Package ‘visOmopResults’

February 2, 2026
Title Graphs and Tables for OMOP Results

Version 1.4.1
Maintainer Nuria Mercadé-Besora <nuria.mercadebesora@ndorms.ox.ac.uk>

Description Provides methods to transform omop_result objects into
formatted tables and figures, facilitating the visualisation of study
results working with the Observational Medical Outcomes Partnership
(OMOP) Common Data Model.

License Apache License (>= 2)

URL https://darwin-eu.github.io/visOmopResults/,
https://github.com/darwin-eu/visOmopResults

BugReports https://github.com/darwin-eu/visOmopResults/issues

Imports brand.yml, cli, dplyr, generics, glue, omopgenerics (>=
0.3.1), purrr, rlang, stringr, tidyr

Suggests bslib, CohortCharacteristics, covr, DT, flextable (>= 0.9.5),
ggplot2, gt, here, htmltools, IncidencePrevalence, knitr,
lifecycle, officer, palmerpenguins, PatientProfiles, plotly,
reactable, rmarkdown, shiny, shinycssloaders, shinyWidgets,
sortable, systemfonts, testthat (>= 3.0.0), tinytable (>=
0.14.0), yaml

VignetteBuilder knitr
Depends R (>=4.1)
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
RoxygenNote 7.3.3
LazyData true
NeedsCompilation no

Author Marti Catala [aut] (ORCID: <https://orcid.org/0000-0003-3308-9905>),
Niria Mercadé-Besora [aut, cre] (ORCID:
<https://orcid.org/0009-0006-7948-3747>),

1

https://darwin-eu.github.io/visOmopResults/
https://github.com/darwin-eu/visOmopResults
https://github.com/darwin-eu/visOmopResults/issues
https://orcid.org/0000-0003-3308-9905
https://orcid.org/0009-0006-7948-3747

2 barPlot
Yuchen Guo [ctb] (ORCID: <https://orcid.org/0000-0002-0847-4855>),
Elin Rowlands [ctb] (ORCID: <https://orcid.org/0009-0007-6629-4661>),
Marta Alcalde-Herraiz [ctb] (ORCID:
<https://orcid.org/0009-0002-4405-1814>),
Edward Burn [ctb] (ORCID: <https://orcid.org/0000-0002-9286-1128>)
Repository CRAN
Date/Publication 2026-02-02 16:10:02 UTC
Contents
barPlot e 2
boxPlot e 4
customiseText e e e e e e 5
data . .. oL e e e e 6
emptyPlot L e e 7
emptyTable e 7
formatEstimateName e e e 8
formatEstimateValue 9
formatHeader 10
formatMinCellCount e e 11
formatTable e 12
mockSummarisedResult 14
plotColumns L e e 15
plotStyle L e 15
plotType e 16
scatterPlot e 16
setGlobalPlotOptions 18
setGlobalTableOptions i e e 18
tableColumns e e e e e e e 19
tableOptions e e e e e e e 20
tableStyle e e 20
tableType e e 21
themeVisOmop e e e e 21
visOmopTable 22
visTable e e e e 24
Index 27
barPlot Create a bar plot visualisation from a <summarised_result> object
Description

Create a bar plot visualisation from a <summarised_result> object

https://orcid.org/0000-0002-0847-4855
https://orcid.org/0009-0007-6629-4661
https://orcid.org/0009-0002-4405-1814
https://orcid.org/0000-0002-9286-1128

barPlot 3
Usage
barPlot(
result,
X)
Y,
width = NULL,
just = 0.5,
position = "dodge",
facet = NULL,
colour = NULL,
style = NULL,
type = NULL,
label = character()
)
Arguments
result A <summarised_result> object.
X Column or estimate name that is used as x variable.
y Column or estimate name that is used as y variable.
width Bar width, as in geom_col () of the ggplot2 package.
just Adjustment for column placement, as in geom_col() of the ggplot2 package.
position Position of bars, can be either dodge or stack
facet Variables to facet by, a formula can be provided to specify which variables
should be used as rows and which ones as columns.
colour Columns to use to determine the colours.
style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a . yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.
type Character string indicating the output plot format. See plotType() for the list
of supported plot types. If type = NULL, the function will use the global set-
ting defined via setGlobalPlotOptions() (if available); otherwise, a standard
ggplot2 plot is produced by default.
label Character vector with the columns to display interactively in plotly.
Value
A plot object.
Examples
result <- mockSummarisedResult() |> dplyr::filter(variable_name == "age")

barPlot(

4 boxPlot

result = result,

X = "cohort_name"”,
y = "mean”,
facet = c("age_group”, "sex"),
colour = "sex")
boxPlot Create a box plot visualisation from a <summarised_result> object
Description

Create a box plot visualisation from a <summarised_result> object

Usage
boxPlot(
result,
X ’
lower = "q25",
middle = "median”,
upper = "q75",
ymin = "min”,
ymax = "max",
facet = NULL,
colour = NULL,
style = NULL,
type = NULL,
label = character()
)
Arguments
result A <summarised_result> object.
X Column or estimate name that is used as x variable.
lower Estimate name for the lower quantile of the box.
middle Estimate name for the middle line of the box.
upper Estimate name for the upper quantile of the box.
ymin Lower limit of error bars, if provided is plot using geom_errorbar.
ymax Upper limit of error bars, if provided is plot using geom_errorbar.
facet Variables to facet by, a formula can be provided to specify which variables

should be used as rows and which ones as columns.

colour Columns to use to determine the colours.

customiseText 5

style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a .yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.

type Character string indicating the output plot format. See plotType() for the list
of supported plot types. If type = NULL, the function will use the global set-
ting defined via setGlobalPlotOptions() (if available); otherwise, a standard
ggplot?2 plot is produced by default.

label Character vector with the columns to display interactively in plotly.

Value

A ggplot2 object.

Examples

dplyr::tibble(year = "2000", g25 = 25, median = 50, q75 = 75, min = @, max = 100) |>
boxPlot(x = "year")

customiseText Apply styling to text or column names

Description

This function styles character vectors or column names in a data frame. The styling function can be
customised, or you can provide specific replacements for certain values.

Usage
customiseText(
X ’
fun = function(x) stringr::str_to_sentence(gsub("_", " ", X)),
custom = NULL,
keep = NULL
)
Arguments
X A character vector to style text.
fun A styling function to apply to text in x. The default function converts snake_case
to sentence case.
custom A named character vector indicating custom names for specific values in x. If
NULL, the styling function in fun is applied to all values.
keep Either a character vector of names to keep unchanged. If NULL, all names will

be styled.

6 data

Value

A character vector of styled text or a data frame with styled column names.

Examples

Styling a character vector
customiseText(c("some_column_name”, "another_column"))

Custom styling for specific values
customiseText(x = c("some_column”, "another_column”),
custom = c(”"Custom Name” = "another_column"))

Keeping specific values unchanged
customiseText(x = c("some_column”, "another_column”), keep = "another_column")

Styling column names and variables in a data frame
dplyr::tibble(

some_column = c("hi_there"”, "rename_me"”, "example”, "to_keep"),
another_column = 1:4,
to_keep = "as_is"
) 1>
dplyr: :mutate(
"some_column” = customiseText (some_column, custom = c("EXAMPLE" = "example”), keep = "to_keep")
) 1>
dplyr::rename_with(.fn = ~ customiseText(.x, keep = "to_keep"))
data List of mock results
Description

List of mock results

Usage

data

Format

A list of mock results for quarto and shiny vignette examples

emptyPlot 7

emptyPlot Returns an empty plot

Description

Returns an empty plot

Usage
emptyPlot(title = "No data to plot”, subtitle = "", type = NULL, style = NULL)
Arguments
title Title to use in the empty plot.
subtitle Subtitle to use in the empty plot.
type Character string indicating the output plot format. See plotType() for the list
of supported plot types. If type = NULL, the function will use the global set-
ting defined via setGlobalPlotOptions() (if available); otherwise, a standard
ggplot2 plot is produced by default.
style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a . yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.
Value
An empty ggplot object
Examples
emptyPlot ()
emptyTable Returns an empty table
Description

Returns an empty table

Usage

emptyTable(type = NULL, style = NULL)

8 formatEstimateName

Arguments

type Character string specifying the desired output table format. See tableType()
for supported table types. If type = NULL, global options (set via setGlobalTableOptions())
will be used if available; otherwise, a default 'gt' table is created.

style Defines the visual formatting of the table. This argument can be provided in one
of the following ways:

1. Pre-defined style: Use the name of a built-in style (e.g., "darwin”). See
tableStyle() for available options.

2. YAML file path: Provide the path to an existing .yml file defining a new
style.

3. List of custome R code: Supply a block of custom R code or a named
list describing styles for each table section. This code must be specific
to the selected table type. If style =NULL, the function will use global
options (see setGlobalTableOptions()) or an existing _brand.yml file
(if found); otherwise, the default style is applied. For more details, see the
Styles vignette on the package website.

Value

An empty table of the class specified in type

Examples

emptyTable(type = "flextable")

formatEstimateName Formats estimate_name and estimate_value column

Description

Formats estimate_name and estimate_value columns by changing the name of the estimate name
and/or joining different estimates together in a single row.

Usage

formatEstimateName (
result,
estimateName = NULL,
keepNotFormatted = TRUE,
useFormatOrder = TRUE

formatEstimate Value

Arguments

result A <summarised_result>.

estimateName Named list of estimate name’s to join, sorted by computation order. Indicate
estimate_name’s between <...>.

keepNotFormatted
Whether to keep rows not formatted.

useFormatOrder Whether to use the order in which estimate names appear in the estimateName
(TRUE), or use the order in the input dataframe (FALSE).

Value

A <summarised_result> object.

Examples

result <- mockSummarisedResult()

result |>
formatEstimateName (
estimateName = c(
"N (%)" = "<count> (<percentage>%)", "N" = "<count>"
),
keepNotFormatted = FALSE
)

formatEstimateValue Formats the estimate_value column

Description

Formats the estimate_value column of <summarised_result> object by editing number of deci-
mals, decimal and thousand/millions separator marks.

Usage

formatEstimateValue(
result,
decimals = c(integer = @, numeric = 2, percentage = 1, proportion = 3),
decimalMark = "."

non

bigMark = ",

10 formatHeader

Arguments
result A <summarised_result>.
decimals Number of decimals per estimate type (integer, numeric, percentage, propor-
tion), estimate name, or all estimate values (introduce the number of decimals).
decimalMark Decimal separator mark.
bigMark Thousand and millions separator mark.
Value

A <summarised_result>.

Examples

result <- mockSummarisedResult()
result |> formatEstimateValue(decimals = 1)
result |> formatEstimateValue(decimals = c(integer = @, numeric = 1))

result |>
formatEstimateValue(decimals = c(numeric = 1, count = 0))

formatHeader Create a header for gt and flextable objects

Description

Pivots a <summarised_result> object based on the column names in header, generating specific
column names for subsequent header formatting in formatTable function.

Usage
formatHeader (
result,
header,
delim = "\n",

includeHeaderName = TRUE,
includeHeaderkKey = TRUE

)
Arguments
result A <summarised_result>.
header Names of the variables to make headers.

delim Delimiter to use to separate headers.

formatMinCellCount 11

includeHeaderName
Whether to include the column name as header.

includeHeaderKey
Whether to include the header key (header, header_name, header_level) before
each header type in the column names.

Value

A tibble with rows pivotted into columns with key names for subsequent header formatting.

Examples

result <- mockSummarisedResult()

result |>
formatHeader (
header = c(
"Study cohorts”, "group_level”, "Study strata”, "strata_name”,
"strata_level”
),
includeHeaderName = FALSE
)
formatMinCellCount To indicate which was the minimum cell counts where estimates have
been suppressed.
Description

To indicate which was the minimum cell counts where estimates have been suppressed.

Usage

formatMinCellCount(result)

Arguments

result A <summarised_result> object.

Examples

result <- mockSummarisedResult()
result |> formatMinCellCount()

12 formatTable

formatTable Creates a flextable or gt object from a dataframe

Description

Creates a flextable object from a dataframe using a delimiter to span the header, and allows to easily
customise table style.

Usage
formatTable(

X’

type = NULL,
delim = "\n",
style = NULL,
na = "-",
title = NULL,

subtitle = NULL,
caption = NULL,
groupColumn = NULL,
groupAsColumn = FALSE,
groupOrder = NULL,

merge = "all_columns”
)
Arguments

X A dataframe.

type Character string specifying the desired output table format. See tableType()
for supported table types. If type = NULL, global options (set via setGlobalTableOptions())
will be used if available; otherwise, a default 'gt' table is created.

delim Delimiter to separate headers.

style Defines the visual formatting of the table. This argument can be provided in one

of the following ways:

1. Pre-defined style: Use the name of a built-in style (e.g., "darwin”). See
tableStyle() for available options.

2. YAML file path: Provide the path to an existing .yml file defining a new
style.

3. List of custome R code: Supply a block of custom R code or a named
list describing styles for each table section. This code must be specific
to the selected table type. If style =NULL, the function will use global
options (see setGlobalTableOptions()) or an existing _brand.yml file
(if found); otherwise, the default style is applied. For more details, see the
Styles vignette on the package website.

na How to display missing values. Not used for "datatable" and "reactable".

formatTable

title
subtitle

caption

groupColumn

groupAsColumn

groupOrder

merge

Value

13

Title of the table, or NULL for no title. Not used for "datatable".

Subtitle of the table, or NULL for no subtitle. Not used for "datatable" and
"reactable".

Caption for the table, or NULL for no caption. Text in markdown formatting
style (e.g. *Your caption herex for caption in italics). Not used for "re-
actable".

Columns to use as group labels, to see options use tableColumns(result).
By default, the name of the new group will be the tidy* column names sep-

non

arated by ";". To specify a custom group name, use a named list such as:

non

list("newGroupName" = c("variable_name", "variable_level")).

"non

*tidy: The tidy format applied to column names replaces "_" with a space and
converts to sentence case. Use rename to customise specific column names.

Whether to display the group labels as a column (TRUE) or rows (FALSE). Not
used for "datatable" and "reactable"

Order in which to display group labels. Not used for "datatable" and "reactable".

Names of the columns to merge vertically when consecutive row cells have
identical values. Alternatively, use "all_columns" to apply this merging to all
columns, or use NULL to indicate no merging. Not used for "datatable" and
"reactable".

A formatted table of the class selected in "type" argument.

Examples

Example 1

mockSummarisedResult() |>
formatEstimateValue(decimals = c(integer = @, numeric = 1)) [>

formatHeader (
header = c("Study strata”, "strata_name”, "strata_level”),
includeHeaderName = FALSE

) 1>

formatTable(

type = "flextable"”,
style = "default”,

n n

na = --—-,

title = "fxTable example”,

subtitle =

NULL,

caption = NULL,
groupColumn = "group_level”,
groupAsColumn = TRUE,

groupOrder = c("”cohortl1”, "cohort2"),
merge = "all_columns”
)
Example 2

mockSummarisedResult() |>
formatEstimateValue(decimals = c(integer = @, numeric = 1)) |>

mockSummarisedResult

14
formatHeader (header = c("Study strata”, "strata_name", "strata_level"”),
includeHeaderName = FALSE) |>
formatTable(
type = "gt",

style = list("header” = list(
gt::cell_fill(color = "#d9d9d9"),
gt::cell_text(weight = "bold")),
"header_level” = list(gt::cell_fill(color = "#elelel"),
gt::cell_text(weight = "bold")),
"column_name" = list(gt::cell_text(weight = "bold")),
"title" = list(gt::cell_text(weight = "bold"),
gt::cell_fill(color = "#c8c8c8")),
"group_label” = gt::cell_fill(color = "#elelel")),
na = "--",
title = "gtTable example”,
subtitle = NULL,
caption = NULL,
groupColumn = "group_level”,
groupAsColumn = FALSE,
groupOrder = c("cohortl1”, "cohort2"),
merge = "all_columns”

mockSummarisedResult A <summarised_result> object filled with mock data

Description

Creates an object of the class <summarised_result> with mock data for illustration purposes.

Usage

mockSummarisedResult()

Value

An object of the class <summarised_result> with mock data.

Examples

mockSummarisedResult ()

plotColumns

15

plotColumns Columns for the plot functions

Description

Names of the columns that can be used in the input arguments for the plot functions.

Usage

plotColumns(result)
Arguments

result A <summarised_result> object.
Value

A character vector of supported columns for plots.

Examples
result <- mockSummarisedResult()
plotColumns(result)
plotStyle Pre-defined styles are available for plots
Description

This function provides a list of pre-defined styles for plots that can then be used in the style

argument of the plot functions.

Usage
plotStyle()

Value

A character vector indicating the style names.

Examples

plotStyle()

16

scatterPlot

plotType

Supported plot types

Description

This function returns the supported plot types that can be used in the type argument of the plot
functions.

Usage

plotType()

Value

A character vector of supported plot types.

Examples

tableType()

scatterPlot

Create a scatter plot visualisation from a <summarised_result> ob-
Jject

Description

Create a scatter plot visualisation from a <summarised_result> object

Usage

scatterPlot(

result,

X!

Y,

line,

point,

ribbon,

ymin = NULL,
ymax = NULL,
facet = NULL,
colour = NULL,
style = NULL,
type = NULL,
group = colour,
label = character()

scatterPlot 17

Arguments
result A <summarised_result> object.
X Column or estimate name that is used as x variable.
y Column or estimate name that is used as y variable.
line Whether to plot a line using geom_line.
point Whether to plot points using geom_point.
ribbon Whether to plot a ribbon using geom_ribbon.
ymin Lower limit of error bars, if provided is plot using geom_errorbar.
ymax Upper limit of error bars, if provided is plot using geom_errorbar.
facet Variables to facet by, a formula can be provided to specify which variables
should be used as rows and which ones as columns.
colour Columns to use to determine the colours.
style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a . yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.
type Character string indicating the output plot format. See plotType() for the list
of supported plot types. If type = NULL, the function will use the global set-
ting defined via setGlobalPlotOptions() (if available); otherwise, a standard
ggplot2 plot is produced by default.
group Columns to use to determine the group.
label Character vector with the columns to display interactively in plotly.
Value
A plot object.
Examples

result <- mockSummarisedResult() |>
dplyr::filter(variable_name == "age")

scatterPlot(
result = result,
x = "cohort_name"”,
y = "mean”,
line = TRUE,
point = TRUE,
ribbon = FALSE,
facet = age_group ~ sex)

18 setGlobalTableOptions

setGlobalPlotOptions Set format options for all subsequent plots

Description

Set format options for all subsequent plots unless state a different style in a specific function

Usage

setGlobalPlotOptions(style = NULL, type = NULL)

Arguments
style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a . yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.
type Character string indicating the output plot format. See plotType() for the list

of supported plot types. If type = NULL, the function will use the global set-
ting defined via setGlobalPlotOptions() (if available); otherwise, a standard
ggplot?2 plot is produced by default.

setGlobalTableOptions Set format options for all subsequent tables

Description

Set format options for all subsequent tables unless state a different style in a specific function

Usage
setGlobalTableOptions(style = NULL, type = NULL)

Arguments

style Defines the visual formatting of the table. This argument can be provided in one
of the following ways:

1. Pre-defined style: Use the name of a built-in style (e.g., "darwin"). See
tableStyle() for available options.

2. YAML file path: Provide the path to an existing .yml file defining a new
style.

tableColumns 19

3. List of custome R code: Supply a block of custom R code or a named
list describing styles for each table section. This code must be specific
to the selected table type. If style =NULL, the function will use global
options (see setGlobalTableOptions()) or an existing _brand.yml file
(if found); otherwise, the default style is applied. For more details, see the
Styles vignette on the package website.

type Character string specifying the desired output table format. See tableType()
for supported table types. If type = NULL, global options (set via setGlobalTableOptions())
will be used if available; otherwise, a default 'gt' table is created.

Examples

setGlobalTableOptions(style = "darwin”, type = "tinytable")
result <- mockSummarisedResult()

result |>
visOmopTable(
estimateName = c("N%" = "<count> (<percentage>)",
"N" = "<count>",
"Mean (SD)" = "<mean> (<sd>)"),
header = c("cohort_name"),
rename = c("Database name” = "cdm_name"),
groupColumn = strataColumns(result)
)

drop global options:
setGlobalTableOptions(style = NULL, type = NULL)

tableColumns Columns for the table functions

Description

Names of the columns that can be used in the input arguments for the table functions.

Usage

tableColumns(result)
Arguments

result A <summarised_result> object.
Value

A character vector of supported columns for tables.

20 tableStyle

Examples

result <- mockSummarisedResult()

tableColumns(result)
tableOptions Additional table formatting options for visOmopTable() and
visTable()
Description

This function provides a list of allowed inputs for the .option argument in visOmopTable() and
visTable(), and their corresponding default values.

Usage

tableOptions()

Value

A named list of default options for table customisation.

Examples

tableOptions()

tableStyle Pre-defined styles are available for tables

Description
This function provides a list of pre-defined styles for tables that can then be used in the style
argument of the table functions.

Usage
tableStyle()

Value

A character vector indicating the style names.

Examples

tableStyle()

tableType 21

tableType Supported table classes

Description

This function returns the supported table classes that can be used in the type argument of visOmopTable(),
visTable(), and formatTable() functions.

Usage

tableType()

Value

A character vector of supported table types.

Examples

tableType()

themeVisOmop Apply a pre-defined visOmopResults theme to a ggplot

Description

Apply a pre-defined visOmopResults theme to a ggplot

Usage

themeVisOmop(style = NULL, fontsizeRef = NULL)

Arguments

style Visual theme to apply. Character, or NULL. If a character, this may be either the
name of a built-in style (see plotStyle()), or a path to a . yml file that defines
a custom style. If NULL, the function will use the explicit default style, unless a
global style option is set (see setGlobalPlotOptions()), ora _brand.yml file
is present (in that order). Refer to the package vignette on styles to learn more.

fontsizeRef An integer to use as reference when adjusting label fontsize.

22 visOmopTable

Examples

result <- mockSummarisedResult() |> dplyr::filter(variable_name == "age")

barPlot(
result = result,
x = "cohort_name"”,
y = "mean”,
facet = c("age_group”, "sex"),
colour = "sex") +
themeVisOmop ()

visOmopTable Generate a formatted table from a <summarised_result>

Description

This function combines the functionalities of formatEstimateValue(), estimateName (), formatHeader (),
and formatTable() into a single function specifically for <summarised_result> objects.

Usage

visOmopTable(
result,
estimateName = character(),
header = character(),
settingsColumn = character(),
groupColumn = character(),
rename = character(),
type = NULL,
hide = character(),
columnOrder = character(),
factor = list(),
style = NULL,
showMinCellCount = TRUE,
.options = list()

Arguments

result A <summarised_result> object.

estimateName A named list of estimate names to join, sorted by computation order. Use <. . .>
to indicate estimate names.

header A vector specifying the elements to include in the header. The order of elements
matters, with the first being the topmost header. Elements in header can be:

* Any of the columns returned by tableColumns(result) to create a header
for these columns.

visOmopTable 23

* Any other input to create an overall header.

settingsColumn A character vector with the names of settings to include in the table. To see
options use settingsColumns(result).

groupColumn Columns to use as group labels, to see options use tableColumns(result).
By default, the name of the new group will be the tidy* column names sep-

non

arated by ";". To specify a custom group name, use a named list such as:

non

list("newGroupName" = c("variable_name", "variable_level")).

"non

*tidy: The tidy format applied to column names replaces "_" with a space and
converts to sentence case. Use rename to customise specific column names.

rename A named vector to customise column names, e.g., ¢("Database name" = "cdm_name").
The function renames all column names not specified here into a tidy* format.

type Character string specifying the desired output table format. See tableType()
for supported table types. If type = NULL, global options (set via setGlobalTableOptions())
will be used if available; otherwise, a default 'gt' table is created.

hide Columns to drop from the output table. By default, result_id and estimate_type
are always dropped.

columnOrder Character vector establishing the position of the columns in the formatted table.
Columns in either header, groupColumn, or hide will be ignored.

factor A named list where names refer to columns (see available columns in tableColumns())
and list elements are the level order of that column to arrange the results. The
column order in the list will be used for arranging the result.

style Defines the visual formatting of the table. This argument can be provided in one
of the following ways:

1. Pre-defined style: Use the name of a built-in style (e.g., "darwin”). See
tableStyle() for available options.

2. YAML file path: Provide the path to an existing .yml file defining a new
style.

3. List of custome R code: Supply a block of custom R code or a named
list describing styles for each table section. This code must be specific
to the selected table type. If style = NULL, the function will use global
options (see setGlobalTableOptions()) or an existing _brand.yml file
(if found); otherwise, the default style is applied. For more details, see the
Styles vignette on the package website.

showMinCellCount
If TRUE, suppressed estimates will be indicated with "<{min_cell_count}", oth-
erwise, the default na defined in . options will be used.

.options A named list with additional formatting options. visOmopResults: :tableOptions()
shows allowed arguments and their default values.

Value

A formatted table of the class selected in "type" argument.

24 visTable

Examples

result <- mockSummarisedResult()

result |>
visOmopTable(
estimateName = c("N%" = "<count> (<percentage>)",
"N" = "<count>",
"Mean (SD)" = "<mean> (<sd>)"),
header = c("cohort_name"),
rename = c("Database name" = "cdm_name"),
groupColumn = strataColumns(result)
)
result |>
visOmopTable(
estimateName = c(
"N%" = "<count> (<percentage>)",
"N" = "<count>",
"Mean (SD)" = "<mean> (<sd>)"
),
header = c("cohort_name"),
rename = c("Database name” = "cdm_name"),
groupColumn = strataColumns(result),
type = "reactable”
)
visTable Generate a formatted table from a <data.table>
Description

This function combines the functionalities of formatEstimateValue(), formatEstimateName(),
formatHeader (), and formatTable() into a single function. While it does not require the in-
put table to be a <summarised_result>, it does expect specific fields to apply some formatting
functionalities.

Usage

visTable(
result,
estimateName = character(),
header = character(),
groupColumn = character(),
rename = character(),

type = NULL,
hide = character(),
style = NULL,

.options = list()

visTable 25

Arguments

result A table to format.

estimateName A named list of estimate names to join, sorted by computation order. Use <. ..>
to indicate estimate names.

header A vector specifying the elements to include in the header. The order of ele-
ments matters, with the first being the topmost header. The vector elements
can be column names or labels for overall headers. The table must contain an
estimate_value column to pivot the headers.

groupColumn Columns to use as group labels, to see options use tableColumns(result).
By default, the name of the new group will be the tidy* column names sep-

arated by ";". To specify a custom group name, use a named list such as:

list("newGroupName" = c("variable_name", "variable_level")).

non

*tidy: The tidy format applied to column names replaces "_" with a space and
converts to sentence case. Use rename to customise specific column names.

rename A named vector to customise column names, e.g., ¢("Database name" = "cdm_name").
The function renames all column names not specified here into a tidy* format.

type Character string specifying the desired output table format. See tableType()
for supported table types. If type = NULL, global options (set via setGlobalTableOptions())
will be used if available; otherwise, a default 'gt' table is created.

hide Columns to drop from the output table.

style Defines the visual formatting of the table. This argument can be provided in one
of the following ways:

1. Pre-defined style: Use the name of a built-in style (e.g., "darwin”). See
tableStyle() for available options.

2. YAML file path: Provide the path to an existing .yml file defining a new
style.

3. List of custome R code: Supply a block of custom R code or a named
list describing styles for each table section. This code must be specific
to the selected table type. If style =NULL, the function will use global
options (see setGlobalTableOptions()) or an existing _brand.yml file
(if found); otherwise, the default style is applied. For more details, see the
Styles vignette on the package website.

.options A named list with additional formatting options. visOmopResults: :tableOptions()
shows allowed arguments and their default values.

Value

A formatted table of the class selected in "type" argument.

Examples

result <- mockSummarisedResult()
result |>
visTable(
estimateName = c(”"N%" = "<count> (<percentage>)",
"N" = "<count>",

26

visTable
"Mean (SD)" = "<mean> (<sd>)"),
header = c("Estimate”),
rename = c(”"Database name" = "cdm_name"),
groupColumn = c("strata_name"”, "strata_level”),

hide = c("additional_name"”, "additional_level”, "estimate_type", "result_type")

Index

x datasets
data, 6

barPlot, 2
boxPlot, 4

customiseText, 5
data, 6

emptyPlot, 7
emptyTable, 7

formatEstimateName, 8
formatEstimateValue, 9
formatHeader, 10
formatMinCellCount, 11
formatTable, 12

mockSummarisedResult, 14

plotColumns, 15
plotStyle, 15
plotType, 16

scatterPlot, 16
setGlobalPlotOptions, 18
setGlobalTableOptions, 18

tableColumns, 19
tableOptions, 20
tableStyle, 20
tableType, 21
themeVisOmop, 21

visOmopTable, 22
visTable, 24

27

	barPlot
	boxPlot
	customiseText
	data
	emptyPlot
	emptyTable
	formatEstimateName
	formatEstimateValue
	formatHeader
	formatMinCellCount
	formatTable
	mockSummarisedResult
	plotColumns
	plotStyle
	plotType
	scatterPlot
	setGlobalPlotOptions
	setGlobalTableOptions
	tableColumns
	tableOptions
	tableStyle
	tableType
	themeVisOmop
	visOmopTable
	visTable
	Index

