Package ‘vetr’

January 23, 2026

Title Trust, but Verify

Description Declarative template-based framework for verifying that objects
meet structural requirements, and auto-composing error messages when they do

not.
Version 0.2.20

Depends R (>=3.2.0)
License GPL (>=2)

URL https://github.com/brodieG/vetr

BugReports https://github.com/brodieG/vetr/issues

VignetteBuilder

knitr

Imports methods, stats, utils

Suggests knitr, rmarkdown, unitizer
RoxygenNote 7.3.3
Encoding UTF-8

NeedsCompilation yes

Author Brodie Gaslam [aut, cre],
Paxdiablo [cph] (Hash table implementation in src/pthash.h),
R Core Team [cph] (Used/adapted several code snippets from R sources,
see src/r-copied.c),
Michael Chirico [ctb] (ORCID: <https://orcid.org/0000-0003-0787-087X>)

Maintainer Brodie Gaslam <brodie.gaslam@yahoo.com>
Repository CRAN
Date/Publication 2026-01-23 06:40:02 UTC

Contents

VEI-Package o o e e e e e e e e

abstract

https://github.com/brodieG/vetr
https://github.com/brodieG/vetr/issues
https://orcid.org/0000-0003-0787-087X

2 vetr-package

bench_mark e 8
nullify . . . e 9
type_of . . . e 10
VEL o o o e e e e e e 11
VEIT o o e e e e e e e e s 14
VEr_SEttINGS o v v e e e e e e e 16
Vet_toKEN e 19

Index 23

vetr-package Trust, but Verify
Description

Declarative template-based framework for verifying that objects meet structural requirements, and
auto-composing error messages when they do not.

Author(s)

Maintainer: Brodie Gaslam <brodie.gaslam@yahoo.com>

Other contributors:

 Paxdiablo (Hash table implementation in src/pfhash.h) [copyright holder]

* R Core Team <R-core@r-project.org> (Used/adapted several code snippets from R sources,
see src/r-copied.c) [copyright holder]

¢ Michael Chirico <michaelchirico4@gmail.com> (ORCID) [contributor]

See Also

Useful links:

* https://github.com/brodieG/vetr

* Report bugs at https://github.com/brodieG/vetr/issues

https://orcid.org/0000-0003-0787-087X
https://github.com/brodieG/vetr
https://github.com/brodieG/vetr/issues

abstract 3

abstract Turn S3 Objects Into Templates

Description

Create templates for use by alike. Currently somewhat experimental; behavior may change in
future.

Usage

abstract(x, ...)

S3 method for class 'data.frame'
abstract(x, ...)

Default S3 method:
abstract(x, ...)

S3 method for class 'array'
abstract(x, ...)

S3 method for class 'matrix'
abstract(x, ...)

S3 method for class 'list'
abstract(x, ...)

S3 method for class 'lm'
abstract(x, ...)

S3 method for class 'environment'
abstract(x, ...)

S3 method for class 'ts'

abstract(x, what = c("start”, "end”, "frequency"), ...)
Arguments
X the object to abstract

arguments for methods that require further arguments

what for time series which portion of the ts attribute to abstract, by default all three
are abstracted, but you can select, any one, two, or all

Details

abstract is intended to create templates for use by alike. The result of abstraction is often a
partially specified object. This type of object may not be suited for use in typical R computations

4 alike

and may cause errors (or worse) if you try to use them as normal R objects.

There is no guarantee that the abstracted object is suitable for use as a template to alike as is.
You may need to modify it further so that it suits your purposes.

abstract is an S3 generic. The default method will dispatch on implicit classes, so if you attempt
to abstract an object without an explicit abstract method, it will get abstracted based on its
implicit class. If you define your own abstract method and do not wish further abstraction based
on implicit classes do not use NextMethod.

S4 and RC objects are returned unchanged.

Value

abstracted object

Time Series

abstract replaces the "tsp" attribute with a "tsp_vetr" attribute with the components specified in
what set to zero. alike will treat it as a "tsp" attribute except that the zero components become wild-
cards. If you manually create a template object with both "tsp" and "tsp_vetr" attributes, "tsp_vetr"
is treated as a regular attribute. vetr does not consider whether the "ts" class is also set when
attributing special semantics to the "tsp". The "tsp_vetr" attribute is required because R does not
permit O values in "tsp". Prior to R4.6.0 and vetr 2.20, vetr constructed a "tsp" attribute with
zeroes, but it no longer does that.

Examples

iris.tpl <- abstract(iris)
alike(iris.tpl, iris[1:10, 1)
alike(iris.tpl, transform(iris, Species=as.character(Species)))

abstract(1:10)
abstract(matrix(1:9, nrow=3))
abstract(list(1:9, runif(10)))

alike Compare Object Structure

Description

Similar to all.equal, but compares object structure rather than value. The target argument de-
fines a template that the current argument must match.

Usage

alike(target, current, env = parent.frame(), settings = NULL)

alike 5

Arguments
target the template to compare the object to
current the object to determine alikeness of to the template
env environment used internally when evaluating expressions; currently used only
when looking up functions to match.call when testing language objects, note
that this will be overridden by the environment specified in settings if any,
defaults to the parent frame.
settings a list of settings generated using vetr_settings, NULL for default
Value

TRUE if target and current are alike, character(1L) describing why they are not if they are not

alikeness

Generally speaking two objects are alike if they are of the same type (as determined by type_alike)
and length. type_alike has special treatment for integer-like numerics and function-like objects.

Attributes on the objects are required to be recursively alike, though the following attributes are
treated specially: class, dim, dimnames, names, row.names, levels, tsp, and srcref.

Exactly what makes two objects alike is complex, but should be intuitive. The best way to under-
stand "alikeness" is to review the examples. For a thorough exposition see the vignette.

Note

The semantics of alikeness for language objects, formulas, and functions may change in the future.

See Also

type_alike, type_of, abstract, vetr_settings for more control of settings

Examples
Type comparison
alike(1L, 1.0) # TRUE, because 1.0 is integer-like
alike(1L, 1.1) # FALSE, 1.1 is not integer-like
alike(1.1, 1L) # TRUE, by default, integers are always considered real

alike(1:100, 1:100 + 0.0) # TRUE

We do not check numerics for integerness if longer than 100
alike(1:101, 1:101 + 0.0)

Scalarness can now be checked at same time as type
alike(integer(1L), 1) # integer-like and length 17
alike(logical(1L), TRUE) # logical and length 1?
alike(integer(1L), 1:3)

alike(logical(1L), c(TRUE, TRUE))

Zero length match any length of same type

../doc/alike.html

alike

alike(integer(), 1:10)
alike(1:10, integer()) # but not the other way around

Recursive objects compared recursively

alike(
list(integer(), list(character(), logical(1L))),
list(1:10, list(letters, TRUE))

)

alike(
list(integer(), list(character(), logical(1L))),
list(1:10, list(letters, c(TRUE, FALSE)))

)

“NULL® is a wild card when nested within recursive objects
alike(list(NULL, NULL), list(iris, mtcars))
alike(NULL, mtcars) # but not at top level

Since “data.frame” are lists, we can compare them recursively:
iris.fake <- transform(iris, Species=as.character(Species))
alike(iris, iris.fake)

we even check attributes (factor levels must match)!

iris.fake2 <- iris

levels(iris.fake2$Species) <- c("setosa”, "versicolor”, "africana")
alike(iris, iris.fake2)

We can use partially specified objects as templates
iris.tpl <- abstract(iris)

str(iris.tpl)

alike(iris.tpl, iris)

any row sample of iris matches our iris template
alike(iris.tpl, iris[sample(1:nrow(iris), 10), 1)

but column order matters

alike(iris.tpl, iris[c(2, 1, 3, 4, 5)]1)

3 x 3 integer

alike(matrix(integer(), 3, 3), matrix(1:9, nrow=3))

3 x 3, but not integer!

alike(matrix(integer(), 3, 3), matrix(runif(9), nrow=3))
partial spec, any 3 row integer matrix
alike(matrix(integer(), 3), matrix(1:12, nrow=3))
alike(matrix(integer(), 3), matrix(1:12, nrow=4))

Any logical matrix (but not arrays)
alike(matrix(logical()), array(rep(TRUE, 8), rep(2, 3)))

In order for objects to be alike, they must share a family
tree, not just a common class

obj.tpl <- structure(TRUE, class=letters[1:3])

obj.cur.1 <- structure(TRUE, class=c("x", letters[1:3]))
obj.cur.2 <- structure(TRUE, class=c(letters[1:3], "x"))

alike(obj.tpl, obj.cur.1)
alike(obj.tpl, obj.cur.2)

all bw 7

You can compare language objects; these are alike if they are self
consistent; we don't care what the symbols are, so long as they are used
consistently across target and current:

TRUE, symbols are consistent (adding two different symbols)
alike(quote(x + y), quote(a + b))

FALSE, different function

alike(quote(x + y), quote(a - b))

FALSE, inconsistent symbols

alike(quote(x + y), quote(a + a))

all_bw Verify Values in Vector are Between Two Others

Description

Similar to isTRUE(all(x >= 1o & x <= hi)) with default settings, except that it is substantially
faster and returns a string describing the first encountered violation rather than FALSE on failure.

Usage

all_bw(x, lo = -Inf, hi = Inf, na.rm = FALSE, bounds = "[]")

Arguments

X vector logical (treated as integer), integer, numeric, or character. Factors are
treated as their underlying integer vectors.

lo scalar vector of type coercible to the type of x, cannot be NA, use -Inf to indi-
cate unbounded (default).

hi scalar vector of type coercible to the type of x, cannot be NA, use Inf to indicate
unbounded (default), must be greater than or equal to lo.

na.rm TRUE, or FALSE (default), whether NAs are considered to be in bounds. Un-
like with all(), for all_bw na.rm=FALSE returns an error string if there are
NAs instead of NA. Arguably NA, but not NaN, should be considered to be in
[-Inf,Inf], but since NA < Inf is NA we treat them as always being out of
bounds.

bounds character (1L) for values between 1o and hi:

e “[]” include 1o and hi
e “()” exclude 1o and hi
e “(]” exclude lo, include hi

¢ “[)” include lo, exclude hi

8 bench _mark

Details

You can modify the comparison to be strictly greater/less than via the bounds parameter, and the
treatment of NAs with na.rm. Note that NAs are considered to be out of bounds by default. While
technically incorrect since we cannot know whether an NA value is in or out of bounds, this as-
sumption is both conservative and convenient. Zero length x will always succeed.

If x and lo/hi are different types, lo/hi will be coerced to the type of x. When lo/hi are numeric
and x is integer, if 1o/hi values are outside of the integer range then that side will be treated as if
you had used -Inf/Inf. -Inf and Inf mean lo and hi will be unbounded for all data types.

Value

TRUE if all values in x conform to the specified bounds, a string describing the first position that
fails otherwise

Examples

all_bw(runif(100), 0, 1)

all_bw(runif(100) * 2, @, 1)

all_bw(NA, 0, 1) # This is does not return NA
all_bw(NA, @, 1, na.rm=TRUE)

vec <- c(runif(100, @, 1el12), Inf, @)

all_bw(vec, @) # All +ve numbers

all_bw(vec, hi=@) # All -ve numbers

all_bw(vec, @, bounds="(]1") # All strictly +ve nums
all_bw(vec, @, bounds="[)") # All finite +ve nums

bench_mark Lightweight Benchmarking Function

Description

Evaluates provided expression in a loop and reports mean evaluation time. This is inferior to
microbenchmark and other benchmarking tools in many ways except that it has zero dependen-
cies or suggests which helps with package build and test times. Used in vignettes.

Usage
bench_mark(..., times = 1000L, deparse.width = 40)
Arguments
expressions to benchmark, are captured unevaluated
times how many times to loop, defaults to 1000

deparse.width how many characters to deparse for labels

nullify 9

Details

Runs gc() before each expression is evaluated. Expressions are evaluated in the order provided.
Attempts to estimate the overhead of the loop by running a loop that evaluates NULL the times
times.

Unfortunately because this computes the average of all iterations it is very susceptible to outliers
in small sample runs, particularly with fast running code. For that reason the default number of
iterations is one thousand.

Value

NULL, invisibly, reports timings as a side effect as screen output

Examples

bench_mark (runif(1000), Sys.sleep(0.001), times=10)

nullify Set Element to NULL Without Removing It

Description
This function is required because there is no straightforward way to over-write a value in a list with
NULL without completely removing the entry from the list as well.

Usage
nullify(obj, index)

Default S3 method:
nullify(obj, index)

Arguments

obj the R object to NULL a value in

index an indexing vectors of values to NULL
Details

This returns a copy of the object modified with null slots; it does not modify the input argument.

Default method will attempt to convert non-list objects to lists with as.list, and then back to
whatever they were by using a function with name paste@("as.", class(obj)[[1L]1]) if it exists
and works. If the object cannot be coerced back to its original type the corresponding list will be
returned.

If this is not appropriate for your object type you can write an S3 method for it.

10 type_of

Value

object with selected values NULLified

Note

attributes are copied from original object and re-applied to final object before return, which may not
make sense in some circumstances.

Examples

nullify(list(1, 2, 3), 2)
nullify(call("fun”, 1, 2, 3), 2)

type_of Fuzzily Compare Types of Objects

Description

Type evaluation and comparison is carried out with special treatment for numerics, integers, and
function types. Whole number NA-free numeric vectors of sufficiently short length (<100 by de-
fault) representable in the integer type are considered to be type integer. Closures, built-ins, and
specials are all treated as type closure.

Usage

type_of (object)

type_alike(target, current, settings = NULL)

Arguments

object the object to check the type of

target the object to test type alikeness against

current the object to test the type alikeness of

settings NULL, or a list as produced by vetr_settings()
Details

Specific behavior can be tuned with the type.mode parameter to the vetr_settings() object
passed as the settings parameter to this function.

Value

For type_of character(1L) the type of the object, for type_alike either TRUE, or a string describ-
ing why the types are not alike.

vet 11
See Also
alike(), vetr_settings(), in particular the section about the type .mode parameter which affects
how this function behaves.
Examples
type_of (1.0001) # numeric
type_of (1.0) # integer (" typeof” returns numeric)
type_of (1) # integer (" typeof™ returns numeric)
type_of (sum) # closure (" typeof™ returns builtin)
type_of ("$7) # closure ("typeof” returns special)
type_alike(1L, 1)
type_alike(1L, 1.1)
type_alike(integer(), numeric(100))
type_alike(integer(), numeric(101)) # too long
vet Verify Objects Meet Structural Requirements
Description
Use vetting expressions to enforce structural requirements and/or evaluate test conditions for truth.
tev is identical to vet except with reversed arguments for pipe based workflows.
Usage
vet(
target,
current,
env = parent.frame(),
format = "text”,
stop = FALSE,

settings = NULL

tev(
current,
target,
env = parent.frame(),
format = "text”,
stop = FALSE,

settings = NULL

12 vet

Arguments
target a template, a vetting expression, or a compound expression
current an object to vet
env the environment to match calls and evaluate vetting expressions in; will be ig-
nored if an environment is also specified via vetr_settings(). Defaults to
calling frame.
format character(1L), controls the format of the return value for vet, in case of failure.
One of:
* "text": (default) character(1L) message for use elsewhere in code
e "full": character(1L) the full error message used in "stop" mode, but actu-
ally returned instead of thrown as an error
» "raw": character(N) least processed version of the error message with none
of the formatting or surrounding verbiage
stop TRUE or FALSE whether to call stop() on failure or not (default)
settings a settings list as produced by vetr_settings(), or NULL to use the default
settings
Value

TRUE if validation succeeds, otherwise varies according to value chosen with parameter stop

Vetting Expressions

Vetting expressions can be template tokens, standard tokens, or any expression built with them, | |,
&&, and parentheses. Template tokens are R objects that define the required structure, much like the
FUN.VALUE argument to vapply (). Standard tokens are R expressions evaluated and checked for
being al1(TRUE).

Standard tokens are distinguished from templates by whether they reference the . symbol or not. If
you have a need to reference an object bound to . in a vetting expression, you can escape the . with
an extra dot (i.e. use .., and . .. for . ., and so forth for symbols comprising only dots). If you use
standard tokens in your packages you will need to include utils::globalVariables(".") as a
top-level call to avoid the "no visible binding for global variable ’.""” R CMD check NOTE. Standard
tokens that return a string like e.g. all.equal(x, .) will result in that string being incorporated
into the error message.

See vignette('vetr', package='vetr') and examples for details on how to craft vetting expres-
sions.

See Also

vetr() for a version optimized to vet function arguments, alike() for how templates are used,
vet_token() for how to specify custom error messages and also for predefined validation tokens
for common use cases, all_bw() for fast bounds checks.

vet

Examples

Template token vetting
vet(numeric(2L), runif(2))
vet(numeric(2L), runif(3))
vet(numeric(2L), letters)
try(vet(numeric(2L), letters, stop=TRUE))

Standard token vetting
vet(. > 0, runif(2))

Expression made of standard and template tokens.
vet(numeric(1) & . > 0, 1)

try(vet(numeric(1) && . > 0, 1:2))
try(vet(numeric(1) & . > 0, -1))

“tev™ just reverses target and current

if(getRversion() >= "4.1.0") { # would be a parse error so commented
runif(2) |> tev(numeric(2L))

runif(3) |> tev(numeric(2L))

#H }

Zero length templates are wild cards
vet(numeric(), runif(2))

vet(numeric(), runif(100))
vet(numeric(), letters)

This extends to data.frames

iris.tpl <- iris[@,] # zero row matches any # of rows
iris.1 <- iris[1:10,]

iris.2 <- iris[1:10, c(1,2,3,5,4)] # change col order
vet(iris.tpl, iris.1)

vet(iris.tpl, iris.2)

Short (<100 length) integer-like numerics will
pass for integer

vet(integer(), c(1, 2, 3))

vet(integer(), c(1, 2, 3) + 0.1)

Nested templates; note, in packages you should consider
defining templates outside of “vet™ or “vetr® so that
they are computed on load rather that at runtime

tpl <- list(numeric(1L), matrix(integer(), 3))

val.1 <- list(runif(1), rbind(1:10, 1:10, 1:10))

val.2 <- list(runif(1), cbind(1:10, 1:10, 1:10))

vet(tpl, val.1)

vet(tpl, val.2)

See “example(alike)™ for more template examples
Standard tokens allow you to check values

vet(. > @, runif(10))
vet(. > @, -runif(10))

13

14 vetr

Zero length token results are considered TRUE,
as is the case with “all(logical(@))"
vet(. > @, numeric())

~all_bw™ is like “isTRUE(all(. >= x & . <=y))~, but
~10x faster for long vectors:
vet(all_bw(., @, 1), runif(le6) + .1)

You can combine templates and standard tokens with
~8&&" and/or ||

vet(numeric(2L) & . > @, runif(2))

vet(numeric(2L) && . > @, runif(10))

vet(numeric(2L) && . > @, -runif(2))

Using pre-defined tokens (see ~?vet_token™)
vet(INT.1, 1)

vet(INT.1, 1:2)

vet(INT.1 && . %in% @:1 || LGL.1, TRUE)
vet(INT.1 && . %in% @:1 || LGL.1, 1)

vet(INT.1 & . %in% 0:1 || LGL.1, NA)

Vetting expressions can be assembled from previously

defined tokens

scalar.num.pos <- quote(numeric(1L) && . > 0)

foo.or.bar <- quote(character(1L) && . %in% c('foo', 'bar'))
vet.exp <- quote(scalar.num.pos || foo.or.bar)

vet(vet.exp, 42)

vet(scalar.num.pos || foo.or.bar, 42) # equivalently
vet(vet.exp, "foo")

vet(vet.exp, "baz")

Standard tokens that return strings see the string shown
in the error message:
vet(all.equal(., 2), 1)

vetr Verify Function Arguments Meet Structural Requirements

Description

Use vetting expressions to enforce structural requirements for function arguments. Works just like
vet(), except that the formals of the enclosing function automatically matched to the vetting ex-
pressions provided in

Usage

vetr(..., .VETR_SETTINGS = NULL)

vetr 15

Arguments

vetting expressions, each will be matched to the enclosing function formals as
with match.call() and will be used to validate the value of the matching for-
mal.

.VETR_SETTINGS a settings list as produced by vetr_settings(), or NULL to use the default
settings. Note that this means you cannot use vetr with a function that takes a
.VETR_SETTINGS argument

Details

Only named arguments may be vetted; in other words it is not possible to vet arguments passed via

Value

TRUE if validation succeeds, otherwise stop with error message detailing nature of failure.

Vetting Expressions

Vetting expressions can be template tokens, standard tokens, or any expression built with them, | |,
&&, and parentheses. Template tokens are R objects that define the required structure, much like the
FUN.VALUE argument to vapply(). Standard tokens are R expressions evaluated and checked for
being al1(TRUE).

Standard tokens are distinguished from templates by whether they reference the . symbol or not. If
you have a need to reference an object bound to . in a vetting expression, you can escape the . with
an extra dot (i.e. use . ., and . .. for . ., and so forth for symbols comprising only dots). If you use
standard tokens in your packages you will need to include utils::globalVariables(".") as a
top-level call to avoid the "no visible binding for global variable ’.’"” R CMD check NOTE. Standard
tokens that return a string like e.g. all.equal(x, .) will result in that string being incorporated
into the error message.

See vignette('vetr', package='vetr') and examples for details on how to craft vetting expres-
sions.

Note

vetr will force evaluation of any arguments that are being checked (you may omit arguments that
should not be evaluate from vetr)

See Also

vet(), in particular example(vet).

Examples

Look at ~?vet” examples for more details on how to craft
vetting expressions.

funl <- function(x, y) {
vetr(integer(), LGL.1)

16 vetr_settings

TRUE # do some work
3
fun1(1:10, TRUE)
try(fun1i(1:10, 1:10))

only vet the second argument
fun2 <- function(x, y) {
vetr(y=LGL.1)
TRUE # do some work

}
try(fun2(letters, 1:10))

Nested templates; note, in packages you should consider

defining templates outside of “vet™ or “vetr” so that

they are computed on load rather that at runtime

tpl <- list(numeric(1L), matrix(integer(), 3))

val.1 <- list(runif(1), rbind(1:10, 1:10, 1:10))

val.2 <- list(runif(1), cbind(1:10, 1:10, 1:10))

fun3 <- function(x, y) {
vetr(x=tpl, y=tpl && ncol(.[[2]1]) == ncol(x[[21]))
TRUE # do some work

}

fun3(val.1, val.1)

try(fun3(val.1, val.2))

val.1.a <- val.1

val.1.a[[2]] <- val.1.a[[2]1]1[, 1:8]

try(fun3(val.1, val.1.a))

vetr_settings Generate Control Settings For vetr and alike

Description

Utility function to generate setting values. We strongly recommend that you generate the settings
outside of function calls so that setting generation does not become part of the vet/vetr/alike
evaluation as that could add noticeable overhead to the function evaluation.

Usage

vetr_settings(
type.mode = 0oL,
attr.mode = oL,
lang.mode = oL,
fun.mode = oL,
rec.mode = 0QL,
suppress.warnings = FALSE,
fuzzy.int.max.len = 100L,
width = -1L,
env.depth.max = 65535L,

vetr_settings

17

symb.sub.depth.max = 65535L,

symb.size.max

= 15000L,

nchar.max = 65535L,
track.hash.content.size = 63L,

env = NULL,

result.list.size.init = 64L,
result.list.size.max = 1024L

Arguments

type.mode

attr.mode

lang.mode

fun.mode

rec.mode

integer(1L) in 0:2, defaults to 0, determines how object types (as in typeof) are
compared:

* 0: integer like numerics (e.g. 1.0) can match against integer templates, and
integers always match real templates; all function types are considered of
the same type

* 1: integers always match against numeric templates, but not vice versa, and
integer-like numerics are treated only as numerics; functions only match
same function type (i.e. closures only match closures, builtins builtins, and
specials specials)

* 2: types must be equal for all objects types (for functions, this is unchanged
from 1)

integer(1L) in 0:2, defaults to 0, determines strictness of attribute comparison:

* 0 only checks attributes that are present in target, and uses special compar-
isons for the special attributes (class, dim, dimnames, names, row.names,
levels, srcref, and tsp) while requiring other attributes to be alike

* 1 is like @, except all atributes must be alike
* 2 requires all attributes to be present in target and current and to be alike

integer(1L) in 0:1, defaults to O, controls language matching, set to 1 to turn off
use of match.call()

NOT IMPLEMENTED, controls how functions are compared

integer(1L) @ currently unused, intended to control how recursive structures
(other than language objects) are compared

suppress.warnings

logical(1L) suppress warnings if TRUE

fuzzy.int.max.len

width

env.depth.max

max length of numeric vectors to consider for integer likeness (e.g. c(1, 2)
can be considered "integer", even though it is numeric); currently we limit this
check to vectors shorter than 100 to avoid a potentially expensive computation
on large vectors, set to -1 to apply to all vectors irrespective of length

to use when deparsing expressions; default -1 equivalent to getOption("width")

integer(1L) maximum number of nested environments to recurse through, de-
faults to 65535L; these are tracked to make sure we do not get into an infinite
recursion loop, but because they are tracked we keep a limit on how many we
will go through, set to -1 to allow unlimited recursion depth. You should not
need to change this unless you are running into the recursion limit.

18

vetr_settings

symb. sub.depth.max

symb.size.max

nchar.max

integer(1L) maximum recursion depth when recursively substituting symbols in
vetting expression, defaults to 65535L

integer(1L) maximum number of characters that a symbol is allowed to have in
vetting expressions, defaults to 15000L.

integer(1L) defaults to 65535L, threshold after which strings encountered in C
code are truncated. This is the read limit. In theory vetr can produce strings
longer than that by combining multiple shorter pieces.

track.hash.content.size

env

integer(1L) (advanced) used to set the initial size of the symbol tracking vector
used with the hash table that detects recursive symbol substitution. If the track-
ing vector fills up it will be grown by 2x. This parameter is exposed mostly for
developer use.

what environment to use to match calls and evaluate vetting expressions, al-
though typically you would specify this with the env argument to vet; if NULL
will use the calling frame to vet/vetr/alike.

result.list.size.init

initial value for token tracking. This will be grown by a factor of two each time
it fills up until we reach result.list.size.max.

result.list.size.max

Details

maximum number of tokens we keep track of, intended mostly as a safeguard in
case a logic error causes us to keep allocating memory. Set to 1024 as a default
value since it should be exceedingly rare to have vetting expressions with such a
large number of tokens, enough so that if we reach that number it is more likely
something went wrong.

Settings after fuzzy.int.max.len are fairly low level and exposed mostly for testing purposes.
You should generally not need to use them.

Note that a successful evaluation of this function does not guarantee a correct settings list. Those
checks are carried out internally by vet/vetr/alike.

Value

list with all the setting values

See Also

type_alike, alike, vetr

Examples

type_alike(1L, 1.0, settings=vetr_settings(type.mode=2))

better if you are going to re-use settings to reduce overhead
set <- vetr_settings(type.mode=2)

type_alike(1L, 1.0, settings=set)

vet_token 19

vet_token Vetting Tokens With Custom Error Messages

Description

Utility function to generate vetting tokens with attached error messages. You should only need
to use this if the error message produced naturally by vetr is unclear. Several predefined tokens
created by this function are also documented here.

Usage

vet_token(exp, err.msg = "%s")
NO.NA

NO. INF

GTE.Q

LTE.Q

GT.o

LT.0

INT.1
INT.1.POS
INT.1.NEG
INT.1.POS.STR
INT.1.NEG.STR
INT

INT.POS
INT.NEG
INT.POS.STR
INT.NEG.STR

NUM. 1

20

NUM. 1.POS

NUM. 1.NEG

NUM

NUM. POS

NUM.NEG

CHR.1

CHR

CPX

CPX.1

LGL

LGL.1

Arguments

exp an expression which will be captured but not evaluated.

vet_token

err.msg character(1L) a message that tells the user what the expected value should be,
should contain a "%s" for sprintf to use (e.g. "%s should be greater than 2").

Format

An object of class call of length 2.
An object of class call of length 2.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.

vet_token 21

An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.
An object of class call of length 3.

Details

Allows you to supply error messages for vetting to use for each error token. Your token should not
contain top level & or | |. If it does your error message will not be reported because vetr looks
for error messages attached to atomic tokens. If your token must involve top level && or | |, use I(x
&& y) to ensure that your error message is used by vet, but beware than in doing so you do not use
templates within the I call as everything therein will be interpreted as a vetting expression rather
than a template.

Error messages are typically of the form "%s should be XXX".

This package ships with many predefined tokens for common use cases. They are listed in the Usage
section of this documentation. The tokens are named in format TYPE[.LENGTH][.OTHER]. For
example INT will vet an integer vector, INT. 1 will vet a scalar integer vector, and INT.1.POS.STR
will vet a strictly positive integer vector. At this time tokens are predefined for the basic types as
scalars or any-length vectors. Some additional checks are available (e.g. positive only values).

Every one of the predefined vetting tokens documented here implicitly disallows NAs. Numeric
tokens also disallow infinite values. If you wish to allow NAs or infinite values just use a template
object (e.g. integer(1L)).

Value

a quoted expressions with err.msg attribute set

Note

This will only work with standard tokens containing .. Anything else will be interpreted as a
template token.

See Also

vet()

22

Examples

Predefined tokens:

vet(INT.1, 1:2)

vet(INT.1 || LGL, 1:2)

vet(INT.1 || LGL, c(TRUE, FALSE))

Check squareness

mx <- matrix(1:3)

SQR <- vet_token(nrow(.) == ncol(.), "%s should be square")
vet(SQR, mx)

Let “vetr™ make up error message; note “quote” vs “vet_token”
Often, “vetr”™ does fine without explictly specified err msg:
SQR.V2 <- quote(nrow(.) == ncol(.))

vet(SQR.V2, mx)

Combine some tokens, notice how we use “quote™ at the combining

step:

NUM.MX <- vet_token(matrix(numeric(), @, @), "%s should be numeric matrix")
SQR.NUM.MX <- quote(NUM.MX && SQR)

vet (SQR.NUM.MX, mx)

If instead we used “vet_token™ the overall error message
is not used; instead it falls back to the error message of
the specific sub-token that fails:
NUM.MX <- vet_token(matrix(numeric(), @, @), "%s should be numeric matrix")
SQR.NUM.MX.V2 <-
vet_token(NUM.MX && SQR, "%s should be a square numeric matrix")
vet (SQR.NUM.MX.V2, mx)

vet_token

Index

x datasets
vet_token, 19

abstract, 3,5
alike, 3, 4,4, 18
alike(), 11, 12
all(),7
all.equal, 4
all_bw, 7
all_bw(), 12
as.list, 9

bench_mark, 8

CHR (vet_token), 19
CPX (vet_token), 19

gc(), 9
GT.0 (vet_token), 19
GTE.Q (vet_token), 19

INT (vet_token), 19

LGL (vet_token), 19
LT.0 (vet_token), 19
LTE.® (vet_token), 19

match.call, 5
match.call(), 15, 17

NextMethod, 4

NO. INF (vet_token), 19
NO.NA (vet_token), 19
nullify, 9

NUM (vet_token), 19

stop(), 12
tev (vet), 11

type_alike, 5, I8
type_alike (type_of), 10

23

type_of, 5, 10

vapply(), 12, 15

vet, 11

vet(), 14, 15, 21
vet_token, 19
vet_token(), 12
vetr, 14, 18

vetr(), 12

vetr-package, 2
vetr_settings, 5, 16
vetr_settings(), 10-12, 15

	vetr-package
	abstract
	alike
	all_bw
	bench_mark
	nullify
	type_of
	vet
	vetr
	vetr_settings
	vet_token
	Index

