
Package ‘tidyterra’
January 23, 2026

Title 'tidyverse' Methods and 'ggplot2' Helpers for 'terra' Objects

Version 1.0.0

Description Extension of the 'tidyverse' for 'SpatRaster' and
'SpatVector' objects of the 'terra' package. It includes also new
'geom_' functions that provide a convenient way of visualizing 'terra'
objects with 'ggplot2'.

License MIT + file LICENSE

URL https://dieghernan.github.io/tidyterra/,

https://github.com/dieghernan/tidyterra

BugReports https://github.com/dieghernan/tidyterra/issues

Depends R (>= 4.1.0)

Imports cli (>= 3.0.0), data.table, dplyr (>= 1.0.0), generics,
ggplot2 (>= 4.0.0), magrittr, rlang, scales, sf (>= 1.0.0),
terra (>= 1.8-10), tibble (>= 3.0.0), tidyr (>= 1.0.0)

Suggests hexbin, isoband, knitr, lifecycle, maptiles, rmarkdown, s2,
testthat (>= 3.0.0), vctrs

VignetteBuilder knitr

Config/Needs/coverage covr

Config/Needs/website geodata, dieghernan/gitdevr, ragg, styler, metR,
ggspatial, cpp11, remotes, gganimate, gifski

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

X-schema.org-keywords r, terra, ggplot-extension, r-spatial, rspatial,
cran, cran-r, r-package, rstats, rstats-package

NeedsCompilation no

1

https://dieghernan.github.io/tidyterra/
https://github.com/dieghernan/tidyterra
https://github.com/dieghernan/tidyterra/issues

2 Contents

Author Diego Hernangómez [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8457-4658>),

Dewey Dunnington [ctb] (ORCID: <https://orcid.org/0000-0002-9415-4582>,
for ggspatial code),

ggplot2 authors [cph] (for contour code),
Andrea Manica [ctb] (ORCID: <https://orcid.org/0000-0003-1895-450X>)

Maintainer Diego Hernangómez <diego.hernangomezherrero@gmail.com>

Repository CRAN

Date/Publication 2026-01-23 06:40:14 UTC

Contents
arrange.SpatVector . 3
as_coordinates . 4
as_sf . 5
as_spatraster . 6
as_spatvector . 8
as_tibble.Spat . 10
autoplot.Spat . 12
bind_cols.SpatVector . 14
bind_rows.SpatVector . 15
compare_spatrasters . 17
count.SpatVector . 19
cross_blended_hypsometric_tints_db . 21
distinct.SpatVector . 22
drop_na.Spat . 24
fill.SpatVector . 26
filter-joins.SpatVector . 28
filter.Spat . 30
fortify.Spat . 32
geom_spatraster . 35
geom_spatraster_rgb . 40
geom_spat_contour . 43
ggspatvector . 48
glance.Spat . 51
glimpse.Spat . 52
grass_db . 54
group-by.SpatVector . 57
hypsometric_tints_db . 59
is_regular_grid . 60
mutate-joins.SpatVector . 62
mutate.Spat . 65
pivot_longer.SpatVector . 67
pivot_wider.SpatVector . 70
princess_db . 74
pull.Spat . 75
pull_crs . 77

https://orcid.org/0000-0001-8457-4658
https://orcid.org/0000-0002-9415-4582
https://orcid.org/0000-0003-1895-450X

arrange.SpatVector 3

relocate.Spat . 78
rename.Spat . 80
replace_na.Spat . 81
required_pkgs.Spat . 82
rowwise.SpatVector . 84
scale_color_coltab . 86
scale_coltab . 89
scale_cross_blended . 92
scale_grass . 100
scale_hypso . 106
scale_princess . 114
scale_terrain . 119
scale_whitebox . 123
select.Spat . 127
slice.Spat . 129
summarise.SpatVector . 134
tidy.Spat . 136
volcano2 . 138

Index 141

arrange.SpatVector Order a SpatVector using column values

Description

arrange.SpatVector() orders the geometries of a SpatVector by the values of selected columns.

Usage

S3 method for class 'SpatVector'
arrange(.data, ..., .by_group = FALSE)

Arguments

.data A SpatVector created with terra::vect().

... <data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped SpatVector
only (see group_by.SpatVector()).

Value

A SpatVector object.

terra equivalent

terra::sort()

https://CRAN.R-project.org/package=terra

4 as_coordinates

Methods

Implementation of the generic dplyr::arrange() function for SpatVector class.

See Also

dplyr::arrange()

Other single table verbs: filter.Spat, mutate.Spat, rename.Spat, select.Spat, slice.Spat,
summarise.SpatVector()

Other dplyr verbs that operate on rows: distinct.SpatVector(), filter.Spat, slice.Spat

Other dplyr methods: bind_cols.SpatVector, bind_rows.SpatVector, count.SpatVector(),
distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(dplyr)

v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

Single variable

v |>
arrange(desc(iso2))

Two variables
v |>

mutate(even = as.double(cpro) %% 2 == 0,) |>
arrange(desc(even), desc(iso2))

With new variables
v |>

mutate(area_geom = terra::expanse(v)) |>
arrange(area_geom)

as_coordinates Get cell number, row and column from a SpatRaster

Description

as_coordinates() can be used to obtain the position of each cell on the SpatRaster matrix.

Usage

as_coordinates(x, as.raster = FALSE)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

as_sf 5

Arguments

x A SpatRaster object.

as.raster If TRUE, the result is a SpatRaster object with three layers indicating the posi-
tion of each cell (cell number, row and column).

Value

A tibble or a SpatRaster (if as.raster = TRUE) with the same number of rows (or cells) than the
number of cells in x.

When as.raster = TRUE the resulting SpatRaster has the same crs, extension and resolution than
x

See Also

slice.SpatRaster()

Coercing objects: as_sf(), as_spatraster(), as_spatvector(), as_tibble.Spat, fortify.Spat,
tidy.Spat

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

r <- rast(f)

as_coordinates(r)
as_coordinates(r, as.raster = TRUE)

as_coordinates(r, as.raster = TRUE) |> plot()

as_sf Coerce a SpatVector to a sf object

Description

as_sf() turns a SpatVector to sf object. This is a wrapper of sf::st_as_sf() with the particu-
larity that the groups created with group_by.SpatVector() are preserved.

Usage

as_sf(x, ...)

Arguments

x A SpatVector.

... additional arguments passed on to sf::st_as_sf().

6 as_spatraster

Value

A sf object object with an additional tbl_df class, for pretty printing method.

See Also

Coercing objects: as_coordinates(), as_spatraster(), as_spatvector(), as_tibble.Spat,
fortify.Spat, tidy.Spat

Examples

library(terra)

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- terra::vect(f)

This is ungrouped
v
is_grouped_spatvector(v)

Get an ungrouped data
a_sf <- as_sf(v)

dplyr::is_grouped_df(a_sf)

Grouped

v$gr <- c("C", "A", "A", "B", "A", "B", "B")
v$gr2 <- rep(c("F", "G", "F"), 3)

gr_v <- group_by(v, gr, gr2)

gr_v
is_grouped_spatvector(gr_v)

group_data(gr_v)

A sf

a_gr_sf <- as_sf(gr_v)

dplyr::is_grouped_df(a_gr_sf)

group_data(a_gr_sf)

as_spatraster Coerce a data frame to SpatRaster

as_spatraster 7

Description

as_spatraster() turns an existing data frame or tibble into a SpatRaster. This is a wrapper of
terra::rast() S4 method for signature data.frame.

Usage

as_spatraster(x, ..., xycols = 1:2, crs = "", digits = 6)

Arguments

x A tibble or data frame.

... additional arguments passed on to terra::rast().

xycols A vector of integers of length 2 determining the position of the columns that
hold the x and y coordinates.

crs A crs on several formats (PROJ.4, WKT, EPSG code, ..) or and spatial ob-
ject from sf or terra. that includes the target coordinate reference system. See
pull_crs() and Details.

digits integer to set the precision for detecting whether points are on a regular grid (a
low number of digits is a low precision).

Details

If no crs is provided and the tibble has been created with the method as_tibble.SpatRaster(),
the crs is inferred from attr(x, "crs").

Value

A SpatRaster.

terra equivalent

terra::rast() (see S4 method for signature data.frame).

See Also

pull_crs() for retrieving crs, and the corresponding utils sf::st_crs() and terra::crs().

Coercing objects: as_coordinates(), as_sf(), as_spatvector(), as_tibble.Spat, fortify.Spat,
tidy.Spat

Examples

library(terra)

r <- rast(matrix(1:90, ncol = 3), crs = "EPSG:3857")

r

Create tibble
as_tbl <- as_tibble(r, xy = TRUE)

https://CRAN.R-project.org/package=terra

8 as_spatvector

as_tbl

From tibble
newrast <- as_spatraster(as_tbl, crs = "EPSG:3857")
newrast

as_spatvector Method for coercing objects to SpatVector

Description

as_spatvector() turns an existing object into a SpatVector. This is a wrapper of terra::vect()
S4 method for signature data.frame.

Usage

as_spatvector(x, ...)

S3 method for class 'data.frame'
as_spatvector(x, ..., geom = c("lon", "lat"), crs = "")

S3 method for class 'sf'
as_spatvector(x, ...)

S3 method for class 'sfc'
as_spatvector(x, ...)

S3 method for class 'SpatVector'
as_spatvector(x, ...)

Arguments

x A tibble, data frame or sf object of class sf or sfc.

... additional arguments passed on to terra::vect().

geom character. The field name(s) with the geometry data. Either two names for x
and y coordinates of points, or a single name for a single column with WKT
geometries.

crs A crs on several formats (PROJ.4, WKT, EPSG code, ..) or and spatial ob-
ject from sf or terra that includes the target coordinate reference system. See
pull_crs() and Details.

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=terra

as_spatvector 9

Details

This function differs from terra::vect() on the following:

• geometries with NA or "" values are removed prior to conversion

• If x is a grouped data frame (see dplyr::group_by()) the grouping vars are transferred and
a "grouped" SpatVector is created (see group_by.SpatVector()).

• If no crs is provided and the tibble has been created with the method as_tibble.SpatVector(),
the crs is inferred from attr(x, "crs").

• Handles correctly the conversion of EMPTY geometries between sf and terra.

Value

A SpatVector.

terra equivalent

terra::vect()

See Also

pull_crs() for retrieving crs, and the corresponding utils sf::st_crs() and terra::crs().

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_tibble.Spat, fortify.Spat,
tidy.Spat

Examples

library(terra)

v <- vect(matrix(1:80, ncol = 2), crs = "EPSG:3857")

v$cat <- sample(LETTERS[1:4], size = nrow(v), replace = TRUE)

v

Create tibble
as_tbl <- as_tibble(v, geom = "WKT")

as_tbl

From tibble
newvect <- as_spatvector(as_tbl, geom = "geometry", crs = "EPSG:3857")
newvect

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra

10 as_tibble.Spat

as_tibble.Spat Coerce a SpatVector or SpatRaster object to data frames

Description

as_tibble() methods for SpatRaster and SpatVector objects.

Usage

S3 method for class 'SpatRaster'
as_tibble(x, ..., xy = FALSE, na.rm = FALSE, .name_repair = "unique")

S3 method for class 'SpatVector'
as_tibble(x, ..., geom = NULL, .name_repair = "unique")

Arguments

x A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... Arguments passed on to terra::as.data.frame().

xy logical. If TRUE, the coordinates of each raster cell are included

na.rm logical. If TRUE, cells that have a NA value in at least one layer are removed. If
the argument is set to NA only cells that have NA values in all layers are removed

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence.
• "unique": Make sure names are unique and not empty.
• "check_unique": (default value), no name repair, but check they are unique.
• "universal": Make the names unique and syntactic.
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function().

geom character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry
included in Well-Known-Text or hexadecimal notation. If x has point geometry,
it can also be "XY" to add the coordinates of each point

Value

A tibble.

terra equivalent

terra::as.data.frame()

https://CRAN.R-project.org/package=terra

as_tibble.Spat 11

Methods

Implementation of the generic tibble::as_tibble() function.

SpatRaster and SpatVector:
The tibble is returned with an attribute including the crs of the initial object in WKT format (see
pull_crs()).

About layer/column names

When coercing SpatRaster objects to data frames, x and y names are reserved for geographic
coordinates of each cell of the SpatRaster It should be also noted that terra allows layers with
duplicated names.

In the process of coercing a SpatRaster to a tibble, tidyterra may rename the layers of your
SpatRaster for overcoming this issue. Specifically, layers may be renamed on the following cases:

• Layers with duplicated names.
• When coercing to a tibble, if xy = TRUE, layers named x or y would be renamed.
• When working with tidyverse methods (i.e. filter.SpatRaster()), the latter would happen

as well.

tidyterra would display a message informing of the changes on the names of the layer.

The same issue happens for SpatVector with names geometry (when geom = c("WKT", "HEX"))
and x, y (when geom = "XY"). These are reserved names representing the geometry of the SpatVector
(see terra::as.data.frame()). If geom is not NULL then the logic described for SpatRaster
would apply as well for the columns of the SpatVector.

See Also

tibble::as_tibble(), terra::as.data.frame()

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_spatvector(), fortify.Spat,
tidy.Spat

Examples

library(terra)
SpatRaster
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

as_tibble(r, na.rm = TRUE)

as_tibble(r, xy = TRUE)

SpatVector

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- vect(f)

as_tibble(v)

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=tidyterra

12 autoplot.Spat

autoplot.Spat Create a complete ggplot for Spat* objects

Description

autoplot() uses ggplot2 to draw plots as the ones produced by terra::plot()/terra::plotRGB()
in a single command.

Usage

S3 method for class 'SpatRaster'
autoplot(
object,
...,
rgb = NULL,
use_coltab = NULL,
facets = NULL,
nrow = NULL,
ncol = 2

)

S3 method for class 'SpatVector'
autoplot(object, ...)

S3 method for class 'SpatGraticule'
autoplot(object, ...)

S3 method for class 'SpatExtent'
autoplot(object, ...)

Arguments

object A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().
Also support SpatGraticule (see terra::graticule()) and SpatExtent (see
terra::ext()).

... other arguments passed to geom_spatraster(), geom_spatraster_rgb() or
geom_spatvector().

rgb Logical. Should be plotted as a RGB image? If NULL (the default) autoplot.SpatRaster()
would try to guess.

use_coltab Logical. Should be plotted with the corresponding terra::coltab()? If NULL
(the default) autoplot.SpatRaster() would try to guess. See also scale_fill_coltab().

facets Logical. Should facets be displayed? If NULL (the default) autoplot.SpatRaster()
would try to guess.

nrow, ncol Number of rows and columns on the facet.

https://CRAN.R-project.org/package=ggplot2

autoplot.Spat 13

Details

Implementation of ggplot2::autoplot() method.

Value

A ggplot2 layer

Methods

Implementation of the generic ggplot2::autoplot() function.

SpatRaster:
Uses geom_spatraster() or geom_spatraster_rgb().

SpatVector, SpatGraticule and SpatExtent:
Uses geom_spatvector(). Labels can be placed with geom_spatvector_text() or geom_spatvector_label().

See Also

ggplot2::autoplot()

Other ggplot2 utils: fortify.Spat, geom_spat_contour, geom_spatraster(), geom_spatraster_rgb(),
ggspatvector, stat_spat_coordinates()

Other ggplot2 methods: fortify.Spat

Examples

file_path <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

library(terra)
temp <- rast(file_path)

library(ggplot2)
autoplot(temp)

With a tile

tile <- system.file("extdata/cyl_tile.tif", package = "tidyterra") |>
rast()

autoplot(tile)

With coltabs

ctab <- system.file("extdata/cyl_era.tif", package = "tidyterra") |>
rast()

autoplot(ctab)

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

14 bind_cols.SpatVector

With vectors
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))
autoplot(v)

v |> autoplot(aes(fill = cpro)) +
geom_spatvector_text(aes(label = iso2)) +
coord_sf(crs = 25829)

bind_cols.SpatVector Bind multiple SpatVector sf and data frames objects by column

Description

Bind any number of SpatVector, data frames and sf object by column, making a wider result. This
is similar to do.call(cbind, dfs).

Where possible prefer using a join to combine SpatVector and data frames objects. bind_spat_cols()
binds the rows in order in which they appear so it is easy to create meaningless results without re-
alizing it.

Usage

bind_spat_cols(
...,
.name_repair = c("unique", "universal", "check_unique", "minimal")

)

Arguments

... Objects to combine. The first argument should be a SpatVector and each of the
subsequent arguments can either be a SpatVector, a sf object or a data frame.
Inputs are recycled to the same length, then matched by position.

.name_repair One of "unique", "universal", or "check_unique". See dplyr::bind_cols()
for Details.

Value

A SpatVector with the corresponding columns. The geometry and CRS would correspond to the
the first SpatVector of

terra equivalent

cbind() method

Methods

Implementation of the dplyr::bind_rows() function for SpatVector objects. Note that for the
second and subsequent arguments on ... the geometry would not be cbinded, and only the data
frame (-ish) columns would be kept.

https://CRAN.R-project.org/package=terra

bind_rows.SpatVector 15

See Also

dplyr::bind_cols()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_rows.SpatVector, filter-joins.SpatVector,
mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_rows.SpatVector, count.SpatVector(),
distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
sv <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))
df2 <- data.frame(letters = letters[seq_len(nrow(sv))])

Data frame
bind_spat_cols(sv, df2)

Another SpatVector
bind_spat_cols(sv[1:2,], sv[3:4,])

sf objects
sfobj <- sf::read_sf(system.file("shape/nc.shp", package = "sf"))

bind_spat_cols(sv[1:9,], sfobj[1:9,])

Mixed

end <- bind_spat_cols(sv, sfobj[seq_len(nrow(sv)), 1:2], df2)

end
glimpse(end)

Row sizes must be compatible when column-binding
try(bind_spat_cols(sv, sfobj))

bind_rows.SpatVector Bind multiple SpatVector, sf/sfc and data frames objects by row

Description

Bind any number of SpatVector, data frames and sf/sfc objects by row, making a longer result.
This is similar to do.call(rbind, dfs), but the output will contain all columns that appear in any
of the inputs.

Usage

bind_spat_rows(..., .id = NULL)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

16 bind_rows.SpatVector

Arguments

... Objects to combine. The first argument should be a SpatVector and each of the
subsequent arguments can either be a SpatVector, a sf/sfc object or a data
frame. Columns are matched by name, and any missing columns will be filled
with NA.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

A SpatVector of the same type as the first element of

terra equivalent

rbind() method

Methods

Implementation of the dplyr::bind_rows() function for SpatVector objects.

The first element of ... should be a SpatVector. Subsequent elements may be SpatVector,
sf/sfc objects or data frames:

• If subsequent SpatVector/sf/sfc objects present a different CRS than the first element,
those elements would be reprojected to the CRS of the first element with a message.

• If any element of ... is a tibble/data frame the rows would be cbinded with empty geometries
with a message.

See Also

dplyr::bind_rows()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, filter-joins.SpatVector,
mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, count.SpatVector(),
distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

v1 <- v[1, "cpro"]
v2 <- v[3:5, c("name", "iso2")]

You can supply individual SpatVector as arguments:
bind_spat_rows(v1, v2)

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

compare_spatrasters 17

When you supply a column name with the `.id` argument, a new
column is created to link each row to its original data frame
bind_spat_rows(v1, v2, .id = "id")

Use with sf
sfobj <- sf::st_as_sf(v2[1,])

sfobj

bind_spat_rows(v1, sfobj)

Would reproject with a message on different CRS
sfobj_3857 <- as_spatvector(sfobj) |> project("EPSG:3857")

bind_spat_rows(v1, sfobj_3857)

And with data frames with a message
data("mtcars")
bind_spat_rows(v1, sfobj, mtcars, .id = "id2")

Use lists
bind_spat_rows(list(v1[1,], sfobj[1:2,]))

Or named list combined with .id
bind_spat_rows(list(

SpatVector = v1[1,], sf = sfobj[1,],
mtcars = mtcars[1,]

), .id = "source")

compare_spatrasters Compare attributes of two SpatRaster objects

Description

Two SpatRaster objects are compatible (in terms of combining layers) if the crs, extent and reso-
lution are similar. In those cases you can combine the objects simply as c(x, y).

This function compares those attributes informing of the results. See Solving issues section for
minimal guidance.

Usage

compare_spatrasters(x, y, digits = 6)

Arguments

x, y SpatRaster objects
digits Integer to set the precision for comparing the extent and the resolution.

18 compare_spatrasters

Value

A invisible logical TRUE/FALSE indicating if the SpatRaster objects are compatible, plus an infor-
mative message flagging the issues found (if any).

terra equivalent

terra::identical()

Solving issues

• On non-equal crs, try terra::project().

• On non-equal extent try terra::resample().

• On non-equal resolution you can try terra::resample(), terra::aggregate() or terra::disagg().

See Also

terra::identical()

Other helpers: is_grouped_spatvector(), is_regular_grid(), pull_crs()

Examples

library(terra)

x <- rast(matrix(1:90, ncol = 3), crs = "EPSG:3857")

Nothing
compare_spatrasters(x, x)

Different crs
y_nocrs <- x
crs(y_nocrs) <- NA

compare_spatrasters(x, y_nocrs)

Different extent
compare_spatrasters(x, x[1:10, , drop = FALSE])

Different resolution
y_newres <- x

res(y_newres) <- res(x) / 2
compare_spatrasters(x, y_newres)

Everything

compare_spatrasters(x, project(x, "epsg:3035"))

https://CRAN.R-project.org/package=terra

count.SpatVector 19

count.SpatVector Count the observations in each SpatVector group

Description

count() lets you quickly count the unique values of one or more variables:

• df |> count(a, b) is roughly equivalent to df |> group_by(a, b) |> summarise(n = n()).

• count() is paired with tally(), a lower-level helper that is equivalent to df |> summarise(n
= n()).

Usage

S3 method for class 'SpatVector'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x),
.dissolve = TRUE

)

S3 method for class 'SpatVector'
tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

x A SpatVector.

... <data-masking> Variables to group by.

wt Not implemented on this method

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect the
output.

.dissolve logical. Should borders between aggregated geometries be dissolved?

20 count.SpatVector

Value

A SpatVector object with an additional attribute.

terra equivalent

terra::aggregate()

Methods

Implementation of the generic dplyr::count() family functions for SpatVector objects.

tally() will always return a disaggregated geometry while count() can handle this. See also
summarise.SpatVector().

See Also

dplyr::count(), dplyr::tally()

Other dplyr verbs that operate on group of rows: group-by.SpatVector, rowwise.SpatVector(),
summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("ex/lux.shp", package = "terra")
p <- vect(f)

p |> count(NAME_1, sort = TRUE)

p |> count(NAME_1, sort = TRUE)

p |> count(pop = ifelse(POP < 20000, "A", "B"))

tally() is a lower-level function that assumes you've done the grouping
p |> tally()

p |>
group_by(NAME_1) |>
tally()

Dissolve geometries by default

library(ggplot2)
p |>

count(NAME_1) |>
ggplot() +

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

cross_blended_hypsometric_tints_db 21

geom_spatvector(aes(fill = n))

Opt out
p |>

count(NAME_1, .dissolve = FALSE, sort = TRUE) |>
ggplot() +
geom_spatvector(aes(fill = n))

cross_blended_hypsometric_tints_db

Cross-blended hypsometric tints

Description

A tibble including the color map of 4 gradient palettes. All the palettes includes also a definition of
colors limits in terms of elevation (meters), that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 41 rows and 6 columns. with the following fields:

pal Name of the palette.

limit Recommended elevation limit (in meters) for each color.

r Value of the red channel (RGB color mode).

g Value of the green channel (RGB color mode).

b Value of the blue channel (RGB color mode).

hex Hex code of the color.

Details

From Patterson & Jenny (2011):

More recently, the role and design of hypsometric tints have come under scrutiny. One reason
for this is the concern that people misread elevation colors as climate or vegetation information.
Cross-blended hypsometric tints, introduced in 2009, are a partial solution to this problem. They use
variable lowland colors customized to match the differing natural environments of world regions,
which merge into one another.

Source

Derived from:

• Patterson, T., & Jenny, B. (2011). The Development and Rationale of Cross-blended Hypso-
metric Tints. Cartographic Perspectives, (69), 31 - 46. doi:10.14714/CP69.20.

https://doi.org/10.14714/CP69.20

22 distinct.SpatVector

See Also

scale_fill_cross_blended_c()

Other datasets: grass_db, hypsometric_tints_db, princess_db, volcano2

Examples

data("cross_blended_hypsometric_tints_db")

cross_blended_hypsometric_tints_db

Select a palette
warm <- cross_blended_hypsometric_tints_db |>

filter(pal == "warm_humid")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
geom_spatraster(data = r) +
labs(fill = "elevation")

p +
scale_fill_gradientn(colors = warm$hex)

Use with limits
p +

scale_fill_gradientn(
colors = warm$hex,
values = scales::rescale(warm$limit),
limit = range(warm$limit),
na.value = "lightblue"

)

distinct.SpatVector Keep distinct/unique rows and geometries of SpatVector objects

Description

Keep only unique/distinct rows and geometries from a SpatVector.

Usage

S3 method for class 'SpatVector'
distinct(.data, ..., .keep_all = FALSE)

distinct.SpatVector 23

Arguments

.data A SpatVector created with terra::vect().

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row
will be preserved. If omitted, will use all variables in the data frame. There is
a reserved variable name, geometry, that would remove duplicate geometries.
See Methods.

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values.

Value

A SpatVector object.

terra equivalent

terra::unique()

Methods

Implementation of the generic dplyr::distinct() function.

SpatVector:
It is possible to remove duplicate geometries including the geometry variable explicitly in the ...
call. See Examples.

See Also

dplyr::distinct(), terra::unique()

Other dplyr verbs that operate on rows: arrange.SpatVector(), filter.Spat, slice.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

v <- vect(system.file("ex/lux.shp", package = "terra"))

Create a vector with dups
v <- v[sample(seq_len(nrow(v)), 100, replace = TRUE),]
v$gr <- sample(LETTERS[1:3], 100, replace = TRUE)

All duplicates
ex1 <- distinct(v)
ex1

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

24 drop_na.Spat

nrow(ex1)

Duplicates by NAME_1
ex2 <- distinct(v, gr)
ex2
nrow(ex2)

Same but keeping all cols
ex2b <- distinct(v, gr, .keep_all = TRUE)
ex2b
nrow(ex2b)

Unique geometries
ex3 <- distinct(v, geometry)

ex3
nrow(ex3)
Same as terra::unique()
terra::unique(ex3)

Unique keeping info
distinct(v, geometry, .keep_all = TRUE)

drop_na.Spat Drop attributes of Spat* objects containing missing values

Description

• SpatVector: drop_na() method drops geometries where any attribute specified by ... con-
tains a missing value.

• SpatRaster: drop_na() method drops cells where any layer specified by ... contains a
missing value.

Usage

S3 method for class 'SpatVector'
drop_na(data, ...)

S3 method for class 'SpatRaster'
drop_na(data, ...)

Arguments

data A SpatVector created with terra::vect() or a SpatRaster terra::rast().

... <tidy-select> Attributes to inspect for missing values. If empty, all attributes
are used.

drop_na.Spat 25

Value

A Spat* object of the same class than data. See Methods.

terra equivalent

terra::trim()

Methods

Implementation of the generic tidyr::drop_na() function.

SpatVector:
The implementation of this method is performed on a by-attribute basis, meaning that NAs
are assessed on the attributes (columns) of each vector (rows). The result is a SpatVector with
potentially less geometries than the input.

SpatRaster:
[Questioning]
Actual implementation of drop_na().SpatRaster can be understood as a masking method based
on the values of the layers (see terra::mask()).
SpatRaster layers are considered as columns and SpatRaster cells as rows, so rows (cells) with
any NA value on any layer would get a NA value. It is possible also to mask the cells (rows) based
on the values of specific layers (columns).
drop_na() would effectively remove outer cells that are NA (see terra::trim()), so the extent
of the resulting object may differ of the extent of the input (see terra::resample() for more
info).
Check the Examples to have a better understanding of this method.

Feedback needed!:
Visit https://github.com/dieghernan/tidyterra/issues. The implementation of this method
for SpatRaster may change in the future.

See Also

tidyr::drop_na()

Other tidyr verbs for handling missing values: fill.SpatVector(), replace_na.Spat

Other tidyr methods: fill.SpatVector(), pivot_longer.SpatVector(), pivot_wider.SpatVector(),
replace_na.Spat

Examples

library(terra)

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")

v <- terra::vect(f)

Add NAs
v <- v |> mutate(iso2 = ifelse(cpro <= "09", NA, cpro))

https://CRAN.R-project.org/package=terra
https://github.com/dieghernan/tidyterra/issues
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

26 fill.SpatVector

Init
plot(v, col = "red")

Mask with lyr.1
v |>

drop_na(iso2) |>
plot(col = "red")

SpatRaster method

r <- rast(
crs = "EPSG:3857",
extent = c(0, 10, 0, 10),
nlyr = 3,
resolution = c(2.5, 2.5)

)
terra::values(r) <- seq_len(ncell(r) * nlyr(r))

Add NAs
r[r > 13 & r < 22 | r > 31 & r < 45] <- NA

Init
plot(r, nc = 3)

Mask with lyr.1
r |>

drop_na(lyr.1) |>
plot(nc = 3)

Mask with lyr.2
r |>

drop_na(lyr.2) |>
plot(nc = 3)

Mask with lyr.3
r |>

drop_na(lyr.3) |>
plot(nc = 3)

Auto-mask all layers
r |>

drop_na() |>
plot(nc = 3)

fill.SpatVector Fill in missing values with previous or next value on a SpatVector

fill.SpatVector 27

Description

Fills missing values in selected columns using the next or previous entry. This is useful in the
common output format where values are not repeated, and are only recorded when they change.

Usage

S3 method for class 'SpatVector'
fill(data, ..., .direction = c("down", "up", "downup", "updown"))

Arguments

data A SpatVector.

... <tidy-select> Columns to fill.

.direction Direction in which to fill missing values. Currently either "down" (the default),
"up", "downup" (i.e. first down and then up) or "updown" (first up and then
down).

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::fill() function for SpatVector.

Grouped SpatVector

With grouped SpatVector created by group_by.SpatVector(), fill() will be applied within
each group, meaning that it won’t fill across group boundaries.

See Also

tidyr::fill()

Other tidyr verbs for handling missing values: drop_na.Spat, replace_na.Spat

Other tidyr methods: drop_na.Spat, pivot_longer.SpatVector(), pivot_wider.SpatVector(),
replace_na.Spat

Examples

library(dplyr)

lux <- terra::vect(system.file("ex/lux.shp", package = "terra"))

Leave some blanks for demo purporses

lux_blnk <- lux |>
mutate(NAME_1 = if_else(NAME_1 != NAME_2, NA, NAME_2))

https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

28 filter-joins.SpatVector

as_tibble(lux_blnk)

`fill()` defaults to replacing missing data from top to bottom
lux_blnk |>

fill(NAME_1) |>
as_tibble()

direction = "up"
lux_blnk |>

fill(NAME_1, .direction = "up") |>
as_tibble()

Grouping and downup - will restore the initial state
lux_blnk |>

group_by(ID_1) |>
fill(NAME_1, .direction = "downup") |>
as_tibble()

filter-joins.SpatVector

Filtering joins for SpatVector objects

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

• semi_join() return all rows from x with a match in y.

• anti_join() return all rows from x without a match in y.

See dplyr::semi_join() for details.

Usage

S3 method for class 'SpatVector'
semi_join(x, y, by = NULL, copy = FALSE, ...)

S3 method for class 'SpatVector'
anti_join(x, y, by = NULL, copy = FALSE, ...)

Arguments

x A SpatVector created with terra::vect().

y A data frame or other object coercible to a data frame. If a SpatVector of
sf object is provided it would return an error (see terra::intersect() for
performing spatial joins).

filter-joins.SpatVector 29

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

Value

A SpatVector object.

terra equivalent

terra::merge()

Methods

Implementation of the generic dplyr::semi_join() family

SpatVector:
The geometry column has a sticky behavior. This means that the result would have always the
geometry of x for the records that matches the join conditions.

See Also

dplyr::semi_join(), dplyr::anti_join(), terra::merge()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, bind_rows.SpatVector,
mutate-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter.Spat, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

30 filter.Spat

Examples

library(terra)
library(ggplot2)

Vector
v <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

A data frame
df <- data.frame(

cpro = sprintf("%02d", 1:10),
x = runif(10),
y = runif(10),
letter = rep_len(LETTERS[1:3], length.out = 10)

)

v

Semi join
semi <- v |> semi_join(df)

semi

autoplot(semi, aes(fill = iso2)) + ggtitle("Semi Join")

Anti join

anti <- v |> anti_join(df)

anti

autoplot(anti, aes(fill = iso2)) + ggtitle("Anti Join")

filter.Spat Subset cells/geometries of Spat* objects

Description

The filter() function is used to subset Spat* objects, retaining all cells/geometries that satisfy
your conditions. To be retained, the cell/geometry must produce a value of TRUE for all conditions.

It is possible to filter a SpatRaster by its geographic coordinates. You need to use filter(.data,
x > 42). Note that x and y are reserved names on terra, since they refer to the geographic coordi-
nates of the layer.

See Examples and section About layer names on as_tibble.Spat().

https://CRAN.R-project.org/package=terra

filter.Spat 31

Usage

S3 method for class 'SpatRaster'
filter(.data, ..., .preserve = FALSE, .keep_extent = TRUE)

S3 method for class 'SpatVector'
filter(.data, ..., .preserve = FALSE)

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... <data-masking> Expressions that return a logical value, and are defined in
terms of the layers/attributes in .data. If multiple expressions are included, they
are combined with the & operator. Only cells/geometries for which all conditions
evaluate to TRUE are kept. See Methods.

.preserve Ignored for Spat* objects.

.keep_extent Should the extent of the resulting SpatRaster be kept? On FALSE, terra::trim()
is called so the extent of the result may be different of the extent of the output.
See also drop_na.SpatRaster().

Value

A Spat* object of the same class than .data. See Methods.

Methods

Implementation of the generic dplyr::filter() function.

SpatRaster:
Cells that do not fulfill the conditions on ... are returned with value NA. On a multi-layer
SpatRaster the NA is propagated across all the layers.
If .keep_extent = TRUE the returning SpatRaster has the same crs, extent, resolution and hence
the same number of cells than .data. If .keep_extent = FALSE the outer NA cells are trimmed
with terra::trim(), so the extent and number of cells may differ. The output would present in
any case the same crs and resolution than .data.
x and y variables (i.e. the longitude and latitude of the SpatRaster) are also available internally
for filtering. See Examples.

SpatVector:
The result is a SpatVector with all the geometries that produce a value of TRUE for all conditions.

See Also

dplyr::filter()

Other single table verbs: arrange.SpatVector(), mutate.Spat, rename.Spat, select.Spat,
slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on rows: arrange.SpatVector(), distinct.SpatVector(), slice.Spat

https://CRAN.R-project.org/package=dplyr

32 fortify.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, glimpse.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

r <- rast(f) |> select(tavg_04)

plot(r)

Filter temps
r_f <- r |> filter(tavg_04 > 11.5)

Extent is kept
plot(r_f)

Filter temps and extent
r_f2 <- r |> filter(tavg_04 > 11.5, .keep_extent = FALSE)

Extent has changed
plot(r_f2)

Filter by geographic coordinates
r2 <- project(r, "epsg:4326")

r2 |> plot()

r2 |>
filter(
x > -4,
x < -2,
y > 42

) |>
plot()

fortify.Spat Fortify Spat* Objects

Description

Fortify SpatRaster and SpatVector objects to data frames. This provide native compatibility with
ggplot2::ggplot().

Note that these methods are now implemented as a wrapper of tidy.Spat methods.

https://CRAN.R-project.org/package=dplyr

fortify.Spat 33

Usage

S3 method for class 'SpatRaster'
fortify(
model,
data,
...,
.name_repair = "unique",
maxcell = terra::ncell(model) * 1.1,
pivot = FALSE

)

S3 method for class 'SpatVector'
fortify(model, data, ...)

S3 method for class 'SpatGraticule'
fortify(model, data, ...)

S3 method for class 'SpatExtent'
fortify(model, data, ..., crs = "")

Arguments

model A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().
Also support SpatGraticule (see terra::graticule()) and SpatExtent (see
terra::ext()).

data Not used by this method.

... Ignored by these methods.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence.

• "unique": Make sure names are unique and not empty.

• "check_unique": (default value), no name repair, but check they are unique.

• "universal": Make the names unique and syntactic.

• a function: apply custom name repair (e.g., .name_repair = make.names
for names in the style of base R).

• A purrr-style anonymous function, see rlang::as_function().

maxcell positive integer. Maximum number of cells to use for the plot.

pivot Logical. When TRUE the SpatRaster would be provided on long format. When
FALSE (the default) it would be provided as a data frame with a column for each
layer. See Details.

crs Input potentially including or representing a CRS. It could be a sf/sfc object, a
SpatRaster/SpatVector object, a crs object from sf::st_crs(), a character
(for example a proj4 string) or a integer (representing an EPSG code).

https://proj.org/en/9.3/operations/projections/index.html
https://epsg.io/

34 fortify.Spat

Value

fortify.SpatVector(), fortify.SpatGraticule() and fortify.SpatExtent() return a sf
object.

fortify.SpatRaster() returns a tibble. See Methods.

Methods

Implementation of the generic ggplot2::fortify() method.

SpatRaster:
Return a tibble than can be used with ggplot2::geom_* like ggplot2::geom_point(), ggplot2::geom_raster(),
etc.
The resulting tibble includes the coordinates on the columns x, y. The values of each layer are
included as additional columns named as per the name of the layer on the SpatRaster.
The CRS of the SpatRaster can be retrieved with attr(fortifiedSpatRaster, "crs").
It is possible to convert the fortified object onto a SpatRaster again with as_spatraster().
When pivot = TRUE the SpatRaster is fortified in a "long" format (see tidyr::pivot_longer()).
The fortified object would have the following columns:

• x,y: Coordinates (center) of the cell on the corresponding CRS.
• lyr: Indicating the name of the SpatRaster layer of value.
• value: The value of the SpatRaster in the corresponding lyr.

This option may be useful when using several geom_* and for faceting, see Examples.

SpatVector, SpatGraticule and SpatExtent:
Return a sf object than can be used with ggplot2::geom_sf().

See Also

tidy.Spat, sf::st_as_sf(), as_tibble.Spat, as_spatraster(), ggplot2::fortify().

Other ggplot2 utils: autoplot.Spat, geom_spat_contour, geom_spatraster(), geom_spatraster_rgb(),
ggspatvector, stat_spat_coordinates()

Other ggplot2 methods: autoplot.Spat

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_spatvector(), as_tibble.Spat,
tidy.Spat

Examples

Demonstrate the use with ggplot2
library(ggplot2)

Get a SpatRaster
r <- system.file("extdata/volcano2.tif", package = "tidyterra") |>

terra::rast() |>
terra::project("EPSG:4326")

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

geom_spatraster 35

You can now use a SpatRaster with any geom
ggplot(r, maxcell = 50) +

geom_histogram(aes(x = elevation),
bins = 20, fill = "lightblue",
color = "black"

)

For SpatVector, SpatGraticule and SpatExtent you can use now geom_sf()

Create a SpatVector
extfile <- system.file("extdata/cyl.gpkg", package = "tidyterra")
cyl <- terra::vect(extfile)

class(cyl)

ggplot(cyl) +
geom_sf()

SpatGraticule
g <- terra::graticule(60, 30, crs = "+proj=robin")

class(g)

ggplot(g) +
geom_sf()

SpatExtent
ex <- terra::ext(cyl)

class(ex)

ggplot(ex, crs = cyl) +
geom_sf(fill = "red", alpha = 0.3) +
geom_sf(data = cyl, fill = NA)

geom_spatraster Visualise SpatRaster objects

Description

This geom is used to visualise SpatRaster objects (see terra::rast()). The geom is designed
for visualise the object by layers, as terra::plot() does.

For plotting SpatRaster objects as map tiles (i.e. RGB SpatRaster), use geom_spatraster_rgb().

The underlying implementation is based on ggplot2::geom_raster().

stat_spatraster() is provided as a complementary function, so the geom can be modified.

36 geom_spatraster

Usage

geom_spatraster(
mapping = aes(),
data,
na.rm = TRUE,
show.legend = NA,
inherit.aes = FALSE,
interpolate = FALSE,
maxcell = 5e+05,
use_coltab = TRUE,
mask_projection = FALSE,
...

)

stat_spatraster(
mapping = aes(),
data,
geom = "raster",
na.rm = TRUE,
show.legend = NA,
inherit.aes = FALSE,
maxcell = 5e+05,
...

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes(). See Aesthetics specially
in the use of fill aesthetic.

data A SpatRaster object.
na.rm If TRUE, the default, missing values are silently removed. If FALSE, missing

values are removed with a warning.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.
maxcell positive integer. Maximum number of cells to use for the plot.
use_coltab Logical. Only applicable to SpatRaster objects that have an associated coltab.

Should the coltab be used on the plot? See also scale_fill_coltab().
mask_projection

logical, defaults to FALSE. If TRUE, mask out areas outside the input extent. For
example, to avoid data wrapping around the date-line in Equal Area projec-
tions. This argument is passed to terra::project() when reprojecting the
SpatRaster.

geom_spatraster 37

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

geom The geometric object to use display the data. Recommended geom for SpatRaster
are "raster" (the default), "point","text" and "label".

Value

A ggplot2 layer

terra equivalent

terra::plot()

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not
make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That
means that also the SpatRaster may be reprojected.

Aesthetics

geom_spatraster() understands the following aesthetics:

• fill

• alpha

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra

38 geom_spatraster

If fill is not provided, geom_spatraster() creates a ggplot2 layer with all the layers of the
SpatRaster object. Use facet_wrap(~lyr) to display properly the SpatRaster layers.

If fill is used, it should contain the name of one layer that is present on the SpatRaster (i.e.
geom_spatraster(data = rast, aes(fill = <name_of_lyr>)). Names of the layers can be
retrieved using names(rast).

Using geom_spatraster(..., mapping = aes(fill = NULL)) or geom_spatraster(..., fill = <color value(s)>)
would create a layer with no mapped fill aesthetic.

fill can use computed variables.

For alpha use computed variable. See section Computed variables.

stat_spatraster():
stat_spatraster() understands the same aesthetics than geom_spatraster() when using geom
= "raster" (the default):

• fill

• alpha

When geom = "raster" the fill argument would behave as in geom_spatraster(). If an-
other geom is used stat_spatraster() would understand the aesthetics of the required geom
and aes(fill = <name_of_lyr>) would not be applicable.
Note also that mapping of aesthetics x and y is provided by default, so the user does not need to
add those aesthetics on aes(). In all the cases the aesthetics should be mapped by using computed
variables. See section Computed variables and Examples.

Facets

You can use facet_wrap(~lyr) for creating a faceted plot by each layer of the SpatRaster object.
See ggplot2::facet_wrap() for details.

Computed variables

This geom computes internally some variables that are available for use as aesthetics, using (for
example) aes(alpha = after_stat(value)) (see ggplot2::after_stat()).

• after_stat(value): Values of the SpatRaster.

• after_stat(lyr): Name of the layer.

Source

Based on the layer_spatial() implementation on ggspatial package. Thanks to Dewey Dun-
nington and ggspatial contributors.

See Also

ggplot2::geom_raster(), ggplot2::coord_sf(), ggplot2::facet_wrap()

Recommended geoms:

• ggplot2::geom_point().

• ggplot2::geom_label().

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggspatial
https://github.com/paleolimbot
https://github.com/paleolimbot
https://github.com/paleolimbot/ggspatial/graphs/contributors

geom_spatraster 39

• ggplot2::geom_text().

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster_rgb(),
ggspatvector, stat_spat_coordinates()

Examples

Avg temperature on spring in Castille and Leon (Spain)
file_path <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

library(terra)
temp_rast <- rast(file_path)

library(ggplot2)

Display a single layer
names(temp_rast)

ggplot() +
geom_spatraster(data = temp_rast, aes(fill = tavg_04)) +
You can use coord_sf
coord_sf(crs = 3857) +
scale_fill_grass_c(palette = "celsius")

Display facets
ggplot() +

geom_spatraster(data = temp_rast) +
facet_wrap(~lyr, ncol = 2) +
scale_fill_grass_b(palette = "celsius", breaks = seq(0, 20, 2.5))

Non spatial rasters

no_crs <- rast(crs = NA, extent = c(0, 100, 0, 100), nlyr = 1)
values(no_crs) <- seq_len(ncell(no_crs))

ggplot() +
geom_spatraster(data = no_crs)

Downsample

ggplot() +
geom_spatraster(data = no_crs, maxcell = 25)

Using stat_spatraster
Default
ggplot() +

stat_spatraster(data = temp_rast) +
facet_wrap(~lyr)

Using points

https://CRAN.R-project.org/package=ggplot2

40 geom_spatraster_rgb

ggplot() +
stat_spatraster(
data = temp_rast,
aes(color = after_stat(value)),
geom = "point", maxcell = 250

) +
scale_colour_viridis_c(na.value = "transparent") +
facet_wrap(~lyr)

Using points and labels

r_single <- temp_rast |> select(1)

ggplot() +
stat_spatraster(

data = r_single,
aes(color = after_stat(value)),
geom = "point",
maxcell = 2000

) +
stat_spatraster(

data = r_single,
aes(label = after_stat(round(value, 2))),
geom = "label",
alpha = 0.85,
maxcell = 20

) +
scale_colour_viridis_c(na.value = "transparent")

geom_spatraster_rgb Visualise SpatRaster objects as images

Description

This geom is used to visualise SpatRaster objects (see terra::rast()) as RGB images. The
layers are combined such that they represent the red, green and blue channel.

For plotting SpatRaster objects by layer values use geom_spatraster().

The underlying implementation is based on ggplot2::geom_raster().

Usage

geom_spatraster_rgb(
mapping = aes(),
data,
interpolate = TRUE,
r = 1,
g = 2,
b = 3,

geom_spatraster_rgb 41

alpha = 1,
maxcell = 5e+05,
max_col_value = 255,
...,
stretch = NULL,
zlim = NULL,
mask_projection = FALSE

)

Arguments

mapping Ignored.

data A SpatRaster object.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

r, g, b Integer representing the number of layer of data to be considered as the red (r),
green (g) and blue (b) channel.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

maxcell positive integer. Maximum number of cells to use for the plot.

max_col_value Number giving the maximum of the color values range. When this is 255 (the
default), the result is computed most efficiently. See grDevices::rgb().

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

stretch character. Option to stretch the values to increase contrast: "lin" (linear) or
"hist" (histogram). The linear stretch uses stretch with arguments minq=0.02
and maxq=0.98

42 geom_spatraster_rgb

zlim numeric vector of length 2. Range of values to plot (optional). If this is set, and
stretch="lin" is used, then the values are stretched within the range of zlim.
This allows creating consistent coloring between SpatRasters with different cell-
value ranges, even when stretching the colors for improved contrast

mask_projection

logical, defaults to FALSE. If TRUE, mask out areas outside the input extent. For
example, to avoid data wrapping around the date-line in Equal Area projec-
tions. This argument is passed to terra::project() when reprojecting the
SpatRaster.

Value

A ggplot2 layer

terra equivalent

terra::plotRGB()

Aesthetics

No aes() is required. In fact, aes() will be ignored.

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not
make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That
means that also the SpatRaster may be reprojected.

Source

Based on the layer_spatial() implementation on ggspatial package. Thanks to Dewey Dun-
nington and ggspatial contributors.

See Also

ggplot2::geom_raster(), ggplot2::coord_sf(), grDevices::rgb().

You can get also RGB tiles from the maptiles package, see maptiles::get_tiles().

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster(),
ggspatvector, stat_spat_coordinates()

Examples

Tile of Castille and Leon (Spain) from OpenStreetMap
file_path <- system.file("extdata/cyl_tile.tif", package = "tidyterra")

library(terra)
tile <- rast(file_path)

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=ggspatial
https://github.com/paleolimbot
https://github.com/paleolimbot
https://github.com/paleolimbot/ggspatial/graphs/contributors
https://CRAN.R-project.org/package=maptiles
https://CRAN.R-project.org/package=ggplot2

geom_spat_contour 43

library(ggplot2)

ggplot() +
geom_spatraster_rgb(data = tile) +
You can use coord_sf
coord_sf(crs = 3035)

Combine with sf objects
vect_path <- system.file("extdata/cyl.gpkg", package = "tidyterra")

cyl_sf <- sf::st_read(vect_path)

ggplot(cyl_sf) +
geom_spatraster_rgb(data = tile) +
geom_sf(aes(fill = iso2)) +
coord_sf(crs = 3857) +
scale_fill_viridis_d(alpha = 0.7)

geom_spat_contour Plot SpatRaster contours

Description

These geoms create contours of SpatRaster objects. To specify a valid surface, you should specify
the layer on aes(z = layer_name), otherwise all the layers would be consider for creating contours.
See also Facets section.

The underlying implementation is based on ggplot2::geom_contour().

geom_spatraster_contour_text() creates labeled contours and it is implemented on top of isoband::isolines_grob().

Usage

geom_spatraster_contour(
mapping = NULL,
data,
...,
maxcell = 5e+05,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
mask_projection = FALSE

)

44 geom_spat_contour

geom_spatraster_contour_text(
mapping = NULL,
data,
...,
maxcell = 5e+05,
bins = NULL,
binwidth = NULL,
breaks = NULL,
size.unit = "mm",
label_format = scales::label_number(),
label_placer = isoband::label_placer_minmax(),
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
mask_projection = FALSE

)

geom_spatraster_contour_filled(
mapping = NULL,
data,
...,
maxcell = 5e+05,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE,
mask_projection = FALSE

)

Arguments

mapping Set of aesthetic mappings created by ggplot2::aes(). See Aesthetics specially
in the use of fill aesthetic.

data A SpatRaster object.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

geom_spat_contour 45

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

maxcell positive integer. Maximum number of cells to use for the plot.

bins Number of contour bins. Overridden by breaks.

binwidth The width of the contour bins. Overridden by bins.

breaks One of:

• Numeric vector to set the contour breaks
• A function that takes the range of the data and binwidth as input and re-

turns breaks as output. A function can be created from a formula (e.g. ~
fullseq(.x, .y)).

Overrides binwidth and bins. By default, this is a vector of length ten with
pretty() breaks.

na.rm If TRUE, the default, missing values are silently removed. If FALSE, missing
values are removed with a warning.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display. To
include legend keys for all levels, even when no data exists, use TRUE. If NA, all
levels are shown in legend, but unobserved levels are omitted.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
mask_projection

logical, defaults to FALSE. If TRUE, mask out areas outside the input extent. For
example, to avoid data wrapping around the date-line in Equal Area projec-
tions. This argument is passed to terra::project() when reprojecting the
SpatRaster.

size.unit How the size aesthetic is interpreted: as millimetres ("mm", default), points
("pt"), centimetres ("cm"), inches ("in"), or picas ("pc").

label_format One of:

• NULL for no labels. This produced the same result than geom_spatraster_contour().
• A character vector giving labels (must be same length as the breaks pro-

duced by bins, binwidth, or breaks).
• A function that takes the breaks as input and returns labels as output, as the

default setup (scales::label_number()).

label_placer Function that controls how labels are placed along the isolines. Uses label_placer_minmax()
by default.

46 geom_spat_contour

Value

A ggplot2 layer

terra equivalent

terra::contour()

Aesthetics

geom_spatraster_contour() / geom_spatraster_contour_text() understands the following
aesthetics:

• alpha

• colour

• group

• linetype

• linewidth geom_spatraster_contour_text() understands also:

• size

• label

• family

• fontface

Additionally, geom_spatraster_contour_filled() understands also the following aesthetics, as
well as the ones listed above:

• fill

• subgroup

Check ggplot2::geom_contour() for more info on contours and vignette("ggplot2-specs",
package = "ggplot2") for an overview of the aesthetics.

Computed variables

These geom computes internally some variables that are available for use as aesthetics, using (for
example) aes(color = after_stat(<computed>)) (see ggplot2::after_stat()).

• after_stat(lyr): Name of the layer.

• after_stat(level): Height of contour. For contour lines, this is numeric vector that repre-
sents bin boundaries. For contour bands, this is an ordered factor that represents bin ranges.

• after_stat(nlevel): Height of contour, scaled to maximum of 1.

• after_stat(level_low), after_stat(level_high), after_stat(level_mid): (contour
bands only) Lower and upper bin boundaries for each band, as well the mid point between the
boundaries.

Dropped variables

• z: After contouring, the z values of individual data points are no longer available.

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra

geom_spat_contour 47

Coords

When the SpatRaster does not present a crs (i.e., terra::crs(rast) == "") the geom does not
make any assumption on the scales.

On SpatRaster that have a crs, the geom uses ggplot2::coord_sf() to adjust the scales. That
means that also the SpatRaster may be reprojected.

Facets

You can use facet_wrap(~lyr) for creating a faceted plot by each layer of the SpatRaster object.
See ggplot2::facet_wrap() for details.

See Also

ggplot2::geom_contour().

The metR package also provides a set of alternative functions:

• metR::geom_contour2().

• metR::geom_text_contour() and metR::geom_label_contour().

• metR::geom_contour_tanaka().

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spatraster(), geom_spatraster_rgb(),
ggspatvector, stat_spat_coordinates()

Examples

library(terra)

Raster
f <- system.file("extdata/volcano2.tif", package = "tidyterra")
r <- rast(f)

library(ggplot2)

ggplot() +
geom_spatraster_contour(data = r)

Labelled
ggplot() +

geom_spatraster_contour_text(
data = r, breaks = c(110, 130, 160, 190),
color = "grey10", family = "serif"

)

ggplot() +
geom_spatraster_contour(

data = r, aes(color = after_stat(level)),
binwidth = 1,

https://CRAN.R-project.org/package=metR
https://CRAN.R-project.org/package=ggplot2

48 ggspatvector

linewidth = 0.4
) +
scale_color_gradientn(

colours = hcl.colors(20, "Inferno"),
guide = guide_coloursteps()

) +
theme_minimal()

Filled with breaks
ggplot() +

geom_spatraster_contour_filled(data = r, breaks = seq(80, 200, 10)) +
scale_fill_hypso_d()

Both lines and contours
ggplot() +

geom_spatraster_contour_filled(
data = r, breaks = seq(80, 200, 10),
alpha = .7

) +
geom_spatraster_contour(

data = r, breaks = seq(80, 200, 2.5),
color = "grey30",
linewidth = 0.1

) +
scale_fill_hypso_d()

ggspatvector Visualise SpatVector objects

Description

Wrappers of ggplot2::geom_sf() family used to visualise SpatVector objects (see terra::vect()).

Usage

geom_spatvector(
mapping = aes(),
data = NULL,
na.rm = FALSE,
show.legend = NA,
...

)

geom_spatvector_label(
mapping = aes(),
data = NULL,
na.rm = FALSE,

ggspatvector 49

show.legend = NA,
...,
linewidth = 0.25,
inherit.aes = TRUE

)

geom_spatvector_text(
mapping = aes(),
data = NULL,
na.rm = FALSE,
show.legend = NA,
...,
check_overlap = FALSE,
inherit.aes = TRUE

)

stat_spatvector(
mapping = NULL,
data = NULL,
geom = "rect",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data A SpatVector object, see terra::vect().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.
You can also set this to one of "polygon", "line", and "point" to override the
default legend.

... Other arguments passed on to ggplot2::geom_sf() functions. These are of-
ten aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or
linewidth = 3.

linewidth Size of label border, in mm.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. annotation_borders().

50 ggspatvector

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

Details

These functions are wrappers of ggplot2::geom_sf() functions. Since a fortify.SpatVector()
method is provided, ggplot2 treat a SpatVector in the same way that a sf object. A side effect is
that you can use ggplot2::geom_sf() directly with SpatVector objects.

See ggplot2::geom_sf() for details on aesthetics, etc.

Value

A ggplot2 layer

terra equivalent

terra::plot()

See Also

ggplot2::geom_sf()

Other ggplot2 utils: autoplot.Spat, fortify.Spat, geom_spat_contour, geom_spatraster(),
geom_spatraster_rgb(), stat_spat_coordinates()

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=ggplot2

glance.Spat 51

Examples

Create a SpatVector
extfile <- system.file("extdata/cyl.gpkg", package = "tidyterra")

cyl <- terra::vect(extfile)
class(cyl)

library(ggplot2)

ggplot(cyl) +
geom_spatvector()

With params

ggplot(cyl) +
geom_spatvector(aes(fill = name), color = NA) +
scale_fill_viridis_d() +
coord_sf(crs = 3857)

Add labels
ggplot(cyl) +

geom_spatvector(aes(fill = name), color = NA) +
geom_spatvector_text(aes(label = iso2),
fontface = "bold",
color = "red"

) +
scale_fill_viridis_d(alpha = 0.4) +
coord_sf(crs = 3857)

You can use now geom_sf with SpatVectors!

ggplot(cyl) +
geom_sf() +
labs(

title = paste("cyl is", as.character(class(cyl))),
subtitle = "With geom_sf()"

)

glance.Spat Glance at an Spat* object

Description

Glance accepts a model object and returns a tibble::tibble() with exactly one row of Spat. The
summaries are typically geographic information.

52 glimpse.Spat

Usage

S3 method for class 'SpatRaster'
glance(x, ...)

S3 method for class 'SpatVector'
glance(x, ...)

Arguments

x A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... Ignored by this method.

Value

glance methods always return a one-row data frame. See Methods.

Methods

Implementation of the generic generics::glance() method for Spat*. objects.

See Also

glimpse.Spat, generics::glance().

Other generics methods: required_pkgs.Spat, tidy.Spat

Examples

library(terra)

SpatVector
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

glance(v)

SpatRaster
r <- rast(system.file("extdata/cyl_elev.tif", package = "tidyterra"))

glance(r)

glimpse.Spat Get a nice glimpse of your Spat* objects

Description

glimpse() is like a transposed version of print(): layers/columns run down the page, and data
runs across. This makes it possible to see every layer/column in a Spat* object.

https://CRAN.R-project.org/package=generics

glimpse.Spat 53

Usage

S3 method for class 'SpatRaster'
glimpse(x, width = NULL, ..., n = 10, max_extra_cols = 20)

S3 method for class 'SpatVector'
glimpse(x, width = NULL, ..., n = 10, max_extra_cols = 20)

Arguments

x A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

width Width of output: defaults to the setting of the width option (if finite) or the width
of the console. See dplyr::glimpse().

... Arguments passed on to as_tibble() methods for SpatRaster and SpatVector.
See as_tibble.SpatRaster().

n Maximum number of rows to show.

max_extra_cols Number of extra columns or layers to print abbreviated information for, if n is
too small for the Spat* object.

Value

original x is (invisibly) returned, allowing glimpse() to be used within a data pipeline.

terra equivalent

print()

Methods

Implementation of the generic dplyr::glimpse() function for Spat*. objects.

See Also

tibble::print.tbl_df()

Other dplyr verbs that operate on columns: mutate.Spat, pull.Spat, relocate.Spat, rename.Spat,
select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, group-by.SpatVector,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

SpatVector
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

v |> glimpse(n = 2)

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

54 grass_db

Use on a pipeline
v |>

glimpse() |>
mutate(a = 30) |>
with options
glimpse(geom = "WKT")

SpatRaster
r <- rast(system.file("extdata/cyl_elev.tif", package = "tidyterra"))

r |> glimpse()

Use on a pipeline
r |>

glimpse() |>
mutate(b = elevation_m / 100) |>
With options
glimpse(xy = TRUE)

grass_db GRASS color tables

Description

A tibble including the color map of 51 gradient palettes. Some palettes includes also a definition of
colors limits that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 2920 rows and 6 columns. with the following fields:

pal Name of the palette.

limit (Optional) limit for each color.

r Value of the red channel (RGB color mode).

g Value of the green channel (RGB color mode).

b Value of the blue channel (RGB color mode).

hex Hex code of the color.

Details

Summary of palettes provided, description and recommended use:

palette use description range
aspect General aspect oriented grey colors
aspectcolr General aspect oriented rainbow colors 0 to 360
bcyr General blue through cyan through yellow to red

grass_db 55

bgyr General blue through green through yellow to red
blues General white to blue
byg General blue through yellow to green
byr General blue through yellow to red
celsius General blue to red for degree Celsius temperature -80 to 80
corine Land Cover EU Corine land cover colors 111 to 995
curvature General for terrain curvatures -0.1 to 0.1
differences General differences oriented colors
elevation Topography maps relative ranges of raster values to elevation color ramp
etopo2 Topography colors for ETOPO2 worldwide bathymetry/topography -11000 to 8850
evi Natural enhanced vegetative index colors -1 to 1
fahrenheit Temperature blue to red for Fahrenheit temperature -112 to 176
forest_cover Natural percentage of forest cover 0 to 1
gdd Natural accumulated growing degree days 0 to 6000
grass General GRASS GIS green (perceptually uniform)
greens General white to green
grey General grey scale
gyr General green through yellow to red
haxby Topography relative colors for bathymetry or topography
inferno General perceptually uniform sequential color table inferno
kelvin Temperature blue to red for temperature in Kelvin scale 193.15 to 353.15
magma General perceptually uniform sequential color table magma
ndvi Natural Normalized Difference Vegetation Index colors -1 to 1
ndwi Natural Normalized Difference Water Index colors -200 to 200
nlcd Land Cover US National Land Cover Dataset colors 0 to 95
oranges General white to orange
plasma General perceptually uniform sequential color table plasma
population Human color table covering human population classification breaks 0 to 1000000
population_dens Human color table covering human population density classification breaks 0 to 1000
precipitation Climate precipitation color table (0..2000mm) 0 to 7000
precipitation_daily Climate precipitation color table (0..1000mm) 0 to 100
precipitation_monthly Climate precipitation color table (0..1000mm) 0 to 1000
rainbow General rainbow color table
ramp General color ramp
reds General white to red
roygbiv General
rstcurv General terrain curvature (from r.resamp.rst) -0.1 to 0.1
ryb General red through yellow to blue
ryg General red through yellow to green
sepia General yellowish-brown through to white
slope General r.slope.aspect-type slope colors for raster values 0-90 0 to 90
soilmoisture Natural soil moisture color table (0.0-1.0) 0 to 1
srtm Topography color palette for Shuttle Radar Topography Mission elevation -11000 to 8850
srtm_plus Topography color palette for Shuttle Radar Topography Mission elevation (with seafloor colors) -11000 to 8850
terrain Topography global elevation color table covering -11000 to +8850m -11000 to 8850
viridis General perceptually uniform sequential color table viridis
water Natural water depth
wave General color wave

56 grass_db

terra equivalent

terra::map.pal()

Source

Derived from https://github.com/OSGeo/grass/tree/main/lib/gis/colors. See also r.color
- GRASS GIS Manual.

References

GRASS Development Team (2024). Geographic Resources Analysis Support System (GRASS) Soft-
ware, Version 8.3.2. Open Source Geospatial Foundation, USA. https://grass.osgeo.org.

See Also

scale_fill_grass_c()

Other datasets: cross_blended_hypsometric_tints_db, hypsometric_tints_db, princess_db,
volcano2

Examples

data("grass_db")

grass_db
Select a palette

srtm_plus <- grass_db |>
filter(pal == "srtm_plus")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
geom_spatraster(data = r) +
labs(fill = "elevation")

p +
scale_fill_gradientn(colors = srtm_plus$hex)

Use with limits
p +

scale_fill_gradientn(
colors = srtm_plus$hex,
values = scales::rescale(srtm_plus$limit),
limit = range(srtm_plus$limit),
na.value = "lightblue"

https://CRAN.R-project.org/package=terra
https://github.com/OSGeo/grass/tree/main/lib/gis/colors
https://grass.osgeo.org/grass83/manuals/r.colors.html
https://grass.osgeo.org/grass83/manuals/r.colors.html
https://grass.osgeo.org

group-by.SpatVector 57

)

group-by.SpatVector Group a SpatVector by one or more variables

Description

Most data operations are done on groups defined by variables. group_by.SpatVector() adds new
attributes to an existing SpatVector indicating the corresponding groups. See Methods.

Usage

S3 method for class 'SpatVector'
group_by(.data, ..., .add = FALSE, .drop = group_by_drop_default(.data))

S3 method for class 'SpatVector'
ungroup(x, ...)

Arguments

.data, x A SpatVector object. See Methods.

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping.

.add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

Details

See Details on dplyr::group_by().

Value

A SpatVector object with an additional attribute.

58 group-by.SpatVector

Methods

Implementation of the generic dplyr::group_by() family functions for SpatVector objects.

When mixing terra and dplyr syntax on a grouped SpatVector (i.e, subsetting a SpatVector
like v[1:3,1:2]) the groups attribute can be corrupted. tidyterra would try to re-group the
SpatVector. This would be triggered the next time you use a dplyr verb on your SpatVector.

Note also that some operations (as terra::spatSample()) would create a new SpatVector. In
these cases, the result won’t preserve the groups attribute. Use group_by() to re-group.

See Also

dplyr::group_by(), dplyr::ungroup()

Other dplyr verbs that operate on group of rows: count.SpatVector(), rowwise.SpatVector(),
summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("ex/lux.shp", package = "terra")
p <- vect(f)

by_name1 <- p |> group_by(NAME_1)

grouping doesn't change how the SpatVector looks
by_name1

But add metadata for grouping: See the coercion to tibble

Not grouped
p_tbl <- as_tibble(p)
class(p_tbl)
head(p_tbl, 3)

Grouped
by_name1_tbl <- as_tibble(by_name1)
class(by_name1_tbl)
head(by_name1_tbl, 3)

It changes how it acts with the other dplyr verbs:
by_name1 |> summarise(

pop = mean(POP),
area = sum(AREA)

)

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

hypsometric_tints_db 59

Each call to summarise() removes a layer of grouping
by_name2_name1 <- p |> group_by(NAME_2, NAME_1)

by_name2_name1
group_data(by_name2_name1)

by_name2 <- by_name2_name1 |> summarise(n = dplyr::n())
by_name2
group_data(by_name2)

To removing grouping, use ungroup
by_name2 |>

ungroup() |>
summarise(n = sum(n))

By default, group_by() overrides existing grouping
by_name2_name1 |>

group_by(ID_1, ID_2) |>
group_vars()

Use add = TRUE to instead append
by_name2_name1 |>

group_by(ID_1, ID_2, .add = TRUE) |>
group_vars()

You can group by expressions: this is a short-hand
for a mutate() followed by a group_by()
p |>

group_by(ID_COMB = ID_1 * 100 / ID_2) |>
relocate(ID_COMB, .before = 1)

hypsometric_tints_db Hypsometric palettes database

Description

A tibble including the color map of 33 gradient palettes. All the palettes includes also a definition of
colors limits in terms of elevation (meters), that can be used with ggplot2::scale_fill_gradientn().

Format

A tibble of 1102 rows and 6 columns. with the following fields:

pal Name of the palette.

limit Recommended elevation limit (in meters) for each color.

r Value of the red channel (RGB color mode).

g Value of the green channel (RGB color mode).

60 is_regular_grid

b Value of the blue channel (RGB color mode).

hex Hex code of the color.

Source

cpt-city: http://seaviewsensing.com/pub/cpt-city/.

See Also

scale_fill_hypso_c()

Other datasets: cross_blended_hypsometric_tints_db, grass_db, princess_db, volcano2

Examples

data("hypsometric_tints_db")

hypsometric_tints_db

Select a palette
wikicols <- hypsometric_tints_db |>

filter(pal == "wiki-2.0")

f <- system.file("extdata/asia.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
geom_spatraster(data = r) +
labs(fill = "elevation")

p +
scale_fill_gradientn(colors = wikicols$hex)

Use with limits
p +

scale_fill_gradientn(
colors = wikicols$hex,
values = scales::rescale(wikicols$limit),
limit = range(wikicols$limit)

)

is_regular_grid Check if x and y positions conforms a regular grid

http://seaviewsensing.com/pub/cpt-city/

is_regular_grid 61

Description

Assess if the coordinates x,y of an object conforms a regular grid. This function is called by its side
effects.

This function is internally called by as_spatraster().

Usage

is_regular_grid(xy, digits = 6)

Arguments

xy A matrix, data frame or tibble of at least two columns representing x and y
coordinates.

digits integer to set the precision for detecting whether points are on a regular grid (a
low number of digits is a low precision).

Value

invisible() if is regular or an error message otherwise

See Also

as_spatraster()

Other helpers: compare_spatrasters(), is_grouped_spatvector(), pull_crs()

Examples

p <- matrix(1:90, nrow = 45, ncol = 2)

is_regular_grid(p)

Jitter location
set.seed(1234)
jitter <- runif(length(p)) / 10e4
p_jitter <- p + jitter

Need to adjust digits
is_regular_grid(p_jitter, digits = 4)

62 mutate-joins.SpatVector

mutate-joins.SpatVector

Mutating joins for SpatVector objects

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

See dplyr::inner_join() for details.

Usage

S3 method for class 'SpatVector'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'SpatVector'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'SpatVector'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'SpatVector'

mutate-joins.SpatVector 63

full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

Arguments

x A SpatVector created with terra::vect().
y A data frame or other object coercible to a data frame. If a SpatVector of

sf object is provided it would return an error (see terra::intersect() for
performing spatial joins).

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.
keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

64 mutate-joins.SpatVector

Value

A SpatVector object.

terra equivalent

terra::merge()

Methods

Implementation of the generic dplyr::inner_join() family

SpatVector:
The geometry column has a sticky behavior. This means that the result would have always the
geometry of x for the records that matches the join conditions.
Note that for right_join() and full_join() it is possible to return empty geometries (since y
is expected to be a data frame with no geometries). Although this kind of joining operations may
not be common on spatial manipulation, it is possible that the function crashes, since handling of
EMPTY geometries differs on terra and sf.

See Also

dplyr::inner_join(), dplyr::left_join(), dplyr::right_join(), dplyr::full_join(), terra::merge()

Other dplyr verbs that operate on pairs Spat*/data.frame: bind_cols.SpatVector, bind_rows.SpatVector,
filter-joins.SpatVector

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate.Spat, pull.Spat, relocate.Spat, rename.Spat, rowwise.SpatVector(),
select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(ggplot2)
Vector
v <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

A data frame
df <- data.frame(

cpro = sprintf("%02d", 1:10),
x = runif(10),
y = runif(10),
letter = rep_len(LETTERS[1:3], length.out = 10)

)

Inner join
inner <- v |> inner_join(df)

nrow(inner)
autoplot(inner, aes(fill = letter)) + ggtitle("Inner Join")

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

mutate.Spat 65

Left join

left <- v |> left_join(df)
nrow(left)

autoplot(left, aes(fill = letter)) + ggtitle("Left Join")

Right join
right <- v |> right_join(df)
nrow(right)

autoplot(right, aes(fill = letter)) + ggtitle("Right Join")

There are empty geometries, check with data from df
ggplot(right, aes(x, y)) +

geom_point(aes(color = letter))

Full join
full <- v |> full_join(df)
nrow(full)

autoplot(full, aes(fill = letter)) + ggtitle("Full Join")

Check with data from df
ggplot(full, aes(x, y)) +

geom_point(aes(color = letter))

mutate.Spat Create, modify, and delete cell values/layers/attributes of Spat* ob-
jects

Description

mutate() adds new layers/attributes and preserves existing ones on a Spat* object. transmute()
adds new layers/attributes and drops existing ones. New variables overwrite existing variables of
the same name. Variables can be removed by setting their value to NULL.

Usage

S3 method for class 'SpatRaster'
mutate(.data, ...)

S3 method for class 'SpatVector'
mutate(.data, ...)

66 mutate.Spat

S3 method for class 'SpatRaster'
transmute(.data, ...)

S3 method for class 'SpatVector'
transmute(.data, ...)

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... <data-masking> Name-value pairs. The name gives the name of the layer/attribute
in the output.

Value

A Spat* object of the same class than .data. See Methods.

terra equivalent

Some terra methods for modifying cell values: terra::ifel(), terra::classify(), terra::clamp(),
terra::app(), terra::lapp(), terra::tapp()

Methods

Implementation of the generic dplyr::mutate(), dplyr::transmute() functions.

SpatRaster:
Add new layers and preserves existing ones. The result is a SpatRaster with the same extent,
resolution and crs than .data. Only the values (and possibly the number) of layers is modified.
transmute() would keep only the layers created with

SpatVector:
The result is a SpatVector with the modified (and possibly renamed) attributes on the function
call.
transmute() would keep only the attributes created with

See Also

dplyr::mutate(), dplyr::transmute() methods.

terra provides several ways to modify Spat* objects:

• terra::ifel().

• terra::classify().

• terra::clamp().

• terra::app(), terra::lapp(), terra::tapp().

Other single table verbs: arrange.SpatVector(), filter.Spat, rename.Spat, select.Spat,
slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, pull.Spat, relocate.Spat, rename.Spat,
select.Spat

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr

pivot_longer.SpatVector 67

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, pull.Spat, relocate.Spat, rename.Spat,
rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

SpatRaster method
f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
spatrast <- rast(f)

mod <- spatrast |>
mutate(exp_lyr1 = exp(tavg_04 / 10)) |>
select(tavg_04, exp_lyr1)

mod
plot(mod)

SpatVector method
f <- system.file("extdata/cyl.gpkg", package = "tidyterra")
v <- vect(f)

v |>
mutate(cpro2 = paste0(cpro, "-CyL")) |>
select(cpro, cpro2)

pivot_longer.SpatVector

Pivot SpatVector from wide to long

Description

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is pivot_wider.SpatVector()

Learn more in tidyr::pivot_wider().

Usage

S3 method for class 'SpatVector'
pivot_longer(
data,
cols,
...,
cols_vary = "fastest",
names_to = "name",
names_prefix = NULL,

https://CRAN.R-project.org/package=dplyr

68 pivot_longer.SpatVector

names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL

)

Arguments

data A SpatVector to pivot.

cols <tidy-select> Columns to pivot into longer format.

... Additional arguments passed on to methods.

cols_vary When pivoting cols into longer format, how should the output rows be arranged
relative to their original row number?

• "fastest", the default, keeps individual rows from cols close together in
the output. This often produces intuitively ordered output when you have at
least one key column from data that is not involved in the pivoting process.

• "slowest" keeps individual columns from cols close together in the out-
put. This often produces intuitively ordered output when you utilize all of
the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the column

names specified by cols.
• If length >1, multiple columns will be created. In this case, one of names_sep

or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

names_sep, names_pattern
If names_to contains multiple values, these arguments control how the column
name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).

pivot_longer.SpatVector 69

names_pattern takes the same specification as extract(), a regular expression
containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes, values_ptypes
Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer() or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.

names_transform, values_transform
Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.
If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_to A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the values_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::pivot_longer() function.

SpatVector:
The geometry column has a sticky behavior. This means that the result would have always the
geometry of data.

70 pivot_wider.SpatVector

See Also

tidyr::pivot_longer()

Other tidyr verbs for pivoting: pivot_wider.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_wider.SpatVector(), replace_na.Spat

Examples

library(dplyr)
library(tidyr)
library(ggplot2)
library(terra)

temp <- rast((system.file("extdata/cyl_temp.tif", package = "tidyterra")))
cyl <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra")) %>%

project(temp)

Add average temp

temps <- terra::extract(temp, cyl, fun = "mean", na.rm = TRUE, xy = TRUE)
cyl_temp <- cbind(cyl, temps) %>%

glimpse()

And pivot long for plot
cyl_temp %>%

pivot_longer(
cols = tavg_04:tavg_06,
names_to = "label",
values_to = "temp"

) %>%
ggplot() +
geom_spatvector(aes(fill = temp)) +
facet_wrap(~label, ncol = 1) +
scale_fill_whitebox_c(palette = "muted")

pivot_wider.SpatVector

Pivot SpatVector from long to wide

Description

pivot_wider() "widens" a SpatVector, increasing the number of columns and decreasing the
number of rows. The inverse transformation is pivot_longer.SpatVector().

https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

pivot_wider.SpatVector 71

Usage

S3 method for class 'SpatVector'
pivot_wider(
data,
...,
id_cols = NULL,
id_expand = FALSE,
names_from = "name",
names_prefix = "",
names_sep = "_",
names_glue = NULL,
names_sort = FALSE,
names_vary = "fastest",
names_expand = FALSE,
names_repair = "check_unique",
values_from = "value",
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL

)

Arguments

data A SpatVector to pivot.
... Additional arguments passed on to methods.
id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-

ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evalu-
ated on data after removing the columns specified through names_from and
values_from.
Note that "geometry" columns is sticky, hence it would be removed from names_from
and values_from.

id_expand Should the values in the id_cols columns be expanded by expand() before piv-
oting? This results in more rows, the output will contain a complete expansion
of all possible values in id_cols. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the row values corresponding to
the expanded id_cols will be sorted.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

72 pivot_wider.SpatVector

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are
ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple unique val-
ues, and multiple values_from columns are provided, in what order should the
resulting column names be combined?

• "fastest" varies names_from values fastest, resulting in a column naming
scheme of the form: value1_name1, value1_name2, value2_name1, value2_name2.
This is the default.

• "slowest" varies names_from values slowest, resulting in a column nam-
ing scheme of the form: value1_name1, value2_name1, value1_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by expand() before
pivoting? This results in more columns, the output will contain column names
corresponding to a complete expansion of all possible values in names_from.
Implicit factor levels that aren’t represented in the data will become explicit.
Additionally, the column names will be sorted, identical to what names_sort
would produce.

names_repair What happens if the output has invalid column names? The default, "check_unique"
is to error if the columns are duplicated. Use "minimal" to allow duplicates
in the output, or "unique" to de-duplicated by adding numeric suffixes. See
vctrs::vec_as_names() for more options.

values_fill Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to different
values_from columns.

unused_fn Optionally, a function applied to summarize the values from the unused columns
(i.e. columns not identified by id_cols, names_from, or values_from).
The default drops all unused columns from the result.
This can be a named list if you want to apply different aggregations to different
unused columns.
id_cols must be supplied for unused_fn to be useful, since otherwise all un-
specified columns will be considered id_cols.
This is similar to grouping by the id_cols then summarizing the unused columns
using unused_fn.

pivot_wider.SpatVector 73

Value

A SpatVector object.

Methods

Implementation of the generic tidyr::pivot_wider() function.

SpatVector:
The geometry column has a sticky behavior. This means that the result would have always the
geometry of data.

See Also

tidyr::pivot_wider()

Other tidyr verbs for pivoting: pivot_longer.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_longer.SpatVector(), replace_na.Spat

Examples

library(dplyr)
library(tidyr)
library(ggplot2)

cyl <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

Add extra row with info
xtra <- cyl |>

slice(c(2, 3)) |>
mutate(
label = "extra",
value = TRUE

) |>
rbind(cyl) |>
glimpse()

Pivot by geom
xtra |>

pivot_wider(
id_cols = iso2:name, values_from = value,
names_from = label

)

https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

74 princess_db

princess_db Princess palettes database

Description

A tibble including the color map of 15 gradient palettes.

Format

A tibble of 75 rows and 5 columns. with the following fields:

pal Name of the palette.
r Value of the red channel (RGB color mode).
g Value of the green channel (RGB color mode).
b Value of the blue channel (RGB color mode).
hex Hex code of the color.

Source

https://leahsmyth.github.io/Princess-Colour-Schemes/index.html.

See Also

scale_fill_princess_c()

Other datasets: cross_blended_hypsometric_tints_db, grass_db, hypsometric_tints_db,
volcano2

Examples

data("princess_db")

princess_db

Select a palette
maori <- princess_db |>

filter(pal == "maori")

f <- system.file("extdata/volcano2.tif", package = "tidyterra")
r <- terra::rast(f)

library(ggplot2)

p <- ggplot() +
geom_spatraster(data = r) +
labs(fill = "elevation")

p +
scale_fill_gradientn(colors = maori$hex)

https://leahsmyth.github.io/Princess-Colour-Schemes/index.html

pull.Spat 75

pull.Spat Extract a single layer/attribute

Description

pull() is similar to $ on a data frame. It’s mostly useful because it looks a little nicer in pipes and
it can optionally name the output.

It is possible to extract the geographic coordinates of a SpatRaster. You need to use pull(.data,
x, xy = TRUE). x and y are reserved names on terra, since they refer to the geographic coordinates
of the layer.

See Examples and section About layer names on as_tibble.Spat().

Usage

S3 method for class 'SpatRaster'
pull(.data, var = -1, name = NULL, ...)

S3 method for class 'SpatVector'
pull(.data, var = -1, name = NULL, ...)

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

var A variable specified as:

• a literal layer/attribute name.
• a positive integer, giving the position counting from the left.
• a negative integer, giving the position counting from the right.

The default returns the last layer/attribute (on the assumption that’s the column
you’ve created most recently).

name An optional argument that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

... Arguments passed on to as_tibble.Spat()

Value

A vector the same number of cells/geometries as .data.

On SpatRaster objects, note that the default (na.rm = FALSE) would remove empty cells, so you
may need to pass (na.rm = FALSE) to See terra::as.data.frame().

terra equivalent

terra::values()

https://CRAN.R-project.org/package=terra

76 pull.Spat

Methods

Implementation of the generic dplyr::pull() function. This is done by coercing the Spat* object
to a tibble first (see as_tibble.Spat) and then using dplyr::pull() method over the tibble.

SpatRaster:
When passing option na.rm = TRUE to ..., only cells with a value distinct to NA are extracted. See
terra::as.data.frame().
If xy = TRUE option is passed to ..., two columns names x and y (corresponding to the geo-
graphic coordinates of each cell) are available in position 1 and 2. Hence, pull(.data, 1) and
pull(.data, 1, xy = TRUE) return different result.

SpatVector:
When passing geom = "WKT"/geom = "HEX" to ..., the geometry of the SpatVector can be pulled
passing var = geometry. Similarly to SpatRaster method, when using geom = "XY" the x,y
coordinates can be pulled with var = x/var = y. See terra::as.data.frame() options.

See Also

dplyr::pull()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, relocate.Spat, rename.Spat,
select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, relocate.Spat, rename.Spat,
rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
r <- rast(f)

Extract second layer
r |>

pull(2) |>
head()

With xy the first two cols are `x` (longitude) and `y` (latitude)

r |>
pull(2, xy = TRUE) |>
head()

With renaming

r |>
mutate(cat = cut(cyl_tile_3, c(0, 100, 300))) |>
pull(cyl_tile_3, name = cat) |>
head()

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

pull_crs 77

pull_crs Extract CRS on WKT format

Description

Extract the WKT version of the CRS associated to a string, number of sf/Spat* object.

The Well-known text (WKT) representation of coordinate reference systems (CRS) is a character
string that identifies precisely the arguments of each CRS. This is the current standard used on sf
and terra packages.

Usage

pull_crs(.data, ...)

Arguments

.data Input potentially including or representing a CRS. It could be a sf/sfc object, a
SpatRaster/SpatVector object, a crs object from sf::st_crs(), a character
(for example a proj4 string) or a integer (representing an EPSG code).

... ignored

Details

Although the WKT representation is the same, sf and terra API slightly differs. For example, sf
can do:

sf::st_transform(x, 25830)

While sf equivalent is:

terra::project(bb, "epsg:25830")

Knowing the WKT would help to smooth workflows when working with different packages and
object types.

Value

A WKT representation of the corresponding CRS.

Internals

This is a thin wrapper of sf::st_crs() and terra::crs().

See Also

terra::crs(), sf::st_crs() for knowing how these packages handle CRS definitions.

Other helpers: compare_spatrasters(), is_grouped_spatvector(), is_regular_grid()

https://en.wikipedia.org/wiki/Well-known_text_representation_of_coordinate_reference_systems
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=terra
https://proj.org/en/9.3/operations/projections/index.html
https://epsg.io/
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf

78 relocate.Spat

Examples

sf objects

sfobj <- sf::st_as_sfc("MULTIPOINT ((0 0), (1 1))", crs = 4326)

fromsf1 <- pull_crs(sfobj)
fromsf2 <- pull_crs(sf::st_crs(sfobj))

terra

v <- terra::vect(sfobj)
r <- terra::rast(v)

fromterra1 <- pull_crs(v)
fromterra2 <- pull_crs(r)

integers
fromint <- pull_crs(4326)

Characters
fromchar <- pull_crs("epsg:4326")

all(
fromsf1 == fromsf2,
fromsf2 == fromterra1,
fromterra1 == fromterra2,
fromterra2 == fromint,
fromint == fromchar

)

cat(fromsf1)

relocate.Spat Change layer/attribute order

Description

Use relocate() to change layer/attribute positions, using the same syntax as select.Spat to make
it easy to move blocks of layers/attributes at once.

Usage

S3 method for class 'SpatRaster'
relocate(.data, ..., .before = NULL, .after = NULL)

S3 method for class 'SpatVector'
relocate(.data, ..., .before = NULL, .after = NULL)

relocate.Spat 79

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... <tidy-select> layers/attributes to move.

.before, .after <tidy-select> Destination of layers/attributes selected by Supplying nei-
ther will move layers/attributes to the left-hand side; specifying both is an error.

Value

A Spat* object of the same class than .data. See Methods.

terra equivalent

terra::subset(data, c("name_layer", "name_other_layer"))

Methods

Implementation of the generic dplyr::relocate() function.

SpatRaster:
Relocate layers of a SpatRaster.

SpatVector:
The result is a SpatVector with the attributes on a different order.

See Also

dplyr::relocate()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, rename.Spat,
select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, rename.Spat,
rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)

f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
spatrast <- rast(f) |> mutate(aa = 1, bb = 2, cc = 3)

names(spatrast)

spatrast |>
relocate(bb, .before = cyl_tile_3) |>
relocate(cyl_tile_1, .after = last_col())

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

80 rename.Spat

rename.Spat Rename layers/attributes

Description

rename() changes the names of individual layers/attributes using new_name = old_name syntax;
rename_with() renames layers/attributes using a function.

Usage

S3 method for class 'SpatRaster'
rename(.data, ...)

S3 method for class 'SpatRaster'
rename_with(.data, .fn, .cols = everything(), ...)

S3 method for class 'SpatVector'
rename(.data, ...)

S3 method for class 'SpatVector'
rename_with(.data, .fn, .cols = everything(), ...)

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... Depending on the function:

• For rename.Spat*(): <tidy-select>. Use new_name = old_name to re-
name selected variables.

• For rename_with(): additional arguments passed onto .fn.

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

Value

A Spat* object of the same class than .data. See Methods.

terra equivalent
names(Spat*) <- c("a", "b", "c")

Methods

Implementation of the generic dplyr::rename() function.

SpatRaster:
Rename layers of a SpatRaster.

https://CRAN.R-project.org/package=terra

replace_na.Spat 81

SpatVector:
The result is a SpatVector with the renamed attributes on the function call.

See Also

dplyr::rename()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, select.Spat,
slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, relocate.Spat,
select.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat,
rowwise.SpatVector(), select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
f <- system.file("extdata/cyl_tile.tif", package = "tidyterra")
spatrast <- rast(f) |> mutate(aa = 1, bb = 2, cc = 3)

spatrast

spatrast |> rename(
this_first = cyl_tile_1,
this_second = cyl_tile_2

)

spatrast |> rename_with(
toupper,
.cols = starts_with("c")

)

replace_na.Spat Replace NAs with specified values

Description

Replace NA values on layers/attributes with specified values

Usage

S3 method for class 'SpatRaster'
replace_na(data, replace = list(), ...)

S3 method for class 'SpatVector'
replace_na(data, replace, ...)

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

82 required_pkgs.Spat

Arguments

data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

replace list of values, with one value for each layer/attribute that has NA values to be
replaced.

... Ignored

Value

A Spat* object of the same class than data. Geometries and spatial attributes are preserved.

terra equivalent

Use r[is.na(r)] <- <replacement>

See Also

tidyr::replace_na()

Other tidyr verbs for handling missing values: drop_na.Spat, fill.SpatVector()

Other tidyr methods: drop_na.Spat, fill.SpatVector(), pivot_longer.SpatVector(), pivot_wider.SpatVector()

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

r |> plot()

r |>
replace_na(list(tavg_04 = 6, tavg_06 = 20)) |>
plot()

required_pkgs.Spat Determine packages required by Spat* objects

Description

Determine packages required by Spat* objects.

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr

required_pkgs.Spat 83

Usage

S3 method for class 'SpatRaster'
required_pkgs(x, ...)

S3 method for class 'SpatVector'
required_pkgs(x, ...)

S3 method for class 'SpatGraticule'
required_pkgs(x, ...)

S3 method for class 'SpatExtent'
required_pkgs(x, ...)

Arguments

x A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().
Also support SpatGraticule (see terra::graticule()) and SpatExtent (see
terra::ext()).

... Ignored by these methods.

Value

A character string of packages that are required.

Methods

Implementation of generics::required_pkgs() method.

See Also

generics::required_pkgs().

Other generics methods: glance.Spat, tidy.Spat

Examples

file_path <- system.file("extdata/cyl_temp.tif", package = "tidyterra")

library(terra)

r <- rast(file_path)

With rasters
r
required_pkgs(r)

With vectors
v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))
v
required_pkgs(v)

https://CRAN.R-project.org/package=generics

84 rowwise.SpatVector

rowwise.SpatVector Group SpatVector objects by rows

Description

rowwise() allows you to compute on a SpatVector a row-at-a-time. This is most useful when a
vectorised function doesn’t exist.

Most dplyr verbs implementation in tidyterra preserve row-wise grouping, with the exception of
summarise.SpatVector(). You can explicitly ungroup with ungroup.SpatVector() or as_tibble(),
or convert to a grouped SpatVector with group_by.SpatVector().

Usage

S3 method for class 'SpatVector'
rowwise(data, ...)

Arguments

data A SpatVector object. See Methods.

... <tidy-select> Variables to be preserved when calling summarise.SpatVector().
This is typically a set of variables whose combination uniquely identify each
row. See dplyr::rowwise().

Details

See Details on dplyr::rowwise().

Value

The same SpatVector object with an additional attribute.

Methods

Implementation of the generic dplyr::rowwise() function for SpatVector objects.

When mixing terra and dplyr syntax on a row-wise SpatVector (i.e, subsetting a SpatVector
like v[1:3,1:2]) the groups attribute can be corrupted. tidyterra would try to re-generate the
SpatVector. This would be triggered the next time you use a dplyr verb on your SpatVector.

Note also that some operations (as terra::spatSample()) would create a new SpatVector. In
these cases, the result won’t preserve the groups attribute. Use rowwise.SpatVector() to re-
group.

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=dplyr

rowwise.SpatVector 85

See Also

dplyr::rowwise()

Other dplyr verbs that operate on group of rows: count.SpatVector(), group-by.SpatVector,
summarise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat,
rename.Spat, select.Spat, slice.Spat, summarise.SpatVector()

Examples

library(terra)
library(dplyr)

v <- terra::vect(system.file("shape/nc.shp", package = "sf"))

Select new births
nb <- v |>

select(starts_with("NWBIR")) |>
glimpse()

Compute the mean of NWBIR on each geometry
nb |>

rowwise() |>
mutate(nb_mean = mean(c(NWBIR74, NWBIR79)))

Additional examples

use c_across() to more easily select many variables
nb |>

rowwise() |>
mutate(m = mean(c_across(NWBIR74:NWBIR79)))

Compute the minimum of x and y in each row

nb |>
rowwise() |>
mutate(min = min(c_across(NWBIR74:NWBIR79)))

Summarising
v |>

rowwise() |>
summarise(mean_bir = mean(BIR74, BIR79)) |>
glimpse() |>
autoplot(aes(fill = mean_bir))

Supply a variable to be kept
v |>

mutate(id2 = as.integer(CNTY_ID / 100)) |>
rowwise(id2) |>
summarise(mean_bir = mean(BIR74, BIR79)) |>

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

86 scale_color_coltab

glimpse() |>
autoplot(aes(fill = as.factor(id2)))

scale_color_coltab Gradient scales from Wikipedia color schemes

Description

Implementation based on the Wikipedia Colorimetric conventions for topographic maps.

Three scales are provided:

• scale_*_wiki_d(): For discrete values.
• scale_*_wiki_c(): For continuous values.
• scale_*_wiki_b(): For binning continuous values.

Additionally, a color palette wiki.colors() is provided. See also grDevices::terrain.colors()
for details.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_wiki_d(
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_wiki_d(
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_wiki_c(
...,

https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Maps/Conventions/Topographic_maps
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

scale_color_coltab 87

alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_wiki_c(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_wiki_b(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_wiki_b(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

wiki.colors(n, alpha = 1, rev = FALSE)

Arguments

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions

88 scale_color_coltab

• A function that given the limits returns a vector of minor breaks. Also
accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.
na.translate Should NA values be removed from the legend? Default is TRUE.
na.value Missing values will be replaced with this value. By default, tidyterra uses

na.value = "transparent" so cells with NA are not filled. See also #120.
drop Should unused factor levels be omitted from the scale? The default (TRUE) re-

moves unused factors.
direction Sets the order of colors in the scale. If 1, the default, colors are ordered from

darkest to lightest. If -1, the order of colors is reversed.
guide A function used to create a guide or its name. See guides() for more informa-

tion.
n the number of colors (≥ 1) to be in the palette.
rev logical indicating whether the ordering of the colors should be reversed.

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120

scale_coltab 89

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... arguments.

Other gradient scales and palettes for hypsometry: scale_cross_blended, scale_grass, scale_hypso,
scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = wiki.colors(100))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_wiki_c()

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_wiki_b(breaks = seq(70, 200, 10))

With discrete values
factor <- volcano2_rast |> mutate(cats = cut(elevation,

breaks = c(100, 120, 130, 150, 170, 200),
labels = c(
"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_wiki_d(na.value = "gray10")

scale_coltab Discrete scales based in the color table of a SpatRaster

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

90 scale_coltab

Description

Some categorical SpatRaster objects may have an associated color table. This function extract
those values. These functions generates scales and vector of colors based on the color table terra::coltab()
associated to a SpatRaster.

You can also get a vector of colors named with the corresponding factor with get_coltab_pal().

Additional arguments ... would be passed on to ggplot2::discrete_scale().

Note that tidyterra just documents a selection of these additional arguments, check ggplot2::discrete_scale()
to see the full range of arguments accepted.

Usage

scale_fill_coltab(
data,
...,
alpha = NA,
na.translate = FALSE,
na.value = "transparent",
drop = TRUE

)

scale_colour_coltab(
data,
...,
alpha = NA,
na.translate = FALSE,
na.value = "transparent",
drop = TRUE

)

get_coltab_pal(x)

Arguments

data, x A SpatRaster with one or several color tables. See terra::has.colors().

... Arguments passed on to ggplot2::discrete_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions

https://CRAN.R-project.org/package=tidyterra

scale_coltab 91

• A function that given the limits returns a vector of minor breaks. Also
accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

alpha The alpha transparency: could be NA or a number in [0,1]. See argument alpha
in scale_fill_terrain_d().

na.translate Should NA values be removed from the legend? Default is TRUE.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::coltab(), ggplot2::discrete_scale(), ggplot2::scale_fill_manual(),

Examples

library(terra)
Geological Eras
Spanish Geological Survey (IGME)

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120
https://CRAN.R-project.org/package=ggplot2

92 scale_cross_blended

r <- rast(system.file("extdata/cyl_era.tif", package = "tidyterra"))

plot(r)

Get coltab
coltab_pal <- get_coltab_pal(r)

coltab_pal

With ggplot2 + tidyterra
library(ggplot2)

gg <- ggplot() +
geom_spatraster(data = r)

Default plot
gg

With coltabs
gg +

scale_fill_coltab(data = r)

scale_cross_blended Cross blended hypsometric tints scales

Description

Implementation of the cross blended hypsometric gradients presented on doi:10.14714/CP69.20.
The following fill scales and palettes are provided:

• scale_*_cross_blended_d(): For discrete values.
• scale_*_cross_blended_c(): For continuous values.
• scale_*_cross_blended_b(): For binning continuous values.

• cross_blended.colors(): A gradient color palette. See also grDevices::terrain.colors()
for details.

An additional set of scales is provided. These scales can act as hypsometric (or bathymetric) tints.

• scale_*_cross_blended_tint_d(): For discrete values.
• scale_*_cross_blended_tint_c(): For continuous values.
• scale_*_cross_blended_tint_b(): For binning continuous values.

• cross_blended.colors2(): A gradient color palette. See also grDevices::terrain.colors()
for details.

See Details.

Additional arguments ... would be passed on to:

https://doi.org/10.14714/CP69.20
https://en.wikipedia.org/wiki/Hypsometric_tints

scale_cross_blended 93

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_cross_blended_d(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_cross_blended_d(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_cross_blended_c(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_cross_blended_c(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_cross_blended_b(
palette = "cold_humid",
...,
alpha = 1,

https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

94 scale_cross_blended

direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_cross_blended_b(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

cross_blended.colors(n, palette = "cold_humid", alpha = 1, rev = FALSE)

scale_fill_cross_blended_tint_d(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_cross_blended_tint_d(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_cross_blended_tint_c(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_cross_blended_tint_c(
palette = "cold_humid",
...,

scale_cross_blended 95

alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_cross_blended_tint_b(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_cross_blended_tint_b(
palette = "cold_humid",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "coloursteps"

)

cross_blended.colors2(n, palette = "cold_humid", alpha = 1, rev = FALSE)

Arguments

palette A valid palette name. The name is matched to the list of available palettes, ig-
noring upper vs. lower case. See cross_blended_hypsometric_tints_db for more
info. Values available are: "arid", "cold_humid", "polar", "warm_humid".

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks

96 scale_cross_blended

• waiver() for the default breaks (none for discrete, one minor break
between each major break for continuous)

• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n the number of colors (≥ 1) to be in the palette.

rev logical indicating whether the ordering of the colors should be reversed.

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120

scale_cross_blended 97

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

limits One of:
• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

Details

On scale_*_cross_blended_tint_* palettes, the position of the gradients and the limits of the
palette are redefined. Instead of treating the color palette as a continuous gradient, they are rescaled
to act as a hypsometric tint. A rough description of these tints are:

• Blue colors: Negative values.
• Green colors: 0 to 1.000 values.
• Browns: 1000 to 4.000 values.
• Whites: Values higher than 4.000.

The following orientation would vary depending on the palette definition (see cross_blended_hypsometric_tints_db
for an example on how this could be achieved).

Note that the setup of the palette may not be always suitable for your specific data. For example,
a SpatRaster of small parts of the globe (and with a limited range of elevations) may not be well
represented. As an example, a SpatRaster with a range of values on [100, 200] would appear
almost as an uniform color. This could be adjusted using the limits/values arguments.

When passing limits argument to scale_*_cross_blended_tint_* the colors would be re-
stricted of those specified by this argument, keeping the distribution of the tint. You can combine
this with oob (i.e. oob = scales::oob_squish) to avoid blank pixels in the plot.

cross_blended.colors2() provides a gradient color palette where the distance between colors
is different depending of the type of color. In contrast, cross_blended.colors() provides an
uniform gradient across colors. See Examples.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

• Patterson, T., & Jenny, B. (2011). The Development and Rationale of Cross-blended Hypso-
metric Tints. Cartographic Perspectives, (69), 31 - 46. doi:10.14714/CP69.20.

• Patterson, T. (2004). Using Cross-blended Hypsometric Tints for Generalized Environmental
Mapping. Online, Accessed June 10, 2022.

https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.14714/CP69.20

98 scale_cross_blended

See Also

cross_blended_hypsometric_tints_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c().

See also ggplot2 docs on additional ... arguments.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_grass, scale_hypso,
scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = cross_blended.colors(100, palette = "arid"))

Palette with uneven colors
plot(volcano2_rast, col = cross_blended.colors2(100, palette = "arid"))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_cross_blended_c(palette = "cold_humid")

Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

ggplot() +
geom_spatraster(data = asia) +
scale_fill_cross_blended_tint_c(
palette = "warm_humid",
labels = scales::label_number(),
breaks = c(-10000, 0, 5000, 8000),
guide = guide_colorbar(reverse = TRUE)

) +
labs(fill = "elevation (m)") +
theme(

legend.position = "bottom",
legend.title.position = "top",
legend.key.width = rel(3),
legend.ticks = element_line(colour = "black", linewidth = 0.3),
legend.direction = "horizontal"

)

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +

https://CRAN.R-project.org/package=ggplot2

scale_cross_blended 99

scale_fill_cross_blended_b(breaks = seq(70, 200, 25), palette = "arid")

With breaks
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_cross_blended_b(

breaks = seq(75, 200, 25),
palette = "arid"

)

With discrete values
factor <- volcano2_rast |>

mutate(cats = cut(elevation,
breaks = c(100, 120, 130, 150, 170, 200),
labels = c(

"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_cross_blended_d(na.value = "gray10", palette = "cold_humid")

Tint version
ggplot() +

geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_cross_blended_tint_d(

na.value = "gray10",
palette = "cold_humid"

)

Display all the cross-blended palettes

pals <- unique(cross_blended_hypsometric_tints_db$pal)

Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(

x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = cross_blended.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

100 scale_grass

Display all the cross-blended palettes on version 2

pals <- unique(cross_blended_hypsometric_tints_db$pal)

Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(
x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = cross_blended.colors2(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

scale_grass GRASS scales

Description

Implementation of GRASS color tables. The following fill scales and palettes are provided:

• scale_*_grass_d(): For discrete values.
• scale_*_grass_c(): For continuous values.
• scale_*_grass_b(): For binning continuous values.

• grass.colors(): Gradient color palette. See also grDevices::terrain.colors() for de-
tails.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

These palettes are an implementation of terra::map.pal(), that is the default color palettes pro-
vided by terra::plot() (terra > 1.7.78).

https://grass.osgeo.org/grass83/manuals/r.colors.html
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra

scale_grass 101

Usage

scale_fill_grass_d(
palette = "viridis",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_grass_d(
palette = "viridis",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_grass_c(
palette = "viridis",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
use_grass_range = TRUE,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_grass_c(
palette = "viridis",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
use_grass_range = TRUE,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_grass_b(
palette = "viridis",
...,
alpha = 1,
direction = 1,

102 scale_grass

values = NULL,
limits = NULL,
use_grass_range = TRUE,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_grass_b(
palette = "viridis",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
use_grass_range = TRUE,
na.value = "transparent",
guide = "coloursteps"

)

grass.colors(n, palette = "viridis", alpha = 1, rev = FALSE)

Arguments

palette A valid palette name. The name is matched to the list of available palettes,
ignoring upper vs. lower case. See grass_db for more info.

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object

scale_grass 103

• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

use_grass_range

Logical. Should the scale use the suggested range when plotting? See Details.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120

104 scale_grass

n the number of colors (≥ 1) to be in the palette.

rev logical indicating whether the ordering of the colors should be reversed.

Details

Some palettes are mapped by default to a specific range of values (see grass_db). However, it is
possible to modify this behaviour with the use_grass_range argument, When FALSE the color
scales would be mapped to the range of values of the color/fill aesthethics, See Examples.

When passing limits argument the colors would be restricted of those specified by this argument,
keeping the distribution of the palette. You can combine this with oob (i.e. oob = scales::oob_squish)
to avoid blank pixels in the plot.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aes().

terra equivalent

terra::map.pal()

Source

Derived from https://github.com/OSGeo/grass/tree/main/lib/gis/colors. See also r.color
- GRASS GIS Manual.

References

GRASS Development Team (2024). Geographic Resources Analysis Support System (GRASS) Soft-
ware, Version 8.3.2. Open Source Geospatial Foundation, USA. https://grass.osgeo.org.

See Also

grass_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c().

See also ggplot2 docs on additional ... arguments:

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended,
scale_hypso, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = grass.colors(100, palette = "haxby"))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=terra
https://github.com/OSGeo/grass/tree/main/lib/gis/colors
https://grass.osgeo.org/grass83/manuals/r.colors.html
https://grass.osgeo.org/grass83/manuals/r.colors.html
https://grass.osgeo.org
https://CRAN.R-project.org/package=ggplot2

scale_grass 105

scale_fill_grass_c(palette = "terrain")

Use with no default limits
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_grass_c(palette = "terrain", use_grass_range = FALSE)

Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

ggplot() +
geom_spatraster(data = asia) +
scale_fill_grass_c(

palette = "srtm_plus",
labels = scales::label_number(),
breaks = c(-10000, 0, 5000, 8000),
guide = guide_colorbar(reverse = FALSE)

) +
labs(fill = "elevation (m)") +
theme(

legend.position = "bottom",
legend.title.position = "top",
legend.key.width = rel(3),
legend.ticks = element_line(colour = "black", linewidth = 0.3),
legend.direction = "horizontal"

)

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_grass_b(breaks = seq(70, 200, 25), palette = "sepia")

With discrete values
factor <- volcano2_rast |>

mutate(cats = cut(elevation,
breaks = c(100, 120, 130, 150, 170, 200),
labels = c(

"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_grass_d(palette = "soilmoisture")

Display all the GRASS palettes
data("grass_db")

106 scale_hypso

pals_all <- unique(grass_db$pal)

In batches
pals <- pals_all[c(1:25)]
Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(
x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = grass.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

Second batch
pals <- pals_all[-c(1:25)]

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(

x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = grass.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

scale_hypso Gradient scales for representing hypsometry and bathymetry

Description

Implementation of a selection of gradient palettes available in cpt-city.

The following scales and palettes are provided:

• scale_*_hypso_d(): For discrete values.
• scale_*_hypso_c(): For continuous values.
• scale_*_hypso_b(): For binning continuous values.

http://seaviewsensing.com/pub/cpt-city/

scale_hypso 107

• hypso.colors(): A gradient color palette. See also grDevices::terrain.colors() for
details.

An additional set of scales is provided. These scales can act as hypsometric (or bathymetric) tints.

• scale_*_hypso_tint_d(): For discrete values.
• scale_*_hypso_tint_c(): For continuous values.
• scale_*_hypso_tint_b(): For binning continuous values.

• hypso.colors2(): A gradient color palette. See also grDevices::terrain.colors() for
details.

See Details.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_hypso_d(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_hypso_d(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_hypso_c(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

https://en.wikipedia.org/wiki/Hypsometric_tints
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

108 scale_hypso

scale_colour_hypso_c(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_hypso_b(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_hypso_b(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

hypso.colors(n, palette = "etopo1_hypso", alpha = 1, rev = FALSE)

scale_fill_hypso_tint_d(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_hypso_tint_d(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_hypso 109

scale_fill_hypso_tint_c(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_hypso_tint_c(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_hypso_tint_b(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_hypso_tint_b(
palette = "etopo1_hypso",
...,
alpha = 1,
direction = 1,
values = NULL,
limits = NULL,
na.value = "transparent",
guide = "coloursteps"

)

hypso.colors2(n, palette = "etopo1_hypso", alpha = 1, rev = FALSE)

110 scale_hypso

Arguments

palette A valid palette name. The name is matched to the list of available palettes, ignor-
ing upper vs. lower case. See hypsometric_tints_db for more info. Values avail-
able are: "arctic", "arctic_bathy", "arctic_hypso", "c3t1", "colombia",
"colombia_bathy", "colombia_hypso", "dem_poster", "dem_print", "dem_screen",
"etopo1", "etopo1_bathy", "etopo1_hypso", "gmt_globe", "gmt_globe_bathy",
"gmt_globe_hypso", "meyers", "meyers_bathy", "meyers_hypso", "moon",
"moon_bathy", "moon_hypso", "nordisk-familjebok", "nordisk-familjebok_bathy",
"nordisk-familjebok_hypso", "pakistan", "spain", "usgs-gswa2", "utah_1",
"wiki-2.0", "wiki-2.0_bathy", "wiki-2.0_hypso", "wiki-schwarzwald-cont".

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

scale_hypso 111

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n the number of colors (≥ 1) to be in the palette.

rev logical indicating whether the ordering of the colors should be reversed.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

Details

On scale_*_hypso_tint_* palettes, the position of the gradients and the limits of the palette are
redefined. Instead of treating the color palette as a continuous gradient, they are rescaled to act as a
hypsometric tint. A rough description of these tints are:

• Blue colors: Negative values.

• Green colors: 0 to 1.000 values.

• Browns: 1000 to 4.000 values.

• Whites: Values higher than 4.000.

The following orientation would vary depending on the palette definition (see hypsometric_tints_db
for an example on how this could be achieved).

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120

112 scale_hypso

Note that the setup of the palette may not be always suitable for your specific data. For example,
a SpatRaster of small parts of the globe (and with a limited range of elevations) may not be well
represented. As an example, a SpatRaster with a range of values on [100, 200] would appear
almost as an uniform color. This could be adjusted using the limits/values arguments.

When passing limits argument to scale_*_hypso_tint_* the colors would be restricted of those
specified by this argument, keeping the distribution of the tint. You can combine this with oob (i.e.
oob = scales::oob_squish) to avoid blank pixels in the plot.

hypso.colors2() provides a gradient color palette where the distance between colors is different
depending of the type of color. In contrast, hypso.colors() provides an uniform gradient across
colors. See Examples.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

cpt-city: http://seaviewsensing.com/pub/cpt-city/.

See Also

hypsometric_tints_db, terra::plot(), terra::minmax(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... arguments.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended,
scale_grass, scale_princess, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = hypso.colors(100, palette = "wiki-2.0_hypso"))

Palette with uneven colors
plot(volcano2_rast, col = hypso.colors2(100, palette = "wiki-2.0_hypso"))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_hypso_c(palette = "colombia_hypso")

Full map with true tints

f_asia <- system.file("extdata/asia.tif", package = "tidyterra")
asia <- rast(f_asia)

https://CRAN.R-project.org/package=ggplot2
http://seaviewsensing.com/pub/cpt-city/
https://CRAN.R-project.org/package=ggplot2

scale_hypso 113

ggplot() +
geom_spatraster(data = asia) +
scale_fill_hypso_tint_c(
palette = "etopo1",
labels = scales::label_number(),
breaks = c(-10000, 0, 5000, 8000),
guide = guide_colorbar(reverse = TRUE)

) +
labs(fill = "elevation (m)") +
theme(

legend.position = "bottom",
legend.title.position = "top",
legend.key.width = rel(3),
legend.ticks = element_line(colour = "black", linewidth = 0.3),
legend.direction = "horizontal"

)

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_hypso_b(breaks = seq(70, 200, 25), palette = "wiki-2.0_hypso")

With breaks
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_hypso_b(

breaks = seq(75, 200, 25),
palette = "wiki-2.0_hypso"

)

With discrete values
factor <- volcano2_rast |> mutate(cats = cut(elevation,

breaks = c(100, 120, 130, 150, 170, 200),
labels = c(

"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_hypso_d(na.value = "gray10", palette = "dem_poster")

Tint version
ggplot() +

geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_hypso_tint_d(na.value = "gray10", palette = "dem_poster")

Display all the cpl_city palettes

pals <- unique(hypsometric_tints_db$pal)

114 scale_princess

Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(
x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = hypso.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)
Display all the cpl_city palettes on version 2

pals <- unique(hypsometric_tints_db$pal)

Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(

x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = hypso.colors2(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

scale_princess Gradient scales from princess color schemes

Description

Implementation of the gradient palettes presented in https://leahsmyth.github.io/Princess-Colour-Schemes/
index.html. Three scales are provided:

• scale_*_princess_d(): For discrete values.
• scale_*_princess_c(): For continuous values.
• scale_*_princess_b(): For binning continuous values.

https://leahsmyth.github.io/Princess-Colour-Schemes/index.html
https://leahsmyth.github.io/Princess-Colour-Schemes/index.html

scale_princess 115

Additionally, a color palette princess.colors() is provided. See also grDevices::terrain.colors()
for details.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_princess_d(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_princess_d(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_princess_c(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_princess_c(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

116 scale_princess

scale_fill_princess_b(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_princess_b(
palette = "snow",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

princess.colors(n, palette = "snow", alpha = 1, rev = FALSE)

Arguments

palette A valid palette name. The name is matched to the list of available palettes,
ignoring upper vs. lower case. Values available are: "snow", "ella", "bell",
"aura", "denmark", "france", "arabia", "america", "asia", "neworleans",
"punz", "scotland", "cold", "norge", "maori".

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels

scale_princess 117

• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n the number of colors (≥ 1) to be in the palette.

rev logical indicating whether the ordering of the colors should be reversed.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120
https://CRAN.R-project.org/package=ggplot2

118 scale_princess

Source

https://github.com/LeahSmyth/Princess-Colour-Schemes.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... arguments.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended,
scale_grass, scale_hypso, scale_terrain, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = princess.colors(100))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_princess_c()

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_princess_b(breaks = seq(70, 200, 10), palette = "denmark")

With discrete values
factor <- volcano2_rast |> mutate(cats = cut(elevation,

breaks = c(100, 120, 130, 150, 170, 200),
labels = c(
"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_princess_d(na.value = "gray10", palette = "maori")

Display all the princess palettes

pals <- unique(princess_db$pal)

Helper fun for plotting

https://github.com/LeahSmyth/Princess-Colour-Schemes
https://CRAN.R-project.org/package=ggplot2

scale_terrain 119

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(
x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = princess.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

scale_terrain Terrain colour scales from grDevices

Description

Implementation of the classic color palette terrain.colors():

• scale_*_terrain_d(): For discrete values.
• scale_*_terrain_c(): For continuous values.
• scale_*_terrain_b(): For binning continuous values.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_terrain_d(
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_terrain_d(
...,
alpha = 1,
direction = 1,

https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

120 scale_terrain

na.translate = FALSE,
drop = TRUE

)

scale_fill_terrain_c(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_colour_terrain_c(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_terrain_b(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_terrain_b(
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

Arguments

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

• NULL for no minor breaks

scale_terrain 121

• waiver() for the default breaks (none for discrete, one minor break
between each major break for continuous)

• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120

122 scale_terrain

guide A function used to create a guide or its name. See guides() for more informa-
tion.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c() and ggplot2 docs on additional ... argu-
ments.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended,
scale_grass, scale_hypso, scale_princess, scale_whitebox

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_terrain_c()

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_terrain_b(breaks = seq(70, 200, 10))

With discrete values
factor <- volcano2_rast |> mutate(cats = cut(elevation,

breaks = c(100, 120, 130, 150, 170, 200),
labels = c(
"Very Low", "Low", "Average", "High",
"Very High"

)
))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_terrain_d(na.value = "gray10")

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

scale_whitebox 123

scale_whitebox Gradient scales from WhiteboxTools color schemes

Description

Implementation of the gradient palettes provided by WhiteboxTools. Three scales are provided:

• scale_*_whitebox_d(): For discrete values.
• scale_*_whitebox_c(): For continuous values.
• scale_*_whitebox_b(): For binning continuous values.

Additionally, a color palette whitebox.colors() is provided. See also grDevices::terrain.colors()
for details.

Additional arguments ... would be passed on to:

• Discrete values: ggplot2::discrete_scale().

• Continuous values: ggplot2::continuous_scale().

• Binned continuous values: ggplot2::binned_scale().

Note that tidyterra just documents a selection of these additional arguments, check the ggplot2
functions listed above to see the full range of arguments accepted by these scales.

Usage

scale_fill_whitebox_d(
palette = "high_relief",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_colour_whitebox_d(
palette = "high_relief",
...,
alpha = 1,
direction = 1,
na.translate = FALSE,
drop = TRUE

)

scale_fill_whitebox_c(
palette = "high_relief",
...,
alpha = 1,
direction = 1,

https://github.com/jblindsay/whitebox-tools
https://CRAN.R-project.org/package=tidyterra
https://CRAN.R-project.org/package=ggplot2

124 scale_whitebox

na.value = "transparent",
guide = "colourbar"

)

scale_colour_whitebox_c(
palette = "high_relief",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "colourbar"

)

scale_fill_whitebox_b(
palette = "high_relief",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

scale_colour_whitebox_b(
palette = "high_relief",
...,
alpha = 1,
direction = 1,
na.value = "transparent",
guide = "coloursteps"

)

whitebox.colors(n, palette = "high_relief", alpha = 1, rev = FALSE)

Arguments

palette A valid palette name. The name is matched to the list of available palettes, ig-
noring upper vs. lower case. Values available are: "atlas", "high_relief",
"arid", "soft", "muted", "purple", "viridi", "gn_yl", "pi_y_g", "bl_yl_rd",
"deep".

... Arguments passed on to ggplot2::discrete_scale, ggplot2::continuous_scale,
ggplot2::binned_scale

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
minor_breaks One of:

scale_whitebox 125

• NULL for no minor breaks
• waiver() for the default breaks (none for discrete, one minor break

between each major break for continuous)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major break positions.

labels One of the options below. Please note that when labels is a vector, it is
highly recommended to also set the breaks argument as a vector to protect
against unintended mismatches.

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

na.translate Should NA values be removed from the legend? Default is TRUE.

drop Should unused factor levels be omitted from the scale? The default (TRUE) re-
moves unused factors.

126 scale_whitebox

na.value Missing values will be replaced with this value. By default, tidyterra uses
na.value = "transparent" so cells with NA are not filled. See also #120.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n the number of colors (≥ 1) to be in the palette.

rev logical indicating whether the ordering of the colors should be reversed.

Value

The corresponding ggplot2 layer with the values applied to the fill/colour aesthetics.

Source

https://github.com/jblindsay/whitebox-tools, under MIT License. Copyright (c) 2017-
2021 John Lindsay.

See Also

terra::plot(), ggplot2::scale_fill_viridis_c()

See also ggplot2 docs on additional ... arguments.

Other gradient scales and palettes for hypsometry: scale_color_coltab(), scale_cross_blended,
scale_grass, scale_hypso, scale_princess, scale_terrain

Examples

filepath <- system.file("extdata/volcano2.tif", package = "tidyterra")

library(terra)
volcano2_rast <- rast(filepath)

Palette
plot(volcano2_rast, col = whitebox.colors(100))

library(ggplot2)
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_whitebox_c()

Binned
ggplot() +

geom_spatraster(data = volcano2_rast) +
scale_fill_whitebox_b(breaks = seq(70, 200, 10), palette = "atlas")

With discrete values
factor <- volcano2_rast |> mutate(cats = cut(elevation,

breaks = c(100, 120, 130, 150, 170, 200),
labels = c(
"Very Low", "Low", "Average", "High",
"Very High"

)

https://CRAN.R-project.org/package=tidyterra
https://github.com/dieghernan/tidyterra/issues/120
https://CRAN.R-project.org/package=ggplot2
https://github.com/jblindsay/whitebox-tools
https://CRAN.R-project.org/package=ggplot2

select.Spat 127

))

ggplot() +
geom_spatraster(data = factor, aes(fill = cats)) +
scale_fill_whitebox_d(na.value = "gray10", palette = "soft")

Display all the whitebox palettes

pals <- c(
"atlas", "high_relief", "arid", "soft", "muted", "purple",
"viridi", "gn_yl", "pi_y_g", "bl_yl_rd", "deep"

)

Helper fun for plotting

ncols <- 128
rowcol <- grDevices::n2mfrow(length(pals))

opar <- par(no.readonly = TRUE)
par(mfrow = rowcol, mar = rep(1, 4))

for (i in pals) {
image(
x = seq(1, ncols), y = 1, z = as.matrix(seq(1, ncols)),
col = whitebox.colors(ncols, i), main = i,
ylab = "", xaxt = "n", yaxt = "n", bty = "n"

)
}
par(opar)

select.Spat Subset layers/attributes of Spat* objects

Description

Select (and optionally rename) attributes/layers in Spat* objects, using a concise mini-language.
See Methods.

Usage

S3 method for class 'SpatRaster'
select(.data, ...)

S3 method for class 'SpatVector'
select(.data, ...)

128 select.Spat

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... <tidy-select> One or more unquoted expressions separated by commas. Layer/attribute
names can be used as if they were positions in the Spat* object, so expressions
like x:y can be used to select a range of layers/attributes.

Value

A Spat* object of the same class than .data. See Methods.

terra equivalent

terra::subset()

Methods

Implementation of the generic dplyr::select() function.

SpatRaster:
Select (and rename) layers of a SpatRaster. The result is a SpatRaster with the same extent,
resolution and crs than .data. Only the number (and possibly the name) of layers is modified.

SpatVector:
The result is a SpatVector with the selected (and possibly renamed) attributes on the function
call.

See Also

dplyr::select(), terra::subset()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat,
slice.Spat, summarise.SpatVector()

Other dplyr verbs that operate on columns: glimpse.Spat, mutate.Spat, pull.Spat, relocate.Spat,
rename.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat,
rename.Spat, rowwise.SpatVector(), slice.Spat, summarise.SpatVector()

Examples

library(terra)

SpatRaster method

spatrast <- rast(
crs = "EPSG:3857",
nrows = 10,
ncols = 10,
extent = c(100, 200, 100, 200),

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

slice.Spat 129

nlyr = 6,
vals = seq_len(10 * 10 * 6)

)

spatrast |> select(1)

By name
spatrast |> select(lyr.1:lyr.4)

Rename
spatrast |> select(a = lyr.1, c = lyr.6)

SpatVector method

f <- system.file("extdata/cyl.gpkg", package = "tidyterra")

v <- vect(f)

v

v |> select(1, 3)

v |> select(iso2, name2 = cpro)

slice.Spat Subset cells/rows/columns/geometries using their positions

Description

slice() methods lets you index cells/rows/columns/geometries by their (integer) locations. It al-
lows you to select, remove, and duplicate those dimensions of a Spat* object.

If you want to slice your SpatRaster by geographic coordinates use filter.SpatRaster()
method.

It is accompanied by a number of helpers for common use cases:

• slice_head() and slice_tail() select the first or last cells/geometries.

• slice_sample() randomly selects cells/geometries.

• slice_rows() and slice_cols() allow to subset entire rows or columns, of a SpatRaster.

• slice_colrows() subsets regions of the SpatRaster by row and column position of a SpatRaster.

You can get a skeleton of your SpatRaster with the cell, column and row index with as_coordinates().

See Methods for details.

130 slice.Spat

Usage

S3 method for class 'SpatRaster'
slice(.data, ..., .preserve = FALSE, .keep_extent = FALSE)

S3 method for class 'SpatVector'
slice(.data, ..., .preserve = FALSE)

S3 method for class 'SpatRaster'
slice_head(.data, ..., n, prop, .keep_extent = FALSE)

S3 method for class 'SpatVector'
slice_head(.data, ..., n, prop)

S3 method for class 'SpatRaster'
slice_tail(.data, ..., n, prop, .keep_extent = FALSE)

S3 method for class 'SpatVector'
slice_tail(.data, ..., n, prop)

S3 method for class 'SpatRaster'
slice_min(
.data,
order_by,
...,
n,
prop,
with_ties = TRUE,
.keep_extent = FALSE,
na.rm = TRUE

)

S3 method for class 'SpatVector'
slice_min(.data, order_by, ..., n, prop, with_ties = TRUE, na_rm = FALSE)

S3 method for class 'SpatRaster'
slice_max(
.data,
order_by,
...,
n,
prop,
with_ties = TRUE,
.keep_extent = FALSE,
na.rm = TRUE

)

S3 method for class 'SpatVector'
slice_max(.data, order_by, ..., n, prop, with_ties = TRUE, na_rm = FALSE)

slice.Spat 131

S3 method for class 'SpatRaster'
slice_sample(
.data,
...,
n,
prop,
weight_by = NULL,
replace = FALSE,
.keep_extent = FALSE

)

S3 method for class 'SpatVector'
slice_sample(.data, ..., n, prop, weight_by = NULL, replace = FALSE)

slice_rows(.data, ...)

S3 method for class 'SpatRaster'
slice_rows(.data, ..., .keep_extent = FALSE)

slice_cols(.data, ...)

S3 method for class 'SpatRaster'
slice_cols(.data, ..., .keep_extent = FALSE)

slice_colrows(.data, ...)

S3 method for class 'SpatRaster'
slice_colrows(.data, ..., cols, rows, .keep_extent = FALSE, inverse = FALSE)

Arguments

.data A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().

... <data-masking> Integer row values. Provide either positive values to keep, or
negative values to drop.
The values provided must be either all positive or all negative. Indices beyond
the number of rows in the input are silently ignored. See Methods.

.preserve Ignored for Spat* objects.

.keep_extent Should the extent of the resulting SpatRaster be kept? See also terra::trim(),
terra::extend().

n, prop Provide either n, the number of rows, or prop, the proportion of rows to select.
If neither are supplied, n = 1 will be used. If n is greater than the number of rows
in the group (or prop > 1), the result will be silently truncated to the group size.
prop will be rounded towards zero to generate an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For exam-
ple, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop = -0.25 with
8 rows will select 8 * (1 - 0.25) = 6 rows.

132 slice.Spat

order_by <data-masking> Variable or function of variables to order by. To order by
multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more rows than you
request. Use FALSE to ignore ties, and return the first n rows.

na.rm Logical, should cells that present a value of NA removed when computing slice_min()/slice_max()?.
The default is TRUE.

na_rm Should missing values in order_by be removed from the result? If FALSE, NA
values are sorted to the end (like in arrange()), so they will only be included if
there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the default) re-
placement.

cols, rows Integer col/row values of the SpatRaster

inverse If TRUE, .data is inverse-masked to the given selection. See terra::mask().

Value

A Spat* object of the same class than .data. See Methods.

terra equivalent

terra::subset(), terra::spatSample()

Methods

Implementation of the generic dplyr::slice() function.

SpatRaster:
The result is a SpatRaster with the crs and resolution of the input and where cell values of the
selected cells/columns/rows are preserved.
Use .keep_extent = TRUE to preserve the extent of .data on the output. The non-selected cells
would present a value of NA.

SpatVector:
The result is a SpatVector where the attributes of the selected geometries are preserved. If
.data is a grouped SpatVector, the operation will be performed on each group, so that (e.g.)
slice_head(df, n = 5) will select the first five rows in each group.

See Also

dplyr::slice(), terra::spatSample().

You can get a skeleton of your SpatRaster with the cell, column and row index with as_coordinates().

If you want to slice by geographic coordinates use filter.SpatRaster().

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat,
select.Spat, summarise.SpatVector()

https://CRAN.R-project.org/package=terra

slice.Spat 133

Other dplyr verbs that operate on rows: arrange.SpatVector(), distinct.SpatVector(), filter.Spat

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat,
rename.Spat, rowwise.SpatVector(), select.Spat, summarise.SpatVector()

Examples

library(terra)

f <- system.file("extdata/cyl_temp.tif", package = "tidyterra")
r <- rast(f)

Slice first 100 cells
r |>

slice(1:100) |>
plot()

Rows
r |>

slice_rows(1:30) |>
plot()

Cols
r |>

slice_cols(-(20:50)) |>
plot()

Spatial sample
r |>

slice_sample(prop = 0.2) |>
plot()

Slice regions
r |>

slice_colrows(
cols = c(20:40, 60:80),
rows = -c(1:20, 30:50)

) |>
plot()

Group wise operation with SpatVectors--------------------------------------
v <- terra::vect(system.file("ex/lux.shp", package = "terra"))

glimpse(v) |> autoplot(aes(fill = NAME_1))

gv <- v |> group_by(NAME_1)
All slice helpers operate per group, silently truncating to the group size
gv |>

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

134 summarise.SpatVector

slice_head(n = 1) |>
glimpse() |>
autoplot(aes(fill = NAME_1))

gv |>
slice_tail(n = 1) |>
glimpse() |>
autoplot(aes(fill = NAME_1))

gv |>
slice_min(AREA, n = 1) |>
glimpse() |>
autoplot(aes(fill = NAME_1))

gv |>
slice_max(AREA, n = 1) |>
glimpse() |>
autoplot(aes(fill = NAME_1))

summarise.SpatVector Summarise each group of a SpatVector down to one geometry

Description

summarise() creates a new SpatVector. It returns one geometry for each combination of grouping
variables; if there are no grouping variables, the output will have a single geometry summarising all
observations in the input and combining all the geometries of the SpatVector. It will contain one
column for each grouping variable and one column for each of the summary statistics that you have
specified.

summarise.SpatVector() and summarize.SpatVector() are synonyms

Usage

S3 method for class 'SpatVector'
summarise(.data, ..., .by = NULL, .groups = NULL, .dissolve = TRUE)

S3 method for class 'SpatVector'
summarize(.data, ..., .by = NULL, .groups = NULL, .dissolve = TRUE)

Arguments

.data A SpatVector.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

summarise.SpatVector 135

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.groups See dplyr::summarise()

.dissolve logical. Should borders between aggregated geometries be dissolved?

Value

A SpatVector.

terra equivalent

terra::aggregate()

Methods

Implementation of the generic dplyr::summarise() function.

SpatVector:
Similarly to the implementation on sf this function can be used to dissolve geometries (with
.dissolve = TRUE) or create MULTI versions of geometries (with .dissolve = FALSE). See Ex-
amples.

See Also

dplyr::summarise(), terra::aggregate()

Other single table verbs: arrange.SpatVector(), filter.Spat, mutate.Spat, rename.Spat,
select.Spat, slice.Spat

Other dplyr verbs that operate on group of rows: count.SpatVector(), group-by.SpatVector,
rowwise.SpatVector()

Other dplyr methods: arrange.SpatVector(), bind_cols.SpatVector, bind_rows.SpatVector,
count.SpatVector(), distinct.SpatVector(), filter-joins.SpatVector, filter.Spat, glimpse.Spat,
group-by.SpatVector, mutate-joins.SpatVector, mutate.Spat, pull.Spat, relocate.Spat,
rename.Spat, rowwise.SpatVector(), select.Spat, slice.Spat

Examples

library(terra)
library(ggplot2)

v <- vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

Grouped
gr_v <- v |>

mutate(start_with_s = substr(name, 1, 1) == "S") |>
group_by(start_with_s)

https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr

136 tidy.Spat

Dissolving
diss <- gr_v |>

summarise(n = dplyr::n(), mean = mean(as.double(cpro)))

diss

autoplot(diss, aes(fill = start_with_s)) + ggplot2::ggtitle("Dissolved")

Not dissolving
no_diss <- gr_v |>

summarise(n = dplyr::n(), mean = mean(as.double(cpro)), .dissolve = FALSE)

Same statistic
no_diss

autoplot(no_diss, aes(fill = start_with_s)) +
ggplot2::ggtitle("Not Dissolved")

tidy.Spat Turn Spat* object into a tidy tibble

Description

Turn Spat* object into a tidy tibble. This is similar to fortify.Spat, and it is provided just in case
ggplot2::fortify() method is deprecated in the future.

Usage

S3 method for class 'SpatRaster'
tidy(
x,
...,
.name_repair = "unique",
maxcell = terra::ncell(x) * 1.1,
pivot = FALSE

)

S3 method for class 'SpatVector'
tidy(x, ...)

S3 method for class 'SpatGraticule'
tidy(x, ...)

S3 method for class 'SpatExtent'
tidy(x, ..., crs = "")

tidy.Spat 137

Arguments

x A SpatRaster created with terra::rast() or a SpatVector created with terra::vect().
Also support SpatGraticule (see terra::graticule()) and SpatExtent (see
terra::ext()).

... Ignored by these methods.

.name_repair Treatment of problematic column names:
• "minimal": No name repair or checks, beyond basic existence.
• "unique": Make sure names are unique and not empty.
• "check_unique": (default value), no name repair, but check they are unique.
• "universal": Make the names unique and syntactic.
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function().

maxcell positive integer. Maximum number of cells to use for the plot.
pivot Logical. When TRUE the SpatRaster would be provided on long format. When

FALSE (the default) it would be provided as a data frame with a column for each
layer. See Details.

crs Input potentially including or representing a CRS. It could be a sf/sfc object, a
SpatRaster/SpatVector object, a crs object from sf::st_crs(), a character
(for example a proj4 string) or a integer (representing an EPSG code).

Value

tidy.SpatVector(), tidy.SpatGraticule() and tidy.SpatExtent() return a sf object.

tidy.SpatRaster() returns a tibble. See Methods.

Methods

Implementation of the generic generics::tidy() method.

SpatRaster:
Return a tibble than can be used with ggplot2::geom_* like ggplot2::geom_point(), ggplot2::geom_raster(),
etc.
The resulting tibble includes the coordinates on the columns x, y. The values of each layer are
included as additional columns named as per the name of the layer on the SpatRaster.
The CRS of the SpatRaster can be retrieved with attr(tidySpatRaster, "crs").
It is possible to convert the tidy object onto a SpatRaster again with as_spatraster().
When pivot = TRUE the SpatRaster is provided in a "long" format (see tidyr::pivot_longer()).
The tidy object would have the following columns:

• x,y: Coordinates (center) of the cell on the corresponding CRS.
• lyr: Indicating the name of the SpatRaster layer of value.
• value: The value of the SpatRaster in the corresponding lyr.

This option may be useful when using several geom_* and for faceting.

SpatVector, SpatGraticule and SpatExtent:
Return a sf object than can be used with ggplot2::geom_sf().

https://proj.org/en/9.3/operations/projections/index.html
https://epsg.io/

138 volcano2

See Also

sf::st_as_sf(), as_tibble.Spat, as_spatraster(), fortify.Spat, generics::tidy().

Other generics methods: glance.Spat, required_pkgs.Spat

Coercing objects: as_coordinates(), as_sf(), as_spatraster(), as_spatvector(), as_tibble.Spat,
fortify.Spat

Examples

Get a SpatRaster
r <- system.file("extdata/volcano2.tif", package = "tidyterra") |>

terra::rast() |>
terra::project("EPSG:4326")

r_tidy <- tidy(r)

r_tidy

Back to a SpatRaster with
as_spatraster(r_tidy)

SpatVector
cyl <- terra::vect(system.file("extdata/cyl.gpkg", package = "tidyterra"))

cyl

tidy(cyl)

SpatExtent
ex <- cyl |> terra::ext()

ex

tidy(ex)

With crs
tidy(ex, crs = pull_crs(cyl))

SpatGraticule
grat <- terra::graticule(60, 30, crs = "+proj=robin")

grat
tidy(grat)

volcano2 Updated topographic information on Auckland’s Maungawhau vol-
cano

https://CRAN.R-project.org/package=generics

volcano2 139

Description

Probably you already know the volcano dataset. This dataset provides updated information of
Maungawhau (Mt. Eden) from Toitu Te Whenua Land Information New Zealand, the Govern-
ment’s agency that provides free online access to New Zealand’s most up-to-date land and seabed
data.

Format

A matrix of 174 rows and 122 columns. Each value is the corresponding altitude in meters.

Note

Information needed for regenerating the original SpatRaster file:

• resolution: c(5, 5)

• extent: 1756969, 1757579, 5917003, 5917873 (xmin, xmax, ymin, ymax)

• coord. ref. : NZGD2000 / New Zealand Transverse Mercator 2000 (EPSG:2193)

Source

Auckland LiDAR 1m DEM (2013).

DEM for LiDAR data from the Auckland region captured in 2013. The original data has been
downsampled to a resolution of 5m due to disk space constrains.

Data License: CC BY 4.0.

See Also

volcano

Other datasets: cross_blended_hypsometric_tints_db, grass_db, hypsometric_tints_db,
princess_db

Examples

data("volcano2")
filled.contour(volcano2, color.palette = hypso.colors, asp = 1)
title(main = "volcano2 data: filled contour map")

Geo-tag
Empty raster

volcano2_raster <- terra::rast(volcano2)
terra::crs(volcano2_raster) <- pull_crs(2193)
terra::ext(volcano2_raster) <- c(1756968, 1757576, 5917000, 5917872)
names(volcano2_raster) <- "volcano2"

library(ggplot2)

ggplot() +
geom_spatraster(data = volcano2_raster) +

https://data.linz.govt.nz/
https://data.linz.govt.nz/layer/53405-auckland-lidar-1m-dem-2013/
https://creativecommons.org/licenses/by/4.0/

140 volcano2

scale_fill_hypso_c() +
labs(

title = "volcano2 SpatRaster",
subtitle = "Georeferenced",
fill = "Elevation (m)"

)

Index

∗ coerce
as_coordinates, 4
as_sf, 5
as_spatraster, 6
as_spatvector, 8
as_tibble.Spat, 10
fortify.Spat, 32
tidy.Spat, 136

∗ datasets
cross_blended_hypsometric_tints_db,

21
grass_db, 54
hypsometric_tints_db, 59
princess_db, 74
volcano2, 138

∗ dplyr.cols
glimpse.Spat, 52
mutate.Spat, 65
pull.Spat, 75
relocate.Spat, 78
rename.Spat, 80
select.Spat, 127

∗ dplyr.groups
count.SpatVector, 19
group-by.SpatVector, 57
rowwise.SpatVector, 84
summarise.SpatVector, 134

∗ dplyr.methods
arrange.SpatVector, 3
bind_cols.SpatVector, 14
bind_rows.SpatVector, 15
count.SpatVector, 19
distinct.SpatVector, 22
filter-joins.SpatVector, 28
filter.Spat, 30
glimpse.Spat, 52
group-by.SpatVector, 57
mutate-joins.SpatVector, 62
mutate.Spat, 65

pull.Spat, 75
relocate.Spat, 78
rename.Spat, 80
rowwise.SpatVector, 84
select.Spat, 127
slice.Spat, 129
summarise.SpatVector, 134

∗ dplyr.pairs
bind_cols.SpatVector, 14
bind_rows.SpatVector, 15
filter-joins.SpatVector, 28
mutate-joins.SpatVector, 62

∗ dplyr.rows
arrange.SpatVector, 3
distinct.SpatVector, 22
filter.Spat, 30
slice.Spat, 129

∗ generics.methods
glance.Spat, 51
required_pkgs.Spat, 82
tidy.Spat, 136

∗ ggplot2.methods
autoplot.Spat, 12
fortify.Spat, 32

∗ ggplot2.utils
autoplot.Spat, 12
fortify.Spat, 32
geom_spat_contour, 43
geom_spatraster, 35
geom_spatraster_rgb, 40
ggspatvector, 48

∗ gradients
scale_color_coltab, 86
scale_cross_blended, 92
scale_grass, 100
scale_hypso, 106
scale_princess, 114
scale_terrain, 119
scale_whitebox, 123

141

142 INDEX

∗ helpers
compare_spatrasters, 17
is_regular_grid, 60
pull_crs, 77

∗ single table verbs
arrange.SpatVector, 3
filter.Spat, 30
mutate.Spat, 65
rename.Spat, 80
select.Spat, 127
slice.Spat, 129
summarise.SpatVector, 134

∗ tibble.methods
as_tibble.Spat, 10

∗ tidyr.methods
drop_na.Spat, 24
fill.SpatVector, 26
pivot_longer.SpatVector, 67
pivot_wider.SpatVector, 70
replace_na.Spat, 81

∗ tidyr.missing
drop_na.Spat, 24
fill.SpatVector, 26
replace_na.Spat, 81

∗ tidyr.pivot
pivot_longer.SpatVector, 67
pivot_wider.SpatVector, 70

?dplyr_by, 135
?join_by, 29, 63

aes(), 49
alpha, 37, 38, 46
annotation_borders(), 49
anti_join(), 28
anti_join.SpatVector

(filter-joins.SpatVector), 28
arrange(), 132
arrange.SpatVector, 3, 15, 16, 20, 23, 29,

31, 32, 53, 58, 64, 66, 67, 76, 79, 81,
85, 128, 132, 133, 135

as_coordinates, 4, 6, 7, 9, 11, 34, 138
as_coordinates(), 129, 132
as_sf, 5, 5, 7, 9, 11, 34, 138
as_sf(), 5
as_spatraster, 5, 6, 6, 9, 11, 34, 138
as_spatraster(), 34, 61, 137, 138
as_spatvector, 5–7, 8, 11, 34, 138
as_tibble(), 10, 53, 84
as_tibble.Spat, 5–7, 9, 10, 34, 76, 138

as_tibble.Spat(), 30, 75
as_tibble.SpatRaster (as_tibble.Spat),

10
as_tibble.SpatRaster(), 7, 53
as_tibble.SpatVector (as_tibble.Spat),

10
as_tibble.SpatVector(), 9
autoplot.Spat, 12, 34, 39, 42, 47, 50
autoplot.SpatExtent (autoplot.Spat), 12
autoplot.SpatGraticule (autoplot.Spat),

12
autoplot.SpatRaster (autoplot.Spat), 12
autoplot.SpatRaster(), 12
autoplot.SpatVector (autoplot.Spat), 12

bind.Spat (bind_rows.SpatVector), 15
bind_cols.SpatVector, 4, 14, 16, 20, 23, 29,

32, 53, 58, 64, 67, 76, 79, 81, 85,
128, 133, 135

bind_rows.SpatVector, 4, 15, 15, 20, 23, 29,
32, 53, 58, 64, 67, 76, 79, 81, 85,
128, 133, 135

bind_spat_cols (bind_cols.SpatVector),
14

bind_spat_rows (bind_rows.SpatVector),
15

colour, 46
coltab, 36
compare_spatrasters, 17, 61, 77
coord_cartesian(), 97, 103, 111
count(), 20
count.SpatVector, 4, 15, 16, 19, 23, 29, 32,

53, 58, 64, 67, 76, 79, 81, 85, 128,
133, 135

cross_blended.colors
(scale_cross_blended), 92

cross_blended.colors2
(scale_cross_blended), 92

cross_blended_hypsometric_tints_db, 21,
56, 60, 74, 95, 97, 98, 139

cross_join(), 29, 63

desc(), 3
distinct.SpatVector, 4, 15, 16, 20, 22, 29,

31, 32, 53, 58, 64, 67, 76, 79, 81, 85,
128, 133, 135

dplyr::anti_join(), 29
dplyr::arrange(), 4

INDEX 143

dplyr::bind_cols(), 14, 15
dplyr::bind_rows(), 14, 16
dplyr::count(), 20
dplyr::distinct(), 23
dplyr::filter(), 31
dplyr::full_join(), 64
dplyr::glimpse(), 53
dplyr::group_by(), 9, 57, 58
dplyr::inner_join(), 62, 64
dplyr::left_join(), 64
dplyr::mutate(), 66
dplyr::pull(), 76
dplyr::relocate(), 79
dplyr::rename(), 80, 81
dplyr::right_join(), 64
dplyr::rowwise(), 84, 85
dplyr::select(), 128
dplyr::semi_join(), 28, 29
dplyr::slice(), 132
dplyr::summarise(), 135
dplyr::tally(), 20
dplyr::transmute(), 66
dplyr::ungroup(), 58
drop_na.Spat, 24, 27, 70, 73, 82
drop_na.SpatRaster (drop_na.Spat), 24
drop_na.SpatRaster(), 31
drop_na.SpatVector (drop_na.Spat), 24

expand(), 71, 72
expansion(), 88, 91, 96, 103, 110, 117, 121,

125
extract(), 69

fill, 37, 38, 46
fill.SpatVector, 25, 26, 70, 73, 82
filter-joins.SpatVector, 28
filter.Spat, 4, 15, 16, 20, 23, 29, 30, 53, 58,

64, 66, 67, 76, 79, 81, 85, 128, 132,
133, 135

filter.SpatRaster (filter.Spat), 30
filter.SpatRaster(), 11, 129, 132
filter.SpatVector (filter.Spat), 30
fortify.Spat, 5–7, 9, 11, 13, 32, 39, 42, 47,

50, 136, 138
fortify.SpatExtent (fortify.Spat), 32
fortify.SpatExtent(), 34
fortify.SpatGraticule (fortify.Spat), 32
fortify.SpatGraticule(), 34
fortify.SpatRaster (fortify.Spat), 32

fortify.SpatRaster(), 34
fortify.SpatVector (fortify.Spat), 32
fortify.SpatVector(), 34, 50
full_join(), 64
full_join.SpatVector

(mutate-joins.SpatVector), 62

generics::glance(), 52
generics::required_pkgs(), 83
generics::tidy(), 137, 138
geom_spat_contour, 13, 34, 39, 42, 43, 50
geom_spatraster, 13, 34, 35, 42, 47, 50
geom_spatraster(), 12, 13, 40
geom_spatraster_contour

(geom_spat_contour), 43
geom_spatraster_contour_filled

(geom_spat_contour), 43
geom_spatraster_contour_text

(geom_spat_contour), 43
geom_spatraster_rgb, 13, 34, 39, 40, 47, 50
geom_spatraster_rgb(), 12, 13, 35
geom_spatvector (ggspatvector), 48
geom_spatvector(), 12, 13
geom_spatvector_label (ggspatvector), 48
geom_spatvector_label(), 13
geom_spatvector_text (ggspatvector), 48
geom_spatvector_text(), 13
get_coltab_pal (scale_coltab), 89
get_coltab_pal(), 90
ggplot2::aes(), 36, 44
ggplot2::after_stat(), 38, 46
ggplot2::autoplot(), 13
ggplot2::binned_scale, 87, 95, 102, 110,

116, 120, 124
ggplot2::binned_scale(), 86, 93, 100, 107,

115, 119, 123
ggplot2::continuous_scale, 87, 95, 102,

110, 116, 120, 124
ggplot2::continuous_scale(), 86, 93, 100,

107, 115, 119, 123
ggplot2::coord_sf(), 37, 38, 42, 47
ggplot2::discrete_scale, 87, 90, 95, 102,

110, 116, 120, 124
ggplot2::discrete_scale(), 86, 90, 91, 93,

100, 107, 115, 119, 123
ggplot2::facet_wrap(), 38, 47
ggplot2::fortify(), 34, 136
ggplot2::geom_contour(), 43, 46, 47
ggplot2::geom_label(), 38

144 INDEX

ggplot2::geom_point(), 34, 38, 137
ggplot2::geom_raster(), 34, 35, 38, 40, 42,

137
ggplot2::geom_sf(), 34, 48–50, 137
ggplot2::geom_text(), 39
ggplot2::ggplot(), 32
ggplot2::scale_fill_gradientn(), 21, 54,

59
ggplot2::scale_fill_manual(), 91
ggplot2::scale_fill_viridis_c(), 89, 98,

104, 112, 118, 122, 126
ggspatvector, 13, 34, 39, 42, 47, 48
glance.Spat, 51, 83, 138
glance.SpatRaster (glance.Spat), 51
glance.SpatVector (glance.Spat), 51
glimpse.Spat, 4, 15, 16, 20, 23, 29, 32, 52,

52, 58, 64, 66, 67, 76, 79, 81, 85,
128, 133, 135

glimpse.SpatRaster (glimpse.Spat), 52
glimpse.SpatVector (glimpse.Spat), 52
grass.colors (scale_grass), 100
grass_db, 22, 54, 60, 74, 102, 104, 139
grDevices::rgb(), 41, 42
grDevices::terrain.colors(), 86, 92, 100,

107, 115, 123
group, 46
group-by.SpatVector, 57
group_by(), 19, 58, 135
group_by.SpatVector

(group-by.SpatVector), 57
group_by.SpatVector(), 3, 5, 9, 27, 57, 84
group_by_drop_default(), 57
grouped, 132
guides(), 88, 96, 103, 111, 117, 122, 126

hsv, 41, 88, 96, 103, 111, 117, 121, 125
hypso.colors (scale_hypso), 106
hypso.colors2 (scale_hypso), 106
hypsometric_tints_db, 22, 56, 59, 74,

110–112, 139

inner_join.SpatVector
(mutate-joins.SpatVector), 62

is_grouped_spatvector, 18, 61, 77
is_regular_grid, 18, 60, 77
isoband::isolines_grob(), 43

join, 14
join_by(), 29, 63

key glyphs, 37, 41, 45

label_placer_minmax(), 45
lambda, 87, 88, 90, 91, 95–97, 102, 103, 110,

111, 116, 117, 120, 121, 124, 125
layer geom, 50
layer position, 50
layer(), 37, 41, 44, 45
left_join.SpatVector

(mutate-joins.SpatVector), 62
linetype, 46
linewidth, 46
long format, 33, 137

maptiles::get_tiles(), 42
mutate-joins.SpatVector, 62
mutate.Spat, 4, 15, 16, 20, 23, 29, 31, 32, 53,

58, 64, 65, 76, 79, 81, 85, 128, 132,
133, 135

mutate.SpatRaster (mutate.Spat), 65
mutate.SpatVector (mutate.Spat), 65

pivot_longer.SpatVector, 25, 27, 67, 73,
82

pivot_longer.SpatVector(), 70
pivot_wider(), 70
pivot_wider.SpatVector, 25, 27, 70, 70, 82
pivot_wider.SpatVector(), 67
pretty(), 45
princess.colors (scale_princess), 114
princess_db, 22, 56, 60, 74, 139
print(), 52
pull.Spat, 4, 15, 16, 20, 23, 29, 32, 53, 58,

64, 66, 67, 75, 79, 81, 85, 128, 133,
135

pull.SpatRaster (pull.Spat), 75
pull.SpatVector (pull.Spat), 75
pull_crs, 18, 61, 77
pull_crs(), 7–9, 11

recycled, 14
reframe(), 134
relocate.Spat, 4, 15, 16, 20, 23, 29, 32, 53,

58, 64, 66, 67, 76, 78, 81, 85, 128,
133, 135

relocate.SpatRaster (relocate.Spat), 78
relocate.SpatVector (relocate.Spat), 78
rename.Spat, 4, 15, 16, 20, 23, 29, 31, 32, 53,

58, 64, 66, 67, 76, 79, 80, 85, 128,
132, 133, 135

INDEX 145

rename.SpatRaster (rename.Spat), 80
rename.SpatVector (rename.Spat), 80
rename_with.SpatRaster (rename.Spat), 80
rename_with.SpatVector (rename.Spat), 80
replace_na.Spat, 25, 27, 70, 73, 81
replace_na.SpatRaster

(replace_na.Spat), 81
replace_na.SpatVector

(replace_na.Spat), 81
required_pkgs.Spat, 52, 82, 138
required_pkgs.SpatExtent

(required_pkgs.Spat), 82
required_pkgs.SpatGraticule

(required_pkgs.Spat), 82
required_pkgs.SpatRaster

(required_pkgs.Spat), 82
required_pkgs.SpatVector

(required_pkgs.Spat), 82
rescale(), 97, 103, 111
right_join(), 64
right_join.SpatVector

(mutate-joins.SpatVector), 62
rlang::as_function(), 10, 33, 137
rowwise.SpatVector, 4, 15, 16, 20, 23, 29,

32, 53, 58, 64, 67, 76, 79, 81, 84,
128, 133, 135

rowwise.SpatVector(), 84

scale_color_coltab, 86, 98, 104, 112, 118,
122, 126

scale_color_cross_blended_b
(scale_cross_blended), 92

scale_color_cross_blended_c
(scale_cross_blended), 92

scale_color_cross_blended_d
(scale_cross_blended), 92

scale_color_cross_blended_tint_b
(scale_cross_blended), 92

scale_color_cross_blended_tint_c
(scale_cross_blended), 92

scale_color_cross_blended_tint_d
(scale_cross_blended), 92

scale_color_grass_b (scale_grass), 100
scale_color_grass_c (scale_grass), 100
scale_color_grass_d (scale_grass), 100
scale_color_hypso_b (scale_hypso), 106
scale_color_hypso_c (scale_hypso), 106
scale_color_hypso_d (scale_hypso), 106

scale_color_hypso_tint_b (scale_hypso),
106

scale_color_hypso_tint_c (scale_hypso),
106

scale_color_hypso_tint_d (scale_hypso),
106

scale_color_princess_b
(scale_princess), 114

scale_color_princess_c
(scale_princess), 114

scale_color_princess_d
(scale_princess), 114

scale_color_terrain_b (scale_terrain),
119

scale_color_terrain_c (scale_terrain),
119

scale_color_terrain_d (scale_terrain),
119

scale_color_whitebox_b
(scale_whitebox), 123

scale_color_whitebox_c
(scale_whitebox), 123

scale_color_whitebox_d
(scale_whitebox), 123

scale_color_wiki_b
(scale_color_coltab), 86

scale_color_wiki_c
(scale_color_coltab), 86

scale_color_wiki_d
(scale_color_coltab), 86

scale_colour_coltab (scale_coltab), 89
scale_colour_cross_blended_b

(scale_cross_blended), 92
scale_colour_cross_blended_c

(scale_cross_blended), 92
scale_colour_cross_blended_d

(scale_cross_blended), 92
scale_colour_cross_blended_tint_b

(scale_cross_blended), 92
scale_colour_cross_blended_tint_c

(scale_cross_blended), 92
scale_colour_cross_blended_tint_d

(scale_cross_blended), 92
scale_colour_grass_b (scale_grass), 100
scale_colour_grass_c (scale_grass), 100
scale_colour_grass_d (scale_grass), 100
scale_colour_hypso_b (scale_hypso), 106
scale_colour_hypso_c (scale_hypso), 106

146 INDEX

scale_colour_hypso_d (scale_hypso), 106
scale_colour_hypso_tint_b

(scale_hypso), 106
scale_colour_hypso_tint_c

(scale_hypso), 106
scale_colour_hypso_tint_d

(scale_hypso), 106
scale_colour_princess_b

(scale_princess), 114
scale_colour_princess_c

(scale_princess), 114
scale_colour_princess_d

(scale_princess), 114
scale_colour_terrain_b (scale_terrain),

119
scale_colour_terrain_c (scale_terrain),

119
scale_colour_terrain_d (scale_terrain),

119
scale_colour_whitebox_b

(scale_whitebox), 123
scale_colour_whitebox_c

(scale_whitebox), 123
scale_colour_whitebox_d

(scale_whitebox), 123
scale_colour_wiki_b

(scale_color_coltab), 86
scale_colour_wiki_c

(scale_color_coltab), 86
scale_colour_wiki_d

(scale_color_coltab), 86
scale_coltab, 89
scale_cross_blended, 89, 92, 104, 112, 118,

122, 126
scale_fill_coltab (scale_coltab), 89
scale_fill_coltab(), 12, 36
scale_fill_cross_blended_b

(scale_cross_blended), 92
scale_fill_cross_blended_c

(scale_cross_blended), 92
scale_fill_cross_blended_c(), 22
scale_fill_cross_blended_d

(scale_cross_blended), 92
scale_fill_cross_blended_tint_b

(scale_cross_blended), 92
scale_fill_cross_blended_tint_c

(scale_cross_blended), 92
scale_fill_cross_blended_tint_d

(scale_cross_blended), 92
scale_fill_grass_b (scale_grass), 100
scale_fill_grass_c (scale_grass), 100
scale_fill_grass_c(), 56
scale_fill_grass_d (scale_grass), 100
scale_fill_hypso_b (scale_hypso), 106
scale_fill_hypso_c (scale_hypso), 106
scale_fill_hypso_c(), 60
scale_fill_hypso_d (scale_hypso), 106
scale_fill_hypso_tint_b (scale_hypso),

106
scale_fill_hypso_tint_c (scale_hypso),

106
scale_fill_hypso_tint_d (scale_hypso),

106
scale_fill_princess_b (scale_princess),

114
scale_fill_princess_c (scale_princess),

114
scale_fill_princess_c(), 74
scale_fill_princess_d (scale_princess),

114
scale_fill_terrain_b (scale_terrain),

119
scale_fill_terrain_c (scale_terrain),

119
scale_fill_terrain_d (scale_terrain),

119
scale_fill_terrain_d(), 91
scale_fill_whitebox_b (scale_whitebox),

123
scale_fill_whitebox_c (scale_whitebox),

123
scale_fill_whitebox_d (scale_whitebox),

123
scale_fill_wiki_b (scale_color_coltab),

86
scale_fill_wiki_c (scale_color_coltab),

86
scale_fill_wiki_d (scale_color_coltab),

86
scale_grass, 89, 98, 100, 112, 118, 122, 126
scale_hypso, 89, 98, 104, 106, 118, 122, 126
scale_princess, 89, 98, 104, 112, 114, 122,

126
scale_terrain, 89, 98, 104, 112, 118, 119,

126
scale_whitebox, 89, 98, 104, 112, 118, 122,

INDEX 147

123
scale_wiki (scale_color_coltab), 86
scales::label_number(), 45
select.Spat, 4, 15, 16, 20, 23, 29, 31, 32, 53,

58, 64, 66, 67, 76, 78, 79, 81, 85,
127, 132, 133, 135

select.SpatRaster (select.Spat), 127
select.SpatVector (select.Spat), 127
semi_join(), 28
semi_join.SpatVector

(filter-joins.SpatVector), 28
separate(), 68
sf, 5–8, 34, 50, 137
sf::st_as_sf(), 5, 34, 138
sf::st_crs(), 7, 9, 33, 77, 137
sfc, 8
size, 46
slice.Spat, 4, 15, 16, 20, 23, 29, 31, 32, 53,

58, 64, 66, 67, 76, 79, 81, 85, 128,
129, 135

slice.SpatRaster (slice.Spat), 129
slice.SpatRaster(), 5
slice.SpatVector (slice.Spat), 129
slice_colrows (slice.Spat), 129
slice_cols (slice.Spat), 129
slice_head.SpatRaster (slice.Spat), 129
slice_head.SpatVector (slice.Spat), 129
slice_max.SpatRaster (slice.Spat), 129
slice_max.SpatVector (slice.Spat), 129
slice_min.SpatRaster (slice.Spat), 129
slice_min.SpatVector (slice.Spat), 129
slice_rows (slice.Spat), 129
slice_sample.SpatRaster (slice.Spat),

129
slice_sample.SpatVector (slice.Spat),

129
slice_tail.SpatRaster (slice.Spat), 129
slice_tail.SpatVector (slice.Spat), 129
stat_spat_coordinates, 13, 34, 39, 42, 47,

50
stat_spatraster (geom_spatraster), 35
stat_spatvector (ggspatvector), 48
stretch, 41
summarise.SpatVector, 4, 15, 16, 20, 23, 29,

31, 32, 53, 58, 64, 66, 67, 76, 79, 81,
85, 128, 132, 133, 134

summarise.SpatVector(), 20, 84
summarize.SpatVector

(summarise.SpatVector), 134

tally(), 20
tally.SpatVector (count.SpatVector), 19
terra, 7
terra::aggregate(), 18, 20, 135
terra::app(), 66
terra::as.data.frame(), 10, 11, 75, 76
terra::clamp(), 66
terra::classify(), 66
terra::coltab(), 12, 90, 91
terra::contour(), 46
terra::crs(), 7, 9, 77
terra::disagg(), 18
terra::ext(), 12, 33, 83, 137
terra::extend(), 131
terra::graticule(), 12, 33, 83, 137
terra::has.colors(), 90
terra::identical(), 18
terra::ifel(), 66
terra::intersect(), 28, 63
terra::lapp(), 66
terra::map.pal(), 56, 100, 104
terra::mask(), 25, 132
terra::merge(), 29, 64
terra::minmax(), 98, 104, 112
terra::plot(), 12, 35, 37, 50, 89, 98, 100,

104, 112, 118, 122, 126
terra::plotRGB(), 12, 42
terra::project(), 18, 36, 42, 45
terra::rast(), 7, 10, 12, 24, 31, 33, 35, 40,

52, 53, 66, 75, 79, 80, 82, 83, 128,
131, 137

terra::resample(), 18, 25
terra::sort(), 3
terra::spatSample(), 132
terra::subset(), 128, 132
terra::tapp(), 66
terra::trim(), 25, 31, 131
terra::unique(), 23
terra::values(), 75
terra::vect(), 3, 8–10, 12, 23, 24, 28, 31,

33, 48, 49, 52, 53, 63, 66, 75, 79, 80,
82, 83, 128, 131, 137

terrain.colors(), 119
tibble, 5, 7, 8, 10, 21, 34, 54, 59, 74, 137
tibble::as_tibble(), 11
tibble::print.tbl_df(), 53
tibble::tibble(), 51

148 INDEX

tidy.Spat, 5–7, 9, 11, 32, 34, 52, 83, 136
tidy.SpatExtent (tidy.Spat), 136
tidy.SpatExtent(), 137
tidy.SpatGraticule (tidy.Spat), 136
tidy.SpatGraticule(), 137
tidy.SpatRaster (tidy.Spat), 136
tidy.SpatRaster(), 137
tidy.SpatVector (tidy.Spat), 136
tidy.SpatVector(), 137
tidyr::drop_na(), 25
tidyr::fill(), 27
tidyr::pivot_longer(), 34, 69, 70, 137
tidyr::pivot_wider(), 67, 73
tidyr::replace_na(), 82
tidyselect, 71
transmute.Spat (mutate.Spat), 65
transmute.SpatRaster (mutate.Spat), 65
transmute.SpatVector (mutate.Spat), 65

ungroup.SpatVector
(group-by.SpatVector), 57

ungroup.SpatVector(), 84

vctrs::vec_as_names(), 69, 72
volcano, 139
volcano2, 22, 56, 60, 74, 138

whitebox.colors (scale_whitebox), 123
wiki.colors (scale_color_coltab), 86

	arrange.SpatVector
	as_coordinates
	as_sf
	as_spatraster
	as_spatvector
	as_tibble.Spat
	autoplot.Spat
	bind_cols.SpatVector
	bind_rows.SpatVector
	compare_spatrasters
	count.SpatVector
	cross_blended_hypsometric_tints_db
	distinct.SpatVector
	drop_na.Spat
	fill.SpatVector
	filter-joins.SpatVector
	filter.Spat
	fortify.Spat
	geom_spatraster
	geom_spatraster_rgb
	geom_spat_contour
	ggspatvector
	glance.Spat
	glimpse.Spat
	grass_db
	group-by.SpatVector
	hypsometric_tints_db
	is_regular_grid
	mutate-joins.SpatVector
	mutate.Spat
	pivot_longer.SpatVector
	pivot_wider.SpatVector
	princess_db
	pull.Spat
	pull_crs
	relocate.Spat
	rename.Spat
	replace_na.Spat
	required_pkgs.Spat
	rowwise.SpatVector
	scale_color_coltab
	scale_coltab
	scale_cross_blended
	scale_grass
	scale_hypso
	scale_princess
	scale_terrain
	scale_whitebox
	select.Spat
	slice.Spat
	summarise.SpatVector
	tidy.Spat
	volcano2
	Index

