Package ‘traineR’

January 27, 2026
Type Package
Title Predictive (Classification and Regression) Models Homologator
Version 2.2.11
Depends R (>=4.1)

Imports neuralnet (>= 1.44.2), rpart (>= 4.1-13), xgboost (>=
0.81.0.1), randomForest (>= 4.6-14), e1071 (>= 1.7-0.1), kknn
(>=1.4.1), dplyr (>=0.8.0.1), MASS (>= 7.3-53), nnet (>=
7.3-12), stringr (>= 1.4.0), adabag, glmnet, ROCR, gbm, ggplot2

Suggests rgl

Description Methods to unify the different ways of creating predictive models and their different pre-
dictive formats for classification and regression. It includes methods such as K-Nearest Neigh-
bors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Deci-
sion Trees Leo Breiman, Jerome H. Friedman, Richard A. Ol-
shen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Al-
faro, Matias Gamez, Noelia Garcia (2013) <doi:10.18637/jss.v054.102>, Extreme Gradi-
ent Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random For-
est Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Ven-
ables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Ben-
nett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gel-
man, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <do0i:10.1201/9780429258411>, Lin-
ear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-
0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-
95457-0>, Logistic Regression Dobson, A. J., & Bar-
nett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Fried-
man, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.101>.

License GPL (>=2)
Encoding UTF-8

URL https://promidat.website/

BugReports https://github.com/PROMiDAT/traineR/issues
RoxygenNote 7.3.3

NeedsCompilation no

https://doi.org/10.5282/ubm/epub.1769
https://doi.org/10.1201/9781315139470
https://doi.org/10.18637/jss.v054.i02
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/380995.380999
https://doi.org/10.1201/9780429258411
https://doi.org/10.1201/9781315182780
https://doi.org/10.18637/jss.v033.i01
https://promidat.website/
https://github.com/PROMiDAT/traineR/issues

2 Contents

Author Oldemar Rodriguez R. [aut, cre],
Andres Navarro D. [aut],
Ariel Arroyo S. [aut],
Diego Jimenez A. [aut],
Jennifer Lobo V. [aut]

Maintainer Oldemar Rodriguez R. <oldemar.rodriguez@ucr.ac.cr>
Repository CRAN
Date/Publication 2026-01-27 06:10:11 UTC

Contents
categorical.predictive.power L. 3
confusion.matrix o e e e 4
contr.dummy e e e e e e e e e 5
COMIMELIIC . . . v v v v vt et e e e e e e e e e e e e e e 5
contrordinal 6
generalindexes e 6
importance.plot L e 7
numerical.predictive.power L. 8
plotprmdt 9
predict.adabag.prmdt 10
predict.bayes.prmdt L 10
predict.gbm.prmdt. 11
predict.glmprmdt 12
predict.glmnet.prmdt L 13
predictknn.prmdt 13
predict.lda.prmdt L 14
predict.neuralnet.prmdto 14
predictnnet.prmdt L. Lo 15
predict.qda.prmdt 15
predict.randomForest.prmdt Lo 16
predict.rpart.prmdt L. 17
predict.svm.prmdt L L. L 17
predict.xgb.Boosterprmdt 18
prediction.variable.balance oL Lo 19
printindexes.prmdt 20
print.prediction.prmdt Lo 21
print.prmdt oL L e 21
ROCarea e 22
ROC.plot o e 22
scaler 23
train.adabag L 24
trainbayes L e 25
train.gbm e 26
train.glm Lo 29
train.glmnet e 31

trainknn L e 33

categorical.predictive.power 3

traindda L L e e e e e 34
train.neuralnet L L L e e e e e e e e e e e 35
rainnnet e e e e e e e e e e e e 38
train.gda L 39
train.randomForest L 40
rainIpart e e e e e e e e e e e e 41
train.SVINL . . . o o o o e 44
train.xgboost 45
traineR e e e 47
Index 49

categorical.predictive.power
categorical.predictive.power

Description

Function that graphs the distribution of individuals and shows their category according to a categor-
ical variable.

Usage

categorical.predictive.power(

data,

predict.variable,

variable.to.compare,

ylab = "",

xlab = "",

main = paste("Variable Distribution”, variable.to.compare, "according to",
predict.variable),

col = NA

Arguments

data A data frame.

predict.variable
Character type. The name of the variable to predict. This name must be part of
the columns of the data frame.

variable.to.compare
Character type. The name of the categorical variable to compare. This name
must be part of the columns of the data frame.

ylab A character string that describes the y-axis on the graph.
xlab A character string that describes the x-axis on the graph.
main Character type. The main title of the chart.

col A vector that specifies the colors of the categories of the variable to predict.

4 confusion.matrix

Value

A ggplot object.

Note

With this function we can analyze the predictive power of a categorical variable.

See Also

ggplot

Examples

cars <- datasets::mtcars

cars$cyl <- as.factor(cars$cyl)

cars$vs <- as.factor(cars$vs)
categorical.predictive.power(cars,"vs","cyl")

confusion.matrix confusion.matrix

Description

create the confusion matrix.

Usage

confusion.matrix(newdata, prediction)

Arguments
newdata matrix or data frame of test data.
prediction a prmdt prediction object.

Value

A matrix with predicted and actual values.

Examples
data("iris")

n <- seqg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

contr.dummy 5

modelo.knn <- train.knn(Species~., data.train)

modelo.knn

prob <- predict(modelo.knn, data.test, type = "prob")

prob

prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion

confusion.matrix(data.test, prediccion)

contr.dummy contr.dummy

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.dummy(n, contrasts = TRUE)

Arguments
n A vector containing levels of a factor, or the number of levels.
contrasts A logical value indicating whether contrasts should be computed.
Value

A matrix with n rows and n-1 columns for contr.ordinal, a matrix with n rows and n columns for
contr.dummy and a vector of length n for contr.metric.

contr.metric contr.metric

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.metric(n, contrasts = TRUE)

Arguments

n A vector containing levels of a factor, or the number of levels.

contrasts A logical value indicating whether contrasts should be computed.

6 general.indexes

Value

A matrix with n rows and n-1 columns for contr.ordinal, a matrix with n rows and n columns for
contr.dummy and a vector of length n for contr.metric.

contr.ordinal contr.ordinal

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.ordinal(n, contrasts = TRUE)

Arguments
n A vector containing levels of a factor, or the number of levels.
contrasts A logical value indicating whether contrasts should be computed.
Value

A matrix with n rows and n-1 columns for contr.ordinal, a matrix with n rows and n columns for
contr.dummy and a vector of length n for contr.metric.

general.indexes general.indexes

Description

Calculates the confusion matrix, overall accuracy, overall error and the category accuracy for a
classification problem and the Root Mean Square Error, Mean Absolute Error, Relative Error and
Correlation for a regression problem.

Usage

general.indexes(newdata, prediction, mc = NULL)

Arguments
newdata matrix or data frame of test data.
prediction a prmdt prediction object.
mc (optional) a matrix for calculating the indices. If mc is entered as parameter

newdata and prediction are not necessary.

importance.plot

Value

A list with the appropiate error and precision measurement. The class of this list is indexes.prmdt

Examples

Classification
data("iris")

n <- seg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.knn <- train.knn(Species~., data.train)
prediccion <- predict(modelo.knn, data.test, type = "class")
general.indexes(data.test, prediccion)

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.knn <- train.knn(Infant.Mortality~.,ttraining)
prediccion <- predict(model.knn, ttesting)
prediccion

general.indexes(ttesting, prediccion)

FALSE)

importance.plot importance.plot

Description

Function that graphs the importance of the variables.

Usage

importance.plot(model, col = "steelblue")
Arguments

model fitted model object.

col the color of the chart bars.
Value

A ggplot object.

8 numerical.predictive.power

Note

With this function we can identify how important the variables are for the generation of a predictive
model.

See Also

ggplot, train.adabag, boosting

Examples

data <- iris
n <- nrow(data)

sam <- sample(1:n,n*0.75)
training <- data[sam,]
testing <- data[-sam,]

model <- train.adabag(formula = Species~.,data = training,minsplit = 2,
maxdepth = 30, mfinal = 10)
importance.plot(model)

numerical.predictive.power
numerical.predictive.power

Description

Function that graphs the density of individuals and shows their category according to a numerical
variable.

Usage

numerical.predictive.power(
data,
predict.variable,
variable.to.compare,

ylab - HH’

xlab = "",

main = paste("Variable Density"”, variable.to.compare, "according to", predict.variable),
col = NA

plot.prmdt

Arguments

data

A data frame.

predict.variable

Character type. The name of the variable to predict. This name must be part of
the columns of the data frame.

variable.to.compare

Character type. The name of the numeric variable to compare. This name must
be part of the columns of the data frame.

ylab A character string that describes the y-axis on the graph.

xlab A character string that describes the x-axis on the graph.

main Character type. The main title of the chart.

col A vector that specifies the colors of the categories of the variable to predict.
Value

A ggplot object.
Note

With this function we can analyze the predictive power of a numerical variable.

See Also

ggplot

Examples

numerical.predictive.power(iris, "Species”,"Sepal.Length")

plot.prmdt Plotting prmdt models

Description

Plotting prmdt models

Usage
S3 method for class 'prmdt'
plot(x, ...)

Arguments
X A prmdt models

optional arguments to print o format method

10 predict.bayes.prmdt

Value

a plot of a model.

predict.adabag.prmdt predict.adabag.prmdt

Description

Return prediction for a boosting model.

Usage
S3 method for class 'adabag.prmdt'
predict(object, newdata, type = "class”, ...)
Arguments
object a boosting model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions adabag model.

predict.bayes.prmdt predict.bayes.prmdt

Description

Return prediction for a naiveBayes model.

Usage

S3 method for class 'bayes.prmdt'

predict(object, newdata, type = "class”, threshold = 0.001, eps =0, ...)
Arguments

object a naiveBayes model object for which prediction is desired.

newdata an optional data frame in which to look for variables with which to predict.

type type of prediction *prob’ or ’class’ (default).

threshold Value replacing cells with O probabilities.

eps double for specifying an epsilon-range to apply laplace smoothing (to replace

zero or close-zero probabilities by theshold).
additional arguments affecting the predictions produced.

predict.gbm.prmdt 11

Value

a vector or matrix of predictions for bayes model.

predict.gbm.prmdt predict.gbm.prindt

Description

Return prediction for a gbm model.

Usage

S3 method for class 'gbm.prmdt'
predict(

object,

newdata,

type = "class”,

n.trees = NULL,

single.tree = FALSE,

)
Arguments
object a gbm model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).
n.trees Number of trees used in the prediction. n.trees may be a vector in which case
predictions are returned for each iteration specified
single.tree If single.tree=TRUE then predict.gbm returns only the predictions from tree(s)
n.trees.
additional arguments affecting the predictions produced.
Value

a vector or matrix of predictions gbm model.

12

predict.glm.prmdt

predict.glm.prmdt

predict.glm.prmdt

Description

Return prediction for a glm model.

Usage

S3 method for class 'glm.prmdt'

predict(
object,
newdata,

type = "class”,
se.fit = FALSE,

dispersion
terms = NULL,

NULL,

na.action = na.pass,

Arguments

object
newdata

type
se.fit

dispersion

terms

na.action

Value

a glm model object for which prediction is desired.

an optional data frame in which to look for variables with which to predict.
type of prediction ’prob’ or ’class’ (default).

logical switch indicating if standard errors are required.

the dispersion of the GLM fit to be assumed in computing the standard errors.
If omitted, that returned by summary applied to the object is used.

with type = "terms" by default all terms are returned. A character vector specifies
which terms are to be returned.

function determining what should be done with missing values in newdata. The
default is to predict NA.

additional arguments affecting the predictions produced.

a vector or matrix of predictions for glm model.

predict.glmnet.prmdt 13

predict.glmnet.prmdt predict.glmnet.prmdt

Description

Return prediction for a glmnet model.

Usage
S3 method for class 'glmnet.prmdt'
predict(object, newdata, type = "class”, s = NULL, ...)
Arguments
object a glmnet model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).
s a cv.glmnet object (optional).

additional arguments affecting the predictions produced.

predict.knn.prmdt predict.knn.prmdt

Description

Return prediction for a train.kknn model.

Usage
S3 method for class 'knn.prmdt'
predict(object, newdata, type = "class”, ...)
Arguments
object a train.kknn model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for knn model.

14 predict.neuralnet.prmdt

predict.lda.prmdt predict.lda.prmdt

Description

Return prediction for a 1da model.

Usage
S3 method for class 'lda.prmdt'’
predict(object, newdata, type = "class”, ...)
Arguments
object a 1da model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for 1da model.

predict.neuralnet.prmdt
predict.neuralnet.prmdt

Description

Return prediction for a neuralnet model.

Usage
S3 method for class 'neuralnet.prmdt’
predict(object, newdata, type = "class”, ...)
Arguments
object a neuralnet model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for neuralnet.

predict.nnet.prmdt 15

predict.nnet.prmdt predict.nnet.prmdt

Description

Return prediction for a nnet model.

Usage
S3 method for class 'nnet.prmdt'
predict(object, newdata, type = "class”, ...)
Arguments
object a nnet model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for nnet model.

predict.qda.prmdt predict.qda.prmdt

Description

Return prediction for a gda model.

Usage
S3 method for class 'qda.prmdt'
predict(object, newdata, type = "class”, ...)
Arguments
object a qda model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for qda model.

16 predict.randomForest.prmdt

predict.randomForest.prmdt
predict.randomForest.prmdt

Description

Return prediction for a randomForest model.

Usage

S3 method for class 'randomForest.prmdt'
predict(

object,

newdata,

type = "class”,

norm.votes = TRUE,

predict.all = FALSE,

proximity = FALSE,

nodes = FALSE,

cutoff,
)
Arguments
object a randomForest model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).
norm.votes Should the vote counts be normalized (i.e., expressed as fractions)? Ignored if

object$type is regression.

predict.all Should the predictions of all trees be kept?

proximity Should proximity measures be computed? An error is issued if object$type is
regression.
nodes Should the terminal node indicators (an n by ntree matrix) be return? If so, it is

in the “nodes” attribute of the returned object.

cutoff (Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is taken from the forest$cutoff component of object
(i.e., the setting used when running randomForest).

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for randomforest model.

predict.rpart.prmdt 17

predict.rpart.prmdt predict.rpart.prmdt

Description

Return prediction for a rpart model.

Usage
S3 method for class 'rpart.prmdt'’
predict(object, newdata, type = "class”, na.action = na.pass, ...)
Arguments
object a rpart model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction *prob’ or ’class’ (default).
na.action a function to determine what should be done with missing values in newdata.

The default is to pass them down the tree using surrogates in the way selected
when the model was built. Other possibilities are na.omit and na.fail.

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for rpart model.

predict.svm.prmdt predict.svm.prmdt

Description

Return prediction for a svm model.

Usage

S3 method for class 'svm.prmdt'
predict(

object,

newdata,

type = "class”,

decision.values = FALSE,

D

na.action = na.omit

18 predict.xgb.Booster.prmdt

Arguments
object a svm model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).

decision.values

Logical controlling whether the decision values of all binary classifiers com-
puted in multiclass classification shall be computed and returned.

additional arguments affecting the predictions produced.

na.action A function to specify the action to be taken if ‘NA’s are found. The default
action is na.omit, which leads to rejection of cases with missing values on any
required variable. An alternative is na.fail, which causes an error if NA cases
are found. (NOTE: If given, this argument must be named.)

Value

a vector or matrix of predictionsfor svm model.

predict.xgb.Booster.prmdt
predict.xgb.Booster

Description

Return prediction for a xgb. train model.

Usage

S3 method for class 'xgb.Booster.prmdt'
predict(
object,
newdata,
type = "class”,
missing = NA,
outputmargin = FALSE,
ntreelimit = NULL,
predleaf = FALSE,
predcontrib = FALSE,
approxcontrib = FALSE,
predinteraction = FALSE,
reshape = FALSE,

prediction.variable.balance 19

Arguments
object a xgb. train model object for which prediction is desired.
newdata an optional data frame in which to look for variables with which to predict.
type type of prediction ’prob’ or ’class’ (default).
missing Missing is only used when input is dense matrix. Pick a float value that repre-
sents missing values in data (e.g., sometimes 0 or some other extreme value is
used).

outputmargin whether the prediction should be returned in the for of original untransformed
sum of predictions from boosting iterations’ results. E.g., setting outputmar-
gin=TRUE for logistic regression would result in predictions for log-odds in-
stead of probabilities.

ntreelimit Deprecated, use iterationrange instead.
predleaf whether predict leaf index.
predcontrib whether to return feature contributions to individual predictions (see Details).

approxcontrib whether to use a fast approximation for feature contributions (see Details).
predinteraction
whether to return contributions of feature interactions to individual predictions
(see Details).

reshape whether to reshape the vector of predictions to a matrix form when there are
several prediction outputs per case. This option has no effect when either of
predleaf, predcontrib, or predinteraction flags is TRUE.

additional arguments affecting the predictions produced.

Value

a vector or matrix of predictions for xgb model.

prediction.variable.balance
prediction.variable.balance

Description

Function that graphs the balance of the different categories of a column of a data frame.

Usage
prediction.variable.balance(
data,
predict.variable,
ylab = "Number of individuals”,
xlab = "",
main = paste("Variable Distribution”, predict.variable),
col = NA

20

Arguments

data

print.indexes.prmdt

A data frame.

predict.variable

Character type. The name of the variable to predict. This name must be part of
the columns of the data frame.

ylab A character string that describes the y-axis on the graph.
xlab A character string that describes the x-axis on the graph.
main Character type. The main title of the chart.
col A vector that specifies the colors of the categories represented by bars within the
chart.
Value
A ggplot object.
Note
With this function we can identify if the data is balanced or not, according to the variable to be
predicted.
See Also
ggplot
Examples

prediction.variable.balance(iris, "Species”)

print.indexes.prmdt Printing prmdt index object

Description

Printing prmdt index object

Usage
S3 method for class 'indexes.prmdt'
print(x, ...)

Arguments
X A prmdt index object

optional arguments to print o format method

print.prediction.prmdt

Value

a print of the results of a prediction model.

21

print.prediction.prmdt
Printing prmdt prediction object

Description

Printing prmdt prediction object

Usage
S3 method for class 'prediction.prmdt'
print(x, ...)
Arguments
X A prmdt prediction object
optional arguments to print o format method
Value

a print prediction of a model.

print.prmdt Printing prmdt models

Description

Printing prmdt models

Usage
S3 method for class 'prmdt'
print(x, ...)
Arguments
X A prmdt models
optional arguments to print o format method
Value

a print information of a model.

22 ROC.plot

ROC. area ROC.area

Description

Function that calculates the area of the ROC curve of a prediction with only 2 categories.

Usage

ROC.area(prediction, real)

Arguments
prediction A vector of real numbers representing the prediction score of a category.
real A vector with the real categories of the individuals in the prediction.
Value

The value of the area(numeric).

See Also

prediction and performance

Examples

iris2 <- dplyr::filter(iris, (Species == "setosa"”) | (Species == "virginica"))
iris2$Species <- factor(iris2$Species,levels = c("setosa"”,"virginica"))

sam <- sample(1:100,20)

ttesting <- iris2[sam,]

ttraining <- iris2[-sam,]

model <- train.rpart(Species~.,ttraining)

prediction.prob <- predict(model,ttesting, type = "prob”)
ROC.area(prediction.prob$prediction[,2], ttesting$Species)

ROC.plot ROC.plot

Description

Function that plots the ROC curve of a prediction with only 2 categories.

Usage
ROC.plot(prediction, real, .add = FALSE, color = "red")

scaler

Arguments

prediction
real
.add

color

Value

A plot object.

See Also

23

A vector of real numbers representing the prediction score of a category.
A vector with the real categories of the individuals in the prediction.

A logical value that indicates if it should be added to an existing graph
Color of the ROC curve in the graph

prediction and performance

Examples

iris2 <- dplyr::filter(iris, (Species == "setosa"”) | (Species == "virginica"))

non

iris2$Species <- factor(iris2$Species,levels = c("setosa"”,"virginica”))
sam <- sample(1:100,20)

ttesting <- iris2[sam,]

ttraining <- iris2[-sam,]

model <- train.rpart(Species~.,ttraining)

prediction.prob <- predict(model,ttesting, type = "prob”)
ROC.plot(prediction.prob$prediction[,2], ttesting$Species)

scaler

scaler

Description

Returns a scaled data.frame.

Usage
scaler(df)

Arguments

df

Value

A data.frame.

A data.frame only with numeric variables.

24 train.adabag

train.adabag train.adabag

Description

Provides a wrapping function for the boosting.

Usage

train.adabag(
formula,
data,
boos = TRUE,
mfinal = 100,
coeflearn = "Breiman”,
minsplit = 20,
maxdepth = 30,

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

boos if TRUE (by default), a bootstrap sample of the training set is drawn using the
weights for each observation on that iteration. If FALSE, every observation is
used with its weights.

mfinal an integer, the number of iterations for which boosting is run or the number of
trees to use. Defaults to mfinal=100 iterations.

coeflearn if 'Breiman’(by default), alpha=1/2In((1-err)/err) is used. If "Freund’ alpha=In((1-
err)/err) is used. In both cases the AdaBoost.M1 algorithm is used and alpha is
the weight updating coefficient. On the other hand, if coeflearn is Zhu’ the
SAMME algorithm is implemented with alpha=In((1-err)/err)+ In(nclasses-1).

minsplit the minimum number of observations that must exist in a node in order for a
split to be attempted.

maxdepth Set the maximum depth of any node of the final tree, with the root node counted
as depth 0. Values greater than 30 rpart will give nonsense results on 32-bit
machines.
arguments passed to rpart.control or adabag::boosting. For stumps, use rpart.control(maxdepth=1,cp=-
1,minsplit=0,xval=0). maxdepth controls the depth of trees, and cp controls the
complexity of trees.

Value

A object adabag.prmdt with additional information to the model that allows to homogenize the
results.

train.bayes 25

Note

The parameter information was taken from the original function boosting and rpart.control.

See Also

The internal function is from package boosting.

Examples

data <- iris
n <- nrow(data)

sam <- sample(1:n,n*@.75)
training <- datal[sam,]
testing <- datal[-sam,]

model <- train.adabag(formula = Species~.,data = training,minsplit = 2,
maxdepth = 30, mfinal = 10)

model
predict <- predict(object = model,testing,type = "class")
predict
train.bayes train.bayes
Description

Provides a wrapping function for the naiveBayes.

Usage
train.bayes(formula, data, laplace = @, ..., subset, na.action = na.pass)
Arguments
formula A formula of the form class ~ x1 + x2 + Interactions are not allowed.
data Either a data frame of predictors (categorical and/or numeric) or a contingency
table.
laplace positive double controlling Laplace smoothing. The default (0) disables Laplace
smoothing.
Currently not used.
subset For data given in a data frame, an index vector specifying the cases to be used
in the training sample. (NOTE: If given, this argument must be named.)
na.action A function to specify the action to be taken if NAs are found. The default action

is not to count them for the computation of the probability factors. An alternative
is na.omit, which leads to rejection of cases with missing values on any required
variable. (NOTE: If given, this argument must be named.)

26 train.gbm

Value

A object bayes.prmdt with additional information to the model that allows to homogenize the re-
sults.

Note

the parameter information was taken from the original function naiveBayes.

See Also

The internal function is from package naiveBayes.

Examples

Classification
data("iris")

n <- seqg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]

data.test <- iris[-.sample,]

modelo.bayes <- train.bayes(Species ~., data.train)
modelo.bayes

prob <- predict(modelo.bayes, data.test, type = "prob")

prob

prediccion <- predict(modelo.bayes, data.test, type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.bayes <- train.bayes(Infant.Mortality~.,ttraining)
prediction <- predict(model.bayes, ttesting)

prediction

train.gbm train.gbm

Description

Provides a wrapping function for the gbm.

train.gbm

Usage

train.gbm(
formula,
data,

27

distribution = "bernoulli”,

weights,
var.monotone

= NULL,

n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,

shrinkage =
bag.fraction

0.001,

= 0.5,
train.fraction = 1,
cv.folds = 0,

keep.data = TRUE,

verbose = F,

class.stratify.cv = NULL,
n.cores = NULL

Arguments

formula
data

distribution

weights

var.monotone

n.trees

a symbolic description of the model to be fit.
an optional data frame containing the variables in the model.

Either a character string specifying the name of the distribution to use or a list
with a component name specifying the distribution and any additional parame-
ters needed.

an optional vector of weights to be used in the fitting process. Must be positive
but do not need to be normalized.

an optional vector, the same length as the number of predictors, indicating which
variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) re-
lationship with the outcome.

Integer specifying the total number of trees to fit. This is equivalent to the num-
ber of iterations and the number of basis functions in the additive expansion.
Default is 100.

interaction.depth

n.minobsinnode

shrinkage

Integer specifying the maximum depth of each tree (i.e., the highest level of
variable interactions allowed). A value of 1 implies an additive model, a value
of 2 implies a model with up to 2-way interactions, etc. Default is 1.

Integer specifying the minimum number of observations in the terminal nodes
of the trees. Note that this is the actual number of observations, not the total
weight.

a shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.1.

28

bag.fraction

train.fraction

cv.folds

keep.data

verbose

train.gbm

the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit.

The first train.fraction * nrows(data) observations are used to fit the gbm and the
remainder are used for computing out-of-sample estimates of the loss function.

Number of cross-validation folds to perform. If cv.folds>1 then gbm, in ad-
dition to the usual fit, will perform a cross-validation, calculate an estimate of
generalization error returned in cv.error.

a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
gbm.more faster at the cost of storing an extra copy of the dataset.

Logical indicating whether or not to print out progress and performance indica-
tors (TRUE). If this option is left unspecified for gbm.more, then it uses verbose
from object. Default is FALSE.

class.stratify.cv

n.cores

Value

Logical indicating whether or not the cross-validation should be stratified by
class.

The number of CPU cores to use. The cross-validation loop will attempt to send
different CV folds off to different cores. If n.cores is not specified by the user, it
is guessed using the detectCores function in the parallel package.

A object gbm.prmdt with additional information to the model that allows to homogenize the results.

Note

The parameter information was taken from the original function gbm.

See Also

The internal function is from package gbm.

Examples

Classification
data <- iris
n <- nrow(data)

sam <- sample(1:n, n*x0@.75)
training <- data[sam,]
testing <- data[-sam,]

model <- train.gbm(formula = Species ~ ., data = training)

model

predict <- predict(object = model, testing)

predict

Regression

len <- nrow(swiss)

train.glm

29

sampl <- sample(x = 1:len,size = lenx@.10,replace = FALSE)
ttesting <- swiss[sampl,]
ttraining <- swiss[-sampl,]

model.gbm <- train.gbm(Infant.Mortality~., ttraining, distribution = "gaussian")
prediction <- predict(model.gbm, ttesting)
prediction
train.glm train.glm
Description

Provides a wrapping function for the glm

Usage

train.glm(
formula,
data,
family = binomial,
weights,
subset,
na.action,
start = NULL,
etastart,
mustart,
offset,
control = list(...),
model = TRUE,
method = "glm.fit",

X
y

FALSE,
TRUE,

singular.ok = TRUE,
contrasts

Arguments

formula

data

NULL,

an object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are given
under ‘Details’.

an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which glm is called.

30

family

weights

subset

na.action

start
etastart
mustart

offset

control

model

method

X?y

singular.ok

contrasts

Value

train.glm

a description of the error distribution and link function to be used in the model.
For glm this can be a character string naming a family function, a family function
or the result of a call to a family function. For glm.fit only the third option is
supported. (See family for details of family functions.)

an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

an optional vector specifying a subset of observations to be used in the fitting
process.

a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is unset. The
‘factory-fresh’ default is na.omit. Another possible value is NULL, no action.
Value na.exclude can be useful.

starting values for the parameters in the linear predictor.
starting values for the linear predictor.
starting values for the vector of means.

this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of
length equal to the number of cases. One or more offset terms can be included
in the formula instead or as well, and if more than one is specified their sum is
used. See model.offset.

a list of parameters for controlling the fitting process. For glm.fit this is passed
to glm.control.

a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

the method to be used in fitting the model. The default method "glm.fit" uses
iteratively reweighted least squares (IWLS): the alternative "model.frame" re-
turns the model frame and does no fitting. User-supplied fitting functions can
be supplied either as a function or a character string naming a function, with a
function which takes the same arguments as glm.fit. If specified as a character
string it is looked up from within the stats namespace.

For glm: logical values indicating whether the response vector and model matrix
used in the fitting process should be returned as components of the returned
value. For glm.fit: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.

logical; if FALSE a singular fit is an error.
an optional list. See the contrasts.arg of model.matrix.default.

For glm: arguments to be used to form the default control argument if it is
not supplied directly. For weights: further arguments passed to or from other
methods.

A object glm.prmdt with additional information to the model that allows to homogenize the results.

train.glmnet

See Also

The internal function is from package glm.

The internal function is from package glm.

Examples

Classification
data("Puromycin™)

n <- seg_len(nrow(Puromycin))

.sample <- sample(n, length(n) * 0.65)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]

modelo.glm <- train.glm(state~., data.train)

modelo.glm

prob <- predict(modelo.glm, data.test , type = "prob”)

prob

prediccion <- predict(modelo.glm, data.test , type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)

ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.glm <- train.glm(Infant.Mortality~.,ttraining, family = "gaussian")
prediction <- predict(model.glm, ttesting)

prediction

31

train.glmnet train.glmnet

Description

Provides a wrapping function for the glmnet.

Usage

train.glmnet(
formula,
data,
standardize = TRUE,
alpha = 1,
family = "multinomial”,
cv = TRUE,

32

Arguments

formula

data

standardize

alpha

family

Ccv

Value

train.glmnet

A formula of the form groups ~ x1 + x2 + ... That is, the response is the grouping
factor and the right hand side specifies the (non-factor) discriminators.

An optional data frame, list or environment from which variables specified in
formula are preferentially to be taken.

Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standard-
ize=TRUE. If variables are in the same units already, you might not wish to
standardize. See details below for y standardization with family="gaussian".

The elasticnet mixing parameter. alpha=1 is the lasso penalty, and alpha=0 the
ridge penalty.

Either a character string representing one of the built-in families, or else a glm()
family object. For more information, see Details section below or the documen-
tation for response type (above).

True or False. Perform cross-validation to find the best value of the penalty
parameter lambda and save this value in the model. This value could be used in
predict() function.

Arguments passed to or from other methods.

A object glmnet.prmdt with additional information to the model that allows to homogenize the

results.

Note

The parameter info

See Also

rmation was taken from the original function glmnet.

The internal function is from package glmnet.

Examples

Classification
len <- nrow(iris)
sampl <- sample(x
ttesting <- iris[
ttraining <- iris
model.glmnet <- t
prediction <- pre
prediction

Regression

len <- nrow(swiss
sampl <- sample(x
ttesting <- swiss
ttraining <- swis

= 1:1len,size = len*0@.20,replace = FALSE)
sampl,]

[-sampl,]
rain.glmnet(Species~.,ttraining)
dict(model.glmnet, ttesting)

)

= 1:1len,size = len*@.20,replace = FALSE)
[sampl,]

s[-sampl,]

train.knn

model.glmnet <- train.glmnet(Infant.Mortality~.,ttraining, family = "gaussian")

prediction <- predict(model.glmnet, ttesting)
prediction

33

train.knn train.knn

Description

Provides a wrapping function for the train.kknn.

Usage
train.knn(
formula,
data,
kmax = 11,
ks = NULL,
distance = 2,
kernel = "optimal”,
ykernel = NULL,
scale = TRUE,
contrasts = c(unordered = "contr.dummy"”, ordered = "contr.ordinal”),
)
Arguments
formula A formula object.
data Matrix or data frame.
kmax Maximum number of k, if ks is not specified.
ks A vector specifying values of k. If not null, this takes precedence over kmax.
distance Parameter of Minkowski distance.
kernel Kernel to use. Possible choices are "rectangular”" (which is standard unweighted
knn), "triangular”, "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "tri-
weight" (or beta(4,4)), "cos", "inv", "gaussian" and "optimal".
ykernel Window width of an y-kernel, especially for prediction of ordinal classes.
scale logical, scale variable to have equal sd.
contrasts A vector containing the 'unordered’ and ’ordered’ contrasts to use.
Further arguments passed to or from other methods.
Value

A object knn.prmdt with additional information to the model that allows to homogenize the results.

34

Note

the parameter information was taken from the original function train.kknn.

See Also

The internal function is from package train.kknn.

Examples

Classification
data("iris")

n <- seqg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]

data.test <- iris[-.sample,]

modelo.knn <- train.knn(Species~., data.train)

modelo.knn

prob <- predict(modelo.knn, data.test, type = "prob")

prob

prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx*@.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.knn <- train.knn(Infant.Mortality~.,ttraining)
prediction <- predict(model.knn, ttesting)

prediction

train.lda

train.lda train.lda

Description

Provides a wrapping function for the 1da.

Usage

train.lda(formula, data, ..., subset, na.action)

train.neuralnet

Arguments

formula

data

subset

na.action

Value

A object lda.prmdt

Note

35

A formula of the form groups ~ x1 + x2 + ... That is, the response is the grouping
factor and the right hand side specifies the (non-factor) discriminators.

An optional data frame, list or environment from which variables specified in
formula are preferentially to be taken.

Arguments passed to or from other methods.

An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

Function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)

with additional information to the model that allows to homogenize the results.

The parameter information was taken from the original function lda.

See Also

The internal function is from package lda.

Examples

len <- nrow(iris)
sampl <- sample(x
ttesting <- iris[
ttraining <- iris
model.lda <- trai
model.lda

prediction <- pre
prediction

= 1:1len,size = lenx0.20,replace = FALSE)
sampl,]

[-sampl,]

n.lda(Species~.,ttraining)

dict(model.lda, ttesting)

train.neuralnet

train.neuralnet

Description

Provides a wrapping function for the neuralnet.

36 train.neuralnet

Usage
train.neuralnet(
formula,
data,
hidden = 1,

threshold = 9.01,

stepmax = 1e+05,

rep =1,

startweights = NULL,

learningrate.limit = NULL,

learningrate.factor = list(minus = 0.5, plus = 1.2),
learningrate = NULL,

lifesign = "none”,
lifesign.step = 1000,
algorithm = "rprop+",
err.fct = "sse",

act.fct = "logistic”,
linear.output = TRUE,
exclude = NULL,
constant.weights = NULL,
likelihood = FALSE

)
Arguments

formula a symbolic description of the model to be fitted.

data a data frame containing the variables specified in formula.

hidden a vector of integers specifying the number of hidden neurons (vertices) in each
layer.

threshold a numeric value specifying the threshold for the partial derivatives of the error
function as stopping criteria.

stepmax the maximum steps for the training of the neural network. Reaching this maxi-
mum leads to a stop of the neural network’s training process.

rep the number of repetitions for the neural network’s training.

startweights a vector containing starting values for the weights. Set to NULL for random
initialization.

learningrate.limit
a vector or a list containing the lowest and highest limit for the learning rate.
Used only for RPROP and GRPROP.

learningrate.factor
a vector or a list containing the multiplication factors for the upper and lower
learning rate. Used only for RPROP and GRPROP.

learningrate anumeric value specifying the learning rate used by traditional backpropagation.
Used only for traditional backpropagation.

lifesign a string specifying how much the function will print during the calculation of
the neural network. 'none’, 'minimal’ or “full’.

train.neuralnet

lifesign.step

algorithm

err.fct

act.fct

linear.output

exclude

37

an integer specifying the stepsize to print the minimal threshold in full lifesign
mode.

a string containing the algorithm type to calculate the neural network. The fol-
lowing types are possible: *backprop’, ‘rprop+’, ‘rprop-’, ’sag’, or ’slr’. “back-
prop’ refers to backpropagation, ‘rprop+’ and ‘rprop-’ refer to the resilient back-
propagation with and without weight backtracking, while ’sag’ and ’slr’ induce
the usage of the modified globally convergent algorithm (grprop). See Details
for more information.

a differentiable function that is used for the calculation of the error. Alterna-
tively, the strings ’sse’ and ’ce’ which stand for the sum of squared errors and
the cross-entropy can be used.

a differentiable function that is used for smoothing the result of the cross product
of the covariate or neurons and the weights. Additionally the strings, ’logistic’
and ’tanh’ are possible for the logistic function and tangent hyperbolicus.

logical. If act.fct should not be applied to the output neurons set linear output to
TRUE, otherwise to FALSE.

a vector or a matrix specifying the weights, that are excluded from the calcula-
tion. If given as a vector, the exact positions of the weights must be known. A
matrix with n-rows and 3 columns will exclude n weights, where the first col-
umn stands for the layer, the second column for the input neuron and the third
column for the output neuron of the weight.

constant.weights

likelihood

Value

a vector specifying the values of the weights that are excluded from the training
process and treated as fix.

logical. If the error function is equal to the negative log-likelihood function, the
information criteria AIC and BIC will be calculated. Furthermore the usage of
confidence.interval is meaningfull.

A object neuralnet.prmdt with additional information to the model that allows to homogenize the

results.

Note

the parameter information was taken from the original function neuralnet.

See Also

The internal function is from package neuralnet.

38 train.nnet

train.nnet train.nnet

Description

Provides a wrapping function for the nnet.

Usage
train.nnet(formula, data, weights, ..., subset, na.action, contrasts = NULL)
Arguments
formula A formula of the form class ~ x1 + x2 + ...
data Data frame from which variables specified in formula are preferentially to be
taken.
weights (case) weights for each example — if missing defaults to 1.
arguments passed to or from other methods.
subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)
na.action A function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)
contrasts a list of contrasts to be used for some or all of the factors appearing as variables
in the model formula.
Value

A object nnet.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function nnet.

See Also

The internal function is from package nnet.

Examples

Classification
data("iris”

n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]

train.qda 39

data.test <- iris[-.sample,]

modelo.nn <- train.nnet(Species~., data.train, size = 20)
modelo.nn

prob <- predict(modelo.nn, data.test, type = "prob")

prob

prediccion <- predict(modelo.nn, data.test, type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.knn <- train.nnet(Infant.Mortality~.,ttraining, size = 20)
prediction <- predict(model.knn, ttesting)

prediction

train.qda train.qda

Description

Provides a wrapping function for the qda.

Usage
train.qda(formula, data, ..., subset, na.action)
Arguments
formula A formula of the form groups ~ x1 + x2 + ... That is, the response is the grouping
factor and the right hand side specifies the (non-factor) discriminators.
data An optional data frame, list or environment from which variables specified in
formula are preferentially to be taken.
Arguments passed to or from other methods.
subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)
na.action Function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)
Value

A object qda.prmdt with additional information to the model that allows to homogenize the results.

40 train.randomForest

Note

The parameter information was taken from the original function qda.

See Also

The internal function is from package gda.

Examples

len <- nrow(iris)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)
ttesting <- iris[sampl,]

ttraining <- iris[-sampl,]

model.qda <- train.qda(Species~.,ttraining)

model.qda
prediction <- predict(model.qda, ttesting)
prediction
train.randomForest train.randomForest
Description

Provides a wrapping function for the randomForest.

Usage
train.randomForest(formula, data, ..., subset, na.action = na.fail)
Arguments
formula a formula describing the model to be fitted (for the print method, an randomFor-
est object).
data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which randomForest is called from.
optional parameters to be passed to the low level function randomForest.default.
subset an index vector indicating which rows should be used. (NOTE: If given, this
argument must be named.)
na.action A function to specify the action to be taken if NAs are found. (NOTE: If given,
this argument must be named.)
Value

A object randomForest.prmdt with additional information to the model that allows to homogenize
the results.

train.rpart 41

Note

the parameter information was taken from the original function randomForest.

See Also

The internal function is from package randomForest.

Examples

Classification
data("iris")

n <- seqg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]

data.test <- iris[-.sample,]

modelo.rf <- train.randomForest(Species~., data.train)
modelo.rf

prob <- predict(modelo.rf, data.test, type = "prob")

prob

prediccion <- predict(modelo.rf, data.test, type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = len*0.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.rf <- train.randomForest(Infant.Mortality~.,ttraining)
prediction <- predict(model.rf, ttesting)

prediction

train.rpart train.rpart

Description

Provides a wrapping function for the rpart.

Usage

train.rpart(
formula,
data,
weights,
subset,
na.action = na.rpart,

42

method,

model = TRUE,
x = FALSE,

y = TRUE,
parms,
control,
cost,

Arguments

formula

data
weights

subset

na.action

method

model

parms

control

train.rpart

a formula, with a response but no interaction terms. If this a a data frame, that
is taken as the model frame.

an optional data frame in which to interpret the variables named in the formula.
optional case weights.

optional expression saying that only a subset of the rows of the data should be
used in the fit.

the default action deletes all observations for which y is missing, but keeps those
in which one or more predictors are missing.

non non

one of "anova", "poisson", "class" or "exp". If method is missing then the routine
tries to make an intelligent guess. If y is a survival object, then method = "exp" is
assumed, if y has 2 columns then method = "poisson"” is assumed, if y is a factor
then method = "class" is assumed, otherwise method = "anova" is assumed. It
is wisest to specify the method directly, especially as more criteria may added
to the function in future. Alternatively, method can be a list of functions named
init, split and eval. Examples are given in the file ‘tests/usersplits.R’ in the
sources, and in the vignettes ‘User Written Split Functions’.

if logical: keep a copy of the model frame in the result? If the input value for
model is a model frame (likely from an earlier call to the rpart function), then
this frame is used rather than constructing new data.

keep a copy of the x matrix in the result.

keep a copy of the dependent variable in the result. If missing and model is
supplied this defaults to FALSE.

optional parameters for the splitting function. Anova splitting has no parame-
ters. Poisson splitting has a single parameter, the coefficient of variation of the
prior distribution on the rates. The default value is 1. Exponential splitting has
the same parameter as Poisson. For classification splitting, the list can contain
any of: the vector of prior probabilities (component prior), the loss matrix (com-
ponent loss) or the splitting index (component split). The priors must be positive
and sum to 1. The loss matrix must have zeros on the diagonal and positive off-
diagonal elements. The splitting index can be gini or information. The default
priors are proportional to the data counts, the losses default to 1, and the split
defaults to gini.

a list of options that control details of the rpart algorithm. See rpart.control.

train.rpart 43

cost a vector of non-negative costs, one for each variable in the model. Defaults to
one for all variables. These are scalings to be applied when considering splits,
so the improvement on splitting on a variable is divided by its cost in deciding
which split to choose.

arguments to rpart.control may also be specified in the call to rpart. They
are checked against the list of valid arguments.

Value

A object rpart.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function rpart.

See Also

The internal function is from package rpart.

Examples

Classification
data("iris")

n <- seg_len(nrow(iris))

.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.rpart <- train.rpart(Species~., data.train)
modelo.rpart

prob <- predict(modelo.rpart, data.test, type = "prob")

prob

prediccion <- predict(modelo.rpart, data.test, type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.rpart <- train.rpart(Infant.Mortality~.,ttraining)
prediction <- predict(model.rpart,ttesting)

prediction

44 train.svm

train.svm train.svm

Description

Provides a wrapping function for the svm.

Usage
train.svm(formula, data, ..., subset, na.action = na.omit, scale = TRUE)
Arguments
formula a symbolic description of the model to be fit.
data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which ‘svm’ is called from.
additional parameters for the low level fitting function svm.default
subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)
na.action A function to specify the action to be taken if NAs are found. The default action
is na.omit, which leads to rejection of cases with missing values on any required
variable. An alternative is na.fail, which causes an error if NA cases are found.
(NOTE: If given, this argument must be named.)
scale A logical vector indicating the variables to be scaled. If scale is of length 1, the
value is recycled as many times as needed. Per default, data are scaled internally
(both x and y variables) to zero mean and unit variance. The center and scale
values are returned and used for later predictions.
Value

A object svm.prmdt with additional information to the model that allows to homogenize the results.

Note

the parameter information was taken from the original function svm.

See Also

The internal function is from package svm.

Examples
Classification

data("iris")

n <- seqg_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)

train.xgboost 45

data.train <- iris[.sample,]
data.test <- iris[-.sample,]

modelo.svm <- train.svm(Species~., data.train)

modelo.svm

prob <- predict(modelo.svm, data.test , type = "prob”)

prob

prediccion <- predict(modelo.svm, data.test , type = "class")
prediccion

Regression

len <- nrow(swiss)

sampl <- sample(x = 1:len,size = lenx@.20,replace = FALSE)
ttesting <- swiss[sampl,]

ttraining <- swiss[-sampl,]

model.svm <- train.svm(Infant.Mortality~.,ttraining)
prediction <- predict(model.svm, ttesting)

prediction

train.xgboost train.xgboost

Description

This function wraps xgb.train to standardize model training within the traineR framework. It
automatically handles preprocessing, parameter configuration, multiclass settings, and metadata
generation for predictions.

Usage

train.xgboost(
formula,
data,
nrounds,
evals = list(),
custom_metric = NULL,
verbose = 1,
print_every_n = 1L,
early_stopping_rounds = NULL,
maximize = NULL,
save_period = NULL,

save_name = "xgboost.model”,
xgb_model = NULL,
callbacks = list(),

eval_metric = NULL,
extra_params = NULL,
booster = "gbtree",

46

objective =
eta = 0.3,
gamma = 0,
max_depth

min_child_weight

subsample =

colsample_bytree

Arguments

formula
data

nrounds
evals

custom_metric
verbose

print_every_n

train.xgboost

NULL,

6,

1
-

1,

1
-

A model formula describing the response and predictors.

A data frame containing the training data. Internally, it is converted to an
xgb.DMatrix

Maximum number of boosting iterations.

A named list of xgb.DMatrix objects for evaluation during training. Defaults to
training data if empty.

A custom evaluation function for xgboost.

Controls verbosity: @ = silent, 1 = progress printed.

Print evaluation results every print_every_n iterations.

early_stopping_rounds

maximize
save_period
save_name
xgb_model
callbacks
eval_metric
extra_params
booster

objective

eta
gamma

max_depth

Number of rounds with no improvement before stopping.
Logical indicating if the evaluation metric should be maximized.
Save the model every save_period rounds. Defaults to saving at the end.
File name for saving the model.
A previously trained xgboost model for continuation.
A list of callback functions for xgboost during training.
Evaluation metric for xgboost (e.g., "mlogloss”, "rmse").
Optional list of additional xgboost parameters.
Booster type: "gbtree” or "gblinear”. Defaultis "gbtree".
Objective function for xgboost. If NULL, it’s chosen automatically:
* Regression — "reg:squarederror”
* Binary classification — "binary:logistic”
e Multiclass — "multi:softprob”
Learning rate. Default is 0.3.
Minimum loss reduction for a split. Default is 0.
Maximum depth of trees. Default is 6.

min_child_weight

subsample

Minimum sum of instance weight in a child.

Subsample ratio for training instances. Default is 1.

colsample_bytree

Subsample ratio of columns per tree. Default is 1.

Additional arguments for xgb.train.

traineR 47

Value
An object of class xgb.Booster.prmdt containing:

* The trained xgboost model.

* Metadata used by traineR for prediction output.

See Also

xgb.train, xgb.DMatrix

traineR Predictive (Classification and Regression) Models Homologator

Description

Methods to unify the different ways of creating predictive models and their different predictive for-

mats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep,

K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman,

Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Es-

teban Alfaro, Matias Gamez, Noelia Garcia (2013) <doi:10.18637/jss.v054.102>, Extreme Gradi-

ent Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman

(2001) <d0i:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002)
<ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>,
Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <d0i:10.1201/9780429258411>,
Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>,

Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>,

Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Pe-

nalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.

Details
Package: traineR
Type: Package
Version: 2.2.11
Date: 2026-01-30
License: GPL (>=2)
Author(s)

Maintainer: Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

* Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

48 traineR

* Andres Navarro D
* Ariel Arroyo S

* Diego Jiménez

* Jennifer Lobo V

See Also
Useful links:

e https://promidat.website/
* Report bugs at https://github.com/PROMiDAT/traineR/issues

https://promidat.website/
https://github.com/PROMiDAT/traineR/issues

Index

* package
traineR, 47

boosting, 8, 10, 24, 25

categorical.predictive.power, 3
confusion.matrix, 4
contr.dummy, 5

contr.metric, 5

contr.ordinal, 6

cv.glmnet, 13

gbm, 11, 26, 28
general.indexes, 6
gegplot, 4, 8, 9, 20
glm, 12, 29, 31
glmnet, 13, 31, 32

importance.plot, 7
1da, 14, 34, 35

naiveBayes, 10, 25, 26
neuralnet, 14, 35, 37
nnet, 15, 38
numerical.predictive.power, 8

performance, 22, 23
plot.prmdt, 9
predict.adabag.prmdt, 10
predict.bayes.prmdt, 10
predict.gbm.prmdt, 11
predict.glm.prmdt, 12
predict.glmnet.prmdt, 13
predict.knn.prmdt, 13
predict.lda.prmdt, 14
predict.neuralnet.prmdt, 14
predict.nnet.prmdt, 15
predict.qda.prmdt, 15
predict.randomForest.prmdt, 16
predict.rpart.prmdt, 17

49

predict.svm.prmdt, 17
predict.xgb.Booster.prmdt, 18
prediction, 22, 23

prediction.variable.balance, 19

print.indexes.prmdt, 20
print.prediction.prmdt, 21
print.prmdt, 21

qda, 15, 39, 40

randomForest, 16, 40, 41
ROC.area, 22
ROC.plot, 22

rpart, 17,41, 43
rpart.control, 25, 42, 43

scaler, 23
svm, 17, 18, 44

train.adabag, 8, 24
train.bayes, 25
train.gbm, 26
train.glm, 29
train.glmnet, 31
train.kknn, 5, 6, 13, 33, 34
train.knn, 33
train.lda, 34
train.neuralnet, 35
train.nnet, 38
train.qda, 39
train.randomForest, 40
train.rpart, 41
train.svm, 44
train.xgboost, 45
traineR, 47
traineR-package (traineR), 47

xgb.DMatrix, 47
xgb.train, 18, 19, 45,47

	categorical.predictive.power
	confusion.matrix
	contr.dummy
	contr.metric
	contr.ordinal
	general.indexes
	importance.plot
	numerical.predictive.power
	plot.prmdt
	predict.adabag.prmdt
	predict.bayes.prmdt
	predict.gbm.prmdt
	predict.glm.prmdt
	predict.glmnet.prmdt
	predict.knn.prmdt
	predict.lda.prmdt
	predict.neuralnet.prmdt
	predict.nnet.prmdt
	predict.qda.prmdt
	predict.randomForest.prmdt
	predict.rpart.prmdt
	predict.svm.prmdt
	predict.xgb.Booster.prmdt
	prediction.variable.balance
	print.indexes.prmdt
	print.prediction.prmdt
	print.prmdt
	ROC.area
	ROC.plot
	scaler
	train.adabag
	train.bayes
	train.gbm
	train.glm
	train.glmnet
	train.knn
	train.lda
	train.neuralnet
	train.nnet
	train.qda
	train.randomForest
	train.rpart
	train.svm
	train.xgboost
	traineR
	Index

