
Package ‘tgml’
January 22, 2026

Type Package

Title Tree Guided Machine Learning for Personalized Predictions and
Precision Diagnostics

Version 0.4.0

Date 2026-01-22

Description Generalization of the classification and regression tree (CART) model that partitions sub-
jects into terminal nodes and tailors machine learning model to each terminal node.

License GPL (>= 2)

Depends R (>= 4.5.0), glmnet, randomForest, e1071, pROC, stats,
graphics

NeedsCompilation no

Author Yunro Chung [aut, cre] (ORCID: <https://orcid.org/0000-0001-9125-9277>)

Maintainer Yunro Chung <yunro.chung@asu.edu>

Repository CRAN

Date/Publication 2026-01-22 19:00:02 UTC

Contents
tgml . 1

Index 6

tgml Tree Guided Machine Learning

Description

Generalized classification and tree model that assigns the most effective predictive model to each
terminal node.

1

https://orcid.org/0000-0001-9125-9277

2 tgml

Usage

tgml(y,x,z,ynew,xnew,znew,MLlist,cut,max_depth,min_sample)

Arguments

y Response vector. If a factor codied as 0 or 1, classification is assumed. Other-
wise, regression is assumed.

x Data.frame or matrix of predictors that is used to estimate a tree structure.

z Data.frame or matrix of predictors that is used in terminal node specific ML
models.

ynew Response vector for the test set corresponding to y (default ynew=NULL).

xnew Data.frame or matrix for the test set corresponding to x (default xnew=NULL).

znew Data.frame or matrix for the test set corresponding to z (default znew=NULL).

MLlist Candidate predictive models that can be assigned to each terminal node (default
MLlist=c("lasso","rf","svm")). Any other predictive models can be included.
See the details below.

cut Number of percentile-based candidate cutoff values for each x[,j], j=1,2,.... (de-
fault cut=10). This is only used when x[,j] has the unique values more than
cut.

max_depth Maximum depth of trees. (default max_depth=4)

min_sample The number of minimum sample size per each node, i.e., length(y)>min_sample
if y is continuous and min(length(y==1),length(y==0))>min_sample (default
min_sample=20).

Details

The tgml function uses recursive partitioning to simultaneously identify subgroups and subgroup-
specific predictive models. Specifically, the data (y,x,z) are randomly split into training and valida-
tion sets. At each candidate split, predictive models specified in MLlist are fitted using the training
set, and the optimal split is selected based on the validation MSE or BS.

Ideally, two distinct sets of predictors are available: x and z (e.g., clinical variables and biomarkers),
where x is used to construct the tree splits and z is used for terminal-node-specific predictive models.
When such a separation is not feasible, individualized prediction of y given x is also allowed by
using the same variable x for both roles, for example:

tgml(y = y, x = x, z = x, ynew = ynew, xnew = xnew, znew = xnew).

Regarding node numbering, each internal node s has left and right child nodes indexed as 2s and
2s+1, respectively. The root node is indexed as node 1; nodes 2 and 3 are the left and right children
of node 1; nodes 4 and 5 are the left and right children of node 2; and so on.

Currently, terminal-node-specfic predictive models include lasso(), randomForest(), and svm(...,
kernel = "radial") from the R packages cv.glmnet, randomForest, and e1071, respectively. Addi-
tional models can be flexibly incorporated; see Example 3 below for an illustration.

tgml 3

Value

An object of class tgml, which is a list with the following components:

terminal Terminal node numbers.

internal Internal node numbers.

splitVariable splitVariable[k] (i.e., x[,k]) is used to split the internal node k.

cutoff cutoff[k] is the cutoff value to split the internal node k.

selML selML[k] is ML model assigned to the terminal node t.

fitML fitML[[t]] is the fitted ML model at the terminal node t.

y_hat Estimated y (or estimated probability) on the training set (y,x,z) if y is continu-
ous (or binary).

node_hat Estimated node on the training set.

mse Training MSE.

bs Training Brier Score.

roc Training ROC curve.

auc Training AUC.

y_hat_new Estimated y (or estimated probability) on the test set (ynew,xnew,znew) if y is
continuous (or binary).

node_hat_new Estimated node on the test set.

mse_new Test MSE.

bs_new Test Brier Score.

roc_new Test ROC curve.

auc_new Test AUC.

Author(s)

Yunro Chung [aut, cre]

References

Nishtha Shah, Hassan Ghasemzadeh and Yunro Chung, Treed-guided machine learning for preci-
sion diagnostics (in preperation)

Examples

set.seed(99)
###
#1. continuous y
###
n=200*2 #n=200 & 200 for training & test sets

x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers

4 tgml

xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups

lp=rep(NA,n)
for(i in 1:n)

lp[i]=1+3*z[i,subgr[i]]
y=lp+rnorm(n,0,1)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]

fit1=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit1$mse_new
plot(fit1$y_hat_new~ynew,ylab="Predicted y",xlab="ynew")
abline(a=0,b=1)

###
#2. binary y
###
x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers

xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups

lp=rep(NA,n)
for(i in 1:n)

lp[i]=1+3*z[i,subgr[i]]
prob=1/(1+exp(-lp))
y=rbinom(n,1,prob)
y=as.factor(y)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]

fit2=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit2$auc_new
plot(fit2$roc_new)

###
#3. add new ML models

tgml 5

1) write two functions:
c_xx & c_xx_predict if y is continuous or
b_xx & b_xx.predict if y is binary
2) update MLlist that includes xx, not c_xx nor b_xx.
3) run tgml using updated MLlist.
The below is an example of adding ridge regression.
###
#3.1. ridge regression for continuous y.
c_ridge=function(y,x){

x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=0),silent=TRUE))
return(fit)

}
c_ridge_predict=function(fit,xnew){

y.hat=rep(NA,nrow(xnew))
if(!is.null(fit)){
xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))

}
return(y.hat)

}

#3.2. ridge regression for binary y.
b_ridge=function(y,x){

x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=1,family="binomial"),silent=TRUE))
return(fit)

}
b_ridge_predict=function(fit,xnew){

y.hat=rep(NA,nrow(xnew))
if(!is.null(fit)){

xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))

}
return(y.hat)

}

#3.3. update MLlist
MLlist=c("lasso","ridge")
fit3=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,MLlist=MLlist)
fit3$auc_new
plot(fit3$roc_new)

Index

tgml, 1

6

	tgml
	Index

