
Package ‘tidytransit’
January 26, 2026

Type Package

Title Read, Validate, Analyze, and Map GTFS Feeds

Version 1.8.0

Description Read General Transit Feed Specification (GTFS) zipfiles into a list of R dataframes. Per-
form validation of the data structure against the specification. Analyze the headways and fre-
quencies at routes and stops. Create maps and perform spatial analy-
sis on the routes and stops. Please see the GTFS documentation here for more de-
tail: <https://gtfs.org/>.

License GPL

LazyData TRUE

Depends R (>= 3.6.0)

Imports gtfsio (>= 1.2.0), dplyr (>= 1.1.1), data.table (>= 1.12.8),
sf, jsonlite, hms, digest, geodist

Suggests testthat (>= 3.1.5), knitr, rmarkdown, ggplot2, scales,
lubridate, leaflet

RoxygenNote 7.3.3

URL https://github.com/r-transit/tidytransit,

https://r-transit.github.io/tidytransit/

BugReports https://github.com/r-transit/tidytransit/issues

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Flavio Poletti [aut, cre],
Daniel Herszenhut [aut] (ORCID:
<https://orcid.org/0000-0001-8066-1105>),

Mark Padgham [aut],
Tom Buckley [aut],
Danton Noriega-Goodwin [aut],
Angela Li [ctb],
Elaine McVey [ctb],

1

https://gtfs.org/
https://github.com/r-transit/tidytransit
https://r-transit.github.io/tidytransit/
https://github.com/r-transit/tidytransit/issues
https://orcid.org/0000-0001-8066-1105

2 Contents

Charles Hans Thompson [ctb],
Michael Sumner [ctb],
Patrick Hausmann [ctb],
Bob Rudis [ctb],
James Lamb [ctb],
Alexandra Kapp [ctb],
Kearey Smith [ctb],
Dave Vautin [ctb],
Kyle Walker [ctb],
Davis Vaughan [ctb],
Ryan Rymarczyk [ctb],
Kirill Müller [ctb]

Maintainer Flavio Poletti <flavio.poletti@hotmail.ch>

Repository CRAN

Date/Publication 2026-01-26 16:20:02 UTC

Contents
as_tidygtfs . 3
cluster_stops . 3
empty_strings_to_na . 4
filter_feed_by_area . 5
filter_feed_by_date . 6
filter_feed_by_stops . 6
filter_feed_by_trips . 7
filter_stops . 8
filter_stop_times . 8
get_route_frequency . 9
get_route_geometry . 10
get_stop_frequency . 11
get_trip_geometry . 12
gtfs_as_sf . 12
gtfs_duke . 13
gtfs_transform . 13
interpolate_stop_times . 14
na_to_empty_strings . 14
plot.tidygtfs . 15
print.tidygtfs . 16
raptor . 16
read_gtfs . 18
route_type_names . 20
set_servicepattern . 20
sf_as_tbl . 21
shapes_as_sf . 22
stops_as_sf . 22
stop_distances . 23
stop_group_distances . 24

as_tidygtfs 3

summary.tidygtfs . 25
travel_times . 26
validate_gtfs . 28
write_gtfs . 29

Index 31

as_tidygtfs Convert another gtfs like object to a tidygtfs object

Description

Convert another gtfs like object to a tidygtfs object

Usage

as_tidygtfs(x, ...)

Arguments

x gtfs object

... ignored

Value

a tidygtfs object

cluster_stops Cluster nearby stops within a group

Description

Finds clusters of stops for each unique value in group_col (e.g. stop_name). Can be used to
find different groups of stops that share the same name but are located more than max_dist apart.
gtfs_stops is assigned a new column (named cluster_colname) which contains the group_col
value and the cluster number.

Usage

cluster_stops(
gtfs_stops,
max_dist = 300,
group_col = "stop_name",
cluster_colname = "stop_name_cluster"

)

4 empty_strings_to_na

Arguments

gtfs_stops Stops table of a gtfs object. It is also possible to pass a tidygtfs object to enable
piping.

max_dist Only stop groups that have a maximum distance among them above this thresh-
old (in meters) are clustered.

group_col Clusters for are calculated for each set of stops with the same value in this col-
umn (default: stop_name)

cluster_colname

Name of the new column name. Can be the same as group_col to overwrite.

Details

stats::kmeans() is used for clustering.

Value

Returns a stops table with an added cluster column. If gtfs_stops is a tidygtfs object, a modified
tidygtfs object is return

Examples

library(dplyr)
nyc_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)
nyc <- cluster_stops(nyc)

There are 6 stops with the name "86 St" that are far apart
stops_86_St = nyc$stops %>%

filter(stop_name == "86 St")

table(stops_86_St$stop_name_cluster)

stops_86_St %>% select(stop_id, stop_name, parent_station, stop_name_cluster) %>% head()

library(ggplot2)
ggplot(stops_86_St) +

geom_point(aes(stop_lon, stop_lat, color = stop_name_cluster))

empty_strings_to_na Convert empty strings ("") to NA values in all gtfs tables

Description

read_gtfs() converts all empty strings to NA values

filter_feed_by_area 5

Usage

empty_strings_to_na(gtfs_obj)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

Value

a gtfs_obj where all empty strings in tables have been replaced with NA

See Also

na_to_empty_strings()

filter_feed_by_area Filter a gtfs feed so that it only contains trips that pass a given area

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_area(gtfs_obj, area)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

area all trips passing through this area are kept. Either a bounding box (numeric
vector with xmin, ymin, xmax, ymax) or a sf object.

Value

tidygtfs object with filtered tables

See Also

filter_feed_by_date(), filter_feed_by_stops(), filter_feed_by_trips()

6 filter_feed_by_stops

filter_feed_by_date Filter a gtfs feed so that it only contains trips running on a given date

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_date(
gtfs_obj,
extract_date,
min_departure_time,
max_arrival_time

)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

extract_date date to extract trips from this day (Date or "YYYY-MM-DD" string)
min_departure_time

(optional) The earliest departure time. Can be given as "HH:MM:SS", hms ob-
ject or numeric value in seconds.

max_arrival_time

(optional) The latest arrival time. Can be given as "HH:MM:SS", hms object or
numeric value in seconds.

Value

tidygtfs object with filtered tables

See Also

filter_feed_by_area(), filter_feed_by_stops(), filter_feed_by_trips()

filter_feed_by_stops Filter a gtfs feed so that it only contains trips that pass the given stops

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

filter_feed_by_trips 7

Usage

filter_feed_by_stops(gtfs_obj, stop_ids = NULL, stop_names = NULL)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

stop_ids vector with stop_ids. You can either provide stop_ids or stop_names

stop_names vector with stop_names (will be converted to stop_ids)

Value

tidygtfs object with filtered tables

Note

The returned gtfs_obj likely contains more than just the stops given (i.e. all stops that belong to a
trip passing the initial stop).

See Also

filter_feed_by_date(), filter_feed_by_area(), filter_feed_by_trips()

filter_feed_by_trips Filter a gtfs feed so that it only contains a given set of trips

Description

Only stop_times, stops, routes, services (in calendar and calendar_dates), shapes, frequencies and
transfers belonging to one of those trips are kept.

Usage

filter_feed_by_trips(gtfs_obj, trip_ids)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

trip_ids vector with trip_ids

Value

tidygtfs object with filtered tables

See Also

filter_feed_by_date(), filter_feed_by_area(), filter_feed_by_stops()

8 filter_stop_times

filter_stops Get a set of stops for a given set of service ids and route ids

Description

Get a set of stops for a given set of service ids and route ids

Usage

filter_stops(gtfs_obj, service_ids, route_ids)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

service_ids the service for which to get stops

route_ids the route_ids for which to get stops

Value

stops table for a given service or route

Examples

library(dplyr)
local_gtfs_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(local_gtfs_path)
select_service_id <- filter(nyc$calendar, monday==1) %>% pull(service_id)
select_route_id <- sample_n(nyc$routes, 1) %>% pull(route_id)
filtered_stops_df <- filter_stops(nyc, select_service_id, select_route_id)

filter_stop_times Filter a stop_times table for a given date and timespan.

Description

Filter a stop_times table for a given date and timespan.

Usage

filter_stop_times(gtfs_obj, extract_date, min_departure_time, max_arrival_time)

get_route_frequency 9

Arguments

gtfs_obj gtfs feed (tidygtfs object)
extract_date date to extract trips from this day (Date or "YYYY-MM-DD" string)
min_departure_time

(optional) The earliest departure time. Can be given as "HH:MM:SS", hms ob-
ject or numeric value in seconds.

max_arrival_time

(optional) The latest arrival time. Can be given as "HH:MM:SS", hms object or
numeric value in seconds.

Value

Filtered stop_times data.table for travel_times() and raptor().

Examples

feed_path <- system.file("extdata", "routing.zip", package = "tidytransit")
g <- read_gtfs(feed_path)

filter the sample feed
stop_times <- filter_stop_times(g, "2018-10-01", "06:00:00", "08:00:00")

get_route_frequency Get Route Frequency

Description

Calculate the number of departures and mean headways for routes within a given timespan and for
given service_ids.

Usage

get_route_frequency(
gtfs_obj,
start_time = "06:00:00",
end_time = "22:00:00",
service_ids = NULL

)

Arguments

gtfs_obj gtfs feed (tidygtfs object)
start_time analysis start time, can be given as "HH:MM:SS", hms object or numeric value

in seconds.
end_time analysis period end time, can be given as "HH:MM:SS", hms object or numeric

value in seconds.
service_ids A set of service_ids from the calendar dataframe identifying a particular service

id. If not provided, the service_id with the most departures is used.

10 get_route_geometry

Value

a dataframe of routes with variables or headway/frequency in seconds for a route within a given
time frame

Note

Some GTFS feeds contain a frequency data frame already. Consider using this instead, as it will be
more accurate than what tidytransit calculates.

Examples

data(gtfs_duke)
routes_frequency <- get_route_frequency(gtfs_duke)
x <- order(routes_frequency$median_headways)
head(routes_frequency[x,])

get_route_geometry Get all trip shapes for a given route and service

Description

Get all trip shapes for a given route and service

Usage

get_route_geometry(gtfs_sf_obj, route_ids = NULL, service_ids = NULL)

Arguments

gtfs_sf_obj tidytransit gtfs object with sf data frames

route_ids routes to extract

service_ids service_ids to extract

Value

an sf dataframe for gtfs routes with a row/linestring for each trip

Examples

data(gtfs_duke)
gtfs_duke_sf <- gtfs_as_sf(gtfs_duke)
routes_sf <- get_route_geometry(gtfs_duke_sf)
plot(routes_sf[c(1,1350),])

get_stop_frequency 11

get_stop_frequency Get Stop Frequency

Description

Calculate the number of departures and mean headways for all stops within a given timespan and
for given service_ids.

Usage

get_stop_frequency(
gtfs_obj,
start_time = "06:00:00",
end_time = "22:00:00",
service_ids = NULL,
by_route = TRUE

)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

start_time analysis start time, can be given as "HH:MM:SS", hms object or numeric value
in seconds.

end_time analysis period end time, can be given as "HH:MM:SS", hms object or numeric
value in seconds.

service_ids A set of service_ids from the calendar dataframe identifying a particular service
id. If not provided, the service_id with the most departures is used.

by_route Default TRUE, if FALSE then calculate headway for any line coming through
the stop in the same direction on the same schedule.

Value

dataframe of stops with the number of departures and the headway (departures divided by timespan)
in seconds as columns

Note

Some GTFS feeds contain a frequency data frame already. Consider using this instead, as it will be
more accurate than what tidytransit calculates.

Examples

data(gtfs_duke)
stop_frequency <- get_stop_frequency(gtfs_duke)
x <- order(stop_frequency$mean_headway)
head(stop_frequency[x,])

12 gtfs_as_sf

get_trip_geometry Get all trip shapes for given trip ids

Description

Get all trip shapes for given trip ids

Usage

get_trip_geometry(gtfs_sf_obj, trip_ids)

Arguments

gtfs_sf_obj tidytransit gtfs object with sf data frames

trip_ids trip_ids to extract shapes

Value

an sf dataframe for gtfs routes with a row/linestring for each trip

Examples

data(gtfs_duke)
gtfs_duke <- gtfs_as_sf(gtfs_duke)
trips_sf <- get_trip_geometry(gtfs_duke, c("t_726295_b_19493_tn_41", "t_726295_b_19493_tn_40"))
plot(trips_sf[1,"shape_id"])

gtfs_as_sf Convert stops and shapes to Simple Features

Description

Stops are converted to POINT sf data frames. Shapes are converted to a LINESTRING data frame.
Note that this function replaces stops and shapes tables in gtfs_obj.

Usage

gtfs_as_sf(gtfs_obj, skip_shapes = FALSE, crs = NULL, quiet = TRUE)

Arguments

gtfs_obj gtfs feed (tidygtfs object, created by read_gtfs())

skip_shapes if TRUE, shapes are not converted. Default FALSE.

crs optional coordinate reference system (used by sf::st_transform()) to trans-
form lon/lat coordinates of stops and shapes

quiet boolean whether to print status messages

gtfs_duke 13

Value

tidygtfs object with stops and shapes as sf dataframes

See Also

sf_as_tbl, stops_as_sf, shapes_as_sf

gtfs_duke Example GTFS data

Description

Data obtained from https://data.trilliumtransit.com/gtfs/duke-nc-us/duke-nc-us.zip.

Usage

gtfs_duke

Format

An object of class tidygtfs (inherits from gtfs) of length 18.

See Also

read_gtfs()

gtfs_transform Transform coordinates of a gtfs feed

Description

Transform coordinates of a gtfs feed

Usage

gtfs_transform(gtfs_obj, crs)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

crs target coordinate reference system, used by sf::st_transform()

Value

tidygtfs object with transformed stops and shapes sf dataframes

gtfs object with transformed sf tables

https://data.trilliumtransit.com/gtfs/duke-nc-us/duke-nc-us.zip

14 na_to_empty_strings

interpolate_stop_times

Interpolate missing stop_times linearly

Description

Interpolate missing stop_times linearly

Usage

interpolate_stop_times(x, use_shape_dist = TRUE)

Arguments

x tidygtfs object or stop_times table

use_shape_dist If TRUE, use shape_dist_traveled column from the shapes table for time
interpolation (if that column is available). If FALSE or shape_dist_traveled
is missing, times are interpolated equally between stops.

Value

tidygtfs or stop_times with interpolated arrival and departure times

Examples

Not run:
data(gtfs_duke)
print(gtfs_duke$stop_times[1:5, 1:5])

gtfs_duke_2 = interpolate_stop_times(gtfs_duke)
print(gtfs_duke_2$stop_times[1:5, 1:5])

gtfs_duke_3 = interpolate_stop_times(gtfs_duke, FALSE)
print(gtfs_duke_3$stop_times[1:5, 1:5])

End(Not run)

na_to_empty_strings Convert NA values to empty strings ("")

Description

write_gtfs() converts NA to empty strings

Usage

na_to_empty_strings(gtfs_obj)

plot.tidygtfs 15

Arguments

gtfs_obj gtfs feed (tidygtfs object)

Value

a gtfs_obj where all NA strings in tables have been replaced with ""

See Also

empty_strings_to_na()

plot.tidygtfs Plot GTFS stops and trips

Description

Plot GTFS stops and trips

Usage

S3 method for class 'tidygtfs'
plot(x, ...)

Arguments

x a tidygtfs object as read by read_gtfs()

... ignored for tidygtfs

Value

plot

Examples

local_gtfs_path <- system.file("extdata",
"nyc_subway.zip",
package = "tidytransit")

nyc <- read_gtfs(local_gtfs_path)
plot(nyc)

16 raptor

print.tidygtfs Print a GTFS object

Description

Prints a GTFS object suppressing the class attribute and hiding the validation_result attribute,
created with validate_gtfs().

Usage

S3 method for class 'tidygtfs'
print(x, ...)

Arguments

x a tidygtfs object as read by read_gtfs()

... Optional arguments ultimately passed to format.

Value

The GTFS object that was printed, invisibly

Examples

Not run:
path = system.file("extdata",

"nyc_subway.zip",
package = "tidytransit")

g = read_gtfs(path)
print(g)

End(Not run)

raptor Calculate travel times from one stop to all reachable stops

Description

raptor finds the minimal travel time, earliest or latest arrival time for all stops in stop_times with
journeys departing from stop_ids within time_range.

raptor 17

Usage

raptor(
stop_times,
transfers,
stop_ids,
arrival = FALSE,
time_range = 3600,
max_transfers = NULL,
keep = "all",
separate_starts = FALSE

)

Arguments

stop_times A (prepared) stop_times table from a gtfs feed. Prepared means that all stop time
rows before the desired journey departure time should be removed. The table
should also only include departures happening on one day. Use filter_stop_times()
for easier preparation.

transfers Transfers table from a gtfs feed. In general no preparation is needed. Can be
omitted if stop_times has been prepared with filter_stop_times().

stop_ids Character vector with stop_ids from where journeys should start (or end). It is
recommended to only use stop_ids that are related to each other, like different
platforms in a train station or bus stops that are reasonably close to each other.

arrival If FALSE (default), all journeys start from stop_ids. If TRUE, all journeys
end at stop_ids.

time_range Either a range in seconds or a vector containing the minimal and maximal depar-
ture time (i.e. earliest and latest possible journey departure time) as seconds or
"HH:MM:SS" character. If arrival is TRUE, time_range describes the time
window when journeys should end at stop_ids.

max_transfers Maximum number of transfers allowed, no limit (NULL) as default.

keep One of c("all", "shortest", "earliest", "latest"). By default, all journeys between
stop_ids are returned. With shortest only the journey with the shortest travel
time is returned. With earliest the journey arriving at a stop the earliest is
returned, latest works accordingly.

separate_starts

If FALSE (default), returns all initial transfers among the specified stop_ids. If
TRUE each stop_id is calculated independently. This can lead to faster computa-
tion times and is useful when the resulting times between from and to_stop_ids
will be aggregated later (e.g. by stop_name in travel_times()).

Details

With a modified Round-Based Public Transit Routing Algorithm (RAPTOR) using data.table, earli-
est arrival times for all stops are calculated. If two journeys arrive at the same time, the one with the
later departure time and thus shorter travel time is kept. By default, all journeys departing within
time_range that arrive at a stop are returned in a table. If you want all journeys arriving at stop_ids
within the specified time range, set arrival to TRUE.

https://www.microsoft.com/en-us/research/publication/round-based-public-transit-routing/

18 read_gtfs

Journeys are defined by a "from" and "to" stop_id, a departure, arrival and travel time. Note that
exact journeys (with each intermediate stop and route ids for example) are not returned.

For most cases, stop_times needs to be filtered, as it should only contain trips happening on a sin-
gle day, see filter_stop_times(). The algorithm scans all trips until it exceeds max_transfers
or all trips in stop_times have been visited.

Value

A data.table with journeys (departure, arrival and travel time) to/from all stop_ids reachable by
stop_ids.

See Also

travel_times() for an easier access to travel time calculations via stop_names.

Examples

nyc_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)

you can use initial walk times to different stops in walking distance (arbitrary example values)
stop_ids_harlem_st <- c("301", "301N", "301S")
stop_ids_155_st <- c("A11", "A11N", "A11S", "D12", "D12N", "D12S")
walk_times <- data.frame(stop_id = c(stop_ids_harlem_st, stop_ids_155_st),

walk_time = c(rep(600, 3), rep(410, 6)), stringsAsFactors = FALSE)

Use journeys departing after 7 AM with arrival time before 11 AM on 26th of June
stop_times <- filter_stop_times(nyc, "2018-06-26", 7*3600, 9*3600)

calculate all journeys departing from Harlem St or 155 St between 7:00 and 7:30
rptr <- raptor(stop_times, nyc$transfers, walk_times$stop_id, time_range = 1800,

keep = "all")

add walk times to travel times
rptr <- merge(rptr, walk_times, by.x = "from_stop_id", by.y = "stop_id")
rptr$travel_time_incl_walk <- rptr$travel_time + rptr$walk_time

get minimal travel times (with walk times) for all stop_ids
library(data.table)
shortest_travel_times <- setDT(rptr)[order(travel_time_incl_walk)][, .SD[1], by = "to_stop_id"]
hist(shortest_travel_times$travel_time, breaks = seq(0,2*60)*60)

read_gtfs Read and validate GTFS files

Description

Reads a GTFS feed from either a local .zip file or an URL and validates them against GTFS
specifications.

read_gtfs 19

Usage

read_gtfs(path, files = NULL, quiet = TRUE, ...)

Arguments

path The path to a GTFS .zip file.

files A character vector containing the text files to be validated against the GTFS
specification without the file extension (txt or geojson). If NULL (the default),
all existing files are read.

quiet Whether to hide log messages and progress bars (defaults to TRUE).

... Can be used to pass on arguments to gtfsio::import_gtfs(). The parameters
files and quiet are passed on by default.

Value

A tidygtfs object: a list of tibbles in which each entry represents a GTFS text file. Additional tables
are stored in the . sublist.

Note

Limitations: read_gtfs() does not support downloading GTFS files from URLs that require au-
thentication. If you need to read a feed behind authentication, first download the feed to a local file
and then pass the local path to read_gtfs().

See Also

validate_gtfs(), write_gtfs()

Examples

Not run:
local_gtfs_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
gtfs <- read_gtfs(local_gtfs_path)
summary(gtfs)

gtfs <- read_gtfs(local_gtfs_path, files = c("trips", "stop_times"))
names(gtfs)

End(Not run)

20 set_servicepattern

route_type_names Dataframe of route type id’s and the names of the types (e.g. "Bus")

Description

Extended GTFS Route Types: https://developers.google.com/transit/gtfs/reference/extended-route-
types

Usage

route_type_names

Format

A data frame with 136 rows and 2 variables:

route_type the id of route type

route_type_name name of the gtfs route type

Source

https://gist.github.com/derhuerst/b0243339e22c310bee2386388151e11e

set_servicepattern Calculate service pattern ids for a GTFS feed

Description

Each trip has a defined number of dates it runs on. This set of dates is called a service pattern in
tidytransit. Trips with the same servicepattern id run on the same dates. In general, service_id
can work this way but it is not enforced by the GTFS standard.

Usage

set_servicepattern(
gtfs_obj,
id_prefix = "s_",
hash_algo = "md5",
hash_length = 7

)

https://gist.github.com/derhuerst/b0243339e22c310bee2386388151e11e

sf_as_tbl 21

Arguments

gtfs_obj gtfs feed (tidygtfs object)

id_prefix all servicepattern ids will start with this string

hash_algo hashing algorithm used by digest::digest()

hash_length length the hash should be cut to with substr(). Use -1 if the full hash should
be used

Value

modified gtfs_obj with added servicepattern list and a table linking trips and pattern (trip_servicepatterns),
added to gtfs_obj$. sublist.

Examples

gtfs = set_servicepattern(gtfs_duke)
gtfs$.$dates_servicepatterns

sf_as_tbl Convert stops and shapes from sf objects to tibbles

Description

Coordinates are transformed to lon/lat columns (stop_lon/stop_lat or shape_pt_lon/shape_pt_lat)

Usage

sf_as_tbl(gtfs_obj)

Arguments

gtfs_obj gtfs feed (tidygtfs object)

Value

tidygtfs object with stops and shapes converted to tibbles

See Also

gtfs_as_sf

22 stops_as_sf

shapes_as_sf Convert shapes into Simple Features Linestrings

Description

Convert shapes into Simple Features Linestrings

Usage

shapes_as_sf(gtfs_shapes, crs = NULL)

Arguments

gtfs_shapes a gtfs$shapes dataframe

crs optional coordinate reference system (used by sf::st_transform()) to trans-
form lon/lat coordinates

Value

an sf dataframe for gtfs shapes

See Also

gtfs_as_sf

stops_as_sf Convert stops into Simple Features Points

Description

Convert stops into Simple Features Points

Usage

stops_as_sf(stops, crs = NULL)

Arguments

stops a gtfs$stops dataframe

crs optional coordinate reference system (used by sf::st_transform()) to trans-
form lon/lat coordinates

Value

an sf dataframe for gtfs routes with a point column

stop_distances 23

See Also

gtfs_as_sf

Examples

data(gtfs_duke)
some_stops <- gtfs_duke$stops[sample(nrow(gtfs_duke$stops), 40),]
some_stops_sf <- stops_as_sf(some_stops)
plot(some_stops_sf[,"stop_name"])

stop_distances Calculate distances between a given set of stops

Description

Calculate distances between a given set of stops

Usage

stop_distances(gtfs_stops)

Arguments

gtfs_stops gtfs stops table either as data frame (with at least stop_id, stop_lon and stop_lat
columns) or as sf object.

Value

Returns a data.frame with each row containing a pair of stop_ids (columns from_stop_id and
to_stop_id) and the distance between them (in meters)

Note

The resulting data.frame has nrow(gtfs_stops)^2 rows, distances calculations among all stops for
large feeds should be avoided.

Examples

Not run:
library(dplyr)

nyc_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)

nyc$stops %>%
filter(stop_name == "Borough Hall") %>%
stop_distances() %>%
arrange(desc(distance))

24 stop_group_distances

#> # A tibble: 36 × 3
#> from_stop_id to_stop_id distance
#> <chr> <chr> <dbl>
#> 1 423 232 91.5
#> 2 423N 232 91.5
#> 3 423S 232 91.5
#> 4 423 232N 91.5
#> 5 423N 232N 91.5
#> 6 423S 232N 91.5
#> 7 423 232S 91.5
#> 8 423N 232S 91.5
#> 9 423S 232S 91.5
#> 10 232 423 91.5
#> # . . . with 26 more rows

End(Not run)

stop_group_distances Calculates distances among stop within the same group column

Description

By default calculates distances among stop_ids with the same stop_name.

Usage

stop_group_distances(gtfs_stops, by = "stop_name", max_only = FALSE)

Arguments

gtfs_stops gtfs stops table either as data frame (with at least stop_id, stop_lon and stop_lat
columns) or as sf object.

by group column, default: "stop_name"

max_only only return max distance among stops? (default FALSE). TRUE allows a slightly
faster calculation.

Value

data.frame with one row per group containing a distance matrix (distances), number of stop ids
within that group (n_stop_ids) and distance summary values (dist_mean, dist_median and dist_max).

Examples

Not run:
library(dplyr)

nyc_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)

summary.tidygtfs 25

stop_group_distances(nyc$stops)
#> # A tibble: 380 × 6
#> stop_name distances n_stop_ids dist_mean dist_median dist_max
#> <chr> <list> <dbl> <dbl> <dbl> <dbl>
#> 1 86 St <dbl [18 × 18]> 18 5395. 5395. 21811.
#> 2 79 St <dbl [6 × 6]> 6 19053. 19053. 19053.
#> 3 Prospect Av <dbl [6 × 6]> 6 18804. 18804. 18804.
#> 4 77 St <dbl [6 × 6]> 6 16947. 16947. 16947.
#> 5 59 St <dbl [6 × 6]> 6 14130. 14130. 14130.
#> 6 50 St <dbl [9 × 9]> 9 7097. 7097. 14068.
#> 7 36 St <dbl [6 × 6]> 6 12496. 12496. 12496.
#> 8 8 Av <dbl [6 × 6]> 6 11682. 11682. 11682.
#> 9 7 Av <dbl [9 × 9]> 9 5479. 5479. 10753.
#> 10 111 St <dbl [9 × 9]> 9 3877. 3877. 7753.
#> # . . . with 370 more rows

End(Not run)

summary.tidygtfs GTFS feed summary

Description

GTFS feed summary

Usage

S3 method for class 'tidygtfs'
summary(object, ...)

Arguments

object a tidygtfs object as read by read_gtfs()

... ignored for tidygtfs

Value

the tidygtfs object, invisibly

26 travel_times

travel_times Calculate shortest travel times from a stop to all reachable stops

Description

Function to calculate the shortest travel times from a stop (given by stop_name) to all other stop_names
of a feed. filtered_stop_times needs to be created before with filter_stop_times() or
filter_feed_by_date().

Usage

travel_times(
filtered_stop_times,
stop_name,
time_range = 3600,
arrival = FALSE,
max_transfers = NULL,
return_coords = FALSE,
return_DT = FALSE,
stop_dist_check = 300,
...

)

Arguments

filtered_stop_times

stop_times data.table (with transfers and stops tables as attributes) created with
filter_stop_times() where the departure or arrival time has been set.

stop_name Stop name for which travel times should be calculated. A vector with multiple
names can be used.

time_range Either a range in seconds or a vector containing the minimal and maximal depar-
ture time (i.e. earliest and latest possible journey departure time) as seconds or
"HH:MM:SS" character. If arrival is TRUE, time_range describes the time
window when journeys should end at stop_name.

arrival If FALSE (default), all journeys start from stop_name. If TRUE, all journeys end
at stop_name.

max_transfers The maximum number of transfers. No limit if NULL

return_coords Returns stop coordinates (lon/lat) as columns if TRUE. Default is FALSE.

return_DT travel_times() returns a data.table if TRUE. Default is FALSE which returns a
tibble/tbl_df.

stop_dist_check

stop_names are not structured identifiers like stop_ids or parent_stations, so it is
possible that stops with the same name are far apart from each other. travel_times()
errors if the distance among stop_ids with the same name is above this threshold
(in meters). Use FALSE to turn check off. However, it is recommended to either
use raptor() or fix the feed (see cluster_stops()) in case of warnings.

travel_times 27

... ignored

Details

This function allows easier access to raptor() by using stop names instead of ids and returning
shortest travel times by default.

Note however that stop_name might not be a suitable identifier for a feed. It is possible that
multiple stops have the same name while not being related or geographically close to each other.
stop_group_distances() and cluster_stops() can help identify and fix issues with stop_names.

Value

A table with travel times to/from all stops reachable by stop_name and their corresponding journey
departure and arrival times.

Examples

library(dplyr)

1) Calculate travel times from two closely related stops
The example dataset gtfs_duke has missing times (allowed in gtfs) which is
why we run interpolate_stop_times beforehand
gtfs = interpolate_stop_times(gtfs_duke)

tts1 = gtfs %>%
filter_feed_by_date("2019-08-26") %>%
travel_times(c("Campus Dr at Arts Annex (WB)", "Campus Dr at Arts Annex (EB)"),

time_range = c("14:00:00", "15:30:00"))

you can use either filter_feed_by_date or filter_stop_times to prepare the feed
the result is the same
tts2 = gtfs %>%
filter_stop_times("2019-08-26", "14:00:00") %>%
travel_times(c("Campus Dr at Arts Annex (WB)", "Campus Dr at Arts Annex (EB)"),

time_range = 1.5*3600) # 1.5h after 14:00

all(tts1 == tts2)
It's recommended to store the filtered feed, since it can be time consuming to
run it for every travel time calculation, see the next example steps

2) separate filtering and travel time calculation for a more granular analysis
stop_names in this feed are not restricted to an area, create clusters of stops to fix
nyc_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
nyc <- read_gtfs(nyc_path)
nyc <- cluster_stops(nyc, group_col = "stop_name", cluster_colname = "stop_name")

Use journeys departing after 7 AM with arrival time before 9 AM on 26th June
stop_times <- filter_stop_times(nyc, "2018-06-26", 7*3600, 9*3600)

Calculate travel times from "34 St - Herald Sq"
tts <- travel_times(stop_times, "34 St - Herald Sq", return_coords = TRUE)

28 validate_gtfs

only keep journeys under one hour for plotting
tts <- tts %>% filter(travel_time <= 3600)

travel time to Queensboro Plaza is 810 seconds, 13:30 minutes
tts %>%

filter(to_stop_name == "Queensboro Plaza") %>%
mutate(travel_time = hms::hms(travel_time))

plot a simple map showing travel times to all reachable stops
this can be expanded to isochron maps
library(ggplot2)
ggplot(tts) + geom_point(aes(x=to_stop_lon, y=to_stop_lat, color = travel_time))

validate_gtfs Validate GTFS feed

Description

Validates the GTFS object against GTFS specifications and raises warnings if required files/fields
are not found. This function is called in read_gtfs().

Usage

validate_gtfs(gtfs_obj, files = NULL, warnings = TRUE)

Arguments

gtfs_obj gtfs object (i.e. a list of tables, not necessary a tidygtfs object)

files A character vector containing the text files to be validated against the GTFS
specification without the file extension (txt or geojson). If NULL (the default),
the provided GTFS feed is validated against all possible GTFS text files.

warnings Whether to display warning messages (defaults to TRUE).

Details

Note that this function just checks if required files or fields are missing. There’s no validation for
internal consistency (e.g. no departure times before arrival times or calendar covering a reasonable
period).

Value

A validation_result tibble containing the validation summary of all possible fields from the
specified files.

write_gtfs 29

Details

GTFS object’s files and fields are validated against the GTFS specifications as documented in GTFS
Schedule Reference:

• GTFS feeds are considered valid if they include all required files and fields. If a required
file/field is missing the function (optionally) raises a warning.

• Optional files/fields are listed in the reference above but are not required, thus no warning is
raised if they are missing.

• Extra files/fields are those who are not listed in the reference above (either because they refer
to a specific GTFS extension or due to any other reason).

Note that some files (calendar.txt, calendar_dates.txt and feed_info.txt) are conditionally
required. This means that:

• calendar.txt is initially set as a required file. If it’s not present, however, it becomes optional
and calendar_dates.txt (originally set as optional) becomes required.

• feed_info.txt is initially set as an optional file. If translations.txt is present, however,
it becomes required.

Examples

validate_gtfs(gtfs_duke)

Not run:
local_gtfs_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
gtfs <- read_gtfs(local_gtfs_path)
attr(gtfs, "validation_result")

gtfs$shapes <- NULL
validation_result <- validate_gtfs(gtfs)

should raise a warning
gtfs$stop_times <- NULL
validation_result <- validate_gtfs(gtfs)

End(Not run)

write_gtfs Write a tidygtfs object to a zip file

Description

Write a tidygtfs object to a zip file

Usage

write_gtfs(gtfs_obj, zipfile, compression_level = 9, as_dir = FALSE)

https://gtfs.org/documentation/schedule/reference/
https://gtfs.org/documentation/schedule/reference/

30 write_gtfs

Arguments

gtfs_obj gtfs feed (tidygtfs object)

zipfile path to the zip file the feed should be written to. The file is overwritten if it
already exists.

compression_level

a number between 1 and 9, defaults to 9 (best compression).

as_dir if TRUE, the feed is not zipped and zipfile is used as a directory path. The direc-
tory will be overwritten if it already exists.

Value

Invisibly returns gtfs_obj

Note

Auxiliary tidytransit tables (e.g. dates_services) are not exported. Calls gtfsio::export_gtfs()
after preparing the data.

See Also

read_gtfs()

Examples

Not run:
local_gtfs_path <- system.file("extdata", "nyc_subway.zip", package = "tidytransit")
gtfs <- read_gtfs(local_gtfs_path)

gtfs <- filter_feed_by_date(gtfs, "2018-06-30")

write_gtfs(gtfs, "feed_filtered.zip")

End(Not run)

Index

∗ datasets
gtfs_duke, 13
route_type_names, 20

as_tidygtfs, 3

cluster_stops, 3
cluster_stops(), 26, 27

digest::digest(), 21

empty_strings_to_na, 4
empty_strings_to_na(), 15

filter_feed_by_area, 5
filter_feed_by_area(), 6, 7
filter_feed_by_date, 6
filter_feed_by_date(), 5, 7, 26
filter_feed_by_stops, 6
filter_feed_by_stops(), 5–7
filter_feed_by_trips, 7
filter_feed_by_trips(), 5–7
filter_stop_times, 8
filter_stop_times(), 17, 18, 26
filter_stops, 8

get_route_frequency, 9
get_route_geometry, 10
get_stop_frequency, 11
get_trip_geometry, 12
gtfs_as_sf, 12, 21–23
gtfs_duke, 13
gtfs_transform, 13
gtfsio::export_gtfs(), 30
gtfsio::import_gtfs(), 19

interpolate_stop_times, 14

na_to_empty_strings, 14
na_to_empty_strings(), 5

plot.tidygtfs, 15

print.tidygtfs, 16

raptor, 16
raptor(), 9, 26, 27
read_gtfs, 18
read_gtfs(), 4, 12, 13, 15, 16, 25, 28, 30
route_type_names, 20

set_servicepattern, 20
sf::st_transform(), 12, 13, 22
sf_as_tbl, 13, 21
shapes_as_sf, 13, 22
stats::kmeans(), 4
stop_distances, 23
stop_group_distances, 24
stop_group_distances(), 27
stops_as_sf, 13, 22
summary.tidygtfs, 25

travel_times, 26
travel_times(), 9, 17, 18

validate_gtfs, 28
validate_gtfs(), 16, 19

write_gtfs, 29
write_gtfs(), 14, 19

31

	as_tidygtfs
	cluster_stops
	empty_strings_to_na
	filter_feed_by_area
	filter_feed_by_date
	filter_feed_by_stops
	filter_feed_by_trips
	filter_stops
	filter_stop_times
	get_route_frequency
	get_route_geometry
	get_stop_frequency
	get_trip_geometry
	gtfs_as_sf
	gtfs_duke
	gtfs_transform
	interpolate_stop_times
	na_to_empty_strings
	plot.tidygtfs
	print.tidygtfs
	raptor
	read_gtfs
	route_type_names
	set_servicepattern
	sf_as_tbl
	shapes_as_sf
	stops_as_sf
	stop_distances
	stop_group_distances
	summary.tidygtfs
	travel_times
	validate_gtfs
	write_gtfs
	Index

