.

Character string data.

A fixed set of values.

Calendar dates formatted with the locale’s date_f
Times formatted with the locale’s time_format.
ISO8601 date times.

Human readable numbers containing the groupin,
Skip and don’t import this column.

Parse using the "best" guessed type based on the i1

vroom uses a format specification similar to strptime (). There are three types of element:

1. A conversion specification that is "%" followed by a letter. For example "%Y" matches a 4
digit year, "%m", matches a 2 digit month and "%d" matches a 2 digit day. Month and day
default to 1, (i.e. Jan Ist) if not present, for example if only a year is given.

2. Whitespace is any sequence of zero or more whitespace characters.

3.

Any other character is matched exactly.

vroom’s datetime col_x() functions recognize the following specifications:
Year: "%Y" (4 digits). "%y" (2 digits); 00-69 -> 2000-2069, 70-99 -> 1970-1999.
Month: "%m" (2 digits), "%b" (abbreviated name in current locale), "%B" (full name in

current locale).

Day: "%d" (2 digits), "%e" (optional leading space), "%a" (abbreviated name in current

locale).

Hour: "%H" or "%I" or "%h", use I (and not H) with AM/PM, use h (and not H) if your times

represent durations longer than one day.
Minutes: "%M"

Seconds: "%S" (integer seconds), "%OS" (partial seconds)

cols 5

e Time zone: "%Z" (as name, e.g. "America/Chicago"), "%z" (as offset from UTC, e.g.
"+0800")

* AM/PM indicator: "%p".

* Non-digits: "%." skips one non-digit character, "%+" skips one or more non-digit characters,
"%*" skips any number of non-digits characters.

* Automatic parsers: "%AD" parses with a flexible YMD parser, "%AT" parses with a flexible
HMS parser.

* Shortcuts: "%D" = "%m/%d/%y", "%F" = "%Y-%m-%d", "%R" = "%H:%M", "%T" =
"%H:%M:%S", "%x" = "%y/%m/%d".

1ISO8601 support:
Currently, vroom does not support all of ISO8601. Missing features:

* Week & weekday specifications, e.g. "2013-W05", "2013-W05-10".
* Ordinal dates, e.g. "2013-095".
» Using commas instead of a period for decimal separator.
The parser is also a little laxer than ISO8601:
* Dates and times can be separated with a space, not just T.
* Mostly correct specifications like "2009-05-19 14:" and "200912-01" work.

Examples

cols(a = col_integer())
cols_only(a = col_integer())

You can also use the standard abbreviations
cols(a = "i")
cols(a = Nill’ b = lldll’ C = II_H)

Or long names (like utils::read.csv)
cols(a = "integer"”, b = "double"”, c = "skip")

You can also use multiple sets of column definitions by combining
them like so:

t1 <- cols(
column_one = col_integer(),
column_two = col_number())

t2 <- cols(
column_three = col_character())

t3 <- t1
t3%$cols <- c(t1$cols, t2%$cols)
t3

6 date_names

cols_condense Examine the column specifications for a data frame

Description

cols_condense() takes a spec object and condenses its definition by setting the default column
type to the most frequent type and only listing columns with a different type.

spec() extracts the full column specification from a tibble created by vroom.
Usage

cols_condense(x)
spec(x)

Arguments

X The data frame object to extract from

Value

A col_spec object.

Examples

df <- vroom(vroom_example("mtcars.csv"))
s <- spec(df)
s

cols_condense(s)

date_names Create or retrieve date names

Description

When parsing dates, you often need to know how weekdays of the week and months are represented
as text. This pair of functions allows you to either create your own, or retrieve from a standard list.
The standard list is derived from ICU (https://site.icu-project.org) via the stringi package.

Usage

date_names(mon, mon_ab = mon, day, day_ab = day, am_pm = c("AM", "PM"))
date_names_lang(language, call = caller_env())

date_names_langs()

generators

Arguments

mon, mon_ab
day, day_ab
am_pm

language

call

Examples

Full and abbreviated month names.
Full and abbreviated week day names. Starts with Sunday.
Names used for AM and PM.

A BCP 47 locale, made up of a language and a region, e.g. "en_US" for Ameri-
can English. See date_names_langs() for a complete list of available locales.

The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

date_names_lang("en")
date_names_lang("ko")
date_names_lang("fr")

generators

Generate individual vectors of the types supported by vroom

Description

Generate individual vectors of the types supported by vroom

Usage
gen_character(n, min = 5, max = 25, values = c(letters, LETTERS, 0:9), ...)
gen_double(n, f = stats::rnorm, ...)
gen_number(n, f = stats::rnorm, ...)
gen_integer(n, min = 1L, max = .Machine$integer.max, prob = NULL, ...)

gen_factor(
n)
levels = NULL

’

ordered = FALSE,

num_levels =
)
gen_time(n, min
gen_date(n, min

gen_datetime(

gen_integer (1L, 1L, 25L),

@, max = hms::hms(days = 1), fractional = FALSE, ...)

= as.Date("2001-01-01"), max = as.Date("2021-01-01"), ...)

n’
min

max
tz = "UTC",

gen_logical(n,

gen_name(n)

Arguments

n
min
max

values

.F
prob

levels
ordered
num_levels
fractional
tz

Examples

characters
gen_character(4)

factors
gen_factor(4)

logical
gen_logical(4)

numbers
gen_double(4)
gen_integer(4)

temporal data
gen_time(4)
gen_date(4)
gen_datetime(4)

generators

as.POSIXct("2001-01-01"),
as.POSIXct("2021-01-01"),

The size of the vector to generate

The minimum range for the vector

The maximum range for the vector

The explicit values to use.

Additional arguments passed to internal generation functions
The random function to use.

a vector of probability weights for obtaining the elements of the vector being
sampled.

The explicit levels to use, if NULL random levels are generated using gen_name ().
Should the factors be ordered factors?

The number of factor levels to generate

Whether to generate times with fractional seconds

The timezone to use for dates

gen_tbl 9

gen_tbl Generate a random tibble

Description

This is useful for benchmarking, but also for bug reports when you cannot share the real dataset.

Usage

gen_tbl(
rows,
cols = NULL,
col_types = NULL,
locale = default_locale(),
missing = @

)
Arguments
rows Number of rows to generate
cols Number of columns to generate, if NULL this is derived from col_types.
col_types One of NULL, a cols() specification, or a string.

If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

* ¢ = character

* i=integer

* I =Dbig integer

* n = number

e d =double

* 1 =logical

» f=factor

* D =date

e T = date time
e t=time

e ? =guess

e _or-=skip

10 guess_type

By default, reading a file without a column specification will print a message
showing the guessed types. To suppress this message, set show_col_types =
FALSE.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

missing The percentage (from O to 1) of missing data to use

Details

There is also a family of functions to generate individual vectors of each type.

See Also

generators to generate individual vectors.

Examples

random 10 x 5 table with random column types
rand_tbl <- gen_tb1(10, 5)
rand_tbl

all double 25 x 4 table
dbl_tbl <- gen_tbl(25, 4, col_types = "dddd")
dbl_tbl

Use the dots in long form column types to change the random function and options
types <- rep(times = 4, list(col_double(f = stats::runif, min = -10, max = 25)))

types
dbl_tbl2 <- gen_tbl(25, 4, col_types = types)
dbl_tbl2
guess_type Guess the type of a vector
Description

Guess the type of a vector

Usage
guess_type(
X)
na = C(””, HNA"),

locale = default_locale(),
guess_integer = FALSE

locale

Arguments

X

na

locale

guess_integer

Examples

11

Character vector of values to parse.

Character vector of strings to interpret as missing values. Set this option to
character () to indicate no missing values.

The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

If TRUE, guess integer types for whole numbers, if FALSE guess numeric type for
all numbers.

Logical vectors
guess_type(c("FALSE", "TRUE", "F", "T"))
Integers and doubles
guess_type(c("1","2","3"))
guess_type(c(”1.6","2.6","3.4"))

Numbers containing grouping mark
guess_type("”1,234,566")

ISO 8601 date times
guess_type(c("2010-10-10"))
guess_type(c(”2010-10-10 01:02:03"))
guess_type(c("01:02:03 AM"))

locale

Create locales

Description

A locale object tries to capture all the defaults that can vary between countries. You set the locale
in once, and the details are automatically passed on down to the columns parsers. The defaults have
been chosen to match R (i.e. US English) as closely as possible. See vignette(”locales”) for

more details.

Usage

locale(
date_names

n n

en”,

date_format = "%AD",
time_format = "%AT",

non

decimal_mark = ".",

non

grouping_mark = ")",

tz = "UTC”,

encoding = "UTF-8"

default_locale()

12 problems

Arguments

date_names Character representations of day and month names. Either the language code as
string (passed on to date_names_lang()) or an object created by date_names ().
date_format, time_format
Default date and time formats.
decimal_mark, grouping_mark
Symbols used to indicate the decimal place, and to chunk larger numbers. Dec-
imal mark can only be , or ..

tz Default tz. This is used both for input (if the time zone isn’t present in indi-
vidual strings), and for output (to control the default display). The default is
to use "UTC", a time zone that does not use daylight savings time (DST) and
hence is typically most useful for data. The absence of time zones makes it
approximately 50x faster to generate UTC times than any other time zone.
Use "" to use the system default time zone, but beware that this will not be
reproducible across systems.
For a complete list of possible time zones, see O1lsonNames (). Americans, note
that "EST" is a Canadian time zone that does not have DST. It is not Eastern
Standard Time. It’s better to use "US/Eastern”, "US/Central" etc.

encoding Default encoding.

Examples

locale()
locale("fr")

South American locale

locale("es"”, decimal_mark = ",")
problems Retrieve parsing problems
Description

vroom will only fail to parse a file if the file is invalid in a way that is unrecoverable. However there
are a number of non-fatal problems that you might want to know about. You can retrieve a data
frame of these problems with this function.

Usage
problems(x = .Last.value, lazy = FALSE)

Arguments
X A data frame from vroom: : vroom().
lazy If TRUE, just the problems found so far are returned. If FALSE (the default) the

lazy data is first read completely and all problems are returned.

vroom

Value

A data frame with one row for each problem and four columns:

row,col - Row and column number that caused the problem, referencing the original input

expected - What vroom expected to find

actual - What it actually found

file - The file with the problem

13

vroom Read a delimited file into a tibble

Description

Read a delimited file into a tibble

Usage

vroom(
file,
delim = NULL,
col_names = TRUE,
col_types = NULL,
col_select = NULL,
id = NULL,
skip = 0,
n_max = Inf,
na = c("", "NA"),
quote = "\"",
comment = "",
skip_empty_rows = TRUE,
trim_ws = TRUE,
escape_double = TRUE,
escape_backslash = FALSE,
locale = default_locale(),
guess_max = 100,
altrep = TRUE,
num_threads = vroom_threads(),
progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique”

)

14

Arguments

file

delim

col_names

col_types

vroom

Either a path to a file, a connection, or literal data (either a single string or a raw
vector). file can also be a character vector containing multiple filepaths or a
list containing multiple connections.

Files ending in .gz, .bz2, .xz, or .zip will be automatically decompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automat-
ically downloaded. Remote compressed files (.gz, .bz2, .xz, .zip) will be
automatically downloaded and decompressed.

Literal data is most useful for examples and tests. To be recognised as literal
data, wrap the input with I().

One or more characters used to delimit fields within a file. If NULL the delimiter
is guessed from the set of c(”,”, "\t", " ", "|", ":", ";").

Either TRUE, FALSE or a character vector of column names.

If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.

If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.

Missing (NA) column names will generate a warning, and be filled in with dummy
names .. .1, ...2 etc. Duplicate column names will generate a warning and be
made unique, see name_repair to control how this is done.

One of NULL, a cols() specification, or a string.

If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

* ¢ = character

* i=integer

* I =big integer

* n = number

e d =double

* I =logical

e f=factor

* D =date

e T = date time
* t=time

e ? =guess

e _or-=skip

vroom

col_select

id

skip

n_max

na

quote

comment

skip_empty_rows

trim_ws

escape_double

15

By default, reading a file without a column specification will print a message
showing the guessed types. To suppress this message, set show_col_types =
FALSE.

Columns to include in the results. You can use the same mini-language as
dplyr::select() to refer to the columns by name. Use c() to use more than
one selection expression. Although this usage is less common, col_select also
accepts a numeric column index. See ?tidyselect: :language for full details
on the selection language.

Either a string or ’'NULL’. If a string, the output will contain a column with that
name with the filename(s) as the value, i.e. this column effectively tells you the
source of each row. If 'NULL’ (the default), no such column will be created.

Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.

Maximum number of lines to read.

Character vector of strings to interpret as missing values. Set this option to
character () to indicate no missing values.

Single character used to quote strings.

A string used to identify comments. Any text after the comment characters will
be silently ignored.

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?

Does the file escape quotes by doubling them? i.e. If this option is TRUE, the
value "

EXIR)

represents a single quote, *"’.

escape_backslash

locale

guess_max

altrep

num_threads

progress

Does the file use backslashes to escape special characters? This is more gen-
eral than escape_double as backslashes can be used to escape the delimiter
character, the quote character, or to add special characters like \\n.

The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

Maximum number of lines to use for guessing column types. See vignette(”column-types”,

package = "readr") for more details.

Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.

Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

Display a progress bar? By default it will only display in an interactive ses-
sion and not while executing in an RStudio notebook chunk. The display of the

16 vroom

progress bar can be disabled by setting the environment variable VROOM_SHOW_PROGRESS
to "false”.

show_col_types Control showing the column specifications. If TRUE column specifications are
always shown, if FALSE they are never shown. If NULL (the default), they are
shown only if an explicit specification is not given in col_types, i.e. if the
types have been guessed.

.name_repair Handling of column names. The default behaviour is to ensure column names
are "unique”. Various repair strategies are supported:
* "minimal”: No name repair or checks, beyond basic existence of names.
e "unique” (default value): Make sure names are unique and not empty.
* "check_unique"”: No name repair, but check they are unique.
e "unique_quiet": Repair with the unique strategy, quietly.
e "universal”: Make the names unique and syntactic.
e "universal_quiet": Repair with the universal strategy, quietly.

* A function: Apply custom name repair (e.g., name_repair = make.names
for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function().

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

Examples

get path to example file
input_file <- vroom_example("mtcars.csv")
input_file

Read from a path

Input sources —-——-———---------- - -
Read from a path

vroom(input_file)

You can also use paths directly

vroom("mtcars.csv")

Not run:
Including remote paths
vroom("https://github.com/tidyverse/vroom/raw/main/inst/extdata/mtcars.csv")

End(Not run)

Or directly from a string with “I()"
vroom(I("x,y\n1,2\n3,4\n"))

Column selection -------------————-----————mmm
Pass column names or indexes directly to select them

vroom(input_file, col_select = c(model, cyl, gear))

vroom(input_file, col_select = c(1, 3, 11))

Or use the selection helpers

vroom_altrep 17

vroom(input_file, col_select = starts_with("d"))

You can also rename specific columns
vroom(input_file, col_select = c(car = model, everything()))

Column types ————=————————=———-— -
By default, vroom guesses the columns types, looking at 1000 rows

throughout the dataset.

You can specify them explicitly with a compact specification:
vroom(I("x,y\n1,2\n3,4\n"), col_types = "dc")

Or with a list of column types:
vroom(I("x,y\n1,2\n3,4\n"), col_types = list(col_double(), col_character()))

File types ——-———————— - - e
csv

vroom(I("a,b\n1.0,2.0\n"), delim = ",")

tsv

vroom(I("a\tb\n1.0\t2.0\n"))

Other delimiters

vroom(I("alb\n1.0|2.0\n"), delim = "|")

Read datasets across multiple files ----—------=—-———————-—-om
mtcars_by_cyl <- vroom_example(vroom_examples("mtcars-[468]"))
mtcars_by_cyl

Pass the filenames directly to vroom, they are efficiently combined
vroom(mtcars_by_cyl)

If you need to extract data from the filenames, use ~id” to request a
column that reveals the underlying file path

dat <- vroom(mtcars_by_cyl, id = "source")
dat$source <- basename(dat$source)
dat
vroom_altrep Show which column types are using Altrep
Description

vroom_altrep() can be used directly as input to the altrep argument of vroom().

Usage

vroom_altrep(which = NULL)

Arguments

which A character vector of column types to use Altrep for. Can also take TRUE or
FALSE to use Altrep for all possible or none of the types

18 vroom_example

Details

Alternatively there is also a family of environment variables to control use of the Altrep frame-
work. These can then be set in your .Renviron file, e.g. with usethis::edit_r_environ(). The
variables can take one of true, false, TRUE, FALSE, 1, or @.

* VROOM_USE_ALTREP_NUMERICS - If set use Altrep for all numeric types (default false).

There are also individual variables for each type. Currently only VROOM_USE_ALTREP_CHR defaults
to true.

* VROOM_USE_ALTREP_CHR

* VROOM_USE_ALTREP_FCT

* VROOM_USE_ALTREP_INT

* VROOM_USE_ALTREP_BIG_INT

* VROOM_USE_ALTREP_DBL

* VROOM_USE_ALTREP_NUM

* VROOM_USE_ALTREP_LGL

* VROOM_USE_ALTREP_DTTM

* VROOM_USE_ALTREP_DATE

* VROOM_USE_ALTREP_TIME

Examples

vroom_altrep()

vroom_altrep(c("chr”, "fct”, "int"))
vroom_altrep(TRUE)
vroom_altrep(FALSE)

vroom_example Get path to vroom examples

Description

vroom comes bundled with a number of sample files in its *inst/extdata’ directory. Use vroom_examples()
to list all the available examples and vroom_example() to retrieve the path to one example.

Usage

vroom_example(path)

vroom_examples(pattern = NULL)

Arguments
path Name of file.
pattern A regular expression of filenames to match. If NULL, all available files are re-

turned.

vroom_format 19

Examples

List all available examples
vroom_examples()

Get path to one example
vroom_example("mtcars.csv")

vroom_format Convert a data frame to a delimited string

Description

This is equivalent to vroom_write(), but instead of writing to disk, it returns a string. It is primarily
useful for examples and for testing.

Usage
vroom_format (
X y
delim = "\t",
eol = "\n",
na = ”NA“,
col_names = TRUE,
escape = c("double”, "backslash”, "none"),
quote = c("needed”, "all"”, "none"),
bom = FALSE,
num_threads = vroom_threads()
)
Arguments
X A data frame or tibble to write to disk.
delim Delimiter used to separate values. Defaults to \t to write tab separated value
(TSV) files.
eol The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.
na String used for missing values. Defaults to "NA’.
col_names If FALSE, column names will not be included at the top of the file. If TRUE, col-
umn names will be included. If not specified, col_names will take the opposite
value given to append.
escape The type of escape to use when quotes are in the data.

* double - quotes are escaped by doubling them.
* backslash - quotes are escaped by a preceding backslash.
* none - quotes are not escaped.

20 vroom_fwf

quote How to handle fields which contain characters that need to be quoted.
* needed - Values are only quoted if needed: if they contain a delimiter,
quote, or newline.
¢ all - Quote all fields.
* none - Never quote fields.
bom If TRUE add a UTF-8 BOM at the beginning of the file. This is recommended

when saving data for consumption by excel, as it will force excel to read the data
with the correct encoding (UTF-8)

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

vroom_fwf Read a fixed-width file into a tibble

Description

Fixed-width files store tabular data with each field occupying a specific range of character positions
in every line. Once the fields are identified, converting them to the appropriate R types works just
like for delimited files. The unique challenge with fixed-width files is describing where each field
begins and ends. vroom tries to ease this pain by offering a few different ways to specify the field
structure:

* fwf_empty() - Guesses based on the positions of empty columns. This is the default. (Note
that fwf_empty () returns 0-based positions, for internal use.)

* fwf_widths() - Supply the widths of the columns.

» fwf_positions() - Supply paired vectors of start and end positions. These are interpreted as
1-based positions, so are off-by-one compared to the output of fwf_empty().

* fwf_cols() - Supply named arguments of paired start and end positions or column widths.

Note: fwf_empty() cannot work with a connection or with any of the input types that involve a
connection internally, which includes remote and compressed files. The reason is that this would
necessitate reading from the connection twice. In these cases, you’ll have to either provide the field
structure explicitly with another fwf_x() function or download (and decompress, if relevant) the
file first.

Usage

vroom_fwf (
file,
col_positions = fwf_empty(file, skip, n = guess_max),
col_types = NULL,
col_select = NULL,
id = NULL,
locale = default_locale(),

vroom_fwf

21

na = C(HH, HNAM),

comment =

nn

skip_empty_rows = TRUE,
trim_ws = TRUE,

skip = 0,

n_max = Inf,

guess_max = 100,
altrep = TRUE,

num_threads

vroom_threads(),

progress = vroom_progress(),
show_col_types = NULL,
.name_repair = "unique”

)

fwf_empty(file, skip = @, col_names = NULL, comment = "", n = 100L)

fwf_widths(widths, col_names = NULL)

fwf_positions(start, end = NULL, col_names = NULL)

fwf_cols(...)

Arguments

file

col_positions

col_types

Either a path to a file, a connection, or literal data (either a single string or a raw
vector). file can also be a character vector containing multiple filepaths or a
list containing multiple connections.

Files ending in .gz, .bz2, .xz, or .zip will be automatically decompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automat-
ically downloaded. Remote compressed files (.gz, .bz2, .xz, .zip) will be
automatically downloaded and decompressed.

Literal data is most useful for examples and tests. To be recognised as literal
data, wrap the input with I().

Column positions, as created by fwf_empty (), fwf_widths(), fwf_positions(),
or fwf_cols(). To read in only selected fields, use fwf_positions(). If the
width of the last column is variable (a ragged fwf file), supply the last end posi-
tion as NA.

One of NULL, a cols() specification, or a string.

If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

22

vroom_fwf

* ¢ = character

* i=integer

* I =Dbig integer

* n = number

¢ d =double

* I =logical

» f=factor

e D =date

e T = date time

* t=time

e ? =guess

e _or-=skip
By default, reading a file without a column specification will print a message
showing the guessed types. To suppress this message, set show_col_types =
FALSE.

col_select Columns to include in the results. You can use the same mini-language as
dplyr::select() to refer to the columns by name. Use c() to use more than
one selection expression. Although this usage is less common, col_select also
accepts a numeric column index. See ?tidyselect: :language for full details
on the selection language.

id Either a string or "'NULL’. If a string, the output will contain a column with that
name with the filename(s) as the value, i.e. this column effectively tells you the
source of each row. If "NULL’ (the default), no such column will be created.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

comment A string used to identify comments. Any line that starts with the comment

string at the beginning of the file (before any data lines) will be ignored. Unlike

vroom(), comment lines in the middle of the file are not filtered out.
skip_empty_rows

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank

rows will not be represented at all. If it is FALSE then they will be represented

by NA values in all the columns.

trim_ws Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?
skip Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.
n_max Maximum number of lines to read.
guess_max Maximum number of lines to use for guessing column types. See vignette("”column-types”,

package = "readr") for more details.

vroom_fwf 23

altrep Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

progress Display a progress bar? By default it will only display in an interactive ses-
sion and not while executing in an RStudio notebook chunk. The display of the
progress bar can be disabled by setting the environment variable VROOM_SHOW_PROGRESS
to "false”.

show_col_types Control showing the column specifications. If TRUE column specifications are
always shown, if FALSE they are never shown. If NULL (the default), they are
shown only if an explicit specification is not given in col_types, i.e. if the
types have been guessed.

.name_repair Handling of column names. The default behaviour is to ensure column names
are "unique”. Various repair strategies are supported:
* "minimal”: No name repair or checks, beyond basic existence of names.
e "unique” (default value): Make sure names are unique and not empty.
* "check_unique"”: No name repair, but check they are unique.
e "unique_quiet": Repair with the unique strategy, quietly.
e "universal”: Make the names unique and syntactic.
* "universal_quiet”: Repair with the universal strategy, quietly.

* A function: Apply custom name repair (e.g., name_repair = make.names
for names in the style of base R).

* A purrr-style anonymous function, see rlang: :as_function().

This argument is passed on as repair to vctrs: :vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

col_names Either NULL, or a character vector column names.

n Number of lines the tokenizer will read to determine file structure. By default it
is set to 100.

widths Width of each field. Use NA as the width of the last field when reading a ragged
fixed-width file.

start, end Starting and ending (inclusive) positions of each field. Positions are 1-based:
the first character in a line is at position 1. Use NA as the last value of end when
reading a ragged fixed-width file.

Named or unnamed arguments, each addressing one column. Each input should
be either a single integer (a column width) or a pair of integers (column start and
end positions). All arguments must have the same shape, i.e. all widths or all
positions.

Details

Here’s a enhanced example using the contents of the file accessed via vroom_example (" fwf-sample. txt").

24 vroom_lines

1 2 3 4
123456789012345678901234567890123456789012
L name 20 1[state 10]1[ssn 12]
John Smith WA 418-Y11-4111
Mary Hartford CA 319-Z19-4341
Evan Nolan IL 219-532-c301

Here are some valid field specifications for the above (they aren’t all equivalent! but they are all
valid):

fwf_widths(c(20, 10, 12), c("name”, "state"”, "ssn"))

fwf_positions(c(1, 30), c(20, 42), c("name", "ssn"))

fwf_cols(state = c(21, 30), last = c(6, 20), first = c(1, 4), ssn = c(31, 42))
fwf_cols(name = c(1, 20), ssn = c(30, 42))

fwf_cols(name = 20, state = 10, ssn = 12)

Examples

fwf_sample <- vroom_example("fwf-sample.txt")
writeLines(vroom_lines(fwf_sample))

You can specify column positions in several ways:

1. Guess based on position of empty columns

vroom_fwf (fwf_sample, fwf_empty(fwf_sample, col_names = c("first”, "last"”, "state”, "ssn")))
2. A vector of field widths

vroom_fwf (fwf_sample, fwf_widths(c(20, 10, 12), c("name”, "state"”, "ssn")))
3. Paired vectors of start and end positions

vroom_fwf (fwf_sample, fwf_positions(c(1, 30), c(20, 42), c("name”, "ssn")))
4. Named arguments with start and end positions

vroom_fwf (fwf_sample, fwf_cols(name = c(1, 20), ssn = c(30, 42)))

5. Named arguments with column widths

vroom_fwf (fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))

vroom_lines Read lines from a file

Description

vroom_lines() is similar to readLines(), however it reads the lines lazily like vroom(), so op-
erations like length(), head(), tail() and sample() can be done much more efficiently without
reading all the data into R.

Usage

vroom_lines(
file,
n_max = Inf,
skip = 0,

vroom_lines 25

na = character(),
skip_empty_rows = FALSE,
locale = default_locale(),
altrep = TRUE,

num_threads = vroom_threads(),
progress = vroom_progress()

)
Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector). file can also be a character vector containing multiple filepaths or a
list containing multiple connections.
Files ending in .gz, .bz2, .xz, or .zip will be automatically decompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automat-
ically downloaded. Remote compressed files (.gz, .bz2, .xz, .zip) will be
automatically downloaded and decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, wrap the input with I().

n_max Maximum number of lines to read.

skip Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.

na Character vector of strings to interpret as missing values. Set this option to

character() to indicate no missing values.

skip_empty_rows
Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

altrep Control which column types use Altrep representations, either a character vector
of types, TRUE or FALSE. See vroom_altrep() for for full details.

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

progress Display a progress bar? By default it will only display in an interactive ses-
sion and not while executing in an RStudio notebook chunk. The display of the
progress bar can be disabled by setting the environment variable VROOM_SHOW_PROGRESS
to "false”.

Examples

lines <- vroom_lines(vroom_example("mtcars.csv"))

length(lines)

26 vroom_str

head(lines, n = 2)
tail(lines, n = 2)
sample(lines, size = 2)

vroom_progress Determine whether progress bars should be shown

Description

By default, vroom shows progress bars. However, progress reporting is suppressed if any of the
following conditions hold:

* The bar is explicitly disabled by setting the environment variable VROOM_SHOW_PROGRESS to
"false"”.

* The code is run in a non-interactive session, as determined by rlang: :is_interactive().

* The code is run in an RStudio notebook chunk, as determined by getOption(”rstudio.notebook.executing”).

Usage

vroom_progress()

Examples

vroom_progress()

vroom_str Structure of objects

Description

Similar to str() but with more information for Altrep objects.

Usage

vroom_str(x)

Arguments

X a vector

Examples

when used on non-altrep objects altrep will always be false
vroom_str(mtcars)

mt <- vroom(vroom_example("mtcars.csv"), ","”, altrep = c("chr"”, "dbl"))
vroom_str(mt)

vroom_write

27

vroom_write

Write a data frame to a delimited file

Description

Write a data frame to a delimited file

Usage

vroom_write(
X7
file,
delim = "\t",
eol = "\n",
na = "NA",
col_names = !append,
append = FALSE,
quote = c("needed”, "all”, "none"),
escape = c("double”, "backslash”, "none"),
bom = FALSE,

num_threads

vroom_threads(),

progress = vroom_progress()

)
Arguments
X A data frame or tibble to write to disk.
file File or connection to write to.
delim Delimiter used to separate values. Defaults to \t to write tab separated value
(TSV) files.
eol The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.
na String used for missing values. Defaults to "NA’.
col_names If FALSE, column names will not be included at the top of the file. If TRUE, col-
umn names will be included. If not specified, col_names will take the opposite
value given to append.
append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if the file does not exist, a new file is created.
quote How to handle fields which contain characters that need to be quoted.
* needed - Values are only quoted if needed: if they contain a delimiter,
quote, or newline.
¢ all - Quote all fields.
* none - Never quote fields.
escape The type of escape to use when quotes are in the data.

28 vroom_write_lines

* double - quotes are escaped by doubling them.
* backslash - quotes are escaped by a preceding backslash.
* none - quotes are not escaped.

bom If TRUE add a UTF-8 BOM at the beginning of the file. This is recommended
when saving data for consumption by excel, as it will force excel to read the data
with the correct encoding (UTF-8)

num_threads Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

progress Display a progress bar? By default it will only display in an interactive ses-
sion and not while executing in an RStudio notebook chunk. The display of the
progress bar can be disabled by setting the environment variable VROOM_SHOW_PROGRESS
to "false”.

Examples

If you only specify a file name, vroom_write() will write
the file to your current working directory.

out_file <- tempfile(fileext = "csv")

vroom_write(mtcars, out_file, ",")

You can also use a literal filename
vroom_write(mtcars, "mtcars.tsv")

If you add an extension to the file name, write_()* will
automatically compress the output.

vroom_write(mtcars, "mtcars.tsv.gz")

vroom_write(mtcars, "mtcars.tsv.bz2")

vroom_write(mtcars, "mtcars.tsv.xz")

vroom_write_lines Write lines to a file

Description

‘Write lines to a file

Usage
vroom_write_lines(
X ’
file,
eol = "\n",
na = "NA",

append = FALSE,
num_threads = vroom_threads()

vroom_write_lines

Arguments

X
file

eol

na

append

num_threads

29

A character vector.
File or connection to write to.

The end of line character to use. Most commonly either "\n" for Unix style
newlines, or "\r\n" for Windows style newlines.

String used for missing values. Defaults to "NA’.

If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if the file does not exist, a new file is created.

Number of threads to use when reading and materializing vectors. If your data
contains newlines within fields the parser will automatically be forced to use a
single thread only.

Index

* parsers
cols_condense, 6
?tidyselect::1language, 15, 22

abort(),”7

col_big_integer (cols), 2
col_character (cols), 2
col_date (cols), 2
col_datetime (cols), 2
col_double (cols), 2
col_factor (cols), 2
col_guess (cols), 2
col_integer (cols), 2
col_logical (cols), 2
col_number (cols), 2
col_skip (cols), 2
col_time (cols), 2
col_types (cols), 2
cols, 2

cols(), 9, 14, 21
cols_condense, 6
cols_only (cols), 2
cols_only(), 9, 14,21

date_names, 6

date_names(), 12
date_names_lang (date_names), 6
date_names_lang(), 12
date_names_langs (date_names), 6
default_locale (locale), 11

fwf_cols (vroom_fwf), 20
fwf_empty (vroom_fwf), 20
fwf_empty(), 21
fwf_positions (vroom_fwf), 20
fwf_widths (vroom_fwf), 20

gen_character (generators), 7
gen_date (generators), 7
gen_datetime (generators), 7

30

gen_double (generators), 7
gen_factor (generators), 7
gen_integer (generators), 7
gen_logical (generators), 7
gen_name (generators), 7
gen_name(), 8

gen_number (generators), 7
gen_tbl, 9

gen_time (generators), 7
generators, 7, 10
guess_type, 10

list(), 9, 14, 21
locale, 11
locale(), 4,10, 11,15,22,25

OlsonNames(), 12
problems, 12

rlang::as_function(), 16, 23
rlang::is_interactive(), 26

spec (cols_condense), 6
strptime(), 4

vctrs: :vec_as_names(), 16, 23
vroom, 13

vroom(), 3, 17,22, 24
vroom_altrep, 17
vroom_altrep(), 15, 23,25
vroom_example, 18
vroom_examples (vroom_example), 18
vroom_format, 19
vroom_fwf, 20

vroom_lines, 24
vroom_progress, 26
vroom_str, 26

vroom_write, 27
vroom_write(), 19
vroom_write_lines, 28

	cols
	cols_condense
	date_names
	generators
	gen_tbl
	guess_type
	locale
	problems
	vroom
	vroom_altrep
	vroom_example
	vroom_format
	vroom_fwf
	vroom_lines
	vroom_progress
	vroom_str
	vroom_write
	vroom_write_lines
	Index

