
Package ‘treesitter’
January 13, 2026

Title Bindings to 'Tree-Sitter'

Version 0.3.1

Description Provides bindings to 'Tree-sitter', an incremental parsing
system for programming tools. 'Tree-sitter' builds concrete syntax
trees for source files of any language, and can efficiently update
those syntax trees as the source file is edited. It also includes a
robust error recovery system that provides useful parse results even
in the presence of syntax errors.

License MIT + file LICENSE

URL https://github.com/DavisVaughan/r-tree-sitter,

https://davisvaughan.github.io/r-tree-sitter/

BugReports https://github.com/DavisVaughan/r-tree-sitter/issues

Depends R (>= 4.3.0)

Imports cli (>= 3.6.2), R6 (>= 2.5.1), rlang (>= 1.1.3), vctrs (>=
0.6.5)

Suggests testthat (>= 3.0.0), treesitter.r (>= 1.1.0)

Config/build/compilation-database true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Davis Vaughan [aut, cre],
Posit Software, PBC [cph, fnd],
Tree-sitter authors [cph] (Tree-sitter C library)

Maintainer Davis Vaughan <davis@posit.co>

Repository CRAN

Date/Publication 2026-01-13 16:20:02 UTC

1

https://github.com/DavisVaughan/r-tree-sitter
https://davisvaughan.github.io/r-tree-sitter/
https://github.com/DavisVaughan/r-tree-sitter/issues

2 Contents

Contents
is_language . 3
is_node . 3
is_parser . 4
is_query . 5
is_tree . 5
language_field_count . 6
language_field_id_for_name . 7
language_field_name_for_id . 8
language_name . 8
language_next_state . 9
language_state_count . 10
language_symbol_count . 11
language_symbol_for_name . 11
language_symbol_name . 12
node-child . 13
node-child-by-field . 14
node-child-count . 15
node-children . 16
node-descendant . 17
node-field-name-for-child . 18
node-first-child-byte . 19
node-grammar . 20
node-location . 21
node-metadata . 22
node-parse-state . 24
node-sibling . 25
node_descendant_count . 26
node_language . 27
node_parent . 27
node_raw_s_expression . 28
node_show_s_expression . 29
node_symbol . 30
node_text . 31
node_type . 32
node_walk . 33
parser . 34
parser-adjustments . 34
parser-parse . 35
points . 37
query . 38
query-accessors . 40
query-matches-and-captures . 41
ranges . 48
text_parse . 49
tree-accessors . 50
TreeCursor . 51

is_language 3

tree_root_node . 54
tree_root_node_with_offset . 55
tree_walk . 56

Index 57

is_language Is x a language?

Description

Use is_language() to determine if an object has a class of "tree_sitter_language".

Usage

is_language(x)

Arguments

x [object]

An object.

Value

• TRUE if x is a "tree_sitter_language".

• FALSE otherwise.

Examples

language <- treesitter.r::language()
is_language(language)

is_node Is x a node?

Description

Checks if x is a tree_sitter_node or not.

Usage

is_node(x)

Arguments

x [object]

An object.

4 is_parser

Value

TRUE if x is a tree_sitter_node, otherwise FALSE.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

is_node(node)

is_node(1)

is_parser Is x a parser?

Description

Checks if x is a tree_sitter_parser or not.

Usage

is_parser(x)

Arguments

x [object]

An object.

Value

TRUE if x is a tree_sitter_parser, otherwise FALSE.

Examples

language <- treesitter.r::language()
parser <- parser(language)

is_parser(parser)

is_parser(1)

is_query 5

is_query Is x a query?

Description

Checks if x is a tree_sitter_query or not.

Usage

is_query(x)

Arguments

x [object]

An object.

Value

TRUE if x is a tree_sitter_query, otherwise FALSE.

Examples

source <- "(identifier) @id"
language <- treesitter.r::language()

query <- query(language, source)

is_query(query)

is_query(1)

is_tree Is x a tree?

Description

Checks if x is a tree_sitter_tree or not.

Usage

is_tree(x)

Arguments

x [object]

An object.

6 language_field_count

Value

TRUE if x is a tree_sitter_tree, otherwise FALSE.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)

is_tree(tree)

is_tree(1)

language_field_count Language field count

Description

Get the number of fields contained within a language.

Usage

language_field_count(x)

Arguments

x [tree_sitter_language]

A tree-sitter language object.

Value

A single double value.

Examples

language <- treesitter.r::language()
language_field_count(language)

language_field_id_for_name 7

language_field_id_for_name

Language field identifiers

Description

Get the integer field identifier for a field name. If you are going to be using a field name repeatedly,
it is often a little faster to use the corresponding field identifier instead.

Usage

language_field_id_for_name(x, name)

Arguments

x [tree_sitter_language]

A tree-sitter language object.

name [character]

The language field names to look up field identifiers for.

Value

An integer vector the same length as name containing:

• The field identifier for the field name, if known.

• NA, if the field name was not known.

See Also

language_field_name_for_id()

Examples

language <- treesitter.r::language()
language_field_id_for_name(language, "lhs")

8 language_name

language_field_name_for_id

Language field names

Description

Get the field name for a field identifier.

Usage

language_field_name_for_id(x, id)

Arguments

x [tree_sitter_language]

A tree-sitter language object.
id [integer]

The language field identifiers to look up field names for.

Value

A character vector the same length as id containing:

• The field name for the field identifier, if known.

• NA, if the field identifier was not known.

See Also

language_field_id_for_name()

Examples

language <- treesitter.r::language()
language_field_name_for_id(language, 1)

language_name Language name

Description

Extract a language object’s language name.

Usage

language_name(x)

language_next_state 9

Arguments

x [tree_sitter_language]

A tree-sitter language object.

Value

A string.

Examples

language <- treesitter.r::language()
language_name(language)

language_next_state Language state advancement

Description

Get the next state in the grammar.

Usage

language_next_state(x, state, symbol)

Arguments

x [tree_sitter_language]

A tree-sitter language object.
state, symbol [integer]

Vectors of equal length containing the current state and symbol information.

Value

A single integer representing the next state.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to function definition
node <- node_child(node, 1)
node <- node_child(node, 3)

10 language_state_count

node

state <- node_parse_state(node)
symbol <- node_grammar_symbol(node)

Function definition symbol
language_symbol_name(language, 85)

Next state (this is all grammar dependent)
language_next_state(language, state, symbol)

language_state_count Language state count

Description

Get the number of states traversable within a language.

Usage

language_state_count(x)

Arguments

x [tree_sitter_language]

A tree-sitter language object.

Value

A single double value.

Examples

language <- treesitter.r::language()
language_state_count(language)

language_symbol_count 11

language_symbol_count Language symbol count

Description

Get the number of symbols contained within a language.

Usage

language_symbol_count(x)

Arguments

x [tree_sitter_language]

A tree-sitter language object.

Value

A single double value.

Examples

language <- treesitter.r::language()
language_symbol_count(language)

language_symbol_for_name

Language symbols

Description

Get the integer symbol ID for a particular node name. Can be useful for exploring the grammar.

Usage

language_symbol_for_name(x, name, ..., named = TRUE)

Arguments

x [tree_sitter_language]

A tree-sitter language object.
name [character]

The names to look up symbols for.
... These dots are for future extensions and must be empty.
named [logical]

Should named or anonymous nodes be looked up? Recycled to the size of name.

12 language_symbol_name

Value

An integer vector the same size as name containing either:

• The integer symbol ID of the node name, if known.
• NA if the node name was not known.

See Also

language_symbol_name()

Examples

language <- treesitter.r::language()
language_symbol_for_name(language, "identifier")

language_symbol_name Language symbol names

Description

Get the name for a particular language symbol ID. Can be useful for exploring a grammar.

Usage

language_symbol_name(x, symbol)

Arguments

x [tree_sitter_language]

A tree-sitter language object.
symbol [positive integer]

The language symbols to look up names for.

Value

A character vector the same length as symbol containing:

• The name of the symbol, if known.
• NA, if the symbol was not known.

See Also

language_symbol_for_name()

Examples

language <- treesitter.r::language()
language_symbol_name(language, 1)

node-child 13

node-child Get a node’s child by index

Description

These functions return the ith child of x.

• node_child() considers both named and anonymous children.
• node_named_child() considers only named children.

Usage

node_child(x, i)

node_named_child(x, i)

Arguments

x [tree_sitter_node]

A node.
i [integer(1)]

The index of the child to return.

Value

The ith child node of x or NULL if there is no child at that index.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Starts with `program` node for the whole document
node

Navigate to first child
node <- node_child(node, 1)
node

Note how the named variant skips the anonymous operator node
node_child(node, 2)
node_named_child(node, 2)

OOB indices return `NULL`
node_child(node, 5)

14 node-child-by-field

node-child-by-field Get a node’s child by field id or name

Description

These functions return children of x by field id or name.

• node_child_by_field_id() retrieves a child by field id.

• node_child_by_field_name() retrieves a child by field name.

Use language_field_id_for_name() to get the field id for a field name.

Usage

node_child_by_field_id(x, id)

node_child_by_field_name(x, name)

Arguments

x [tree_sitter_node]

A node.
id [integer(1)]

The field id of the child to return.
name [character(1)]

The field name of the child to return.

Value

A child of x, or NULL if no matching child can be found.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)
node

Get the field name of the first child
name <- node_field_name_for_child(node, 1)
name

node-child-count 15

Now get the child again by that field name
node_child_by_field_name(node, name)

If you need to look up by field name many times, you can look up the
more direct field id first and use that instead
id <- language_field_id_for_name(language, name)
id

node_child_by_field_id(node, id)

Returns `NULL` if no matching child
node_child_by_field_id(node, 10000)

node-child-count Get a node’s child count

Description

These functions return the number of children of x.

• node_child_count() considers both named and anonymous children.

• node_named_child_count() considers only named children.

Usage

node_child_count(x)

node_named_child_count(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single integer, the number of children of x.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)

16 node-children

node

Note how the named variant doesn't count the anonymous operator node
node_child_count(node)
node_named_child_count(node)

node-children Get a node’s children

Description

These functions return the children of x within a list.

• node_children() considers both named and anonymous children.

• node_named_children() considers only named children.

Usage

node_children(x)

node_named_children(x)

Arguments

x [tree_sitter_node]

A node.

Value

The children of x as a list.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)
node

Note how the named variant doesn't include the anonymous operator node
node_children(node)
node_named_children(node)

node-descendant 17

node-descendant Node descendants

Description

These functions return the smallest node within this node that spans the given range of bytes or
points. If the ranges are out of bounds, or no smaller node can be determined, the input is returned.

Usage

node_descendant_for_byte_range(x, start, end)

node_named_descendant_for_byte_range(x, start, end)

node_descendant_for_point_range(x, start, end)

node_named_descendant_for_point_range(x, start, end)

Arguments

x [tree_sitter_node]

A node.
start, end [integer(1) / tree_sitter_point]

For the byte range functions, start and end bytes to search within.
For the point range functions, start and end points created by point() to search
within.

Value

A node.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

The whole `<-` binary operator node
node <- node_child(node, 1)
node

The byte range points to a location in the word `function`
node_descendant_for_byte_range(node, 7, 9)
node_named_descendant_for_byte_range(node, 7, 9)

18 node-field-name-for-child

start <- point(0, 14)
end <- point(0, 15)

node_descendant_for_point_range(node, start, end)
node_named_descendant_for_point_range(node, start, end)

OOB returns the input
node_descendant_for_byte_range(node, 25, 29)

node-field-name-for-child

Get a child’s field name by index

Description

These functions return the field name for the ith child of x.

• node_field_name_for_child() considers both named and anonymous children.

• node_field_name_for_named_child() considers only named children.

Nodes themselves don’t know their own field names, because they don’t know if they are fields or
not. You must have access to their parents to query their field names.

Usage

node_field_name_for_child(x, i)

node_field_name_for_named_child(x, i)

Arguments

x [tree_sitter_node]

A node.
i [integer(1)]

The index of the child to get the field name for.

Value

The field name for the ith child of x, or NA_character_ if that child doesn’t exist.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node-first-child-byte 19

Navigate to first child
node <- node_child(node, 1)
node

Get the field name of the first few children (note that anonymous children
are considered)
node_field_name_for_child(node, 1)
node_field_name_for_child(node, 2)

Get the field name of the first few named children (note that anonymous
children are not considered)
node_field_name_for_named_child(node, 1)
node_field_name_for_named_child(node, 2)

10th child doesn't exist, this returns `NA_character_`
node_field_name_for_child(node, 10)

node-first-child-byte Get the first child that extends beyond the given byte offset

Description

These functions return the first child of x that extends beyond the given byte offset. Note that byte
is a 0-indexed offset.

• node_first_child_for_byte() considers both named and anonymous nodes.

• node_first_named_child_for_byte() considers only named nodes.

Usage

node_first_child_for_byte(x, byte)

node_first_named_child_for_byte(x, byte)

Arguments

x [tree_sitter_node]

A node.
byte [integer(1)]

The byte to start the search from.
Note that byte is 0-indexed!

Value

A new node, or NULL if there is no node past the byte offset.

20 node-grammar

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)
node

`fn {here}<- function()`
node_first_child_for_byte(node, 3)
node_first_named_child_for_byte(node, 3)

Past any node
node_first_child_for_byte(node, 100)

node-grammar Node grammar types and symbols

Description

• node_grammar_type() gets the node’s type as it appears in the grammar, ignoring aliases.

• node_grammar_symbol() gets the node’s symbol (the type as a numeric id) as it appears in
the grammar, ignoring aliases. This should be used in language_next_state() rather than
node_symbol().

Usage

node_grammar_type(x)

node_grammar_symbol(x)

Arguments

x [tree_sitter_node]

A node.

See Also

node_type(), node_symbol()

node-location 21

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Examples for these functions are highly specific to the grammar,
because they relies on the placement of `alias()` calls in the grammar.
node_grammar_type(node)
node_grammar_symbol(node)

node-location Node byte and point accessors

Description

These functions return information about the location of x in the document. The byte, row, and
column locations are all 0-indexed.

• node_start_byte() returns the start byte.

• node_end_byte() returns the end byte.

• node_start_point() returns the start point, containing a row and column location within the
document. Use accessors like point_row() to extract the row and column positions.

• node_end_point() returns the end point, containing a row and column location within the
document. Use accessors like point_row() to extract the row and column positions.

• node_range() returns a range object that contains all of the above information. Use accessors
like range_start_point() to extract individual pieces from the range.

Usage

node_start_byte(x)

node_end_byte(x)

node_start_point(x)

node_end_point(x)

node_range(x)

Arguments

x [tree_sitter_node]

A node.

22 node-metadata

Value

• node_start_byte() and node_end_byte() return a single numeric value.

• node_start_point() and node_end_point() return single points.

• node_range() returns a range.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)

Navigate to function definition node
node <- node_child(node, 3)
node

node_start_byte(node)
node_end_byte(node)

node_start_point(node)
node_end_point(node)

node_range(node)

node-metadata Node metadata

Description

These functions return metadata about the current node.

• node_is_named() reports if the current node is named or anonymous.

• node_is_missing() reports if the current node is MISSING, i.e. if it was implied through
error recovery.

• node_is_extra() reports if the current node is an "extra" from the grammar.

• node_is_error() reports if the current node is an ERROR node.

• node_has_error() reports if the current node is an ERROR node, or if any descendants of the
current node are ERROR or MISSING nodes.

node-metadata 23

Usage

node_is_named(x)

node_is_missing(x)

node_is_extra(x)

node_is_error(x)

node_has_error(x)

Arguments

x [tree_sitter_node]

A node.

Value

TRUE or FALSE.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node <- node_child(node, 1)

fn <- node_child(node, 1)
operator <- node_child(node, 2)

fn
node_is_named(fn)

operator
node_is_named(operator)

Examples of `TRUE` cases for these are a bit hard to come up with, because
they are dependent on the exact state of the grammar and the error recovery
algorithm
node_is_missing(node)
node_is_extra(node)

24 node-parse-state

node-parse-state Node parse states

Description

These are advanced functions that return information about the internal parse states.

• node_parse_state() returns the parse state of the current node.

• node_next_parse_state() returns the parse state after this node.

See language_next_state() for more information.

Usage

node_parse_state(x)

node_next_parse_state(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single integer representing a parse state.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node <- node_child(node, 1)

Parse states are grammar dependent
node_parse_state(node)
node_next_parse_state(node)

node-sibling 25

node-sibling Node sibling accessors

Description

These functions return siblings of the current node, i.e. if you looked "left" or "right" from the
current node rather "up" (parent) or "down" (child).

• node_next_sibling() and node_next_named_sibling() return the next sibling.

• node_previous_sibling() and node_previous_named_sibling() return the previous sib-
ling.

Usage

node_next_sibling(x)

node_next_named_sibling(x)

node_previous_sibling(x)

node_previous_named_sibling(x)

Arguments

x [tree_sitter_node]

A node.

Value

A sibling node, or NULL if there is no sibling node.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Navigate to first child
node <- node_child(node, 1)

Navigate to function definition node
node <- node_child(node, 3)
node

node_previous_sibling(node)

26 node_descendant_count

Skip anonymous operator node
node_previous_named_sibling(node)

There isn't one!
node_next_sibling(node)

node_descendant_count Node descendant count

Description

Returns the number of descendants of this node, including this node in the count.

Usage

node_descendant_count(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single double.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Top level program node
node_descendant_count(node)

The whole `<-` binary operator node
node <- node_child(node, 1)
node_descendant_count(node)

Just the literal `<-` operator itself
node <- node_child_by_field_name(node, "operator")
node_descendant_count(node)

node_language 27

node_language Get a node’s underlying language

Description

node_language() returns the document text underlying a node.

Usage

node_language(x)

Arguments

x [tree_sitter_node]

A node.

Value

A tree_sitter_language object.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node_language(node)

node_parent Get a node’s parent

Description

node_parent() looks up the tree and returns the current node’s parent.

Usage

node_parent(x)

Arguments

x [tree_sitter_node]

A node.

28 node_raw_s_expression

Value

The parent node of x or NULL if there is no parent.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Parent of a root node is `NULL`
node_parent(node)

node_function <- node |>
node_child(1) |>
node_child(3)

node_function

node_parent(node_function)

node_raw_s_expression "Raw" S-expression

Description

node_raw_s_expression() returns the "raw" s-expression as seen by tree-sitter. Most of the time,
node_show_s_expression() provides a better view of the tree, but occasionally it can be useful to
see exactly what the underlying C library is using.

Usage

node_raw_s_expression(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single string containing the raw s-expression.

node_show_s_expression 29

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node_raw_s_expression(node)

node_show_s_expression

Pretty print a node’s s-expression

Description

node_show_s_expression() prints a nicely formatted s-expression to the console. It powers the
print methods of nodes and trees.

Usage

node_show_s_expression(
x,
...,
max_lines = NULL,
show_anonymous = TRUE,
show_locations = TRUE,
show_parentheses = TRUE,
dangling_parenthesis = TRUE,
color_parentheses = TRUE,
color_locations = TRUE

)

Arguments

x [tree_sitter_node]

A node.

... These dots are for future extensions and must be empty.
max_lines [double(1) / NULL]

An optional maximum number of lines to print. If the maximum is hit, then
<truncated> will be printed at the end.

show_anonymous [bool]

Should anonymous nodes be shown? If FALSE, only named nodes are shown.
show_locations [bool]

Should node locations be shown?

30 node_symbol

show_parentheses

[bool]

Should parentheses around each node be shown?
dangling_parenthesis

[bool]

Should the) parenthesis "dangle" on its own line? If FALSE, it is appended to
the line containing the last child. This can be useful for conserving space.

color_parentheses

[bool]

Should parentheses be colored? Printing large s-expressions is faster if this is
set to FALSE.

color_locations

[bool]

Should locations be colored? Printing large s-expressions is faster if this is set
to FALSE.

Value

x invisibly.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function(a, b = 2) { a + b + 2 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node_show_s_expression(node)

node_show_s_expression(node, max_lines = 5)

This is more like a typical abstract syntax tree
node_show_s_expression(

node,
show_anonymous = FALSE,
show_locations = FALSE,
dangling_parenthesis = FALSE

)

node_symbol Node symbol

Description

node_symbol() returns the symbol id of the current node as an integer.

node_text 31

Usage

node_symbol(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single integer.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Top level program node
node_symbol(node)

The whole `<-` binary operator node
node <- node_child(node, 1)
node_symbol(node)

Just the literal `<-` operator itself
node <- node_child_by_field_name(node, "operator")
node_symbol(node)

node_text Get a node’s underlying text

Description

node_text() returns the document text underlying a node.

Usage

node_text(x)

Arguments

x [tree_sitter_node]

A node.

32 node_type

Value

A single string containing the node’s text.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

node |>
node_child(1) |>
node_child_by_field_name("rhs") |>
node_text()

node_type Node type

Description

node_type() returns the "type" of the current node as a string.

This is a very useful function for making decisions about how to handle the current node.

Usage

node_type(x)

Arguments

x [tree_sitter_node]

A node.

Value

A single string.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Top level program node

node_walk 33

node_type(node)

The whole `<-` binary operator node
node <- node_child(node, 1)
node
node_type(node)

Just the literal `<-` operator itself
node <- node_child_by_field_name(node, "operator")
node
node_type(node)

node_walk Generate a TreeCursor iterator

Description

node_walk() creates a TreeCursor starting at the current node. You can use it to "walk" the tree
more efficiently than using node_child() and other similar node functions.

Usage

node_walk(x)

Arguments

x [tree_sitter_node]

A node.

Value

A TreeCursor object.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

cursor <- node_walk(node)

cursor$goto_first_child()
cursor$goto_first_child()
cursor$node()
cursor$goto_next_sibling()
cursor$node()

34 parser-adjustments

parser Create a new parser

Description

parser() constructs a parser from a tree-sitter language object. You can use parser_parse() to
parse language specific text with it.

Usage

parser(language)

Arguments

language [tree_sitter_language]

A language object.

Value

A new parser.

Examples

language <- treesitter.r::language()
parser <- parser(language)
parser

text <- "1 + foo"
tree <- parser_parse(parser, text)
tree

parser-adjustments Parser adjustments

Description

• parser_set_language() sets the language of the parser. This is usually done by parser()
though.

• parser_set_timeout() sets an optional timeout used when calling parser_parse() or parser_reparse().
If the timeout is hit, an error occurs.

• parser_set_included_ranges() sets an optional list of ranges that are the only locations
considered when parsing. The ranges are created by range().

parser-parse 35

Usage

parser_set_language(x, language)

parser_set_timeout(x, timeout)

parser_set_included_ranges(x, included_ranges)

Arguments

x [tree_sitter_parser]

A parser.
language [tree_sitter_language]

A language.
timeout [double(1)]

A single whole number corresponding to a timeout in microseconds to use when
parsing.

included_ranges

[list_of<tree_sitter_range>]

A list of ranges constructed by range(). These are the only locations that will
be considered when parsing.
An empty list can be used to clear any existing ranges so that the parser will
again parse the entire document.

Value

A new parser.

Examples

language <- treesitter.r::language()
parser <- parser(language)
parser_set_timeout(parser, 10000)

parser-parse Parse or reparse text

Description

• parser_parse() performs an initial parse of text, a string typically containing contents of a
file. It returns a tree for further manipulations.

• parser_reparse() performs a fast incremental reparse. text is typically a slightly modified
version of the original text with a new "edit" applied. The position of the edit is described by
the byte and point arguments to this function. The tree argument corresponds to the original
tree returned by parser_parse().

All bytes and points should be 0-indexed.

36 parser-parse

Usage

parser_parse(x, text, ..., encoding = "UTF-8")

parser_reparse(
x,
text,
tree,
start_byte,
start_point,
old_end_byte,
old_end_point,
new_end_byte,
new_end_point,
...,
encoding = "UTF-8"

)

Arguments

x [tree_sitter_parser]

A parser.
text [string]

The text to parse.

... These dots are for future extensions and must be empty.
encoding [string]

The expected encoding of the text. Either "UTF-8" or "UTF-16".
tree [tree_sitter_tree]

The original tree returned by parser_parse(). Components of the tree will be
reused to perform the incremental reparse.

start_byte, start_point
[double(1) / tree_sitter_point]

The starting byte and starting point of the edit location.
old_end_byte, old_end_point

[double(1) / tree_sitter_point]

The old ending byte and old ending point of the edit location.
new_end_byte, new_end_point

[double(1) / tree_sitter_point]

The new ending byte and new ending point of the edit location.

Value

A new tree.

Examples

language <- treesitter.r::language()
parser <- parser(language)

points 37

text <- "1 + foo"
tree <- parser_parse(parser, text)
tree

text <- "1 + bar(foo)"
parser_reparse(

parser,
text,
tree,
start_byte = 4,
start_point = point(0, 4),
old_end_byte = 7,
old_end_point = point(0, 7),
new_end_byte = 12,
new_end_point = point(0, 12)

)

points Points

Description

• point() creates a new tree-sitter point.

• point_row() and point_column() access a point’s row and column value, respectively.

• is_point() determines whether or not an object is a point.

Note that points are 0-indexed. This is typically the easiest form to work with them in, since most
of the time when you are provided row and column information from third party libraries, they
will already be 0-indexed. It is also consistent with bytes, which are also 0-indexed and are often
provided alongside their corresponding points.

Usage

point(row, column)

point_row(x)

point_column(x)

is_point(x)

Arguments

row [double(1)]

A 0-indexed row to place the point at.
column [double(1)]

A 0-indexed column to place the point at.

38 query

x [tree_sitter_point]

A point.

Value

• point() returns a new point.

• point_row() and point_column() return a single double.

• is_point() returns TRUE or FALSE.

Examples

x <- point(1, 2)

point_row(x)
point_column(x)

is_point(x)

query Queries

Description

query() lets you specify a query source string for use with query_captures() and query_matches().
The source string is written in a way that is somewhat similar to the idea of capture groups in reg-
ular expressions. You write out one or more query patterns that match nodes in a tree, and then
you "capture" parts of those patterns with @name tags. The captures are the values returned by
query_captures() and query_matches(). There are also a series of predicates that can be used
to further refine the query. Those are described in the query_matches() help page.

Read the tree-sitter documentation to learn more about the query syntax.

Usage

query(language, source)

Arguments

language [tree_sitter_language]

A language.
source [string]

A query source string.

Value

A query.

https://tree-sitter.github.io/tree-sitter/using-parsers/queries/index.html

query 39

Storing queries

Query objects contain external pointers, so they cannot be saved to disk and reloaded. One con-
sequence of this is you cannot create them at build time inside your package. For example, to
precompile a query you may assume you can create a global variable in your package with top level
code like this:

QUERY <- treesitter::query(treesitter.r::language(), "query_source_text")

This won’t work for two reasons:

• The external query in QUERY is created at package build time, and is no longer valid at package
load time.

• The version of treesitter and treesitter.r are locked to the version used at build time, rather than
at package load time.

The correct way to do this is to create the query on package load, like this:

QUERY <- NULL

.onLoad <- function(libname, pkgname) {
QUERY <<- treesitter::query(treesitter.r::language(), "query_source_text")

}

This is one place where usage of <<- is acceptable.

Examples

This query looks for binary operators where the left hand side is an
identifier named `fn`, and the right hand side is a function definition.
The operator can be `<-` or `=` (technically it can also be things like
`+` as well in this example).
source <- '(binary_operator

lhs: (identifier) @lhs
operator: _ @operator
rhs: (function_definition) @rhs
(#eq? @lhs "fn")

)'

language <- treesitter.r::language()

query <- query(language, source)

text <- "
fn <- function() {}
fn2 <- function() {}
fn <- 5
fn = function(a, b, c) { a + b + c }

"
parser <- parser(language)
tree <- parser_parse(parser, text)

40 query-accessors

node <- tree_root_node(tree)

query_matches(query, node)

query-accessors Query accessors

Description

• query_pattern_count() returns the number of patterns in a query.

• query_capture_count() returns the number of captures in a query.

• query_string_count() returns the number of string literals in a query.

• query_start_byte_for_pattern() and query_end_byte_for_pattern() return the byte
where the ith pattern starts/ends in the query source.

Usage

query_pattern_count(x)

query_capture_count(x)

query_string_count(x)

query_start_byte_for_pattern(x, i)

query_end_byte_for_pattern(x, i)

Arguments

x [tree_sitter_query]

A query.
i [double(1)]

The ith pattern to extract the byte for.

Value

• query_pattern_count(), query_capture_count(), and query_string_count() return a
single double count value.

• query_start_byte_for_pattern() and query_end_byte_for_pattern() return a single
double for their respective byte if there was an ith pattern, otherwise they return NA.

query-matches-and-captures 41

Examples

source <- '(binary_operator
lhs: (identifier) @lhs
operator: _ @operator
rhs: (function_definition) @rhs
(#eq? @lhs "fn")

)'
language <- treesitter.r::language()

query <- query(language, source)

query_pattern_count(query)
query_capture_count(query)
query_string_count(query)

query_start_byte_for_pattern(query, 1)
query_end_byte_for_pattern(query, 1)

text <- "
fn <- function() {}
fn2 <- function() {}
fn <- 5
fn <- function(a, b, c) { a + b + c }

"
parser <- parser(language)
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

query_matches(query, node)

query-matches-and-captures

Query matches and captures

Description

These two functions execute a query on a given node, and return the captures of the query for further
use. Both functions return the same information, just structured differently depending on your use
case.

• query_matches() returns the captures first grouped by pattern, and further grouped by match
within each pattern. This is useful if you include multiple patterns in your query.

• query_captures() returns a flat list of captures ordered by their node location in the original
text. This is normally the easiest structure to use if you have a single pattern without any
alternations that would benefit from having individual captures split by match.

Both also return the capture name, i.e. the @name you specified in your query.

42 query-matches-and-captures

Usage

query_matches(x, node, ..., range = NULL)

query_captures(x, node, ..., range = NULL)

Arguments

x [tree_sitter_query]

A query.
node [tree_sitter_node]

A node to run the query over.

... These dots are for future extensions and must be empty.
range [tree_sitter_range / NULL]

An optional range to restrict the query to.

Predicates

There are 3 core types of predicates supported:

• #eq? @capture "string"

• #eq? @capture1 @capture2

• #match? @capture "regex"

Here are a few examples:

Match an identifier named `"name-of-interest"`
(
(identifier) @id
(#eq? @id "name-of-interest")

)

Match a binary operator where the left and right sides are the same name
(
(binary_operator
lhs: (identifier) @id1
rhs: (identifier) @id2

)
(#eq? @id1 @id2)

)

Match a name with a `_` in it
(
(identifier) @id
(#match? @id "_")

)

Each of these predicates can be inverted with a not- prefix.

query-matches-and-captures 43

(
(identifier) @id
(#not-eq? @id "name-of-interest")

)

Each of these predicates can be converted from an all style predicate to an any style predicate with
an any- prefix. This is only useful with quantified captures, i.e. (comment)+, where the + specifies
"one or more comment".

Finds a block of comments where ALL comments are empty comments
(
(comment)+ @comment
(#eq? @comment "#")

)

Finds a block of comments where ANY comments are empty comments
(
(comment)+ @comment
(#any-eq? @comment "#")

)

This is the full list of possible predicate permutations:

• #eq?

• #not-eq?

• #any-eq?

• #any-not-eq?

• #match?

• #not-match?

• #any-match?

• #any-not-match?

String double quotes:
The underlying tree-sitter predicate parser requires that strings supplied in a query must use double
quotes, i.e. "string" not 'string'. If you try and use single quotes, you will get a query error.

#match? regex:
The regex support provided by #match? is powered by grepl().
Escapes are a little tricky to get right within these match regex strings. To use something like
\s in the regex string, you need the literal text \\s to appear in the string to tell the tree-sitter
regex engine to escape the backslash so you end up with just \s in the captured string. This
requires putting two literal backslash characters in the R string itself, which can be accomplished
with either "\\\\s" or using a raw string like r'["\\\\s"]' which is typically a little easier.
You can also write your queries in a separate file (typically called queries.scm) and read them
into R, which is also a little more straightforward because you can just write something like
(#match? @id "^\\s$") and that will be read in correctly.

44 query-matches-and-captures

Examples

Simple query

text <- "
foo + b + a + ab
and(a)
"

source <- "
(identifier) @id
"

language <- treesitter.r::language()

query <- query(language, source)
parser <- parser(language)
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

A flat ordered list of captures, that's most useful here since
we only have 1 pattern!
captures <- query_captures(query, node)
captures$node

Quantified query

text <- "
this
that
NULL

and
here
1 + 1

there
2
"

Find blocks of one or more comments
The `+` is a regex `+` meaning "one or more" comments in a row
source <- "
(comment)+ @comment
"

language <- treesitter.r::language()

query <- query(language, source)
parser <- parser(language)
tree <- parser_parse(parser, text)

query-matches-and-captures 45

node <- tree_root_node(tree)

The extra structure provided by `query_matches()` is useful here so
we can see the 3 distinct blocks of comments
matches <- query_matches(query, node)

We provided one query pattern, so lets extract that
matches <- matches[[1]]

3 blocks of comments
matches[[1]]
matches[[2]]
matches[[3]]

Multiple query patterns

If you know you need to run multiple queries, you can run them all at once
in one pass over the tree by providing multiple query patterns.

text <- "
a <- 1
b <- function() {}
c <- b
"

Use an extra set of `()` to separate multiple query patterns
source <- "
(

(identifier) @id
)
(

(binary_operator) @binary
)
"

language <- treesitter.r::language()

query <- query(language, source)
parser <- parser(language)
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

The extra structure provided by `query_matches()` is useful here so
we can separate the two queries
matches <- query_matches(query, node)

First query - all identifiers
matches[[1]]

Second query - all binary operators
matches[[2]]

46 query-matches-and-captures

The `#eq?` and `#match?` predicates

text <- '
fn(a, b)

test_that("this", {
test

})

fn_name(args)

test_that("that", {
test

})

fn2_(args)
'

language <- treesitter.r::language()
parser <- parser(language)
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Use an extra set of outer `()` when you are applying a predicate to ensure
the query pattern is grouped with the query predicate.
This one finds all function calls where the function name is `test_that`.
source <- '
(

(call
function: (identifier) @name

) @call
(#eq? @name "test_that")

)
'

query <- query(language, source)

It's fine to have a flat list of captures here, but we probably want to
remove the `@name` captures and just retain the full `@call` captures.
captures <- query_captures(query, node)
captures$node[captures$name == "call"]

This one finds all functions with a `_` in their name. It uses the R
level `grepl()` for the regex processing.
source <- '
(

(call
function: (identifier) @name

) @call
(#match? @name "_")

)
'

query-matches-and-captures 47

query <- query(language, source)

captures <- query_captures(query, node)
captures$node[captures$name == "call"]

The `any-` and `not-` predicate modifiers

text <- '
1
#
2
NULL

3
4
NULL

#
#
NULL

#
5
#
6
#
NULL
'

language <- treesitter.r::language()
parser <- parser(language)
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Two queries:
- Find comment blocks where there is at least one empty comment
- Find comment blocks where there is at least one non-empty comment
source <- '
(

(comment)+ @comment
(#any-eq? @comment "#")

)
(

(comment)+ @comment
(#any-not-eq? @comment "#")

)
'

query <- query(language, source)

matches <- query_matches(query, node)

48 ranges

Query 1 has 3 comment blocks that match
query1 <- matches[[1]]
query1[[1]]
query1[[2]]
query1[[3]]

Query 2 has 3 comment blocks that match (a different set than query 1!)
query2 <- matches[[2]]
query2[[1]]
query2[[2]]
query2[[3]]

ranges Ranges

Description

• range() creates a new tree-sitter range.

• range_start_byte() and range_end_byte() access a range’s start and end bytes, respec-
tively.

• range_start_point() and range_end_point() access a range’s start and end points, re-
spectively.

• is_range() determines whether or not an object is a range.

Note that the bytes and points used in ranges are 0-indexed.

Usage

range(start_byte, start_point, end_byte, end_point)

range_start_byte(x)

range_start_point(x)

range_end_byte(x)

range_end_point(x)

is_range(x)

Arguments
start_byte, end_byte

[double(1)]

0-indexed bytes for the start and end of the range, respectively.

text_parse 49

start_point, end_point
[tree_sitter_point]

0-indexed points for the start and end of the range, respectively.
x [tree_sitter_range]

A range.

Value

• range() returns a new range.

• range_start_byte() and range_end_byte() return a single double.

• range_start_point() and range_end_point() return a point().

• is_range() returns TRUE or FALSE.

See Also

node_range()

Examples

x <- range(5, point(1, 3), 7, point(1, 5))
x

range_start_byte(x)
range_end_byte(x)

range_start_point(x)
range_end_point(x)

is_range(x)

text_parse Parse a snippet of text

Description

text_parse() is a convenience utility for quickly parsing a small snippet of text using a particular
language and getting access to its root node. It is meant for demonstration purposes. If you are
going to need to reparse the text after an edit has been made, you should create a full parser with
parser() and use parser_parse() instead.

Usage

text_parse(x, language)

50 tree-accessors

Arguments

x [string]

The text to parse.
language [tree_sitter_language]

The language to parse with.

Value

A root node.

Examples

language <- treesitter.r::language()
text <- "map(xs, function(x) 1 + 1)"

Note that this directly returns the root node, not the tree
text_parse(text, language)

tree-accessors Tree accessors

Description

• tree_text() retrieves the tree’s text that it was parsed with.
• tree_language() retrieves the tree’s language that it was parsed with.
• tree_included_ranges() retrieves the tree’s included_ranges that were provided to parser_set_included_ranges().

Note that if no ranges were provided originally, then this still returns a default that always cov-
ers the entire document.

Usage

tree_included_ranges(x)

tree_text(x)

tree_language(x)

Arguments

x [tree_sitter_tree]

A tree.

Value

• tree_text() returns a string.
• tree_language() returns a tree_sitter_language.
• tree_included_ranges() returns a list of range() objects.

TreeCursor 51

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)

tree_text(tree)
tree_language(tree)
tree_included_ranges(tree)

TreeCursor Tree cursors

Description

TreeCursor is an R6 class that allows you to walk a tree in a more efficient way than calling
node_*() functions like node_child() repeatedly.

You can also more elegantly create a cursor with node_walk() and tree_walk().

Value

R6 object representing the tree cursor.

Methods

Public methods:
• TreeCursor$new()

• TreeCursor$reset()

• TreeCursor$node()

• TreeCursor$field_name()

• TreeCursor$field_id()

• TreeCursor$descendant_index()

• TreeCursor$goto_parent()

• TreeCursor$goto_next_sibling()

• TreeCursor$goto_previous_sibling()

• TreeCursor$goto_first_child()

• TreeCursor$goto_last_child()

• TreeCursor$depth()

• TreeCursor$goto_first_child_for_byte()

• TreeCursor$goto_first_child_for_point()

Method new(): Create a new tree cursor.

Usage:

52 TreeCursor

TreeCursor$new(node)

Arguments:
node [tree_sitter_node]

The node to start walking from.

Method reset(): Reset the tree cursor to a new root node.

Usage:
TreeCursor$reset(node)

Arguments:
node [tree_sitter_node]

The node to start walking from.

Method node(): Get the current node that the cursor points to.

Usage:
TreeCursor$node()

Method field_name(): Get the field name of the current node.

Usage:
TreeCursor$field_name()

Method field_id(): Get the field id of the current node.

Usage:
TreeCursor$field_id()

Method descendant_index(): Get the descendent index of the current node.

Usage:
TreeCursor$descendant_index()

Method goto_parent(): Go to the current node’s parent.
Returns TRUE if a parent was found, and FALSE if not.

Usage:
TreeCursor$goto_parent()

Method goto_next_sibling(): Go to the current node’s next sibling.
Returns TRUE if a sibling was found, and FALSE if not.

Usage:
TreeCursor$goto_next_sibling()

Method goto_previous_sibling(): Go to the current node’s previous sibling.
Returns TRUE if a sibling was found, and FALSE if not.

Usage:
TreeCursor$goto_previous_sibling()

Method goto_first_child(): Go to the current node’s first child.
Returns TRUE if a child was found, and FALSE if not.

TreeCursor 53

Usage:
TreeCursor$goto_first_child()

Method goto_last_child(): Go to the current node’s last child.
Returns TRUE if a child was found, and FALSE if not.

Usage:
TreeCursor$goto_last_child()

Method depth(): Get the depth of the current node.
Usage:
TreeCursor$depth()

Method goto_first_child_for_byte(): Move the cursor to the first child of its current node
that extends beyond the given byte offset.
Returns TRUE if a child was found, and FALSE if not.

Usage:
TreeCursor$goto_first_child_for_byte(byte)

Arguments:
byte [double(1)]

The byte to move the cursor past.

Method goto_first_child_for_point(): Move the cursor to the first child of its current node
that extends beyond the given point.
Returns TRUE if a child was found, and FALSE if not.

Usage:
TreeCursor$goto_first_child_for_point(point)

Arguments:
point [tree_sitter_point]

The point to move the cursor past.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function(a, b) { a + b }"

tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

cursor <- TreeCursor$new(node)

cursor$node()
cursor$goto_first_child()
cursor$goto_first_child()
cursor$node()
cursor$goto_next_sibling()
cursor$node()

54 tree_root_node

tree_root_node Retrieve the root node of the tree

Description

tree_root_node() is the entry point for accessing nodes within a specific tree. It returns the "root"
of the tree, from which you can use other node_*() functions to navigate around.

Usage

tree_root_node(x)

Arguments

x [tree_sitter_tree]

A tree.

Value

A node.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)
node <- tree_root_node(tree)

Trees and nodes have a similar print method, but you can
only use other `node_*()` functions on nodes.
tree
node

node |>
node_child(1) |>
node_children()

tree_root_node_with_offset 55

tree_root_node_with_offset

Retrieve an offset root node

Description

tree_root_node_with_offset() is similar to tree_root_node(), but the returned root node’s
position has been shifted by the given number of bytes, rows, and columns.

This function allows you to parse a subset of a document with parser_parse() as if it were a
self-contained document, but then later access the syntax tree in the coordinate space of the larger
document.

Note that the underlying text within x is not what you are offsetting into. Instead, you should
assume that the text you provided to parser_parse() already contained the entire subset of the
document you care about, and the offset you are providing is how far into the document the begin-
ning of text is.

Usage

tree_root_node_with_offset(x, byte, point)

Arguments

x [tree_sitter_tree]

A tree.
byte, point [double(1), tree_sitter_point]

A byte and point offset combination.

Value

An offset root node.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "fn <- function() { 1 + 1 }"
tree <- parser_parse(parser, text)

If `text` was the whole document, you can just use `tree_root_node()`
node <- tree_root_node(tree)

If `text` represents a subset of the document, use
`tree_root_node_with_offset()` to be able to get positions in the
coordinate space of the original document.
byte <- 5
point <- point(5, 0)

56 tree_walk

node_offset <- tree_root_node_with_offset(tree, byte, point)

The position of `fn` if you treat `text` as the whole document
node |>

node_child(1) |>
node_child(1)

The position of `fn` if you treat `text` as a subset of a larger document
node_offset |>

node_child(1) |>
node_child(1)

tree_walk Generate a TreeCursor iterator

Description

tree_walk() creates a TreeCursor starting at the root node. You can use it to "walk" the tree more
efficiently than using node_child() and other similar node functions.

Usage

tree_walk(x)

Arguments

x [tree_sitter_tree]

A tree.

Value

A TreeCursor object.

Examples

language <- treesitter.r::language()
parser <- parser(language)

text <- "1 + foo"
tree <- parser_parse(parser, text)

cursor <- tree_walk(tree)

cursor$goto_first_child()
cursor$goto_first_child()
cursor$node()
cursor$goto_next_sibling()
cursor$node()

Index

grepl(), 43

is_language, 3
is_node, 3
is_parser, 4
is_point (points), 37
is_query, 5
is_range (ranges), 48
is_tree, 5

language_field_count, 6
language_field_id_for_name, 7
language_field_id_for_name(), 8, 14
language_field_name_for_id, 8
language_field_name_for_id(), 7
language_name, 8
language_next_state, 9
language_next_state(), 20, 24
language_state_count, 10
language_symbol_count, 11
language_symbol_for_name, 11
language_symbol_for_name(), 12
language_symbol_name, 12
language_symbol_name(), 12

node-child, 13
node-child-by-field, 14
node-child-count, 15
node-children, 16
node-descendant, 17
node-field-name-for-child, 18
node-first-child-byte, 19
node-grammar, 20
node-location, 21
node-metadata, 22
node-parse-state, 24
node-sibling, 25
node_child (node-child), 13
node_child(), 33, 51, 56

node_child_by_field_id
(node-child-by-field), 14

node_child_by_field_name
(node-child-by-field), 14

node_child_count (node-child-count), 15
node_children (node-children), 16
node_descendant_count, 26
node_descendant_for_byte_range

(node-descendant), 17
node_descendant_for_point_range

(node-descendant), 17
node_end_byte (node-location), 21
node_end_point (node-location), 21
node_field_name_for_child

(node-field-name-for-child), 18
node_field_name_for_named_child

(node-field-name-for-child), 18
node_first_child_for_byte

(node-first-child-byte), 19
node_first_named_child_for_byte

(node-first-child-byte), 19
node_grammar_symbol (node-grammar), 20
node_grammar_type (node-grammar), 20
node_has_error (node-metadata), 22
node_is_error (node-metadata), 22
node_is_extra (node-metadata), 22
node_is_missing (node-metadata), 22
node_is_named (node-metadata), 22
node_language, 27
node_named_child (node-child), 13
node_named_child_count

(node-child-count), 15
node_named_children (node-children), 16
node_named_descendant_for_byte_range

(node-descendant), 17
node_named_descendant_for_point_range

(node-descendant), 17
node_next_named_sibling (node-sibling),

25

57

58 INDEX

node_next_parse_state
(node-parse-state), 24

node_next_sibling (node-sibling), 25
node_parent, 27
node_parse_state (node-parse-state), 24
node_previous_named_sibling

(node-sibling), 25
node_previous_sibling (node-sibling), 25
node_range (node-location), 21
node_range(), 49
node_raw_s_expression, 28
node_show_s_expression, 29
node_show_s_expression(), 28
node_start_byte (node-location), 21
node_start_point (node-location), 21
node_symbol, 30
node_symbol(), 20
node_text, 31
node_type, 32
node_type(), 20
node_walk, 33
node_walk(), 51

parser, 34
parser(), 34, 49
parser-adjustments, 34
parser-parse, 35
parser_parse (parser-parse), 35
parser_parse(), 34, 49, 55
parser_reparse (parser-parse), 35
parser_reparse(), 34
parser_set_included_ranges

(parser-adjustments), 34
parser_set_included_ranges(), 50
parser_set_language

(parser-adjustments), 34
parser_set_timeout

(parser-adjustments), 34
point (points), 37
point(), 17, 49
point_column (points), 37
point_row (points), 37
point_row(), 21
points, 37

query, 38
query-accessors, 40
query-matches-and-captures, 41

query_capture_count (query-accessors),
40

query_captures
(query-matches-and-captures),
41

query_captures(), 38
query_end_byte_for_pattern

(query-accessors), 40
query_matches

(query-matches-and-captures),
41

query_matches(), 38
query_pattern_count (query-accessors),

40
query_start_byte_for_pattern

(query-accessors), 40
query_string_count (query-accessors), 40

range (ranges), 48
range(), 34, 35, 50
range_end_byte (ranges), 48
range_end_point (ranges), 48
range_start_byte (ranges), 48
range_start_point (ranges), 48
range_start_point(), 21
ranges, 48

text_parse, 49
tree-accessors, 50
tree_included_ranges (tree-accessors),

50
tree_language (tree-accessors), 50
tree_root_node, 54
tree_root_node(), 55
tree_root_node_with_offset, 55
tree_text (tree-accessors), 50
tree_walk, 56
tree_walk(), 51
TreeCursor, 33, 51, 56

	is_language
	is_node
	is_parser
	is_query
	is_tree
	language_field_count
	language_field_id_for_name
	language_field_name_for_id
	language_name
	language_next_state
	language_state_count
	language_symbol_count
	language_symbol_for_name
	language_symbol_name
	node-child
	node-child-by-field
	node-child-count
	node-children
	node-descendant
	node-field-name-for-child
	node-first-child-byte
	node-grammar
	node-location
	node-metadata
	node-parse-state
	node-sibling
	node_descendant_count
	node_language
	node_parent
	node_raw_s_expression
	node_show_s_expression
	node_symbol
	node_text
	node_type
	node_walk
	parser
	parser-adjustments
	parser-parse
	points
	query
	query-accessors
	query-matches-and-captures
	ranges
	text_parse
	tree-accessors
	TreeCursor
	tree_root_node
	tree_root_node_with_offset
	tree_walk
	Index

