
Package ‘valr’
January 11, 2026

Type Package

Title Genome Interval Arithmetic

Version 0.9.1

Description Read and manipulate genome intervals and signals. Provides
functionality similar to command-line tool suites within R, enabling
interactive analysis and visualization of genome-scale data. Riemondy
et al. (2017) <doi:10.12688/f1000research.11997.1>.

License MIT + file LICENSE

URL https://github.com/rnabioco/valr, https://rnabioco.github.io/valr/

BugReports https://github.com/rnabioco/valr/issues

Depends R (>= 4.1)

Imports broom, cli, cpp11bigwig, dplyr (>= 0.8.0), ggplot2, lifecycle,
readr, rlang, stringr, tibble (>= 1.4.2)

Suggests bench, covr, cowplot, curl, DBI, dbplyr, devtools, DT,
GenomicRanges, IRanges, knitr, purrr, RMariaDB, rmarkdown,
S4Vectors, testthat (>= 3.0.0), tidyr, vdiffr (>= 1.0.0)

LinkingTo cpp11

VignetteBuilder knitr

Config/Needs/website rnabioco/rbitemplate

Config/testthat/edition 3

Config/testthat/parallel true

Config/usethis/last-upkeep 2025-12-10

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Jay Hesselberth [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6299-179X>),

Kent Riemondy [aut] (ORCID: <https://orcid.org/0000-0003-0750-1273>),
RNA Bioscience Initiative [fnd, cph] (ROR: <https://ror.org/03wmf1y16>)

1

https://doi.org/10.12688/f1000research.11997.1
https://github.com/rnabioco/valr
https://rnabioco.github.io/valr/
https://github.com/rnabioco/valr/issues
https://orcid.org/0000-0002-6299-179X
https://orcid.org/0000-0003-0750-1273
https://ror.org/03wmf1y16

2 Contents

Maintainer Jay Hesselberth <jay.hesselberth@gmail.com>

Repository CRAN

Date/Publication 2026-01-11 06:10:02 UTC

Contents
bed12_to_exons . 3
bed_absdist . 3
bed_closest . 4
bed_cluster . 6
bed_complement . 7
bed_coverage . 9
bed_fisher . 10
bed_flank . 11
bed_genomecov . 12
bed_glyph . 14
bed_intersect . 15
bed_jaccard . 17
bed_makewindows . 18
bed_map . 19
bed_merge . 21
bed_partition . 23
bed_projection . 24
bed_random . 26
bed_reldist . 27
bed_shift . 28
bed_shuffle . 29
bed_slop . 31
bed_sort . 32
bed_subtract . 33
bed_window . 35
bound_intervals . 36
create_introns . 37
create_tss . 38
create_utrs3 . 39
create_utrs5 . 39
db . 40
flip_strands . 41
gr_to_bed . 42
interval_spacing . 43
ivl_df . 44
read_bed . 45
read_genome . 46
read_gtf . 47
read_vcf . 48
valr . 48
valr_example . 49

bed12_to_exons 3

Index 50

bed12_to_exons Convert BED12 to individual exons in BED6.

Description

After conversion to BED6 format, the score column contains the exon number, with respect to
strand (i.e., the first exon for - strand genes will have larger start and end coordinates).

Usage

bed12_to_exons(x)

Arguments

x ivl_df

See Also

Other utilities: bed_makewindows(), bound_intervals(), flip_strands(), interval_spacing()

Examples

x <- read_bed12(valr_example("mm9.refGene.bed.gz"))

bed12_to_exons(x)

bed_absdist Compute absolute distances between intervals.

Description

Computes the absolute distance between the midpoint of each x interval and the midpoints of each
closest y interval.

Usage

bed_absdist(x, y, genome)

Arguments

x ivl_df

y ivl_df

genome genome_df

4 bed_closest

Details

Absolute distances are scaled by the inter-reference gap for the chromosome as follows. For Q
query points and R reference points on a chromosome, scale the distance for each query point i to
the closest reference point by the inter-reference gap for each chromosome. If an x interval has no
matching y chromosome, .absdist is NA.

di(x, y) = mink(|qi − rk|)
R

Length of chromosome

Both absolute and scaled distances are reported as .absdist and .absdist_scaled.

Interval statistics can be used in combination with dplyr::group_by() and dplyr::reframe() to
calculate statistics for subsets of data. See vignette('interval-stats') for examples.

Value

ivl_df with .absdist and .absdist_scaled columns.

See Also

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002529

Other interval statistics: bed_fisher(), bed_jaccard(), bed_projection(), bed_reldist()

Examples

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

x <- bed_random(genome, seed = 1010486)
y <- bed_random(genome, seed = 9203911)

bed_absdist(x, y, genome)

bed_closest Identify closest intervals.

Description

Identify closest intervals.

Usage

bed_closest(x, y, overlap = TRUE, suffix = c(".x", ".y"))

Arguments

x ivl_df
y ivl_df
overlap report overlapping intervals
suffix colname suffixes in output

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002529

bed_closest 5

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df with additional columns:

• .overlap amount of overlap with overlapping interval. Non-overlapping or adjacent intervals
have an overlap of 0. .overlap will not be included in the output if overlap = FALSE.

• .dist distance to closest interval. Negative distances denote upstream intervals. Book-ended
intervals have a distance of 1.

Note

For each interval in x bed_closest() returns overlapping intervals from y and the closest non-
intersecting y interval. Setting overlap = FALSE will report the closest non-intersecting y intervals,
ignoring any overlapping y intervals.

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/closest.html

Other multiple set operations: bed_coverage(), bed_intersect(), bed_map(), bed_subtract(),
bed_window()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 125

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 140, 175

)

bed_glyph(bed_closest(x, y))

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 500, 600,
"chr2", 5000, 6000

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 200,

https://bedtools.readthedocs.io/en/latest/content/tools/closest.html

6 bed_cluster

"chr1", 150, 200,
"chr1", 550, 580,
"chr2", 7000, 8500

)

bed_closest(x, y)

bed_closest(x, y, overlap = FALSE)

Report distance based on strand
x <- tibble::tribble(

~chrom, ~start, ~end, ~name, ~score, ~strand,
"chr1", 10, 20, "a", 1, "-"

)

y <- tibble::tribble(
~chrom, ~start, ~end, ~name, ~score, ~strand,
"chr1", 8, 9, "b", 1, "+",
"chr1", 21, 22, "b", 1, "-"

)

res <- bed_closest(x, y)

convert distance based on strand
res$.dist_strand <- ifelse(res$strand.x == "+", res$.dist, -(res$.dist))
res

report absolute distances
res$.abs_dist <- abs(res$.dist)
res

bed_cluster Cluster neighboring intervals.

Description

The output .id column can be used in downstream grouping operations. Default max_dist = 0
means that both overlapping and book-ended intervals will be clustered.

Usage

bed_cluster(x, max_dist = 0)

Arguments

x ivl_df

max_dist maximum distance between clustered intervals.

bed_complement 7

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df with .id column specifying sets of clustered intervals.

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/cluster.html

Other single set operations: bed_complement(), bed_flank(), bed_genomecov(), bed_merge(),
bed_partition(), bed_shift(), bed_slop()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 200,
"chr1", 180, 250,
"chr1", 250, 500,
"chr1", 501, 1000,
"chr2", 1, 100,
"chr2", 150, 200

)

bed_cluster(x)

glyph illustrating clustering of overlapping and book-ended intervals
x <- tibble::tribble(

~chrom, ~start, ~end,
"chr1", 1, 10,
"chr1", 5, 20,
"chr1", 30, 40,
"chr1", 40, 50,
"chr1", 80, 90

)

bed_glyph(bed_cluster(x), label = ".id")

bed_complement Identify intervals in a genome not covered by a query.

Description

Identify intervals in a genome not covered by a query.

https://bedtools.readthedocs.io/en/latest/content/tools/cluster.html

8 bed_complement

Usage

bed_complement(x, genome)

Arguments

x ivl_df

genome ivl_df

Value

ivl_df

See Also

Other single set operations: bed_cluster(), bed_flank(), bed_genomecov(), bed_merge(),
bed_partition(), bed_shift(), bed_slop()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 0, 10,
"chr1", 75, 100

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 200

)

bed_glyph(bed_complement(x, genome))

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 500,
"chr2", 600,
"chr3", 800

)

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 300,
"chr1", 200, 400,
"chr2", 0, 100,
"chr2", 200, 400,
"chr3", 500, 600

)

intervals not covered by x
bed_complement(x, genome)

bed_coverage 9

bed_coverage Compute coverage of intervals.

Description

Compute coverage of intervals.

Usage

bed_coverage(x, y, ..., min_overlap = NULL)

Arguments

x ivl_df

y ivl_df

... extra arguments (not used)

min_overlap minimum overlap in base pairs required for the operation. Set to 1 to exclude
book-ended intervals (matching bedtools behavior), or 0 to include them (legacy
valr behavior). The default will change from 0 to 1 in a future version.

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df with the following additional columns:

• .ints number of x intersections

• .cov per-base coverage of x intervals

• .len total length of y intervals covered by x intervals

• .frac .len scaled by the number of y intervals

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

Other multiple set operations: bed_closest(), bed_intersect(), bed_map(), bed_subtract(),
bed_window()

https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html

10 bed_fisher

Examples

x <- tibble::tribble(
~chrom, ~start, ~end, ~strand,
"chr1", 100, 500, "+",
"chr2", 200, 400, "+",
"chr2", 300, 500, "-",
"chr2", 800, 900, "-"

)

y <- tibble::tribble(
~chrom, ~start, ~end, ~value, ~strand,
"chr1", 150, 400, 100, "+",
"chr1", 500, 550, 100, "+",
"chr2", 230, 430, 200, "-",
"chr2", 350, 430, 300, "-"

)

bed_coverage(x, y)

bed_fisher Fisher’s test to measure overlap between two sets of intervals.

Description

Calculate Fisher’s test on number of intervals that are shared and unique between two sets of x and
y intervals.

Usage

bed_fisher(x, y, genome)

Arguments

x ivl_df

y ivl_df

genome genome_df

Details

Interval statistics can be used in combination with dplyr::group_by() and dplyr::reframe() to
calculate statistics for subsets of data. See vignette('interval-stats') for examples.

Value

ivl_df

bed_flank 11

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/fisher.html

Other interval statistics: bed_absdist(), bed_jaccard(), bed_projection(), bed_reldist()

Examples

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

x <- bed_random(genome, n = 1e4, seed = 1010486)
y <- bed_random(genome, n = 1e4, seed = 9203911)

bed_fisher(x, y, genome)

bed_flank Create flanking intervals from input intervals.

Description

Create flanking intervals from input intervals.

Usage

bed_flank(
x,
genome,
both = 0,
left = 0,
right = 0,
fraction = FALSE,
strand = FALSE,
trim = FALSE,
...

)

Arguments

x ivl_df

genome genome_df

both number of bases on both sizes

left number of bases on left side

right number of bases on right side

fraction define flanks based on fraction of interval length

strand define left and right based on strand

trim adjust coordinates for out-of-bounds intervals

... extra arguments (not used)

https://bedtools.readthedocs.io/en/latest/content/tools/fisher.html

12 bed_genomecov

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/flank.html

Other single set operations: bed_cluster(), bed_complement(), bed_genomecov(), bed_merge(),
bed_partition(), bed_shift(), bed_slop()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 100, 125

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 130

)

bed_glyph(bed_flank(x, genome, both = 20))

x <- tibble::tribble(
~chrom, ~start, ~end, ~name, ~score, ~strand,
"chr1", 500, 1000, ".", ".", "+",
"chr1", 1000, 1500, ".", ".", "-"

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 5000

)

bed_flank(x, genome, left = 100)

bed_flank(x, genome, right = 100)

bed_flank(x, genome, both = 100)

bed_flank(x, genome, both = 0.5, fraction = TRUE)

bed_genomecov Calculate coverage across a genome

Description

This function is useful for calculating interval coverage across an entire genome.

https://bedtools.readthedocs.io/en/latest/content/tools/flank.html

bed_genomecov 13

Usage

bed_genomecov(x, genome, zero_depth = FALSE)

Arguments

x ivl_df

genome genome_df

zero_depth If TRUE, report intervals with zero depth. Zero depth intervals will be reported
with respect to groups.

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df with the an additional column:

• .depth depth of interval coverage

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html

Other single set operations: bed_cluster(), bed_complement(), bed_flank(), bed_merge(),
bed_partition(), bed_shift(), bed_slop()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end, ~strand,
"chr1", 20, 70, "+",
"chr1", 50, 100, "-",
"chr1", 200, 250, "+",
"chr1", 220, 250, "+"

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 500,
"chr2", 1000

)

bed_genomecov(x, genome)

bed_genomecov(dplyr::group_by(x, strand), genome)

bed_genomecov(dplyr::group_by(x, strand), genome, zero_depth = TRUE)

https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html

14 bed_glyph

bed_glyph Create example glyphs for valr functions.

Description

Used to illustrate the output of valr functions with small examples.

Usage

bed_glyph(expr, label = NULL)

Arguments

expr expression to evaluate

label column name to use for label values. should be present in the result of the call.

Value

ggplot2::ggplot()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 100, 125

)

y <- tibble::tribble(
~chrom, ~start, ~end, ~value,
"chr1", 30, 75, 50

)

bed_glyph(bed_intersect(x, y))

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 30, 75,
"chr1", 50, 90,
"chr1", 91, 120

)

bed_glyph(bed_merge(x))

bed_glyph(bed_cluster(x), label = ".id")

bed_intersect 15

bed_intersect Identify intersecting intervals.

Description

Report intersecting intervals from x and y tbls.

Usage

bed_intersect(
x,
...,
invert = FALSE,
suffix = c(".x", ".y"),
min_overlap = NULL

)

Arguments

x ivl_df
... one or more (e.g. a list of) y ivl_df()s
invert report x intervals not in y

suffix colname suffixes in output
min_overlap minimum overlap in base pairs required for the operation. Set to 1 to exclude

book-ended intervals (matching bedtools behavior), or 0 to include them (legacy
valr behavior). The default will change from 0 to 1 in a future version.

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df with original columns from x and y suffixed with .x and .y, and a new .overlap column
with the extent of overlap for the intersecting intervals.

If multiple y tbls are supplied, the .source contains variable names associated with each interval.
All original columns from the y are suffixed with .y in the output.

If ... contains named inputs (i.e a = y, b = z or list(a = y, b = z)), then .source will contain
supplied names (see examples).

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

Other multiple set operations: bed_closest(), bed_coverage(), bed_map(), bed_subtract(),
bed_window()

https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

16 bed_intersect

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 100, 125

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 30, 75

)

bed_glyph(bed_intersect(x, y))

bed_glyph(bed_intersect(x, y, invert = TRUE))

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 500,
"chr2", 200, 400,
"chr2", 300, 500,
"chr2", 800, 900

)

y <- tibble::tribble(
~chrom, ~start, ~end, ~value,
"chr1", 150, 400, 100,
"chr1", 500, 550, 100,
"chr2", 230, 430, 200,
"chr2", 350, 430, 300

)

bed_intersect(x, y)

bed_intersect(x, y, invert = TRUE)

start and end of each overlapping interval
res <- bed_intersect(x, y)
dplyr::mutate(res,

start = pmax(start.x, start.y),
end = pmin(end.x, end.y)

)

z <- tibble::tribble(
~chrom, ~start, ~end, ~value,
"chr1", 150, 400, 100,
"chr1", 500, 550, 100,
"chr2", 230, 430, 200,
"chr2", 750, 900, 400

)

bed_intersect(x, y, z)

bed_jaccard 17

bed_intersect(x, exons = y, introns = z)

a list of tbl_intervals can also be passed
bed_intersect(x, list(exons = y, introns = z))

bed_jaccard Calculate the Jaccard statistic for two sets of intervals.

Description

Quantifies the extent of overlap between to sets of intervals in terms of base-pairs. Groups that are
shared between input are used to calculate the statistic for subsets of data.

Usage

bed_jaccard(x, y)

Arguments

x ivl_df

y ivl_df

Details

The Jaccard statistic takes values of [0,1] and is measured as:

J(x, y) =
| x

⋂
y |

| x
⋃
y |

=
| x

⋂
y |

| x | + | y | − | x
⋂

y |

Interval statistics can be used in combination with dplyr::group_by() and dplyr::reframe() to
calculate statistics for subsets of data. See vignette('interval-stats') for examples.

Value

tibble with the following columns:

• len_i length of the intersection in base-pairs

• len_u length of the union in base-pairs

• jaccard value of jaccard statistic

• n_int number of intersecting intervals between x and y

If inputs are grouped, the return value will contain one set of values per group.

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html

Other interval statistics: bed_absdist(), bed_fisher(), bed_projection(), bed_reldist()

https://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html

18 bed_makewindows

Examples

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

x <- bed_random(genome, seed = 1010486)
y <- bed_random(genome, seed = 9203911)

bed_jaccard(x, y)

calculate jaccard per chromosome
bed_jaccard(

dplyr::group_by(x, chrom),
dplyr::group_by(y, chrom)

)

bed_makewindows Divide intervals into new sub-intervals ("windows").

Description

Divide intervals into new sub-intervals ("windows").

Usage

bed_makewindows(x, win_size = 0, step_size = 0, num_win = 0, reverse = FALSE)

Arguments

x ivl_df

win_size divide intervals into fixed-size windows

step_size size to step before next window

num_win divide intervals to fixed number of windows

reverse reverse window numbers

Value

ivl_df with .win_id column that contains a numeric identifier for the window.

Note

The name and .win_id columns can be used to create new interval names (see ’namenum’ example
below) or in subsequent group_by operations (see vignette).

See Also

Other utilities: bed12_to_exons(), bound_intervals(), flip_strands(), interval_spacing()

bed_map 19

Examples

x <- tibble::tribble(
~chrom, ~start, ~end, ~name, ~score, ~strand,
"chr1", 100, 200, "A", ".", "+"

)

bed_glyph(bed_makewindows(x, num_win = 10), label = ".win_id")

Fixed number of windows
bed_makewindows(x, num_win = 10)

Fixed window size
bed_makewindows(x, win_size = 10)

Fixed window size with overlaps
bed_makewindows(x, win_size = 10, step_size = 5)

reverse win_id
bed_makewindows(x, win_size = 10, reverse = TRUE)

bedtools 'namenum'
wins <- bed_makewindows(x, win_size = 10)
dplyr::mutate(wins, namenum = stringr::str_c(name, "_", .win_id))

bed_map Calculate summaries from overlapping intervals.

Description

Apply functions like min() and max() to intersecting intervals. bed_map() uses bed_intersect()
to identify intersecting intervals, so output columns will be suffixed with .x and .y. Expressions
that refer to input columns from x and y columns must take these suffixes into account.

Usage

bed_map(x, y, ..., min_overlap = 1L)

concat(.data, sep = ",")

values_unique(.data, sep = ",")

values(.data, sep = ",")

Arguments

x ivl_df

y ivl_df

20 bed_map

... name-value pairs specifying column names and expressions to apply

min_overlap minimum overlap in base pairs required for mapping. Default is 1, meaning
book-ended intervals (touching but not overlapping) are not included. Set to 0
to include book-ended intervals.

.data data

sep separator character

Details

Non-intersecting intervals from x are included in the result with NA values.

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/map.html

Other multiple set operations: bed_closest(), bed_coverage(), bed_intersect(), bed_subtract(),
bed_window()

Examples

x <- tibble::tribble(
~chrom ,
~start ,
~end ,
'chr1' ,

100 ,
250 ,

'chr2' ,
250 ,
500

)

y <- tibble::tribble(
~chrom ,
~start ,
~end ,
~value ,
'chr1' ,

100 ,
250 ,
10 ,

'chr1' ,
150 ,
250 ,

https://bedtools.readthedocs.io/en/latest/content/tools/map.html

bed_merge 21

20 ,
'chr2' ,

250 ,
500 ,
500

)

bed_glyph(bed_map(x, y, value = sum(value)), label = 'value')

summary examples
bed_map(x, y, .sum = sum(value))

bed_map(x, y, .min = min(value), .max = max(value))

identify non-intersecting intervals to include in the result
res <- bed_map(x, y, .sum = sum(value))
x_not <- bed_intersect(x, y, invert = TRUE)
dplyr::bind_rows(res, x_not)

create a list-column
bed_map(x, y, .values = list(value))

use `nth` family from dplyr
bed_map(x, y, .first = dplyr::first(value))

bed_map(x, y, .absmax = abs(max(value)))

bed_map(x, y, .count = length(value))

bed_map(x, y, .vals = values(value))

count defaults are NA not 0; differs from bedtools2 ...
bed_map(x, y, .counts = dplyr::n())

... but NA counts can be coverted to 0's
dplyr::mutate(

bed_map(x, y, .counts = dplyr::n()),
.counts = ifelse(is.na(.counts), 0, .counts)

)

bed_merge Merge overlapping intervals.

Description

Operations can be performed on merged intervals by specifying name-value pairs. Default max_dist
of 0 means book-ended intervals are merged.

Usage

bed_merge(x, max_dist = 0, ...)

22 bed_merge

Arguments

x ivl_df

max_dist maximum distance between intervals to merge

... name-value pairs that specify operations on merged intervals

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/merge.html

Other single set operations: bed_cluster(), bed_complement(), bed_flank(), bed_genomecov(),
bed_partition(), bed_shift(), bed_slop()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 1, 50,
"chr1", 10, 75,
"chr1", 100, 120

)

bed_glyph(bed_merge(x))

x <- tibble::tribble(
~chrom, ~start, ~end, ~value, ~strand,
"chr1", 1, 50, 1, "+",
"chr1", 100, 200, 2, "+",
"chr1", 150, 250, 3, "-",
"chr2", 1, 25, 4, "+",
"chr2", 200, 400, 5, "-",
"chr2", 400, 500, 6, "+",
"chr2", 450, 550, 7, "+"

)

bed_merge(x)

bed_merge(x, max_dist = 100)

merge intervals on same strand
bed_merge(dplyr::group_by(x, strand))

https://bedtools.readthedocs.io/en/latest/content/tools/merge.html

bed_partition 23

bed_merge(x, .value = sum(value))

bed_partition Partition intervals into elemental intervals

Description

Convert a set of intervals into elemental intervals that contain each start and end position in the set.

Usage

bed_partition(x, ...)

Arguments

x ivl_df

... name-value pairs specifying column names and expressions to apply

Details

Summary operations, such as min() or max() can be performed on elemental intervals by specifying
name-value pairs.

This function is useful for calculating summaries across overlapping intervals without merging the
intervals.

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

Value

ivl_df()

See Also

https://bedops.readthedocs.io/en/latest/content/reference/set-operations/bedops.
html#partition-p-partition

Other single set operations: bed_cluster(), bed_complement(), bed_flank(), bed_genomecov(),
bed_merge(), bed_shift(), bed_slop()

https://bedops.readthedocs.io/en/latest/content/reference/set-operations/bedops.html#partition-p-partition
https://bedops.readthedocs.io/en/latest/content/reference/set-operations/bedops.html#partition-p-partition

24 bed_projection

Examples

x <- tibble::tribble(
~chrom, ~start, ~end, ~value, ~strand,
"chr1", 100, 500, 10, "+",
"chr1", 200, 400, 20, "-",
"chr1", 300, 550, 30, "+",
"chr1", 550, 575, 2, "+",
"chr1", 800, 900, 5, "+"

)

bed_glyph(bed_partition(x))
bed_glyph(bed_partition(x, value = sum(value)), label = "value")

bed_partition(x)

compute summary over each elemental interval
bed_partition(x, value = sum(value))

partition and compute summaries based on group
x <- dplyr::group_by(x, strand)
bed_partition(x, value = sum(value))

combine values across multiple tibbles
y <- tibble::tribble(

~chrom, ~start, ~end, ~value, ~strand,
"chr1", 10, 500, 100, "+",
"chr1", 250, 420, 200, "-",
"chr1", 350, 550, 300, "+",
"chr1", 550, 555, 20, "+",
"chr1", 800, 900, 50, "+"

)

x <- dplyr::bind_rows(x, y)
bed_partition(x, value = sum(value))

bed_projection Projection test for query interval overlap.

Description

Projection test for query interval overlap.

Usage

bed_projection(x, y, genome, by_chrom = FALSE)

bed_projection 25

Arguments

x ivl_df

y ivl_df

genome genome_df

by_chrom compute test per chromosome

Details

Interval statistics can be used in combination with dplyr::group_by() and dplyr::reframe() to
calculate statistics for subsets of data. See vignette('interval-stats') for examples.

Value

ivl_df with the following columns:

• chrom the name of chromosome tested if by_chrom = TRUE, otherwise has a value of whole_genome

• p.value p-value from a binomial test. p-values > 0.5 are converted to 1 - p-value and
lower_tail is FALSE

• obs_exp_ratio ratio of observed to expected overlap frequency

• lower_tail TRUE indicates the observed overlaps are in the lower tail of the distribution (e.g.,
less overlap than expected). FALSE indicates that the observed overlaps are in the upper tail of
the distribution (e.g., more overlap than expected)

See Also

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002529

Other interval statistics: bed_absdist(), bed_fisher(), bed_jaccard(), bed_reldist()

Examples

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

x <- bed_random(genome, seed = 1010486)
y <- bed_random(genome, seed = 9203911)

bed_projection(x, y, genome)

bed_projection(x, y, genome, by_chrom = TRUE)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002529

26 bed_random

bed_random Generate randomly placed intervals on a genome.

Description

Generate randomly placed intervals on a genome.

Usage

bed_random(genome, length = 1000, n = 1e+06, seed = 0, sorted = TRUE)

Arguments

genome genome_df

length length of intervals

n number of intervals to generate

seed seed RNG for reproducible intervals

sorted return sorted output

Details

Sorting can be suppressed with sorted = FALSE.

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/random.html

Other randomizing operations: bed_shuffle()

Examples

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 10000000,
"chr2", 50000000,
"chr3", 60000000,
"chrX", 5000000

)

bed_random(genome, seed = 10104)

sorting can be suppressed
bed_random(genome, sorted = FALSE, seed = 10104)

https://bedtools.readthedocs.io/en/latest/content/tools/random.html

bed_reldist 27

500 random intervals of length 500
bed_random(genome, length = 500, n = 500, seed = 10104)

bed_reldist Compute relative distances between intervals.

Description

Compute relative distances between intervals.

Usage

bed_reldist(x, y, detail = FALSE)

Arguments

x ivl_df

y ivl_df

detail report relative distances for each x interval.

Details

Interval statistics can be used in combination with dplyr::group_by() and dplyr::reframe() to
calculate statistics for subsets of data. See vignette('interval-stats') for examples.

Value

If detail = FALSE, a ivl_df that summarizes calculated .reldist values with the following columns:

• .reldist relative distance metric

• .counts number of metric observations

• .total total observations

• .freq frequency of observation

If detail = TRUE, the .reldist column reports the relative distance for each input x interval.

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/reldist.html

Other interval statistics: bed_absdist(), bed_fisher(), bed_jaccard(), bed_projection()

https://bedtools.readthedocs.io/en/latest/content/tools/reldist.html

28 bed_shift

Examples

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

x <- bed_random(genome, seed = 1010486)
y <- bed_random(genome, seed = 9203911)

bed_reldist(x, y)

bed_reldist(x, y, detail = TRUE)

bed_shift Adjust intervals by a fixed size.

Description

Out-of-bounds intervals are removed by default.

Usage

bed_shift(x, genome, size = 0, fraction = 0, trim = FALSE)

Arguments

x ivl_df

genome ivl_df

size number of bases to shift. positive numbers shift right, negative shift left.

fraction define size as a fraction of interval

trim adjust coordinates for out-of-bounds intervals

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/shift.html

Other single set operations: bed_cluster(), bed_complement(), bed_flank(), bed_genomecov(),
bed_merge(), bed_partition(), bed_slop()

https://bedtools.readthedocs.io/en/latest/content/tools/shift.html

bed_shuffle 29

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 100, 125

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 125

)

bed_glyph(bed_shift(x, genome, size = -20))

x <- tibble::tribble(
~chrom, ~start, ~end, ~strand,
"chr1", 100, 150, "+",
"chr1", 200, 250, "+",
"chr2", 300, 350, "+",
"chr2", 400, 450, "-",
"chr3", 500, 550, "-",
"chr3", 600, 650, "-"

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 1000,
"chr2", 2000,
"chr3", 3000

)

bed_shift(x, genome, 100)

bed_shift(x, genome, fraction = 0.5)

shift with respect to strand
stranded <- dplyr::group_by(x, strand)
bed_shift(stranded, genome, 100)

bed_shuffle Shuffle input intervals.

Description

Shuffle input intervals.

30 bed_shuffle

Usage

bed_shuffle(
x,
genome,
incl = NULL,
excl = NULL,
max_tries = 1000,
within = FALSE,
seed = 0

)

Arguments

x ivl_df

genome genome_df

incl ivl_df of included intervals

excl ivl_df of excluded intervals

max_tries maximum tries to identify a bounded interval

within shuffle within chromosomes

seed seed for reproducible intervals

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/shuffle.html

Other randomizing operations: bed_random()

Examples

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 1e6,
"chr2", 2e6,
"chr3", 4e6

)

x <- bed_random(genome, seed = 1010486)

bed_shuffle(x, genome, seed = 9830491)

https://bedtools.readthedocs.io/en/latest/content/tools/shuffle.html

bed_slop 31

bed_slop Increase the size of input intervals.

Description

Increase the size of input intervals.

Usage

bed_slop(
x,
genome,
both = 0,
left = 0,
right = 0,
fraction = FALSE,
strand = FALSE,
trim = FALSE,
...

)

Arguments

x ivl_df

genome genome_df

both number of bases on both sizes

left number of bases on left side

right number of bases on right side

fraction define flanks based on fraction of interval length

strand define left and right based on strand

trim adjust coordinates for out-of-bounds intervals

... extra arguments (not used)

Value

ivl_df

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/slop.html

Other single set operations: bed_cluster(), bed_complement(), bed_flank(), bed_genomecov(),
bed_merge(), bed_partition(), bed_shift()

https://bedtools.readthedocs.io/en/latest/content/tools/slop.html

32 bed_sort

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 110, 120,
"chr1", 225, 235

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 400

)

bed_glyph(bed_slop(x, genome, both = 20, trim = TRUE))

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 5000

)

x <- tibble::tribble(
~chrom, ~start, ~end, ~name, ~score, ~strand,
"chr1", 500, 1000, ".", ".", "+",
"chr1", 1000, 1500, ".", ".", "-"

)

bed_slop(x, genome, left = 100)

bed_slop(x, genome, right = 100)

bed_slop(x, genome, both = 100)

bed_slop(x, genome, both = 0.5, fraction = TRUE)

bed_sort Sort a set of intervals.

Description

Sort a set of intervals.

Usage

bed_sort(x, by_size = FALSE, by_chrom = FALSE, reverse = FALSE)

Arguments

x ivl_df

by_size sort by interval size

bed_subtract 33

by_chrom sort within chromosome

reverse reverse sort order

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/sort.html

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr8", 500, 1000,
"chr8", 1000, 5000,
"chr8", 100, 200,
"chr1", 100, 300,
"chr1", 100, 200

)

sort by chrom and start
bed_sort(x)

reverse sort order
bed_sort(x, reverse = TRUE)

sort by interval size
bed_sort(x, by_size = TRUE)

sort by decreasing interval size
bed_sort(x, by_size = TRUE, reverse = TRUE)

sort by interval size within chrom
bed_sort(x, by_size = TRUE, by_chrom = TRUE)

bed_subtract Subtract two sets of intervals.

Description

Subtract y intervals from x intervals.

Usage

bed_subtract(x, y, any = FALSE, min_overlap = NULL)

https://bedtools.readthedocs.io/en/latest/content/tools/sort.html

34 bed_subtract

Arguments

x ivl_df

y ivl_df

any remove any x intervals that overlap y

min_overlap minimum overlap in base pairs required for the operation. Set to 1 to exclude
book-ended intervals (matching bedtools behavior), or 0 to include them (legacy
valr behavior). The default will change from 0 to 1 in a future version.

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/subtract.html

Other multiple set operations: bed_closest(), bed_coverage(), bed_intersect(), bed_map(),
bed_window()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 1, 100

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 50, 75

)

bed_glyph(bed_subtract(x, y))

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 100, 200,
"chr1", 250, 400,
"chr1", 500, 600,
"chr1", 1000, 1200,
"chr1", 1300, 1500

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 150, 175,
"chr1", 510, 525,
"chr1", 550, 575,
"chr1", 900, 1050,
"chr1", 1150, 1250,

https://bedtools.readthedocs.io/en/latest/content/tools/subtract.html

bed_window 35

"chr1", 1299, 1501
)

bed_subtract(x, y)

bed_subtract(x, y, any = TRUE)

bed_window Identify intervals within a specified distance.

Description

Identify intervals within a specified distance.

Usage

bed_window(x, y, genome, ...)

Arguments

x ivl_df

y ivl_df

genome genome_df

... params for bed_slop and bed_intersect

Details

input tbls are grouped by chrom by default, and additional groups can be added using dplyr::group_by().
For example, grouping by strand will constrain analyses to the same strand. To compare opposing
strands across two tbls, strands on the y tbl can first be inverted using flip_strands().

See Also

https://bedtools.readthedocs.io/en/latest/content/tools/window.html

Other multiple set operations: bed_closest(), bed_coverage(), bed_intersect(), bed_map(),
bed_subtract()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 25, 50,
"chr1", 100, 125

)

y <- tibble::tribble(
~chrom, ~start, ~end,

https://bedtools.readthedocs.io/en/latest/content/tools/window.html

36 bound_intervals

"chr1", 60, 75
)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 125

)

bed_glyph(bed_window(x, y, genome, both = 15))

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 10, 100,
"chr2", 200, 400,
"chr2", 300, 500,
"chr2", 800, 900

)

y <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 150, 400,
"chr2", 230, 430,
"chr2", 350, 430

)

genome <- tibble::tribble(
~chrom, ~size,
"chr1", 500,
"chr2", 1000

)

bed_window(x, y, genome, both = 100)

add a `.dist` column to the output
Not run:
bed_window(x, y, genome, both = 200) |>
mutate(
.dist = case_when(

.overlap == 0 ~ abs(pmax(start.x, start.y) - pmin(end.x, end.y)),

.default = 0
)

)

End(Not run)

bound_intervals Select intervals bounded by a genome.

Description

Used to remove out-of-bounds intervals, or trim interval coordinates using a genome.

create_introns 37

Usage

bound_intervals(x, genome, trim = FALSE)

Arguments

x ivl_df

genome genome_df

trim adjust coordinates for out-of-bounds intervals

Value

ivl_df

See Also

Other utilities: bed12_to_exons(), bed_makewindows(), flip_strands(), interval_spacing()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", -100, 500,
"chr1", 100, 1e9,
"chr1", 500, 1000

)

genome <- read_genome(valr_example("hg19.chrom.sizes.gz"))

out-of-bounds are removed by default ...
bound_intervals(x, genome)

... or can be trimmed within the bounds of a genome
bound_intervals(x, genome, trim = TRUE)

create_introns Create intron features.

Description

Numbers in the score column are intron numbers from 5’ to 3’ independent of strand. I.e., the first
introns for + and - strand genes both have score values of 1.

Usage

create_introns(x)

38 create_tss

Arguments

x ivl_df in BED12 format

See Also

Other feature functions: create_tss(), create_utrs3(), create_utrs5()

Examples

x <- read_bed12(valr_example("mm9.refGene.bed.gz"))

create_introns(x)

create_tss Create transcription start site features.

Description

Create transcription start site features.

Usage

create_tss(x)

Arguments

x ivl_df in BED format

See Also

Other feature functions: create_introns(), create_utrs3(), create_utrs5()

Examples

x <- read_bed12(valr_example("mm9.refGene.bed.gz"))

create_tss(x)

create_utrs3 39

create_utrs3 Create 3’ UTR features.

Description

Create 3’ UTR features.

Usage

create_utrs3(x)

Arguments

x ivl_df in BED12 format

See Also

Other feature functions: create_introns(), create_tss(), create_utrs5()

Examples

x <- read_bed12(valr_example("mm9.refGene.bed.gz"))

create_utrs3(x)

create_utrs5 Create 5’ UTR features.

Description

Create 5’ UTR features.

Usage

create_utrs5(x)

Arguments

x ivl_df in BED12 format

See Also

Other feature functions: create_introns(), create_tss(), create_utrs3()

40 db

Examples

x <- read_bed12(valr_example("mm9.refGene.bed.gz"))

create_utrs5(x)

db Fetch data from remote databases.

Description

Currently db_ucsc and db_ensembl are available for connections.

Usage

db_ucsc(
dbname,
host = "genome-mysql.cse.ucsc.edu",
user = "genomep",
password = "password",
port = 3306,
...

)

db_ensembl(
dbname,
host = "ensembldb.ensembl.org",
user = "anonymous",
password = "",
port = 3306,
...

)

Arguments

dbname name of database

host hostname

user username

password password

port MySQL connection port

... params for connection

See Also

https://genome.ucsc.edu/goldenpath/help/mysql.html

https://useast.ensembl.org/info/data/mysql.html

https://genome.ucsc.edu/goldenpath/help/mysql.html
https://useast.ensembl.org/info/data/mysql.html

flip_strands 41

Examples

Not run:
if (require(RMariaDB)) {

library(dplyr)
ucsc <- db_ucsc("hg38")

fetch the `refGene` tbl
tbl(ucsc, "refGene")

the `chromInfo` tbls have size information
tbl(ucsc, "chromInfo")

}

End(Not run)
Not run:
if (require(RMariaDB)) {

library(dplyr)
squirrel genome
ensembl <- db_ensembl("spermophilus_tridecemlineatus_core_67_2")

tbl(ensembl, "gene")
}

End(Not run)

flip_strands Flip strands in intervals.

Description

Flips positive (+) stranded intervals to negative (-) strands, and vice-versa. Facilitates comparisons
among intervals on opposing strands.

Usage

flip_strands(x)

Arguments

x ivl_df

See Also

Other utilities: bed12_to_exons(), bed_makewindows(), bound_intervals(), interval_spacing()

42 gr_to_bed

Examples

x <- tibble::tribble(
~chrom, ~start, ~end, ~strand,
"chr1", 1, 100, "+",
"chr2", 1, 100, "-"

)

flip_strands(x)

gr_to_bed Convert Granges to bed tibble

Description

Convert Granges to bed tibble

Usage

gr_to_bed(x)

Arguments

x GRanges object to convert to bed tibble.

Value

tibble::tibble()

Examples

Not run:
gr <- GenomicRanges::GRanges(

seqnames = S4Vectors::Rle(
c("chr1", "chr2", "chr1", "chr3"),
c(1, 1, 1, 1)

),
ranges = IRanges::IRanges(

start = c(1, 10, 50, 100),
end = c(100, 500, 1000, 2000),
names = head(letters, 4)

),
strand = S4Vectors::Rle(

c("-", "+"), c(2, 2)
)

)

gr_to_bed(gr)

interval_spacing 43

There are two ways to convert a bed-like data.frame to GRanges:

gr <- GenomicRanges::GRanges(
seqnames = S4Vectors::Rle(x$chrom),
ranges = IRanges::IRanges(
start = x$start + 1,
end = x$end,
names = x$name

),
strand = S4Vectors::Rle(x$strand)

)
or:

gr <- GenomicRanges::makeGRangesFromDataFrame(dplyr::mutate(x, start = start + 1))

End(Not run)

interval_spacing Calculate interval spacing.

Description

Spacing for the first interval of each chromosome is undefined (NA). The leading interval of an
overlapping interval pair has a negative value.

Usage

interval_spacing(x)

Arguments

x ivl_df

Value

ivl_df with .spacing column.

See Also

Other utilities: bed12_to_exons(), bed_makewindows(), bound_intervals(), flip_strands()

Examples

x <- tibble::tribble(
~chrom, ~start, ~end,
"chr1", 1, 100,
"chr1", 150, 200,
"chr2", 200, 300

)

44 ivl_df

interval_spacing(x)

ivl_df Bed-like data.frame requirements for valr functions

Description

Required column names for interval dataframes are chrom, start and end. Internally interval
dataframes are validated using check_interval()

Required column names for genome dataframes are chrom and size. Internally genome dataframes
are validated using check_genome().

Usage

check_interval(x)

check_genome(x)

Arguments

x A data.frame or tibble::tibble

Examples

using tibble
x <- tibble::tribble(

~chrom, ~start, ~end,
"chr1", 1, 50,
"chr1", 10, 75,
"chr1", 100, 120

)

check_interval(x)

using base R data.frame
x <- data.frame(

chrom = "chr1",
start = 0,
end = 100,
stringsAsFactors = FALSE

)

check_interval(x)

example genome input

x <- tibble::tribble(

read_bed 45

~chrom, ~size,
"chr1", 1e6

)

check_genome(x)

read_bed Read BED and related files.

Description

read functions for BED and related formats. Filenames can be local file or URLs. The read functions
load data into tbls with consistent chrom, start and end colnames.

Usage

read_bed(
filename,
col_types = bed12_coltypes,
sort = TRUE,
...,
n_fields = NULL

)

read_bed12(filename, ...)

read_bedgraph(filename, ...)

read_narrowpeak(filename, ...)

read_broadpeak(filename, ...)

Arguments

filename file or URL
col_types column type spec for readr::read_tsv()
sort sort the tbl by chrom and start
... options to pass to readr::read_tsv()

n_fields [Deprecated]

Details

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

https://genome.ucsc.edu/goldenPath/help/bedgraph.html

https://genome.ucsc.edu/FAQ/FAQformat.html#format12

https://genome.ucsc.edu/FAQ/FAQformat.html#format13

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://genome.ucsc.edu/goldenPath/help/bedgraph.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format12
https://genome.ucsc.edu/FAQ/FAQformat.html#format13

46 read_genome

Value

ivl_df

See Also

Other read functions: read_genome(), read_vcf()

Examples

read_bed assumes 3 field BED format.
read_bed(valr_example("3fields.bed.gz"))

result is sorted by chrom and start unless `sort = FALSE`
read_bed(valr_example("3fields.bed.gz"), sort = FALSE)

read_bed12(valr_example("mm9.refGene.bed.gz"))

read_bedgraph(valr_example("test.bg.gz"))

read_narrowpeak(valr_example("sample.narrowPeak.gz"))

read_broadpeak(valr_example("sample.broadPeak.gz"))

read_genome Read genome files.

Description

Genome files (UCSC "chromSize" files) contain chromosome name and size information. These
sizes are used by downstream functions to identify computed intervals that have coordinates outside
of the genome bounds.

Usage

read_genome(path)

Arguments

path containing chrom/contig names and sizes, one-pair-per-line, tab-delimited

Value

genome_df, sorted by size

read_gtf 47

Note

URLs to genome files can also be used.

See Also

Other read functions: read_bed(), read_vcf()

Examples

read_genome(valr_example("hg19.chrom.sizes.gz"))

Not run:
`read_genome` accepts a URL
read_genome("https://genome.ucsc.edu/goldenpath/help/hg19.chrom.sizes")

End(Not run)

read_gtf Import and convert a GTF/GFF file into a valr compatible bed tbl
format

Description

[Deprecated]

This function will output a tibble with the required chrom, start, and end columns, as well as other
columns depending on content in GTF/GFF file.

Usage

read_gtf(path, zero_based = TRUE)

Arguments

path path to gtf or gff file

zero_based if TRUE, convert to zero based

Examples

Not run:
gtf <- read_gtf(valr_example("hg19.gencode.gtf.gz"))
head(gtf)

End(Not run)

48 valr

read_vcf Read a VCF file.

Description

Read a VCF file.

Usage

read_vcf(vcf)

Arguments

vcf vcf filename

Value

data_frame

Note

return value has chrom, start and end columns. Interval lengths are the size of the ’REF’ field.

See Also

Other read functions: read_bed(), read_genome()

Examples

vcf_file <- valr_example("test.vcf.gz")
read_vcf(vcf_file)

valr valr: genome interval arithmetic in R

Description

valr provides tools to read and manipulate intervals and signals on a genome reference. valr was
developed to facilitate interactive analysis of genome-scale data sets, leveraging the power of dplyr
and piping.

Details

To learn more about valr, start with the vignette: browseVignettes(package = "valr")

valr_example 49

Author(s)

Jay Hesselberth jay.hesselberth@gmail.com

Kent Riemondy kent.riemondy@gmail.com

See Also

Report bugs at https://github.com/rnabioco/valr/issues

valr_example Provide working directory for valr example files.

Description

Provide working directory for valr example files.

Usage

valr_example(path)

Arguments

path path to file

Examples

valr_example("hg19.chrom.sizes.gz")

mailto:jay.hesselberth@gmail.com
mailto:kent.riemondy@gmail.com
https://github.com/rnabioco/valr/issues

Index

∗ feature functions
create_introns, 37
create_tss, 38
create_utrs3, 39
create_utrs5, 39

∗ interval statistics
bed_absdist, 3
bed_fisher, 10
bed_jaccard, 17
bed_projection, 24
bed_reldist, 27

∗ multiple set operations
bed_closest, 4
bed_coverage, 9
bed_intersect, 15
bed_map, 19
bed_subtract, 33
bed_window, 35

∗ randomizing operations
bed_random, 26
bed_shuffle, 29

∗ read functions
read_bed, 45
read_genome, 46
read_vcf, 48

∗ single set operations
bed_cluster, 6
bed_complement, 7
bed_flank, 11
bed_genomecov, 12
bed_merge, 21
bed_partition, 23
bed_shift, 28
bed_slop, 31

∗ utilities
bed12_to_exons, 3
bed_makewindows, 18
bound_intervals, 36
flip_strands, 41

interval_spacing, 43

bed12_to_exons, 3, 18, 37, 41, 43
bed_absdist, 3, 11, 17, 25, 27
bed_closest, 4, 9, 15, 20, 34, 35
bed_cluster, 6, 8, 12, 13, 22, 23, 28, 31
bed_complement, 7, 7, 12, 13, 22, 23, 28, 31
bed_coverage, 5, 9, 15, 20, 34, 35
bed_fisher, 4, 10, 17, 25, 27
bed_flank, 7, 8, 11, 13, 22, 23, 28, 31
bed_genomecov, 7, 8, 12, 12, 22, 23, 28, 31
bed_glyph, 14
bed_intersect, 5, 9, 15, 20, 34, 35
bed_intersect(), 19
bed_jaccard, 4, 11, 17, 25, 27
bed_makewindows, 3, 18, 37, 41, 43
bed_map, 5, 9, 15, 19, 34, 35
bed_map(), 19
bed_merge, 7, 8, 12, 13, 21, 23, 28, 31
bed_partition, 7, 8, 12, 13, 22, 23, 28, 31
bed_projection, 4, 11, 17, 24, 27
bed_random, 26, 30
bed_reldist, 4, 11, 17, 25, 27
bed_shift, 7, 8, 12, 13, 22, 23, 28, 31
bed_shuffle, 26, 29
bed_slop, 7, 8, 12, 13, 22, 23, 28, 31
bed_sort, 32
bed_subtract, 5, 9, 15, 20, 33, 35
bed_window, 5, 9, 15, 20, 34, 35
bound_intervals, 3, 18, 36, 41, 43

check_genome (ivl_df), 44
check_interval (ivl_df), 44
concat (bed_map), 19
create_introns, 37, 38, 39
create_tss, 38, 38, 39
create_utrs3, 38, 39, 39
create_utrs5, 38, 39, 39

db, 40

50

INDEX 51

db_ensembl (db), 40
db_ucsc (db), 40
dplyr::group_by(), 4, 5, 7, 9, 10, 13, 15, 17,

20, 22, 23, 25, 27, 34, 35
dplyr::reframe(), 4, 10, 17, 25, 27

flip_strands, 3, 18, 37, 41, 43
flip_strands(), 5, 7, 9, 13, 15, 20, 22, 23,

34, 35

genome_df, 3, 10, 11, 13, 25, 26, 30, 31, 35,
37, 46

genome_df (ivl_df), 44
ggplot2::ggplot(), 14
gr_to_bed, 42

interval_spacing, 3, 18, 37, 41, 43
ivl_df, 3–13, 15, 17–20, 22, 23, 25–28,

30–32, 34, 35, 37–39, 41, 43, 44, 46
ivl_df(), 15, 23

max(), 19, 23
min(), 19, 23

read_bed, 45, 47, 48
read_bed12 (read_bed), 45
read_bedgraph (read_bed), 45
read_broadpeak (read_bed), 45
read_genome, 46, 46, 48
read_gtf, 47
read_narrowpeak (read_bed), 45
read_vcf, 46, 47, 48
readr::read_tsv(), 45

tibble::tibble(), 42

valr, 48
valr_example, 49
values (bed_map), 19
values_unique (bed_map), 19

	bed12_to_exons
	bed_absdist
	bed_closest
	bed_cluster
	bed_complement
	bed_coverage
	bed_fisher
	bed_flank
	bed_genomecov
	bed_glyph
	bed_intersect
	bed_jaccard
	bed_makewindows
	bed_map
	bed_merge
	bed_partition
	bed_projection
	bed_random
	bed_reldist
	bed_shift
	bed_shuffle
	bed_slop
	bed_sort
	bed_subtract
	bed_window
	bound_intervals
	create_introns
	create_tss
	create_utrs3
	create_utrs5
	db
	flip_strands
	gr_to_bed
	interval_spacing
	ivl_df
	read_bed
	read_genome
	read_gtf
	read_vcf
	valr
	valr_example
	Index

