
Package ‘tglkmeans’
January 14, 2026

Title Efficient Implementation of K-Means++ Algorithm

Version 0.5.8

Author Aviezer Lifshitz [aut, cre],
Amos Tanay [aut],
Weizmann Institute of Science [cph]

Maintainer Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Description Efficient implementation of K-Means++ algorithm. For more
information see (1) ``kmeans++ the advantages of the k-means++
algorithm'' by David Arthur and Sergei Vassilvitskii (2007),
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, pp. 1027-1035, and (2) ``The Effectiveness of
Lloyd-Type Methods for the k-Means Problem'' by Rafail Ostrovsky, Yuval
Rabani, Leonard J. Schulman and Chaitanya Swamy
<doi:10.1145/2395116.2395117>.

License MIT + file LICENSE

BugReports https://github.com/tanaylab/tglkmeans/issues

URL https://tanaylab.github.io/tglkmeans/,

https://github.com/tanaylab/tglkmeans

Depends R (>= 4.0.0)

Imports cli (>= 3.0.0), doFuture, dplyr (>= 0.5.0), future, ggplot2
(>= 2.2.0), magrittr, Matrix, methods, parallel (>= 3.3.2),
plyr (>= 1.8.4), purrr (>= 0.2.0), Rcpp (>= 0.12.11),
RcppParallel, tgstat (>= 1.0.0), tibble (>= 3.1.2)

Suggests covr, knitr, rlang, rmarkdown, testthat, withr

LinkingTo Rcpp, RcppParallel

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel false

Encoding UTF-8

1

https://doi.org/10.1145/2395116.2395117
https://github.com/tanaylab/tglkmeans/issues
https://tanaylab.github.io/tglkmeans/
https://github.com/tanaylab/tglkmeans

2 downsample_matrix

NeedsCompilation yes

OS_type unix

RoxygenNote 7.3.1

Repository CRAN

Date/Publication 2026-01-14 08:10:02 UTC

Contents
downsample_matrix . 2
simulate_data . 3
tglkmeans.set_parallel . 4
TGL_kmeans . 5
TGL_kmeans_tidy . 7

Index 9

downsample_matrix Downsample the columns of a matrix to a target number

Description

This function takes a matrix and downsamples it to a target number of samples. It uses a random
seed for reproducibility and allows for removing columns with small sums.

Usage

downsample_matrix(
mat,
target_n = NULL,
target_q = NULL,
seed = NULL,
remove_columns = FALSE

)

Arguments

mat An integer matrix to be downsampled. Can be a matrix or sparse matrix (dgC-
Matrix). If the matrix contains NAs, the function will run significantly slower.
Values that are not integers will be coerced to integers using floor().

target_n The target number of samples to downsample to.

target_q A target quantile of sums to downsample to. Only one of ’target_n’ or ’target_q’
can be provided.

seed The random seed for reproducibility (default is NULL)

remove_columns Logical indicating whether to remove columns with small sums (default is FALSE)

simulate_data 3

Value

The downsampled matrix

Examples

mat <- matrix(1:12, nrow = 4)
downsample_matrix(mat, 2)

Remove columns with small sums
downsample_matrix(mat, 12, remove_columns = TRUE)

sparse matrix
mat_sparse <- Matrix::Matrix(mat, sparse = TRUE)
downsample_matrix(mat_sparse, 2)

with a quantile
downsample_matrix(mat, target_q = 0.5)

simulate_data Simulate normal data for kmeans tests

Description

Creates nclust clusters normally distributed around 1:nclust

Usage

simulate_data(
n = 100,
sd = 0.3,
nclust = 30,
dims = 2,
frac_na = NULL,
add_true_clust = TRUE,
id_column = TRUE

)

Arguments

n number of observations per cluster
sd sd
nclust number of clusters
dims number of dimensions
frac_na fraction of NA in the first dimension
add_true_clust add a column with the true cluster ids
id_column add a column with the id

4 tglkmeans.set_parallel

Value

simulated data

Examples

simulate_data(n = 100, sd = 0.3, nclust = 5, dims = 2)

add 20% missing data
simulate_data(n = 100, sd = 0.3, nclust = 5, dims = 2, frac_na = 0.2)

tglkmeans.set_parallel

Set parallel threads

Description

Set parallel threads

Usage

tglkmeans.set_parallel(thread_num)

Arguments

thread_num number of threads. use ’1’ for non parallel behavior

Value

None

Examples

tglkmeans.set_parallel(8)

TGL_kmeans 5

TGL_kmeans kmeans++ with return value similar to R kmeans

Description

kmeans++ with return value similar to R kmeans

Usage

TGL_kmeans(
df,
k,
metric = "euclid",
max_iter = 40,
min_delta = 0.0001,
verbose = FALSE,
keep_log = FALSE,
id_column = FALSE,
reorder_func = "hclust",
hclust_intra_clusters = FALSE,
seed = NULL,
use_cpp_random = FALSE

)

Arguments

df a data frame or a matrix. Each row is a single observation and each column is a
dimension. the first column can contain id for each observation (if id_column is
TRUE), otherwise the rownames are used.

k number of clusters. Note that in some cases the algorithm might return less
clusters than k.

metric distance metric for kmeans++ seeding. can be ’euclid’, ’pearson’ or ’spearman’

max_iter maximal number of iterations

min_delta minimal change in assignments (fraction out of all observations) to continue
iterating

verbose display algorithm messages

keep_log keep algorithm messages in ’log’ field

id_column df’s first column contains the observation id

reorder_func function to reorder the clusters. operates on each center and orders by the result.
e.g. reorder_func = mean would calculate the mean of each center and then
would reorder the clusters accordingly. If reorder_func = hclust the centers
would be ordered by hclust of the euclidean distance of the correlation matrix,
i.e. hclust(dist(cor(t(centers)))) if NULL, no reordering would be done.

6 TGL_kmeans

hclust_intra_clusters

run hierarchical clustering within each cluster and return an ordering of the ob-
servations.

seed seed for the c++ random number generator

use_cpp_random use c++ random number generator instead of R’s. This should be used for only
for backwards compatibility, as from version 0.4.0 onwards the default random
number generator was changed o R.

Value

list with the following components:

cluster: A vector of integers (from ‘1:k’) indicating the cluster to which each point is allocated.

centers: A matrix of cluster centers.

size: The number of points in each cluster.

log: messages from the algorithm run (only if id_column == TRUE).

order: A vector of integers with the new ordering if the observations. (only if hclust_intra_clusters
= TRUE)

See Also

TGL_kmeans_tidy

Examples

create 5 clusters normally distributed around 1:5
d <- simulate_data(

n = 100,
sd = 0.3,
nclust = 5,
dims = 2,
add_true_clust = FALSE,
id_column = FALSE

)

head(d)

cluster
km <- TGL_kmeans(d, k = 5, "euclid", verbose = TRUE)
names(km)
km$centers
head(km$cluster)
km$size

TGL_kmeans_tidy 7

TGL_kmeans_tidy TGL kmeans with ’tidy’ output

Description

TGL kmeans with ’tidy’ output

Usage

TGL_kmeans_tidy(
df,
k,
metric = "euclid",
max_iter = 40,
min_delta = 0.0001,
verbose = FALSE,
keep_log = FALSE,
id_column = FALSE,
reorder_func = "hclust",
add_to_data = FALSE,
hclust_intra_clusters = FALSE,
seed = NULL,
use_cpp_random = FALSE

)

Arguments

df a data frame or a matrix. Each row is a single observation and each column is a
dimension. the first column can contain id for each observation (if id_column is
TRUE), otherwise the rownames are used.

k number of clusters. Note that in some cases the algorithm might return less
clusters than k.

metric distance metric for kmeans++ seeding. can be ’euclid’, ’pearson’ or ’spearman’

max_iter maximal number of iterations

min_delta minimal change in assignments (fraction out of all observations) to continue
iterating

verbose display algorithm messages

keep_log keep algorithm messages in ’log’ field

id_column df’s first column contains the observation id

reorder_func function to reorder the clusters. operates on each center and orders by the result.
e.g. reorder_func = mean would calculate the mean of each center and then
would reorder the clusters accordingly. If reorder_func = hclust the centers
would be ordered by hclust of the euclidean distance of the correlation matrix,
i.e. hclust(dist(cor(t(centers)))) if NULL, no reordering would be done.

8 TGL_kmeans_tidy

add_to_data return also the original data frame with an extra ’clust’ column with the cluster
ids (’id’ is the first column)

hclust_intra_clusters

run hierarchical clustering within each cluster and return an ordering of the ob-
servations.

seed seed for the c++ random number generator

use_cpp_random use c++ random number generator instead of R’s. This should be used for only
for backwards compatibility, as from version 0.4.0 onwards the default random
number generator was changed o R.

Value

list with the following components:

cluster: tibble with ‘id‘ column with the observation id (‘1:n‘ if no id column was supplied), and
‘clust‘ column with the observation assigned cluster.

centers: tibble with ‘clust‘ column and the cluster centers.

size: tibble with ‘clust‘ column and ‘n‘ column with the number of points in each cluster.

data: tibble with ‘clust‘ column the original data frame.

log: messages from the algorithm run (only if id_column = FALSE).

order: tibble with ’id’ column, ’clust’ column, ’order’ column with a new ordering if the observa-
tions and ’intra_clust_order’ column with the order within each cluster. (only if hclust_intra_clusters
= TRUE)

See Also

TGL_kmeans

Examples

create 5 clusters normally distributed around 1:5
d <- simulate_data(

n = 100,
sd = 0.3,
nclust = 5,
dims = 2,
add_true_clust = FALSE,
id_column = FALSE

)

head(d)

cluster
km <- TGL_kmeans_tidy(d, k = 5, "euclid", verbose = TRUE)
km

Index

downsample_matrix, 2

simulate_data, 3

TGL_kmeans, 5, 8
TGL_kmeans_tidy, 6, 7
tglkmeans.set_parallel, 4

9

	downsample_matrix
	simulate_data
	tglkmeans.set_parallel
	TGL_kmeans
	TGL_kmeans_tidy
	Index

