
Package ‘terra’
January 12, 2026

Type Package

Title Spatial Data Analysis

Version 1.8-93

Date 2026-01-11

Depends R (>= 3.5.0), methods

Suggests parallel, tinytest, ncdf4, sf (>= 0.9-8), deldir, XML,
leaflet (>= 2.2.1), htmlwidgets

LinkingTo Rcpp

Imports Rcpp (>= 1.0-10)

SystemRequirements C++17, GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>=
4.9.3), TBB, sqlite3

Encoding UTF-8

Language en-US

Maintainer Robert J. Hijmans <r.hijmans@gmail.com>

Description
Methods for spatial data analysis with vector (points, lines, polygons) and raster (grid) data. Meth-
ods for vector data include geometric operations such as intersect and buffer. Raster methods in-
clude local, focal, global, zonal and geometric operations. The predict and interpolate meth-
ods facilitate the use of regression type (interpolation, machine learning) models for spatial pre-
diction, including with satellite remote sensing data. Processing of very large files is sup-
ported. See the manual and tutorials on <https://rspatial.org/> to get started.

License GPL (>= 3)

URL https://rspatial.org/, https://rspatial.github.io/terra/

BugReports https://github.com/rspatial/terra/issues

LazyLoad yes

NeedsCompilation yes

Author Robert J. Hijmans [cre, aut] (ORCID:
<https://orcid.org/0000-0001-5872-2872>),

Márcia Barbosa [ctb] (ORCID: <https://orcid.org/0000-0001-8972-7713>),
Roger Bivand [ctb] (ORCID: <https://orcid.org/0000-0003-2392-6140>),

1

https://rspatial.org/
https://rspatial.org/
https://rspatial.github.io/terra/
https://github.com/rspatial/terra/issues
https://orcid.org/0000-0001-5872-2872
https://orcid.org/0000-0001-8972-7713
https://orcid.org/0000-0003-2392-6140

2 Contents

Andrew Brown [ctb] (ORCID: <https://orcid.org/0000-0002-4565-533X>),
Michael Chirico [ctb] (ORCID: <https://orcid.org/0000-0003-0787-087X>),
Emanuele Cordano [ctb] (ORCID: <https://orcid.org/0000-0002-3508-5898>),
Krzysztof Dyba [ctb] (ORCID: <https://orcid.org/0000-0002-8614-3816>),
Edzer Pebesma [ctb] (ORCID: <https://orcid.org/0000-0001-8049-7069>),
Barry Rowlingson [ctb] (ORCID: <https://orcid.org/0000-0002-8586-6625>),
Michael D. Sumner [ctb] (ORCID:

<https://orcid.org/0000-0002-2471-7511>)

Repository CRAN

Date/Publication 2026-01-12 06:10:03 UTC

Contents
terra-package . 8
activeCat . 22
add . 23
add_abline . 24
add_box . 24
add_grid . 25
add_legend . 26
add_mtext . 26
adjacent . 27
aggregate . 29
align . 31
all.equal . 32
animate . 33
app . 34
approximate . 36
Arith-methods . 37
ar_info . 39
as.character . 39
as.data.frame . 40
as.lines . 41
as.list . 42
as.points . 43
as.polygons . 44
as.raster . 45
atan2 . 46
autocorrelation . 47
barplot . 48
bestMatch . 49
boundaries . 51
boxplot . 52
buffer . 53
c . 54
cartogram . 56
catalyze . 57

https://orcid.org/0000-0002-4565-533X
https://orcid.org/0000-0003-0787-087X
https://orcid.org/0000-0002-3508-5898
https://orcid.org/0000-0002-8614-3816
https://orcid.org/0000-0001-8049-7069
https://orcid.org/0000-0002-8586-6625
https://orcid.org/0000-0002-2471-7511

Contents 3

cells . 58
cellSize . 59
centroids . 61
chunk . 62
clamp . 63
clamp_ts . 64
classify . 65
click . 67
coerce . 68
colors . 69
combineGeoms . 70
Compare-methods . 72
compareGeom . 73
concats . 75
contour . 76
costDist . 77
cover . 78
crds . 79
crop . 81
crosstab . 82
crs . 83
datatype . 85
deepcopy . 87
densify . 87
density . 89
deprecated . 89
depth . 90
describe . 91
diff . 92
dimensions . 93
direction . 95
disagg . 96
distance . 97
divide . 100
dots . 102
draw . 103
elongate . 104
erase . 105
expanse . 106
ext . 108
extend . 109
extract . 111
extractAlong . 114
extractRange . 115
extremes . 116
factors . 117
fillHoles . 119
fillTime . 121

4 Contents

flip . 122
flowAccumulation . 123
focal . 125
focal3D . 127
focalCpp . 128
focalMat . 130
focalPairs . 131
focalReg . 133
focalValues . 134
forceCCW . 134
freq . 135
gaps . 136
gdal . 137
geom . 139
geomtype . 140
global . 141
graticule . 142
gridDist . 143
halo . 144
headtail . 145
hist . 146
hull . 147
identical . 148
ifel . 149
image . 150
impose . 151
initialize . 152
inplace . 153
inset . 155
interpIDW . 157
interpNear . 158
interpolation . 159
intersect . 162
is.bool . 164
is.empty . 166
is.flipped . 166
is.lonlat . 167
is.rotated . 168
is.valid . 169
k_means . 170
lapp . 171
layerCor . 173
linearUnits . 175
lines . 176
makeTiles . 177
makeVRT . 179
map.pal . 180
map_extent . 182

Contents 5

mask . 182
match . 184
Math-methods . 185
mem . 186
merge . 187
mergeTime . 189
meta . 190
metags . 190
modal . 191
mosaic . 192
na.omit . 194
NAflag . 194
names . 195
nearest . 196
NIDP . 198
normalize.longitude . 199
north . 200
not.na . 201
nseg . 202
options . 203
origin . 204
pairs . 205
panel . 206
patches . 207
perim . 208
persp . 209
pitfinder . 210
plet . 211
plot . 214
plotRGB . 220
plot_extent . 222
plot_graticule . 222
prcomp . 224
predict . 225
princomp . 228
project . 230
quantile . 233
query . 234
rangeFill . 235
rapp . 236
rast . 237
rasterize . 241
rasterizeGeom . 243
rasterizeWin . 244
rcl . 246
readwrite . 247
rectify . 249
regress . 249

6 Contents

relate . 250
rep . 253
replace_dollar . 254
replace_layers . 255
replace_values . 256
resample . 257
rescale . 258
RGB . 259
roll . 261
rotate . 262
rowSums . 264
same.crs . 265
sapp . 265
sbar . 266
scale . 268
scale_linear . 269
scatterplot . 270
scoff . 271
sds . 272
segregate . 273
sel . 274
selectHighest . 275
selectRange . 276
serialize . 277
setValues . 279
shade . 280
sharedPaths . 281
shift . 282
sieve . 283
simplifyGeom . 284
sort . 285
sources . 286
SpatExtent-class . 287
SpatRaster-class . 287
spatSample . 288
SpatVector-class . 290
spin . 291
split . 292
sprc . 293
stretch . 294
subset . 295
subset_dollar . 297
subset_double . 298
subset_single . 300
subst . 301
summarize . 302
summary . 305
surfArea . 306

Contents 7

svc . 307
symdif . 308
tapp . 309
terrain . 310
text . 313
thresh . 314
tighten . 315
time . 316
tmpFiles . 317
toMemory . 318
topology . 319
transpose . 320
trim . 321
union . 322
unique . 323
units . 324
update . 325
values . 326
varnames . 328
vect . 329
vector_layers . 332
viewshed . 333
voronoi . 334
vrt . 335
vrt_tiles . 336
watershed . 337
weighted.mean . 338
where . 339
which.lyr . 340
width . 340
window . 341
wrap . 342
wrapCache . 343
writeCDF . 344
writeRaster . 346
writeVector . 348
xapp . 349
xmin . 350
xyRowColCell . 352
zonal . 354
zoom . 356

Index 358

8 terra-package

terra-package Description of the methods in the terra package

Description

terra provides methods to manipulate geographic (spatial) data in "raster" and "vector" form.
Raster data divide space into rectangular grid cells and they are commonly used to represent spa-
tially continuous phenomena, such as elevation or the weather. Satellite images also have this data
structure, and in that context grid cells are often referred to as pixels. In contrast, "vector" spatial
data (points, lines, polygons) are typically used to represent discrete spatial entities, such as a road,
country, or bus stop.

The package implements two main classes (data types): SpatRaster and SpatVector. SpatRaster
supports handling large raster files that cannot be loaded into memory; local, focal, zonal, and global
raster operations; polygon, line and point to raster conversion; integration with modeling methods
to make spatial predictions; and more. SpatVector supports all types of geometric operations such
as intersections.

Additional classes include SpatExtent, which is used to define a spatial extent (bounding box);
SpatRasterDataset, which represents a collection of sub-datasets for the same area. Each sub-
dataset is a SpatRaster with possibly many layers, and may, for example, represent different weather
variables; and SpatRasterCollection and SpatVectorCollection that are equivalent to lists of
SpatRaster or SpatVector objects. There is also a SpatGraticule class to assist in adding a
longitude/latitude lines and labels to a map with another coordinate reference system.

These classes hold a C++ pointer to the data "reference class" and that creates some limitations.
They cannot be recovered from a saved R session either or directly passed to nodes on a computer
cluster. Generally, you should use writeRaster to save SpatRaster objects to disk (and pass a
filename or cell values to cluster nodes). Also see wrap and saveRDS. You should not write scripts
that directly access this pointer, as its user-interface is not stable.

The "terra" package is a replacement of the "raster" package. "terra" has a very similar, but simpler,
interface; it is faster, and it can do much more. At the bottom of this page there is a table that shows
differences in the methods between the two packages.

Below is a list of some of the most important methods grouped by theme.

———————————————————————————————————————

SpatRaster

———————————————————————————————————————

I. Creating, combining and sub-setting

rast Create a SpatRaster from scratch, file, or another object
c Combine SpatRasters (multiple layers)
add<- Add a SpatRaster to another one
subset or [[, or $ Select layers of a SpatRaster
selectRange Select cell values from different layers using an index layer

terra-package 9

————————— ——————————————————————————————

II. Changing the spatial extent or resolution

Also see the methods in section VIII

merge Combine SpatRasters with different extents (but same origin and resolution)
mosaic Combine SpatRasters with different extents using a function for overlapping cells
crop Select a geographic subset of a SpatRaster
extend Add rows and/or columns to a SpatRaster
trim Trim a SpatRaster by removing exterior rows and/or columns that only have NAs
aggregate Combine cells of a SpatRaster to create larger cells
disagg Subdivide cells
resample Resample (warp) values to a SpatRaster with a different origin and/or resolution
project Project (warp) values to a SpatRaster with a different coordinate reference system
shift Adjust the location of SpatRaster
flip Flip values horizontally or vertically
rotate Rotate values around the date-line (for lon/lat data)
t Transpose a SpatRaster
————————— ——————————————————————————————

III. Local (cell based) methods

Apply-like methods:

app Apply a function to all cells, across layers, typically to summarize (as in base::apply)
tapp Apply a function to groups of layers (as in base::tapply and stats::aggregate)
lapp Apply a function to using the layers of a SpatRaster as variables
sapp Apply a function to each layer
rapp Apply a function to a spatially variable range of layers
————————— ——————————————————————————————

Arithmetic, logical, and standard math methods:

Arith-methods Standard arithmetic methods (+, -, *, ^, %%, %/%, /)
Compare-methods Comparison methods for SpatRaster (==, !=, >, <, <=, >=m is.na, is.finite)
not.na a one-step equivalent to !is.na
Summary-methods mean, max, min, median, sum, range, prod,

any, all, stdev, which.min, which.max, anyNA, noNA, allNA
Logic-methods Boolean methods (!, &, |)
Math-methods abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod,

cumsum, log, log10, log2, log1p, acos, acosh, asin, asinh, atan, atanh,
exp, expm1, cos, cosh, sin, sinh, tan, tanh, round, signif

10 terra-package

as.bool create a Boolean (logical) SpatRaster
as.int create an integer (whole numbers) SpatRaster
————————— ——————————————————————————————

Other methods:

approximate Compute missing values for cells by interpolation across layers
roll Rolling functions such as the rolling mean
clamp Restrict cell values to a minimum and/or maximum value
cellSize Compute the area of cells
classify (Re-)classify values
subst Substitute (replace) cell values
cover First layer covers second layer except where the first layer is NA
init Initialize cells with new values
mask Replace values in a SpatRaster based on values in another SpatRaster
which.lyr which is the first layer that is TRUE?
segregate Make a 0/1 layer for each unique value
rangeFill Make a 0/1 SpatRaster for a time series
regress Cell-based regression models
————————— ——————————————————————————————

IV. Zonal and global methods

expanse Compute the summed area of cells
crosstab Cross-tabulate two SpatRasters
freq Frequency table of SpatRaster cell values
global Summarize SpatRaster cell values with a function
quantile Quantiles
layerCor Correlation between layers
stretch Stretch values
scale Scale values
summary Summary of the values of a SpatRaster (quartiles and mean)
unique Get the unique values in a SpatRaster
zonal Summarize a SpatRaster by zones in another SpatRaster
————————— ——————————————————————————————

V. Situation (spatial context) based methods

adjacent Identify cells that are adjacent to a set of cells of a SpatRaster
boundaries Detection of boundaries (edges)
distance Shortest distance to a cell that is not NA or to or from a vector object
gridDist Shortest distance through adjacent grid cells

terra-package 11

costDist Shortest distance considering cell-varying friction
direction Direction (azimuth) to or from cells that are not NA
focal Focal (neighborhood; moving window) functions
focal3D Three dimensional (row, col, lyr) focal functions
focalCpp Faster focal by using custom C++ functions
focalReg Regression between layers for focal areas
focalPairs Apply a function (e.g. a correlation coefficient) to focal values for pairs of layers
patches Find patches (clumps)
sieve Sieve filter to remove small patches
terrain Compute slope, aspect and other terrain characteristics from elevation data
viewshed Compute viewshed (showing areas that are visible from a particular location
shade Compute hill shade from slope and aspect layers
autocor Compute global or local spatial autocorrelation
————————— ——————————————————————————————

VI. Model predictions

predict Predict a non-spatial (regression or classification) model to a SpatRaster
interpolate Predict a spatial model to a SpatRaster
interpIDW Inverse-distance-weighted interpolation
interpNear Nearest neighbor interpolation
k_means k-means clustering of SpatRaster data
princomp and prcomp Principal Component Analysis (PCA) with raster data
————————— ——————————————————————————————

VII. Accessing cell values

Apart from the function listed below, you can also use indexing with [with cell numbers, and row
and/or column numbers

values cell values (fails with very large rasters)
values<- Set new values to the cells of a SpatRaster
setValues Set new values to the cells of a SpatRaster
as.matrix Get cell values as a matrix
as.array Get cell values as an array
as.data.frame get cell values as a data.frame (including class lables)
extract Extract cell values from a SpatRaster (with cell numbers, coordinates, points, lines, or polygons)
extractAlong Extract cell values along a line such that the values are in the right order
spatSample Take a sample (regular, random, stratified, weighted) sample from a SpatRaster
minmax Get the minimum and maximum value of the cells of a SpatRaster (if known)
setMinMax Compute the minimum and maximum value of a SpatRaster if these are not known

12 terra-package

————————— ——————————————————————————————

VIII. Getting and setting dimensions

Get or set basic parameters of SpatRasters. If there are values associated with a SpatRaster (either
in memory or via a link to a file) these are lost when you change the number of columns or rows or
the resolution. This is not the case when the extent is changed (as the number of columns and rows
will not be affected). Similarly, with crs you can set the coordinate reference system, but this does
not transform the data (see project for that).

ncol The number of columns
nrow The number of rows
ncell The number of cells (can not be set directly, only via ncol or nrow)
res The resolution (x and y)
nlyr Get or set the number of layers
names Get or set the layer names
xres The x resolution (can be set with res)
yres The y resolution (can be set with res)
xmin The minimum x coordinate (or longitude)
xmax The maximum x coordinate (or longitude)
ymin The minimum y coordinate (or latitude)
ymax The maximum y coordinate (or latitude)
ext Get or set the extent (minimum and maximum x and y coordinates ("bounding box")
origin The origin of a SpatRaster
sources Get the filename(s) to which a SpatRaster is linked
inMemory Are the data sources in memory (or on disk)?
toMemory Force data sources to memory (not recommended)?
compareGeom Compare the geometry of SpatRasters
NAflag Set the NA value (for reading from a file with insufficient metadata)
————————— ——————————————————————————————

IX. Computing row, column, cell numbers and coordinates

Cell numbers start at 1 in the upper-left corner. They increase within rows, from left to right, and
then row by row from top to bottom. Likewise, row numbers start at 1 at the top of the raster, and
column numbers start at 1 at the left side of the raster.

xFromCol x-coordinates from column numbers
yFromRow y-coordinates from row numbers
xFromCell x-coordinates from row numbers
yFromCell y-coordinates from cell numbers
xyFromCell x and y coordinates from cell numbers
colFromX Column numbers from x-coordinates (or longitude)
rowFromY Row numbers from y-coordinates (or latitude)
rowColFromCell Row and column numbers from cell numbers
cellFromXY Cell numbers from x and y coordinates
cellFromRowCol Cell numbers from row and column numbers

terra-package 13

cellFromRowColCombine Cell numbers from all combinations of row and column numbers
cells Cell numbers for a SpatVector or SpatExtent
————————— ——————————————————————————————

X. Depth related methods

depth can be used to explicitly a third or fourth dimension of a SpatRaster.

depth Get or set depth dimension values ()
depthName Set or get the depth name
depthUnit Set or get the depth unit
————————— ——————————————————————————————

XI. Time related methods

time can be used to explicitly a third or fourth dimension of a SpatRaster.

time Get or set time
fillTime can add empty layers in between existing layers to assure that the time step between layers is constant
mergeTime combine multiple rasters, perhaps partly overlapping in time, into a single time series
————————— ——————————————————————————————

XII. Methods for categorical rasters

is.factor Are there categorical layers?
levels Get active categories, or set categories
activeCat Get or set the active category
cats Get categories (active and inactive)
set.cats Set categories in place
concats Combine SpatRasters with different categories
catalyze Create a layer for each category
as.numeric use the active category to create a non-categorical SpatRaster
as.factor Make the layers of a SpatRaster categorical
————————— ——————————————————————————————

XIII. Writing SpatRaster files

Basic:

writeRaster Write all values of SpatRaster to disk. You can set the filetype, datatype, compression.
writeCDF Write SpatRaster data to a netCDF file
————————— ——————————————————————————————

14 terra-package

Advanced:

readStart Open file connections for efficient multi-chunk reading
readValues Read some values from an opened file
readStop Close file connections
writeStart Open a file for writing
writeValues Write some values to an opened file
writeStop Close the file after writing
blocks Get blocksize for reading files (when not writing)
————————— ——————————————————————————————

XIV. Miscellaneous SpatRaster methods

terraOptions Show, set, or get session options, mostly to control memory use and to set write options
sources Show the data sources of a SpatRaster
tmpFiles Show or remove temporary files
mem_info memory needs and availability
inMemory Are the cell values in memory?
————————— ——————————————————————————————

XV. SpatRasterDataset

A SpatRasterDataset contains SpatRasters that represent sub-datasets for the same area. They all
have the same extent and resolution.

sds Create a SpatRasterDataset from a file with subdatasets (ncdf or hdf) or from SpatRasters
[or $ Extract a SpatRaster
names Get the names of the sub-datasets
————————— ——————————————————————————————

XVI. SpatRasterCollections

A SpatRasterCollection is a vector of SpatRaster objects. Unlike for a SpatRasterDataset, there the
extent and resolution of the SpatRasters do not need to match each other.

sprc create a SpatRasterCollection from (a list of) SpatRasters
length how many SpatRasters does the SpatRasterCollection have?
crop crop a SpatRasterCollection
impose force the members of SpatRasterCollection to the same geometry
merge merge the members of a SpatRasterCollection
mosaic mosaic (merge with a function for overlapping areas) the members of a SpatRasterCollection

terra-package 15

[extract a SpatRaster
————————— ——————————————————————————————

SpatVector

———————————————————————————————————————

XVII. Create SpatVector objects

vect Create a SpatVector from a file (for example a "shapefile") or from another object
vector_layers list or delete layers in a vector database such as GPGK
rbind append SpatVectors of the same geometry type
unique remove duplicates
na.omit remove empty geometries and/or fields that are NA
project Project a SpatVector to a different coordinate reference system
writeVector Write SpatVector data to disk
centroids Get the centroids of a SpatVector
voronoi Voronoi diagram
delaunay Delaunay triangles
hull Compute a convex, circular, or rectangular hull around the (geometries of) a SpatVector
fillHoles Remove or extract holes from polygons
————————— ——————————————————————————————

XVIII. Properties of SpatVector objects

geom returns the geometries as matrix or WKT
crds returns the coordinates as a matrix
ncol The number of columns (of the attributes)
nrow The number of rows (of the geometries and attributes)
names Get or set the layer names
ext Get the extent (minimum and maximum x and y coordinates ("bounding box")
crs The coordinate reference system (map projection)
linearUnits returns the linear units of the crs (in meter)
is.lonlat Test if an object has (or may have) a longitude/latitude coordinate reference system
————————— ——————————————————————————————

XIX. Geometric queries

adjacent find adjacent polygons

16 terra-package

expanse computes the area covered by polygons
nearby find nearby geometries
nearest find the nearest geometries
relate geometric relationships such as "intersects", "overlaps", and "touches"
perim computes the length of the perimeter of polygons, and the length of lines
————————— ——————————————————————————————

XX. Geometric operations

erase or "-" erase (parts of) geometries
intersect or "*" intersect geometries
union or "+" Merge geometries
cover update polygons
symdif symmetrical difference of two polygons
aggregate dissolve smaller polygons into larger ones
buffer buffer geometries
disagg split multi-geometries into separate geometries
crop clip geometries using a rectangle (SpatExtent) or SpatVector
————————— ——————————————————————————————

XXI. SpatVector attributes

We use the term "attributes" for the tabular data (data.frame) associated with vector geometries.

extract spatial queries between SpatVector and SpatVector (e.g. point in polygons)
spatSample Take a regular or random point sample from polygons or lines
sel select - interactively select geometries
click identify attributes by clicking on a map
merge Join a table with a SpatVector
as.data.frame get attributes as a data.frame
as.list get attributes as a list
values Get the attributes of a SpatVector
values<- Set new attributes to the geometries of a SpatRaster
sort sort SpatVector by the values in a field
————————— ——————————————————————————————

XXII. Change geometries (for display, experimentation)

shift change the position geometries by shifting their coordinates in horizontal and/or vertical direction
spin rotate geometries around an origin

terra-package 17

rescale shrink (or expand) geometries, for example to make an inset map
flip flip geometries vertically or horizontally
t transpose geometries (switch x and y)
————————— ——————————————————————————————

XXIII. Geometry properties and topology

width the minimum diameter of the geometries
clearance the minimum clearance of the geometries
sharedPaths shared paths (arcs) between line or polygon geometries
simplifyGeom simplify geometries
gaps find gaps between polygon geometries
fillHoles get or remove the polygon holes
makeNodes create nodes on lines
mergeLines connect lines to form polygons
removeDupNodes remove duplicate nodes in geometries and optionally rounds the coordinates
is.valid check if geometries are valid
makeValid attempt to repair invalid geometries
snap make boundaries of geometries identical if they are very close to each other
erase (single argument) remove parts of geometries that overlap
union (single argument) create new polygons such that there are no overlapping polygons
rotate rotate to (dis-) connect them across the date-line
normalize.longitude move geometries that are outside of the -180 to 180 degrees range.
elongate make lines longer by extending both sides
combineGeoms combine geometries that overlap, share a border, or are within a minimum distance of each other
forceCCW force counter-clockwise polygon winding
————————— ——————————————————————————————

XXIV. SpatVectorCollections

A SpatVectorCollection is a vector of SpatVector objects.

svc create a SpatVectorCollection from (a list of) SpatVector objects
length how many SpatRasters does the SpatRasterCollection have?
[extract a SpatVector
————————— ——————————————————————————————

XXV. Coordinate reference system method

crs Get or set the coordinate reference system (map projection) of a Spat* object

18 terra-package

is.lonlat Test if an object has (or may have) a longitude/latitude coordinate reference system
linearUnits returns the linear units of the crs (in meter)
————————— ——————————————————————————————

Other classes

———————————————————————————————————————

XXVI. SpatExtent

ext Create a SpatExtent object. For example to crop a Spatial dataset
intersect Intersect two SpatExtent objects, same as -
union Combine two SpatExtent objects, same as +
Math-methods round/floor/ceiling of a SpatExtent
align Align a SpatExtent with a SpatRaster
draw Create a SpatExtent by drawing it on top of a map (plot)
————————— ——————————————————————————————

XXVII. SpatGraticule

graticule Create a graticule
crop crop a graticule
plot<SpatGraticule> plot a graticule
————————— ——————————————————————————————

General methods

———————————————————————————————————————

XXVIII. Conversion between spatial data objects from different packages

You can coerce SpatRasters to Raster* objects, after loading the raster package, with as(object,
"Raster"), or raster(object) or brick(object) or stack(object)

rast SpatRaster from matrix and other objects
vect SpatVector from sf or Spatial* vector data
sf::st_as_sf sf object from SpatVector
rasterize Rasterizing points, lines or polygons

terra-package 19

rasterizeWin Rasterize points with a moving window
rasterizeGeom Rasterize attributes of geometries such as "count", "area", or "length"
as.points Create points from a SpatRaster or SpatVector
as.lines Create lines from a SpatRaster or SpatVector
as.polygons Create polygons from a SpatRaster
as.contour Contour lines from a SpatRaster
————————— ——————————————————————————————

XXIX. Plotting

Maps:

plot Plot a SpatRaster or SpatVector. The main method to create a map
panel Combine multiple plots
points Add points to a map
lines Add lines to a map
polys Add polygons to a map
text Add text (such as the values of a SpatRaster or SpatVector) to a map
halo Add text with a halo to a map
map.pal Color palettes for mapping
image Alternative to plot to make a map with a SpatRaster
plotRGB Combine three layers (red, green, blue channels) into a single "real color" plot
plot<SpatGraticule> plot a graticule
sbar Add a scale bar to a map
north Add a north arrow to a map
inset Add a small inset (overview) map
add_legend Add a legend to a map
add_box Add a bounding box to a map
map_extent Get the coordinates of a map’s axes positions
dots Make a dot-density map
cartogram Make a cartogram
persp Perspective plot of a SpatRaster
contour Contour plot or filled-contour plot of a SpatRaster
colorize Combine three layers (red, green, blue channels) into a single layer with a color-table
————————— ——————————————————————————————

Interacting with a map:

zoom Zoom in to a part of a map by drawing a bounding box on it
click Query values of SpatRaster or SpatVector by clicking on a map
sel Select a spatial subset of a SpatRaster or SpatVector by drawing on a map
draw Create a SpatExtent or SpatVector by drawing on a map
————————— ——————————————————————————————

Other plots:

20 terra-package

plot x-y scatter plot of the values of (a sample of) the layers of two SpatRaster objects
hist Histogram of SpatRaster values
barplot Bar plot of a SpatRaster
density Density plot of SpatRaster values
pairs Pairs plot for layers in a SpatRaster
boxplot Box plot of the values of a SpatRaster
————————— ——————————————————————————————

Comparison with the raster package

———————————————————————————————————————

XXX. New method names

terra has a single class SpatRaster for which raster has three (RasterLayer, RasterStack,
RasterBrick). Likewise there is a single class for vector data SpatVector that replaces six
Spatial* classes. Most method names are the same, but note the following important differences
in methods names with the raster package

raster package terra package
raster, brick, stack rast
rasterFromXYZ rast(, type="xyz")
stack, addLayer c
addLayer add<-
area cellSize or expanse
approxNA approximate
calc app
cellFromLine, cellFromPolygon, cells
cellsFromExtent cells
cellStats global
clump patches
compareRaster compareGeom
corLocal focalPairs
coordinates crds
couldBeLonLat is.lonlat
disaggregate disagg
distanceFromPoints distance
drawExtent, drawPoly, drawLine draw
dropLayer subset
extent ext
getValues values
isLonLat, isGlobalLonLat is.lonlat
layerize segregate
layerStats layerCor
movingFun roll
NAvalue NAflag
nlayers nlyr
overlay lapp

terra-package 21

unstack as.list
projectRaster project
rasterToPoints as.points
rasterToPolygons as.polygons
readAll toMemory
reclassify, subs, cut classify
sampleRandom, sampleRegular spatSample
shapefile vect
stackApply tapp
stackSelect selectRange

XXXI. Changed behavior

Also note that even if function names are the same in terra and raster, their output can be dif-
ferent. In most cases this was done to get more consistency in the returned values (and thus fewer
errors in the downstream code that uses them). In other cases it simply seemed better. Here are
some examples:

resample Results are not numerically identical when using method="bilinear", especially at edges, and when going from a high to a low resolution
as.polygons By default, terra returns dissolved polygons
quantile computes by cell, across layers instead of the other way around
extract By default, terra returns a matrix, with the first column the sequential ID of the vectors.

raster returns a list (for lines or polygons) or a matrix (for points, but without the ID
column. You can use list=TRUE to get the results as a list

values terra always returns a matrix. raster returns a vector for a RasterLayer
Summary-methods With raster, mean(x, y) and mean(stack(x, y) return the same result, a single

layer with the mean of all cell values. This is also what terra returns with
mean(c(x, y)), but with mean(x, y) the parallel mean is returned – that is, the
computation is done layer-wise, and the number of layers in the output is the same as
that of x and y (or the larger of the two if they are not the same). This affects
all summary functions (sum, mean, median, which.min, which.max, min, max,
prod, any, all, stdev), except range, which is not implemented for this case
(you can use min and max instead)

————————— ——————————————————————————————

Contributors

Except where indicated otherwise, the methods and functions in this package were written by Robert
Hijmans. The configuration scripts were written by Roger Bivand. Some of code using the GEOS
library was adapted from code by Edzer Pebesma for sf. Emanuele Cordano contributed function-
ality for catchment related computations. Andrew Gene Brown, Márcia Barbosa, Michael Chirico,
Krzysztof Dyba, Barry Rowlingson, and Michael D. Sumner also made important contributions

This package is an attempt to climb on the shoulders of giants (GDAL, PROJ, GEOS, NCDF,
GeographicLib, Rcpp, R). Many people have contributed by asking questions or raising issues.
Feedback and suggestions by Kendon Bell, Jean-Luc Dupouey, Sarah Endicott, Derek Friend, Alex
Ilich, Agustin Lobo, Gerald Nelson, Jakub Nowosad, and Monika Tomaszewska have been espe-
cially helpful.

https://github.com/rspatial/terra

22 activeCat

activeCat Active category

Description

Get or set the active category of a multi-categorical SpatRaster layer

Usage

S4 method for signature 'SpatRaster'
activeCat(x, layer=1)
S4 replacement method for signature 'SpatRaster'
activeCat(x, layer=1)<-value

Arguments

x SpatRaster

layer positive integer, the layer number or name

value positive integer or character, indicating which column in the categories to use.
Note that when a number is used this index is zero based, and "1" refers to the
second column. This is because the first column of the categories has the cell
values, not categorical labels

Value

integer

See Also

levels, cats

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d

activeCat(r)
activeCat(r) <- 3
activeCat(r)

add 23

add Add (in place) a SpatRaster to another SpatRaster or to a SpatRaster-
Dataset or SpatRasterCollection

Description

Add (in place) a SpatRaster to another SpatRaster. Comparable with c, but without copying the
object.

Usage

S4 replacement method for signature 'SpatRaster,SpatRaster'
add(x)<-value

S4 replacement method for signature 'SpatRasterDataset,SpatRaster'
add(x)<-value

S4 replacement method for signature 'SpatRasterCollection,SpatRaster'
add(x)<-value

Arguments

x SpatRaster, SpatRasterDataset or SpatRasterCollection

value SpatRaster

Value

SpatRaster

See Also

c

Examples

r <- rast(nrows=5, ncols=9, vals=1:45)
x <- c(r, r*2)
add(x) <- r*3
x

24 add_box

add_abline add vertical and/or horizontal lines to a map made with terra

Description

Adaptation of abline that allows adding a horizonal or vertical lines to a map. This function will
place the lines in the locations within the mapped area as delineated by the axes. It is meant to be
used when you specifiy your own tick marks, such that add_grid does not work.

Also see graticule

Usage

add_abline(h=NULL, v=NULL, ...)

Arguments

h the y-value(s) for horizontal line(s)

v the x-value(s) for vertical line(s)

... additional graphical parameters for drawing lines

See Also

add_grid, graticule, add_legend, add_box, add_grid, add_mtext

Examples

v <- vect(system.file("ex/lux.shp", package="terra"))
atx <- seq(xmin(v), xmax(v), .1)
aty <- seq(ymin(v), ymax(v), .1)
plot(v, pax=list(xat=atx, yat=aty), ext=ext(v)+.2)
add_abline(h=aty, v=atx, lty=2, col="gray")

add_box draw a box

Description

Similar to box allowing adding a box around a map. This function will place the box around the
mapped area.

Usage

add_box(...)

add_grid 25

Arguments

... arguments passed to lines

See Also

add_legend, add_grid, add_mtext

Examples

v <- vect(system.file("ex/lux.shp", package="terra"))
plot(v)
add_box(col="red", lwd=3, xpd=TRUE)

add_grid add a grid to a map made with terra

Description

Adaptation of grid that allows adding a grid to a map. This function will place the grid in the
locations within the mapped area as delineated by the axes.

If you set the tick marks yourself, you can use add_abline to create a grid:

Also see graticule

Usage

add_grid(nx=NULL, ny=nx, col="lightgray", lty="dotted", lwd=1)

Arguments

nx, ny number of cells of the grid in x and y direction. When NULL, as per default, the
grid aligns with the tick marks on the corresponding default axis (i.e., tickmarks
as computed by axTicks). When NA, no grid lines are drawn in the correspond-
ing direction

col character or (integer) numeric; color of the grid lines

lty character or (integer) numeric; line type of the grid lines

lwd non-negative numeric giving line width of the grid lines

See Also

graticule, add_abline, add_legend, add_box, add_grid, add_mtext

Examples

v <- vect(system.file("ex/lux.shp", package="terra"))
plot(v)
add_grid()

26 add_mtext

add_legend add a custom legend

Description

Wrapper around legend that allows adding a custom legend to a map using a keyword such as
"topleft" or "bottomright". This function will place the legend in the locations within the mapped
area as delineated by the axes.

Usage

add_legend(x, y, xpd=TRUE, ...)

Arguments

x The keyword to be used to position the legend (or the x coordinate)

y The y coordinate to be used to position the legend (is x is also a coordinate)

xpd logical. If TRUE, the legend can be added outside the map area

... arguments passed to legend

See Also

add_box, add_grid, add_mtext

Examples

v <- vect(system.file("ex/lux.shp", package="terra"))
plot(v)
points(centroids(v), col="red")
legend("topleft", legend = "centroids", pch = 20, xpd=NA, bg="white", col="red")
add_legend("topright", legend = "centroids", pch = 20, col="red")

add_mtext draw a box

Description

Similar to mtext allowing adding a text to the margins of a map. This function useds the margins
around the mapped area; not the margins that R would use.

Usage

add_mtext(text, side=3, line=0, ...)

adjacent 27

Arguments

text character or expression vector specifying the text to be written

side integer indicating the margin to use (1=bottom, 2=left, 3=top, 4=right)

line numeric to move the text in or outwards.

... arguments passed to text

See Also

add_legend, add_grid, add_box

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

plot(r, axes=FALSE, legend=FALSE)
add_box()
for (i in 1:4) add_mtext("margin text", i, cex=i, col=i, line=2-i)

adjacent Adjacent cells or polygons

Description

Identify cells that are adjacent to a set of raster cells. Or identify adjacent polygons

Usage

S4 method for signature 'SpatRaster'
adjacent(x, cells, directions="rook", pairs=FALSE, include=FALSE, symmetrical=FALSE)

S4 method for signature 'SpatVector'
adjacent(x, type="rook", pairs=TRUE, symmetrical=FALSE)

Arguments

x SpatRaster, or SpatVector of polygons

cells vector of cell numbers for which adjacent cells should be found. Cell numbers
start with 1 in the upper-left corner and increase from left to right and from top
to bottom

directions character or matrix to indicated the directions in which cells are considered con-
nected. The following character values are allowed: "rook" or "4" for the hor-
izontal and vertical neighbors; "bishop" to get the diagonal neighbors; "queen"
or "8" to get the vertical, horizontal and diagonal neighbors; or "16" for knight
and one-cell queen move neighbors. If directions is a matrix it should have
odd dimensions and have logical (or 0, 1) values

28 adjacent

pairs logical. If TRUE, a two-column matrix of pairs of adjacent cells is returned. If x is
a SpatRaster and pairs is FALSE, an n*m matrix is returned where the number
of rows n is length(cells) and the number of columns m is the number of
neighbors requested with directions

include logical. Should the focal cells be included in the result?

type character. One of "rook", "queen", "touches", or "intersects". "queen" and
"touches" are synonyms. "rook" exclude polygons that touch at a single node
only. "intersects" includes polygons that touch or overlap

symmetrical logical. If TRUE and pairs=TRUE, an adjacent pair is only included once. For
example, if polygon 1 is adjacent to polygon 3, the implied adjacency between
3 and 1 is not reported

Value

matrix

Note

When using global lon/lat rasters, adjacent cells at the other side of the date-line are included.

See Also

relate, nearby, nearest

Examples

r <- rast(nrows=10, ncols=10)
adjacent(r, cells=c(1, 5, 55), directions="queen")
r <- rast(nrows=10, ncols=10, crs="+proj=utm +zone=1 +datum=WGS84")
adjacent(r, cells=11, directions="rook")

#same as
rk <- matrix(c(0,1,0,1,0,1,0,1,0), 3, 3)
adjacent(r, cells=11, directions=rk)

note that with global lat/lon data the E and W connect
r <- rast(nrows=10, ncols=10, crs="+proj=longlat +datum=WGS84")
adjacent(r, cells=11, directions="rook")

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
a <- adjacent(v, symmetrical=TRUE)
head(a)

aggregate 29

aggregate Aggregate raster or vector data

Description

Aggregate a SpatRaster to create a new SpatRaster with a lower resolution (larger cells). Aggrega-
tion groups rectangular areas to create larger cells. The value for the resulting cells is computed with
a user-specified function. See resample for aggregating cells with a factor that is not an integer.

You can also aggregate ("dissolve") a SpatVector. This either combines all geometries into one
geometry, or it combines the geometries that have the same value for the variable(s) specified with
argument by.

Usage

S4 method for signature 'SpatRaster'
aggregate(x, fact=2, fun="mean", ..., cores=1, filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatVector'
aggregate(x, by=NULL, dissolve=TRUE, fun="mean", count=TRUE, ...)

Arguments

x SpatRaster or SpatVector

fact positive integer. Aggregation factor expressed as number of cells in each di-
rection (horizontally and vertically). Or two integers (vertical (fact[1]) and hori-
zontal (fact[2]) aggregation factor) or three integers (when also aggregating over
layers)

fun function used to aggregate values. Either an actual function, or for the follow-
ing, their name: "mean", "max", "min", "median", "sum", "modal", "any", "all",
"none", "prod", "which.min", "which.max", "table", "sd" (sample standard de-
viation) and "std" (population standard deviation)

... additional arguments passed to fun, such as na.rm=TRUE

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created. Ignored for C++ level implemented functions that are listed under
fun

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

by character. The variable(s) used to group the geometries

dissolve logical. Should borders between aggregated geometries be dissolved?

count logical. If TRUE and by is not NULL, a variable "agg_n" is included that shows
the number of input geometries for each output geometry

30 aggregate

Details

Aggregation starts at the upper-left end of a SpatRaster. If a division of the number of columns or
rows with factor does not return an integer, the extent of the resulting SpatRaster will be somewhat
larger then that of the original SpatRaster. For example, if an input SpatRaster has 100 columns, and
fact=12, the output SpatRaster will have 9 columns and the maximum x coordinate of the output
SpatRaster is also adjusted.

The function fun should take multiple numbers, and return one or more numeric values. If multiple
numbers are returned, the length of the returned vector should always be the same, also, for example,
when the input is only NA values. For that reason, range works, but unique will fail in most cases.

Value

SpatRaster

See Also

disagg to disaggregate, and resample for more complex changes in resolution and alignment

Examples

r <- rast()
aggregated SpatRaster, no values
ra <- aggregate(r, fact=10)

values(r) <- runif(ncell(r))
aggregated raster, max of the values
ra <- aggregate(r, fact=10, fun=max)

aggregated raster, 'fact' parameter contains two values, max of the values
same result as above
rb <- aggregate(r, fact=c(10,10), fun=max)

groups of 10 rows and 2 columns are combined into new cells
rc <- aggregate(r, fact=c(10,2), fun=max)

multiple layers
s <- c(r, r*2)
x <- aggregate(s, 20)

SpatVector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
va <- aggregate(v, "ID_1")

plot(va, "NAME_1", lwd=5, plg=list(x="topright"), mar=rep(2,4))
lines(v, lwd=3, col="light gray")
lines(va)
text(v, "ID_1", halo=TRUE)

align 31

align Align a SpatExtent

Description

Align an SpatExtent with a SpatRaster This can be useful to create a new SpatRaster with the same
origin and resolution as an existing SpatRaster. Do not use this to force data to match that really
does not match (use e.g. resample or (dis)aggregate for this).

It is also possible to align a SpatExtent to a clean divisor.

Usage

S4 method for signature 'SpatExtent,SpatRaster'
align(x, y, snap="near")

S4 method for signature 'SpatExtent,numeric'
align(x, y)

Arguments

x SpatExtent

y SpatRaster or numeric

snap Character. One of "near", "in", or "out", to determine in which direction the
extent should be aligned. To the nearest border, inwards or outwards

Value

SpatExtent

See Also

ext, draw

Examples

r <- rast()
e <- ext(-10.1, 9.9, -20.1, 19.9)
ea <- align(e, r)
e
ext(r)
ea

align(e, 0.5)

32 all.equal

all.equal Compare two SpatRaster, SpatVector, or SpatExtent objects for equal-
ity

Description

Compare two objects for (near) equality

In the case of SpatRasters, first the attributes of the objects are compared. If these are the same, a
(perhaps small) sample of the raster cells is compared as well.

The sample size used can be increased with the maxcell argument. You can set it to Inf, but for
large rasters your computer may not have sufficient memory. See the examples for a safe way to
compare all values.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
all.equal(target, current, maxcell=100000, ...)

S4 method for signature 'SpatVector,SpatVector'
all.equal(target, current, ...)

S4 method for signature 'SpatExtent,SpatExtent'
all.equal(target, current, ...)

Arguments

target SpatRaster, SpatVector, or SpatExtent

current object of the same class as target

maxcell positive integer. The size of the regular sample used to compare cell values

... additional arguments passed to all.equal.numeric to compare cell values for
SpatRaster and geometry and attribute values for SpatVectors

Value

Either TRUE or a character vector describing the differences between target and current.

See Also

identical, compareGeom

Examples

x <- sqrt(1:100)
mat <- matrix(x, 10, 10)
r1 <- rast(nrows=10, ncols=10, xmin=0, vals = x)
r2 <- rast(nrows=10, ncols=10, xmin=0, vals = mat)

animate 33

all.equal(r1, r2)
all.equal(r1, r1*1)
all.equal(rast(r1), rast(r2))

compare geometries
compareGeom(r1, r2)

Compare all cell values for near equality
as floating point number imprecision can be a problem
m <- minmax(r1 - r2)
all(abs(m) < 1e-7)

comparison of cell values to create new SpatRaster
e <- r1 == r2

animate Animate a SpatRaster

Description

Animate (sequentially plot) the layers of a SpatRaster to create a movie.

Usage

S4 method for signature 'SpatRaster'
animate(x, pause=0.25, main, range=NULL, maxcell=50000, n=1, ...)

Arguments

x SpatRaster

pause numeric. How long should be the pause be between layers?

main title for each layer. If not supplied the z-value is used if available. Otherwise the
names are used.

range numeric vector of length 2. Range of values to plot, If NULL the range of all
layers is used. If NA the range of each individual layer is used

maxcell positive integer. Maximum number of cells to use for the plot. If maxcell <
ncell(x), spatSample(type="regular") is used before plotting

n integer > 0. Number of loops

... Additional arguments passed to plot

Value

None

See Also

plot

34 app

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
animate(s, n=1)

app Apply a function to the cells of a SpatRaster

Description

Apply a function to the values of each cell of a SpatRaster. Similar to apply – think of each layer
in a SpatRaster as a column (or row) in a matrix.

This is generally used to summarize the values of multiple layers into one layer; but this is not
required.

app calls function fun with the raster data as first argument. Depending on the function supplied, the
raster data is represented as either a matrix in which each layer is a column, or a vector representing
a cell. The function should return a vector or matrix that is divisible by ncell(x). Thus, both "sum"
and "rowSums" can be used, but "colSums" cannot be used.

You can also apply a function fun across datasets by layer of a SpatRasterDataset. In that case,
summarization is by layer across SpatRasters.

Usage

S4 method for signature 'SpatRaster'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRasterDataset'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster or SpatRasterDataset

fun a function that operates on a vector or matrix. This can be a function that is
defined in base-R or in a package, or a function you write yourself (see exam-
ples). Functions that return complex output (e.g. a list) may need to be wrapped
in your own function to simplify the output to a vector or matrix. The fol-
lowing functions have been re-implemented in C++ for speed: "sum", "mean",
"median", "modal", "which", "which.min", "which.max", "min", "max", "prod",
"any", "all", "none", "sd", "std", "first". To use the base-R function for say,
"min", you could use something like fun=function(i) min(i) or the equiva-
lent fun = \(i) min(i)

... additional arguments for fun. These are typically numerical constants. They
should *never* be another SpatRaster

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used. You can also supply a cluster object. Ignored for functions
that are implemented by terra in C++ (see under fun)

app 35

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Details

To speed things up, parallelization is supported, but this is often not helpful, and it may actually
be slower. There is only a speed gain if you have many cores (> 8) and/or a very complex (slow)
function fun. If you write fun yourself, consider supplying a cppFunction made with the Rcpp
package instead (or go have a cup of tea while the computer works for you).

Value

SpatRaster

See Also

lapp, tapp, Math-methods, roll; global to summarize the values of a single SpatRaster

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
x <- c(r, sqrt(r), r+50)
s <- app(x, fun=sum)
s
for a few generic functions like
"sum", "mean", and "max" you can also do
sum(x)

SpatRasterDataset
sd <- sds(x, x*2, x/3)
a <- app(sd, max)
a
same as
max(x, x*2, x/3)
and as (but slower)
b <- app(sd, function(i) max(i))

also works for a single layer
f <- function(i) (i+1) * 2 * i + sqrt(i)
s <- app(r, f)
same as above, but that is not memory-safe
and has no filename argument
s <- f(r)

Not run:
multiple cores
test0 <- app(x, sqrt)
test1 <- app(x, sqrt, cores=2)

36 approximate

testfun <- function(i) { 2 * sqrt(i) }
test2 <- app(x, fun=testfun, cores =2)

this fails because testfun is not exported to the nodes
test3 <- app(x, fun=function(i) testfun(i), cores=2)
to export it, add it as argument to fun
test3 <- app(x, fun=function(i, ff) ff(i), cores =3, ff=testfun)

End(Not run)

approximate Estimate values for cell values that are NA by interpolating between
layers

Description

approximate uses the stats function approx to estimate values for cells that are NA by interpolation
across layers. Layers are considered equidistant, unless argument z is used, or time(x) returns
values that are not NA, in which case these values are used to determine distance between layers.

For estimation based on neighboring cells see focal

Usage

S4 method for signature 'SpatRaster'
approximate(x, method="linear", yleft, yright,

rule=1, f=0, ties=mean, z=NULL, NArule=1,filename="", ...)

Arguments

x SpatRaster

method specifies the interpolation method to be used. Choices are "linear" or "constant"
(step function; see the example in approx

yleft the value to be returned before a non-NA value is encountered. The default is
defined by the value of rule given below

yright the value to be returned after the last non-NA value is encountered. The default
is defined by the value of rule given below

rule an integer (of length 1 or 2) describing how interpolation is to take place at for
the first and last cells (before or after any non-NA values are encountered). If
rule is 1 then NAs are returned for such points and if it is 2, the value at the
closest data extreme is used. Use, e.g., rule = 2:1, if the left and right side
extrapolation should differ

f for method = "constant" a number between 0 and 1 inclusive, indicating a com-
promise between left- and right-continuous step functions. If y0 and y1 are the
values to the left and right of the point then the value is y0*(1-f)+y1*f so that
f = 0) is right-continuous and f = 1 is left-continuous

Arith-methods 37

ties Handling of tied ’z’ values. Either a function with a single vector argument
returning a single number result or the string "ordered"

z numeric vector to indicate the distance between layers (e.g., depth). The default
is time(x) if these are not NA or else 1:nlys(x)

NArule single integer used to determine what to do when only a single layer with a non-
NA value is encountered (and linear interpolation is not possible). The default
value of 1 indicates that all layers will get this value for that cell; all other values
do not change the cell values

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal, fillTime

Examples

r <- rast(ncols=5, nrows=5)
r1 <- setValues(r, runif(ncell(r)))
r2 <- setValues(r, runif(ncell(r)))
r3 <- setValues(r, runif(ncell(r)))
r4 <- setValues(r, runif(ncell(r)))
r5 <- setValues(r, NA)
r6 <- setValues(r, runif(ncell(r)))
r1[6:10] <- NA
r2[5:15] <- NA
r3[8:25] <- NA
s <- c(r1,r2,r3,r4,r5,r6)
s[1:5] <- NA
x1 <- approximate(s)
x2 <- approximate(s, rule=2)
x3 <- approximate(s, rule=2, z=c(1,2,3,5,14,15))

Arith-methods Arithmetic

Description

Standard arithmetic operators for computations with SpatRasters. Computations are local (applied
on a cell by cell basis). If multiple SpatRasters are used, these must have the same geometry (extent
and resolution). These operators have been implemented:

+, -, *, /, ^, %%, %/%

38 Arith-methods

You can also use a SpatRaster and a vector or a matrix. If you use a SpatRaster with a vector of
multiple numbers, each element in the vector is considered a layer (with a constant value). If you
use a SpatRaster with a matrix, the number of columns of the matrix must match the number of
layers of the SpatRaster. The rows are used to match the cells. That is, if there are two rows, these
match cells 1 and 2, and they are recycled to 3 and 4, etc.

The following methods have been implemented for (SpatExtent, SpatExtent): +, -, and the
following for (SpatExtent, numeric): +, -, *, /, %%

Value

SpatRaster or SpatExtent

See Also

ifel to conveniently combine operations and Math-methods or app to use mathematical functions
not implemented by the package.

Examples

r1 <- rast(ncols=10, nrows=10)
v <- runif(ncell(r1))
v[10:20] <- NA
values(r1) <- v
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
r3 <- r1 + r2
r2 <- r1 / 10
r3 <- r1 * (r2 - 1 / r2)

b <- c(r1, r2, r3)
b2 <- b * 10

SpatExtent methods
x <- ext(0.1, 2.2, 0, 3)
y <- ext(-2, 1, -2,2)
union
x + y
intersection
x * y

e <- x %% 2
e
e * 2
e / 2
e + 1
e - 1

ar_info 39

ar_info ar_info

Description

Describe a multi-dimensional array (netcdf) file

Usage

ar_info(x, what="describe", simplify=TRUE, filter=TRUE, array="")

Arguments

x character. The name of a netcdf (or similar) raster file

what character that (partially) matches "describe", "arrays" or "dimensions"

simplify logical. If TRUE and what="describe", simplify the output for readability

filter logical. If TRUE and what="describe" filter arrays that (probably) dimensions

array character. Required when what="dimensions"

Value

character or data.frame

See Also

describe

as.character Create a text representation of (the skeleton of) an object

Description

Create a text representation of (the skeleton of) an object

Usage

S4 method for signature 'SpatExtent'
as.character(x)

S4 method for signature 'SpatRaster'
as.character(x)

Arguments

x SpatRaster

40 as.data.frame

Value

character

Examples

r <- rast()
ext(r)
ext(c(0, 20, 0, 20))

as.data.frame SpatRaster or SpatVector to data.frame

Description

Coerce a SpatRaster or SpatVector to a data.frame

Usage

S4 method for signature 'SpatVector'
as.data.frame(x, row.names=NULL, optional=FALSE, geom=NULL, ...)

S4 method for signature 'SpatRaster'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE,
cells=FALSE, time=FALSE, na.rm=NA, wide=TRUE, ...)

Arguments

x SpatRaster or SpatVector

geom character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry
included in Well-Known-Text or hexadecimal notation. If x has point geometry,
it can also be "XY" to add the coordinates of each point

xy logical. If TRUE, the coordinates of each raster cell are included

time logical. If TRUE, the time data is included (if available)

na.rm logical. If TRUE, cells that have a NA value in at least one layer are removed. If
the argument is set to NA only cells that have NA values in all layers are removed

cells logical. If TRUE, the cell numbers of each raster cell are included

wide logical. If FALSE, the data.frame returned has a "long" format

... Additional arguments passed to the data.frame

row.names This argument is ignored

optional This argument is ignored

Value

data.frame

as.lines 41

See Also

as.list, as.matrix. See geom to only extract the geometry of a SpatVector

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.data.frame(v)

as.lines Conversion to a SpatVector of lines

Description

Conversion of a SpatRaster, SpatVector or SpatExtent to a SpatVector of lines.

Usage

S4 method for signature 'SpatRaster'
as.lines(x)

S4 method for signature 'SpatVector'
as.lines(x)

S4 method for signature 'SpatExtent'
as.lines(x, crs="")

S4 method for signature 'matrix'
as.lines(x, crs="")

Arguments

x SpatRaster, SpatVector, SpatExtent or matrix. If x is a matrix it should have two
columns for a single line, or four columns, where each row has the start and end
coordinates (x, y) for lines

crs character. The coordinate reference system (see crs)

Value

SpatVector

See Also

as.points, as.polygons

42 as.list

Examples

r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

as.lines(r)

as.lines(ext(r), crs=crs(r))

p <- as.polygons(r)
as.lines(p)

with a matrix
s <- cbind(1:5, 1:5)
e <- cbind(1:5, 0)

as.lines(s)
as.lines(cbind(s, e), "+proj=longlat")

as.list Coerce a Spat* object to a list

Description

Coerce a SpatRaster, SpatRasterCollection, SpatRasterDataset, SpatVector or SpatVectorCollection
to a list. With a SpatRaster, each layer becomes a list element. With a SpatRasterCollection or Spa-
tRasterDataset, each SpatRaster becomes a list element. With a SpatVector, each variable (attribute)
becomes a list element. With a SpatVectorCollection, each SpatVector becomes a list element.

Usage

S4 method for signature 'SpatRaster'
as.list(x, geom=NULL, ...)

S4 method for signature 'SpatRasterCollection'
as.list(x, ...)

S4 method for signature 'SpatVector'
as.list(x, geom=NULL, ...)

S4 method for signature 'SpatVectorCollection'
as.list(x, ...)

Arguments

x SpatRaster, SpatRasterDataset, SpatRasterCollection, or SpatVector

as.points 43

geom character or NULL. If not NULL, and x is a SpatVector, it should be either
"WKT" or "HEX", to get the geometry included in Well-Known-Text or hex-
adecimal notation. If x has point geometry, it can also bey "XY" to add the
coordinates of each point. If x is a SpatRaster, any value that is not NULL will
return a list with the the parameters describing the geometry of the SpatRaster
are returned

... additional arguments. These are ignored

Value

list

See Also

see coerce for as.data.frame with a SpatRaster; and geom to only extract the geometry of a
SpatVector

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.list(v)

s <- rast(system.file("ex/logo.tif", package="terra")) + 1
as.list(s)

as.points Conversion to a SpatVector of points

Description

Conversion of a SpatRaster, SpatVector or SpatExtent to a SpatVector of points.

Usage

S4 method for signature 'SpatRaster'
as.points(x, values=TRUE, na.rm=TRUE, na.all=FALSE)

S4 method for signature 'SpatVector'
as.points(x, multi=FALSE, skiplast=TRUE)

S4 method for signature 'SpatExtent'
as.points(x, crs="")

44 as.polygons

Arguments

x SpatRaster, SpatVector or SpatExtent

values logical; include cell values as attributes?

multi logical. If TRUE a multi-point geometry is returned

skiplast logical. If TRUE the last point of a polygon (which is the same as the first point)
is not included

na.rm logical. If TRUE cells that are NA are ignored

na.all logical. If TRUE cells are only ignored if na.rm=TRUE and their value is NA for
all layers instead of for any layer

crs character. The coordinate reference system (see crs)

Value

SpatVector

See Also

as.lines, as.points

Examples

r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

as.points(r)

p <- as.polygons(r)
as.points(p)

as.polygons Conversion to a SpatVector of polygons

Description

Conversion of a SpatRaster, SpatVector or SpatExtent to a SpatVector of polygons.

Usage

S4 method for signature 'SpatRaster'
as.polygons(x, round=TRUE, aggregate=TRUE, values=TRUE,
na.rm=TRUE, na.all=FALSE, extent=FALSE, digits=0, ...)

S4 method for signature 'SpatVector'
as.polygons(x, extent=FALSE)

S4 method for signature 'SpatExtent'
as.polygons(x, crs="")

as.raster 45

Arguments

x SpatRaster, SpatVector or SpatExtent

round logical; If TRUE and aggregate=TRUE, values are rounded before aggregation.
If this value is FALSE the SpatVector returned can have very many polygons and
can be very large

aggregate logical; combine cells with the same values? If TRUE only the first layer in x is
processed

values logical; include cell values as attributes?

extent logical. if TRUE, a polygon for the extent of the SpatRaster or SpatVector is re-
turned. If x is a SpatRaster, the polygon has vertices for each row and column,
not just the four corners of the raster. This can be useful for more precise pro-
jection. If that is not required, it is more efficient to get the extent represented
by only the four corners with as.polygons(ext(x), crs=crs(x))

na.rm logical. If TRUE cells that are NA are ignored

na.all logical. If TRUE cells are only ignored if na.rm=TRUE and their value is NA for
all layers instead of for any layer

digits integer. The number of digits for rounding (if round=TRUE)

crs character. The coordinate reference system (see crs)

... additional arguments. For backward compatibility. Will be removed in the fu-
ture

Value

SpatVector

See Also

as.lines, as.points

Examples

r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

p <- as.polygons(r)
p

as.raster Coerce to a "raster" object

Description

Implementation of the generic as.raster function to create a "raster" (small r) object. Such objects
can be used for plotting with the rasterImage function. NOT TO BE CONFUSED with the Raster*
(big R) objects defined by the ’raster’ package!

46 atan2

Usage

S4 method for signature 'SpatRaster'
as.raster(x, maxcell=500000, col)

Arguments

x SpatRaster

maxcell positive integer. Maximum number of cells to use for the plot

col vector of colors. The default is map.pal("viridis", 100)

Value

’raster’ object

Examples

r <- rast(ncols=3, nrows=3)
values(r) <- 1:ncell(r)
as.raster(r)

atan2 Two argument arc-tangent

Description

For SpatRasters x and y, atan2(y, x) returns the angle in radians for the tangent y/x, handling the
case when x is zero. See Trig

See Math-methods for other trigonometric and mathematical functions that can be used with Spa-
tRasters.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
atan2(y, x)

S4 method for signature 'SpatRaster,SpatRaster'
atan_2(y, x, filename, ...)

Arguments

y SpatRaster

x SpatRaster

filename character. Output filename

... additional arguments for writing files as in writeRaster

autocorrelation 47

See Also

Math-methods

Examples

r1 <- rast(nrows=10, ncols=10)
r2 <- rast(nrows=10, ncols=10)
values(r1) <- (runif(ncell(r1))-0.5) * 10
values(r2) <- (runif(ncell(r1))-0.5) * 10
atan2(r1, r2)

autocorrelation Spatial autocorrelation

Description

Compute spatial autocorrelation for a numeric vector or a SpatRaster. You can compute standard
(global) Moran’s I or Geary’s C, or local indicators of spatial autocorrelation (Anselin, 1995).

Usage

S4 method for signature 'numeric'
autocor(x, w, method="moran")

S4 method for signature 'SpatRaster'
autocor(x, w=matrix(c(1,1,1,1,0,1,1,1,1),3), method="moran", global=TRUE)

Arguments

x numeric or SpatRaster

w Spatial weights defined by or a rectangular matrix. For a SpatRaster this matrix
must the sides must have an odd length (3, 5, ...)

global logical. If TRUE global autocorrelation is computed instead of local autocorrela-
tion

method character. If x is numeric or SpatRaster: "moran" for Moran’s I and "geary" for
Geary’s C. If x is numeric also: "Gi", "Gi*" (the Getis-Ord statistics), locmor
(local Moran’s I) and "mean" (local mean)

Details

The default setting uses a 3x3 neighborhood to compute "Queen’s case" indices. You can use a filter
(weights matrix) to do other things, such as "Rook’s case", or different lags.

Value

numeric or SpatRaster

48 barplot

References

Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23

Geary, R.C., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5:
115-145

Anselin, L., 1995. Local indicators of spatial association-LISA. Geographical Analysis 27:93-115

https://en.wikipedia.org/wiki/Indicators_of_spatial_association

See Also

The spdep package for additional and more general approaches for computing spatial autocorrela-
tion

Examples

raster
r <- rast(nrows=10, ncols=10, xmin=0)
values(r) <- 1:ncell(r)

autocor(r)

rook's case neighbors
f <- matrix(c(0,1,0,1,0,1,0,1,0), nrow=3)
autocor(r, f)

local
rc <- autocor(r, w=f, global=FALSE)

numeric (for vector data)
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- relate(v, relation="touches")

global
autocor(v$AREA, w)

local
v$Gi <- autocor(v$AREA, w, "Gi")
plot(v, "Gi")

barplot Bar plot of a SpatRaster

Description

Create a barplot of the values of the first layer of a SpatRaster. For large datasets a regular sample
with a size of approximately maxcells is used.

https://en.wikipedia.org/wiki/Indicators_of_spatial_association

bestMatch 49

Usage

S4 method for signature 'SpatRaster'
barplot(height, maxcell=1000000, digits=0, breaks=NULL, col, ...)

Arguments

height SpatRaster

maxcell integer. To regularly subsample very large datasets

digits integer used to determine how to round the values before tabulating. Set to NULL
or to a large number if you do not want any rounding

breaks breaks used to group the data as in cut

col a color generating function such as rainbow (the default), or a vector of colors

... additional arguments for plotting as in barplot

Value

A numeric vector (or matrix, when beside = TRUE) of the coordinates of the bar midpoints, useful
for adding to the graph. See barplot

See Also

hist, boxplot

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
barplot(r, digits=-1, las=2, ylab="Frequency")

op <- par(no.readonly = TRUE)
par(mai = c(1, 2, .5, .5))
barplot(r, breaks=10, col=c("red", "blue"), horiz=TRUE, digits=NULL, las=1)
par(op)

bestMatch bestMatch

Description

Determine for each grid cell which reference it is most similar to. A reference consists of a SpatVec-
tor with reference locations, or a data.frame or matrix in which each column matches a layer name
in the SpatRaster.

Similarity is computed with the mean absolute or the mean squared differences between the cell
and the reference, or with an alternative function you provide. It may be important to first scale the
input.

50 bestMatch

Usage

S4 method for signature 'SpatRaster,SpatVector'
bestMatch(x, y, labels=NULL, fun="squared", ...,
filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRaster,data.frame'
bestMatch(x, y, labels=NULL, fun="squared", ...,
filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRaster,matrix'
bestMatch(x, y, labels=NULL, fun="squared", ...,
filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

y SpatVector, data.frame or matrix

labels character. labels that correspond to each class (row in y

fun character. One of "abs" for the mean absolute difference, or "squared" for the
mean squared difference. Or a true function like terra:::match_sqr

... additional arguments passed to fun. For the built-in functions this can be na.rm=TRUE

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

f <- system.file("ex/logo.tif", package = "terra")
r <- rast(f)

locations of interest
pts <- vect(cbind(c(25.25, 34.324, 43.003), c(54.577, 46.489, 30.905)))
pts$code <- LETTERS[1:3]

plot(r)
points(pts, pch=20, cex=2, col="red")
text(pts, "code", pos=4, halo=TRUE)

x <- scale(r)

s1 <- bestMatch(x, pts, labels=pts$code)
plot(s1)

same result

boundaries 51

e <- extract(x, pts, ID=FALSE)
s2 <- bestMatch(x, e, labels=c("Ap", "Nt", "Ms"))

boundaries Detect boundaries (edges)

Description

Detect boundaries (edges). Boundaries are cells that have more than one class in the 4 or 8 cells
surrounding it, or, if classes=FALSE, cells with values and cells with NA.

Usage

S4 method for signature 'SpatRaster'
boundaries(x, classes=FALSE, inner=TRUE, directions=8,
falseval=0, ignoreNA=FALSE, filename="", ...)

Arguments

x SpatRaster

inner logical. If TRUE, "inner" boundaries are returned, else "outer" boundaries are
returned

classes character. Logical. If TRUE all different values are (after rounding) distinguished,
as well as NA. If FALSE (the default) only edges between NA and non-NA cells are
considered

directions integer. Which cells are considered adjacent? Should be 8 (Queen’s case) or 4
(Rook’s case)

falseval numeric. The value to use for cells that are not a boundary and not NA

ignoreNA logical. If TRUE and classes=TRUE external boundaries (with NA cells) are ig-
nored, only boundaries between classes are returned (and the value of argument
inner is irrelevant)

filename character. Output filename

... options for writing files as in writeRaster

Value

SpatRaster. Cell values are either 1 (a boundary) or 0 (not a boundary), or NA

See Also

focal, patches

52 boxplot

Examples

r <- rast(nrows=18, ncols=36, xmin=0)
r[150:250] <- 1
r[251:450] <- 2
bi <- boundaries(r)
bo <- boundaries(r, inner=FALSE)
bc <- boundaries(r, classes=TRUE)
#plot(bc)

boxplot Box plot of SpatRaster data

Description

Box plot of layers in a SpatRaster

Usage

S4 method for signature 'SpatRaster'
boxplot(x, y=NULL, maxcell=100000, ...)

Arguments

x SpatRaster

y NULL or a SpatRaster. If x is a SpatRaster it used to group the values of x by
"zone"

maxcell Integer. Number of cells to sample from datasets

... additional arguments passed to graphics::boxplot

Value

boxplot returns a list (invisibly) that can be used with bxp

See Also

pairs, hist

Examples

r1 <- r2 <- r3 <- rast(ncols=10, nrows=10)
set.seed(409)
values(r1) <- rnorm(ncell(r1), 100, 40)
values(r2) <- rnorm(ncell(r1), 80, 10)
values(r3) <- rnorm(ncell(r1), 120, 30)
s <- c(r1, r2, r3)
names(s) <- c("Apple", "Pear", "Cherry")

boxplot(s, notch=TRUE, col=c("red", "blue", "orange"), main="Box plot", ylab="random", las=1)

buffer 53

op <- par(no.readonly = TRUE)
par(mar=c(4,6,2,2))
boxplot(s, horizontal=TRUE, col="lightskyblue", axes=FALSE)
axis(1)
axis(2, at=0:3, labels=c("", names(s)), las=1, cex.axis=.9, lty=0)
par(op)

boxplot with 2 layers
v <- vect(system.file("ex/lux.shp", package="terra"))
r <- rast(system.file("ex/elev.tif", package="terra"))
y <- rasterize(v, r, "NAME_2")
b <- boxplot(r, y)
bxp(b)

buffer Create a buffer around vector geometries or raster patches

Description

Calculate a buffer around all cells that are not NA in a SpatRaster, or around the geometries of a
SpatVector.

SpatRaster cells inside the buffer distance get a value of 1.

Note that the distance unit of the buffer width parameter is meters if the CRS is (+proj=longlat),
and in map units (typically also meters) if not.

If your data has a longitude/latitude CRS do not project them to a planar CRS because that makes
the results less precise (see Examples).

Usage

S4 method for signature 'SpatRaster'
buffer(x, width, background=0, include=TRUE, filename="", ...)

S4 method for signature 'SpatVector'
buffer(x, width, quadsegs=10, capstyle="round",
joinstyle="round", mitrelimit=NA, singlesided=FALSE)

Arguments

x SpatRaster or SpatVector

width numeric. Unit is meter if x has a longitude/latitude CRS, or in the units of the
coordinate reference system in other cases (typically also meter). The value
should be > 0 if x is a SpatRaster. If x is a SpatVector, this argument is vector-
ized, meaning that you can provide a different value for each geometry in x; and
you can also use the name of a variable in x that has the widths

filename character. Output filename

54 c

... additional arguments for writing files as in writeRaster

background numeric. value to assign to cells outside the buffer. If this value is zero or
FALSE, a boolean SpatRaster is returned

include logical. If TRUE the raster cells that are not NA are included in the buffer. Other-
wise these cells get the background value

quadsegs positive integer. Number of line segments to use to draw a quart circle

capstyle character. One of "round", "square" or "flat". Ignored if is.lonlat(x)

joinstyle character. One of "round", "mitre" or "bevel". Ignored if is.lonlat(x)

mitrelimit numeric. Place an upper bound on a mitre join to avoid it from extending very
far from acute angles in the input geometry. Ignored if is.lonlat(x)

singlesided logical. If TRUE a buffer is constructed on only one side of each input line.
Ignored if is.lonlat(x)

Value

Same as x

See Also

distance, elongate

Examples

r <- rast(ncols=36, nrows=18)
r[500] <- 1
b <- buffer(r, width=5000000)
plot(b)

v <- vect(rbind(c(170,10), c(0,60)), crs="+proj=merc")
b <- buffer(v, 20)
plot(b)
points(v)

crs(v) <- "+proj=longlat"
b <- buffer(v, 1500000)
plot(b)
points(v)

c Combine SpatRaster or SpatVector objects

c 55

Description

With c you can:

– Combine SpatRaster objects. They must have the same extent and resolution. However, if x is
empty (has no cell values), its geometry is ignored with a warning. Two empty SpatRasters with
the same geometry can also be combined (to get a summed number of layers). Also see add<-

– Add a SpatRaster to a SpatRasterDataset or SpatRasterCollection

– Add SpatVector objects to a new or existing SpatVectorCollection

To append SpatVectors, use rbind.

Usage

S4 method for signature 'SpatRaster'
c(x, ..., warn=TRUE)

S4 method for signature 'SpatRasterDataset'
c(x, ...)

S4 method for signature 'SpatRasterCollection'
c(x, ...)

S4 method for signature 'SpatVector'
c(x, ...)

S4 method for signature 'SpatVectorCollection'
c(x, ...)

Arguments

x SpatRaster, SpatVector, SpatRasterDataset or SpatVectorCollection

warn logical. If TRUE, a warning is emitted if x is an empty SpatRaster

... as for x (you can only combine raster with raster data and vector with vector
data)

Value

Same class as x

See Also

add<-

Examples

r <- rast(nrows=5, ncols=9)
values(r) <- 1:ncell(r)
x <- c(r, r*2, r*3)

56 cartogram

cartogram Cartogram

Description

Make a cartogram, that is, a map where the area of polygons is made proportional to another vari-
able. This can be a good way to map raw count data (e.g. votes).

Usage

S4 method for signature 'SpatVector'
cartogram(x, var, type="nc", inside=FALSE, exp=1)

Arguments

x SpatVector

var character. A variable name in x

type character. Cartogram type, one of "nc" (non-contiguous) or "circles" (dorling)

inside logical to compute the centroids. See centroids

exp positive numeric that can be used to scale the output polygons

Value

SpatVector

See Also

plot, rescale

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$value <- 1:12
pnc <- cartogram(v, "value", "nc")
pcirc <- cartogram(v, "value", "circles")
plot(v, col="light gray", border="gray")
lines(pnc, col="red", lwd=2)
lines(pcirc, col="blue", lwd=2)

catalyze 57

catalyze Factors to numeric

Description

Change a categorical layer into one or more numerical layers. With as.numeric you can transfer
the active category values to cell values in a non-categorical SpatRaster. catalyze creates new
layers for each category.

Usage

S4 method for signature 'SpatRaster'
as.numeric(x, index=NULL, filename="", ...)

S4 method for signature 'SpatRaster'
catalyze(x, filename="", ...)

Arguments

x SpatRaster

index positive integer or category indicating the category to use. If NULL the active
category is used

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

activeCat, cats

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d
catalyze(r)

activeCat(r) <- 3
as.numeric(r)

58 cells

cells Get cell numbers

Description

Get the cell numbers covered by a SpatVector or SpatExtent. Or that match values in a vector; or
all non NA values.

Usage

S4 method for signature 'SpatRaster,missing'
cells(x, y)

S4 method for signature 'SpatRaster,numeric'
cells(x, y, pairs=FALSE)

S4 method for signature 'SpatRaster,SpatVector'
cells(x, y, method="simple", weights=FALSE, exact=FALSE,
touches=is.lines(y), small=TRUE)

S4 method for signature 'SpatRaster,SpatExtent'
cells(x, y)

Arguments

x SpatRaster

y SpatVector, SpatExtent, 2-column matrix representing points, numeric repre-
senting values to match, or missing

method character. Method for getting cell numbers for points. The default is "simple",
the alternative is "bilinear". If it is "bilinear", the four nearest cells and their
weights are returned

weights logical. If TRUE and y has polygons, the approximate fraction of each cell that is
covered is returned as well

pairs logical. If TRUE the cell values matched area also returned

exact logical. If TRUE and y has polygons, the exact fraction of each cell that is covered
is returned as well

touches logical. If TRUE, values for all cells touched by lines or polygons are extracted,
not just those on the line render path, or whose center point is within the poly-
gon. Not relevant for points

small logical. If TRUE, values for all cells in touched polygons are extracted if none of
the cells center points is within the polygon; even if touches=FALSE

Value

numeric vector or matrix

cellSize 59

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
r[c(1:25, 31:100)] <- NA
r <- ifel(r > 28, r + 10, r)

all cell numbers of cells that are not NA
cells(r)

cell numbers that match values
x <- cells(r, c(28,38))
x$lyr.1

cells for points
m <- cbind(x=c(0,10,-30), y=c(40,-10,20))
cellFromXY(r, m)

v <- vect(m)
cells(r, v)
cells(r, v, method="bilinear")

cells for polygons
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v)
cv <- cells(r, v)

cellSize Area covered by each raster cell

Description

Compute the area covered by individual raster cells.

Computing the surface area of raster cells is especially relevant for longitude/latitude rasters.

But note that for both angular (longitude/latitude) and for planar (projected) coordinate reference
systems raster cells sizes are generally not constant, unless you are using an equal-area coordinate
reference system. For planar CRSs, the area is therefore not computed based on the linear units of
the coordinate reference system, but rather by transforming cells to longitude/latitude. If you do not
want that correction, you can use transform=FALSE or init(x, prod(res(x)))

Usage

S4 method for signature 'SpatRaster'
cellSize(x, mask=FALSE, lyrs=FALSE, unit="m", transform=TRUE, rcx=100, filename="", ...)

60 cellSize

Arguments

x SpatRaster

mask logical. If TRUE, cells that are NA in x are also NA in the output

lyrs logical. If TRUE and mask=TRUE, the output has the same number of layers as x.
That is only useful if cases where the layers of x have different cells that are NA

unit character. One of "m", "km", or "ha"

transform logical. If TRUE, planar CRS data are transformed to lon/lat for accuracy

rcx positive integer. The maximum number of rows and columns to be used to
compute area of planar data if transform=TRUE. If x has more rows and/or
columns, the raster is aggregated to match this limit, and values for the original
cells are estimated by bilinear interpolation (see resample). This can save a lot
of time

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

expanse, surfArea

Examples

SpatRaster
r <- rast(nrows=18, ncols=36)
v <- 1:ncell(r)
v[200:400] <- NA
values(r) <- v

size of each raster cell
a <- cellSize(r)

illustration of distortion
r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")

bad <- init(m, prod(res(m)) / 1000000, wopt=list(names="naive"))
good <- cellSize(m, unit="km", names="corrected")
plot(c(good, bad), nc=1, mar=c(2,2,1,6))

centroids 61

centroids Centroids

Description

Get the centroids of polygons or lines, or centroid-like points that are guaranteed to be inside the
polygons or on the lines.

Or get the (weighted) centroid of the the cells with values (not NA) of a SpatRaster.

Usage

S4 method for signature 'SpatVector'
centroids(x, inside=FALSE)

S4 method for signature 'SpatRaster'
centroids(x, weighted=FALSE)

Arguments

x SpatVector

inside logical. If TRUE the points returned are guaranteed to be inside the polygons or
on the lines, but they are not the true centroids. True centroids may be outside
a polygon, for example when a polygon is "bean shaped", and they are unlikely
to be on their line

weighted logical. If TRUE the centroids are computed as the weighted means of the coor-
dinates of cells with values

Value

SpatVector of points

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- centroids(v)
y <- centroids(v, TRUE)

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
centroids(r)

62 chunk

chunk Make a SpatRaster method memory-safe

Description

This method allows for running a function that takes a SpatRaster as first argument in chunks (tiles).
This can be useful if the functions is not memory-safe, typically because it reads all the raster cell
values into memory.

This method is not designed to be especially efficient, and there might be more efficient ways to
accomplish what the the goal of the function that is not memory-safe.

Also, some functions must have access to all cells at once to be valid. In those cases, chunk would
return incorrect results.

Usage

S4 method for signature 'SpatRaster'
chunk(x, fun, ..., n=NULL, buffer=0, filename="", wopt=list())

Arguments

x SpatRaster

fun function that takes a SpatRaster as first argument

... additional arguments for fun

n NULL or positive integer to specifying the number of rows and columns for
each chunk (or 2 numbers for a different number of rows and columns, as in
getTileExtents

buffer integer. The number of additional rows and columns added to each tile. Can
be a single number, or two numbers to specify a separate number of rows and
columns. This allows for creating overlapping tiles that can be used for com-
puting spatial context dependent values with e.g. focal. The expansion is only
inside x, no rows or columns outside of x are added

filename character. Output filename

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
f <- function(x, a = 0) {
print("chunk")
sum(x) + a
}

clamp 63

x <- chunk(s, f, a=100)

clamp Clamp values

Description

Clamp values to a minimum and maximum value. That is, all values below a lower threshold value
and above the upper threshold value become either NA, or, if values=TRUE, become the threshold
value

Usage

S4 method for signature 'SpatRaster'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, filename="", ...)

S4 method for signature 'numeric'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, ...)

Arguments

x SpatRaster
lower numeric with the lowest acceptable value (you can specify a different value for

each layer). Or a SpatRaster that has a single layer or the same number of layers
as x

upper numeric with the highest acceptable value (you can specify a different value for
each layer). Or a SpatRaster that has a single layer or the same number of layers
as x

values logical. If FALSE values outside the clamping range become NA, if TRUE, they get
the extreme values

filename character. Output filename
... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

classify, subst

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
rc <- clamp(r, 25, 75)
rc

64 clamp_ts

clamp_ts clamp time series data

Description

clamp time-series datat that are S shaped. The value in layers before the minimum value in a cell
can be set to that minimum value, and the value in layers after the maximum value for a cell can be
set to that maximum value.

Usage

S4 method for signature 'SpatRaster'
clamp_ts(x, min=FALSE, max=TRUE, filename="", ...)

Arguments

x SpatRaster

min logical. If TRUE the time-series is clamped to the minimum value

max logical. If TRUE the time-series is clamped to the maximum value

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

clamp, cummin, cummax

Examples

sigm <- function(x) { .8 / (1 + exp(-(x-10))) + runif(length(x))/4 }
r <- rast(ncols=10, nrows=10, nlyr=50)
s <- seq(5.2, 15,.2)
set.seed(1)
values(r) <- t(replicate(100, sigm(s)))

x <- clamp_ts(r, TRUE, TRUE)

plot(unlist(r[4]))
lines(unlist(x[4]))

classify 65

classify Classify (or reclassify) cell values

Description

Classify values of a SpatRaster. The function (re-)classifies groups of values to other values.

The classification is done based on the argument rcl. You can classify ranges by specifying a
three-column matrix "from-to-becomes" or change specific values by using a two-column matrix
"is-becomes". You can also supply a vector with "cuts" or the "number of cuts".

With "from-to-becomes" or "is-becomes" classification is done in the row order of the matrix. Thus,
if there are overlapping ranges or values, the first time a number is within a range determines the
reclassification value.

With "cuts" the values are sorted, so that the order in which they are provided does not matter.

Usage

S4 method for signature 'SpatRaster'
classify(x, rcl, include.lowest=FALSE, right=TRUE,

others=NULL, brackets=TRUE, filename="", ...)

Arguments

x SpatRaster

rcl matrix for classification. This matrix must have 1, 2 or 3 columns. If there are
three columns, the first two columns are "from" "to" of the input values, and the
third column "becomes" has the new value for that range.
The two column matrix ("is", "becomes") can be useful for classifying integer
values. In that case, the arguments right and include.lowest are ignored.
A single column matrix (or a vector) is interpreted as a set of cuts if there is more
than one value. In that case the values are classified based on their location in-
between the cut-values.
If a single number is provided, that is used to make that number of cuts, at equal
intervals between the lowest and highest values of the SpatRaster.

include.lowest logical, indicating if a value equal to the lowest value in rcl (or highest value in
the second column, for right=FALSE) should be included.

right logical. If TRUE, the intervals are closed on the right (and open on the left). If
FALSE they are open at the right and closed at the left. "open" means that the
extreme value is *not* included in the interval. Thus, right-closed and left open
is (0,1] = {x | 0 < x <= 1}. You can also close both sides with right=NA, that
is only meaningful if you "from-to-becomes" classification with integers. For
example to classify 1-5 -> 1, 6-10 -> 2, 11-15 -> 3. That may be easier to read
and write than the equivalent 1-5 -> 1, 5-10 -> 2, 10-15 -> 3 with right=TRUE
and include.lowest=TRUE

others numeric. If not NULL all values that are not matched are set to this value. Other-
wise they retain their original value.

66 classify

brackets logical. If TRUE, intervals are have parenthesis or brackets around them to indi-
cate whether they are open or closed. Only applies if rcl is a vector (or single
column matrix)

filename character. Output filename

... Additional arguments for writing files as in writeRaster

Value

SpatRaster

Note

classify works with the "raw" values of categorical rasters, ignoring the levels (labels, categories).
To change the labels of categorical rasters, use subst instead.

For model-based classification see predict

See Also

subst for simpler from-to replacement, and clamp

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- (0:99)/99

from-to-becomes
classify the values into three groups
all values >= 0 and <= 0.25 become 1, etc.
m <- c(0, 0.25, 1,

0.25, 0.5, 2,
0.5, 1, 3)

rclmat <- matrix(m, ncol=3, byrow=TRUE)
rc1 <- classify(r, rclmat, include.lowest=TRUE)

cuts
equivalent to the above, but now a categorical SpatRaster is returned
rc2 <- classify(r, c(0, 0.25, 0.5, 1), include.lowest=TRUE, brackets=TRUE)
freq(rc2)

is-becomes
x <- round(r*3)
unique(x)
replace 0 with NA
y <- classify(x, cbind(0, NA))
unique(y)

multiple replacements
m <- rbind(c(2, 200), c(3, 300))
m

rcx1 <- classify(x, m)

click 67

unique(rcx1)

rcx2 <- classify(x, m, others=NA)
unique(rcx2)

click Query by clicking on a map

Description

Click on a map (plot) to get the coordinates or the values of a SpatRaster or SpatVector at that
location. For a SpatRaster you can also get the coordinates and cell number of the location.

Note that for many installations this does to work well on the default RStudio plotting device. To
work around that, you can first run dev.new(noRStudioGD = TRUE) which will create a separate
window for plotting, then use plot() followed by click() and click on the map. It may also help
to set your RStudio "Tools/Global Options/Appearance/Zoom" to 100

Usage

S4 method for signature 'SpatRaster'
click(x, n=10, id=FALSE, xy=FALSE, cell=FALSE, type="p", show=TRUE, ...)

S4 method for signature 'SpatVector'
click(x, n=10, id=FALSE, xy=FALSE, type="p", show=TRUE, ...)

S4 method for signature 'missing'
click(x, n=10, id=FALSE, type="p", show=TRUE, ...)

Arguments

x SpatRaster or SpatVector, or missing
n number of clicks on the plot (map)
id logical. If TRUE, a numeric ID is shown on the map that corresponds to the row

number of the output
xy logical. If TRUE, xy coordinates are included in the output
cell logical. If TRUE, cell numbers are included in the output
type one of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or "o" they

are joined by lines. See locator

show logical. Print the values after each click?
... additional graphics parameters used if type != "n" for plotting the locations. See

locator

Value

The value(s) of x at the point(s) clicked on (or touched by the box drawn). A data.frame with
the value(s) of all layers of SpatRaster x for the cell(s) clicked on; or with the attributes of the
geometries of SpatVector x that intersect with the box drawn).

68 coerce

Note

The plot only provides the coordinates for a spatial query, the values are read from the SpatRaster
or SpatVector that is passed as an argument. Thus, you can extract values from an object that has
not been plotted, as long as it spatially overlaps with the extent of the plot.
Unless the process is terminated prematurely values at most n positions are determined. The iden-
tification process can be terminated, depending on how you interact with R, by hitting Esc, or by
clicking the right mouse button and selecting "Stop" from the menu, or from the "Stop" menu on
the graphics window.

See Also

draw

Examples

Not run:
r <-rast(system.file("ex/elev.tif", package="terra"))
plot(r)
click(r, n=1)
now click on the plot (map)

End(Not run)

coerce Coercion to vector, matrix or array

Description

Coercion of a SpatRaster to a vector, matrix or array. Or coerce a SpatExtent to a vector or matrix

Usage

S4 method for signature 'SpatRaster'
as.vector(x, mode='any')

S4 method for signature 'SpatRaster'
as.matrix(x, wide=FALSE, ...)

S4 method for signature 'SpatRaster'
as.array(x)

S4 method for signature 'SpatRasterDataset'
as.array(x)

S4 method for signature 'SpatExtent'
as.vector(x, mode='any')

S4 method for signature 'SpatExtent'
as.matrix(x, ...)

colors 69

Arguments

x SpatRaster or SpatVector
wide logical. If FALSE each layer in the SpatRaster becomes a column in the matrix

and each cell in the SpatRaster becomes a row. If TRUE each row in the Spa-
tRaster becomes a row in the matrix and each column in the SpatRaster becomes
a column in the matrix

mode this argument is ignored
... additional arguments (none implemented)

Value

vector, matrix, or array

See Also

as.data.frame and as.polygons

Examples

r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

as.vector(r)
as.matrix(r)
as.matrix(r, wide=TRUE)
as.data.frame(r, xy=TRUE)
as.array(r)

as.vector(ext(r))
as.matrix(ext(r))

colors Color table

Description

Get or set color table(s) associated with a SpatRaster. Color tables are used for associating colors
with values, for use in mapping (plot).

Usage

S4 method for signature 'SpatRaster'
coltab(x)

S4 replacement method for signature 'SpatRaster'
coltab(x, ..., layer=1)<-value

S4 method for signature 'SpatRaster'
has.colors(x)

70 combineGeoms

Arguments

x SpatRaster
layer positive integer, the layer number or name
value a two-column data.frame (first column the cell value, the second column the

color); a vector of colors (the first one is the color for value 0 and so on); or
a four (value,red,green,blue) or five (including alpha) column data.frame also
from 0 to n; or NULL to remove the color table. You can also supply a list of
such data.frames to set a color table to all layers

... additional arguments (none implemented)

Value

data.frame

Examples

r <- rast(ncols=3, nrows=2, vals=1:6)
x <- c(r, r)
names(x) <- c("A", "B")

coltb <- data.frame(value=1:6, col=rainbow(6, end=.9))
coltb

plot(r)

has.colors(r)
coltab(r) <- coltb
plot(r)
has.colors(r)

tb <- coltab(r)
class(tb)
dim(tb[[1]])

coltab(x, layer="B") <- coltb

combineGeoms Combine geometries

Description

Combine the geometries of one SpatVector with those of another. Geometries can be combined
based on overlap, shared boundaries and distance (in that order of operation).

The typical use-case of this method is when you are editing geometries and you have a number of
small polygons in one SpatVector that should be part of the geometries of the another SpatVector;
perhaps because they were small holes inbetween the borders of two SpatVectors.

To append SpatVectors use ‘rbind‘ and see methods like intersect and union for "normal" poly-
gons combinations.

combineGeoms 71

Usage

S4 method for signature 'SpatVector,SpatVector'
combineGeoms(x, y, overlap=TRUE, boundary=TRUE, distance=TRUE,
append=TRUE, minover=0.1, maxdist=Inf, dissolve=TRUE, erase=TRUE)

Arguments

x SpatVector of polygons

y SpatVector of polygons geometries that are to be combined with x

overlap logical. If TRUE, a geometry is combined with the geometry it has most overlap
with, if the overlap is above minover

boundary logical. If TRUE, a geometry is combined with the geometry it has most shared
border with

distance logical. If TRUE, a geometry is combined with the geometry it is nearest to

append logical. Should remaining geometries be appended to the output? Not relevant
if distance=TRUE

minover numeric. The fraction of the geometry in y that overlaps with a geometry in x.
Below this threshold, geometries are not considered overlapping

maxdist numeric. Geometries further away from each other than this distance (in meters)
will not be combined

dissolve logical. Should internal boundaries be dissolved?

erase logical. If TRUE no new overlapping areas are created

Value

SpatVector

See Also

union, erase, intersect, sharedPaths, aggregate, rbind

Examples

x1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
x2 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")

y1 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
y2 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
y3 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
y4 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")

x <- rbind(x1, x2)
values(x) <- data.frame(xid=1:2)
crs(x) <- "+proj=utm +zone=1"

y <- rbind(y1, y2, y3, y4)
values(y) <- data.frame(yid=letters[1:4])

72 Compare-methods

crs(y) <- "+proj=utm +zone=1"

plot(rbind(x, y), border=c(rep("red",2), rep("blue", 4)), lwd=2)
text(x, "xid")
text(y, "yid")

v <- combineGeoms(x, y)
plot(v, col=c("red", "blue"))

v <- combineGeoms(x, y, boundary=FALSE, maxdist=1, minover=.05)
plot(v, col=rainbow(4))

Compare-methods Compare and logical methods

Description

Standard comparison and logical operators for computations with SpatRasters. Computations are
local (applied on a cell by cell basis). If multiple SpatRasters are used, these must have the same
geometry (extent and resolution). These operators have been implemented:

Logical: !, &, |, isTRUE, isFALSE
Compare: ==, !=, >, <, <=, >=, is.na, is.nan, is.finite, is.infinite

See not.na for the inverse of is.na, and noNA to detect cells with missing value across layers.

The compare and logic methods implement these operators in a method that can return NA istead
of FALSE and allows for setting an output filename.

The terra package does not distinguish between NA (not available) and NaN (not a number). In most
cases this state is represented by NaN.

If you use a SpatRaster with a vector of multiple numbers, each element in the vector is considered
a layer (with a constant value). If you use a SpatRaster with a matrix, the number of columns of the
matrix must match the number of layers of the SpatRaster. The rows are used to match the cells.
That is, if there are two rows, these match cells 1 and 2, and they are recycled to 3 and 4, etc.

The following method has been implemented for (SpatExtent, SpatExtent): ==

Usage

S4 method for signature 'SpatRaster'
compare(x, y, oper, falseNA=FALSE, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatRaster'
logic(x, oper, falseNA=FALSE, filename="", overwrite=FALSE, ...)

Arguments

x SpatRaster

y SpatRaster or numeric

compareGeom 73

oper character. Operator name. For compare this can be one of "==", "!=", ">",
"<", ">=", "<=" and for logic it can be one of "!", "is.na", "not.na",
"allNA", "anyNA", "noneNA", "is.infinite", "is.finite", "iSTRUE", "isFALSE"

falseNA logical. Should the result be TRUE, NA instead of TRUE, FALSE?

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

all.equal, Arith-methods. See ifel to conveniently combine operations and Math-methods or
app to apply any R function to a SpatRaster.

Examples

r1 <- rast(ncols=10, nrows=10)
values(r1) <- runif(ncell(r1))
r1[10:20] <- NA
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)

x <- is.na(r1)
!x
r1 == r2
compare(r1, r2, "==")
compare(r1, r2, "==", TRUE)

compareGeom Compare geometries

Description

Evaluate whether two SpatRasters have the same extent, number of rows and columns, projection,
resolution, and origin (or a subset of these comparisons).

Or evaluate whether two SpatVectors have the same geometries, or whether a SpatVector has dupli-
cated geometries.

74 compareGeom

Usage

S4 method for signature 'SpatRaster,SpatRaster'
compareGeom(x, y, ..., lyrs=FALSE, crs=TRUE, warncrs=FALSE, ext=TRUE,
rowcol=TRUE, res=FALSE, stopOnError=TRUE, messages=FALSE)

S4 method for signature 'SpatVector,SpatVector'
compareGeom(x, y, tolerance=0)

S4 method for signature 'SpatVector,missing'
compareGeom(x, y, tolerance=0)

Arguments

x SpatRaster or SpatVector

y Same as x. If x is a SpatRaster, y can also be a list of SpatRasters. If x is a
SpatVector, y can be missing

... Additional SpatRasters

lyrs logical. If TRUE, the number of layers is compared

crs logical. If TRUE, coordinate reference systems are compared

warncrs logical. If TRUE, a warning is given if the crs is different (instead of an error)

ext logical. If TRUE, bounding boxes are compared

rowcol logical. If TRUE, number of rows and columns of the objects are compared

res logical. If TRUE, resolutions are compared (redundant when checking extent and
rowcol)

stopOnError logical. If TRUE, code execution stops if raster do not match

messages logical. If TRUE, warning/error messages are printed even if stopOnError=FALSE

tolerance numeric

Value

logical (SpatRaster) or matrix of logical (SpatVector)

Examples

r1 <- rast()
r2 <- rast()
r3 <- rast()
compareGeom(r1, r2, r3)
nrow(r3) <- 10

Not run:
compareGeom(r1, r3)

End(Not run)

concats 75

concats Concatenate categorical rasters

Description

Combine two categorical rasters by concatenating their levels.

Usage

S4 method for signature 'SpatRaster'
concats(x, y, filename="", ...)

Arguments

x SpatRaster (with a single, categorical, layer)

y SpatRaster (with a single, categorical, layer)

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

cats

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE)
levels(r) <- data.frame(id=1:3, cover=c("forest", "water", "urban"))

rr <- rast(r)
values(rr) <- sample(1:3, ncell(rr), replace=TRUE)
levels(rr) <- data.frame(id=c(1:3), color=c("red", "green", "blue"))

x <- concats(r, rr)
x
levels(x)[[1]]

76 contour

contour Contour plot

Description

Contour lines (isolines) of a SpatRaster. Use add=TRUE to add the lines to the current plot. See
graphics::contour for details.

if filled=TRUE, a new filled contour plot is made. See graphics::filled.contour for details.

as.contour returns the contour lines as a SpatVector.

Usage

S4 method for signature 'SpatRaster'
contour(x, maxcells=100000, filled=FALSE, ...)

S4 method for signature 'SpatRaster'
as.contour(x, maxcells=100000, ...)

Arguments

x SpatRaster. Only the first layer is used

maxcells maximum number of pixels used to create the contours

filled logical. If TRUE, a filled.contour plot is made

... any argument that can be passed to contour or filled.contour (graphics
package)

See Also

plot

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
plot(r)
contour(r, add=TRUE)

v <- as.contour(r)
plot(r)
lines(v)

contour(r, filled=TRUE, nlevels=5)

if you want a SpatVector with contour lines
template <- disagg(rast(r), 10)
rr <- resample(r, template)
rr <- floor(rr/100) * 100
v <- as.polygons(rr)

costDist 77

plot(v, 1, col=terrain.colors(7))

to combine filled contours with contour lines (or other spatial data)

br <- seq(100, 600, 100)
plot(r, breaks=br)
lines(as.contour(r, levels=br))

or
x <- as.polygons(classify(r, br))
plot(x, "elevation")

costDist Cost-distance

Description

Use a friction (cost) surface to compute the cost-distance from any cell to the border of one or more
target cells.

Distances are computed by summing local distances between cells, which are connected with their
neighbors in 8 directions, and assuming that the path has to go through the centers of one of the
neighboring raster cells.

Distances are multiplied with the friction, thus to get the cost-distance, the friction surface must
express the cost per unit distance (speed) of travel.

Usage

S4 method for signature 'SpatRaster'
costDist(x, target=0, scale=1, maxiter=50, filename="", ...)

Arguments

x SpatRaster

target numeric. value of the target cells (where to compute cost-distance to)

scale numeric. Scale factor. The cost distance is divided by this number

maxiter numeric. The maximum number of iterations. Increase this number if you get
the warning that costDistance did not converge

filename character. output filename (optional)

... additional arguments as for writeRaster

Value

SpatRaster

78 cover

See Also

gridDist, distance

Examples

r <- rast(ncols=5, nrows=5, crs="+proj=utm +zone=1 +datum=WGS84",
xmin=0, xmax=5, ymin=0, ymax=5, vals=1)
r[13] <- 0
d <- costDist(r)
plot(d)
text(d, digits=1)

r <- rast(ncols=10, nrows=10, xmin=0, xmax=10, ymin=0, ymax=10,
vals=10, crs="+proj=utm +zone=1 +datum=WGS84")

r[5, 1] <- -10
r[2:3, 1] <- r[1, 2:4] <- r[2, 5] <- 0
r[3, 6] <- r[2, 7] <- r[1, 8:9] <- 0
r[6, 6:10] <- NA
r[6:9, 6] <- NA

d <- costDist(r, -10)
plot(d)
text(d, digits=1, cex=.8)

cover Replace values with values from another object

Description

Replace missing (NA) or other values in SpatRaster x with the values of SpatRaster y. Or replace
missing values in the first layer with the first value encountered in other layers.

For polygons: areas of x that overlap with y are replaced by y or, if identity=TRUE intersected
with y.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
cover(x, y, values=NA, filename="", ...)

S4 method for signature 'SpatRaster,missing'
cover(x, y, values=NA, filename="", ...)

S4 method for signature 'SpatVector,SpatVector'
cover(x, y, identity=FALSE, expand=TRUE)

crds 79

Arguments

x SpatRaster or SpatVector

y Same as x or missing if x is a SpatRaster

values numeric. The cell values in x to be replaced by the values in y

filename character. Output filename

... additional arguments for writing files as in writeRaster

identity logical. If TRUE overlapping areas are intersected rather than replaced

expand logical. Should parts of y that are outside of x be included?

Value

SpatRaster

Examples

r1 <- r2 <- rast(ncols=36, nrows=18)
values(r1) <- 1:ncell(r1)
values(r2) <- runif(ncell(r2))
r2 <- classify(r2, cbind(-Inf, 0.5, NA))
r3 <- cover(r2, r1)

p <- vect(system.file("ex/lux.shp", package="terra"))
e <- as.polygons(ext(6, 6.4, 49.75, 50))
values(e) <- data.frame(y=10)

cv <- cover(p, e)
plot(cv, col=rainbow(12))
ci <- cover(p, e, identity=TRUE)
lines(e, lwd=3)

plot(ci, col=rainbow(12))
lines(e, lwd=3)

crds Get the coordinates of SpatVector geometries or SpatRaster cells

Description

Get the coordinates of a SpatVector or SpatRaster cells. A matrix or data.frame of the x (longitude)
and y (latitude) coordinates is returned.

80 crds

Usage

S4 method for signature 'SpatVector'
crds(x, df=FALSE, list=FALSE)

S4 method for signature 'SpatRaster'
crds(x, df=FALSE, na.rm=TRUE, na.all=FALSE)

Arguments

x SpatRaster or SpatVector

df logical. If TRUE a data.frame is returned instead of a matrix

list logical. If TRUE a list is returned instead of a matrix

na.rm logical. If TRUE cells that are NA are excluded. Ignored if the SpatRaster is a
template with no associated cell values

na.all logical. If TRUE cells are only ignored if na.rm=TRUE and their value is NA for
all layers instead of for any layer

Value

matrix or data.frame

See Also

geom returns the complete structure of SpatVector geometries. For SpatRaster see xyFromCell

Examples

x1 <- rbind(c(-175,-20), c(-140,55), c(10, 0), c(-140,-60))
x2 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
x3 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x4 <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z <- rbind(cbind(object=1, part=1, x1), cbind(object=2, part=1, x2),

cbind(object=3, part=1, x3), cbind(object=3, part=2, x4))
colnames(z)[3:4] <- c('x', 'y')
z <- cbind(z, hole=0)
z[(z[, "object"]==3 & z[,"part"]==2), "hole"] <- 1

p <- vect(z, "polygons")
crds(p)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
g <- crds(v)
head(g)

crop 81

crop Cut out a geographic subset

Description

Cut out a part of a SpatRaster or SpatVector.

You can crop a SpatRaster with a SpatExtent, or with another object from which an extent can
be obtained. Note that the SpatRaster returned may not have the exactly the same extent as the
SpatExtent supplied because you can only select entire cells (rows and columns), and you cannot
add new areas. See methods like resample and disagg to force SpatRasters to align and extend to
add rows and/or columns.

You can only crop rectangular areas of a SpatRaster, but see argument mask=TRUE for setting cell
values within SpatRaster to NA; or use the mask method after crop for additional masking options.

You can crop a SpatVector with another SpatVector. If these are not polygons, the minimum convex
hull is used. Unlike with intersect the geometries and attributes of y are not transferred to the
output. You can also crop a SpatVector with a rectangle (SpatRaster, SpatExtent).

Usage

S4 method for signature 'SpatRaster'
crop(x, y, snap="near", mask=FALSE, touches=TRUE, extend=FALSE, filename="", ...)

S4 method for signature 'SpatRasterDataset'
crop(x, y, snap="near", extend=FALSE)

S4 method for signature 'SpatRasterCollection'
crop(x, y, snap="near", extend=FALSE)

S4 method for signature 'SpatVector'
crop(x, y, ext=FALSE)

S4 method for signature 'SpatGraticule'
crop(x, y)

Arguments

x SpatRaster or SpatVector

y SpatRaster, SpatVector, SpatExtent, or any other object that has a SpatExtent
(ext returns a SpatExtent)

snap character. One of "near", "in", or "out". Used to align y to the geometry of x

mask logical. Should y be used to mask? Only used if y is a SpatVector, SpatRaster
or sf

touches logical. If TRUE and mask=TRUE, all cells touched by lines or polygons will be
masked, not just those on the line render path, or whose center point is within
the polygon

82 crosstab

extend logical. Should rows and/or columns be added if y is beyond the extent of x?
Also see extend

filename character. Output filename

... additional arguments for writing files as in writeRaster

ext logical. Use the extent of y instead of y. This also changes the behavior when y
is an extent in two ways: (1) points that are on the extent boundary are removed
and (2) lon/lat extents that go beyond -180 or 180 degrees longitude are wrapped
around the earth to include areas at the other end of the dateline

Value

SpatRaster

See Also

intersect, extend

See window for a virtual and sometimes more efficient way to crop a dataset.

Examples

r <- rast(xmin=0, xmax=10, ymin=0, ymax=10, nrows=25, ncols=25)
values(r) <- 1:ncell(r)
e <- ext(-5, 5, -5, 5)
rc <- crop(r, e)

crop and mask
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
cm <- crop(r, v[9:12,], mask=TRUE)
plot(cm)
lines(v)

crop vector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(6.15, 6.3, 49.7, 49.8)
x <- crop(v, e)
plot(x, "NAME_1")

crosstab Cross-tabulate

Description

Cross-tabulate the layers of a SpatRaster to create a contingency table.

crs 83

Usage

S4 method for signature 'SpatRaster,missing'
crosstab(x, digits=0, long=FALSE, useNA=FALSE)

Arguments

x SpatRaster

digits integer. The number of digits for rounding the values before cross-tabulation

long logical. If TRUE the results are returned in ’long’ format data.frame instead of a
table

useNA logical, indicting if the table should includes counts of NA values

Value

A table or data.frame

See Also

freq, zonal

Examples

r <- s <- rast(nc=5, nr=5)
set.seed(1)
values(r) <- runif(ncell(r)) * 2
values(s) <- runif(ncell(r)) * 3
x <- c(r, s)

crosstab(x)

rs <- r/s
r[1:5] <- NA
s[20:25] <- NA
x <- c(r, s, rs)
crosstab(x, useNA=TRUE, long=TRUE)

crs Get or set a coordinate reference system

Description

Get or set the coordinate reference system (CRS), also referred to as a "projection", of a SpatRaster
or SpatVector.

Setting a new CRS does not change the data itself, it just changes the label. So you should only set
the CRS of a dataset (if it does not come with one) to what it *is*, not to what you would *like it to
be*. See project to *transform* an object from one CRS to another.

84 crs

Usage

S4 method for signature 'SpatRaster'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)

S4 method for signature 'SpatVector'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)

S4 method for signature 'character'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)

S4 replacement method for signature 'SpatRaster'
crs(x, warn=FALSE)<-value

S4 replacement method for signature 'SpatVector'
crs(x, warn=FALSE)<-value

Arguments

x SpatRaster or SpatVector

proj logical. If TRUE the crs is returned in PROJ-string notation

describe logical. If TRUE the name, EPSG code, and the name and extent of the area of
use are returned if known

warn logical. If TRUE, a message is printed when the object already has a non-empty
crs

value character string describing a coordinate reference system. This can be in a WKT
format, as a <authority:number> code such as "EPSG:4326", or a PROJ-string
format such as "+proj=utm +zone=12" (see Note)

parse logical. If TRUE, wkt parts are parsed into a vector (each line becomes an ele-
ment)

Value

character or modified SpatRaster/Vector

Note

Projections are handled by the PROJ/GDAL libraries. The PROJ developers suggest to define a CRS
with the WKT2 or <authority>:<code> notation. It is not practical to define one’s own custom CRS
with WKT2, and the the <authority>:<code> system only covers a handful of (commonly used)
CRSs. To work around this problem it is still possible to use the deprecated PROJ-string notation
(+proj=...) with one major caveat: the datum should be WGS84 (or the equivalent NAD83) – if
you want to transform your data to a coordinate reference system with a different datum. Thus as
long as you use WGS84, or an ellipsoid instead of a datum, you can safely use PROJ-strings to
represent your CRS; including to define your own custom CRS.

You can also set the crs to "local" to get an informal coordinate system on an arbitrary Euclidean
(Cartesian) plane with units in meter.

datatype 85

Examples

r <- rast()
crs(r)
crs(r, describe=TRUE, proj=TRUE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
crs(r)

You can use epsg codes
crs(r) <- "epsg:25831"
crs(r, describe=TRUE)$area

crs("epsg:25831", describe=TRUE)

datatype Data type of a SpatRaster or SpatVector

Description

Get the data types of the fields (attributes, variables) of a SpatVector or of the file(s) associated with
a SpatRaster. A (layer of a) SpatRaster has no datatype if it has no values, or if the values are in
memory.

Usage

S4 method for signature 'SpatRaster'
datatype(x, bylyr=TRUE)

S4 method for signature 'SpatVector'
datatype(x)

Arguments

x SpatRaster or SpatVector

bylyr logical. If TRUE a value is returned for each layer. Otherwise, a value is returned
for each data source (such as a file)

Details

Setting the data type is useful if you want to write values to disk with writeRaster. In other cases
you can use functions such as round and floor, or as.bool

raster datatypes are described by 5 characters. The first three indicate whether the values are integer
or decimal values. The fourth character indicates the number of bytes used to save the values on
disk, and the last character indicates whether the numbers are signed (that is, can be negative and
positive values) or not (only zero and positive values allowed)

The following raster datatypes are available:

86 datatype

Datatype definition minimum possible value maximum possible value
INT1U 0 255
INT2U 0 65,535
INT4U 0 4,294,967,296
INT8U 0 18,446,744,073,709,551,616
INT1S -128 128
INT2S -32,767 32,767
INT4S -2,147,483,647 2,147,483,647
INT8S -9,223,372,036,854,775,808 9,223,372,036,854,775,808
FLT4S -3.4e+38 3.4e+38
FLT8S -1.7e+308 1.7e+308

For all integer and byte types the lowest (signed) or highest (unsigned) value is used to store NA. For
float types NaN is used (following the IEEE 754 standard).

Note that very large integer numbers may be imprecise as they are internally represented as decimal
numbers.

Also note that NaN may not be equally supported by all implementations. For example OGR SQL
and SQLite queries generally convert NaN values to NULL.

INT4U and INT8U are available but they are best avoided as R does not support 32-bit or 64-bit
unsigned integers. INT8U is a special case where the NA store value is 18446744073709549568
(UINT64_MAX - 1101) because of precision in decimal representation.

INT8U and INT8S require GDAL version 3.5 or higher. INT1S requires GDAL version 3.7 or higher.

Value

character

See Also

Raster data types to check / set the type of SpatRaster values.

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
datatype(v)

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
datatype(r)

no data type
datatype(rast())

deepcopy 87

deepcopy Deep copy

Description

Make a deep copy of a SpatRaster or SpatVector. This is occasionally useful when using an in-place
replacement function that does not make copy, such as set.ext.

Usage

S4 method for signature 'SpatRaster'
deepcopy(x)

S4 method for signature 'SpatVector'
deepcopy(x)

Arguments

x SpatRaster or SpatVector

Value

Same as x

Examples

r <- rast(ncols=10, nrows=10, nl=3)
x <- r
y <- deepcopy(r)
ext(r)
set.ext(x, c(0,10,0,10))
ext(x)
ext(r)
ext(y)

densify Add additional nodes to lines or polygons

Description

Add additional nodes to lines or polygons. This can be useful to do prior to using project such
that the path does not change too much.

Usage

S4 method for signature 'SpatVector'
densify(x, interval, equalize=TRUE, flat=FALSE)

88 densify

Arguments

x SpatVector

interval positive number, specifying the desired minimum distance between nodes. The
unit is meter for lonlat data, and in the linear unit of the crs for planar data

equalize logical. If TRUE, new nodes are spread at equal intervals between old nodes

flat logical. If TRUE, the earth’s curvature is ignored for lonlat data, and the distance
unit is degrees, not meter

Value

SpatVector

See Also

simplifyGeom

Examples

v <- vect(rbind(c(-120,-20), c(-80,5), c(-40,-60), c(-120,-20)),
type="polygons", crs="+proj=longlat")

vd <- densify(v, 200000)

p <- project(v, "+proj=robin")
pd <- project(vd, "+proj=robin")

good
plot(pd, col="gray", border="red", lwd=10)
points(pd, col="gray")

bad
lines(p, col="blue", lwd=3)
points(p, col="blue", cex=2)
plot(p, col="blue", alpha=.1, add=TRUE)
legend("topright", c("good", "bad"), col=c("red", "blue"), lty=1, lwd=3)

the other way around does not work
unless the original data was truly planar (e.g. derived from a map)
x <- densify(p, 250000)
y <- project(x, "+proj=longlat")
bad
plot(y)
good
lines(vd, col="red")

density 89

density Density plot

Description

Create density plots of the cell values of a SpatRaster

Usage

S4 method for signature 'SpatRaster'
density(x, maxcells=100000, plot=TRUE, main, ...)

Arguments

x SpatRaster
maxcells the maximum number of (randomly sampled) cells to be used for creating the

plot
plot if TRUE produce a plot, else return a density object
main character. Caption of plot(s)
... additional arguments passed to plot

Value

density plot (and a density object, returned invisibly if plot=TRUE)

Examples

logo <- rast(system.file("ex/logo.tif", package="terra"))
density(logo)

deprecated deprecated methods

Description

This method is no longer available. Use gridDist instead

Usage

S4 method for signature 'SpatRaster'
gridDistance(x, ...)

Arguments

x object
... additional arguments

90 depth

depth depth of SpatRaster layers

Description

Get or set the depth of the layers of a SpatRaster. Experimental.

Usage

S4 method for signature 'SpatRaster'
depth(x)

S4 replacement method for signature 'SpatRaster'
depth(x)<-value

S4 method for signature 'SpatRaster'
depthName(x)

S4 replacement method for signature 'SpatRaster'
depthName(x)<-value

S4 method for signature 'SpatRaster'
depthUnit(x)

S4 replacement method for signature 'SpatRaster'
depthUnit(x)<-value

Arguments

x SpatRaster

value numeric vector (depth), or character (depthName and depthUnit)

Value

numeric or SpatRaster

See Also

time

Examples

s <- rast(nlyr=3)

depth(s) <- c(0, pi/2, pi)
depth(s)

depthName(s) <- "angle"

describe 91

depthUnit(s) <- "radians"
s

describe describe

Description

Describe the properties of spatial data in a file as generated with the "GDALinfo" tool.

Usage

S4 method for signature 'character'
describe(x, sds=FALSE, meta=FALSE, parse=FALSE, options="", print=FALSE, open_opt="")

S4 method for signature 'SpatRaster'
describe(x, source, ...)

Arguments

x character. The name of a file with spatial data. Or a fully specified subdataset
within a file such as "NETCDF:\"AVHRR.nc\":NDVI"

sds logical. If TRUE the description or metadata of the subdatasets is returned (if
available)

meta logical. Get the file level metadata instead

parse logical. If TRUE, metadata for subdatasets is parsed into components (if meta=TRUE)

options character. A vector of valid options (if meta=FALSE) including "json", "mm",
"stats", "hist", "nogcp", "nomd", "norat", "noct", "nofl", "checksum", "proj4",
"listmdd", "mdd <value>" where <value> specifies a domain or ’all’, "wkt_format
<value>" where value is one of ’WKT1’, ’WKT2’, ’WKT2_2015’, or ’WKT2_2018’,
"sd <subdataset>" where <subdataset> is the name or identifier of a sub-dataset.
See https://gdal.org/en/latest/programs/gdalinfo.html. Ignored if sds=TRUE

print logical. If TRUE, print the results

open_opt character. Driver specific open options

source positive integer between 1 and nsrc(x)

... additional arguments passed to the describe<character> method

Value

character (invisibly, if print=FALSE)

See Also

ar_info

https://gdal.org/en/latest/programs/gdalinfo.html

92 diff

Examples

f <- system.file("ex/elev.tif", package="terra")
describe(f)
describe(f, meta=TRUE)
#g <- describe(f, options=c("json", "nomd", "proj4"))
#head(g)

diff Lagged differences

Description

Compute the difference between consecutive layers in a SpatRaster.

Usage

S4 method for signature 'SpatRaster'
diff(x, lag=1, filename="", ...)

Arguments

x SpatRaster

lag positive integer indicating which lag to use

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
d <- diff(s)

dimensions 93

dimensions Dimensions of a SpatRaster or SpatVector and related objects

Description

Get the number of rows (nrow), columns (ncol), cells (ncell), layers (nlyr), sources (nsrc), the
size size (nlyr(x)*ncell(x)), or spatial resolution of a SpatRaster.

length returns the number of sub-datasets in a SpatRasterDataset or SpatVectorCollection.

For a SpatVector length(x) is the same as nrow(x).

You can also set the number of rows or columns or layers. When setting dimensions, all cell values
are dropped.

Usage

S4 method for signature 'SpatRaster'
ncol(x)

S4 method for signature 'SpatRaster'
nrow(x)

S4 method for signature 'SpatRaster'
nlyr(x)

S4 method for signature 'SpatRaster'
ncell(x)

S4 method for signature 'SpatRaster'
nsrc(x)

S4 replacement method for signature 'SpatRaster,numeric'
ncol(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
nrow(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
nlyr(x)<-value

S4 method for signature 'SpatRaster'
res(x)

S4 replacement method for signature 'SpatRaster,numeric'
res(x)<-value

S4 method for signature 'SpatRaster'
xres(x)

94 dimensions

S4 method for signature 'SpatRaster'
yres(x)

S4 method for signature 'SpatVector'
ncol(x)

S4 method for signature 'SpatVector'
nrow(x)

S4 method for signature 'SpatVector'
length(x)

Arguments

x SpatRaster or SpatVector or related objects

value For ncol and nrow: positive integer. For res: one or two positive numbers

Value

integer

See Also

ext

Examples

r <- rast()
ncol(r)
nrow(r)
nlyr(r)
dim(r)
nsrc(r)
ncell(r)

rr <- c(r,r)
nlyr(rr)
nsrc(rr)
ncell(rr)

nrow(r) <- 18
ncol(r) <- 36
equivalent to
dim(r) <- c(18, 36)

dim(r)
dim(r) <- c(10, 10, 5)
dim(r)

direction 95

xres(r)
yres(r)
res(r)

res(r) <- 1/120
different xres and yres
res(r) <- c(1/120, 1/60)

direction Direction

Description

The direction (azimuth) to or from the nearest cell that is not NA. The direction is expressed in
radians, unless you use argument degrees=TRUE.

Usage

S4 method for signature 'SpatRaster'
direction(x, from=FALSE, degrees=FALSE, method="cosine", filename="", ...)

Arguments

x SpatRaster

from Logical. Default is FALSE. If TRUE, the direction from (instead of to) the nearest
cell that is not NA is returned

degrees Logical. If FALSE (the default) the unit of direction is radians.

method character. Should be "geo", or "cosine". With "geo" the most precise but slower
geodesic method of Karney (2003) is used. The "cosine" method is faster but
less precise

filename Character. Output filename (optional)

... Additional arguments as for writeRaster

Value

SpatRaster

See Also

distance

96 disagg

Examples

r <- rast(ncol=36,nrow=18, crs="+proj=merc")
values(r) <- NA
r[306] <- 1
b <- direction(r, degrees=TRUE)
plot(b)

crs(r) <- "+proj=longlat"
b <- direction(r)
plot(b)

disagg Disaggregate raster cells or vector geometries

Description

SpatRaster: Create a SpatRaster with a higher resolution (smaller cells). The values in the new
SpatRaster are the same as in the larger original cells.

SpatVector: Separate multi-objects (points, lines, polygons) into single objects; or further into
segments (for lines or polygons).

Usage

S4 method for signature 'SpatRaster'
disagg(x, fact, method="near", filename="", ...)

S4 method for signature 'SpatVector'
disagg(x, segments=FALSE)

Arguments

x SpatRaster or SpatVector

fact positive integer. Aggregation factor expressed as number of cells in each di-
rection (horizontally and vertically). Or two integers (horizontal and vertical
aggregation factor) or three integers (when also aggregating over layers)

method character. Either "near" for nearest or "bilinear" for bilinear interpolation

segments logical. Should (poly-)lines or polygons be disaggregated into their line-segments?

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

distance 97

See Also

aggregate, resample

Examples

r <- rast(ncols=10, nrows=10)
rd <- disagg(r, fact=c(10, 2))
ncol(rd)
nrow(rd)
values(r) <- 1:ncell(r)
rd <- disagg(r, fact=c(4, 2))

distance Geographic distance

Description

If x is a SpatRaster:

If y is missing this method computes the distance, for all cells that are NA in SpatRaster x to the
nearest cell that is not NA (or other values, see arguments "target" and "exclude").

If y is a numeric value, the cells with that value are ignored. That is, distance to or from these cells
is not computed.

If y is a SpatVector, the distance to that SpatVector is computed for all cells, optionally after raster-
ization.

The distance is always expressed in meter if the coordinate reference system is longitude/latitude,
and in map units otherwise. Map units are typically meter, but inspect crs(x) if in doubt.

Results are more precise, sometimes much more precise, when using longitude/latitude rather than
a planar coordinate reference system, as these distort distance.

If x is a SpatVector:

If y is missing, a distance matrix between all objects in x is computed. A distance matrix object of
class "dist" is returned.

If y is a SpatVector, the geographic distance between all objects is computed (and a matrix is
returned). If both sets have the same number of points, and pairwise=TRUE, the distance between
each pair of objects is computed, and a vector is returned.

If x is a matrix:

x should consist of two columns, the first with "x" (or longitude) and the second with "y" coordinates
(or latitude). If y is a also a matrix, the distance between each point in x and all points in y is
computed, unless pairwise=TRUE

If y is missing, the distance between each point in x with all other points in x is computed, unless
sequential=TRUE

98 distance

Usage

S4 method for signature 'SpatRaster,missing'
distance(x, y, target=NA, exclude=NULL, unit="m", method="haversine",
maxdist=NA, values=FALSE, filename="", ...)

S4 method for signature 'SpatRaster,SpatVector'
distance(x, y, unit="m", rasterize=FALSE, method="haversine", filename="", ...)

S4 method for signature 'SpatVector,SpatVector'
distance(x, y, pairwise=FALSE, unit="m", method="haversine",
use_nodes=FALSE, names=NULL)

S4 method for signature 'SpatVector,ANY'
distance(x, y, sequential=FALSE, pairs=FALSE, symmetrical=TRUE, unit="m",
method="haversine", use_nodes=FALSE, names=NULL)

S4 method for signature 'matrix,matrix'
distance(x, y, lonlat, pairwise=FALSE, unit="m", method="geo")

S4 method for signature 'matrix,missing'
distance(x, y, lonlat, sequential=FALSE, pairs=FALSE, symmetrical=TRUE,
unit="m", method="geo")

Arguments

x SpatRaster, SpatVector, or two-column matrix with coordinates (x,y or lon,lat)

y missing, numeric, SpatVector, or two-column matrix

target numeric. The value of the cells for which distances to cells that are not NA should
be computed

exclude numeric. The value of the cells that should not be considered for computing
distances

unit character. Can be either "m" or "km"

method character. One of "geo", "cosine" or "haversine". With "geo" the most precise
but slower method of Karney (2003) is used. The other two methods are faster
but less precise

maxdist numeric. Distances above this value are set to NA

values logical. If TRUE, the value of the nearest non-target cell is returned instead of the
distance to that cell

rasterize logical. If TRUE distance is computed from the cells covered by the geometries
after rasterization. This can be much faster in some cases

filename character. Output filename

... additional arguments for writing files as in writeRaster

sequential logical. If TRUE, the distance between sequential geometries is returned

pairwise logical. If TRUE and if x and y have the same size (number of rows), the pairwise
distances are returned instead of the distances between all elements

distance 99

lonlat logical. If TRUE the coordinates are interpreted as angular (longitude/latitude).
If FALSE they are interpreted as planar

pairs logical. If TRUE a "from", "to", "distance" matrix is returned

symmetrical logical. If TRUE and pairs=TRUE, the distance between a pair is only included
once. The distance between geometry 1 and 3 is included, but the (same) dis-
tance between 3 and 1 is not

use_nodes logical. If TRUE and the crs is longitude/latitude, the nodes (vertices) of lines or
polygons are used to compute distances, instead of the lines that connect them.
This is faster, but can be less precise if the nodes are far apart

names character. One (or two) variable names in x (and y) to label the distance matrix

Value

SpatRaster, numeric, matrix, or a distance matrix (object of class "dist")

Note

A distance matrix can be coerced into a regular matrix with as.matrix

References

Karney, C.F.F., 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190-012-
0578-z.

See Also

nearest, nearby, gridDist, costDist

Examples

#lonlat
r <- rast(ncols=36, nrows=18, crs="+proj=longlat +datum=WGS84")
r[500] <- 1
d <- distance(r, unit="km")
plot(d / 1000)

#planar
rr <- rast(ncols=36, nrows=18, crs="+proj=utm +zone=1 +datum=WGS84")
rr[500] <- 1
d <- distance(rr)

rr[3:10, 3:10] <- 99
e <- distance(rr, exclude=99)

p1 <- vect(rbind(c(0,0), c(90,30), c(-90,-30)), crs="lonlat")
values(p1) <- data.frame(ID=LETTERS[1:3])
dp <- distance(r, p1)

d <- distance(p1)
d

100 divide

as.matrix(d)

p2 <- vect(rbind(c(30,-30), c(25,40), c(-9,-3)), crs="+proj=longlat +datum=WGS84")
values(p2) <- data.frame(ID=letters[1:3])
dd <- distance(p1, p2, names=c("ID", "ID"))
dd
pd <- distance(p1, p2, pairwise=TRUE)
pd
pd == diag(dd)

polygons, lines
crs <- "+proj=utm +zone=1"
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))", crs=crs)
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))", crs=crs)
p3 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))", crs=crs)
p <- rbind(p1, p2, p3)
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)", crs=crs)
L2 <- vect("LINESTRING(8 14, 12 10)", crs=crs)
L3 <- vect("LINESTRING(1 8, 12 14)", crs=crs)
lns <- rbind(L1, L2, L3)
pts <- vect(cbind(c(7,10,10), c(3,5,6)), crs=crs)

distance(p1,p3)
distance(p)
distance(p,pts)
distance(p,lns)
distance(pts,lns)

divide Subdivide a raster or polygons

Description

Divide a SpatRaster into n parts with approximately the same sum of weights (cell values).

Divides a SpatVector of polygons into n compact and approximately equal area parts. The results
are not deterministic so you should use set.seed to be able to reproduce your results. If you get
a warning about non-convergence, you can increase the number of iterations used with additional
argument iter.max

Usage

S4 method for signature 'SpatRaster'
divide(x, n=2, start="ns", as.raster=FALSE, na.rm=TRUE)

S4 method for signature 'SpatVector'
divide(x, n=5, w=NULL, alpha=1, ...)

divide 101

Arguments

x SpatRaster or SpatVector of polygons

n numeric. Can be a single positive integer to indicate the number of parts (SpatVec-
tor) or the number of splits (SpatRaster).

If x is a SpatRaster, it can also be a vector with values -2, -1, 1, or 2. Where
1 means one split and 2 means two splits, and the negative sign indicates an
East-West (vertical) split as opposed to a North-South split.

If x is a SpatVector it can be a list with at least one of these elements: horizontal
and vertical that specify the proportions of the area that splits should cover.
This can either be a single fraction such as 1/3, or a sequence of fractions in
ascending order such as c(1/4, 1/2, 1)

start character. To indicate the initial direction of splitting the raster. "ns" for North-
South (horizontal) or "ew" for East-West (vertical)

as.raster logical. If FALSE a SpatVector is returned. If FALSE, a SpatRaster is returned. If
NA a list with a SpatRaster and a SpatVector is returned

na.rm logical. If TRUE cells in x that are NA are not included in the output

w SpatRaster with, for example, environmental data

alpha numeric. One or two numbers that act as weights for the x and y coordinates

... additional arguments such as iter.max passed on to kmeans

Value

SpatVector or SpatRaster, or a list with both

See Also

thresh; makeTiles

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- divide(r, 3)
plot(r); lines(x)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
d <- divide(v, 3)
dv <- divide(v, list(h=.5))

102 dots

dots Make a dot-density map

Description

Create the dots for a dot-density map and add these to the current map. Dot-density maps are made
to display count data. For example of population counts, where each dot represents n persons. The
dots are returned as a SpatVector. It there is an active graphics device, the dots are added to it with
points.

Usage

S4 method for signature 'SpatVector'
dots(x, field, size, ...)

Arguments

x SpatVector

field character of numeric indicating field name. Or numeric vector of the same length
as x

size positive number indicating the number of cases associated with each dot

... graphical arguments passed to points

Value

SpatVector (invisibly)

See Also

plot, cartogram, points

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$population <- 1000*(1:12)^2
plot(v, lwd=3, col="light gray", border="white")
d <- dots(v, "population", 1000, col="red", cex=.75)
lines(v)
d

draw 103

draw Draw a polygon, line, extent, or points

Description

Draw on a plot (map) to get a SpatVector or SpatExtent object for later use. After calling the
function, start clicking on the map. When you are done, press ESC. You can also preset the maximum
number of clicks.

Note that for many installations this does to work well on the default RStudio plotting device. To
work around that, you can first run dev.new(noRStudioGD = TRUE) which will create a separate
window for plotting, then use plot() followed by draw() and clicking on the map. It may also
help to set your RStudio "Tools/Global Options/Appearance/Zoom" to 100

Usage

S4 method for signature 'character'
draw(x="extent", col="red", lwd=2, id=FALSE, n=1000, xpd=TRUE, ...)

Arguments

x character. The type of object to draw. One of "extent", "polygon", "line", or
"points"

col the color to be used

lwd the width of the lines to be drawn

id logical. If TRUE, a numeric ID is shown on the map

n the maximum number of clicks (does not apply when x=="extent" in which
case n is always 2)

xpd logical. If TRUE, you can draw outside the current plotting area

... additional graphics arguments for drawing

Value

SpatVector or SpatExtent

See Also

click

104 elongate

elongate elongate lines

Description

Elongate SpatVector lines

Usage

S4 method for signature 'SpatVector'
elongate(x, length=1, flat=FALSE)

Arguments

x SpatVector

length positive number indicating how much the lines should be elongated at each end.
The unit is meter is the crs is lonlat and it is the same as the linear unit of the crs
on other cases (also meter in most cases)

flat logical. If TRUE, the earth’s curvature is ignored for lonlat data, and the distance
unit is degrees, not meter

Value

SpatVector

See Also

buffer, crop, erase, extend

Examples

v <- vect(cbind(c(0,1,2), c(0,0,2)), "lines", crs="lonlat")
e <- elongate(v, 100000)
plot(e)
points(e)
geom(e)

erase 105

erase Erase parts of a SpatVector object

Description

Erase parts of a SpatVector with another SpatVector or with a SpatExtent. You can also erase (parts
of) polygons with the other polygons of the same SpatVector.

Usage

S4 method for signature 'SpatVector,SpatVector'
erase(x, y)

S4 method for signature 'SpatVector,missing'
erase(x, sequential=TRUE)

S4 method for signature 'SpatVector,SpatExtent'
erase(x, y)

Arguments

x SpatVector

y SpatVector or SpatExtent

sequential logical. Should areas be erased sequentially? See Details

Details

If polygons are erased sequentially, everything that is covered by the first polygon is removed from
all other polygons, then everything that is covered by (what is remaining of) the second polygon is
removed, etc.

If polygons are not erased sequentially, all overlapping areas are erased and only the areas covered
by a single geometry are returned.

Value

SpatVector or SpatExtent

See Also

crop and intersect for the inverse.

The equivalent for SpatRaster is mask

106 expanse

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

polygons with polygons or extent

e <- ext(5.6, 6, 49.55, 49.7)
x <- erase(v, e)

p <- vect("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))")
y <- erase(v, p)

lines with polygons
lns <- as.lines(rast(v, ncol=10, nrow=10))[12:22]
eln <- erase(lns, v)
plot(v)
lines(lns, col='blue', lwd=4, lty=3)
lines(eln, col='red', lwd=2)

self-erase
h <- convHull(v[-12], "NAME_1")
he <- erase(h)
plot(h, lwd=2, border="red", lty=2)
lines(he, col="gray", lwd=3)

expanse Get the expanse (area) of individual polygons or for all (summed)
raster cells

Description

Compute the area covered by polygons or for all raster cells that are not NA.

This method computes areas for longitude/latitude rasters, as the size of the cells is constant in
degrees, but not in square meters. But it can also be important if the coordinate reference system is
planar, but not equal-area.

For vector data, the best way to compute area is to use the longitude/latitude CRS. This is contrary
to (erroneous, but popular) belief that you should use a planar coordinate reference system. Where
applicable, the transformation to lon/lat is done automatically, if transform=TRUE.

Note that it is important that polygon geometries are valid. If they are not valid, the computed area
may be wrong. You can check for validity with is.valid and fix some problems with makeValid

Usage

S4 method for signature 'SpatRaster'
expanse(x, unit="m", transform=TRUE, byValue=FALSE,
zones=NULL, wide=FALSE, usenames=FALSE)

expanse 107

S4 method for signature 'SpatVector'
expanse(x, unit="m", transform=TRUE)

Arguments

x SpatRaster or SpatVector

unit character. Output unit of area. One of "m", "km", or "ha"

transform logical. If TRUE, planar CRS are transformed to lon/lat for accuracy

byValue logical. If TRUE, the area for each unique cell value is returned

zones NULL or SpatRaster with the same geometry identifying zones in x

wide logical. Should the results be in "wide" rather than "long" format?

usenames logical. If TRUE layers are identified by their names instead of their numbers

Value

SpatRaster: data.frame with at least two columns ("layer" and "area") and possibly also "value"
(if byValue is TRUE), and "zone" (if zones is TRUE). If x has no values, the total area of all cells is
returned. Otherwise, the area of all cells that are not NA is returned.

SpatVector: numeric (one value for each (multi-) polygon geometry.

See Also

cellSize for a the size of individual cells of a raster, that can be summed with global or with
zonal to get the area for different zones; surfArea for a raster with elevation values, taking into
account the sloping nature of the surface.

Examples

SpatRaster
r <- rast(nrows=18, ncols=36)
v <- 1:ncell(r)
v[200:400] <- NA
values(r) <- v

summed area in km2
expanse(r, unit="km")

all cells
expanse(rast(r), unit="km")

r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")

expanse(m, unit="km")
expanse(m, unit="km", transform=FALSE)

m2 <- c(m, m)
values(m2) <- cbind(c(1,2,NA,NA), c(11:14))
expanse(m2, unit="km", byValue=TRUE, wide=TRUE)

108 ext

v <- vect(system.file("ex/lux.shp", package="terra"))
r <- rast(system.file("ex/elev.tif", package="terra"))
r <- round((r-50)/100)
levels(r) <- data.frame(id=1:5, name=c("forest", "water", "urban", "crops", "grass"))
expanse(r, byValue=TRUE)

g <- rasterize(v, r, "NAME_1")
expanse(r, byValue=TRUE, zones=g, wide=TRUE)

SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))

a <- expanse(v)
a
sum(a)

ext Create, get or set a SpatExtent

Description

Get a SpatExtent of a SpatRaster, SpatVector, or other spatial objects. Or create a SpatExtent from
four numbers (xmin, xmax, ymin, ymax).

You can set the extent of a SpatRaster, but you cannot set the extent of a SpatVector (see rescale
for that). See set.ext to set the extent in place.

Usage

S4 method for signature 'SpatRaster'
ext(x, cells=NULL)

S4 method for signature 'SpatVector'
ext(x)

S4 method for signature 'numeric'
ext(x, ..., xy=FALSE)

S4 replacement method for signature 'SpatRaster,SpatExtent'
ext(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
ext(x)<-value

extend 109

Arguments

x SpatRaster, SpatVector, a numeric vector of length four (xmin, xmax, ymin,
ymax), a single numeric (xmin; see additional arguments under...), or missing
(in which case the output is the global extent in lon-lat coordinates)

cells positive integer (cell) numbers to subset the extent to area covered by these cells

value SpatExtent, or numeric vector of length four (xmin, xmax, ymin, ymax)

... if x is a single numeric value, additional numeric values for xmax, ymin, and
ymax

xy logical. Set this to TRUE to indicate that coordinates are in (xmin, ymin, xmax,
ymax) order, instead of in the terra standard order of (xmin, xmax, ymin, ymax)

Value

A SpatExtent object.

See Also

xmin, xmax, ymin, ymax

Examples

ext()

r <- rast()
e <- ext(r)
as.vector(e)
as.character(e)

ext(r) <- c(0, 2.5, 0, 1.5)
r
er <- ext(r)

round(er)
go "in"
floor(er)
go "out"
ceiling(er)

ext(r) <- e

extend Extend

110 extend

Description

Enlarge the spatial extent of a SpatRaster. See crop if you (also) want to remove rows or columns.

Note that you can only enlarge SpatRasters with entire rows and columns. Therefore, the extent of
the output SpatRaster may not be exactly the same as the requested. Depending on argument snap
it may be a bit smaller or larger.

You can also enlarge a SpatExtent with this method, or with an algebraic notation (see examples)

Usage

S4 method for signature 'SpatRaster'
extend(x, y, snap="near", fill=NA, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatExtent'
extend(x, y)

Arguments

x SpatRaster or SpatExtent

y If x is a SpatRaster, y should be a SpatExtent, or an object from which it can be
extracted (such as SpatRaster and SpatVector objects). Alternatively, you can
provide one, two or four non-negative integers indicating the number of rows
and columns that need to be added at each side (a single positive integer when the
number of rows and columns to be added is equal; or 2 number (columns, rows),
or four (left column, right column, bottom row, top row). If x is a SpatExtent, y
should likewise be a numeric vector of 1, 2, or 4 elements

snap character. One of "near", "in", or "out". Used to align y to the geometry of x

fill numeric. The value used to for the new raster cells

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

trim, crop, merge, ext, resample, elongate

Examples

r <- rast(xmin=-150, xmax=-120, ymin=30, ymax=60, ncols=36, nrows=18)
values(r) <- 1:ncell(r)
e <- ext(-180, -100, 40, 70)
re <- extend(r, e)

extend with a number of rows and columns (at each side)

extract 111

re2 <- extend(r, c(2,10))

SpatExtent
e <- ext(r)
e
extend(e, 10)
extend(e, c(10, -10, 0, 20))

add 10 columns / rows on all sides
e + 10
double extent
e * 2
increase extent by 25%
e * 1.25

extract Extract values from a SpatRaster

Description

Extract values from a SpatRaster for a set of locations. The locations can be a SpatVector (points,
lines, polygons), a data.frame or matrix with (x, y) or (longitude, latitude – in that order!) coordi-
nates, or a vector with cell numbers.

When argument y is a SpatVector the first column has the ID (record number) of the SpatVector
used (unless you set ID=FALSE).

Alternatively, you can use zonal after using rasterize with a SpatVector (this may be more
efficient in some cases).

Usage

S4 method for signature 'SpatRaster,SpatVector'
extract(x, y, fun=NULL, method="simple", cells=FALSE, xy=FALSE,

ID=TRUE, weights=FALSE, exact=FALSE, touches=is.lines(y), small=TRUE,
layer=NULL, bind=FALSE, raw=FALSE, search_radius=0, ...)

S4 method for signature 'SpatRaster,SpatExtent'
extract(x, y, cells=FALSE, xy=FALSE)

S4 method for signature 'SpatRaster,matrix'
extract(x, y, cells=FALSE, method="simple")

S4 method for signature 'SpatRaster,numeric'
extract(x, y, xy=FALSE, raw=FALSE)

S4 method for signature 'SpatVector,SpatVector'
extract(x, y, count=FALSE)

112 extract

Arguments

x SpatRaster or SpatVector of polygons
y SpatVector (points, lines, or polygons). Alternatively, for points, a 2-column

matrix or data.frame (x, y) or (lon, lat). Or a vector with cell numbers
fun function to summarize the extracted data by line or polygon geometry. You can

use fun=table to tabulate raster values for each line or polygon geometry. If
weights=TRUE or exact=TRUE only mean, sum, min, max and table are accepted
— and these functions will consider the fraction of a cell that is covered when
computing the mean or the sum). Ignored if y has point geometry

method character. method for extracting values with points ("simple" or "bilinear").
With "simple" values for the cell a point falls in are returned. With "bilinear"
the returned values are interpolated from the values of the four nearest raster
cells

cells logical. If TRUE the cell numbers are also returned, unless fun is not NULL. Also
see cells

xy logical. If TRUE the coordinates of the cells are also returned, unless fun is not
NULL. See xyFromCell

ID logical. Should an ID column be added? If so, the first column returned has the
IDs (record numbers) of y

weights logical. If TRUE and y has polygons, the approximate fraction of each cell that is
covered is returned as well. This changes the effect of argument fun

exact logical. If TRUE and y has polygons, the exact fraction of each cell that is covered
is returned as well. This changes the effect of argument fun

touches logical. If TRUE, values for all cells touched by lines or polygons are extracted,
not just those on the line render path, or whose center point is within the poly-
gon. Not relevant for points; and always considered TRUE when weights=TRUE
or exact=TRUE

small logical. If TRUE, values for all cells in touched polygons are extracted if none of
the cells center points is within the polygon; even if touches=FALSE

layer character or numeric to select the layer to extract from for each geometry. If
layer is a character it can be a name in y or a vector of layer names. If it is
numeric, it must be integer values between 1 and nlyr(x)

bind logical. If TRUE, a SpatVector is returned consisting of the input SpatVector y
and the cbind-ed extracted values

raw logical. If TRUE, a matrix is returned with the "raw" numeric cell values. If
FALSE, a data.frame is returned and the cell values are transformed to factor,
logical, or integer values, where appropriate

search_radius positive number. A search-radius that is used when y has point geometry. If this
value is larger than zero, it is the maximum distance used to find the a cell with a
value that is nearest to the cell that the point falls in if that cell that has a missing
(NA) value. The value of this nearest cell, the distance to the original cell, and the
new cell number are returned. The radius should be expressed in m if the data
have lon/lat coordinates or in the distance unit of the crs in other cases (typically
also m). For lon/lat data, the mean latitude of the points is used to compute the
distances, so this may be imprecise for data with a large latitudinal range

extract 113

... additional arguments to fun if y is a SpatVector. For example na.rm=TRUE. Or
arguments passed to the SpatRaster,SpatVector method if y is a matrix (such
as the method and cells arguments)

count logical. If TRUE and x has polygons geometry and y has points geometry, the
number of points in polygons is returned

Value

data.frame, matrix or SpatVector

See Also

values, zonal, extractAlong, extractRange, rapp

Examples

r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)
values(r) <- 1:25
xy <- cbind(lon=c(0.5,2.5), lat=c(0.5,2.5))
p <- vect(xy, crs="+proj=longlat +datum=WGS84")

extract(r, xy)
extract(r, p)

r[1,]
r[5]
r[,5]

r[c(0:2, 99:101)]

f <- system.file("ex/meuse.tif", package="terra")
r <- rast(f)

xy <- cbind(179000, 330000)
xy <- rbind(xy-100, xy, xy+1000)
extract(r, xy)

p <- vect(xy)
g <- geom(p)
g

extract(r, p)

x <- r + 10
extract(x, p)

i <- cellFromXY(r, xy)
x[i]
r[i]

y <- c(x,x*2,x*3)
y[i]

114 extractAlong

extract with a polygon
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v <- v[1:2,]

rf <- system.file("ex/elev.tif", package="terra")
x <- rast(rf)
extract(x, v, mean, na.rm=TRUE)

z <- rast(v, resolution=.1, names="test")
values(z) <- 1:ncell(z)
e <- extract(z, v, ID=TRUE)
e
tapply(e[,2], e[,1], mean, na.rm=TRUE)

x <- c(z, z*2, z/3)
names(x) <- letters[1:3]

e <- extract(x, v, ID=TRUE)
de <- data.frame(e)
aggregate(de[,2:4], de[,1,drop=FALSE], mean)

extractAlong extract values along lines

Description

Extract raster values along a line. That is, the returned values are ordered along the line. That is not
the case with extract

Usage

extractAlong(x, y, ID=TRUE, cells=FALSE, xy=FALSE, online=FALSE, bilinear=TRUE)

Arguments

x SpatRaster

y SpatVector with lines geometry

ID logical. Should an ID column be added? If so, the first column returned has the
IDs (record numbers) of input SpatVector y

cells logical. If TRUE the cell numbers are also returned

xy logical. If TRUE the coordinates of the cells traversed by y are also returned. See
xyFromCell

online logical. If TRUE the returned coordinates are snapped to y

bilinear logical. If TRUE the returned raster values computed with bilinear interpolation
from the nearest four cells. Only relevant if online=TRUE

extractRange 115

Value

data.frame

See Also

extract

Examples

r <- rast(ncols=36, nrows=18, vals=1:(18*36))
cds1 <- rbind(c(-50,0), c(0,60), c(40,5), c(15,-45), c(-10,-25))
cds2 <- rbind(c(80,20), c(140,60), c(160,0), c(140,-55))
lines <- vect(list(cds1, cds2), "lines")

extractAlong(r, lines)

extractRange Extract values for a range of layers from a SpatRaster

Description

Extract values from a SpatRaster for a set of locations and a range of layers. To extract values for a
single or all layers, use extract

Usage

S4 method for signature 'SpatRaster'
extractRange(x, y, first, last, lyr_fun=NULL,
geom_fun=NULL, ID=FALSE, na.rm=TRUE, bind=FALSE, ...)

Arguments

x SpatRaster

y SpatVector (points, lines, or polygons). Alternatively, for points, a 2-column
matrix or data.frame (x, y) or (lon, lat). Or a vector with cell numbers

first layer name of number, indicating the first layer in the range of layers to be
considered

last layer name or number, indicating the last layer in the range to be considered

lyr_fun function to summarize the extracted data across layers

geom_fun function to summarize the extracted data for each line or polygon geometry.
Ignored if y has point geometry

ID logical. Should an ID column be added? If so, the first column returned has the
IDs (record numbers) of y

na.rm logical. Should missing values be ignored?

bind logical. If TRUE, the extracted values are cbind-ed to y

... additional arguments passed to extract

116 extremes

Value

numeric or data.frame

See Also

extract

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
xy <- data.frame(x=c(50,80), y=c(30, 60))
extract(r, xy)
extract(r, xy, layer=c("red", "green"))

extractRange(r, xy, first=1:2, last=3:2)
extractRange(r, xy, first=1:2, last=3:2, lyr_fun=sum)

extremes Get or compute the minimum and maximum cell values

Description

The minimum and maximum value of a SpatRaster are returned or computed (from a file on disk if
necessary) and stored in the object.

Usage

S4 method for signature 'SpatRaster'
minmax(x, compute=FALSE)
S4 method for signature 'SpatRaster'
hasMinMax(x)
S4 method for signature 'SpatRaster'
setMinMax(x, force=FALSE)

Arguments

x SpatRaster

compute logical. If TRUE min and max values are computed if they are not available

force logical. If TRUE min and max values are recomputed even if already available

Value

minmax: numeric matrix of minimum and maximum cell values by layer

hasMinMax: logical indicating whether the min and max values are available.

setMinMax: nothing. Used for the side-effect of computing the minimum and maximum values of
a SpatRaster

factors 117

See Also

where.min, where.max

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
minmax(r)

factors Categorical rasters

Description

A SpatRaster layer can represent a categorical variable (factor). Like factors, SpatRaster cate-
gories are stored as integers that have an associated label.

The categories can be inspected with levels and cats. They are represented by a data.frame
that must have two or more columns, the first one identifying the (integer) cell values and the other
column(s) providing the category labels.

If there are multiple columns with categories, you can set the "active" category to choose the one
you want to use.

cats returns the entire data.frame, whereas levels only return two columns: the index and the
active category.

To set categories for the first layer of a SpatRaster, you can provide levels<- with a data.frame or
a list with a data.frame. To set categories for multiple layers you can provide levels<- with a list
with one element (that either has a data.frame or is NULL) for each layer. Use categories to set
the categories for a specific layer or specific layers.

droplevels removes categories that are not used (declared but not present as values in the raster)
if levels=NULL.

simplifyLevels combines duplicate levels into one.

addCats adds additional categories to a layer that already is categorical. It adds new variables, not
new levels of an existing categorical variable.

combineLevels combines the levels of all layers of x and sets them to all layers. That fails if there
are labeling conflicts between layers

Usage

S4 method for signature 'SpatRaster'
levels(x)

S4 replacement method for signature 'SpatRaster'
levels(x)<-value

S4 method for signature 'SpatRaster'
cats(x, layer)

118 factors

S4 method for signature 'SpatRaster'
categories(x, layer=1, value, active=1, ...)

S4 method for signature 'SpatRaster'
droplevels(x, level=NULL, layer=1)

S4 method for signature 'SpatRaster'
simplifyLevels(x, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatRaster'
addCats(x, value, merge=FALSE, layer=1)

combineLevels(x, assign=TRUE)

Arguments

x SpatRaster

layer the layer name or number (positive integer); or 0 for all layers

value a data.frame (ID, category) that define the categories. Or NULL to remove them

active positive integer, indicating the column in value to be used as the active category
(zero based to skip the first column with the cell values; that is 1 is the second
column in value)

level the categories to remove for the layer specified with layer

merge logical. If TRUE, the categories are combined with merge using the first column
of value as ID. If FALSE the categories are combined with cbind

assign logical. Assign the combined levels to all layers of x? If FALSE, the levels are
returned

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Value

SpatRaster, data.frame, list of data.frames (levels, cats), or logical (is.factor)

See Also

activeCat, catalyze, set.cats, as.factor, is.factor

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE)
is.factor(r)

fillHoles 119

cls <- data.frame(id=1:3, cover=c("forest", "water", "urban"))
levels(r) <- cls
is.factor(r)
r

plot(r, col=c("green", "blue", "light gray"))
text(r, digits=3, cex=.75, halo=TRUE)

levels(r) <- data.frame(id=1:3, cover=c("forest", "water", "forest"))
levels(simplifyLevels(r))

raster starts at 3
x <- r + 2
is.factor(x)

Multiple categories
d <- data.frame(id=3:5, cover=cls[,2], letters=letters[1:3], value=10:12)
levels(x) <- d
x

get current index
activeCat(x)
set index
activeCat(x) <- 3
activeCat(x)
activeCat(x) <- "letters"
plot(x, col=c("green", "blue", "light gray"))
text(x, digits=3, cex=.75, halo=TRUE)

r <- as.numeric(x)
r

p <- as.polygons(x)
plot(p, "letters", col=c("green", "blue", "light gray"))

fillHoles Remove or extract holes from polygons, or fill holes in raster data

Description

Remove the holes in SpatVector polygons. If inverse=TRUE the holes are returned (as polygons).

Or remove "holes" in SpatRasters.

Usage

S4 method for signature 'SpatVector'
fillHoles(x, inverse=FALSE)

120 fillHoles

S4 method for signature 'SpatRaster'
fillHoles(x, nearest=FALSE)

Arguments

x SpatVector

inverse logical. If TRUE the holes are returned as polygons

nearest logical. If FALSE only holes that are surrounded by cells with the same value are
filled. Otherwise, the values of the nearest cell that is not NA is assigned

Value

SpatVector

See Also

snap, gaps

Examples

x <- rbind(c(50,0), c(140,60), c(160,0), c(140,-55))
hole <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))

z <- rbind(cbind(object=1, part=1, x, hole=0),
cbind(object=1, part=1, hole, hole=1))

colnames(z)[3:4] <- c('x', 'y')
p <- vect(z, "polygons", atts=data.frame(id=1), crs="local")
p

f <- fillHoles(p)
g <- fillHoles(p, inverse=TRUE)

plot(p, lwd=16, border="gray", col="light yellow")
polys(f, border="blue", lwd=3, density=4, col="orange")
polys(g, col="white", lwd=3)

SpatRaster
v <- vect(c("POLYGON ((81.572 36.629, 98.508 9.624, 80 0, 99.902 -10.349,
84.662 -34.709, 50 0, 81.572 36.629))", "POLYGON ((140 60, 160 0,
140 -55, 84.662 -34.709, 99.902 -10.349, 105 -13, 120 2, 105 13,
98.508 9.624, 81.572 36.629, 140 60))"))
v <- rbind(v, shift(p ,-120))
v$ID <- 1:nrow(v)
r <- rasterize(v, rast(xmin=-80, crs="local"), "ID")

f1 <- fillHoles(r)
f2 <- fillHoles(r, nearest=TRUE)

fillTime 121

fillTime Fill time gaps in a SpatRaster

Description

Add empty layers in between existing layers such that the time step between each layer is the same.
See approximate to estimate values for these layer (and other missing values)

Usage

S4 method for signature 'SpatRaster'
fillTime(x, filename="", ...)

Arguments

x SpatRaster

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

approximate

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
s <- c(r, r)
time(s) <- as.Date("2001-01-01") + c(0:2, 5:7)
time(s)
ss <- fillTime(s)
time(ss)

a <- approximate(ss)

122 flip

flip Flip or reverse a raster

Description

Flip the values of a SpatRaster by inverting the order of the rows (vertical=TRUE) or the columns
(vertical=FALSE).

rev is the same as a horizontal *and* a vertical flip.

Usage

S4 method for signature 'SpatRaster'
flip(x, direction="vertical", filename="", ...)

S4 method for signature 'SpatVector'
flip(x, direction="vertical")

S4 method for signature 'SpatRaster'
rev(x)

Arguments

x SpatRaster or SpatVector

direction character. Should (partially) match "vertical" to flip by rows, or "horizontal" to
flip by columns

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

trans, rotate

Examples

r <- rast(nrow=18, ncol=36)
m <- matrix(1:ncell(r), nrow=18)
values(r) <- as.vector(t(m))
rx <- flip(r, direction="h")

values(r) <- as.vector(m)
ry <- flip(r, direction="v")

v <- rev(r)

flowAccumulation 123

flowAccumulation Flow accumulation

Description

Computes flow accumulation or the total contributing area in terms of numbers of cells upstream of
each cell.

Usage

S4 method for signature 'SpatRaster'
flowAccumulation(x, weight=NULL, filename="", ...)

Arguments

x SpatRaster with flow direction, see terrain.

weight SpatRaster with weight/score daa. For example, cell area or precipitation

filename character. Output filename

... additional arguments for writing files as in writeRaster

Details

The algorithm is an adaptation of the one proposed by Zhou at al, 2019.

Value

SpatRaster

Author(s)

Emanuele Cordano

References

Zhou, G., Wei, H. & Fu, S. A fast and simple algorithm for calculating flow accumulation matrices
from raster digital elevation. Front. Earth Sci. 13, 317–326 (2019). doi:10.1007/s11707-018-0725-
9. Also see: https://ica-abs.copernicus.org/articles/1/434/2019/

See Also

terrain,watershed, NIDP

https://ica-abs.copernicus.org/articles/1/434/2019/

124 flowAccumulation

Examples

elev1 <- array(NA,c(9,9))
elev2 <- elev1
dx <- 1
dy <- 1
for (r in 1:nrow(elev1)) {

y <- (r-5)*dx
for (c in 1:ncol(elev1)) {

x <- (c-5)*dy
elev1[r,c] <- 5*(x^2+y^2)
elev2[r,c] <- 10+5*(abs(x))-0.001*y

}
}

Elevation raster
elev1 <- rast(elev1)
elev2 <- rast(elev2)

t(array(elev1[],rev(dim(elev1)[1:2])))
t(array(elev2[],rev(dim(elev2)[1:2])))

plot(elev1)
plot(elev2)

Flow direction raster
flowdir1<- terrain(elev1,v="flowdir")
flowdir2<- terrain(elev2,v="flowdir")

t(array(flowdir1[],rev(dim(flowdir1)[1:2])))
t(array(flowdir2[],rev(dim(flowdir2)[1:2])))

plot(flowdir1)
plot(flowdir2)

##
flow_acc1 <- flowAccumulation((flowdir1))
flow_acc2 <- flowAccumulation((flowdir2))

weight <- elev1*0+10

flow_acc1w <- flowAccumulation(flowdir1,weight)
flow_acc2w <- flowAccumulation(flowdir2,weight)

t(array(flow_acc1w[],rev(dim(flow_acc1w)[1:2])))
t(array(flow_acc2w[],rev(dim(flow_acc2w)[1:2])))

plot(flow_acc1w)
plot(flow_acc2w)

focal 125

Application wth example elevation data

elev <- rast(system.file('ex/elev.tif',package="terra"))
flowdir <- terrain(elev,"flowdir")

weight <- cellSize(elev,unit="km")
flowacc_weight <- flowAccumulation(flowdir,weight)
flowacc <- flowAccumulation(flowdir)

focal Focal values

Description

Calculate focal ("moving window") values for each cell.

Usage

S4 method for signature 'SpatRaster'
focal(x, w=3, fun="sum", ..., na.policy="all", fillvalue=NA,
expand=FALSE, silent=TRUE, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

w window. The window can be defined as one (for a square) or two numbers (row,
col); or with an odd-sized weights matrix. See Details.

fun function that takes multiple numbers, and returns a numeric vector (one or mul-
tiple numbers). For example, mean, modal, min or max

... additional arguments passed to fun such as na.rm

na.policy character. Can be used to determine the cells of x for which focal values should
be computed. Must be one of "all" (compute for all cells), "only" (only for
cells that are NA) or "omit" (skip cells that are NA). Note that the value of this
argument does not affect which cells around each focal cell are included in the
computations (use na.rm=TRUE to ignore cells that are NA for that)

fillvalue numeric. The value of the cells in the virtual rows and columns outside of the
raster

expand logical. If TRUE, the value of the cells in the virtual rows and columns outside
of the raster are set to be the same as the value on the border. Only available for
"build-in" funs such as mean, sum, min and max

silent logical. If TRUE error messages are printed that may occur when trying fun to
determine the length of the returned value. This can be useful in debugging a
fun that does not work

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

126 focal

Details

focal The window used must have odd dimensions. If you need even sides, you can use a matrix
and add a column or row of NA’s to mask out values.

Window values are typically 1 or NA to indicate whether a value is used or ignored in computations,
respectively. NA values in w can be useful for creating non-rectangular (e.g. circular) windows.

A weights matrix of numeric values can also be supplied to w. In the case of a weights matrix, cells
with NA weights will be ignored, and the rest of the values in the focal window will be multiplied
by the corresponding weight prior to ‘fun‘ being applied. Note, na.rm does not need to be TRUE if
w contains NA values as these cells are ignored in computations.

The "mean" function is a special case, where supplying weights to w will instead calculate a
weighted mean.

The "sum" function returns NA if all focal cells are NA and na.rm=TRUE. R would normally return a
zero in these cases. See the difference between focal(x, fun=sum, na.rm=TRUE) and focal(x,
fun=\(i) sum(i, na.rm=TRUE))

Example weight matrices

Laplacian filter: filter=matrix(c(0,1,0,1,-4,1,0,1,0), nrow=3)

Sobel filters (for edge detection):

fx=matrix(c(-1,-2,-1,0,0,0,1,2,1), nrow=3)

fy=matrix(c(1,0,-1,2,0,-2,1,0,-1), nrow=3)

Value

SpatRaster

Note

When using global lon/lat rasters, the focal window "wraps around" the date-line.

See Also

focalMat, focalValues, focal3D, focalPairs, focalReg, focalCpp

Examples

r <- rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)

f <- focal(r, w=3, fun=function(x, ...) quantile(x, c(.25, .5, .75), ...), na.rm=TRUE)

f <- focal(r, w=3, fun="mean")

the following two statements are equivalent:
a <- focal(r, w=matrix(1/9, nc=3, nr=3))
b <- focal(r, w=3, fun=mean, na.rm=FALSE)

but this is different
d <- focal(r, w=3, fun=mean, na.rm=TRUE)

focal3D 127

illustrating the effect of different
combinations of na.rm and na.policy
v <- vect(system.file("ex/lux.shp", package="terra"))
r <- rast(system.file("ex/elev.tif", package="terra"))
r[45:50, 45:50] <- NA

also try "mean" or "min"
f <- "sum"
na.rm=FALSE
plot(focal(r, 5, f), fun=lines(v))

na.rm=TRUE
plot(focal(r, 5, f, na.rm=TRUE), fun=lines(v))

only change cells that are NA
plot(focal(r, 5, f, na.policy="only", na.rm=TRUE), fun=lines(v))

do not change cells that are NA
plot(focal(r, 5, f, na.policy="omit", na.rm=TRUE), fun=lines(v))

does not do anything
focal(r, 5, f, na.policy="only", na.rm=FALSE)

focal3D Three-dimensional focal values

Description

Calculate focal ("moving window") values for the three-dimensional neighborhood (window) of
focal cells. See focal for two-dimensional focal computation.

Usage

S4 method for signature 'SpatRaster'
focal3D(x, w=3, fun=mean, ..., na.policy="all", fillvalue=NA, pad=FALSE,
padvalue=fillvalue, expand=FALSE, silent=TRUE,
filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

w window. A rectangular prism (cuboid) defined by three numbers or by a three-
dimensional array. The values are used as weights, and are usually zero, one,
NA, or fractions. The window used must have odd dimensions. If you desire
to use even sides, you can use an array, and pad the values with rows and/or
columns that contain only NAs.

fun function that takes multiple numbers, and returns one or multiple numbers for
each focal area. For example mean, modal, min or max

128 focalCpp

... additional arguments passed to fun such as na.rm

na.policy character. Can be used to determine the cells of x, in the central layer, for which
focal values should be computed. Must be one of "all" (compute for all cells),
"only" (only for cells that are NA) or "omit" (skip cells that are NA). Note that
the value of this argument does not affect which cells around each focal cell are
included in the computations (use na.rm=TRUE to ignore cells that are NA in the
computation of the focal value)

fillvalue numeric. The value of the cells in the virtual rows and columns outside of the
raster

pad logical. Add virtual layers before the first and after the last layer

padvalue numeric. The value of the cells in the virtual layers

expand logical. Add virtual layers before the first or after the last layer that are the same
as the first or last layers. If TRUE, arguments pad and padvalue are ignored

silent logical. If TRUE error messages are printed that may occur when trying fun to
determine the length of the returned value. This can be useful in debugging a
function passed to fun that does not work

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
x <- focal3D(r, c(5,5,3), na.rm=TRUE)

a <- array(c(0,1,0,1,1,1,0,1,0, rep(1,9), 0,1,0,1,1,1,0,1,0), c(3,3,3))
a[a==0] <- NA
z <- focal3D(r, a, na.rm=TRUE)

focalCpp Compute focal values with an iterating C++ function

Description

Calculate focal values with a C++ function that iterates over cells to speed up computations by
avoiding an R loop (with apply).

See focal for an easier to use method.

focalCpp 129

Usage

S4 method for signature 'SpatRaster'
focalCpp(x, w=3, fun, ..., fillvalue=NA,
silent=TRUE, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

w window. The window can be defined as one (for a square) or two numbers (row,
col); or with an odd-sized weights matrix. See the Details section in focal

fun cppFunction that iterates over cells. For C++ functions that operate on a single
focal window, or for R functions use focal instead. The function must have at
least three arguments. The first argument can have any name, but it must be a
Rcpp::NumericVector, Rcpp::IntegerVector or a std::vector<double>.
This is the container that receives the focal values. The other two arguments
ni and wi must be of type size_t. ni represents the number of cells and nw
represents the size of (number of elements in) the window

... additional arguments to fun

fillvalue numeric. The value of the cells in the virtual rows and columns outside of the
raster

silent logical. If TRUE error messages are printed that may occur when trying fun to
determine the length of the returned value. This can be useful in debugging a
fun that does not work

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal, focalValues

Examples

Not run:
library(Rcpp)
cppFunction(
'NumericVector sum_and_multiply(NumericVector x, double m, size_t ni, size_t nw) {
NumericVector out(ni);
// loop over cells
size_t start = 0;
for (size_t i=0; i<ni; i++) {
size_t end = start + nw;
// compute something for a window

130 focalMat

double v = 0;
// loop over the values of a window
for (size_t j=start; j<end; j++) {
v += x[j];
}
out[i] = v * m;
start = end;
}
return out;
}'
)

nr <- nc <- 10
r <- rast(ncols=nc, nrows=nr, ext= c(0, nc, 0, nr))
values(r) <- 1:ncell(r)

raw <- focalCpp(r, w=3, fun=sum_and_multiply, fillvalue=0, m=10)

same as
f1 <- focal(r, w=3, fun=sum, fillvalue=0) *10
all(values(f1) == values(raw))

and as
ffun <- function(x, m) { sum(x) * m }
f2 <- focal(r, w=3, fun=ffun, fillvalue=0, m=10)

You can also use an R function with focalCpp but this
is not recommended

R_sm_iter <- function(x, m, ni, nw) {
out <- NULL
for (i in 1:ni) {
start <- (i-1) * nw + 1
out[i] <- sum(x[start:(start+nw-1)]) * m
}
out
}

fr <- focalCpp(r, w=3, fun=R_sm_iter, fillvalue=0, m=10)

End(Not run)

focalMat Focal weights matrix

Description

Make a focal ("moving window") weight matrix for use in the focal function. The sum of the
values adds up to one.

focalPairs 131

Usage

focalMat(x, d, type=c('circle', 'Gauss', 'rectangle'), fillNA=FALSE)

Arguments

x SpatRaster

d numeric. If type=circle, the radius of the circle (in units of the crs). If
type=rectangle the dimension of the rectangle (one or two numbers). If type=Gauss
the size of sigma, and optionally another number to determine the size of the
matrix returned (default is 3*sigma)

type character indicating the type of filter to be returned

fillNA logical. If TRUE, zeros are set to NA such that they are ignored in the computa-
tions. Only applies to type="circle"

Value

matrix that can be used with focal

Examples

r <- rast(ncols=180, nrows=180, xmin=0)
focalMat(r, 2, "circle")

focalMat(r, c(2,3), "rect")

Gaussian filter for square cells
gf <- focalMat(r, 1, "Gauss")

focalPairs Focal function across two layers

Description

Calculate values such as a correlation coefficient for focal regions in two neighboring layers. A
function is applied to the first and second layer, then to the second and third layer, etc.

Usage

S4 method for signature 'SpatRaster'
focalPairs(x, w=3, fun, ..., fillvalue=NA,
filename="", overwrite=FALSE, wopt=list())

132 focalPairs

Arguments

x SpatRaster with at least two layers

w numeric or matrix to define the focal window. The window an be defined as one
(for a square) or two numbers (row, col); or with an odd-sized weights matrix.
See the Details section in focal. Note that if a matrix with numbers other than
zero or one are used, the values are used as weights. For this to work, fun must
have an argument weights

fun a function with at least two arguments (one for each layer). There is a built-in
function "pearson" (for both the weighted and the unweighted Pearson correla-
tion coefficient. This function has an additional argument na.rm=FALSE

... additional arguments for fun

fillvalue numeric. The value of the cells in the virtual rows and columns outside of the
raster

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

layerCor, focalReg, focal, focal3D

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
set.seed(0)
r[[1]] <- flip(r[[1]], "horizontal")
r[[2]] <- flip(r[[2]], "vertical") + init(rast(r,1), runif)
r[[3]] <- init(rast(r,1), runif)

x <- focalPairs(r, w=5, "pearson", na.rm=TRUE)
plot(x)

suppress warning "the standard deviation is zero"
suppressWarnings(x <- focalPairs(r, w=5, "pearson", use="complete.obs"))

z <- focalPairs(r, w=9, function(x, y) mean(x) + mean(y))

focalReg 133

focalReg Focal regression

Description

Calculate values for a moving-window by comparing the value in one layers with the values in
one to many other layers. A typical case is the computation of the coefficients for a focal linear
regression model.

Usage

S4 method for signature 'SpatRaster'
focalReg(x, w=3, fun="ols", ..., fillvalue=NA, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster with at least two layers. The first is the "Y" (dependent) variable and
the remainder are the "X" (independent) variables

w numeric or matrix to define the focal window. The window an be defined as one
(for a square) or two numbers (row, col); or with an odd-sized weights matrix.
See the Details section in focal. Note that if a matrix with numbers other than
zero or one are used, the values are used as weights. For this to work, fun must
have an argument weights

fun a function with at least two arguments (one for each layer). There is a built-in
function "ols" for both the weighted and unweighted Ordinary Least Square re-
gression. This function has an additional argument na.rm=FALSE and intercept=TRUE

... additional arguments for fun
fillvalue numeric. The value of the cells in the virtual rows and columns outside of the

raster
filename character. Output filename
overwrite logical. If TRUE, filename is overwritten
wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal, focal3D, focalValues

Examples

r <- rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)
x <- c(r, init(r, runif) * r)
f <- focalReg(x, 3)

134 forceCCW

focalValues Get focal values

Description

Get a matrix in which each row had the focal values of a cell. These are the values of a cell and a
rectangular window around it.

Usage

S4 method for signature 'SpatRaster'
focalValues(x, w=3, row=1, nrows=nrow(x), fill=NA)

Arguments

x SpatRaster or SpatVector

w window. The window can be defined as one (for a square) or two odd numbers
(row, col); or with an odd sized matrix

row positive integer. Row number to start from, should be between 1 and nrow(x)

nrows positive integer. How many rows?

fill numeric used as values for imaginary cells outside the raster

Value

matrix

Examples

r <- rast(ncol=4, nrow=4, crs="+proj=utm +zone=1 +datum=WGS84")
values(r) <- 1:ncell(r)
focalValues(r)

forceCCW force counter-clockwise polygons

Description

Assure that the nodes of outer rings of polygons are in counter-clockwise order.

Usage

S4 method for signature 'SpatVector'
forceCCW(x)

freq 135

Arguments

x SpatVector of polygons

Value

SpatVector

Examples

p <- vect("POLYGON ((2 45, 2 55, 18 55, 18 45, 2 45))")
pcc <- forceCCW(p)
geom(pcc, wkt=TRUE)

freq Frequency table

Description

Frequency table of the values of a SpatRaster. NAs are not counted unless value=NA.

You can provide a SpatVector or additional SpatRaster to define zones for which to do tabulations.

Usage

S4 method for signature 'SpatRaster'
freq(x, digits=0, value=NULL, bylayer=TRUE, usenames=FALSE,
zones=NULL, wide=FALSE, touches=FALSE)

Arguments

x SpatRaster

digits integer. Used for rounding the values before tabulation. Ignored if NA

value numeric. An optional single value to only count the number of cells with that
value. This value can be NA

bylayer logical. If TRUE tabulation is done by layer

usenames logical. If TRUE layers are identified by their names instead of their numbers
Only relevant if bylayer is TRUE

zones SpatRaster or SpatVector to define zones for which the tabulation should be done

wide logical. Should the results by "wide" instead of "long"?

touches logical. If TRUE, all cells touched by lines or polygons will be included, not just
those on the line render path, or whose center point is within the polygon. Only
relevant if zones is a SpatVector

Value

A data.frame with 3 columns (layer, value, count) unless bylayer=FALSE in which case adata.frame
with two columns is returned (value, count).

136 gaps

Examples

r <- rast(nrows=10, ncols=10)
set.seed(2)
values(r) <- sample(5, ncell(r), replace=TRUE)

freq(r)

x <- c(r, r/3)
freq(x, bylayer=FALSE)
freq(x)

freq(x, digits=1)
freq(x, digits=-1)

freq(x, value=5)

gaps Find gaps between polygons

Description

Get the gaps between polygons of a SpatVector

Usage

S4 method for signature 'SpatVector'
gaps(x)

Arguments

x SpatVector

Value

SpatVector

See Also

sharedPaths, topology, and fillHoles to get or remove polygon holes

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
h <- convHull(v[-12], "NAME_1")
g <- gaps(h)

gdal 137

gdal GDAL version, supported file formats, cache size, and PROJ coordi-
nate transformation control

Description

Set the GDAL warning level or get a data.frame with the available GDAL drivers (file formats), or,
if warn=NA and drivers=FALSE, you get the version numbers of one or all of the GDAL, PROJ and
GEOS libraries.

GDAL is the software library that terra builds on to read and write spatial data and for some raster
data processing. PROJ is used for transformation of coordinates ("projection") and GEOS is used for
geometric operations with vector data.

The current GDAL configuration options and obtained with getGDALconfig and changed with setGDALconfig.

proj_ok checks if the PROJ database with CRS definitions can be found.

projNetwork controls whether PROJ can access network resources for coordinate transformations.
By default, network access is enabled to provide high-accuracy grid-based datum transformations
where available. When disabled, PROJ falls back to "ballpark transformations" (of unknown ac-
curacy) which could lead to errors of hundreds of meters in some cases. When enabled, PROJ
downloads transformation grids from https://cdn.proj.org, requiring network connectivity and
valid SSL certificates. After a successful run, the files are cached locally.

projPaths gets or sets the search paths that PROJ uses to find coordinate system definitions and
transformation grids. This allows users to specify custom locations for PROJ data files, such as
when using offline installations or custom grid files. By default, it operates on PROJ search paths,
but can also set GDAL search paths when with_proj=FALSE.

Usage

gdal(warn=NA, drivers=FALSE, ...)
gdalCache(size=NA)
setGDALconfig(option, value="")
getGDALconfig(option)
clearVSIcache()
libVersion(lib="all", parse=FALSE)
unloadGDALdrivers(x)
proj_ok()
projNetwork(enable, url="")
projPaths(paths, with_proj = TRUE)

Arguments

warn If NA and drivers=FALSE, the version of the library specified by lib is returned.
Otherwise, the value should be an integer between 1 and 4 representing the level
of GDAL warnings and errors that are passed to R. 1 = warnings and errors; 2 =
errors only (recoverable errors as a warning); 3 = irrecoverable errors only; 4 =
ignore all errors and warnings. The default setting is 2

https://proj.org/en/stable/glossary.html#term-Ballpark-transformation

138 gdal

drivers logical. If TRUE a data.frame with the raster and vector data formats that are
available.

... additional arguments (for backwards compatibility only)

size numeric. The new cache size in MB

option character. GDAL configuration option name, or a "name=value" string (in which
case the value argument is ignored

value character. value for GDAL configuration option. Use "" to reset it to its default
value

lib character. "gdal", "proj", or "geos", or any other value to get the versions num-
bers of all three

parse logical. Should the version be parsed into three numerical values (major, minor
and sub versions)?

x character. Drivers names such as "GTiff" to be unloaded. Or "" to reload all
drivers

enable logical. If TRUE, enable PROJ network access for high-accuracy grid-based
transformations. If FALSE, disable network access and use ballpark transfor-
mations. If missing, return the current network status

url character. Optional URL for PROJ network endpoint. If empty string (default),
uses PROJ’s default network settings (https://cdn.proj.org)

paths character. Vector of file paths to directories containing PROJ data files. If miss-
ing, returns the current search paths

with_proj logical. If TRUE (default), set PROJ search paths. If FALSE, set GDAL search
paths

Value

character vector of search paths. When setting paths, the result is returned invisibly.

Note

While some spatial analyses may not be greatly affected by PROJ network settings (ballpark vs.
grid-based transformations), the differences can be significant, especially when a transformation
involves a shift in datum between different coordinate reference systems. For applications requiring
high positional accuracy, ensure network access is enabled or grids are locally available. Grids can
be pre-downloaded using the projsync utility or installed via system packages, such as proj-data
on Ubuntu/Debian systems. Downloaded grids are cached locally and then reused for subsequent
transformations.

See Also

describe for file-level metadata "GDALinfo"

geom 139

Examples

gdal()
gdal(2)
head(gdal(drivers=TRUE))
libVersion("all", TRUE)
projNetwork()
projPaths()
projPaths(c("/custom/proj/path"))

geom Get the geometry (coordinates) of a SpatVector

Description

Get the geometry of a SpatVector. If wkt=FALSE, this is a five-column matrix or data.frame: the
vector object ID, the IDs for the parts of each object (e.g. five polygons that together are one spatial
object), the x (longitude) and y (latitude) coordinates, and a flag indicating whether the part is a
"hole" (only relevant for polygons).

If wkt=TRUE, the "well-known text" representation is returned as a character vector. If hex=TRUE,
the "hexadecimal" representation is returned as a character vector. If wkb=TRUE, the "well-known
binary" representation is returned as a list of raw vectors.

Usage

S4 method for signature 'SpatVector'
geom(x, wkt=FALSE, hex=FALSE, wkb=FALSE, df=FALSE, list=FALSE, xnm="x", ynm="y")

Arguments

x SpatVector

wkt logical. If TRUE the WKT geometry is returned (unless hex is also TRUE)

hex logical. If TRUE the hexadecimal geometry is returned

wkb logical. If TRUE the raw WKB geometry is returned (unless either of hex or wkt
is also TRUE)

df logical. If TRUE a data.frame is returned instead of a matrix (only if wkt=FALSE,
hex=FALSE, and list=FALSE)

list logical. If TRUE a nested list is returned with data.frames of coordinates

xnm character. If list=TRUE the "x" column name for the coordinates data.frame

ynm character. If list=TRUE the "y" column name for the coordinates data.frame

Value

matrix, vector, data.frame, or list

140 geomtype

See Also

crds, xyFromCell

Examples

x1 <- rbind(c(-175,-20), c(-140,55), c(10, 0), c(-140,-60))
x2 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
x3 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x4 <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z <- rbind(cbind(object=1, part=1, x1), cbind(object=2, part=1, x2),

cbind(object=3, part=1, x3), cbind(object=3, part=2, x4))
colnames(z)[3:4] <- c('x', 'y')
z <- cbind(z, hole=0)
z[(z[, "object"]==3 & z[,"part"]==2), "hole"] <- 1

p <- vect(z, "polygons")
geom(p)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
g <- geom(v)
head(g)

w <- geom(v, wkt=TRUE)
substr(w, 1, 60)

geomtype Geometry type of a SpatVector

Description

Get the geometry type (points, lines, or polygons) of a SpatVector. See datatype for the data types
of the fields (attributes, variables) of a SpatVector.

Usage

S4 method for signature 'SpatVector'
geomtype(x)

S4 method for signature 'SpatVector'
is.points(x)

S4 method for signature 'SpatVector'
is.lines(x)

S4 method for signature 'SpatVector'
is.polygons(x)

global 141

Arguments

x SpatVector

Value

character

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

geomtype(v)
is.polygons(v)
is.lines(v)
is.points(v)

names(v)
datatype(v)

global global statistics

Description

Compute global statistics, that is summarized values of an entire SpatRaster.

If x is very large global can fail, except when fun is one of these built-in functions "mean", "min",
"max", "sum", "prod", "range" (min and max), "rms" (root mean square), "sd" (sample standard
deviation), "std" (population standard deviation), "isNA" (number of cells that are NA), "notNA"
(number of cells that are not NA), "anyNA", "anynotNA". Note that "anyNA" and "anynotNA"
cannot be combined with other functions.

The reason that this can fail with large raster and a custom function is that all values need to be
loaded into memory. To circumvent this problem you can run global with a sample of the cells.

You can compute a weighted mean or sum by providing a SpatRaster with weights.

Usage

S4 method for signature 'SpatRaster'
global(x, fun="mean", weights=NULL, maxcell=Inf, ...)

Arguments

x SpatRaster
fun function to be applied to summarize the values by zone. Either as one or more

of these built-in character values: "max", "min", "mean", "sum", "range", "rms"
(root mean square), "sd", "std" (population sd, using n rather than n-1), "isNA",
"notNA", "anyNA", "anynotNA"; or a proper R function (but these may fail for
very large SpatRasters unless you specify maxcell)

142 graticule

... additional arguments passed on to fun

weights NULL or SpatRaster

maxcell positive integer used to take a regular sample of x. Ignored by the built-in func-
tions.

Value

A data.frame with a row for each layer

See Also

zonal for "zonal" statistics, and app or Summary-methods for "local" statistics, and extract for
summarizing values for polygons. Also see focal for "focal" or "moving window" operations.

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
global(r, "sum")
global(r, "mean", na.rm=TRUE)
x <- c(r, r/10)
global(x, c("sum", "mean", "sd"), na.rm=TRUE)

global(x, function(i) min(i) / max(i))

graticule Create a graticule

Description

Create a graticule. That is, a grid of lon/lat lines that can be used to on a projected map.

The object returned, a SpatGraticule, can be plotted with plot and lines. There is also a crop
method.

Usage

graticule(lon=30, lat=30, crs="")

Arguments

lon numeric. Either a single number (the interval between longitudes), or a vector
with longitudes

lat numeric. Either a single number (the interval between latitudes), or a vector
with latitudes

crs character. The coordinate reference system to use

gridDist 143

Value

SpatGraticule

See Also

plot<SpatGraticule>.

Examples

g <- graticule(60, 30, crs="+proj=robin")
g

graticule(90, c(-90, -60, -23.5, 0, 23.5, 60, 90), crs="+proj=robin")

gridDist Distance on a grid

Description

The function calculates the distance to cells of a SpatRaster when the path has to go through the
centers of the eight neighboring raster cells.

The default distance (when scale=1, is meters if the coordinate reference system (CRS) of the Spa-
tRaster is longitude/latitude (+proj=longlat) and in the linear units of the CRS (typically meters)
in other cases.

Distances are computed by summing local distances between cells, which are connected with their
neighbors in 8 directions.

The shortest distance to the cells with the target value is computed for all cells that are not NA.
Cells that are NA cannot be traversed and are ignored, unless the target itself is NA, in which case the
distance to the nearest cell that is not NA is computed for all cells that are NA.

Usage

S4 method for signature 'SpatRaster'
gridDist(x, target=0, scale=1, maxiter=50, filename="", ...)

Arguments

x SpatRaster
target numeric. value of the target cells (where to compute distance to)
scale numeric. Scale factor. For longitude/latitude data 1 = "m" and 1000 = "km". For

planar data that is also the case of the distance unit of the crs is "m"
maxiter numeric. The maximum number of iterations. Increase this number if you get

the warning that costDistance did not converge. Only relevant when target is
not NA

filename character. output filename (optional)
... additional arguments as for writeRaster

144 halo

Value

SpatRaster

See Also

See distance for "as the crow flies" distance, and costDist for distance across a landscape with
variable friction

Examples

global lon/lat raster
r <- rast(ncol=10,nrow=10, vals=1)
r[48] <- 0
r[66:68] <- NA
d <- gridDist(r)
plot(d)

planar
crs(r) <- "+proj=utm +zone=15 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
d <- gridDist(r)
plot(d)

distance to cells that are not NA
rr <- classify(r, cbind(1, NA))
dd <- gridDist(rr, NA)

halo Add halo-ed text to a plot

Description

Add text to a plot that has a "halo". That is, a buffer around it to enhance visibility.

Usage

halo(x, y=NULL, labels, col="black", hc="white", hw=0.1, ...)

Arguments

x, y numeric. coordinates where the text labels should be written

labels character. The text to be written

col character. The main color to be used

hc character. The halo color

hw numeric. The halo width

... additional arguments to pass to text

headtail 145

See Also

text, plot

Examples

r <- rast(nrows=4, ncols=4)
values(r) <- 1:ncell(r)
plot(r, col="blue", legend=FALSE)

text(-100, 20, "hello", cex=2)
halo(50, 20, "hello", cex=2)

halo(0, -20, "world", font=3, hc="light blue", cex=2, hw=.2)
halo(0, 90, "world", font=2, cex=2, hw=.2, xpd=TRUE, pos=2)
halo(0, 90, "world", col="white", font=2, hc="blue", cex=2, hw=.2, xpd=TRUE, pos=4)

headtail head and tail of a SpatRaster or SpatVector

Description

Show the head (first values) or tail (last values) of a SpatRaster or of the attributes of a SpatVector.

Usage

head(x, ...)
tail(x, ...)

Arguments

x SpatRaster or SpatVector

... additional arguments passed on to other methods

Value

matrix (SpatRaster) or data.frame (SpatVector)

See Also

show, geom

Examples

r <- rast(nrows=25, ncols=25)
values(r) <- 1:ncell(r)
head(r)
tail(r)

146 hist

hist Histogram

Description

Create a histogram of the values of a SpatRaster. For large datasets a sample of maxcell is used.

Usage

S4 method for signature 'SpatRaster'
hist(x, layer, maxcell=1000000, plot=TRUE, maxnl=16, main, ...)

Arguments

x SpatRaster

layer positive integer or character to indicate layer numbers (or names). If missing,
all layers up to maxnl are used

maxcell integer. To regularly sample very large objects

plot logical. Plot the histogram or only return the histogram values

maxnl positive integer. The maximum number of layers to use. Ignored if layer is not
missing

main character. Main title(s) for the plot. Default is the value of names

... additional arguments. See hist

Value

This function is principally used for plotting a histogram, but it also returns an object of class
"histogram" (invisibly if plot=TRUE).

See Also

pairs, boxplot

Examples

r1 <- r2 <- rast(nrows=50, ncols=50)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r1))
rs <- r1 + r2
rp <- r1 * r2

opar <- par(no.readonly =TRUE)
par(mfrow=c(2,2))
plot(rs, main='sum')
plot(rp, main='product')
hist(rs)
a <- hist(rp)

hull 147

a
x <- c(rs, rp, sqrt(rs))
hist(x)
par(opar)

hull Convex, concave, rectangular and circular hulls

Description

Compute hulls around SpatVector geometries. This can be the convex hull, the minimal bounding
rotated rectangle, the minimal bounding circle, or a concave hull. The concaveness of the concave
hull can be specified in different ways.

The old method convHull is deprecated and will be removed in a future version.

Usage

S4 method for signature 'SpatVector'
hull(x, type="convex", by="", param=1, allowHoles=TRUE, tight=TRUE)

Arguments

x SpatVector
type character. One of "convex", "rectangle", "circle", "concave_ratio", "concave_length"
by character (variable name), to get a new geometry for groups of input geometries
param numeric between 0 and 1. For the "concave_*" types only. For type="concave_ratio"

this is the edge length ratio value, between 0 and 1. For type="concave_length"
this the maximum edge length (a value > 0). For type="concave_polygons"
this specifies the maximum Edge Length as a fraction of the difference between
the longest and shortest edge lengths between the polygons. This normalizes the
maximum edge length to be scale-free. A value of 1 produces the convex hull; a
value of 0 produces the original polygons

allowHoles logical. May the output polygons contain holes? For "concave_*" methods only
tight logical. Should the hull follow the outer boundaries of the input polygons? For

"concave_length" with polygon geometry only

Details

A concave hull is a polygon which contains all the points of the input. It can be a better representa-
tion of the input data (typically points) than the convex hull. There are many possible concave hulls
with different degrees of concaveness. These can be created with argument param.

The hull is constructed by removing the longest outer edges of the Delaunay Triangulation of the
space between the polygons, until the target criterion param is reached. If type="concave_ratio",
param expresses the ratio between the lengths of the longest and shortest edges. 1 produces the
convex hull; 0 produces a hull with maximum concaveness. If type="concave_length", param
specifies the maximm edge length. A large value produces the convex hull, 0 produces the hull of
maximum concaveness.

148 identical

Value

SpatVector

Examples

p <- vect(system.file("ex/lux.shp", package="terra"))
h <- hull(p)

plot(p)
lines(h, col="orange")

hh <- hull(p, "convex", by="NAME_1")
lines(hh, col="purple")

pts <- centroids(p)
plot(pts, ext=ext(p)+0.1)
lines(hull(pts, type="convex"), col="darkgreen")
lines(hull(pts, type="rect"), col="blue")
lines(hull(pts, type="circle"), col="red")

identical Compare two SpatRaster, SpatVector or SpatExtent objects for equal-
ity

Description

When, comparing two SpatRasters for equality, first the attributes of the objects are compared. If
these are the same, a the raster cells are compared as well. This can be time consuming, and you
may prefer to use a sample instead with all.equal

Usage

S4 method for signature 'SpatRaster,SpatRaster'
identical(x, y)

S4 method for signature 'SpatVector,SpatVector'
identical(x, y)

S4 method for signature 'SpatExtent,SpatExtent'
identical(x, y)

Arguments

x SpatRaster, SpatVector, or SpatExtent

y object of the same class as x

ifel 149

Value

single logical value

See Also

all.equal, compareGeom

Examples

x <- sqrt(1:100)
mat <- matrix(x, 10, 10)
r1 <- rast(nrows=10, ncols=10, xmin=0, vals = x)
r2 <- rast(nrows=10, ncols=10, xmin=0, vals = t(mat))

identical(r1, r2)
identical(r1, r1*1)
identical(rast(r1), rast(r2))

ifel ifelse for SpatRasters

Description

Implementation of ifelse for SpatRasters. This method allows for a concise expression of what
can otherwise be achieved with a combination of classify, mask, and cover.

ifel is an R equivalent to the Con method in ArcGIS (arcpy).

Usage

S4 method for signature 'SpatRaster'
ifel(test, yes, no, filename="", ...)

Arguments

test SpatRaster with logical (TRUE/FALSE) values

yes SpatRaster or numeric

no SpatRaster or numeric

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

150 image

Examples

r <- rast(nrows=5, ncols=5, xmin=0, xmax=1, ymin=0, ymax=1)
values(r) <- c(-10:0, NA, NA, NA, 0:10)

x <- ifel(r > 1, 1, r)
same as
a <- classify(r, cbind(1, Inf, 1))
or
b <- app(r, fun=function(i) {i[i > 1] <- 1; i})
or
d <- clamp(r, -Inf, 1)
or (not recommended for large datasets)
e <- r
e[e>1] <- 1

other examples
f <- ifel(is.na(r), 100, r)

z <- ifel(r > -2 & r < 2, 100, 0)

nested expressions
y <- ifel(r > 1, 1, ifel(r < -1, -1, r))

k <- ifel(r > 0, r+10, ifel(r < 0, r-10, 3))

image SpatRaster image method

Description

Plot (make a map of) the values of a SpatRaster via image. See plot if you need more fancy options
such as a legend.

Usage

S4 method for signature 'SpatRaster'
image(x, y=1, maxcell=500000, ...)

Arguments

x SpatRaster
y positive integer indicating the layer to be plotted, or a character indicating the

name of the layer
maxcell positive integer. Maximum number of cells to use for the plot
... additional arguments as for graphics::image

See Also

plot

impose 151

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
image(r)
image(r, col=rainbow(24))

impose Impose the geometry of a SpatRaster to those in a SpatRasterCollec-
tion.

Description

Warp the members of a SpatRasterCollection to match the geometry of a SpatRaster.

Usage

S4 method for signature 'SpatRasterCollection'
impose(x, y, filename="", ...)

Arguments

x SpatRasterCollection

y SpatRaster

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

resample

152 initialize

initialize Initialize a SpatRaster with values

Description

Create a SpatRaster with values reflecting a cell property: "x", "y", "xy", "col", "row", "cell" or
"chess". Alternatively, a function can be used. In that case, cell values are initialized without
reference to pre-existing values. E.g., initialize with a random number (fun=runif). While there
are more direct ways of achieving this for small objects (see examples) for which a vector with all
values can be created in memory, the init function will also work for SpatRasters with many cells.

Usage

S4 method for signature 'SpatRaster'
init(x, fun, ..., filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

fun function to be applied. This must be a either single number, multiple numbers,
a function, or one of a set of known character values. A function must take the
number of cells as a single argument to return a vector of values with a length
equal to the number of cells, such as fun=runif. Allowed character values are
"x", "y", "row", "col", "cell", and "chess" to get the x or y coordinate or both,
row, col or cell number or a chessboard pattern (alternating 0 and 1 values)

... additional arguments passed to fun

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

r <- rast(ncols=10, nrows=5, xmin=0, xmax=10, ymin=0, ymax=5)
x <- init(r, fun="cell")
y <- init(r, fun=runif)

initialize with a single value
z <- init(r, fun=8)

inplace 153

inplace Change values in-place

Description

These "in-place" replacement methods assign new value to an object without making a copy. That
is efficient, but if there is a copy of the object that you made by standard assignment (e.g. with y <-
x), that copy is also changed.

set.names is the in-place replacement version of names<-.

set.ext is the in-place replacement version of ext<-

set.values is the in-place replacement version of [<-.

set.cats is the in-place replacement version of categories

set.crs is the in-place replacement version of crs<-

set.window is the in-place replacement version of window<-

Usage

S4 method for signature 'SpatRaster'
set.names(x, value, index=1:nlyr(x), validate=FALSE)
S4 method for signature 'SpatRasterDataset'
set.names(x, value, index=1:length(x), validate=FALSE)
S4 method for signature 'SpatVector'
set.names(x, value, index=1:ncol(x), validate=FALSE)

S4 method for signature 'SpatRaster'
set.ext(x, value)
S4 method for signature 'SpatVector'
set.ext(x, value)

S4 method for signature 'SpatRaster'
set.crs(x, value)
S4 method for signature 'SpatVector'
set.crs(x, value)

S4 method for signature 'SpatRaster'
set.values(x, cells, values, layer=0)
S4 method for signature 'SpatRasterDataset'
set.values(x)

S4 method for signature 'SpatRaster'
set.cats(x, layer=1, value, active=1)

S4 method for signature 'SpatRaster'
set.RGB(x, value, type="rgb")

154 inplace

Arguments

x SpatRaster

value character for set.names. For set.cats: a data.frame with columns (value,
category) or vector with category names. For set.RGB 3 or 4 numbers indicating
the RGB(A) layers

index positive integer indicating layer(s) to assign a name to

validate logical. Make names valid and/or unique?

cells cell numbers or missing

values replacement values or missing to load all values into memory

layer positive integer(s) indicating to which layer(s) to you want to assign these cat-
egories or to which you want to set these values. A number < 1 indicates "all
layers"

active positive integer indicating the active category (column number in value, but not
counting the first column

type character. The color space. One of "rgb" "hsv", "hsi" and "hsl"

Value

logical (invisibly)

Examples

s <- rast(ncols=5, nrows=5, nlyrs=3)
x <- s
names(s)
names(s) <- c("a", "b", "c")
names(s)
names(x)

x <- s
set.names(s, c("e", "f", "g"))
names(s)
names(x)

set.ext(x, c(0,180,0,90))

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

#values from file to memory
set.values(r)

change values
set.values(r, 1:1000, 900)

inset 155

inset Make an inset map

Description

Make an inset map or scale the extent of a SpatVector

Usage

S4 method for signature 'SpatVector'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, offset=0.1, add=TRUE, ...)

S4 method for signature 'SpatRaster'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, offset=0.1, add=TRUE, ...)

S4 method for signature 'SpatVector'
inext(x, e, y=NULL, gap=0)

Arguments

x SpatVector, SpatRaster

e SpatExtent to set the size and location of the inset. Or missing

loc character. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top",
"topright", "right", "center"

scale numeric. The relative size of the inset, used when x is missing

background color for the background of the inset. Use NA for no background color

perimeter logical. If TRUE a perimeter (border) is drawn around the inset

box SpatExtent or missing, to draw a box on the inset, e.g. to show where the map
is located in a larger area

pper list with graphical parameters (arguments) such as col and lwd for the perimeter
line

pbox list with graphical parameters (arguments) such as col and lwd for the box (line)

offset numeric. Value between 0.1 and 1 to indicate the relative distance between what
is mapped and the bounding box

add logical. Add the inset to the map?

... additional arguments passed to plot for the drawing of x

y SpatVector. If not NULL, y is scaled based with the parameters for x. This
is useful, for example, when x represent boundaries, and y points within these
boundaries

gap numeric to add space between the SpatVector and the SpatExtent

156 inset

Value

scaled and shifted SpatVector or SpatRaster (returned invisibly)

See Also

sbar, rescale, shift

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- v[v$NAME_2 == "Diekirch",]

plot(x, density=10, col="blue")
inset(v)

more elaborate
plot(x, density=10, col="blue")
inset(v, col = "brown", border="lightgrey", perimeter=TRUE,
pper=list(col="orange", lwd=3, lty=2),
box=ext(x), pbox=list(col="blue", lwd=2))

cols <- rep("light grey", 12)
cols[2] <- "red"
e <- ext(c(6.2, 6.3, 49.9, 50))
b <- ext(x)+0.02
inset(v, e=e, col=cols, box=b)

with a SpatRaster
ff <- system.file("ex/elev.tif", package="terra")
r <- rast(ff)
r <- crop(r, ext(x) + .01)
plot(r, type="int", mar=c(2,2,2,2), plg=list(x="topright"))
lines(v, lwd=1.5)
lines(x, lwd=2.5)
inset(v, col=cols, loc="topleft", scale=0.15)

a more complex one
plot(r, plg=list(title="meter\n", shrink=.2, cex=.8))
lines(v, lwd=4, col="white")
lines(v, lwd=1.5)
lines(x, lwd=2.5)
text(x, "NAME_2", cex=1.5, halo=TRUE)
sbar(6, c(6.04, 49.785), type="bar", below="km", label=c(0,3,6), cex=.8)
s <- inset(v, col=cols, box=b, scale=.2, loc="topright", background="light yellow",
pbox=list(lwd=2, lty=5, col="blue"))

note the returned inset SpatVector
s
lines(s, col="orange")

interpIDW 157

interpIDW Interpolate points using a moving window

Description

Interpolate points within a moving window using inverse distance weighting. The maximum num-
ber of points used can be restricted, optionally by selecting the nearest points.

Usage

S4 method for signature 'SpatRaster,SpatVector'
interpIDW(x, y, field, radius, power=2, smooth=0,

maxPoints=Inf, minPoints=1, near=TRUE, fill=NA, filename="", ...)

S4 method for signature 'SpatRaster,matrix'
interpIDW(x, y, radius, power=2, smooth=0,

maxPoints=Inf, minPoints=1, near=TRUE, fill=NA, filename="", ...)

Arguments

x SpatRaster

y SpatVector or matrix with three columns (x,y,z)

field character. field name in SpatVector y

radius numeric. The radius of the circle (single number). If near=FALSE, it is also
possible to use two or three numbers. Two numbers are interpreted as the radii
of an ellipse (x and y-axis). A third number should indicated the desired, counter
clockwise, rotation of the ellipse (in degrees)

power numeric. Weighting power

smooth numeric. Smoothing parameter

minPoints numeric. The minimum number of points to use. If fewer points are found in a
search ellipse it is considered empty and the fill value is returned

maxPoints numeric. The maximum number of points to consider in a search area. Addi-
tional points are ignored. If fewer points are found, the fill value is returned

near logical. Should the nearest points within the neighborhood be used if maxPoints
is reached?

fill numeric. value to use to fill empty cells

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

158 interpNear

See Also

rasterizeWin, rasterize, interpNear, interpolate

Examples

r <- rast(ncol=100, nrow=100, crs="local", xmin=0, xmax=50, ymin=0, ymax=50)
set.seed(100)
x <- runif(25, 5, 45)
y <- runif(25, 5, 45)
z <- sample(25)
xyz <- cbind(x,y,z)

x <- interpIDW(r, xyz, radius=5, power=1, smooth=1, maxPoints=5)

interpNear Nearest neighbor interpolation

Description

Nearest neighbor interpolation of points, using a moving window

Usage

S4 method for signature 'SpatRaster,SpatVector'
interpNear(x, y, field, radius, interpolate=FALSE, fill=NA, filename="", ...)

S4 method for signature 'SpatRaster,matrix'
interpNear(x, y, radius, interpolate=FALSE, fill=NA, filename="", ...)

Arguments

x SpatRaster

y SpatVector or matrix with three columns (x,y,z)

field character. field name in SpatVector y

radius numeric. The radius of the circle (single number). If interpolate=FALSE it is
also possible to use two or three numbers. Two numbers are interpreted as the
radii of an ellipse (x and y-axis). A third number should indicated the desired,
counter clockwise, rotation of the ellipse (in degrees)

interpolate logical. Should the nearest neighbor values be linearly interpolated between
points?

fill numeric. value to use to fill empty cells

filename character. Output filename

... additional arguments for writing files as in writeRaster

interpolation 159

Value

SpatRaster

See Also

rasterizeWin, rasterize, interpIDW, interpolate

Examples

r <- rast(ncol=100, nrow=100, crs="local", xmin=0, xmax=50, ymin=0, ymax=50)
set.seed(100)
x <- runif(25, 5, 45)
y <- runif(25, 5, 45)
z <- sample(25)
xyz <- cbind(x,y,z)

x <- interpNear(r, xyz, radius=5)

p <- vect(data.frame(xyz), geom=c("x", "y"))
v <- voronoi(p)

plot(x, col=rainbow(25))
lines(v)

plot(v, col=rainbow(25)); points(p)

interpolation Spatial interpolation

Description

Make a SpatRaster with interpolated values using a fitted model object of classes such as "gstat"
(gstat package) or "Krige" (fields package), or any other model that has location (e.g., "x" and
"y", or "longitude" and "latitude") as predictors (independent variables). If x and y are the only
predictors, it is most efficient if you provide an empty (no associated data in memory or on file)
SpatRaster for which you want predictions. If there are more spatial predictor variables, provide
these as a SpatRaster in the first argument of the function. If you do not have x and y locations as
implicit predictors in your model you should use predict instead.

Usage

S4 method for signature 'SpatRaster'
interpolate(object, model, fun=predict, ..., xyNames=c("x", "y"),

factors=NULL, const=NULL, index = NULL, cores=1, cpkgs=NULL,
na.rm=FALSE, filename="", overwrite=FALSE, wopt=list())

160 interpolation

Arguments

object SpatRaster

model model object

fun function. Default value is "predict", but can be replaced with e.g. "predict.se"
(depending on the class of model), or a custom function (see examples)

... additional arguments passed to fun

xyNames character. variable names that the model uses for the spatial coordinates. E.g.,
c("longitude", "latitude")

factors list with levels for factor variables. The list elements should be named with
names that correspond to names in object such that they can be matched. This
argument may be omitted for some models from which the levels can be ex-
tracted from the model object

const data.frame. Can be used to add a constant for which there is no SpatRaster for
model predictions. This is particularly useful if the constant is a character-like
factor value

index positive integer or NULL. Allows for selecting of the variable returned if the
model returns multiple variables

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used

cpkgs character. The package(s) that need to be loaded on the nodes to be able to run
the model.predict function (see examples in predict)

na.rm logical. If TRUE, cells with NA values in the predictors are removed from the
computation. This option prevents errors with models that cannot handle NA
values. In most other cases this will not affect the output. An exception is
when predicting with a model that returns predicted values even if some (or all!)
variables are NA

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

predict, interpIDW, interpNear

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
ra <- aggregate(r, 10)
xy <- data.frame(xyFromCell(ra, 1:ncell(ra)))
v <- values(ra)
i <- !is.na(v)

interpolation 161

xy <- xy[i,]
v <- v[i]

Not run:
library(fields)
tps <- Tps(xy, v)
p <- rast(r)

use model to predict values at all locations
p <- interpolate(p, tps)
p <- mask(p, r)
plot(p)

change "fun" from predict to fields::predictSE to get the TPS standard error
need to use "rast(p)" to remove the values
se <- interpolate(rast(p), tps, fun=predictSE)
se <- mask(se, r)
plot(se)

another predictor variable, "e"
e <- (init(r, "x") * init(r, "y")) / 100000000
names(e) <- "e"

z <- as.matrix(extract(e, xy)[,-1])

add as another independent variable
xyz <- cbind(xy, z)
tps2 <- Tps(xyz, v)
p2 <- interpolate(e, tps2, xyOnly=FALSE)

as a linear covariate
tps3 <- Tps(xy, v, Z=z)

Z is a separate argument in Krig.predict, so we need a new function
Internally (in interpolate) a matrix is formed of x, y, and elev (Z)

pfun <- function(model, x, ...) {
predict(model, x[,1:2], Z=x[,3], ...)

}
p3 <- interpolate(e, tps3, fun=pfun)

gstat examples
library(gstat)
library(sp)
data(meuse)

inverse distance weighted (IDW)
r <- rast(system.file("ex/meuse.tif", package="terra"))
mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse,

nmax=7, set=list(idp = .5))
z <- interpolate(r, mg, debug.level=0, index=1)
z <- mask(z, r)

162 intersect

with a model built with an `sf` object you need to provide custom function

library(sf)
sfmeuse <- st_as_sf(meuse, coords = c("x", "y"), crs=crs(r))
mgsf <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse, nmax=7, set=list(idp = .5))

interpolate_gstat <- function(model, x, crs, ...) {
v <- st_as_sf(x, coords=c("x", "y"), crs=crs)
p <- predict(model, v, ...)
as.data.frame(p)[,1:2]
}

zsf <- interpolate(r, mgsf, debug.level=0, fun=interpolate_gstat, crs=crs(r), index=1)
zsf <- mask(zsf, r)

kriging

ordinary kriging
v <- variogram(log(zinc)~1, ~x+y, data=meuse)
mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))
gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)
OK <- interpolate(r, gOK, debug.level=0)

universal kriging
vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)
names(r) <- "elev"
UK <- interpolate(r, gUK, debug.level=0)

co-kriging
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'copper', copper~1, meuse, locations=~x+y)
coV <- variogram(gCoK)
plot(coV, type='b', main='Co-variogram')
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))
coV.fit
plot(coV, coV.fit, main='Fitted Co-variogram')
coK <- interpolate(r, coV.fit, debug.level=0)
plot(coK)

End(Not run)

intersect Intersection

intersect 163

Description

You can intersect SpatVectors with each other or with a SpatExtent. Intersecting points with points
uses the extent of y to get the intersection. Intersecting of points and lines is not supported because
of numerical inaccuracies with that. You can use buffer, to create polygons from lines and use
these with intersect.

You can also intersect two SpatExtents.

When intersecting two SpatRasters these need to be aligned (have the same origin and spatial reso-
lution). The values of the returned SpatRaster are TRUE where both input rasters have values, FALSE
where one has values, and NA in all other cells.

When intersecting a SpatExtent and a SpatRaster, the SpatExtent is first aligned to the raster cell
boundaries.

See crop for the intersection of a SpatRaster with a SpatExtent (or the extent of a SpatRaster or
SpatVector) if you want a SpatRaster (not a SpatExtent) as output.

See is.related(x, y, "intersects") to find out which geometries of a SpatVector intersect.
You can spatially subset a SpatVector with another one with x[y].

Usage

S4 method for signature 'SpatVector,SpatVector'
intersect(x, y)

S4 method for signature 'SpatVector,SpatExtent'
intersect(x, y)

S4 method for signature 'SpatExtent,SpatVector'
intersect(x, y)

S4 method for signature 'SpatExtent,SpatExtent'
intersect(x, y)

S4 method for signature 'SpatRaster,SpatRaster'
intersect(x, y)

S4 method for signature 'SpatRaster,SpatExtent'
intersect(x, y)

S4 method for signature 'SpatExtent,SpatRaster'
intersect(x, y)

Arguments

x SpatVector, SpatExtent, or SpatRaster

y SpatVector, SpatExtent, or SpatRaster

Value

Same as x

164 is.bool

See Also

union, crop, relate, [

Examples

e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
intersect(e1, e2)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(5.6, 6, 49.55, 49.7)
x <- intersect(v, e)

p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))",
"POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, area=expanse(p))

y <- intersect(v, p)

r <- s <- rast(ncol=5, nrow=5, xmin=1, xmax=5, ymin=1, ymax=5)
r[5:20] <- 5:20
s[11:20] <- 11:20
rs <- intersect(r, s)

u <- shift(r, .8)
us <- intersect(u, s)

is.bool Raster value types

Description

The values in a SpatRaster layer are by default numeric, but they can also be set to be logical
(Boolean), integer, or categorical (factor).

For a SpatRaster, as.logical and isTRUE is equivalent to as.bool. isFALSE is equivalent to
!as.bool, and as.integer is the same as as.int.

as.bool and as.int force the values into the correct range (e.g. whole integers) but in-memory
cell values are still stored as numeric. They will behave like the assigned types, though, and will be
written to files with that data type (if the file type supports it).

See levels and cats to create categorical layers by setting labels.

Usage

S4 method for signature 'SpatRaster'
is.num(x)

is.bool 165

S4 method for signature 'SpatRaster'
is.bool(x)

S4 method for signature 'SpatRaster'
as.bool(x, filename, ...)

S4 method for signature 'SpatRaster'
is.int(x)

S4 method for signature 'SpatRaster'
as.int(x, filename, ...)

S4 method for signature 'SpatRaster'
is.factor(x)

S4 method for signature 'SpatRaster'
as.factor(x)

Arguments

x SpatRaster

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

The as.* methods return a new SpatRaster, whereas the is.* methods return a logical value for
each layer in x.

See Also

levels and cats to create categorical layers (and set labels).

Examples

r <- rast(nrows=10, ncols=10, vals=1:100)
is.bool(r)
z <- as.bool(r)
is.bool(z)

x <- r > 25
is.bool(x)

rr <- r/2
is.int(rr)
is.int(round(rr))

166 is.flipped

is.empty Check if a SpatExtent or SpatVector is empty

Description

An empty SpatExtent has no area

An empty SpatVector has no geometries.

Usage

S4 method for signature 'SpatExtent'
is.empty(x)

S4 method for signature 'SpatVector'
is.empty(x)

Arguments

x SpatVector or SpatExtent

Value

logical

Examples

e <- ext(0,0,0,0)
is.valid(e)
is.empty(e)

v <- vect()
is.valid(v)
is.empty(v)

is.flipped Is a SpatRaster is flipped

Description

Check if a SpatRaster is "flipped" vertically, and may need to be adjusted with flip before it can
be used.

Usage

S4 method for signature 'SpatRaster'
is.flipped(x)

is.lonlat 167

Arguments

x SpatRaster

Value

logical. One value for each raster data *source*

See Also

flip, is.rotated

Examples

r <- rast(nrows=10, ncols=10)
is.flipped(r)

is.lonlat Check for longitude/latitude crs

Description

Test whether a SpatRaster or SpatVector has a longitude/latitude coordinate reference system (CRS),
or perhaps has one. That is, when the CRS is unknown ("") but the x coordinates are within -181
and 181 and the y coordinates are within -90.1 and 90.1. For a SpatRaster you can also test if it has
a longitude/latitude CRS and it is "global" (covers all longitudes).

A warning is given if the CRS is missing or if it is specified as longitude/latitude but the coordinates
do not match that.

Usage

S4 method for signature 'SpatRaster'
is.lonlat(x, perhaps=FALSE, warn=TRUE, global=FALSE)

S4 method for signature 'SpatVector'
is.lonlat(x, perhaps=FALSE, warn=TRUE)

S4 method for signature 'character'
is.lonlat(x, perhaps=FALSE, warn=TRUE)

Arguments

x SpatRaster or SpatVector
perhaps logical. If TRUE and the CRS is unknown, the method returns TRUE if the coor-

dinates are plausible for longitude/latitude
warn logical. If TRUE, a warning is given if the CRS is unknown but assumed to be

lon/lat and perhaps=TRUE

global logical. If TRUE, the method tests if the raster covers all longitudes (from -180
to 180 degrees) such that the extreme columns are in fact adjacent

168 is.rotated

Value

logical or NA

Examples

r <- rast()
is.lonlat(r)
is.lonlat(r, global=TRUE)

crs(r) <- ""
is.lonlat(r)
is.lonlat(r, perhaps=TRUE, warn=FALSE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
is.lonlat(r)

is.rotated Check for rotation

Description

Check if a SpatRaster is "rotated" and needs to be rectified before it can be used

See rectify

Usage

S4 method for signature 'SpatRaster'
is.rotated(x)

Arguments

x SpatRaster

Value

logical. One value for each raster data *source*

See Also

rectify, is.flipped

Examples

r <- rast(nrows=10, ncols=10, vals=1:100)
is.rotated(r)

is.valid 169

is.valid Check or fix polygon or extent validity

Description

Check the validity of polygons or attempt to fix it. Or check the validity of a SpatExtent.

Usage

S4 method for signature 'SpatVector'
is.valid(x, messages=FALSE, as.points=FALSE)

S4 method for signature 'SpatVector'
makeValid(x, buffer=FALSE)

S4 method for signature 'SpatExtent'
is.valid(x)

Arguments

x SpatVector or SpatExtent

messages logical. If TRUE the error messages are returned

as.points logical. If TRUE, it is attempted to return locations where polygons are invalid as
a SpatVector or points

buffer logical. If TRUE the zero-width buffer method is used to create valid polygons.
Be careful when using this method because it may result in data loss. For exam-
ple, only a single part of a self-intersecting may be preserved. See the example
below

Value

logical

See Also

topology

Examples

w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
is.valid(w)

w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 4 -2, 0 -5))")
is.valid(w)
is.valid(w, TRUE)
v1 <- makeValid(w)
is.valid(v1)

170 k_means

v2 <- makeValid(w, buffer=TRUE)

plot(disagg(v1), col=c("light blue", "gray"))
valid but incomplete
lines(v2, col="red", lwd=3)

plot(w)
points(cbind(4.54, -2.72), cex=2, col="red")

e <- ext(0, 1, 0, 1)
is.valid(e)

ee <- ext(0, 0, 0, 0)
is.valid(ee)

k_means k_means

Description

Compute k-means clusters for a SpatRaster. For large SpatRasters (with ncell(x) > maxcell) this
is done in two steps. First a sample of the cells is used to compute the cluster centers. Then each
cell is assigned to a cluster by computing the distance to these centers.

Usage

S4 method for signature 'SpatRaster'
k_means(x, centers=3, ..., maxcell=1000000, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

centers either the number of clusters, or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) cells in x is chosen as the initial centres

... additional arguments passed to kmeans

maxcell positive integer. The size of the regular sample used if it is smaller than ncell(x)

filename character. Output filename (ignored if as.raster=FALSE)

overwrite logical. If TRUE, filename is overwritten

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

kmeans

lapp 171

Examples

f <- system.file("ex/logo.tif", package = "terra")
r <- rast(f)
km <- k_means(r, centers=5)
km

lapp Apply a function to layers of a SpatRaster, or sub-datasets of a Spa-
tRasterDataset

Description

Apply a function to a SpatRaster, using layers as arguments.

The number of arguments in function fun must match the number of layers in the SpatRaster (or the
number of sub-datasets in the SpatRasterDataset). For example, if you want to multiply two layers,
you could use this function: fun=function(x,y){return(x*y)} percentage: fun=function(x,y){return(100
* x / y)}. If you combine three layers you could use fun=function(x,y,z){return((x + y) *
z)}

Before you use the function, test it to make sure that it is vectorized. That is, it should work for
vectors longer than one, not only for single numbers. Or if the input SpatRaster(s) have multiple
layers, it should work for a matrix (multiple cells) of input data (or matrices in the case of a Spa-
tRasterDataSet). The function must return the same number of elements as its input vectors, or
multiples of that. Also make sure that the function is NA-proof: it should returns the same number
of values when some or all input values are NA. And the function must return a vector or a matrix,
not a data.frame. To test it, run it with do.call(fun, data) (see examples).

Use app for summarize functions such as sum, that take any number of arguments; and tapp to do
so for groups of layers.

Usage

S4 method for signature 'SpatRaster'
lapp(x, fun, ..., usenames=FALSE, cores=1, filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRasterDataset'
lapp(x, fun, ..., usenames=FALSE, recycle=FALSE,
cores=1, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster or SpatRasterDataset

fun a function that takes a vector and can be applied to each cell of x

... additional arguments to be passed to fun

usenames logical. Use the layer names (or dataset names if x is a SpatRasterDataset) to
match the function arguments? If FALSE, argument matching is by position

172 lapp

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used. You can also supply a cluster object. The benefit of using
this option is often small, if it is even positive. Using a fast function fun can be
a much more effective way to speed things up

recycle logical. Recycle layers to match the subdataset with the largest number of layers

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

Note

Use sapp or lapply to apply a function that takes a SpatRaster as argument to each layer of a
SpatRaster (that is rarely necessary).

See Also

app, tapp, math

Examples

s <- rast(system.file("ex/logo.tif", package="terra")) + 1
ss <- s[[2:1]]

fvi <- function(x, y){ (x - y) / (x + y) }
test the function
data <- list(c(1:5,NA), 6:1)
do.call(fvi, data)

x <- lapp(ss, fun=fvi)

which is the same as supplying the layers to "fun"
in some cases this will be much faster
y <- fvi(s[[2]], s[[1]])

f2 <- function(x, y, z){ (z - y + 1) / (x + y + 1) }
p1 <- lapp(s, fun=f2)

p2 <- lapp(s[[1:2]], f2, z=200)

the usenames argument

fvi2 <- function(red, green){ (red - green) / (red + green) }
names(s)
x1 <- lapp(s[[1:2]], fvi2, usenames=TRUE)
x2 <- lapp(s[[2:1]], fvi2, usenames=TRUE)
x1 and x2 are the same, despite the change in the order of the layers

layerCor 173

x4 is also the same, but x3 is not
x3 <- lapp(s[[2:1]], fvi2, usenames=FALSE)

these fail because there are too many layers in s
x4 <- lapp(s, fvi2, usenames=TRUE)
x5 <- lapp(s, fvi2, usenames=FALSE)

pairs(c(x1, x2, x3))

SpatRasterDataset
x <- sds(s, s[[1]]+50)
fun <- function(x, y) { x/y }

test "fun"
data <- list(matrix(1:9, ncol=3), matrix(9:1, ncol=3))
do.call(fun, data)

lapp(x, fun, recycle=TRUE)

the same, more concisely
z <- s / (s[[1]]+50)

layerCor Correlation and (weighted) covariance

Description

Compute correlation, (weighted) covariance, or similar summary statistics that compare the values
of all pairs of the layers of a SpatRaster.

Usage

S4 method for signature 'SpatRaster'
layerCor(x, fun, w, asSample=TRUE, use="everything", maxcell=Inf, ...)

Arguments

x SpatRaster

fun character. The statistic to compute: either "cov" (covariance), "weighted.cov"
(weighted covariance), or "cor" (pearson correlation coefficient). You can also
supply your own function that takes two vectors as argument to compute a single
number

w SpatRaster with the weights to compute the weighted covariance. It should have
a single layer and the same geometry as x

asSample logical. If TRUE, the statistic for a sample (denominator is n-1) is computed,
rather than for the population (denominator is n). Only for the standard functions

174 layerCor

use character. To decide how to handle missing values. This must be (an ab-
breviation of) one of "everything", "complete.obs", "pairwise.complete.obs",
"masked.complete". With "pairwise.complete.obs", the value for a pair of layers
is computed for all cells that are not NA in that pair. Therefore, it may be that the
(number of) cells used varies between pairs. The benefit of this approach is that
all available data is used. Use "complete.obs", if you want to only use the values
from cells that are not NA in any of the layers. By using "masked.complete" you
indicate that all layers have NA values in the same cells

maxcell positive integer. The maximum number of cells to be used. If this is smaller
than ncell(x), a regular sample of x is used

... additional arguments for fun (if it is a proper function)

Value

If fun is one of the three standard statistics, you get a list with three items: the correlation or
(weighted) covariance matrix, the (weighted) means, and the number of data cells in each compari-
son. The means are also a matrix because they may depend on the combination of layers if different
cells have missing values and these are excluded from the computation. The rows of the mean ma-
trix represent the layer whose (weighted) mean is being calculated and the columns represent the
layer it is being paired with. Only cells with non-missing observations for both layers are used in
the calculation of the (weighted) mean. The diagonals of the mean and n matrices are set to missing.

If fun is a function, you get a single matrix.

References

For the weighted covariance:

• Canty, M.J. and A.A. Nielsen, 2008. Automatic radiometric normalization of multitemporal
satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of
Environment 112:1025-1036.

• Nielsen, A.A., 2007. The regularized iteratively reweighted MAD method for change detec-
tion in multi- and hyperspectral data. IEEE Transactions on Image Processing 16(2):463-478.

See Also

global, cov.wt, weighted.mean

Examples

b <- rast(system.file("ex/logo.tif", package="terra"))
layerCor(b, "cor")

layerCor(b, "cov")

weigh by column number
w <- init(b, fun="col")
layerCor(b, "weighted.cov", w=w)

specify another function
layerCor(b, function(x, y) cor(x, y, method="spearman"))

linearUnits 175

linearUnits Linear units of the coordinate reference system

Description

Get the linear units of the coordinate reference system (crs) of a SpatRaster or SpatVector expressed
in m. The value returned is used internally to transform area and perimeter measures to meters. The
value returned for longitude/latitude crs is zero.

Usage

S4 method for signature 'SpatRaster'
linearUnits(x)

S4 method for signature 'SpatVector'
linearUnits(x)

Arguments

x SpatRaster or SpatVector

Value

numeric (meter)

See Also

crs

Examples

x <- rast()
crs(x) <- ""
linearUnits(x)

crs(x) <- "+proj=longlat +datum=WGS84"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=cm"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=km"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=us-ft"
linearUnits(x)

176 lines

lines Add points, lines, or polygons to a map

Description

Add a vector geometries to a plot (map) with points, lines, or polys.

These are simpler alternatives for plot(x, add=TRUE)

These methods also work for a small(!) SpatRaster. Only cells that are not NA in the first layer are
used.

Usage

S4 method for signature 'SpatVector'
points(x, col, cex=0.7, pch=16, alpha=1, jitter=0, ...)

S4 method for signature 'SpatVector'
lines(x, y=NULL, col, lwd=1, lty=1, arrows=FALSE, alpha=1, ...)

S4 method for signature 'SpatVector'
polys(x, col, border="black", lwd=1, lty=1, alpha=1, ...)

S4 method for signature 'SpatRaster'
points(x, ...)

S4 method for signature 'SpatRaster'
lines(x, mx=10000, ...)

S4 method for signature 'SpatRaster'
polys(x, mx=10000, dissolve=TRUE, ...)

S4 method for signature 'SpatExtent'
points(x, col="black", alpha=1, ...)

S4 method for signature 'SpatExtent'
lines(x, col="black", alpha=1, ...)

S4 method for signature 'SpatExtent'
polys(x, col, alpha=1, ...)

Arguments

x SpatVector or SpatExtent

y missing or SpatVector. If both x and y have point geometry and the same number
of rows, lines are drawn between pairs of points

col character. Colors

makeTiles 177

border character. color(s) of the polygon borders. Use NULL or NA to not draw a border

cex numeric. point size magnifier. See par

pch positive integer, point type. See points. On some (linux) devices, the default
symbol "16" is a not a very smooth circle. You can use "20" instead (it takes a
bit longer to draw) or "1" for an open circle

alpha number between 0 and 1 to set transparency

jitter numeric. The amount of random noise used to adjust label positions, possibly
avoiding overlaps. See argument ’factor’ in jitter

lwd numeric, line-width. See par

lty positive integer, line type. See par

arrows logical. If TRUE and y is a SpatVector, arrows are drawn instead of lines. See
arrows for additional arguments

mx positive number. If the number of cells of SpatRaster x is higher, the method
will fail with an error message

dissolve logical. Should boundaries between cells with the same value be removed?

... additional graphical arguments such as lwd, cex and pch

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

r <- rast(v)
values(r) <- 1:ncell(r)
plot(r)
lines(v)
points(v)

makeTiles Make tiles or get their extents

Description

Divide a SpatRaster into "tiles". The cells of another SpatRaster (normally with a much lower
resolution) or a SpatVector with polygon geometry can be used to define the tiles. You can also
provide one or two numbers to indicate the number of rows and columns per tile.

getTileExtents returns the extents of the (virtual) tiles, while makeTiles creates files for the tiles
and returns their filenames.

178 makeTiles

Usage

S4 method for signature 'SpatRaster'
makeTiles(x, y, filename="tile_.tif", extend=FALSE,
na.rm=FALSE, buffer=0, value="files", overwrite=FALSE, ...)

S4 method for signature 'SpatRaster'
getTileExtents(x, y, extend=FALSE, buffer=0)

Arguments

x SpatRaster

y SpatRaster or SpatVector defining the zones; or a positive integer specifying the
number of rows and columns for each zone (or 2 numbers to differentiate the
number of rows and columns)

filename character. Output filename template. Filenames will be altered by adding the
tile number for each tile

extend logical. If TRUE, the extent of y is expanded to assure that it covers all of x

na.rm logical. If TRUE, tiles with only missing values are ignored

buffer integer. The number of additional rows and columns added to each tile. Can
be a single number, or two numbers to specify a separate number of rows and
columns. This allows for creating overlapping tiles that can be used for com-
puting spatial context dependent values with e.g. focal. The expansion is only
inside x, no rows or columns outside of x are added

value character. The type of return value desired. Either "files" (for the filenames),
"raster" (for a SpatRaster), or "collection" (for a SpatRasterCollection)

overwrite logical. If TRUE, existing tiles are overwritten; otherwise they are skipped (with-
out error or warning)

... additional arguments for writing files as in writeRaster

Value

makeTiles returns a character (filenames), SpatRaster or SpatRasterCollection value. getTileExtents
returns a matrix with extents

See Also

vrt to create a SpatRaster from tiles; crop for sub-setting arbitrary parts of a SpatRaster; divide
to divide a SpatRaster into parts.

Examples

r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)

getTileExtents(r, x)

makeVRT 179

getTileExtents(r, x, buffer=3)

filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff

vrt(ff)

makeVRT Make a VRT header file

Description

Create a VRT header file for a "flat binary" raster file that needs a header file to be able to read it,
but does not have it.

Usage

makeVRT(filename, nrow, ncol, nlyr=1, extent, xmin, ymin, xres, yres=xres, xycenter=TRUE,
crs="+proj=longlat", lyrnms="", datatype, NAflag=NA, bandorder="BIL", byteorder="LSB",
toptobottom=TRUE, offset=0, scale=1)

Arguments

filename character. raster filename (without the ".vrt" extension)

nrow positive integer, the number of rows

ncol positive integer, the number of columns

nlyr positive integer, the number of layers

extent SpatExtent or missing

xmin numeric. minimum x coordinate (only used if extent is missing)

ymin numeric. minimum y coordinate (only used if extent is missing)

xres positive number. x resolution

yres positive number. y resolution)

xycenter logical. If TRUE, xmin and xmax represent the coordinates of the center of the
extreme cell, in stead of the coordinates of the outside corner. Only used of
extent is missing

crs character. Coordinate reference system description

lyrnms character. Layer names

datatype character. One of "INT2S", "INT4S", "INT1U", "INT2U", "INT4U", "FLT4S",
"FLT8S". If missing, this is guessed from the file size (INT1U for 1 byte per
value, INT2S for 2 bytes and FLT4S for 4 bytes per value). This may be wrong
because, for example, 2 bytes per value may in fact be INT2U (with the U for
unsigned) values

180 map.pal

NAflag numeric. The value used as the "NA flag"

bandorder character. One of "BIL", "BIP", or "BSQ". That is Band Interleaved by Line, or
by Pixel, or Band SeQuential

byteorder character. One of "LSB", "MSB". "MSB" is common for files generated on
Linux systems, whereas "LSB" is common for files generated on windows

toptobottom logical. If FALSE, the values are read bottom to top

offset numeric. offset to be applied

scale numeric. scale to be applied

Value

character (.VRT filename)

See Also

vrt to create a vrt for a collection of raster tiles

map.pal color palettes for mapping

Description

Get a color palette for mapping. These palettes were copied from GRASS

Usage

map.pal(name, n=50, ...)

Arguments

name character (name of a palette, see Details), or missing (to get the available names)

n numeric. The number of colors

... additional arguments that are passed to colorRamp

Details

Name Description
aspect aspect oriented grey colors
bcyr blue through cyan through yellow to red
bgyr blue through green through yellow to red
blues white to blue
byg blue through yellow to green
byr blue through yellow to red
curvature for terrain curvatures

https://grass.osgeo.org/grass-stable/manuals/r.colors.html

map.pal 181

differences differences oriented colors
elevation maps relative ranges of raster values to elevation color ramp
grass GRASS GIS green (perceptually uniform)
greens white to green
grey grey scale
gyr green through yellow to red
haxby relative colors for bathymetry or topography
inferno perceptually uniform sequential colors inferno
magma perceptually uniform sequential colors
oranges white to orange
plasma perceptually uniform sequential colors
rainbow rainbow colors
ramp color ramp
random random colors
reds white to red
roygbiv
rstcurv terrain curvature
ryb red through yellow to blue
ryg red through yellow to green
sepia yellowish-brown through to white
viridis perceptually uniform sequential colors
water water depth
wave color wave

Value

none

See Also

terrain.colors

Examples

map.pal("elevation", 10)

r <- rast(system.file("ex/elev.tif", package="terra"))
plot(r, col=map.pal("elevation"))

map.pal()

182 mask

map_extent Get the coordinates of the extent of a map

Description

Helper function for creating custom map elements that are aligned with the axes of a map (base plot
created with a SpatRaster and/or SpatVector). For example, you may need to know the coordinates
for the upper-left corner of a map to add some information there.

Unlike the standard base plot, terra keeps the axis aligned with the data. For that reason you cannot
use par()$usr to get these coordinates.

The coordinates returned by this function are used in, for example, add_legend such that a legend
can be automatically placed in the a particular corner.

This function only returns meaningful results of the active plot (canvas) was create with a call to
plot with a SpatRaster or SpatVector as first argument.

Usage

map_extent()

See Also

add_legend, add_grid, add_box

Examples

r <- rast(xmin=0, xmax=10, ymin=0, ymax=10, res=1, vals=1:100)
plot(r)

map_extent()
par()$usr

mask Mask values in a SpatRaster or SpatVector

Description

If x is a SpatRaster: Create a new SpatRaster that has the same values as SpatRaster x, except for
the cells that are NA (or other maskvalue) in another SpatRaster (the ’mask’), or the cells that are
not covered by a SpatVector or SpatExtent. These cells become NA (or another updatevalue).

If x is a SpatVector or SpatExtent: Select geometries of x that intersect, or not intersect, with the
geometries of y.

mask 183

Usage

S4 method for signature 'SpatRaster,SpatRaster'
mask(x, mask, inverse=FALSE, maskvalues=NA,

updatevalue=NA, filename="", ...)

S4 method for signature 'SpatRaster,SpatVector'
mask(x, mask, inverse=FALSE, updatevalue=NA,
touches=TRUE, filename="", ...)

S4 method for signature 'SpatRaster,SpatExtent'
mask(x, mask, inverse=FALSE, updatevalue=NA,
touches=TRUE, filename="", ...)

S4 method for signature 'SpatVector,SpatVector'
mask(x, mask, inverse=FALSE)

S4 method for signature 'SpatVector,SpatExtent'
mask(x, mask, inverse=FALSE)

Arguments

x SpatRaster or SpatVector

mask SpatRaster or SpatVector

inverse logical. If TRUE, areas on mask that are _not_ the maskvalue are masked

maskvalues numeric. The value(s) in mask that indicate which cells of x should be masked
(change their value to updatevalue (default = NA))

updatevalue numeric. The value that masked cells should become (if they are not NA)

touches logical. If TRUE, all cells touched by lines or polygons will be masked, not just
those on the line render path, or whose center point is within the polygon

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

subst, crop

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
msk <- ifel(r < 400, NA, 1)

m <- mask(r, msk)

184 match

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)[1,]

mv1 <- mask(r, v)
mv2 <- crop(r, v, mask=TRUE)

match Value matching for SpatRasters

Description

match returns a SpatRaster with the position of the matched values. The cell values are the index
of the table argument.

%in% returns a 0/1 (FALSE/TRUE) SpatRaster indicating if the cells values were matched or not.

Usage

match(x, table, nomatch = NA_integer_, incomparables = NULL)

x %in% table

Arguments

x SpatRaster

table vector of the values to be matched against

nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer

incomparables a vector of values that cannot be matched. Any value in x matching a value
in this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL

Value

SpatRaster

See Also

app, match

Examples

r <- rast(nrows=10, ncols=10)
values(r) <- 1:100
m <- match(r, c(5:10, 50:55))
n <- r %in% c(5:10, 50:55)

Math-methods 185

Math-methods General mathematical methods

Description

Standard mathematical methods for computations with SpatRasters. Computations are local (ap-
plied on a cell by cell basis). If multiple SpatRasters are used, these must have the same extent and
resolution. These have been implemented:

abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod, cumsum, log, log10, log2,
log1p, acos, acosh, asin, asinh, atan, atanh, exp, expm1, cos, cosh, sin, sinh, tan, tanh,
round, signif

Instead of directly calling these methods, you can also provide their name to the math method. This
is useful if you want to provide an output filename.

The following methods have been implemented for SpatExtent: round, floor, ceiling

round has also been implemented for SpatVector, to round the coordinates of the geometries.

Usage

S4 method for signature 'SpatRaster'
sqrt(x)

S4 method for signature 'SpatRaster'
log(x, base=exp(1))

S4 method for signature 'SpatRaster'
round(x, digits=0)

S4 method for signature 'SpatRaster'
math(x, fun, digits=0, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatVector'
round(x, digits=4)

S4 method for signature 'SpatRaster'
cumsum(x)

Arguments

x SpatRaster
base a positive or complex number: the base with respect to which logarithms are

computed
digits Number of digits for rounding
fun character. Math function name
filename character. Output filename
overwrite logical. If TRUE, filename is overwritten
... additional arguments for writing files as in writeRaster

186 mem

Value

SpatRaster or SpatExtent

See Also

See app to use mathematical functions not implemented by the package, and Arith-methods for
arithmetical operations. Use roll for rolling functions.

Examples

r1 <- rast(ncols=10, nrows=10)
v <- runif(ncell(r1))
v[10:20] <- NA
values(r1) <- v
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
r <- c(r1, r2)

s <- sqrt(r)
same as
math(r, "sqrt")

round(s, 1)

cumsum(r)

mem Memory available and needed

Description

mem_info prints the amount of RAM that is required and available to process a SpatRaster.

free_RAM returns the amount of RAM that is available

Usage

mem_info(x, n=1, print=TRUE)

free_RAM()

Arguments

x SpatRaster

n positive integer. The number of copies of x that are needed

print logical. print memory info?

merge 187

Value

free_RAM returns the amount of available RAM in kilobytes

Examples

mem_info(rast())

free_RAM()

merge Merge SpatRasters, or merge a SpatVector with a data.frame

Description

Merge multiple SpatRasters to create a new SpatRaster with a larger spatial extent. The SpatRasters
should all have the same coordinate reference system. They should normally also have the same
spatial origin and resolution, but automatic resampling can be done depending on the algorithm
used (see argument algo). In areas where the SpatRasters overlap, the values of the SpatRaster
that is first in the sequence of arguments (or in the SpatRasterCollection) will be retained (unless
first=FALSE).

There is also a method for merging SpatVector with a data.frame; that is, to join the data.frame to
the attribute table of the SpatVector.

See classify to merge a SpatRaster with a data.frame.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
merge(x, y, ..., first=TRUE, na.rm=TRUE, algo=1, method=NULL,
filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRasterCollection,missing'
merge(x, first=TRUE, na.rm=TRUE, algo=1, method=NULL, filename="", ...)

S4 method for signature 'SpatVector,data.frame'
merge(x, y, ...)

Arguments

x SpatRaster, SpatRasterCollection, or SpatVector

y missing if x is a SpatRasterCollection. SpatRaster if x is a SpatRaster. data.frame
if x is a SpatVector

... if x is a SpatRaster: additional objects of the same class as x. If x is a SpatRaster-
Collection: options for writing files as in writeRaster. If x is a SpatVector, the
same arguments as in merge

first logical. If TRUE, in areas where rasters overlap, the first value is used. Otherwise
the last value is used

188 merge

na.rm logical. If TRUE missing values are are ignored. This is only used for algo 1; the
other two always ignore missing values

algo integer. You can use 1, 2 or 3 to pick a merge algorithm. algo 1 is generally
faster than algo 2, but it may have poorer file compression. Algo 1 will resam-
ple input rasters (and that may slow it down), but algo 2 does not do that. You
can increase the tolerance option to effectively get nearest neighbor resampling
with, for example, wopt=list(tolerance=.2) allows misalignment of .2 times
the resolution of the first input raster and effectively use nearest neighbor resam-
pling. Algo 3 creates a virtual raster (see vrt). This is very quick and can be a
good approach if the merge raster is used as input to a next step in the analysis.
It allows any amount of misalignment (and does not respond to the tolerance
option). Otherwise its speed is similar to that of algo 2

method character. The interpolation method to be used if resampling is necessary (see
argument algo). One of "nearest", "bilinear", "cubic", "cubicspline", "lanczos",
"average", "mode" as in resample. If NULL, "nearest" is used for categorical
rasters and "bilinear" for other rasters

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster or SpatVector

See Also

Combining tiles with vrt may be more efficient than using merge. See mosaic for averaging
overlapping regions.

See classify to merge a SpatRaster and a data.frame and union to combine SpatExtent objects.

Examples

x <- rast(xmin=-110, xmax=-80, ymin=40, ymax=70, res=1, vals=1)
y <- rast(xmin=-85, xmax=-55, ymax=60, ymin=30, res=1, vals=2)
z <- rast(xmin=-60, xmax=-30, ymax=50, ymin=20, res=1, vals=3)

m1 <- merge(x, y, z)
m2 <- merge(z, y, x)
m3 <- merge(y, x, z)
panel(c(m1, m2, m3))

if you have many SpatRasters, it may be convenient
to make a SpatRasterCollection
s <- sprc(list(x, y, z))
s <- sprc(x, y, z)

sm1 <- merge(s, algo=1, first=FALSE)
sm2 <- merge(s, algo=2, first=FALSE)
#sm3 <- merge(s, algo=3, first=FALSE)

mergeTime 189

SpatVector with data.frame
f <- system.file("ex/lux.shp", package="terra")
p <- vect(f)
dfr <- data.frame(District=p$NAME_1, Canton=p$NAME_2, Value=round(runif(length(p), 100, 1000)))
dfr <- dfr[1:5,]
pm <- merge(p, dfr, all.x=TRUE, by.x=c('NAME_1', 'NAME_2'), by.y=c('District', 'Canton'))
pm
values(pm)

mergeTime merge SpatRasters by timelines to create a single timeseries

Description

Combine SpatRasters with partly overlapping time-stamps to create a single time series. If there is
no overlap between the SpatRasters there is no point in using this function (use c instead).

Also note that time gaps are not filled. You can use fillTime to do that.

Usage

S4 method for signature 'SpatRasterDataset'
mergeTime(x, fun=mean, filename="", ...)

Arguments

x SpatRasterDataset

fun A function that reduces a vector to a single number, such as mean or min

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

SpatRaster

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
s1 <- c(r, r)
time(s1) <- as.Date("2001-01-01") + 0:5
s1 <- s1/10
time(s1) <- as.Date("2001-01-07") + 0:5
s2 <- s1*10
time(s2) <- as.Date("2001-01-05") + 0:5
x <- sds(s1, s1, s2)

m <- mergeTime(x, mean)

190 metags

meta meta

Description

Get metadata associated with the sources or layers of a SpatRaster

Usage

S4 method for signature 'SpatRaster'
meta(x, layers=FALSE)

Arguments

x SpatRaster

layers logical. Should the layer level metadata be returned?

Value

list

metags Set or get metadata

Description

You can set arbitrary metadata to (layers of) a SpatRaster using "name=value", or "domain:name=value"
tags or a two (name, value) or three column (name, value, domain) matrix or data.frame.

Usage

S4 replacement method for signature 'SpatRaster'
metags(x, layer=NULL, domain="")<-value

S4 method for signature 'SpatRaster'
metags(x, layer=NULL, name=NULL)

S4 replacement method for signature 'SpatRasterDataset'
metags(x, dataset=NULL)<-value

S4 method for signature 'SpatRasterDataset'
metags(x, dataset=NULL, name=NULL)

modal 191

Arguments

x SpatRaster

layer NULL, positive integer or character. If the value is NULL, the tags assigned or
returned are for the SpatRaster. Otherwise for the layer number(s) or name(s)

domain character. Only used if not specified by value. Use "" for the default domain.
Depending on the file format used this may the only domain supported when
writing files

name character

value character of "name=value" or two-column (name, value) or three-column (name,
value, domain) matrix or data.frame

dataset NULL, positive integer or character. If the value is NULL, the tags assigned or
returned are for the SpatRasterDataset/SpatRasterCollection. Otherwise for the
datset number(s) or name(s)

Value

SpatRaster (metags<-), or data.frame

Examples

r <- rast(ncol=5, nrow=5)
m <- cbind(c("one", "two", "three"), c("ABC", "123", "hello"))
metags(r) <- m
metags(r)

metags(r) <- c("another_tag=another_value", "one more=this value")
metags(r)

metags(r) <- cbind("test", "this", "mydomain")
metags(r)

metags(r, name="two")

remove a tag
metags(r) <- cbind("one", "")
metags(r) <- "two="
metags(r)

remove all tags
metags(r) <- NULL
metags(r)

modal modal value

192 mosaic

Description

Compute the mode for each cell across the layers of a SpatRaster. The mode, or modal value, is the
most frequent value in a set of values.

Usage

S4 method for signature 'SpatRaster'
modal(x, ..., ties="first", na.rm=FALSE, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

... additional argument of the same type as x or numeric

ties character. Indicates how to treat ties. Either "random", "lowest", "highest",
"first", or "NA"

na.rm logical. If TRUE, NA values are ignored. If FALSE, NA is returned if x has any NA
values

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
r <- c(r/2, r, r*2)
m <- modal(r)

mosaic mosaic SpatRasters

Description

Combine adjacent and (partly) overlapping SpatRasters to form a single new SpatRaster. Values in
overlapping cells are averaged (by default) or can be computed with another function.

The SpatRasters must have the same origin and spatial resolution.

This method is similar to the simpler, but much faster, merge method.

mosaic 193

Usage

S4 method for signature 'SpatRaster,SpatRaster'
mosaic(x, y, ..., fun="mean", filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRasterCollection,missing'
mosaic(x, fun="mean", filename="", ...)

Arguments

x SpatRaster

y object of same class as x

... additional SpatRasters

fun character. One of "mean", "median", "min", "max", "modal", "sum", "first",
"last"

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

merge

Examples

x <- rast(xmin=-110, xmax=-60, ymin=40, ymax=70, res=1, vals=1)
y <- rast(xmin=-95, xmax=-45, ymax=60, ymin=30, res=1, vals=2)
z <- rast(xmin=-80, xmax=-30, ymax=50, ymin=20, res=1, vals=3)

m1 <- mosaic(x, y, z)

m2 <- mosaic(z, y, x)

with many SpatRasters, make a SpatRasterCollection from a list
rlist <- list(x, y, z)
rsrc <- sprc(rlist)

m <- mosaic(rsrc)

194 NAflag

na.omit Find and remove geometries that are NA

Description

Find geometries that are NA; or remove geometries and/or records that are NA.

Usage

S4 method for signature 'SpatVector'
is.na(x)

S4 method for signature 'SpatVector'
na.omit(object, field=NA, geom=FALSE)

Arguments

x SpatVector

object SpatVector

field character or NA. If NA, missing values in the attributes are ignored. Other values
are either one or more field (variable) names, or "" to consider all fields

geom logical. If TRUE empty geometries are removed

Value

SpatVector

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$test <- c(1,2,NA)
nrow(v)
x <- na.omit(v, "test")
nrow(x)

NAflag Set the NA flag

Description

The main purpose of this method is to allow correct reading of a SpatRaster that is based on a file
that has an incorrect NA flag. The file is not changed, but flagged value is set to NA when values are
read from the file ("lazy evaluation"). In contrast, if the values are in memory the change is made
immediately.

To change values, it is generally better to use classify

names 195

Usage

S4 method for signature 'SpatRaster'
NAflag(x)

S4 replacement method for signature 'SpatRaster'
NAflag(x)<-value

Arguments

x SpatRaster

value numeric. The value to be interpreted as NA; set this before reading the values
from the file. This can be a single value, or multiple values, one for each data
source (file / subdataset)

Value

none or numeric

See Also

classify

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))[[1]]
NAflag(s) <- 255
plot(s)
NAflag(s)

names Names of Spat* objects

Description

Get or set the names of the layers of a SpatRaster or the attributes of a SpatVector.

See set.names for in-place setting of names.

Usage

S4 method for signature 'SpatRaster'
names(x)

S4 replacement method for signature 'SpatRaster'
names(x)<-value

S4 method for signature 'SpatRasterDataset'
names(x)

196 nearest

S4 replacement method for signature 'SpatRasterDataset'
names(x)<-value

S4 method for signature 'SpatVector'
names(x)

S4 replacement method for signature 'SpatVector'
names(x)<-value

Arguments

x SpatRaster, SpatRasterDataset, or SpatVector

value character (vector)

Value

character

Note

terra enforces neither unique nor valid names. See make.unique to create unique names and
make.names to make syntactically valid names.

Examples

s <- rast(ncols=5, nrows=5, nlyrs=3)
nlyr(s)
names(s)
names(s) <- c("a", "b", "c")
names(s)

SpatVector names
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
names(v)
names(v) <- paste0(substr(names(v), 1, 2), "_", 1:ncol(v))
names(v)

nearest nearby geometries

Description

Identify geometries that are near to each other. Either get the index of all geometries within a
certain distance, or the k nearest neighbors, or (with nearest) get the nearest points between two
geometries.

nearest 197

Usage

S4 method for signature 'SpatVector'
nearby(x, y=NULL, distance=0, k=1, centroids=TRUE, symmetrical=TRUE, method="geo")

S4 method for signature 'SpatVector'
nearest(x, y, pairs=FALSE, centroids=TRUE, lines=FALSE, method="geo")

Arguments

x SpatVector

y SpatVector or NULL

distance numeric. maximum distance

k positive integer. number of neighbors. Ignored if distance > 0

centroids logical. Should the centroids of polygons be used?

symmetrical logical. If TRUE, a near pair is only included once. That is, if geometry 1 is near
to geometry 3, the implied nearness between 3 and 1 is not reported. Ignored if
k neighbors are returned

method character. One of "geo", "haversine", "cosine". With "geo" the most precise but
slower method of Karney (2003) is used. The other two methods are faster but
less precise

pairs logical. If TRUE pairwise nearest points are returned (only relevant when using
at least one SpatVector of lines or polygons

lines logical. If TRUE lines between the nearest points instead of (the nearest) points

Value

matrix

See Also

distance, relate, adjacent

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
nearby(v, distance=12000)

198 NIDP

NIDP Number of immediate adjacent cells flowing into each cell

Description

Compute the number of immediate adjacent cells flowing into each cell

Usage

S4 method for signature 'SpatRaster'
NIDP(x, filename="",...)

Arguments

x SpatRaster with flow-direction. see terrain

filename character. Output filename

... additional arguments for writing files as in writeRaster

Details

NDIP is computed first to compute flow-accumulation with the algorithm by Zhou at al, 2019.

Value

SpatRaster

Author(s)

Emanuele Cordano

References

Zhou, G., Wei, H. & Fu, S. A fast and simple algorithm for calculating flow accumulation matrices
from raster digital elevation. Front. Earth Sci. 13, 317–326 (2019). https://doi.org/10.1007/s11707-
018-0725-9 https://link.springer.com/article/10.1007/s11707-018-0725-9

See Also

flowAccumulation

Examples

elev1 <- array(NA,c(9,9))
elev2 <- elev1
dx <- 1
dy <- 1
for (r in 1:nrow(elev1)) {

y <- (r-5)*dx

https://link.springer.com/article/10.1007/s11707-018-0725-9

normalize.longitude 199

for (c in 1:ncol(elev1)) {

x <- (c-5)*dy
elev1[r,c] <- 5*(x^2+y^2)
elev2[r,c] <- 10+5*(abs(x))-0.001*y ### 5*(x^2+y^2)

}
}

Elevation Raster
elev1 <- rast(elev1)
elev2 <- rast(elev2)

t(array(elev1[],rev(dim(elev1)[1:2])))
t(array(elev2[],rev(dim(elev2)[1:2])))

plot(elev1)
plot(elev2)

Flow Direction Raster
flowdir1<- terrain(elev1,v="flowdir")
flowdir2<- terrain(elev2,v="flowdir")

t(array(flowdir1[],rev(dim(flowdir1)[1:2])))
t(array(flowdir2[],rev(dim(flowdir2)[1:2])))

plot(flowdir1)
plot(flowdir2)

##
nidp1 <- NIDP((flowdir1))
nidp2 <- NIDP((flowdir2))

t(array(nidp1[],rev(dim(nidp1)[1:2])))
t(array(nidp2[],rev(dim(nidp2)[1:2])))

plot(nidp1)
plot(nidp2)

normalize.longitude normalize vector data that crosses the dateline

Description

Normalize the longitude of geometries, move them if they are outside of the -180 to 180 degrees
range.

200 north

Usage

S4 method for signature 'SpatVector'
normalize.longitude(x)

Arguments

x SpatVector

Value

SpatVector

See Also

rotate for SpatRaster

Examples

p <- vect("POLYGON ((120 10, 230 75, 230 -75, 120 10))")
normalize.longitude(p)

north North arrow

Description

Add a (North) arrow to a map

Usage

north(xy=NULL, type=1, label="N", angle=0, d, head=0.1, xpd=TRUE, ...)

Arguments

xy numeric. x and y coordinates to place the arrow. It can also be one of follow-
ing character values: "bottomleft", "bottom", "bottomright", "topleft", "top",
"topright", "left", "right", or NULL

type integer between 1 and 12, or a character (unicode) representation of a right point-
ing arrow such as "\u27A9". You may need to install the fonts for this. See the
discussion on stackoverflow

label character, to be printed near the arrow
angle numeric. The angle of the arrow in degrees
d numeric. Distance covered by the arrow in plot coordinates. Only applies to

type=1

head numeric. The size of the arrow "head", for type=1
xpd logical. If TRUE, the arrow can be outside the plot area
... graphical arguments to be passed to other methods

https://stackoverflow.com/a/79747858/635245

not.na 201

Value

none

See Also

sbar, plot, inset

Examples

f <- system.file("ex/meuse.tif", package="terra")
r <- rast(f)
plot(r)
north()
north(c(178550, 332500), d=250)

Not run:
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
plot(r, type="interval")
north(type=3, cex=.8)
north(xy=c(6.7, 49.9), type=2, angle=45, label="NE")
north(xy=c(6.6, 49.7), type=5, cex=1.25)
north(xy=c(5.65, 49.6), type=9)
north(d=.05, xy=c(5.65, 50), angle=180, label="S", lwd=2, col="blue")

all arrows
r <- rast(res=10)
values(r) <- 1
plot(r, col="white", axes=FALSE, legend=FALSE, mar=c(0,0,0,0), reset=TRUE)
for (i in 1:12) {
x = -200+i*30
north(xy=cbind(x,30), type=i)
text(x, -20, i, xpd=TRUE)
}

End(Not run)

not.na is not NA

Description

Shortcut method to avoid the two-step !is.na(x)

Usage

S4 method for signature 'SpatRaster'
not.na(x, falseNA=FALSE, filename="", ...)

202 nseg

Arguments

x SpatRaster
falseNA logical. If TRUE, the output cell values are either TRUE, for cells that are not NA

in x, or NA for the cells that are NA in x. Otherwise, the output values are either
TRUE or FALSE

filename character. Output filename
... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

Compare-methods

Examples

r <- rast(ncols=5, nrows=5, vals=1, ext=c(0,1,0,1))
r[10:20] <- NA
x <- not.na(r)
y <- not.na(r, falseNA=TRUE)
unique(values(c(x, y)))

nseg Number of segments

Description

Count the number of segements in a SpatVector of lines or polygons

Usage

S4 method for signature 'SpatVector'
nseg(x)

Arguments

x SpatVector

Value

numeric

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
nseg(v)

options 203

options Options

Description

Get or set general options.

Usage

terraOptions(..., print=TRUE)

Arguments

... option names and values (see Details). Or missing, to get or show the current
options

print logical. If TRUE the option names and values are printed

Details

The following options are available.

memfrac - value between 0 and 0.9 (larger values give a warning). The fraction of RAM that may
be used by the program.

memmin - if memory required is below this threshold (in GB), the memory is assumed to be avail-
able. Otherwise, terra checks if it is available.

memmax - the maximum amount of RAM (in GB) that terra is allowed to use when processing a
raster dataset. Should be less than what is detected (see mem_info), and higher values are ignored.
Set it to a negative number or NA to not set this option. terraOptions only shows the value of
memmax if it is set.

tempdir - directory where temporary files are written. The default what is returned by tempdir().

datatype - default data type. See writeRaster.

todisk - logical. If TRUE write all raster data to disk (temp file if no file name is specified). For
debugging.

progress - non-negative integer. A progress bar is shown if the number of chunks in which the data
is processed is larger than this number. No progress bar is shown if the value is zero.

verbose - logical. If TRUE debugging info is printed for some functions.

tolerance - numeric. Difference in raster extent (expressed as the fraction of the raster resolution)
that can be ignored when comparing alignment of rasters.

Value

list. Invisibly if print=TRUE

204 origin

Note

It is possible to set your own default options in "etc/.Rprofile.site" of your R installation like this

options(terra_default=list(tempdir="d:/temp", memfrac=.4))

But that may not be a good practice. It is clearer to set your favorite options at the beginning of
each script.

Examples

terraOptions()
terraOptions(memfrac=0.5, tempdir = "c:/temp")
terraOptions(progress=10)
terraOptions()

origin Origin

Description

Get or set the coordinates of the point of origin of a SpatRaster. This is the point closest to (0, 0)
that you could get if you moved towards that point in steps of the x and y resolution.

Usage

S4 method for signature 'SpatRaster'
origin(x)

S4 replacement method for signature 'SpatRaster'
origin(x)<-value

Arguments

x SpatRaster

value numeric vector of length 1 or 2

Value

A vector of two numbers (x and y coordinates)

Examples

r <- rast(xmin=-0.5, xmax = 9.5, ncols=10)
origin(r)
origin(r) <- c(0,0)
r

pairs 205

pairs Pairs plot (matrix of scatterplots)

Description

Pair plots of layers in a SpatRaster. This is a wrapper around graphics function pairs.

Usage

S4 method for signature 'SpatRaster'
pairs(x, hist=TRUE, cor=TRUE, use="pairwise.complete.obs", maxcells=100000, ...)

Arguments

x SpatRaster

hist logical. If TRUE a histogram of the values is shown on the diagonal

cor logical. If TRUE the correlation coefficient is shown in the upper panels

use argument passed to the cor function

maxcells integer. Number of pixels to sample from each layer of a large SpatRaster

... additional arguments (graphical parameters)

See Also

boxplot, hist

Examples

r <-rast(system.file("ex/elev.tif", package="terra"))
s <- c(r, 1/r, sqrt(r))
names(s) <- c("elevation", "inverse", "sqrt")
pairs(s)

to make indvidual histograms:
hist(r)
or scatter plots:
plot(s[[1]], s[[2]])

206 panel

panel Map panel

Description

Show multiple maps that share a single legend.

Usage

S4 method for signature 'SpatRaster'
panel(x, main, loc.main="topleft", nc, nr, maxnl=16,
maxcell=500000, box=FALSE, pax=list(), plg=list(), range=NULL, halo=TRUE,
type=NULL, ...)

Arguments

x SpatRaster

main character. Main plot titles (one for each layer to be plotted). You can use argu-
ments cex.main, font.main, col.main to change the appearance

loc.main numeric of character to set the location of the main title. Either two coordinates,
or a character value such as "topleft")

nc positive integer. Optional. The number of columns to divide the plotting device
in (when plotting multiple layers)

nr positive integer. Optional. The number of rows to divide the plotting device in
(when plotting multiple layers)

maxnl positive integer. Maximum number of layers to plot (for a multi-layer object)

maxcell positive integer. Maximum number of cells to use for the plot

box logical. Should a box be drawn around the map?

plg see plot

pax see plot

range numeric. minimum and maximum values to be used for the continuous legend

halo logical. Use a halo around main (the title)?

type character. Type of map/legend. One of "continuous", "classes", or "interval". If
not specified, the type is chosen based on the data

... arguments passed to plot("SpatRaster", "numeric") and additional graphi-
cal arguments

See Also

plot and see rasterVis::levelplot and tidyterra::autoplot for more sophisticated panel
plots.

patches 207

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
v <- vect(system.file("ex/lux.shp", package="terra"))
x <- c(r, r/2, r*2, r)
names(x) <- paste0("(", LETTERS[1:4], ")")
panel(x)
panel(x, fun=function() lines(v), loc.main="topright")

patches Detect patches (clumps) of cells

Description

Detect patches (clumps). Patches are groups of cells that are surrounded by cells that are NA. Set
zeroAsNA to TRUE to also identify patches separated by cells with values of zero.

Usage

S4 method for signature 'SpatRaster'
patches(x, directions=4, values=FALSE, zeroAsNA=FALSE, allowGaps=TRUE, filename="", ...)

Arguments

x SpatRaster

directions integer indicating which cells are considered adjacent. Should be 8 (Queen’s
case) or 4 (Rook’s case)

values logical. If TRUE use cell values to distinguish patches. If FALSE, all cells that are
not NA are considered identical

zeroAsNA logical. If TRUE treat cells that are zero as if they were NA. Ignored if byvalue=TRUE

allowGaps logical. If TRUE there may be gaps in the patch IDs (e.g. you may have patch
IDs 1, 2, 3 and 5, but not 4). If it is FALSE, these numbers will be recoded from
1 to the number of patches (4 in this example)

filename character. Output filename

... options for writing files as in writeRaster

Value

SpatRaster. Cell values are patch numbers

See Also

focal, boundaries

208 perim

Examples

r <- rast(nrows=18, ncols=36, xmin=0)
r[1:2, 5:8] <- 1
r[5:8, 2:6] <- 1
r[7:12, 22:36] <- 1
r[15:16, 18:29] <- 1
p <- patches(r)

zero as background instead of NA
r <- rast(nrows=10, ncols=10, xmin=0, vals=0)
r[3, 3] <- 10
r[4, 4] <- 10
r[5, 5:8] <- 12
r[6, 6:9] <- 12

treat zeros as NA

p4 <- patches(r, zeroAsNA=TRUE)
p8 <- patches(r, 8, zeroAsNA=TRUE)

patches for different values
p <- patches(r, values=TRUE)

patch ID values are not guaranteed to be consecutive
r <- rast(nrows=5, ncols=10, xmin=0)
set.seed(0)
values(r)<- round(runif(ncell(r))*0.7)
rp <- patches(r, directions=8, zeroAsNA=TRUE)
plot(rp, type="classes"); text(rp)

unless you set allowGaps=FALSE
rp <- patches(r, directions=8, zeroAsNA=TRUE, allowGaps=FALSE)
plot(rp, type="classes"); text(rp)

use zonal to remove small patches
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- classify(r, cbind(-Inf, 400, NA))
y <- patches(x)
remove patches smaller than 100 ha
rz <- zonal(cellSize(y, unit="ha"), y, sum, as.raster=TRUE)
s <- ifel(rz < 250, NA, y)

perim Perimeter or length

Description

This method returns the length of lines or the perimeter of polygons.

persp 209

When the coordinate reference system is not longitude/latitude, you may get more accurate results
by first transforming the data to longitude/latitude with project

Usage

S4 method for signature 'SpatVector'
perim(x)

Arguments

x SpatVector

Value

numeric (m)

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
perim(v)

persp Perspective plot

Description

Perspective plot of a SpatRaster. This is an implementation of a generic function in the graphics
package.

Usage

S4 method for signature 'SpatRaster'
persp(x, maxcells=100000, ...)

Arguments

x SpatRaster. Only the first layer is used
maxcells integer > 0. Maximum number of cells to use for the plot. If maxpixels <

ncell(x), spatSample(method="regular") is used before plotting
... Any argument that can be passed to persp (graphics package)

See Also

persp, contour, plot

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
persp(r)

210 pitfinder

pitfinder Pit Finder in a Flow Dir SpatRaster for Watershed Extraction

Description

find pits (depressions with no outlet)

Usage

S4 method for signature 'SpatRaster'
pitfinder(x,filename="",...)

Arguments

x SpatRaster wih flow-direcion. See terrain

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

A SpatRaster-class (raster) map containing value 1 for the pits and value 0 elsewhere.

Author(s)

Emanuele Cordano

See Also

terrain,watershed,flowAccumulation,NIDP

Examples

Creation of a Digital Elevation Model

elev <- array(NA,c(9,9))
dx <- 1
dy <- 1
for (r in 1:nrow(elev)) {

x <- (r-5)*dx
for (c in 1:ncol(elev)) {

y <- (c-5)*dy
elev[r,c] <- 10+5*(x^2+y^2)
}

}

elev <- cbind(elev,elev,elev,elev)
elev <- rbind(elev,elev,elev,elev)
elev <- rast(elev)

plet 211

Flow Directions

flowdir<- terrain(elev,v="flowdir")
t(array(flowdir[],rev(dim(flowdir)[1:2])))

Pit Detect

pits <- pitfinder(flowdir)

Application wth example DEM

elev <- rast(system.file('ex/elev.tif',package="terra"))
flowdir <- terrain(elev,"flowdir")

pits <- pitfinder(flowdir)

plet Plot with leaflet

Description

Plot a SpatRaster(Collection) or SpatVector(s) to make an interactive leaflet map that is displayed
in your browser.

The arguments of plet are similar to those of plot, making it easier to use leaflet (if you also use
plot).

Usage

S4 method for signature 'SpatRaster'
plet(x, y=1, col, alpha=0.8, main=names(x),
tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"),
wrap=TRUE, maxcell=500000, stretch=NULL, legend="bottomright",
shared=FALSE, panel=FALSE, collapse=TRUE, type=NULL, breaks=NULL,
breakby="eqint", range=NULL, fill_range=FALSE, map=NULL, ...)

S4 method for signature 'SpatRasterCollection'
plet(x, col, alpha=0.8, main=names(x),
tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"),
wrap=TRUE, maxcell=500000, stretch=NULL, legend="bottomright", type=NULL,
breaks=NULL, breakby="eqint", range=NULL, fill_range=FALSE, map=NULL, ...)

212 plet

S4 method for signature 'SpatVector'
plet(x, y="", col, main=y, cex=1,
lwd=2, lty=NULL, border="black", alpha=c(0.3, 1), popup=TRUE, label=FALSE,
split=FALSE, tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"),
wrap=TRUE, legend="bottomright", collapse=FALSE, type=NULL, breaks=NULL,
breakby="eqint", sort=TRUE, reverse=FALSE, map=NULL, fill=NULL, ...)

S4 method for signature 'SpatVectorCollection'
plet(x, y="", col, main=y, cex=1,
lwd=2, lty=NULL, border="black", alpha=c(0.3, 1), popup=TRUE, label=FALSE,
tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"),
wrap=TRUE, legend="bottomright", collapse=FALSE, type=NULL, breaks=NULL,
breakby="eqint", sort=TRUE, reverse=FALSE, map=NULL, fill=NULL, ...)

S4 method for signature 'leaflet'
lines(x, y, col, lwd=2, lty=NULL, alpha=1, ...)

S4 method for signature 'leaflet'
points(x, y, col, border=col, cex=1, lwd=2, lty=NULL,
alpha=c(.3, 1), label=1:nrow(y), popup=FALSE, ...)

S4 method for signature 'leaflet'
polys(x, y, col, lwd=2, lty=NULL,
border="black", alpha=c(0.3, 1), popup=TRUE, label=FALSE, fill=NULL, ...)

Arguments

x SpatRaster, SpatVector, or leaflet object
y missing, or positive integer, or character (variable or layer name) indicating the

layer(s) to be plotted. If x is a SpatRaster, you can select multiple layers
col character. Vector of colors or a color generating function. If x is a SpatVec-

torCollection, you can provide a list with colors and/or functions, with one list
element for each SpatVector

alpha one or two numbers between 0 and 1 to set the transparency for lines (0 is trans-
parent, 1 is opaque). The first number is to fill the points/lines/polygons, the
second for the outline

tiles character or NULL. Names of background tile providers
wrap logical. if TRUE, tiles wrap around
maxcell positive integer. Maximum number of cells to use for the plot
stretch NULL or character ("lin" or "hist") to stretch RGB rasters. See plotRGB

legend character to indicate the legend position ("bottomleft", "bottomright", "topleft"
or "topright") or NULL to suppress the legend

main character. Title for the legend. The length should be 1 if x is a SpatVector and
length nlyr(x) if x is a SpatVector

plet 213

shared logical. Should the legend be the same for all rasters (if multiple layers of Spa-
tRaster x are mapped)

map leaflet object

... additional arguments for drawing points, lines, or polygons passed on the the
relevant leaflet function

border character. Color for the polygon borders

collapse logical. Should the layers "control" panel be collapsed?

split logical. If TRUE a check-box is created to toggle each value in y (If x is a
SpatVector)

cex numeric. point size magnifier. See par

lwd numeric. line-width. See par

lty character to specify a "dash-array". For example "3 5" indicates three pixels
lines with five pixel gaps

popup logical. Should pop-ups be created?

label logical. Should mouse-over labels be added?

panel logical. Should SpatRaster layers be shown as a panel"

type character. Type of map/legend. One of "classes", or "interval". If not specified,
the type is chosen based on the data. Use "" to suppress the legend

breaks numeric. Either a single number to indicate the number of breaks desired, or
the actual breaks. When providing this argument, the default legend becomes
"interval"

breakby character or function. Either "eqint" for equal interval breaks, "cases" for equal
quantile breaks. If a function is supplied it should take a single argument (a
vector of values) and create groups

sort logical. If TRUE legends with character values are sorted. You can also supply
a vector of the unique values, in the order in which you want them to appear in
the legend

range numeric. minimum and maximum values to be used for the continuous legend.
You can use NA for one of these to only set the minimum or maximum value

fill_range logical. If TRUE, values outside of range get the colors of the extreme values;
otherwise they get colored as NA

reverse logical. If TRUE, the legends order is reversed

fill do not use. Will be removed

See Also

plot

Examples

Not run:
if (require(leaflet) && (packageVersion("leaflet") > "2.1.1")) {

214 plot

v <- vect(system.file("ex/lux.shp", package="terra"))
p <- spatSample(as.polygons(v, ext=T), 30)
values(p) = data.frame(id=11:40, name=letters[1:30])

m <- plet(v, "NAME_1", tiles="", border="blue")
m <- points(m, p, col="red", cex=2, popup=T)
lines(m, v, lwd=1, col="white")

plet(v, "NAME_1", split=TRUE, alpha=.2) |>
points(p, col="white", border="red", cex=12, popup=TRUE, lwd=3, lty="1 4",
clusterOptions = leaflet::markerClusterOptions())

s <- svc(v, p)
names(s) <- c("the polys", "set of points")
plet(s, col=c("red", "blue"), lwd=1)

r <- rast(system.file("ex/elev.tif", package="terra"))
plet(r, main="Hi\nthere", tiles=NULL) |> lines(v, lwd=1)

plet(r, tiles="OpenTopoMap") |> lines(v, lwd=2, col="blue")

x <- c(r, 50*classify(r, 5))
names(x) <- c("first", "second")

each their own legend
plet(x, 1:2, collapse=FALSE) |> lines(v, lwd=2, col="blue", lty="5,5")

shared legend
plet(x, 1:2, shared=TRUE, collapse=FALSE) |> lines(v, lwd=2, col="blue")

}
End(Not run)

plot Make a map

Description

Plot the values of a SpatRaster or SpatVector to make a map.

See points, lines or polys to add a SpatVector to an existing map (or use argument add=TRUE).

There is a separate help file for plotting a SpatGraticule or SpatExtent.

Usage

S4 method for signature 'SpatRaster,numeric'
plot(x, y=1, col, type=NULL, mar=NULL, legend=TRUE, axes=!add, plg=list(), pax=list(),

maxcell=500000, smooth=FALSE, range=NULL, fill_range=FALSE, levels=NULL,
all_levels=FALSE, breaks=NULL, breakby="eqint", fun=NULL, colNA=NULL, alpha=NULL,

plot 215

sort=FALSE, reverse=FALSE, grid=FALSE, zebra=FALSE, ext=NULL, reset=FALSE,
add=FALSE, buffer=FALSE, background=NULL, box=axes, clip=TRUE, overview=NULL, ...)

S4 method for signature 'SpatRaster,missing'
plot(x, y, main, mar=NULL, nc, nr, maxnl=16, maxcell=500000, add=FALSE,
plg=list(), pax=list(), ...)

S4 method for signature 'SpatRaster,character'
plot(x, y, ...)

S4 method for signature 'SpatVector,character'
plot(x, y, col=NULL, type=NULL, mar=NULL, legend=TRUE, axes=!add, plg=list(), pax=list(),

main="", grid=FALSE, zebra=FALSE, ext=NULL, sort=TRUE, reverse=FALSE, fun=NULL,
colNA=NA, alpha=NULL, nr, nc, add=FALSE, buffer=TRUE, background=NULL,
box=axes, clip=TRUE, ...)

S4 method for signature 'SpatVector,numeric'
plot(x, y, ...)

S4 method for signature 'SpatVector,missing'
plot(x, y, values=NULL, ...)

S4 method for signature 'SpatVectorCollection,missing'
plot(x, y, main, mar=NULL, nc, nr, maxnl=16, col=NULL, ...)

S4 method for signature 'SpatVectorCollection,numeric'
plot(x, y, main, mar=NULL, ext=NULL, ...)

Arguments

x SpatRaster or SpatVector
y missing or positive integer or name indicating the layer(s) to be plotted
col character vector to specify the colors to use. The default is map.pal("viridis",

100). The default can be changed with the terra.pal option. For example:
options(terra.pal=terrain.colors(10)). If x is a SpatRaster it can also
be a data.frame with two columns (value, color) for a "classes" type legend
or with three columns (from, to, color) for an "interval" type legend. If x is a
SpatVector it can also be a data.frame with two columns (value, color) or a
named vector (value=color) for a "classes" type legend. If x us a SpatVectorCol-
lection, a list can be provided with colors for each SpatVector

type character. Type of map/legend. One of "continuous", "classes", or "interval". If
not specified, the type is chosen based on the data

mar numeric vector of length 4 to set the margins of the plot (to make space for the
legend). The default is (3.1, 3.1, 2.1, 7.1) for a single plot with a legend and
(3.1, 3.1, 2.1, 2.1) otherwise. The default for a RGB raster is 0. Use mar=NA to
not set the margins

legend logical or character. If not FALSE a legend is drawn. The character value can
be used to indicate where the legend is to be drawn. For example "topright" or

216 plot

"bottomleft". Use plg for more refined placement. Not supported for continuous
legends (the default for raster data)

axes logical. Draw axes?

buffer logical. If TRUE the plotting area is made slightly larger than the extent of x

background background color. Default is no color (white)

box logical. Should a box be drawn around the map?

clip logical. Should the axes be clipped to the extent of x?

overview logical. Should "overviews" be used for fast rendering? This can result in much
faster plotting of raster files that have overviews (e.g. "COG" format) and are
accessed over a http connection. However, these overviews generally show ag-
gregate values, thus reducing the range of the actual values. If NULL, the argu-
ment is set to TRUE for rasters that are accessed over http and FALSE in other
cases

plg list with parameters for drawing the legend. See the arguments for legend.
A legend can be placed with placed by specifying arguments x and y. For a con-
tinuous legend y can have two values. x can also be a SpatExtent. Furthermore,
x can have be a keyword such "topleft" and "bottomright" to place the legend
at these locations inside the map rectangle. For a continuous legend, only the
placement keywords "left", "right", "top", "bottom", "topright", "bottomright"
are recognized; and when using these keywords, the legend is placed outside of
the map rectangle. The placement of the legend can be altered with argument
nudge that move the location in the directions specified with one value (x direc-
tion) or two values (x, y). For a continuous legend it can also have four values
(xmin, xmax, ymin, ymax). When supplying coordinates, use horiz=TRUE to
get a horizontal legend.
Additional parameters for continuous legends include:

• digits integer. The number of digits to print after the decimal point
• size to change the height and/or width; the defaults are c(1,1)

• at to set the location of the tickmarks
• format as in formatC to format the numbers. For example, you can use
format="g" for scientific notation. The default is "f"

• tick One of these partially matched values: "through", "in", "middle",
"out", or "none", to choose a tickmark placement/length that is different
from the default "throughout".

• tick.length to change the tickmark length (default = 1). Only relevant
when tick is "throughout" or "out".

• tick.col, tick.box.col and tick.lwd to change the appearance of the
tickmarks

• title.srt to rotate the legend title
• title.x and title.y to place the legend title at specific coordinates

pax list with parameters for drawing axes. See the arguments for axis. Additional
parameters include:

• side numeric to indicate for which of the axes to draw a line. Default is
1:4 (only noticble when box=FALSE.

plot 217

• tick numeric to indicate for which of the axes to draw tickmarks. Default
is 1:2 unless side is changed, in which case the default is the same as side

• lab numeric to indicate for which of the axes to draw labels. Default is 1:2
unless side is changed, in which case the default is the same as side

• xat/yat numeric with the values at which tickmarks are to be drawn on the
horizontal/vertical axis.

• xlabs/ylabs this can either be a logical value specifying whether (numeri-
cal) annotations are to be made at the tickmarks, or a character or expression
vector of labels to be placed at the tickmarks of the horizontal/vertical axis.

• retro a logical value that can be set to TRUE to use a sexagesimal notation
for the labels (degrees/minutes/hemisphere) instead of the standard decimal
notation. For longitude/latitude data only. See graticule for projected
data.

maxcell positive integer. Maximum number of cells to use for the plot
smooth logical. If TRUE the cell values are smoothed (only if a continuous legend is

used)
range numeric. minimum and maximum values to be used for the continuous legend.

You can use NA for one of these to only set the minimum or maximum value
fill_range logical. If TRUE, values outside of range get the colors of the extreme values;

otherwise they get colored as NA
levels character. labels for the legend when type="classes"

all_levels logical. If TRUE, the legend shows all levels of a categorical raster, even if they
are not present in the data

breaks numeric. Either a single number to indicate the number of breaks desired, or
the actual breaks. When providing this argument, the default legend becomes
"interval"

breakby character or function. Either "eqint" for equal interval breaks, "cases" for equal
quantile breaks. If a function is supplied, it should take a single argument (a
vector of values) and create groups

fun function to be called after plotting each SpatRaster layer to add something to
each map (such as text, legend, lines). For example, with SpatVector v, you
could do fun=function() lines(v). The function may have one argument,
representing the layer that is plotted (1 to the number of layers)

colNA character. color for the NA values
alpha Either a single numeric between 0 and 1 to set the transparency for all colors (0

is transparent, 1 is opaque) or a SpatRaster with values between 0 and 1 to set
the transparency by cell. To set the transparency for a given color, set it to the
colors directly

sort logical. If TRUE legends with categorical values are sorted. If x is a SpatVector
you can also supply a vector of the unique values, in the order in which you want
them to appear in the legend

reverse logical. If TRUE, the legend order is reversed
grid logical. If TRUE grid lines are drawn. Their properties such as type and color can

be set with the pax argument. The grid is drawn first such that it is covered by
x. See add_grid to add grid lines on top of the map

218 plot

zebra logical. If TRUE a "zebra-box" is added to the axes (ignored when add=TRUE).
The width of the zebra-box can be set with additional argument zebra.cex. The
colors can be changed with additional argument zebra.col

nc positive integer. Optional. The number of columns to divide the plotting device
in (when plotting multiple layers)

nr positive integer. Optional. The number of rows to divide the plotting device in
(when plotting multiple layers)

main character. Main plot titles (one for each layer to be plotted). You can use
arguments cex.main, font.main, col.main to change the appearance; and
loc.main to change the location of the main title (either two coordinates, or
a character value such as "topleft"). You can also use sub="" for a subtitle. See
title

maxnl positive integer. Maximum number of layers to plot (for a multi-layer object).

add logical. If TRUE add the object to the current plot

ext SpatExtent. Can be use instead of xlim and ylim to set the extent of the plot

reset logical. If TRUE the margins (see argument mar) are reset to what they were
before calling plot; doing so may affect the display of additional objects that are
added to the map (e.g. with lines)

values Either a vector with values to be used for plotting or a two-column data.frame,
where the first column matches a variable in x and the second column has the
values to be plotted

... arguments passed to plot("SpatRaster", "numeric") and additional graphi-
cal arguments

See Also

points, lines, polys, image

Add map elements: text, sbar, north, add_legend, add_box

plot a SpatGraticule or SpatExtent,

multiple layers: plotRGB, panel

other plot types: scatterplot, hist, pairs, density, persp, contour, boxplot, barplot

Examples

SpatRaster
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
plot(r)

plot(r, type="interval")

plot(r, plg=list(x=6.35, y = c(49.9, 50.1), title="Legend\nTitle", title.cex=0.9),
pax=list(side=1:4, retro=FALSE))
north(cbind(5.8, 50.1))

d <- classify(r, c(100,200,300,400,500,600))

plot 219

plot(d)

plot(d, type="interval", breaks=1:5)
plot(d, type="interval", breaks=c(1,4,5), plg=list(legend=c("1-4", "4-5")))
plot(d, type="classes", xlim=c(5.6, 6.6),
plg=list(legend=c("Mr", "Xx", "As", "Zx", "Bb"), x="bottomleft"))

x <- trunc(r/200)
levels(x) <- data.frame(id=0:2, element=c("earth", "wind", "fire"))
plot(x, plg=list(x="topright"),mar=c(2,2,2,2))

oldpar <- par(no.readonly=TRUE)

two plots with the same legend
dev.new(width=6, height=4, noRStudioGD = TRUE)
par(mfrow=c(1,2))
plot(r, range=c(50,600), mar=c(1,1,1,4))
plot(r/2, range=c(50,600), mar=c(1,1,1,4))

as we only need one legend (also see the "panel" method):
par(mfrow=c(1,2))
plot(r, range=c(50,600), mar=c(2, 2, 2, 2), plg=list(size=0.9, cex=.8),
pax=list(side=1:2, cex.axis=.6), box=FALSE)
#text(182500, 335000, "Two maps, one plot", xpd=NA)
plot(r/2, range=c(50,600), mar=c(2, 2, 2, 2), legend=FALSE,
pax=list(side=c(1,4), cex.axis=.6), box=FALSE)

par(oldpar)

multi-layer with RGB
s <- rast(system.file("ex/logo.tif", package="terra"))
s
plot(s)
remove RGB
plot(s*1)
or use layers
plot(s, 1)
plot(s, 1:3)

fix legend by linking values and colors

x = rast(nrows = 2, ncols = 2, vals=1)
y = rast(nrows = 2, ncols = 2, vals=c(1,2,2,1))
cols = data.frame(id=1:2, col=c("red", "blue"))
plot(c(x,y), col=cols)

r = rast(nrows=10, ncols=10, vals=1:100)
dr = data.frame(from=c(5,33,66,150), to=c(33, 66, 95,200), col=rainbow(4))
plot(r, col=dr)

SpatVector

220 plotRGB

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

plot(v)

plot(v, "NAME_2", col=rainbow(12), border=c("gray", "blue"), lwd=3, zebra=TRUE)

plot(v, 2, pax=list(side=1:2), plg=list(x=6.16, y=50.17, cex=.8), xlim=c(5.7, 6.7))

plot(v, 4, pax=list(side=1:2), plg=list(x=6.2, y=50.2, ncol=2), main="", box=FALSE)

plot(v, 1, plg=list(x=5.8, y=49.37, horiz=TRUE, cex=1.1), main="", mar=c(5,2,0.5,0.5))

plot(v, density=1:12, angle=seq(18, 360, 20), col=rainbow(12))

plot(v, "AREA", type="interval", breaks=3, mar=c(3.1, 3.1, 2.1, 3.1),
plg=list(x="topright"), main="")

plot(v, "AREA", type="interval", breaks=c(0,200,250,350),
mar=c(2,2,2,2), xlim=c(5.7, 6.75),
plg=list(legend=c("<200", "200-250", ">250"), cex=1, bty="o",
x=6.3, y=50.15, box.lwd=2, bg="light yellow", title="My legend"))

plotRGB Red-Green-Blue plot of a multi-layered SpatRaster

Description

Make a Red-Green-Blue plot based on three layers in a SpatRaster. The layers (sometimes referred
to as "bands" because they may represent different bandwidths in the electromagnetic spectrum) are
combined such that they represent the red, green and blue channel. This function can be used to
make "true" (or "false") color images from Landsat and other multi-spectral satellite images.

Note that the margins of the plot are set to zero (no axes or titles are visible) but can be set with the
mar argument.

An alternative way to plot RGB images is to first use colorize to create a single layer SpatRaster
with a color-table and then use plot.

Usage

S4 method for signature 'SpatRaster'
plotRGB(x, r=1, g=2, b=3, a=NULL, scale=NULL, mar=0,
stretch=NULL, smooth=TRUE, colNA="white", alpha=NULL, bgalpha=NULL,
zlim=NULL, zcol=FALSE, axes=FALSE ,...)

plotRGB 221

Arguments

x SpatRaster

r integer between 1 and nlyr(x). Layer to use as the Red channel

g integer between 1 and nlyr(x). Layer to use as the Green channel

b integer between 1 and nlyr(x). Layer to use as the Blue channel

a NULL or integer between 1 and nlyr(x). Layer to use as the alpha (trans-
parency) channel. If not NULL, argument alpha is ignored

scale integer. Maximum (possible) value in the three channels. Defaults to 255 or to
the maximum value of x if that is known and larger than 255

mar numeric vector recycled to length 4 to set the margins of the plot. Use mar=NULL
or mar=NA to not set the margins

stretch character. Option to stretch the values to increase contrast: "lin" (linear) or
"hist" (histogram). The linear stretch uses stretch with arguments minq=0.02
and maxq=0.98

smooth logical. If TRUE, smooth the image when drawing to get the appearance of a
higher spatial resolution

colNA color. The color used for cells that have NA values

alpha transparency. Integer between 0 (transparent) and 255 (opaque)

bgalpha Background transparency. Integer between 0 (transparent) and 255 (opaque)

zlim numeric vector of length 2. Range of values to plot (optional). If this is set, and
stretch="lin" is used, then the values are stretched within the range of zlim.
This allows creating consistent coloring between SpatRasters with different cell-
value ranges, even when stretching the colors for improved contrast

zcol logical. If TRUE the values outside the range of zlim get the color of the extremes
of the range. Otherwise, the values outside the zlim range get the color of NA
values (see argument "colNA")

axes logical. If TRUE axes are drawn (and arguments such as main="title" will be
honored)

... graphical parameters as in plot<SpatRaster-method>

See Also

plot, colorize, RGB

Examples

b <- rast(system.file("ex/logo.tif", package="terra"))
plotRGB(b)
plotRGB(b, mar=2)
plotRGB(b, 3, 2, 1)

b[1000:2000] <- NA
plotRGB(b, 3, 2, 1, stretch="hist")

222 plot_graticule

plot_extent Plot a SpatExtent

Description

Plot a SpatExtent. Use lines to add a SpatExtent to an existing map.

See plot for plotting other object types.

Usage

S4 method for signature 'SpatExtent,missing'
plot(x, y, ...)

Arguments

x SpatExtent

y missing

... additional graphical arguments for lines

See Also

plot

Examples

r <- rast()
plot(ext(r))

plot_graticule Plot a graticule

Description

Plot a SpatGraticule. You can create a SpatGraticule with graticule.

Usage

S4 method for signature 'SpatGraticule,missing'
plot(x, y, background=NULL, col="black", mar=NULL, labels=TRUE,
retro=FALSE, lab.loc=c(1,1), lab.lon=NULL, lab.lat=NULL, lab.cex=0.65,
lab.col="black", off.lat=0.25, off.lon=0.25, box=FALSE, box.col="black",
tickmarks=FALSE, add=FALSE, ...)

plot_graticule 223

Arguments

x SpatRaster or SpatVector

y missing or positive integer or name indicating the layer(s) to be plotted

background background color. If NULL, no background is drawn

mar numeric vector of length 4 to set the margins of the plot. To make space for the
legend you may use something like c(3.1, 3.1, 2.1, 7.1). To fill the plotting
canvas, you can use c(0,0,0,0. Use NA to not set the margins

col character. Color for the graticule lines

labels logical. If TRUE, show graticule labels

retro logical. If TRUE, show "retro" instead of decimal labels with the graticule

lab.loc numeric. The first number indicates where the longitude graticule labels should
be drawn (1=bottom, 2=top, NA=not drawn, any other number=top and bottom).
The second number indicates where the latitude graticule labels should be drawn
(1=left, 2=right, NA=not drawn, any other number=left and right)

lab.lon positive integers between 1 and the number of labels, indicating which longitude
graticule labels should be included

lab.lat positive integers between 1 and the number of labels, indicating which latitude
graticule labels should be included

lab.cex double. size of the label font

lab.col character. color of the labels

off.lon numeric. longitude labels offset

off.lat numeric. latitude labels offset

box logical. If TRUE, the outer lines of the graticule are drawn on top with a sold line
lty=1

box.col character. color of the outer lines of the graticule if box=TRUE

tickmarks logical. If TRUE, tickmarks are added

add logical. Add the graticule to the current plot?

... additional graphical arguments passed to lines

See Also

graticule, plot, points, lines, polys, image, scatterplot, scale bar: sbar, north arrow:
north

Examples

g <- graticule(60, 30, crs="+proj=robin")

plot(g, background="azure", col="red", lty=2, box=TRUE)
plot(g, background="azure", col="light gray", lab.loc=c(1,2),
lab.lon=c(2,4,6), lab.lat=3:5, lty=3, retro=TRUE)

224 prcomp

prcomp SpatRaster PCA with prcomp

Description

Compute principal components for SpatRaster layers. This method may be preferred to princomp
for its greater numerical accuracy. However, it is slower and for very large rasters it can only be
done with a sample. This may be good enough but see princomp if you want to use all values.
Unlike princomp, in this method the sample variances are used with n-1 as the denominator.

Usage

S4 method for signature 'SpatRaster'
prcomp(x, retx=TRUE, center=TRUE, scale.=FALSE,
tol=NULL, rank.=NULL, maxcell=Inf)

Arguments

x SpatRaster

retx a logical value indicating whether the rotated variables should be returned

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of x can
be supplied. The value is passed to scale

scale. a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns of x can be supplied. The value is passed to scale

tol a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal
to tol times the standard deviation of the first component.) With the default
null setting, no components are omitted (unless rank. is specified less than
min(dim(x))). Other settings for tol could be tol = 0 or tol = sqrt(.Machine$double.eps),
which would omit essentially constant components

rank. optionally, a number specifying the maximal rank, i.e., maximal number of prin-
cipal components to be used. Can be set as alternative or in addition to tol, useful
notably when the desired rank is considerably smaller than the dimensions of the
matrix

maxcell positive integer. The maximum number of cells to be used. If this is smaller
than ncell(x), a regular sample of x is used

Value

prcomp object

predict 225

Note

prcomp may change the layer names if they are not valid. See make.names. In that case, you will
get a warning, and would need to also make the layer names of x valid before using predict. Even
better would be to change them before calling prcomp.

See Also

princomp, prcomp

Examples

f <- system.file("ex/logo.tif", package = "terra")
r <- rast(f)
pca <- prcomp(r)
x <- predict(r, pca)

use "index" to get a subset of the components
p <- predict(r, pca, index=1:2)

predict Spatial model predictions

Description

Make a SpatRaster with predictions from a fitted model object (for example, obtained with glm or
randomForest). The first argument is a SpatRaster object with the predictor variables. The names
in the SpatRaster should exactly match those expected by the model. Any regression like model for
which a predict method has been implemented (or can be implemented) can be used.

The method should work if the model’s predict function returns a vector, matrix or data.frame (or
a list that can be coerced to a data.frame). In other cases it may be necessary to provide a custom
"predict" function that wraps the model’s predict function to return the values in the required form.
See the examples.

This approach of using model predictions is commonly used in remote sensing (for the classification
of satellite images) and in ecology, for species distribution modeling.

Usage

S4 method for signature 'SpatRaster'
predict(object, model, fun=predict, ..., const=NULL, na.rm=FALSE,

index=NULL, cores=1, cpkgs=NULL, filename="", overwrite=FALSE, wopt=list())

226 predict

Arguments

object SpatRaster

model fitted model of any class that has a "predict" method (or for which you can
supply a similar method as fun argument. E.g. glm, gam, or randomForest

fun function. The predict function that takes model as first argument. The default
value is predict, but can be replaced with e.g. predict.se (depending on the
type of model), or your own custom function

... additional arguments for fun

const data.frame. Can be used to add a constant value as a predictor variable so that
you do not need to make a SpatRaster layer for it

na.rm logical. If TRUE, cells with NA values in the any of the layers of x are removed
from the computation (even if the NA cell is in a layer that is not used as a
variable in the model). This option prevents errors with models that cannot
handle NA values when making predictions. In most other cases this will not
affect the output. However, there are some models that return predicted values
even if some (or all) variables are NA

index integer or character. Can be used to to select a subset of the model output vari-
ables

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used

cpkgs character. The package(s) that need to be loaded on the nodes to be able to run
the model.predict function (see examples)

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

interpolate for spatial model prediction

Examples

logo <- rast(system.file("ex/logo.tif", package="terra"))
names(logo) <- c("red", "green", "blue")
p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,

66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)

a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9,
99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21,
37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2)

predict 227

xy <- rbind(cbind(1, p), cbind(0, a))

extract predictor values for points
e <- extract(logo, xy[,2:3])

combine with response (excluding the ID column)
v <- data.frame(cbind(pa=xy[,1], e))

#build a model, here with glm
model <- glm(formula=pa~., data=v)

#predict to a raster
r1 <- predict(logo, model)

plot(r1)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)

logistic regression
model <- glm(formula=pa~., data=v, family="binomial")
r1log <- predict(logo, model, type="response")

to get the probability and standard error
r1se <- predict(logo, model, se.fit=TRUE)

or provide a custom predict function

predfun <- function(model, data) {
v <- predict(model, data, se.fit=TRUE)
cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))

}

r2 <- predict(logo, model, fun=predfun)

principal components of a SpatRaster
pca <- prcomp(logo)

or use sampling if you have a large raster
and cannot process all cell values
sr <- spatSample(logo, 100000, "regular")
pca <- prcomp(sr)

x <- predict(logo, pca)
plot(x)

parallelization
Not run:
simple case with GLM
model <- glm(formula=pa~., data=v)
p <- predict(logo, model, cores=2)

The above does not work with a model from a contributed
package, as the package needs to be loaded in each core.

228 princomp

Below are three approaches to deal with that

library(randomForest)
rfm <- randomForest(formula=pa~., data=v)

approach 0 (not parallel)
rp0 <- predict(logo, rfm)

approach 1, use the "cpkgs" argument
rp1 <- predict(logo, rfm, cores=2, cpkgs="randomForest")

approach 2, write a custom predict function that loads the package
rfun <- function(mod, dat, ...) {
library(randomForest)
predict(mod, dat, ...)
}
rp2 <- predict(logo, rfm, fun=rfun, cores=2)

approach 3, write a parallelized custom predict function
rfun <- function(mod, dat, ...) {
ncls <- length(cls)
nr <- nrow(dat)
s <- split(dat, rep(1:ncls, each=ceiling(nr/ncls), length.out=nr))
unlist(parallel::clusterApply(cls, s, function(x, ...) predict(mod, x, ...)))
}

library(parallel)
cls <- parallel::makeCluster(2)
parallel::clusterExport(cls, c("rfm", "rfun", "randomForest"))
rp3 <- predict(logo, rfm, fun=rfun)
parallel::stopCluster(cls)

plot(c(rp0, rp1, rp2, rp3))

with two output variables (probabilities for each class)
v$pa <- as.factor(v$pa)
rfm2 <- randomForest(formula=pa~., data=v)
rfp <- predict(logo, rfm2, cores=2, type="prob", cpkgs="randomForest")

End(Not run)

princomp SpatRaster PCA with princomp

Description

Compute principal components for SpatRaster layers. This method can use all values to compute
the principal components, even for very large rasters. This is because it computes the covariance

princomp 229

matrix by processing the data in chunks, if necessary, using layerCor. The population covariance
is used (not the sample, with n-1 denominator, covariance).

Alternatively, you can specify maxcell or sample raster values to a data.frame to speed up calcula-
tions for very large rasters (see the examples below).

See prcomp for an alternative method that has higher numerical accuracy, but is slower, and for very
large rasters can only be accomplished with a sample since all values must be read into memory.

Usage

S4 method for signature 'SpatRaster'
princomp(x, cor=FALSE, fix_sign=TRUE, use="pairwise.complete.obs", maxcell=Inf)

Arguments

x SpatRaster

cor logical. If FALSE, the covariance matrix is used. Otherwise the correlation ma-
trix is used

fix_sign logical. If TRUE, the signs of the loadings and scores are chosen so that the first
element of each loading is non-negative

use character. To decide how to handle missing values. This must be (an abbrevia-
tion of) one of the strings "everything", "complete.obs", "pairwise.complete.obs",
or "masked.complete". With "pairwise.complete.obs", the covariance between
a pair of layers is computed for all cells that are not NA in that pair. Therefore,
it may be that the (number of) cells used varies between pairs. The benefit of
this approach is that all available data is used. Use "complete.obs", if you want
to only use the values from cells that are not NA in any of the layers. By using
"masked.complete" you indicate that all layers have NA values in the same cells

maxcell positive integer. The maximum number of cells to be used. If this is smaller
than ncell(x), a regular sample of x is used

Value

princomp object

Author(s)

Alex Ilich and Robert Hijmans, based on a similar method by Benjamin Leutner

See Also

prcomp princomp

Examples

f <- system.file("ex/logo.tif", package = "terra")
r <- rast(f)
pca <- princomp(r)
x <- predict(r, pca)

230 project

use "index" to get a subset of the components
p <- predict(r, pca, index=1:2)

use princomp directly
pca2 <- princomp(values(r), fix_sign = TRUE)
p2 <- predict(r, pca2)

may need to use sampling with a large raster
here with prcomp instead of princomp
sr <- spatSample(r, 100000, "regular")
pca3 <- prcomp(sr)
p3 <- predict(r, pca3)

project Change the coordinate reference system

Description

Change the coordinate reference system ("project") of a SpatVector, SpatRaster or a matrix with
coordinates.

Usage

S4 method for signature 'SpatVector'
project(x, y, partial = FALSE)

S4 method for signature 'SpatRaster'
project(x, y, method, mask=FALSE, align_only=FALSE, res=NULL,
origin=NULL, threads=FALSE, filename="", ..., use_gdal=TRUE, by_util = FALSE)

S4 method for signature 'SpatExtent'
project(x, from, to)

S4 method for signature 'matrix'
project(x, from, to)

Arguments

x SpatRaster, SpatVector, SpatExtent or matrix (with x and y columns) whose
coordinates to project

y if x is a SpatRaster, the preferred approach is for y to be a SpatRaster as well,
serving as a template for the geometry (extent and resolution) of the output Spa-
tRaster. Alternatively, you can provide a coordinate reference system (CRS)
description.
You can use the following formats to define coordinate reference systems: WKT,
PROJ.4 (e.g., +proj=longlat +datum=WGS84), or an EPSG code (e.g., "epsg:4326").
But note that the PROJ.4 notation has been deprecated, and you can only use it

project 231

with the WGS84/NAD83 and NAD27 datums. Other datums are silently ig-
nored.
If x is a SpatVector, you can provide a crs definition as discussed above, or any
other object from which such a crs can be extracted with crs

partial logical. If TRUE, geometries that can only partially be represented in the output
crs are included in the output

method character. Method used for estimating the new cell values of a SpatRaster. One
of:
bilinear: bilinear interpolation (3x3 cell window). This is used by default if
the first layer of x is not categorical
mean: This can be a good choice with continuous variables if the output cells
overlap with multiple input cells.
near: nearest neighbor. This is used by default if the first layer of x is categori-
cal. This method is not a good choice for continuous values.
mode: The modal value. This can be a good choice for categrical rasters, if the
output cells overlap with multiple input cells.
cubic: cubic interpolation (5x5 cell window).
cubicspline: cubic B-spline interpolation. (5x5 cell window).
lanczos: Lanczos windowed sinc resampling. (7x7 cell window).
sum: the weighted sum of all non-NA contributing grid cells.
min, q1, median, q3, max: the minimum, first quartile, median, third quartile,
or maximum value.
rms: the root-mean-square value of all non-NA contributing grid cells.

mask logical. If TRUE, mask out areas outside the input extent. For example, to avoid
data wrapping around the date-line (see example with Robinson projection). To
remove cells that are NA in y (if y is a SpatRaster) you can use the mask method
after calling project (this function)

align_only logical. If TRUE, and y is a SpatRaster, the template is used for the spatial reso-
lution and origin, but the extent is set such that all of the extent of x is included

res numeric. Can be used to set the resolution of the output raster if y is a CRS

origin numeric. Can be used to set the origin of the output raster if y is a CRS

threads logical. If TRUE multiple threads are used (faster for large files)

filename character. Output filename

... additional arguments for writing files as in writeRaster

use_gdal logical. If TRUE the GDAL-warp algorithm is used. Otherwise, a slower internal
algorithm is used that may be more accurate if there is much variation in the cell
sizes of the output raster. Only the near and bilinear algorithms are available
for the internal algorithm

by_util logical. If TRUE and gdal=TRUE, the GDAL warp utility is used

from character. Coordinate reference system of x

to character. Output coordinate reference system

232 project

Value

SpatVector or SpatRaster

Note

The PROJ.4 notation of coordinate reference systems has been partly deprecated in the GDAL/PROJ
library that is used by this function. You can still use this notation, but *only* with the WGS84
datum. Other datums are silently ignored.

Transforming (projecting) raster data is fundamentally different from transforming vector data. Vec-
tor data can be transformed and back-transformed without loss in precision and without changes in
the values. This is not the case with raster data. In each transformation the values for the new cells
are estimated in some fashion. Therefore, if you need to match raster and vector data for analysis,
you should generally transform the vector data.

When using this method with a SpatRaster, the preferable approach is to provide a template
SpatRaster as argument y. The template is then another raster dataset that you want your data
to align with. If you do not have a template to begin with, you can do project(rast(x), crs) and
then manipulate the output to get the template you want. For example, where possible use whole
numbers for the extent and resolution so that you do not have to worry about small differences in
the future. You can use commands like dim(z) = c(180, 360) or res(z) <- 100000.

The output resolution should generally be similar to the input resolution, but there is no "correct"
resolution in raster transformation. It is not obvious what this resolution is if you are using lon/lat
data that spans a large North-South extent.

See Also

crs, resample

Examples

SpatRaster
a <- rast(ncols=40, nrows=40, xmin=-110, xmax=-90, ymin=40, ymax=60,

crs="+proj=longlat +datum=WGS84")
values(a) <- 1:ncell(a)
newcrs="+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +datum=WGS84"
b <- rast(ncols=94, nrows=124, xmin=-944881, xmax=935118, ymin=4664377, ymax=7144377, crs=newcrs)
w <- project(a, b)

SpatVector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
crs(v, proj=TRUE)
cat(crs(v), "\n")

project(v, "+proj=moll")

project(v, "EPSG:2169")

quantile 233

quantile Quantiles of spatial data

Description

Compute quantiles for each cell across the layers of a SpatRaster.

You can use use global(x, fun=quantile) to instead compute quantiles across cells for each
layer.

You can also use this method to compute quantiles of the numeric variables of a SpatVector.

Usage

S4 method for signature 'SpatRaster'
quantile(x, probs=seq(0, 1, 0.25), na.rm=FALSE, filename="", ...)

S4 method for signature 'SpatVector'
quantile(x, probs=seq(0, 1, 0.25), ...)

Arguments

x SpatRaster or SpatVector

probs numeric vector of probabilities with values in [0,1]

na.rm logical. If TRUE, NA’s are removed from x before the quantiles are computed

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster with layers representing quantiles

See Also

app

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
rr <- c(r/2, r, r*2)
qr <- quantile(rr)
qr

Not run:
same but slower
qa <- app(rr, quantile)

End(Not run)

234 query

#quantile by layer instead of by cell
qg <- global(r, quantile)

query Query a SpatVectorProxy object

Description

Query a SpatVectorProxy to extract a subset

Usage

S4 method for signature 'SpatVectorProxy'
query(x, start=1, n=nrow(x), vars=NULL, where=NULL,

extent=NULL, filter=NULL, sql=NULL, dialect="", what="")

Arguments

x SpatVectorProxy

start positive integer. The record to start reading at

n positive integer. The number of records requested

vars character. Variable names. Must be a subset of names(x)

where character. expression like "NAME_1=’California’ AND ID > 3" , to subset
records. Note that start and n are applied after executing the where statement

extent Spat* object. The extent of the object is used as a spatial filter to select the
geometries to read. Ignored if filter is not NULL

filter SpatVector. Used as a spatial filter to select geometries to read (the convex hull
is used for lines or points)

sql character. Arbitrary SQL statement. If used, arguments "start", "n", "vars" and
"where" are ignored

what character indicating what to read. Either "" for geometries and attributes, or
"geoms" to only read the geometries, "attributes" to only read the attributes
(that are returned as a data.frame)

dialect character. The SQL dialect to use (if any). For example: "SQLite"

Value

SpatVector

See Also

vect

rangeFill 235

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f, proxy=TRUE)
v

x <- query(v, vars=c("ID_2", "NAME_2"), start=5, n=2)
x

query(v, vars=c("ID_2", "NAME_1", "NAME_2"), where="NAME_1='Grevenmacher' AND ID_2 > 6")

with an extent
e <- ext(5.9, 6.3, 49.9, 50)
x <- query(v, extent=e)

with polygons
p <- as.polygons(e)
x <- query(v, filter=p)
x

rangeFill Fill layers with a range

Description

Fill layers with cell-varying ranges defined by a start and end SpatRaster. The range must start at 1
and end at a user-defined maximum. Output values are either zero (not in the range) or one (in the
range).

For example, for a cell with start=3, end=5 and with limit=8, the output for that cell would be
0,0,1,1,1,0,0,0

Usage

S4 method for signature 'SpatRaster'
rangeFill(x, limit, circular=FALSE, filename="", ...)

Arguments

x SpatRaster with at two layers. The cell values of the first layer indicate the start
of the range (1 based); the cell values are indicate the end of the range

limit numeric > 1. The range size

circular logical. If TRUE the values are considered circular, such as the days of the year.
In that case, if first > last the layers used are c(first:limit, 1:last). Otherwise, if
circular=FALSE, such a range would be considered invalid and NA would be
used

filename character. Output filename

... additional arguments for writing files as in writeRaster

236 rapp

Value

SpatRaster

See Also

rapp

Examples

x <- y <- rast(ncol=2, nrow=2)
values(x) <- c(NA, 1:3)
values(y) <- c(NA, 4:6)

r <- rangeFill(c(x, y), 8)

rapp Range-apply

Description

Apply a function to a range of the layers of a SpatRaster that varies by cell. The range is specified
for each cell with one or two SpatRasters (arguments first and last). For either first or last
you can use a single number instead.

You cannot use single numbers for both first and last because in that case you could use app or
Summary-methods, perhaps subsetting the layers of a SpatRaster.

See selectRange to create a new SpatRaster by extracting one or more values starting at a cell-
varying layer.

Usage

S4 method for signature 'SpatRaster'
rapp(x, first, last, fun, ..., allyrs=FALSE, fill=NA,

clamp=FALSE, circular=FALSE, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

first SpatRaster or positive integer between 1 and nlyr(x), indicating the first layer in
the range of layers to be considered

last SpatRaster or positive integer between 1 and nlyr(x), indicating the last layer in
the range to be considered

fun function to be applied

... additional arguments passed to fun

allyrs logical. If TRUE, values for all layers are passed to fun but the values outside of
the range are set to fill

rast 237

fill numeric. The fill value for the values outside of the range, for when allyrs=TRUE

clamp logical. If FALSE and the specified range is outside 1:nlyr(x) all cells are
considered NA. Otherwise, the invalid part of the range is ignored

circular logical. If TRUE the values are considered circular, such as the days of the year.
In that case, if first > last the layers used are c(first:nlyr(x), 1:last). Otherwise,
the range would be considered invalid and NA would be returned

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

selectRange, app, Summary-methods, lapp, tapp

Examples

r <- rast(ncols=9, nrows=9)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r)
s <- s * 1:6
s[1:2] <- NA
start <- end <- rast(r)
start[] <- 1:3
end[] <- 4:6
a <- rapp(s, start, end, fun="mean")
b <- rapp(s, start, 2, fun="mean")

cumsum from start to nlyr(x). return all layers
r <- rapp(s, start, nlyr(s), cumsum, allyrs=TRUE, fill=0)
return only the final value
rr <- rapp(s, start, nlyr(s), function(i) max(cumsum(i)))

rast Create a SpatRaster

Description

Methods to create a SpatRaster. These objects can be created from scratch, from a filename, or from
another object.

A SpatRaster represents a spatially referenced surface divided into three dimensional cells (rows,
columns, and layers).

When a SpatRaster is created from one or more files, it does not load the cell (pixel) values into
memory (RAM). It only reads the parameters that describe the geometry of the SpatRaster, such as

238 rast

the number of rows and columns and the coordinate reference system. The actual values will be
read when needed.

Note that there are operating system level limitations to the number of files that can be opened
simultaneously. Using a SpatRaster of very many files (e.g. 10,000) may cause R to crash when
you use it in a computation. In situations like that you may need to split up the task or combine data
into fewer (multi-layer) files. Also note that the GTiff format used for temporary files cannot store
more than 65,535 layers in a single file.

Usage

S4 method for signature 'character'
rast(x, subds=0, lyrs=NULL, drivers=NULL, opts=NULL, win=NULL,
snap="near", vsi=FALSE, raw=FALSE, noflip=FALSE,
guessCRS=TRUE, domains="", md=FALSE, dims=NULL)

S4 method for signature 'missing'
rast(x, nrows=180, ncols=360, nlyrs=1, xmin=-180, xmax=180, ymin=-90,
ymax=90, crs, extent, resolution, vals, names, time, units)

S4 method for signature 'SpatRaster'
rast(x, nlyrs=nlyr(x), names, vals, keeptime=TRUE,
keepunits=FALSE, props=FALSE, tags=FALSE)

S4 method for signature 'matrix'
rast(x, type="", crs="", digits=6, extent=NULL)

S4 method for signature 'data.frame'
rast(x, type="xyz", crs="", digits=6, extent=NULL)

S4 method for signature 'array'
rast(x, crs="", extent=NULL)

S4 method for signature 'list'
rast(x, warn=TRUE)

S4 method for signature 'SpatRasterDataset'
rast(x)

S4 method for signature 'SpatVector'
rast(x, type="", ...)

S4 method for signature 'SpatExtent'
rast(x, ...)

Arguments

x filename (character), missing, SpatRaster, SpatRasterDataset, SpatExtent, SpatVec-
tor, matrix, array, list of SpatRasters. For other types it will be attempted to
create a SpatRaster via (‘as(x, "SpatRaster")‘

rast 239

subds positive integer or character to select a sub-dataset. If zero or "", all sub-datasets
are returned (if possible)

lyrs positive integer or character to select a subset of layers (a.k.a. "bands"). If x
has multiple filenames, the same layer numbers are selected from each of the
files, unless numbers larger than the number of layers of the first data source are
included

drivers character. GDAL drivers to consider

opts character. GDAL dataset open options

win SpatExtent to set a window (area of interest)

snap character. One of "near", "in", or "out", to indicate how the extent of window
should be "snapped" to x

vsi logical. If TRUE, "\vsicurl\" is prepended to filenames that start with "http".
There are many VSI configuration options that can be set with setGDALconfig

raw logical. If TRUE, scale and offset values are ignored. See scoff to get these
parameters

noflip logical. If TRUE, a raster (e.g. JPEG image) that is not georeferenced and that
GDAL assigns a flipped extent to (ymax < ymin), is not considered flipped. This
avoids the need to flip the raster vertically

guessCRS logical. If TRUE and the the file does not specify a CRS but has an extent that
is within longitude/latitude bounds, the longitude/latitude crs is assigned to the
SpatRaster

domains character. Metadata domains to read (see metags to retrieve their values if there
are any. "" is the default domain

md logical. If TRUE, the multi-dimensional GDAL interface is used under the hood
for file reading. This interface can only be used for a few file formats (netCDF/HDF5)
and can sometimes (not always) provide notably faster reading of data with
many (time) steps in the third or higher dimension. Support for this is new
and experimental (June 2025)

dims numeric. Specify the order of the dimensions to read atypical files. See ar_info.
Only relevant if md=TRUE. Not used yet

nrows positive integer. Number of rows

ncols positive integer. Number of columns

nlyrs positive integer. Number of layers

xmin minimum x coordinate (left border)

xmax maximum x coordinate (right border)

ymin minimum y coordinate (bottom border)

ymax maximum y coordinate (top border)

crs character. Description of the Coordinate Reference System (map projection) in
PROJ.4, WKT or authority:code notation. See crs. If this argument is missing,
and the x coordinates are within -360 .. 360 and the y coordinates are within -90
.. 90, longitude/latitude is assigned

keeptime logical. If FALSE the time stamps are discarded

https://gdal.org/en/stable/user/virtual_file_systems.html

240 rast

keepunits logical. If FALSE the layer units are discarded

props logical. If TRUE the properties (categories and color-table) are kept

tags logical. If TRUE the user specified metadata tags are kept (see metags).

extent object of class SpatExtent. If present, the arguments xmin, xmax, ymin and
ymax are ignored

resolution numeric vector of length 1 or 2 to set the spatial resolution (see res). If this
argument is used, arguments ncols and nrows are ignored

vals numeric. An optional vector with cell values (if fewer values are provided, these
are recycled to reach the number of cells)

names character. An optional vector with layer names (must match the number of lay-
ers)

time time or date stamps for each layer

units character. units for each layer

type character. If the value is "xyz", x must be a SpatVector with point geometry, or
a matrix or data.frame with at least two columns, the first with x (or longitude)
and the second with y (or latitude) coordinates that represent the centers of raster
cells. The additional columns are the values associated with the raster cells. If
the value is "xylz", x must have four columns with the third representing the
layer and the fourth the cell values. If the value is "", the resulting SpatRaster
will have the same number of rows and columns as x.

digits integer to set the precision for detecting whether points are on a regular grid (a
low number of digits is a low precision). Only used when type="xyz"

warn logical. If TRUE, a warnings about empty rasters may be emitted

... additional arguments passed on to the rast,missing-method

Details

Files are read with the GDAL library. GDAL guesses the file format from the name, and/or
tries reading it with different "drivers" (see gdal) until it succeeds. In very few cases this may
cause a file to be opened with the wrong driver, and some information may be lost. For exam-
ple, when a netCDF file is opened with the HDF5 driver. You can avoid that by using argument
rast("filename.ncdf", drivers="NETCDF")

These classes hold a C++ pointer to the data "reference class" and that creates some limitations.
They cannot be recovered from a saved R session either or directly passed to nodes on a computer
cluster. Generally, you should use writeRaster to save SpatRaster objects to disk (and pass a
filename or cell values of cluster nodes). Also see wrap.

Value

SpatRaster

See Also

sds to create a SpatRasterDataset (SpatRasters with the same geometry representing different vari-
ables or higher dimension), sprc to create a SpatRasterCollection (to combine SpatRasters with
different geometries), and vect for vector (points, lines, polygons) data

rasterize 241

Examples

Create a SpatRaster from scratch
x <- rast(nrows=108, ncols=21, xmin=0, xmax=10)

Create a SpatRaster from a file
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

A file with multiple layers. This one is special as the layers are RGB color channels
s <- rast(system.file("ex/logo.tif", package="terra"))

remove the color channels
#plot(s)
#RGB(s) <- NULL
#plot(s)

Create a skeleton with no associated cell values
rast(s)

from a matrix
m <- matrix(1:25, nrow=5, ncol=5)
rm <- rast(m)

from a "xyz" data.frame
d <- as.data.frame(rm, xy=TRUE)
head(d)
rast(d, type="xyz")

rasterize Rasterize vector data

Description

Transfer values associated with the geometries of vector data to a raster

Usage

S4 method for signature 'SpatVector,SpatRaster'
rasterize(x, y, field="", fun, ..., background=NA, touches=FALSE, update=FALSE,
cover=FALSE, by=NULL, filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'matrix,SpatRaster'
rasterize(x, y, values=1, fun, ..., background=NA, update=FALSE,
by=NULL, filename="", overwrite=FALSE, wopt=list())

242 rasterize

Arguments

x SpatVector or a two-column matrix (point coordinates) or data.frame

y SpatRaster

field character or numeric. If field is a character, it should be a variable name in x.
If field is numeric it typically is a single number or a vector of length nrow(x).
The values are recycled to nrow(x)

values typically a numeric vector of length 1 or nrow(x). If the length is below nrow(x),
the values will be recycled to nrow(x). Only used when x is a matrix. Can also
be a matrix or data.frame

fun summarizing function for when there are multiple geometries in one cell. For
lines and polygons, you can only use "min", "max", "mean", "count" and
"sum". For points you can use any function that returns a single number; for
example mean, length (to get a count), min or max

... additional arguments passed to fun

background numeric. Value to put in the cells that are not covered by any of the features of
x. Default is NA

touches logical. If TRUE, all cells touched by lines or polygons are affected, not just
those on the line render path, or whose center point is within the polygon. If
touches=TRUE, add cannot be TRUE

update logical. If TRUE, the values of the input SpatRaster are updated

cover logical. If TRUE and the geometry of x is polygons, the fraction of a cell that
is covered by the polygons is returned. This is estimated by determining pres-
ence/absence of the polygon in at least 100 sub-cells (more of there are very few
cells)

by character or numeric value(s) to split x into multiple groups. There will be a
separate layer for each group returned. If x is a SpatVector, by can be a column
number or name. If x is a matrix, by should be a vector that identifies group
membership for each row in x

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

rasterizeGeom, rasterizeWin, mask

Examples

r <- rast(xmin=0, ncols=18, nrows=18)

generate points

rasterizeGeom 243

set.seed(1)
p <- spatSample(r, 1000, xy=TRUE, replace=TRUE)

rasterize points as a matrix
x <- rasterize(p, r, fun=sum)
y <- rasterize(p, r, value=1:nrow(p), fun=max)

rasterize points as a SpatVector
pv <- vect(p)
xv <- rasterize(pv, r, fun=sum)

Polygons
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v, ncols=75, nrows=100)
z <- rasterize(v, r, "NAME_2")
plot(z)
lines(v)

rasterizeGeom Rasterize geometric properties of vector data

Description

Rasterization of geometric properties of vector data. You can get the count of the number of ge-
ometries in each cell; the area covered by polygons; the length of the lines; or the number of lines
that cross the boundary of each cell. See rasterize for standard rasterization (of attribute values
associated with geometries).

The area of polygons is intended for summing the area of polygons that are relatively small relative
to the raster cells, and for when there may be multiple polygons per cell. See rasterize(fun="sum")
for counting large polygons and rasterize(cover=TRUE) to get the fraction that is covered by
larger polygons.

Usage

S4 method for signature 'SpatVector,SpatRaster'
rasterizeGeom(x, y, fun="count", unit="m", filename="", ...)

Arguments

x SpatVector

y SpatRaster

fun character. "count", "area", "length", or "crosses"

unit character. "m" or "km"

filename character. Output filename

... additional arguments for writing files as in writeRaster

244 rasterizeWin

Value

SpatRaster

See Also

rasterize

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v, res=.1)

length of lines
lns <- as.lines(v)
x <- rasterizeGeom(lns, r, fun="length", "km")

count of points
set.seed(44)
pts <- spatSample(v, 100)
y <- rasterizeGeom(pts, r)

area of polygons
pols <- buffer(pts, 1000)
z <- rasterizeGeom(pols, r, fun="area")

rasterizeWin Rasterize points with a moving window

Description

Rasterize points using a circle (or ellipse) as moving window. For each raster cell, the points (x, y)
that fall within the window centered on that cell are considered. A function is used to compute a
summary value (e.g. "mean") for the values (z) associated with these points.

This can result in much smoother results compared to the standard rasterize method.

Usage

S4 method for signature 'SpatVector,SpatRaster'
rasterizeWin(x, y, field, win="circle", pars, fun, ..., cvars=FALSE,
minPoints=1, fill=NA, filename="", wopt=list())

S4 method for signature 'data.frame,SpatRaster'
rasterizeWin(x, y, win="circle", pars, fun, ..., cvars=FALSE,

minPoints=1, fill=NA, filename="", wopt=list())

rasterizeWin 245

Arguments

x SpatVector or matrix with at least three columns ((x, y) coordinates and a vari-
able to be rasterized)

y SpatRaster

field character. field name in SpatVector x with the values to rasterize

win character to choose the window type. Can be "circle", "ellipse", "rectangle", or
"buffer"

pars parameters to define the window. If win="circle" or win="buffer", a single
number to set the radius of the circle or the width of the buffer. If win="ellipse",
either two numbers (the x and y-axis) or three numbers the axes and a rotation
(in degrees). If win="rectangle", either two (width, height) or three (width,
height) and the rotation in degrees. The unit of the radius/width/height/axis pa-
rameters is that of the coordinate reference system (it is not expressed as cells).
That is, if you have a lon/lat crs, there is no conversion of degrees to meters or
vice-versa.

fun function to summarize the values for each cell. If cvars=FALSE, functions
must take a numeric vector and return (in all cases) one or more numbers.
If cvars=TRUE, and multiple variables are used, the function must take a sin-
gle argument (a data.frame with the names variables). For win="circle" and
win="ellipse" there are two additional character values that can be used: "distto"
(average distance to the points from the center of the cell) and "distbetween"
(average distance between the points inside the window)

... additional named arguments passed to fun

minPoints numeric. The minimum number of points to use. If fewer points are found in a
search ellipse it is considered empty and the fill value is returned

fill numeric. value to use to fill cells with empty search areas

cvars logical. When using multiple fields, should fun operate on all of them at once?
If not, fun is applied to each variable separately

filename character. Output filename

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

rasterize, rasterizeGeom, interpNear, interpIDW

Examples

r <- rast(ncol=100, nrow=100, crs="local", xmin=0, xmax=50, ymin=0, ymax=50)
set.seed(100)
x <- runif(50, 5, 45)
y <- runif(50, 5, 45)
z <- sample(50)

246 rcl

xyz <- data.frame(x,y,z)

r <- rasterizeWin(xyz, r, fun="count", pars=5)

rfuns <- c("count", "min", "max", "mean")
x <- lapply(rfuns, function(f) rasterizeWin(xyz, r, fun=f, pars=5))
names(x) <- rfuns
x <- rast(x)
#plot(x)

rcl Combine row, column, and layer numbers

Description

Get a matrix with the combination of row, column, and layer numbers

Usage

S4 method for signature 'SpatRaster'
rcl(x, row=NULL, col=NULL, lyr=NULL)

Arguments

x SpatRaster

row positive integer that are row number(s), a list thereof, or NULL for all rows

col as above for columns

lyr as above for layers

Details

If a list is used for at least one of row, col or lyr, these are evaluated in parallel. That is combi-
nations are made for each list element, not across list elements. If, in this case another argument is
not a list it has to have either length 1 (used for all cases) or have the same length as the (longest)
list, in which case the value is coerced into a list with as.list

If multiple arguments are a list but they have different lengths, theyare recycled to the longest list.

Value

matrix

See Also

rowColCombine, cellFromRowCol

readwrite 247

Examples

x <- rast(ncol=5, nrow=5, nlyr=2)
values(x) <- 1:size(x)

rcl(x, 1, 2:3, 1:2)

i <- rcl(x, 1, list(1:2, 3:4), 1:2)
i

get the values for these cells
x[i]

readwrite Read from, or write to, file

Description

Methods to read from or write chunks of values to or from a file. These are low level methods for
programmers. Use writeRaster if you want to save an entire SpatRaster to file in one step. It is
much easier to use.

To write chunks, begin by opening a file with writeStart, then write values to it in chunks using
the list that is returned by writeStart. When writing is done, close the file with writeStop.

blocks only returns chunk size information. This can be useful when reading, but not writing,
raster data.

Usage

S4 method for signature 'SpatRaster'
readStart(x)

S4 method for signature 'SpatRaster'
readStop(x)

S4 method for signature 'SpatRaster'
readValues(x, row=1, nrows=nrow(x), col=1, ncols=ncol(x), mat=FALSE, dataframe=FALSE, ...)

S4 method for signature 'SpatRaster,character'
writeStart(x, filename="", overwrite=FALSE, n=4, sources="", ...)

S4 method for signature 'SpatRaster'
writeStop(x)

S4 method for signature 'SpatRaster,vector'
writeValues(x, v, start, nrows)

S4 method for signature 'SpatRaster'
blocks(x, n=4)

248 readwrite

fileBlocksize(x)

Arguments

x SpatRaster

filename character. Output filename

v vector with cell values to be written

start integer. Row number (counting starts at 1) from where to start writing v

row positive integer. Row number to start from, should be between 1 and nrow(x)

nrows positive integer. How many rows?

col positive integer. Column number to start from, should be between 1 and ncol(x)

ncols positive integer. How many columns? Default is the number of columns left
after the start column

mat logical. If TRUE, values are returned as a numeric matrix instead of as a vector,
except when dataframe=TRUE. If any of the layers of x is a factor, the level
index is returned, not the label. Use dataframe=TRUE to get the labels

dataframe logical. If TRUE, values are returned as a data.frame instead of as a vector (also
if matrix is TRUE)

overwrite logical. If TRUE, filename is overwritten

n positive integer indicating how many copies the data may be in memory at any
point in time. This is used to determine how many blocks (large) datasets need
to be read

sources character. Filenames that may not be overwritten because they are used as input
to the function. Can be obtained with sources(x)

... For writeStart: additional arguments for writing files as in writeRaster

For readValues: additional arguments for data.frame (and thus only relevant
when dataframe=TRUE)

Value

readValues returns a vector, matrix, or data.frame

writeStart returns a list that can be used for processing the file in chunks.

The other methods invisibly return a logical value indicating whether they were successful or not.
Their purpose is the side-effect of opening or closing files.

rectify 249

rectify Rectify a SpatRaster

Description

Rectify a rotated SpatRaster into a non-rotated object

Usage

S4 method for signature 'SpatRaster'
rectify(x, method="bilinear", aoi=NULL, snap=TRUE,

filename="", ...)

Arguments

x SpatRaster to be rectified

method character. Method used to for resampling. See resample

aoi SpatExtent or SpatRaster to crop x to a smaller area of interest; Using a Spa-
tRaster allowing to set the exact output extent and output resolution

snap logical. If TRUE, the origin and resolution of the output are the same as would
the case when aoi = NULL. Only relevant if aoi is a SpatExtent

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

is.rotated

regress Cell level regression

Description

Run a regression model for each cell of a SpatRaster. The independent variable can either be defined
by a vector, or another SpatRaster to make it spatially variable.

250 relate

Usage

S4 method for signature 'SpatRaster,numeric'
regress(y, x, formula=y~x, na.rm=FALSE, cores=1, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatRaster,SpatRaster'
regress(y, x, formula=y~x, na.rm=FALSE, cores=1, filename="", overwrite=FALSE, ...)

Arguments

y SpatRaster

x SpatRaster or numeric (of the same length as nlyr(x)

formula regression formula in the general form of y ~ x. You can add additional terms
such as I(x^2)

na.rm logical. Remove NA values?

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used. You can also supply a cluster object.

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... list with named options for writing files as in writeRaster

Value

SpatRaster

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
x <- regress(s, 1:nlyr(s))

relate Spatial relationships between geometries

Description

relate returns a logical matrix indicating the presence or absence of a specific spatial relationships
between the geometries in x and y.

is.related returns a logical vector indicating the presence or absence of a specific spatial rela-
tionships between x and any of the geometries in y.

relate 251

Usage

S4 method for signature 'SpatVector,SpatVector'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)

S4 method for signature 'SpatVector,missing'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)

S4 method for signature 'SpatVector,SpatVector'
is.related(x, y, relation)

Arguments

x SpatVector or SpatExtent

y missing or as for x

relation character. One of "intersects", "touches", "crosses", "overlaps", "within", "con-
tains", "covers", "coveredby", "disjoint", or "equals". It can also be a "DE-9IM"
string such as "FF*FF****". See Wikipedia or GeoTools doc

pairs logical. If TRUE a two-column matrix is returned with the indices of the cases
where the requested relation is TRUE. This is especially helpful when dealing
with many geometries as the returned value is generally much smaller

na.rm logical. If TRUE and pairs=TRUE, geometries in x for which there is no related
geometry in y are omitted

Value

matrix (relate) or vector (is.related)

See Also

compareGeom to check if the geometries are identical (equivalent to the "equals" relation)

adjacent, nearby, intersect, crop

Examples

polygons
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
p3 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
p4 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
p5 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")
p6 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")

p <- rbind(p1, p2, p3, p4, p5, p6)
plot(p, col=rainbow(6, alpha=.5))
lines(p, lwd=2)
text(p)

relate SpatVectors
relate(p1, p2, "intersects")

https://en.wikipedia.org/wiki/DE-9IM
https://docs.geotools.org/stable/userguide/library/jts/dim9.html

252 relate

relate(p1, p3, "touches")
relate(p1, p5, "disjoint")
relate(rbind(p1, p2), p4, "disjoint")

relate geometries within SpatVectors
which are completely separated?
relate(p, relation="disjoint")

which touch (not overlap or within)?
relate(p, relation="touches")
which overlap (not merely touch, and not within)?
relate(p, relation="overlaps")
which are within (not merely overlap)?
relate(p, relation="within")

do they touch or overlap or are within?
relate(p, relation="intersects")

all(relate(p, relation="intersects") ==
(relate(p, relation="overlaps") |
relate(p, relation="touches") |
relate(p, relation="within")))

#for polygons, "coveredby" is "within"
relate(p, relation="coveredby")

polygons, lines, and points

pp <- rbind(p1, p2)
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)")
L2 <- vect("LINESTRING(8 14, 12 10)")
L3 <- vect("LINESTRING(1 8, 12 14)")
lns <- rbind(L1, L2, L3)
pts <- vect(cbind(c(7,10,10), c(3,5,6)))

plot(pp, col=rainbow(2, alpha=.5))
text(pp, paste0("POL", 1:2), halo=TRUE)
lines(pp, lwd=2)
lines(lns, col=rainbow(3), lwd=4)
text(lns, paste0("L", 1:3), halo=TRUE)
points(pts, cex=1.5)
text(pts, paste0("PT", 1:3), halo=TRUE, pos=4)

relate(lns, relation="crosses")
relate(lns, pp, relation="crosses")
relate(lns, pp, relation="touches")
relate(lns, pp, relation="intersects")

relate(lns, pp, relation="within")
polygons can contain lines or points, not the other way around
relate(lns, pp, relation="contains")
relate(pp, lns, relation="contains")

rep 253

points and lines can be covered by polygons
relate(lns, pp, relation="coveredby")

relate(pts, pp, "within")
relate(pts, pp, "touches")
relate(pts, lns, "touches")

rep Replicate layers

Description

Replicate layers in a SpatRaster

Usage

S4 method for signature 'SpatRaster'
rep(x, ...)

Arguments

x SpatRaster

... arguments as in rep

Value

SpatRaster

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
x <- rep(s, 2)
nlyr(x)
names(x)
x

254 replace_dollar

replace_dollar Replace with $<-

Description

Replace a layer of a SpatRaster, or an attribute variable of a SpatVector

Usage

S4 replacement method for signature 'SpatRaster'
x$name <- value

S4 replacement method for signature 'SpatVector'
x$name<-value

S4 replacement method for signature 'SpatExtent'
x$name <- value

Arguments

x SpatRaster, SpatVector or SpatExtent

name character. If x is a SpatRaster: layer name. If x is a SpatVector: variable name.
If x is a SpatExtent: "xmin", "xmax". "ymin" or "ymax"

value if x is a SpatRaster, a SpatRaster for which this TRUE: nlyr(value) == length(i);
if x is a SpatVector, a vector of new values; if x is a SpatExtent a single number

Value

Same as x

See Also

[[<-, [<-, $

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$ID_1 <- LETTERS[1:12]
v$new <- sample(12)
values(v)

replace_layers 255

replace_layers Replace layers or variables

Description

Replace the layers of SpatRaster with (layers from) another SpatRaster or replace variables of a
SpatVector. You can also create new layers/variables with these methods.

Usage

S4 replacement method for signature 'SpatRaster,numeric'
x[[i]] <- value

S4 replacement method for signature 'SpatRaster,character'
x[[i]] <- value

S4 replacement method for signature 'SpatVector,numeric'
x[[i]] <- value

S4 replacement method for signature 'SpatVector,character'
x[[i]] <- value

Arguments

x SpatRaster or SpatVector
i if x is a SpatRaster: layer number(s) of name(s). If x is a SpatVector: variable

number(s) or name(s) (column of the attributes)
value if x is a SpatRaster: SpatRaster for which this TRUE: nlyr(value) == length(i).

if x is a SpatVector: vector or data.frame

Value

SpatRaster

See Also

$<-, [<-

Examples

raster
s <- rast(system.file("ex/logo.tif", package="terra"))
s[["red"]] <- mean(s)
s[[2]] <- sqrt(s[[1]])

vector
v <- vect(system.file("ex/lux.shp", package="terra"))
v[["ID_1"]] <- 12:1

256 replace_values

replace_values Replace values of a SpatRaster

Description

Replace values of a SpatRaster. These are convenience functions for smaller objects only. For larger
rasters see link{classify} or subst

Usage

S4 replacement method for signature 'SpatRaster,ANY,ANY,ANY'
x[i, j, k] <- value

S4 replacement method for signature 'SpatVector,ANY,ANY'
x[i, j] <- value

S4 replacement method for signature 'SpatExtent,numeric,missing'
x[i, j] <- value

Arguments

x SpatRaster

i row numbers. numeric, logical, or missing for all rows. Can also be a SpatRaster
or SpatVector

j column numbers. numeric, logical or missing for all columns

k layer number. numeric, logical or missing for all layers

value numeric, matrix, or data.frame

Value

SpatRaster

See Also

classify, subst, set.values, values, [[<-

Examples

SpatRaster
r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)
r[] <- 1:25
r[1,] <- 5
r[,2] <- 10
r[r>10] <- NA

SpatVector
f <- system.file("ex/lux.shp", package="terra")

resample 257

v <- vect(f)
v[2,2] <- "hello"
v[1,] <- v[10,]
v[,3] <- v[,1]
v[2, "NAME_2"] <- "terra"
head(v, 3)

resample Transfer values of a SpatRaster to another one with a different geom-
etry

Description

resample transfers values between SpatRaster objects that do not align (have a different origin and/or
resolution). See project to change the coordinate reference system (crs).

If the origin and extent of the input and output are the same, you should consider using these other
functions instead: aggregate, disagg, extend or crop.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
resample(x, y, method, threads=FALSE, by_util=FALSE, filename="", ...)

Arguments

x SpatRaster to be resampled

y SpatRaster with the geometry that x should be resampled to. You can also pro-
vide one or two positive numbers to set the resolution of the output raster relative
to the input raster

method character. Method used for estimating the new cell values. One of:
bilinear: bilinear interpolation (3x3 cell window). This is used by default if
the first layer of x is not categorical
mean: This can be a good choice with continuous variables if the output cells
overlap with multiple input cells.
near: nearest neighbor. This is used by default if the first layer of x is categori-
cal. This method is not a good choice for continuous values.
modal: The modal value. This can be a good choice for categorical rasters, if
the output cells overlap with multiple input cells.
cubic: cubic interpolation (5x5 cell window).
cubicspline: cubic B-spline interpolation. (5x5 cell window).
lanczos: Lanczos windowed sinc resampling. (7x7 cell window).
sum: the weighted sum of all non-NA contributing grid cells.
min, q1, median, q3, max: the minimum, first quartile, median, third quartile,
or maximum value.
rms: the root-mean-square value of all non-NA contributing grid cells.

258 rescale

threads logical. If TRUE multiple threads are used (faster for large files)

by_util logical. If TRUE the GDAL warp utility is used

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

aggregate, disagg, crop, project

Examples

r <- rast(nrows=3, ncols=3, xmin=0, xmax=10, ymin=0, ymax=10)
values(r) <- 1:ncell(r)
s <- rast(nrows=25, ncols=30, xmin=1, xmax=11, ymin=-1, ymax=11)
x <- resample(r, s, method="bilinear")

opar <- par(no.readonly =TRUE)
par(mfrow=c(1,2))
plot(r)
plot(x)
par(opar)

rescale rescale

Description

Rescale a SpatVector or SpatRaster. This may be useful to make small inset maps or for georefer-
encing.

Usage

S4 method for signature 'SpatRaster'
rescale(x, fx=0.5, fy=fx, x0, y0)

S4 method for signature 'SpatVector'
rescale(x, fx=0.5, fy=fx, x0, y0)

RGB 259

Arguments

x SpatVector or SpatRaster

fx numeric > 0. The horizontal scaling factor

fy numeric > 0. The vertical scaling factor

x0 numeric. x-coordinate of the center of rescaling. If missing, the center of the
extent of x is used

y0 numeric. y-coordinate of the center of rescaling. If missing, the center of the
extent of x is used

Value

Same as x

See Also

t, shift, flip, rotate, inset

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- rescale(v, 0.2)
plot(v)
lines(w, col="red")

RGB Layers representing colors

Description

With RGB you can get or set the layers to be used as Red, Green and Blue when plotting a SpatRaster.
Currently, a benefit of this is that plot will send the object to plotRGB. You can also associated the
layers with another color space (HSV, HSI or HSL)

With colorize you can convert a three-layer RGB SpatRaster into other color spaces. You can also
convert it into a single-layer SpatRaster with a color-table.

Usage

S4 method for signature 'SpatRaster'
RGB(x, value=NULL, type="rgb")

S4 replacement method for signature 'SpatRaster'
RGB(x, ..., type="rgb")<-value

S4 method for signature 'SpatRaster'
colorize(x, to="hsv", alpha=FALSE, stretch=NULL,

260 RGB

grays=FALSE, NAzero=FALSE, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatRaster'
has.RGB(x, strict=TRUE)

Arguments

x SpatRaster

value three (or four) positive integers indicating the layers that are red, green and
blue (and optionally a fourth transparency layer). Or NULL to remove the RGB
settings

type character. The color space. One of "rgb" "hsv", "hsi" and "hsl"

to character. The color space to transform the values to. If x has RGB set, you can
transform these to "hsv", "hsi" and "hsl", or use "col" to create a single layer
with a color table. You can also use "rgb" to back transform to RGB

alpha logical. Should an alpha (transparency) channel be included? Only used if x has
a color-table and to="rgb"

stretch character. Option to stretch the values to increase contrast: "lin" (linear) or "hist"
(histogram). Only used for transforming RGB to col

grays logical. If TRUE, a gray-scale color-table is created. Only used for transforming
RGB to col

NAzero logical. If TRUE, NAs are treated as zeros such that a color can be returned if at
least one of the three channels has a value. Only used for transforming RGB to
("col")

strict logical. If TRUE, the function returns FALSE if a color space such as "hsv", "hsi"
and "hsl" is used

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

See Also

set.RGB

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
RGB(r)
plot(r)
has.RGB(r)
RGB(r) <- NULL
has.RGB(r)
plot(r)
RGB(r) <- c(3,1,2)
same as
r <- RGB(r, c(3,1,2))

roll 261

plot(r)

RGB(r) <- 1:3
x <- colorize(r, "col")
y <- colorize(r, "hsv")
z <- colorize(y, "rgb")

roll Rolling (moving) functions

Description

Compute "rolling" or "moving" values, such as the "rolling average" for each cell in a SpatRaster.

See focal for spatially moving averages and similar computations. And see cumsum and other cum*
functions to compute cumulate values.

Usage

S4 method for signature 'SpatRaster'
roll(x, n, fun=mean, type="around", circular=FALSE,
na.rm=FALSE, filename="", ..., wopt=list())

S4 method for signature 'numeric'
roll(x, n, fun=mean, type="around", circular=FALSE, na.rm=FALSE, ...)

Arguments

x SpatRaster or numeric

n integer > 1. The size of the "window", that is, the number of sequential cells to
use in fun

fun a function like mean, min, max, sum

type character. One of "around", "to", or "from". The choice indicates which values
should be used in the computation. The focal cell is always used. If type is
"around", (n-1)/2 before and after the focal cell are also included. If type =
"from", n-1 cells are after the focal cell are included. If type = "to", n-1 cells
before the focal cell are included. For example, when using n=3 for element 5
of a vector; "around" used elements 4,5,6; "to" used elements 3,4,5, and "from"
uses elements 5,6,7

circular logical. If TRUE, the data are considered to have a circular nature (e.g. days or
months of the year), such that there are no missing values before first or after
the last value.

na.rm logical. If TRUE, NA values should be ignored (by fun)

filename character. Output filename

... additional arguments for fun

wopt list with named options for writing files as in writeRaster

262 rotate

Value

Same as x

See Also

cumsum, focal

Examples

numeric
roll(1:12, 3, mean)
roll(1:12, 3, mean, "to")
roll(1:12, 3, mean, circular=TRUE)

SpatRaster
r <- rast(ncol=2, nrow=2, nlyr=10, vals=1)
r[1,2] <- 2
r[2,2] <- 4

values(roll(r, n=3, "sum", "from", na.rm=FALSE))
values(roll(r, n=3, "sum", "from", na.rm=TRUE))
values(roll(r, n=3, "sum", "from", circular=TRUE))

values(roll(r, n=3, "sum", "to", na.rm=TRUE))

values(roll(r, n=3, "sum", "around", circular=TRUE))

rotate Rotate data along longitude

Description

Rotate a SpatRaster that has longitude coordinates from 0 to 360, to standard coordinates between
-180 and 180 degrees (or vice-versa). Longitude between 0 and 360 is frequently used in global
climate models.

Rotate a SpatVector as for a SpatRaster with, or with split=FALSE to correct for coordinates that
are connected across the date line (and end up at the "other side" of the longitude scale).

Usage

S4 method for signature 'SpatRaster'
rotate(x, filename="", ...)

S4 method for signature 'SpatVector'
rotate(x, longitude=0, split=TRUE, left=TRUE, normalize=FALSE)

rotate 263

Arguments

x SpatRaster or SpatVector

filename character. Output filename

... additional arguments for writing files as in writeRaster

longitude numeric. The longitude around which to rotate

split logical. Should geometries be split at longitude?

left logical. Rotate to the left or to the right?

normalize logical. Should the output be normalized to longitudes between -180 and 180?
See normalize.longitude

Value

SpatRaster

See Also

shift and spin

Examples

x <- rast(nrows=9, ncols=18, nl=3, xmin=0, xmax=360)
v <- rep(as.vector(t(matrix(1:ncell(x), nrow=9, ncol=18))), 3)
values(x) <- v
z <- rotate(x)

Not run:
#SpatVector
p <- rbind(c(3847903, 1983584), c(3847903, 5801864), c(8301883, 5801864), c(8301883, 1983584))
p <- vect(p, "polygons", crs="+init=EPSG:3347")
d <- densify(p, 100000)
g <- project(d, "+proj=longlat")

x <- rotate(g, 50)
plot(g)
lines(x, col="red")

End(Not run)

rotate countries to 0-360 longitude
#w <- geodata::world(path=".")
#x <- rotate(w, long=0, split=TRUE, left=FALSE)

264 rowSums

rowSums row/col sums and means for SpatRaster

Description

Sum or average values of SpatRaster layers by row or column.

Usage

S4 method for signature 'SpatRaster'
rowSums(x, na.rm=FALSE, dims=1L, ...)
S4 method for signature 'SpatRaster'
colSums(x, na.rm=FALSE, dims=1L, ...)
S4 method for signature 'SpatRaster'
rowMeans(x, na.rm=FALSE, dims=1L, ...)
S4 method for signature 'SpatRaster'
colMeans(x, na.rm=FALSE, dims=1L, ...)

Arguments

x SpatRaster

na.rm logical. If TRUE, NA values are ignored

dims this argument is ignored

... additional arguments (none implemented)

Value

matrix

See Also

See global for summing all cells values

Examples

r <- rast(ncols=2, nrows=5, nl=2, vals=1:20)
rowSums(r)
colSums(r)
colMeans(r)

same.crs 265

same.crs Compare coordinate reference systems

Description

The function takes two coordinate reference system descriptions and compares them for equality.

Usage

same.crs(x, y)

Arguments

x character, SpatRaster, SpatVector, CRS, or other object that returns something
intelligible withcrs(x)

y same types as for x

Value

logical

Examples

r <- rast()
same.crs(r, "+proj=longlat")

same.crs(r, "+proj=utm +zone=1")

sapp Apply a terra function that takes only a single layer and returns a
SpatRaster to all layers of a SpatRaster

Description

Apply to all layers of a SpatRaster a function that only takes a single layer SpatRaster and returns a
SpatRaster (these are rare). In most cases you can also use lapply or sapply for this.

Or apply the same method to each sub-dataset (SpatRaster) in a SpatRasterDataset

Usage

S4 method for signature 'SpatRaster'
sapp(x, fun, ..., filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRasterDataset'
sapp(x, fun, ..., filename="", overwrite=FALSE, wopt=list())

266 sbar

Arguments

x SpatRaster or SpatRasterDataset

fun if x is a SpatRaster: a function that takes a SpatRaster argument and can be
applied to each layer of x (e.g. terrain. if x is a SpatRasterDataset: a
function that is applied to all layers of the SpatRasters in x (e.g. mean

... additional arguments to be passed to fun

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

lapp, app, tapp, lapply

Examples

s <- rast(system.file("ex/logo.tif", package="terra")) + 1

#SpatRasterDataset
sd <- sds(s*2, s/2)
y <- sapp(sd, mean)
z <- sapp(sd, function(i) 2 * mean(i))

sbar scale bar

Description

Add a scale bar to a map

Usage

sbar(d, xy=NULL, type="line", divs=2, below="", lonlat=NULL, labels,
adj=c(0.5, -1), lwd=2, xpd=TRUE, ticks=FALSE, scaleby=1, halo=TRUE,
col="black", fill=c("black", "white"), border="black", ...)

sbar 267

Arguments

d numeric. Distance covered by the scale bar. It should be in the units of the coor-
dinates of the plot (map), or in km for angular (longitude/latitude) coordinates;
see argument lonlat. It can also be missing

xy numeric. x and y coordinates to place the scale bar. It can also be one of fol-
lowing character values: "bottomleft", "bottom", "bottomright", "topleft", "top",
"topright", "left", "right", or NULL

type one of "line" or "bar"

divs number of divisions for a bar: 2 or 4

below character. Text to go below the scale bar (e.g., "kilometers")

lonlat logical or NULL. If logical, TRUE indicates if the plot is using longitude/latitude
coordinates. If NULL this is guessed from the plot’s coordinates

labels vector of three numbers to label the scale bar (beginning, midpoint, end)

adj adjustment for text placement

lwd line width for the "line" type of the scale bar

xpd logical. If TRUE, the scale bar can be outside the plotting area

ticks logical or numeric. If not FALSE, tick marks are added to a "line" scale bar. The
length of the tick marks can be specified

scaleby numeric. If labels is not provided. The labels are divided by this number. For
example, use 1000 to go from m to km

halo logical. If TRUE the "line" type scale bar gets a white background

col the font color for the labels

fill the fill color(s) for the bar

border the color of the border around the bar

... graphical arguments to be passed to other methods

Value

none

See Also

north, plot, inset

Examples

f <- system.file("ex/meuse.tif", package="terra")
r <- rast(f)
plot(r)
sbar()
sbar(1000, xy=c(178500, 333500), type="bar", divs=4, cex=.8)
sbar(1000, xy="bottomright", divs=3, cex=.8, ticks=TRUE)

268 scale

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
plot(r, type="interval")
sbar(20, c(6.2, 50.1), type="bar", cex=.8, divs=4)
sbar(15, c(6.3, 50), type="bar", below="km", label=c(0,7.5,15), cex=.8)
sbar(15, c(6.6, 49.8), cex=.8, label=c(0,"km",15))
sbar(15, c(6.6, 49.7), cex=.8, label="15 kilometer", lwd=5)
sbar(15, c(6.6, 49.6), divs=4, cex=.8, below="km")

scale Scale values

Description

Center and/or scale raster data. For details see scale

Usage

S4 method for signature 'SpatRaster'
scale(x, center=TRUE, scale=TRUE)

Arguments

x SpatRaster

center logical or numeric. If TRUE, centering is done by subtracting the layer means
(omitting NAs), and if FALSE, no centering is done. If center is a numeric vector
(recycled to nlyr(x)), then each layer of x has the corresponding value from
center subtracted from it.

scale logical or numeric. If TRUE, scaling is done by dividing the (centered) layers
of x by their standard deviations if center is TRUE, and the root mean square
otherwise. If scale is FALSE, no scaling is done. If scale is a numeric vector
(recycled to nlyr(x)), each layer of x is divided by the corresponding value.
Scaling is done after centering.

Value

SpatRaster

See Also

scale_linear

scale_linear 269

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
s <- scale(r)

the equivalent, computed in steps
m <- global(r, "mean")
rr <- r - m[,1]
rms <- global(rr, "rms")
ss <- rr / rms[,1]

scale_linear Scale values linearly

Description

Linear scaling of raster cell values between a specified minimum and maximum value.

Usage

S4 method for signature 'SpatRaster'
scale_linear(x, min=0, max=1, filename="", ...)

Arguments

x SpatRaster

min minimum value to scale to

max maximum value to scale to

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

scale

Examples

r <- rast(system.file("ex/logo.tif", package="terra"))
s1 <- scale_linear(r)
s2 <- scale_linear(r, 1, 10)

270 scatterplot

scatterplot Scatterplot of two SpatRaster layers

Description

Scatterplot of the values of two SpatRaster layers

Usage

S4 method for signature 'SpatRaster,SpatRaster'
plot(x, y, maxcell=100000, warn=TRUE, nc, nr,

maxnl=16, smooth=FALSE, gridded=FALSE, ncol=25, nrow=25, ...)

Arguments

x SpatRaster

y SpatRaster

maxcell positive integer. Maximum number of cells to use for the plot

nc positive integer. Optional. The number of columns to divide the plotting device
in (when plotting multiple layers)

nr positive integer. Optional. The number of rows to divide the plotting device in
(when plotting multiple layers)

maxnl positive integer. Maximum number of layers to plot (for multi-layer objects)

smooth logical. If TRUE show a smooth scatterplot (see smoothScatter

gridded logical. If TRUE the scatterplot is gridded (counts by cells)

warn boolean. Show a warning if a sample of the pixels is used (for scatterplot only)

ncol positive integer. Number of columns for gridding

nrow positive integer. Number of rows for gridding

... additional graphical arguments

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
plot(s[[1]], s[[2]])
plot(s, sqrt(s[[3:1]]))

scoff 271

scoff Scale (gain) and offset

Description

These functions can be used to get or set the scale (gain) and offset parameters used to transform
values when reading raster data from a file. The parameters are applied to the raw values using the
formula below:

value <- value * scale + offset

The default value for scale is 1 and for offset is 0. ’scale’ is sometimes referred to as ’gain’.

Note that setting the scale and/or offset are intended to be used with values that are stored in a file.
When values are memory, assigning scale or offset values will lead to the immediate computation
of new values; in such cases it would be clearer to use Arith-methods.

Usage

S4 method for signature 'SpatRaster'
scoff(x)

S4 replacement method for signature 'SpatRaster'
scoff(x)<-value

Arguments

x SpatRaster

value two-column matrix with scale (first column) and offset (second column) for each
layer. Or NULL to remove all scale and offset values

Value

matrix or changed SpatRaster

Examples

r <- rast(system.file("ex/elev.tif", package="terra"))
minmax(r)
scoff(r)
r[4603]

scoff(r) <- cbind(10, 5)
minmax(r)
scoff(r)
r[4603]

272 sds

sds Create a SpatRasterDataset

Description

Methods to create a SpatRasterDataset. This is an object to hold "sub-datasets", each represented
by a SpatRaster that may have multiple layers. All sub-datasets must have the same raster geometry
(extent and resolution). You can use a SpatRasterCollection (see sprc) to combine SpatRasters with
different geometries.

See describe for getting information about the sub-datasets present in a file.

Usage

S4 method for signature 'missing'
sds(x)

S4 method for signature 'character'
sds(x, ids=0, opts=NULL, raw=FALSE, noflip=FALSE, guessCRS=TRUE, domains="")

S4 method for signature 'SpatRaster'
sds(x, ...)

S4 method for signature 'list'
sds(x)

S4 method for signature 'array'
sds(x, crs="", extent=NULL)

Arguments

x character (filename), or SpatRaster, or list of SpatRasters, or missing. If multiple
filenames are provided, it is attempted to make SpatRasters from these, and
combine them into a SpatRasterDataset

ids optional. vector of integer subdataset ids. Ignored if the first value is not a
positive integer

opts character. GDAL dataset open options

raw logical. If TRUE, scale and offset values are ignored

noflip logical. If TRUE, a raster (e.g. JPEG image) that is not georeferenced and that
GDAL assigns a flipped extent to (ymax < ymin), is not considered flipped. This
avoids the need to flip the raster vertically

guessCRS logical. If TRUE and the file does not specify a CRS but has an extent that is
within longitude/latitude bounds, the longitude/latitude crs is assigned to the
SpatRaster

domains character. Metadata domains to read (see metags to retrieve their values if there
are any). "" is the default domain

segregate 273

crs character. Description of the Coordinate Reference System (map projection) in
PROJ.4, WKT or authority:code notation. If this argument is missing, and the
x coordinates are within -360 .. 360 and the y coordinates are within -90 .. 90,
longitude/latitude is assigned

extent SpatExtent

... additional SpatRaster objects

Value

SpatRasterDataset

See Also

sprc, describe

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
x <- sds(s, s/2)
names(x) <- c("first", "second")
x
length(x)

extract the second SpatRaster
x[2]

a <- array(1:9, c(3,3,3,3))
sds(a)

segregate segregate

Description

Create a SpatRaster with a layer for each class (value, or subset of the values) in the input Spa-
tRaster. For example, if the input has vegetation types, this function will create a layer (pres-
ence/absence; dummy variable) for each of these classes.

This is called "one-hot encoding" or "dummy encoding" (for a dummy encoding scheme you can
remove (any) one of the output layers as it is redundant).

Usage

S4 method for signature 'SpatRaster'
segregate(x, classes=NULL, keep=FALSE, other=0, round=FALSE, digits=0, filename="", ...)

274 sel

Arguments

x SpatRaster

classes numeric. The values (classes) for which layers should be made. If NULL all
classes are used

keep logical. If TRUE, cells that are of the class represented by a layer get that value,
rather than a value of 1

other numeric. Value to assign to cells that are not of the class represented by a layer

round logical. Should the values be rounded first?

digits integer. Number of digits to round the values to

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

split

Examples

r <- rast(nrows=5, ncols=5)
values(r) <- rep(c(1:4, NA), each=5)
b <- segregate(r)
bb <- segregate(r, keep=TRUE, other=NA)

sel Spatial selection

Description

Geometrically subset SpatRaster or SpatVector (to be done) by drawing on a plot (map).

Note that for many installations this does to work well on the default RStudio plotting device. To
work around that, you can first run dev.new(noRStudioGD = TRUE) which will create a separate
window for plotting, then use plot() followed by sel() and click on the map. It may also help to
set your RStudio "Tools/Global Options/Appearance/Zoom" to 100

Usage

S4 method for signature 'SpatRaster'
sel(x, ...)

S4 method for signature 'SpatVector'
sel(x, use="rec", show=TRUE, col="cyan", draw=TRUE, ...)

selectHighest 275

Arguments

x SpatRaster or SpatVector

use character indicating what to draw. One of "rec" (rectangle) or "pol" (polygon)

show logical. If TRUE the selected geometries are shown on the map

col color to be used for drawing if draw=TRUE

draw logical. If TRUE the area drawn to select geometries is shown on the map

... additional graphics arguments for drawing the selected geometries

Value

SpatRaster or SpatVector

See Also

crop and intersect to make an intersection and click and text to see cell values or geometry
attributes.

Use draw to draw a SpatExtent of SpatVector that you want to keep.

Examples

Not run:
select a subset of a SpatRaster
r <- rast(nrows=10, ncols=10)
values(r) <- 1:ncell(r)
plot(r)
s <- sel(r) # now click on the map twice

plot the selection on a new canvas:
x11()
plot(s)

vector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v)
x <- sel(v) # now click on the map twice
x

End(Not run)

selectHighest select cells with high or low values

Description

Identify n cells that have the highest or lowest values in the first layer of a SpatRaster.

276 selectRange

Usage

S4 method for signature 'SpatRaster'
selectHighest(x, n, low=FALSE)

Arguments

x SpatRaster. Only the first layer is processed

n The number of cells to select

low logical. If TRUE, the lowest values are selected instead of the highest values

Value

SpatRaster

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- selectHighest(r, 1000)
y <- selectHighest(r, 1000, TRUE)

m <- merge(y-1, x)
levels(m) <- data.frame(id=0:1, elevation=c("low", "high"))
plot(m)

selectRange Select the values of a range of layers, as specified by cell values in
another SpatRaster

Description

Use a single layer SpatRaster to select cell values from different layers in a multi-layer SpatRaster.
The values of the SpatRaster to select layers (y) should be whole numbers between 1 and nlyr(x)
(values outside this range are ignored).

See rapp for applying a function to a range of variable size.

See extract for extraction of values by cell, point, or otherwise.

Usage

S4 method for signature 'SpatRaster'
selectRange(x, y, z=1, repint=0, filename="", ...)

serialize 277

Arguments

x SpatRaster

y SpatRaster. Cell values must be positive integers. They indicate the first layer to
select for each cell

z positive integer. The number of layers to select

repint integer > 1 and < nlyr(x) allowing for repeated selection at a fixed interval. For
example, if x has 36 layers, and the value of a cell in y=2 and repint = 12, the
values for layers 2, 14 and 26 are returned

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

rapp, tapp, extract

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1
s <- c(r, r+2, r+5)
s <- c(s, s)
set.seed(1)
values(r) <- sample(3, ncell(r), replace=TRUE)
x <- selectRange(s, r)

x <- selectRange(s, r, 3)

serialize saveRDS and serialize for SpatVector and SpatRaster*

Description

serialize and saveRDS for SpatVector, SpatRaster, SpatRasterDataset and SpatRasterCollection.
Note that these objects will first be "packed" with wrap, and after unserialize/readRDS they need to
be unpacked with rast or vect.

Extensive use of these functions is not recommended. Especially for SpatRaster it is generally much
more efficient to use writeRaster and write, e.g., a GTiff file.

278 serialize

Usage

S4 method for signature 'SpatRaster'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)

S4 method for signature 'SpatRasterDataset'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)

S4 method for signature 'SpatRasterCollection'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)

S4 method for signature 'SpatVector'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)

S4 method for signature 'SpatRaster'
serialize(object, connection, ascii = FALSE, xdr = TRUE, version = NULL, refhook = NULL)

S4 method for signature 'SpatVector'
serialize(object, connection, ascii = FALSE, xdr = TRUE, version = NULL, refhook = NULL)

Arguments

object SpatVector, SpatRaster, SpatRasterDataset or SpatRasterCollection

file file name to save object to

connection see serialize

ascii see serialize or saveRDS

version see serialize or saveRDS

compress see serialize or saveRDS

refhook see serialize or saveRDS

xdr see serialize or saveRDS

Value

Packed* object

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
p <- serialize(v, NULL)
head(p)
x <- unserialize(p)
x

setValues 279

setValues Set the values of raster cells or of geometry attributes

Description

Set cell values of a SpatRaster or the attributes of a SpatVector. For large SpatRasters use init
instead to set values.

Usage

S4 replacement method for signature 'SpatRaster,ANY'
values(x)<-value

S4 method for signature 'SpatRaster,ANY'
setValues(x, values, keeptime=TRUE, keepunits=TRUE, keepnames=FALSE, props=FALSE)

S4 replacement method for signature 'SpatVector,ANY'
values(x)<-value

Arguments

x SpatRaster or SpatVector

value For SpatRaster: numeric, matrix or data.frame. The length of the numeric values
must match the total number of cells (ncell(x) * nlyr(x)), or be a single value.
The number of columns of the matrix or data.frame must match the number of
layers of x, and the number of rows must match the number of cells of x. It is
also possible to use a matrix with the same number of rows as x and the number
of columns that matches ncol(x) * nlyr(x).
For SpatVector: data.frame, matrix, vector, or NULL

values Same as for value

keeptime logical. If TRUE the time stamps are kept

keepunits logical. If FALSE the units are discarded

keepnames logical. If FALSE the layer names are replaced by the column names in y (if
present)

props logical. If TRUE the properties (categories and color-table) are kept

Value

The same object type as x

See Also

values, init

280 shade

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- setValues(r, 1:ncell(r))
x
values(x) <- runif(ncell(x))
x
head(x)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
values(v) <- data.frame(ID=1:12, name=letters[1:12])
head(v)

shade Hill shading

Description

Compute hill-shade from slope and aspect layers (both in radians). Slope and aspect can be com-
puted with function terrain.

A hill-shade layer is often used as a backdrop on top of which another, semi-transparent, layer is
drawn.

Usage

shade(slope, aspect, angle=45, direction=0, normalize=FALSE,
filename="", overwrite=FALSE, ...)

Arguments

slope SpatRasterwith slope values (in radians)

aspect SpatRaster with aspect values (in radians)

angle The elevation angle(s) of the light source (sun), in degrees

direction The direction (azimuth) angle(s) of the light source (sun), in degrees

normalize Logical. If TRUE, values below zero are set to zero and the results are multiplied
with 255

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

References

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69(1):14-47

sharedPaths 281

See Also

terrain

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
disaggregating because the resolution of this raster is a bit low
you generally should not do that with your own data
r <- disagg(r, 10, method="bilinear")

slope <- terrain(r, "slope", unit="radians")
aspect <- terrain(r, "aspect", unit="radians")
hill <- shade(slope, aspect, 40, 270)
plot(hill, col=grey(0:100/100), legend=FALSE, mar=c(2,2,1,4))
plot(r, col=rainbow(25, alpha=0.35), add=TRUE)

A better hill shade may be achieved by combining
different angles and directions. For example
hh <- shade(slope, aspect, angle=30, direction=c(225, 270, 315, 360))
h1 <- Reduce(mean, hh)
h2 <- mean(hh)

sharedPaths Shared paths

Description

Get shared paths of line or polygon geometries. This can for geometries in a single SpatVector, or
between two SpatVectors

Usage

S4 method for signature 'SpatVector'
sharedPaths(x, y=NULL)

Arguments

x SpatVector of lines or polygons

y missing or SpatVector of lines or polygons

Value

SpatVector

See Also

gaps, topology

282 shift

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v, col="light gray")
text(v, halo=TRUE)

x <- sharedPaths(v)
lines(x, col="red", lwd=2)
text(x, col="blue", halo=TRUE, cex=0.8)
head(x)

z <- sharedPaths(v[3,], v[12,])

shift Shift

Description

Shift a SpatRaster, SpatVector or SpatExtent to another location.

Usage

S4 method for signature 'SpatRaster'
shift(x, dx=0, dy=0, filename="", ...)

S4 method for signature 'SpatVector'
shift(x, dx=0, dy=0)

S4 method for signature 'SpatExtent'
shift(x, dx=0, dy=0)

Arguments

x SpatRaster, SpatVector or SpatExtent

dx numeric. The shift in horizontal direction

dy numeric. The shift in vertical direction

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

Same as x

See Also

flip, rotate

sieve 283

Examples

r <- rast(xmin=0, xmax=1, ymin=0, ymax=1)
r <- shift(r, dx=1, dy=-1)

e <- ext(r)
shift(e, 5, 5)

sieve Sieve filter

Description

Apply a sieve filter. That is, remove "noise", by changing small clumps of cells with a value that is
different from the surrounding cells, to the value of the largest neighboring clump.

Note that the numerical input values are truncated to integers.

Usage

S4 method for signature 'SpatRaster'
sieve(x, threshold, directions=8, filename="", ...)

Arguments

x SpatRaster, single layer with integer or categorical values

threshold positive integer. Only clumps smaller than this threshold will be removed

directions numeric to indicate which cells are connected. Either 4 to only consider the hor-
izontal and vertical neighbors ("rook"), or 8 to consider the vertical, horizontal
and diagonal neighbors

filename character. Output filename

... Options for writing files as in writeRaster

See Also

focal

Examples

r <- rast(nrows=18, ncols=18, xmin=0, vals=0, crs="local")
r[2, 5] <- 1
r[5:8, 2:3] <- 2
r[7:12, 10:15] <- 3
r[15:16, 15:18] <- 4
freq(r, bylayer=FALSE)

x <- sieve(r, 8)
y <- sieve(r, 9)

284 simplifyGeom

simplifyGeom simplifyGeom geometries

Description

Reduce the number of nodes used to represent geometries.

Usage

S4 method for signature 'SpatVector'
simplifyGeom(x, tolerance=0.1, preserveTopology=TRUE, makeValid=TRUE)

Arguments

x SpatVector of lines or polygons

tolerance numeric. The minimum distance between nodes in units of the crs (i.e. degrees
for long/lat)

preserveTopology

logical. If TRUE the topology of output geometries is preserved

makeValid logical. If TRUE, makeValid is run after simplification to assure that the output
polygons are valid

Value

SpatVector

See Also

densify, sharedPaths, gaps, is.valid

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- simplifyGeom(v, .02, makeValid=FALSE)
e <- erase(w)
g <- gaps(e)
plot(e, lwd=5, border="light gray")
polys(g, col="red", border="red")

sort 285

sort Sort a SpatRaster or SpatVector

Description

Sort the cell values of a SpatRaster across layers. You can also compute the sorting order.

Or sort the records of SpatVector (or data.frame) by specifying the column number(s) or names(s)
to sort on.

Usage

S4 method for signature 'SpatRaster'
sort(x, decreasing=FALSE, order=FALSE, filename="", ...)

S4 method for signature 'SpatVector'
sort(x, v, decreasing=FALSE)

Arguments

x SpatRaster

decreasing logical. If TRUE, sorting is in decreasing order

order logical. If TRUE the sorting order is returned instead of the sorted values

filename character. Output filename

... additional arguments for writing files as in writeRaster

v character or numeric indicating the column(s) to sort on

Value

SpatRaster

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r <- c(r, r/2, r*2)
sort(r)

ord <- sort(r, order=TRUE)
these two are the same
ord[[1]]
which.min(r)

286 sources

sources Data sources of a SpatRaster

Description

Get the data sources of a SpatRaster or SpatVector or related object. Sources are either files (or
similar resources) or "", meaning that they are in memory. You can use hasValues to check if
in-memory layers actually have cell values.

Usage

S4 method for signature 'SpatRaster'
sources(x, nlyr=FALSE, bands=FALSE)

S4 method for signature 'SpatVector'
sources(x)

S4 method for signature 'SpatRaster'
hasValues(x)

S4 method for signature 'SpatRaster'
inMemory(x, bylayer=FALSE)

Arguments

x SpatRaster, SpatRasterCollection, SpatVector or SpatVectorProxy

nlyr logical. If TRUE for each source, the number of layers is returned

bands logical. If TRUE for each source, the "bands" used, that is, the layer number in
the source file, are returned

bylayer logical. If TRUE a value is returned for each layer instead of for each source

Value

A vector of filenames, or "" when there is no filename, if nlyr and bands are both FALSE. Otherwise
a data.frame

See Also

toMemory

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
s <- rast(r)
values(s) <- 1:ncell(s)
rs <- c(r,r,s,r)

SpatExtent-class 287

sources(rs)
hasValues(r)
x <- rast()
hasValues(x)

SpatExtent-class Class "SpatExtent"

Description

Objects of class SpatExtent are used to define the spatial extent (extremes) of objects of the Spa-
tRaster class.

Objects from the Class

You can use the ext function to create SpatExtent objects, or to extract them from a SpatRaster,
SpatVector or related objects.

Methods

show display values of a SpatExtent object

Examples

e <- ext(-180, 180, -90, 90)
e

SpatRaster-class SpatRaster class

Description

A SpatRaster represents a rectangular part of the world that is sub-divided into rectangular cells of
equal area (in terms of the units of the coordinate reference system). For each cell can have multiple
values ("layers").

An object of the SpatRaster class can point to one or more files on disk that hold the cell values,
and/or it can hold these values in memory. These objects can be created with the rast method.

A SpatRasterDataset is a collection of sub-datasets, where each is a SpatRaster for the same
area (extent) and coordinate reference system, but possibly with a different resolution. Sub-datasets
are often used to capture variables (e.g. temperature and precipitation), or a fourth dimension (e.g.
height, depth or time) if the sub-datasets already have three dimensions (multiple layers).

A SpatRasterCollection is a collection of SpatRasters with no restriction in the extent or other
geometric parameters.

Examples

rast()

288 spatSample

spatSample Take a regular sample

Description

Take a spatial sample from a SpatRaster, SpatVector or SpatExtent. Sampling a SpatVector or
SpatExtent always returns a SpatVector of points.

With a SpatRaster, you can get cell values, cell numbers (cells=TRUE), coordinates (xy=TRUE) or
(when method="regular" and as.raster=TRUE) get a new SpatRaster with the same extent, but
fewer cells.

In order to assure regularity when requesting a regular sample, the number of cells or points returned
may not be exactly the same as the size requested unless you use exact=TRUE (and do not use
na.rm=TRUE). Alternatively, use method="spread" to get an approximately regular sample for the
cells that are not NA.

Usage

S4 method for signature 'SpatRaster'
spatSample(x, size, method="random", replace=FALSE, na.rm=FALSE,

as.raster=FALSE, as.df=TRUE, as.points=FALSE, as.mask=FALSE, values=hasValues(x),
cells=FALSE, xy=FALSE, ext=NULL, warn=TRUE, weights=NULL, exp=5, exhaustive=FALSE,
exact=FALSE, each=TRUE, ...)

S4 method for signature 'SpatVector'
spatSample(x, size, method="random", strata=NULL, chess="")

S4 method for signature 'SpatExtent'
spatSample(x, size, method="random", lonlat, as.points=FALSE, exact=FALSE)

Arguments

x SpatRaster, SpatVector or SpatExtent

size numeric. The sample size. If x is a SpatVector, you can also provide a vector
of the same length as x in which case sampling is done separately for each
geometry. If x is a SpatRaster, and you are using method="regular" you can
specify the size as two numbers (number of rows and columns). Note that when
using method="stratified", the sample size is returned for each stratum

method character. Should be "regular" or "random", If x is a SpatRaster, it can also be
"stratified" (each value in x is a stratum), "weights" (each value in x is a prob-
ability weight), or "spread" (an approximately regular sample, using compact
zones generated with k_means clustering of the raster cell locations)

replace logical. If TRUE, sampling is with replacement (if method="random")

na.rm logical. If TRUE, NAs are removed. Not used with method="spread" or as.raster=TRUE

as.raster logical. If TRUE, a SpatRaster is returned

spatSample 289

as.df logical. If TRUE, a data.frame is returned instead of a matrix

as.points logical. If TRUE, a SpatVector of points is returned

as.mask logical. If TRUE x is returned, with its values "masked" by the sample. That is,
only cells that are included in the sample retain their values

values logical. If TRUE raster cell values are returned

cells logical. If TRUE, cell numbers are returned. If method="stratified" this is
always set to TRUE if xy=FALSE

xy logical. If TRUE, cell coordinates are returned

ext SpatExtent or NULL to restrict sampling to a subset of the area of x

warn logical. Give a warning if the sample size returned is smaller than requested

weights SpatRaster. Used to provide weights when method="stratified"

lonlat logical. If TRUE, sampling of a SpatExtent is weighted by cos(latitude).
For SpatRaster and SpatVector this done based on the crs, but it is ignored
if as.raster=TRUE

exp numeric >= 1. "Expansion factor" that is multiplied with size to get an initial
sample used for stratified samples and random samples with na.rm=TRUE to try
to get at least size samples

exhaustive logical. If TRUE and (method=="random" and na.rm=TRUE) or method=="stratified",
all cells that are not NA are determined and a sample is taken from these cells.
This is useful when you are dealing with a very large raster that is sparse (most
cells are NA). Otherwise, the default approach may not find enough samples.
This should not be used in other cases, especially not with large rasters that
mostly have values

exact logical. If TRUE and method=="regular", the sample returned is exactly size,
perhaps at the expense of some regularity. Otherwise you get at least size many
samples. Ignored for lon/lat rasters

each logical. If TRUE and method=="stratified", the sample returned is size for
each stratum. Otherwise size is the total sample size

... additional arguments passed to k_means when method="kmeans"

strata if not NULL, stratified random sampling is done, taking size samples from each
stratum. If x has polygon geometry, strata must be a field name (or index) in x.
If x has point geometry, strata can be a SpatVector of polygons or a SpatRaster

chess character. One of "", "white", or "black". For stratified sampling if strata is a
SpatRaster. If not "", samples are only taken from alternate cells, organized like
the "white" or "black" fields on a chessboard

Value

numeric matrix, data.frame, SpatRaster or SpatVector

290 SpatVector-class

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
s <- spatSample(r, 10, as.raster=TRUE)
spatSample(r, 5)
spatSample(r, 5, na.rm=TRUE)
spatSample(r, 5, "regular")

if you require cell numbers and/or coordinates
size <- 6
spatSample(r, 6, "random", cells=TRUE, xy=TRUE, values=FALSE)

regular, with values
spatSample(r, 6, "regular", cells=TRUE, xy=TRUE)

stratified
rr <- rast(ncol=10, nrow=10, names="stratum")
set.seed(1)
values(rr) <- round(runif(ncell(rr), 1, 3))
spatSample(rr, 2, "stratified", xy=TRUE)

s <- spatSample(rr, 5, "stratified", as.points=TRUE, each=FALSE)
plot(rr, plg=list(title="raster"))
plot(s, 1, add=TRUE, plg=list(x=185, y=1, title="points"), col=rainbow(5))

spread
s <- spatSample(r, 10, "spread", as.points=TRUE)
plot(r); points(s)

SpatExtent
e <- ext(r)
spatSample(e, 10, "random", lonlat=TRUE)

SpatVector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

sample the geometries
i <- sample(v, 3)

sample points in geometries
p <- spatSample(v, 3)

SpatVector-class Class "SpatVector"

Description

SpatVector can represent points, lines or polygons.

spin 291

SpatVectorCollection can hold a collection of SpatVectors

SpatVectorProxy is a SpatVector for which the data are on-disk in-stead of in memory.

spin spin a SpatVector

Description

Spin (rotate) the geometry of a SpatVector.

Usage

S4 method for signature 'SpatVector'
spin(x, angle, x0, y0)

Arguments

x SpatVector

angle numeric. Angle of rotation in degrees

x0 numeric. x-coordinate of the center of rotation. If missing, the center of the
extent of x is used

y0 numeric. y-coordinate of the center of rotation. If missing, the center of the
extent of x is used

Value

SpatVector

See Also

rescale, t, shift

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- spin(v, 180)
plot(v)
lines(w, col="red")

lower-right corner as center
e <- as.vector(ext(v))
x <- spin(v, 45, e[1], e[3])

292 split

split Split a SpatRaster or SpatVector

Description

Split a SpatRaster by layer, or a SpatVector by attributes. You can also split the geometry of a
SpatVector of polygon or lines with another SpatVector of polygon or lines.

Usage

S4 method for signature 'SpatRaster,ANY'
split(x, f)

S4 method for signature 'SpatVector,ANY'
split(x, f)

S4 method for signature 'SpatVector,SpatVector'
split(x, f, min_node_dist=10000)

Arguments

x SpatRaster or SpatVector

f If x is a SpatRaster: a vector of the length nlyr(x). If x is a SpatVector: one
or more variable names, or a vector of the same length as x, or a list of such
vectors. If x is a SpatVector of polygons, you can also use a SpatVector of lines
or polygons to split the polygon geometries

min_node_dist postive number indicating the minimum node distance to use (in m) for longi-
tude/latitude data. To ensure this minium distance between nodes, additional
nodes are added as needed, to improve precision. See densify

Value

list or SpatVector

See Also

segregate

Examples

split layers
s <- rast(system.file("ex/logo.tif", package="terra"))
y <- split(s, c(1,2,1))
sds(y)

split attributes
v <- vect(system.file("ex/lux.shp", package="terra"))
x <- split(v, "NAME_1")

sprc 293

split geometries
v <- v[1:5,]
line <- vect(matrix(c(5.79, 6.22, 5.75, 6.1, 5.8,
50.14, 50.05, 49.88, 49.85, 49.71), ncol=2), "line")
s <- split(v, line)

sprc Create a SpatRasterCollection

Description

Methods to create a SpatRasterCollection. This is an object to hold a collection (list) of SpatRasters.
There are no restrictions on the similarity of the SpatRaster geometry.

They can be used to combine several SpatRasters to be used with merge or mosaic

You can create a SpatRasterCollection from a file with subdatasets.

Usage

S4 method for signature 'character'
sprc(x, ids=0, opts=NULL, raw=FALSE, noflip=FALSE, guessCRS=TRUE, domains="")

S4 method for signature 'SpatRaster'
sprc(x, ...)

S4 method for signature 'list'
sprc(x)

S4 method for signature 'missing'
sprc(x)

Arguments

x SpatRaster, list with SpatRasters, missing, or filename

ids optional. vector of integer subdataset ids. Ignored if the first value is not a
positive integer

opts character. GDAL dataset open options

raw logical. If TRUE, scale and offset values are ignored

noflip logical. If TRUE, a raster (e.g. JPEG image) that is not georeferenced and that
GDAL assigns a flipped extent to (ymax < ymin), is not considered flipped. This
avoids the need to flip the raster vertically

guessCRS logical. If TRUE and the the file does not specify a CRS but has an extent that
is within longitude/latitude bounds, the longitude/latitude crs is assigned to the
SpatRaster

294 stretch

domains character. Metadata domains to read (see metags to retrieve their values if there
are any. "" is the default domain

... additional SpatRasters

Value

SpatRasterCollection

See Also

sds

Examples

x <- rast(xmin=-110, xmax=-50, ymin=40, ymax=70, ncols=60, nrows=30)
y <- rast(xmin=-80, xmax=-20, ymax=60, ymin=30)
res(y) <- res(x)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)

z <- sprc(x, y)
z

stretch Stretch

Description

Linear or histogram equalization stretch of values in a SpatRaster.

For linear stretch, provide the desired output range (minv and maxv) and the lower and upper bounds
in the original data, either as quantiles (minq and maxq, or as cell values (smin and smax). If smin
and smax are both not NA, minq and maxq are ignored.

For histogram equalization, these arguments are ignored, but you can provide the desired scale
of the output and the maximum number of cells that is used to compute the histogram (empirical
cumulative distribution function).

Usage

S4 method for signature 'SpatRaster'
stretch(x, minv=0, maxv=255, minq=0, maxq=1, smin=NA, smax=NA,
histeq=FALSE, scale=1, maxcell=500000, bylayer=TRUE, filename="", ...)

subset 295

Arguments

x SpatRaster

minv numeric >= 0 and smaller than maxv. lower bound of stretched value

maxv numeric <= 255 and larger than maxv. upper bound of stretched value

minq numeric >= 0 and smaller than maxq. lower quantile bound of original value.
Ignored if smin is supplied

maxq numeric <= 1 and larger than minq. upper quantile bound of original value.
Ignored if smax is supplied

smin numeric < smax. user supplied lower value for the layers, to be used instead of
a quantile computed by the function itself

smax numeric > smin. user supplied upper value for the layers, to be used instead of
a quantile computed by the function itself

histeq logical. If TRUE histogram equalization is used instead of linear stretch

scale numeric. The scale (maximum value) of the output if histeq=TRUE

maxcell positive integer. The size of the regular sample used to compute the histogram
or quantiles

bylayer logical. If TRUE stretching is done for each layer individually

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

r <- rast(nc=10, nr=10)
values(r) <- rep(1:25, 4)
rs <- stretch(r)
s <- c(r, r*2)
sr <- stretch(s)

subset Subset a SpatRaster or a SpatVector

Description

Select a subset of layers from a SpatRaster or select a subset of records (row) and/or variables
(columns) from a SpatVector.

296 subset

Usage

S4 method for signature 'SpatRaster'
subset(x, subset, negate=FALSE, NSE=FALSE, filename="", overwrite=FALSE, ...)

S4 method for signature 'SpatVector'
subset(x, subset, select, drop=FALSE, NSE=FALSE)

Arguments

x SpatRaster or SpatVector

subset if x is a SpatRaster: integer or character to select layers
if x is a SpatVector: logical expression indicating the rows to keep (missing
values are taken as FALSE), or another Spat* object in which case the extent is
used to spatially subset the intersecting geometries

select expression, indicating columns to select

negate logical. If TRUE all layers that are not in the subset are selected

NSE logical. If TRUE, non-standard evaluation (the use of unquoted variable names)
is allowed. Set this to FALSE when calling subset from a function

drop logical. If TRUE, the geometries will be dropped, and a data.frame is returned

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Value

if x is a SpatRaster: SpatRaster

if x is a SpatVector: SpatVector or, if drop=TRUE, a data.frame.

See Also

$, [[, [

Examples

SpatRaster
s <- rast(system.file("ex/logo.tif", package="terra"))
subset(s, 2:3)
subset(s, c(3,2,3,1))

#equivalent to
s[[c(3,2,3,1)]]

s[[c("red", "green")]]
s$red

expression based (partial) matching of names with single brackets
s["re"]

subset_dollar 297

s["^re"]

not with double brackets
s[["re"]]

SpatVector

v <- vect(system.file("ex/lux.shp", package="terra"))

subset(v, v$NAME_1 == "Diekirch", c("NAME_1", "NAME_2"))

subset(v, NAME_1 == "Diekirch", c(NAME_1, NAME_2), NSE=TRUE)

or like this
v[2:3,]
v[1:2, 2:3]
v[1:2, c("NAME_1", "NAME_2")]

or by location, i.e. by spatial overlap with another object
poly <- as.polygons(ext(6, 6.4, 49.75, 50))
subset(v, poly)
v[poly]

subset_dollar Subset a SpatRaster or a SpatVector

Description

Select a subset of layers from a SpatRaster or select a subset of records (row) and/or variables
(columns) from a SpatVector.

Usage

S4 method for signature 'SpatExtent'
x$name

Arguments

x SpatRaster, SpatVector or SpatExtent

name character. If x is a SpatRaster: layer name. If x is a SpatVector: variable name.
If x is a SpatExtent: xmin, xmax, ymin or ymax

Value

if x is a SpatRaster: SpatRaster

if x is a SpatVector: SpatVector or, if drop=TRUE, a data.frame.

298 subset_double

See Also

subset, [, [[, extract

Examples

SpatRaster
s <- rast(system.file("ex/logo.tif", package="terra"))
subset(s, 2:3)
subset(s, c(3,2,3,1))
#equivalent to
s[[c(3,2,3,1)]]

s[[c("red", "green")]]
s$red

expression based (partial) matching of names with single brackets
s["re"]
s["^re"]

not with double brackets
s[["re"]]

SpatVector

v <- vect(system.file("ex/lux.shp", package="terra"))
v[2:3,]
v[1:2, 2:3]

subset(v, v$NAME_1 == "Diekirch", c("NAME_1", "NAME_2"))

subset(v, NAME_1 == "Diekirch", c(NAME_1, NAME_2), NSE=TRUE)

subset_double Subset a SpatRaster or a SpatVector

Description

Select a subset of layers from a SpatRaster or select a subset of records (row) and/or variables
(columns) from a SpatVector.

Usage

S4 method for signature 'SpatRaster,numeric,missing'
x[[i, j]]

S4 method for signature 'SpatRasterDataset,ANY,ANY'
x[[i, j, drop=TRUE]]

subset_double 299

S4 method for signature 'SpatVector,numeric,missing'
x[[i, j, drop=FALSE]]

Arguments

x SpatRaster or SpatVector

i if x is a SpatRaster: integer, logical, or character to select layers

if x is a SpatVector: integer, logical, or character to select variables

j missing, or, for SpatRasterDataset only, numeric

drop logical. If TRUE, the geometries will be dropped, and a data.frame is returned

Value

if x is a SpatRaster or SpatRasterDataset: SpatRaster

if x is a SpatVector: a data.frame.

See Also

subset, $, [, extract

Examples

SpatRaster
s <- rast(system.file("ex/logo.tif", package="terra"))
s[[1:2]]

s[[c("red", "green")]]

expression based (partial) matching of names with single brackets
s["re"]
s["^re"]

does not with double brackets
s[["re"]]

SpatVector

v <- vect(system.file("ex/lux.shp", package="terra"))
v[[2:3]]

to keep the geometry use
v[,2:3]

300 subset_single

subset_single Extract values from a SpatRaster, SpatVector or SpatExtent

Description

Extract values from a SpatRaster; a subset of records (row) and/or variables (columns) from a
SpatVector; or a number from a SpatExtent.

You can use indices (row, column, layer or cell numbers) to extract. You can also use other Spat*
objects.

Usage

S4 method for signature 'SpatRaster,ANY,ANY,ANY'
x[i, j, k]

S4 method for signature 'SpatVector,numeric,numeric'
x[i, j, drop=FALSE]

S4 method for signature 'SpatVector,SpatVector,missing'
x[i, j]

S4 method for signature 'SpatExtent,numeric,missing'
x[i, j]

Arguments

x SpatRaster, SpatVector or SpatExtent

i if x is a SpatRaster: numeric, logical or missing to select rows or, if j is miss-
ing, to select cells numbers.
if x is a SpatVector: numeric or missing to select rows. if i is another SpatVec-
tor: get a new SpatVector with the geometries that intersect.
if x is a SpatExtent: integer between 1 and 4.

j numeric, logical, or missing to select columns

k numeric, character, or missing to select layers

drop logical. If FALSE an object of the same class as x is returned

Value

numeric if x is a SpatExtent. Same as x if drop=FALSE. Otherwise a data.frame

See Also

extract, subset, $, [[

subst 301

Examples

SpatRaster
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r[3638]
rowColFromCell(r, 2638)
r[39, 28]
x <- r[39:40, 28:29, drop=FALSE]
as.matrix(x, wide=TRUE)

SpatVector

v <- vect(system.file("ex/lux.shp", package="terra"))
v[2:3,]
v[1:2, 2:3]
v[1:2, 2:3, drop=TRUE]

subst replace cell values

Description

Substitute(replace) cell values of a SpatRaster with a new value. See classify for more com-
plex/flexible replacement.

Usage

S4 method for signature 'SpatRaster'
subst(x, from, to, others=NULL, raw=FALSE, filename="", ...)

Arguments

x SpatRaster

from numeric value(s). Normally a vector of the same length as ‘to‘. If x has multiple
layers, it can also be a matrix of numeric value(s) where nrow(x) == length(to).
In that case the output has a single layer, with values based on the combination
of the values of the input layers

to numeric value(s). Normally a vector of the same length as ‘from‘. If x has
a single layer, it can also be a matrix of numeric value(s) where nrow(x) ==
length(from). In that case the output has multiple layers, one for each column
in to

others numeric. If not NULL all values that are not matched are set to this value. Other-
wise they retain their original value.

raw logical. If TRUE, the values in from and to are the raw cell values, not the cate-
gorical labels. Only relevant if is.factor(x)

filename character. Output filename

... Additional arguments for writing files as in writeRaster

302 summarize

Value

SpatRaster

See Also

classify, clamp

Examples

r <- rast(ncols=5, nrows=5, xmin=0, xmax=1, ymin=0, ymax=1, crs="")
r <- init(r, 1:6)
x <- subst(r, 3, 7)
x <- subst(r, 2:3, NA)
x <- subst(x, NA, 10)

multiple output layers
z <- subst(r, 2:3, cbind(20,30))

multiple input layers
rr <- c(r, r+1, r+2)
m <- rbind(c(1:3), c(3:5))
zz <- subst(rr, m, c(100, 200))

summarize Summarize

Description

Compute summary statistics for cells, either across layers or between layers (parallel summary).

The following summary methods are available for SpatRaster: any, anyNA, all, allNA, nany,
noNA, max, min, mean, median, prod, range, stdev, sum, which.min, which.max. See modal
to compute the mode and app to compute summary statistics that are not included here. nany stands
for "not any" or "none" and allows to do !all(x) in one computation instead of two.

Because generic functions are used, the method applied is chosen based on the first argument: "x".
This means that if r is a SpatRaster, mean(r, 5) will work, but mean(5, r) will not work.

The mean method has an argument "trim" that is ignored.

If pop=TRUE stdev computes the population standard deviation, computed as:

f <- function(x) sqrt(sum((x-mean(x))^2) / length(x))

This is different than the sample standard deviation returned by sd (which uses n-1 as denominator).

Usage

S4 method for signature 'SpatRaster'
min(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'

summarize 303

max(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
prod(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
sum(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
any(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
all(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
nany(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)

S4 method for signature 'SpatRaster'
which.min(x)

S4 method for signature 'SpatRaster'
which.max(x)

S4 method for signature 'SpatRaster'
stdev(x, ..., pop=TRUE, na.rm=FALSE)

S4 method for signature 'SpatRaster'
mean(x, ..., trim=NA, na.rm=FALSE)

S4 method for signature 'SpatRaster'
median(x, na.rm=FALSE, ...)

S4 method for signature 'SpatRaster'
anyNA(x)

S4 method for signature 'SpatRaster'
countNA(x, n=0)

S4 method for signature 'SpatRaster'
noNA(x, falseNA=FALSE)

S4 method for signature 'SpatRaster'

304 summarize

allNA(x, falseNA=FALSE)

Arguments

x SpatRaster

... additional SpatRasters or numeric values; and arguments par for parallel sum-
marization (see Details), and filename, overwrite and wopt as for writeRaster

na.rm logical. If TRUE, NA values are ignored. If FALSE, NA is returned if x has any NA
values

trim ignored

pop logical. If TRUE, the population standard deviation is computed. Otherwise the
sample standard deviation is computed

falseNA logical. If TRUE, cells that would otherwise be FALSE are set to NA

n integer. If n > 0, cell values are TRUE if at least n of its layers are NA

Details

Additional argument par can be used for "parallel" summarizing a SpatRaster and a numeric or
logical value. If a SpatRaster x has three layers, max(x, 5) will return a single layer (the number
five is treated as a layer in which all cells have value five). In contrast max(x, 5, par=TRUE) returns
three layers (the number five is treated as another SpatRaster with a single layer with all cells having
the value five.

Value

SpatRaster

See Also

app, Math-methods, modal, which.lyr

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(ncell(r) * nlyr(r))

x <- mean(r)
note how this returns one layer
x <- sum(c(r, r[[2]]), 5)

and this returns three layers
y <- sum(r, r[[2]], 5)

max(r)

when adding a number, do you want 1 layer or all layers?
1 layer
max(r, 0.5)

summary 305

all layers
max(r, 0.5, par=TRUE)

y <- stdev(r)
not the same as
yy <- app(r, sd)

z <- stdev(r, r*2)

x <- mean(r, filename=paste0(tempfile(), ".tif"))

v <- values(r)
set.seed(3)
v[sample(length(v), 50)] <- NA
values(r) <- v
is.na(r)
anyNA(r)
allNA(r)
countNA(r)
countNA(r, 2)

summary summary

Description

Compute summary statistics (min, max, mean, and quartiles) for SpatRaster using base summary
method. A sample is used for very large files.

For single or other statistics see Summary-methods, global, and quantile

Usage

S4 method for signature 'SpatRaster'
summary(object, size=100000, warn=TRUE, ...)

S4 method for signature 'SpatVector'
summary(object, ...)

Arguments

object SpatRaster or SpatVector

size positive integer. Size of a regular sample used for large datasets (see spatSample)

warn logical. If TRUE a warning is given if a sample is used

... additional arguments passed on to the base summary method

306 surfArea

Value

matrix with (an estimate of) the median, minimum and maximum values, the first and third quartiles,
and the number of cells with NA values

See Also

Summary-methods, global, quantile

Examples

set.seed(0)
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(nlyr(r)*ncell(r))
summary(r)

surfArea Compute surface area from elevation data

Description

It is often said that if Wales was flattened out it would have an area bigger than England. This
function computes the surface area for a raster with elevation values, taking into account the sloping
nature of the surface.

Usage

S4 method for signature 'SpatRaster'
surfArea(x, filename="", ...)

Arguments

x SpatRaster with elevation values. Currently the raster CRS must be planar and
have the same distance units (e.g. m) as the elevation values

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

Author(s)

Barry Rowlingson

References

Jenness, Jeff S., 2004. Calculating Landscape Surface Area from Digital Elevation Models. Wildlife
Society Bulletin 32(3): 829-839

svc 307

See Also

expanse, cellSize

Examples

v <- rast(volcano, crs="local")
x <- terra::surfArea(v)

svc Create a SpatVectorCollection

Description

Methods to create a SpatVectorCollection. This is an object to hold "sub-datasets", each a SpatVec-
tor, perhaps of different geometry type.

Usage

S4 method for signature 'missing'
svc(x)

S4 method for signature 'SpatVector'
svc(x, ...)

S4 method for signature 'list'
svc(x)

S4 method for signature 'character'
svc(x, layer="", query="", dialect="", extent=NULL, filter=NULL)

Arguments

x SpatVector, character (filename), list with SpatVectors, or missing

... Additional SpatVectors

layer character. layer name to select a layer from a file (database) with multiple layers

query character. A query to subset the dataset

dialect character. The SQL dialect to use (if any). For example: "SQLite". "" refers to
the default OGR-SQL dialect

extent Spat* object. The extent of the object is used as a spatial filter to select the
geometries to read. Ignored if filter is not NULL

filter SpatVector. Used as a spatial filter to select geometries to read (the convex hull
is used for lines or points). It is guaranteed that all features that overlap with
the extent of filter will be returned. It can happen that additional geometries are
returned

https://gdal.org/en/latest/user/ogr_sql_dialect.html

308 symdif

Value

SpatVectorCollection

See Also

sprc

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- svc()
x <- svc(v, v[1:3,], as.lines(v[3:5,]), as.points(v))
length(x)
x

extract
x[3]

replace
x[2] <- as.lines(v[1,])

symdif Symmetrical difference

Description

Symmetrical difference of polygons

Usage

S4 method for signature 'SpatVector,SpatVector'
symdif(x, y)

Arguments

x SpatVector

y SpatVector

Value

SpatVector

See Also

erase

tapp 309

Examples

p <- vect(system.file("ex/lux.shp", package="terra"))
b <- as.polygons(ext(6, 6.4, 49.75, 50))
#sd <- symdif(p, b)
#plot(sd, col=rainbow(12))

tapp Apply a function to subsets of layers of a SpatRaster

Description

Apply a function to subsets of layers of a SpatRaster (similar to tapply and aggregate). The layers
are combined based on the index.

The number of layers in the output SpatRaster equals the number of unique values in index times
the number of values that the supplied function returns for a single vector of numbers.

For example, if you have a SpatRaster with 6 layers, you can use index=c(1,1,1,2,2,2) and
fun=sum. This will return a SpatRaster with two layers. The first layer is the sum of the first three
layers in the input SpatRaster, and the second layer is the sum of the last three layers in the input
SpatRaster. Indices are recycled such that index=c(1,2) would also return a SpatRaster with two
layers (one based on the odd layers (1,3,5), the other based on the even layers (2,4,6)).

The index can also be one of the following values to group by time period (if x has the appropriate
time values): "years", "months", "yearmonths", "dekads", "yeardekads", "weeks" (the ISO 8601
week number, see Details), "yearweeks", "days", "doy" (day of the year), "7days" (seven-day pe-
riods starting at Jan 1 of each year), "10days", or "15days". It can also be a function that makes
groups from time values.

See app or Summary-methods if you want to use a more efficient function that returns multiple
layers based on all layers in the SpatRaster.

Usage

S4 method for signature 'SpatRaster'
tapp(x, index, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

index factor or numeric (integer). Vector of length nlyr(x) (shorter vectors are re-
cycled) grouping the input layers. It can also be one of the following values:
"years", "months", "yearmonths", "days", "week" (ISO 8601 week number), or
"doy" (day of the year)

fun function to be applied. The following functions have been re-implemented in
C++ for speed: "sum", "mean", "median", "modal", "which", "which.min",
"which.max", "min", "max", "prod", "any", "all", "none", "sd", "std", "first".
To use the base-R function for say, "min", you could use something like fun =
\(i) min(i)

310 terrain

... additional arguments passed to fun

cores positive integer. If cores > 1, a ’parallel’ package cluster with that many cores
is created and used. You can also supply a cluster object. Ignored for functions
that are implemented by terra in C++ (see under fun)

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Details

"week" follows the ISO 8601 definition. Weeks start on Monday. If the week containing 1 January
has four or more days in the new year, then it is considered week "01". Otherwise, it is the last week
of the previous year (week "52" or "53", and the next week is week 1.

Value

SpatRaster

See Also

app, Summary-methods

Examples

r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r)
s <- s * 1:6
b1 <- tapp(s, index=c(1,1,1,2,2,2), fun=sum)
b1
b2 <- tapp(s, c(1,2,3,1,2,3), fun=sum)
b2

terrain terrain characteristics

Description

Compute terrain characteristics from elevation data. The elevation values should be in the same
units as the map units (typically meter) for projected (planar) raster data. They should be in meter
when the coordinate reference system is longitude/latitude.

For accuracy, always compute these values on the original data (do not first change the projection).
Distances (needed for slope and aspect) for longitude/latitude data are computed on the WGS84
ellipsoid with Karney’s algorithm.

terrain 311

Usage

S4 method for signature 'SpatRaster'
terrain(x, v="slope", neighbors=8, unit="degrees", filename="", ...)

Arguments

x SpatRaster, single layer with elevation values. Values should have the same unit
as the map units, or in meters when the crs is longitude/latitude

v character. One or more of these options: slope, aspect, TPI, TRI, TRIriley,
TRIrmsd, roughness, flowdir (see Details)

unit character. "degrees" or "radians" for the output of "slope" and "aspect"

neighbors integer. Indicating how many neighboring cells to use to compute slope or aspect
with. Either 8 (queen case) or 4 (rook case)

filename character. Output filename

... additional arguments for writing files as in writeRaster

Details

When neighbors=4, slope and aspect are computed according to Fleming and Hoffer (1979) and
Ritter (1987). When neighbors=8, slope and aspect are computed according to Horn (1981). The
Horn algorithm may be best for rough surfaces, and the Fleming and Hoffer algorithm may be better
for smoother surfaces (Jones, 1997; Burrough and McDonnell, 1998).

If slope = 0, aspect is set to 0.5*pi radians (or 90 degrees if unit="degrees"). When computing slope
or aspect, the coordinate reference system of x must be known for the algorithm to differentiate
between planar and longitude/latitude data.

terrain is not vectorized over "neighbors" or "unit" – only the first value is used.

flowdir returns the "flow direction" (of water), that is the direction of the greatest drop in elevation
(or the smallest rise if all neighbors are higher). They are encoded as powers of 2 (0 to 7). The cell
to the right of the focal cell is 1, the one below that is 2, and so on:

32 64 128
16 x 1

8 4 2

Cells without lower neighboring cells are encoded as zero.

If two cells have the same drop in elevation, a random cell is picked. That is not ideal as it may
prevent the creation of connected flow networks. ArcGIS implements the approach of Greenlee
(1987) and I might adopt that in the future.

Most terrain indices are according to Wilson et al. (2007), as in gdaldem. TRI (Terrain Ruggedness
Index) is the mean of the absolute differences between the value of a cell and its 8 surrounding cells.
TPI (Topographic Position Index, or Bathymetric Position Index if on seafloor) is the difference
between the value of a cell and the mean value of its 8 surrounding cells. Roughness is the difference
between the maximum and the minimum value of a cell and its 8 surrounding cells.

https://gdal.org/en/latest/programs/gdaldem.html

312 terrain

TRIriley (TRI according to Riley et al., 2007) returns the square root of summed squared differences
between the value of a cell and its 8 surrounding cells. TRIrmsd computes the square root of the
mean of the squared differences between these cells.

These measures can also be computed with focal functions:

TRI <- focal(x, w=3, fun=\(x) sum(abs(x[-5]-x[5]))/8)

TPI <- focal(x, w=3, fun=\(x) x[5] - mean(x[-5]))

rough <- focal(x, w=3, fun=\(x) max(x) - min(x))

References

Burrough, P., and R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford
University Press.

Fleming, M.D. and Hoffer, R.M., 1979. Machine processing of Landsat MSS data and DMA to-
pographic data for forest cover type mapping. LARS Technical Report 062879. Laboratory for
Applications of Remote Sensing, Purdue University, West Lafayette, Indiana.

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69:14-47

Jones, K.H., 1998. A comparison of algorithms used to compute hill slope as a property of the
DEM. Computers & Geosciences 24: 315-323

Karney, C.F.F., 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190-012-
0578-z.

Riley, S.J., De Gloria, S.D., Elliot, R. (1999): A Terrain Ruggedness that Quantifies Topographic
Heterogeneity. Intermountain Journal of Science 5: 23-27.

Ritter, P., 1987. A vector-based terrain and aspect generation algorithm. Photogrammetric Engi-
neering and Remote Sensing 53: 1109-1111

Wilson et al 2007, Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping
on the Continental Slope. Marine Geodesy 30:3-35

See Also

viewshed

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- terrain(r, "slope")

text 313

text Add labels to a map

Description

Plots labels, that is a textual (rather than color) representation of values, on top an existing plot
(map).

Usage

S4 method for signature 'SpatRaster'
text(x, labels, digits=0, halo=FALSE, hc="white", hw=0.1, jitter=0, ...)

S4 method for signature 'SpatVector'
text(x, labels, halo=FALSE, inside=FALSE, hc="white", hw=0.1, jitter=0, ...)

Arguments

x SpatRaster or SpatVector

labels character. Optional. Vector of labels with length(x) or a variable name from
names(x)

digits integer. How many digits should be used?

halo logical. If TRUE a "halo" is printed around the text

hc character. The halo color

hw numeric. The halo width

inside logical. Should the text always be placed inside one the sub-geometries?

jitter numeric. The amount of random noise used to adjust label positions, possibly
avoiding overlaps. See argument ’factor’ in jitter

... additional arguments to pass to graphics function text

See Also

text, plot, halo

Examples

r <- rast(nrows=4, ncols=4)
values(r) <- 1:ncell(r)

plot(r)
text(r)

set.seed(123)
text(r, jitter = 2, col = "red", halo = TRUE)

plot(r)

314 thresh

text(r, halo=TRUE, hc="blue", col="white", hw=0.2)

plot(r, col=rainbow(16))
text(r, col=c("black", "white"), vfont=c("sans serif", "bold"), cex=2)

thresh Thresholding

Description

Compute a threshold to divide the values of a SpatRaster into two groups, and use that threshold to
classify the raster.

Usage

S4 method for signature 'SpatRaster'
thresh(x, method="otsu", maxcell=1000000, combine=FALSE,
as.raster=TRUE, filename="", ...)

Arguments

x SpatRaster

method character. One of "mean", "median" or "otsu" for Otsu’s method

maxcell positive integer. Maximum number of cells to use to compute the threshold

combine logical. If TRUE the layers of x are combined to compute a single threshold

as.raster logical. If TRUE a classified SpatRaster is returned. Otherwise the threshold(s)
are returned

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

numeric or SpatRaster

References

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions
on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/TSMC.1979.4310076

See Also

divide

https://doi.org/10.1109/TSMC.1979.4310076

tighten 315

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
thresh(s, "mean", as.raster=FALSE)
thresh(s, "mean", combine=TRUE, as.raster=FALSE)

plot(thresh(s, "otsu"))

tighten tighten SpatRaster or SpatRasterDataset objects

Description

Combines data sources within a SpatRaster (that are in memory, or from the same file) to allow for
faster processing.

Or combine sub-datasets into a SpatRaster.

Usage

S4 method for signature 'SpatRaster'
tighten(x)

S4 method for signature 'SpatRasterDataset'
tighten(x)

Arguments

x SpatRaster or SpatRasterDataset

Value

SpatRaster

Examples

r <- rast(nrow=5, ncol=9, vals=1:45)
x <- c(r, r*2, r*3)
x
tighten(x)

316 time

time time of SpatRaster layers

Description

Get or set the time of the layers of a SpatRaster. Time can be stored as POSIXlt (date and time,
with a resolution of seconds, and a time zone), Date, "months", "years", or "yearmonths".

timeInfo and has.time are helper functions to understand what a time data a SpatRaster has.

Usage

S4 method for signature 'SpatRaster'
has.time(x)

S4 method for signature 'SpatRaster'
time(x, format="")

S4 replacement method for signature 'SpatRaster'
time(x, tstep="")<-value

S4 method for signature 'SpatRaster'
timeInfo(x)

Arguments

x SpatRaster or SpatRasterDataset

format One of "", "seconds" (POSIXlt), "days" (Date), "yearmonths" (decimal years),
"years", "months". If "", the returned format is (based on) the format that was
used to set the time

value Date, POSIXt, yearmon (defined in package zoo), or numeric

tstep One of "years", "months", "yearmonths". Used when value is numeric. Ignored
when value is of type Date, POSIXt, or yearmon

Value

time: POSIXlt, Date, or numeric timeInfo: data.frame with time step and time zone information
(if available) has.time: logical

See Also

depth

tmpFiles 317

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))

Date"
d <- as.Date("2001-05-04") + 0:2
time(s) <- d
time(s)

POSIX (date/time with a resolution of seconds)
time(s) <- as.POSIXlt(d)
time(s)

with time zone
time(s) <- as.POSIXlt(Sys.time(), "America/New_York") + 0:2
time(s)
timeInfo(s)

years
time(s, tstep="years") <- 2000 + 0:2
s

time(s, tstep="months") <- 1:3
s

tmpFiles Temporary files

Description

List and optionally remove temporary files created by the terra package. These files are created
when an output SpatRaster may be too large to store in memory (RAM). This can happen when no
filename is provided to a function and when using functions where you cannot provide a filename.

Temporary files are automatically removed at the end of each R session that ends normally. You
can use tmpFiles to see the files in the current sessions, including those that are orphaned (not
connect to a SpatRaster object any more) and from other (perhaps old) sessions, and remove all the
temporary files.

Usage

tmpFiles(current=TRUE, orphan=FALSE, old=FALSE, remove=FALSE)

Arguments

current logical. If TRUE, temporary files from the current R session are included

orphan logical. If TRUE, temporary files from the current R session that are no longer
associated with a SpatRaster (if current is TRUE these are also included)

318 toMemory

old logical. If TRUE, temporary files from other "R" sessions. Unless you are running
multiple instances of R at the same time, these are from old (possibly crashed)
R sessions and should be removed

remove logical. If TRUE, temporary files are removed

Value

character

See Also

terraOptions

Examples

tmpFiles()

toMemory Read all cell values into memory

Description

Reads all cell values of a SpatRaster or SpatRasterDataset into memory.

Using this method is discouraged as it is not necessary for processing the data and may lead to ex-
cessive memory use that will slow down your computer or worse. It cannot be used for SpatRasters
that are based on very large files.

The method may be useful if a relatively small dataset is used repeatedly, such that efficiency gains
are made because the values only need to be read from disk once.

Usage

S4 method for signature 'SpatRaster'
toMemory(x)

S4 method for signature 'SpatRasterDataset'
toMemory(x)

Arguments

x SpatRaster or SpatRasterDataset

Value

Same as x

See Also

values, as.data.frame, readValues, inMemory

topology 319

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
sources(r)
inMemory(r)
x <- toMemory(r)
inMemory(x)

topology Vector topology methods

Description

makeNodes create nodes on lines

mergeLines connect lines to form polygons

removeDupNodes removes duplicate nodes in geometries and optionally rounds the coordinates

emptyGeoms returns the indices of empty (null) geometries. is.na also checks if any of the coordi-
nates is NA.

snap makes boundaries of geometries identical if they are very close to each other.

Usage

S4 method for signature 'SpatVector'
mergeLines(x)
S4 method for signature 'SpatVector'
snap(x, y=NULL, tolerance)
S4 method for signature 'SpatVector'
removeDupNodes(x, digits = -1)
S4 method for signature 'SpatVector'
makeNodes(x)

Arguments

x SpatVector of lines or polygons

y SpatVector of lines or polygons to snap to. If NULL snapping is to the other
geometries in x

tolerance numeric. Snapping tolerance (distance between geometries)

digits numeric. Number of digits used in rounding. Ignored if < 0

Value

SpatVector

See Also

sharedPaths, gaps, simplifyGeom, forceCCW, fillHoles

320 transpose

Examples

p1 <- as.polygons(ext(0,1,0,1))
p2 <- as.polygons(ext(1.1,2,0,1))

p <- rbind(p1, p2)

y <- snap(p, tol=.15)
plot(p, lwd=3, col="light gray")
lines(y, col="red", lwd=2)

transpose Transpose

Description

Transpose a SpatRaster or SpatVector

Usage

S4 method for signature 'SpatRaster'
t(x)

S4 method for signature 'SpatVector'
t(x)

S4 method for signature 'SpatRaster'
trans(x, filename="", ...)

Arguments

x SpatRaster or SpatVector
filename character. Output filename
... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

flip, rotate

Examples

r <- rast(nrows=18, ncols=36)
values(r) <- 1:ncell(r)
tr1 <- t(r)
tr2 <- trans(r)
ttr <- trans(tr2)

trim 321

trim Trim a SpatRaster

Description

Trim (shrink) a SpatRaster by removing outer rows and columns that are NA or another value.

Usage

S4 method for signature 'SpatRaster'
trim(x, padding=0, value=NA, filename="", ...)

Arguments

x SpatRaster

padding integer. Number of outer rows/columns to keep

value numeric. The value of outer rows or columns that are to be removed

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

extend

Examples

r <- rast(ncols=10, nrows=10, xmin=0,xmax=10,ymin=0,ymax=10)
v <- rep(NA, ncell(r))
v[c(12,34,69)] <- 1:3
values(r) <- v
s <- trim(r)

322 union

union Union SpatVector or SpatExtent objects

Description

If you want to append polygon SpatVectors use rbind instead of union. union will also intersect
overlapping polygons between, not within, objects. Union for lines and points simply combines
the two data sets; without any geometric intersections. This is equivalent to rbind. Attributes are
joined.

If x and y have a different geometry type, a SpatVectorCollection is returned.

If a single SpatVector is supplied, overlapping polygons are intersected. Original attributes are lost.
New attributes allow for determining how many, and which, polygons overlapped.

SpatExtent: Objects are combined into their union; this is equivalent to +.

Usage

S4 method for signature 'SpatVector,SpatVector'
union(x, y)

S4 method for signature 'SpatVector,missing'
union(x, y)

S4 method for signature 'SpatExtent,SpatExtent'
union(x, y)

Arguments

x SpatVector or SpatExtent

y Same as x or missing

Value

SpatVector or SpatExtent

See Also

rbind

intersect

combineGeoms

merge and mosaic to union SpatRasters.

crop and extend for the union of SpatRaster and SpatExtent.

merge for merging a data.frame with attributes of a SpatVector.

aggregate to dissolve SpatVector objects.

unique 323

Examples

e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
union(e1, e2)

#SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
v <- v[,3:4]
p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.65, 5.8 49.8))",
"POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, value=expanse(p))
u <- union(v, p)
plot(u, "pid")

b <- buffer(v, 1000)

u <- union(b)
u$sum <- rowSums(as.data.frame(u))
plot(u, "sum")

unique Unique values

Description

This method returns the unique values in a SpatRaster, or removes duplicates records (geometry
and attributes) in a SpatVector.

Usage

S4 method for signature 'SpatRaster'
unique(x, incomparables=FALSE, digits=NA, na.rm=TRUE, as.raster=FALSE)

S4 method for signature 'SpatVector'
unique(x, incomparables=FALSE, geom=TRUE, atts=TRUE, ...)

Arguments

x SpatRaster or SpatVector

incomparables logical. If FALSE and x is a SpatRaster: the unique values are determined for
all layers together, and the result is a matrix. If TRUE, each layer is evaluated
separately, and a list is returned. If x is a SpatVector this argument is as for a
data.frame

digits integer. The number of digits for rounding the values before finding the unique
values. Use NA means to not do any rounding

na.rm logical. If TRUE, NaN is included if there are any missing values

324 units

as.raster logical. If TRUE, a single-layer categorical SpatRaster with the unique values is
returned

... additional arguments passed on to unique or identical

geom logical. If TRUE the geometries are considered to determine uniqueness

atts logical. If TRUE the attribute values are considered to determine uniqueness

Value

If x is a SpatRaster: data.frame or list (if incomparables=FALSE)

If x is a SpatVector: SpatVector

Examples

r <- rast(ncols=5, nrows=5)
values(r) <- rep(1:5, each=5)
unique(r)
s <- c(r, round(r/3))
unique(s)
unique(s,TRUE)

unique(s, as.raster=TRUE)

v <- vect(cbind(x=c(1:5,1:5), y=c(5:1,5:1)),
crs="+proj=utm +zone=1 +datum=WGS84")
nrow(v)
u <- unique(v)
nrow(u)

values(v) <- c(1:5, 1:3, 5:4)
unique(v)

units units of SpatRaster or SpatRasterDataSet

Description

Get or set the units of the layers of a SpatRaster or the datasets in a SpatRasterDataSet.

Usage

S4 method for signature 'SpatRaster'
units(x)

S4 replacement method for signature 'SpatRaster'
units(x)<-value

S4 method for signature 'SpatRasterDataset'

update 325

units(x)

S4 replacement method for signature 'SpatRasterDataset'
units(x)<-value

Arguments

x SpatRaster

value character

Value

character

See Also

time, names

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))

units(s) <- c("m/s", "kg", "ha")
units(s)
s

units(s) <- "kg"
units(s)

update Change values in a file

Description

Change the contents of a file that is the data source of a SpatRaster. BE CAREFUL as you are
overwriting values in an existing file.

Usage

S4 method for signature 'SpatRaster'
update(object, crs=FALSE, extent=FALSE)

Arguments

object SpatRaster

crs logical. Should the coordinate reference system be updated?

extent logical. Should the extent be updated?

326 values

Value

SpatRaster (invisibly)

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
fname <- paste0(tempfile(), ".tif")
x <- writeRaster(s, fname)
ext(x) <- ext(x) + 1
crs(x) <- "+proj=utm +zone=1"

update(x, crs=TRUE, extent=TRUE)

rast(fname)

values Cell values and geometry attributes

Description

Get the cell values of a SpatRaster or the attributes of a SpatVector.

By default all values returned are numeric. This is because a vector or matrix can only store one
data type, and a SpatRaster may consist of multiple data types. However, if all layers have integer
or logical values, the returned values also have that datatype.

Note that with values(x, dataframe=TRUE) and as.data.frame(x) the values returned match
the type of each layer, and can be a mix of numeric, logical, integer, and factor.

Usage

S4 method for signature 'SpatRaster'
values(x, mat=TRUE, dataframe=FALSE, row=1,

nrows=nrow(x), col=1, ncols=ncol(x), na.rm=FALSE, ...)

S4 method for signature 'SpatVector'
values(x, ...)

Arguments

x SpatRaster or SpatVector

mat logical. If TRUE, values are returned as a matrix instead of as a vector, except
when dataframe is TRUE

dataframe logical. If TRUE, values are returned as a data.frame instead of as a vector (also
if matrix is TRUE)

row positive integer. Row number to start from, should be between 1 and nrow(x)

nrows positive integer. How many rows?

values 327

col positive integer. Column number to start from, should be between 1 and ncol(x)

ncols positive integer. How many columns? Default is the number of columns left
after the start column

na.rm logical. Remove NAs?

... additional arguments passed to data.frame

Details

If x is a SpatRaster, and mat=FALSE, the values are returned as a vector. In cell-order by layer. If
mat=TRUE, a matrix is returned in which the values of each layer are represented by a column (with
ncell(x) rows). The values per layer are in cell-order, that is, from top-left, to top-right and then
down by row. Use as.matrix(x, wide=TRUE) for an alternative matrix representation where the
number of rows and columns matches that of x.

Value

matrix or data.frame

Note

raster values that are NA (missing) are represented by NaN (not-a-number) unless argument dataframe
is TRUE.

See Also

values<-, focalValues, as.data.frame

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r
x <- values(r)
x[3650:3655,]
r[3650:3655]

ff <- system.file("ex/lux.shp", package="terra")
v <- vect(ff)
y <- values(v)
head(y)

328 varnames

varnames variable and long variable names

Description

Set or get names for each dataset (variable) in a SpatRasterDataset.

Each SpatRaster _data source_ can also have a variable name and a long variable name. They are
set when reading a file with possibly multiple sub-datasets (e.g. netcdf or hdf5 format) into a single
SpatRaster. Each sub-datset is a seperate "data-source" in the SpatRaster. Note that newly created
or derived SpatRasters always have a single variable (data source), and therefore the variable names
are lost when processing a multi-variable SpatRaster. Thus the variable names are mostly useful to
understand a SpatRaster created from some files and for managing SpatRasterDatasets.

See link{names} for the more commonly used _layer_ names.

Usage

S4 method for signature 'SpatRaster'
varnames(x)

S4 replacement method for signature 'SpatRaster'
varnames(x)<-value

S4 method for signature 'SpatRaster'
longnames(x)

S4 replacement method for signature 'SpatRaster'
longnames(x)<-value

S4 method for signature 'SpatRasterDataset'
varnames(x)

S4 replacement method for signature 'SpatRasterDataset'
varnames(x)<-value

S4 method for signature 'SpatRasterDataset'
longnames(x)

S4 replacement method for signature 'SpatRasterDataset'
longnames(x)<-value

Arguments

x SpatRaster, SpatRasterDataset

value character (vector)

vect 329

Value

character

Note

terra enforces neither unique nor valid names. See make.unique to create unique names and
{make.names} to make syntactically valid names.

Examples

s <- rast(ncols=5, nrows=5, nlyrs=3)
names(s) <- c("a", "b", "c")
x <- sds(s, s)
varnames(x) <- c("one", "two")
x

vect Create SpatVector objects

Description

Methods to create a SpatVector from a filename or other R object.

A filename can be for a Shapefile, GeoPackage, GeoJSON, Keyhole Markup Language (KML) or
any other spatial vector file format.

You can use a data.frame to make a SpatVector of points. If the variables to be used are not specified
with argument geom, the method looks for candidate variables. If variables are found and these
appear to be longitude/latitude, the "+proj=longlat" crs is assigned unless another crs is specified.

You can also use a two-colum matrix to make a SpatVector of points, or a "geom" matrix to make a
SpatVector of any supported geometry (see examples and geom).

You can supply a list of SpatVectors to append them into a single SpatVector.

SpatVectors can also be created from "Well Known Text", and from spatial vector data objects
defined in the sf or sp packages.

Usage

S4 method for signature 'character'
vect(x, layer="", query="", dialect="", extent=NULL, filter=NULL,
crs="", proxy=FALSE, what="", opts=NULL)

S4 method for signature 'matrix'
vect(x, type="points", atts=NULL, crs="")

S4 method for signature 'data.frame'
vect(x, geom=NULL, crs=NULL, keepgeom=FALSE, quiet=TRUE)

S4 method for signature 'list'

330 vect

vect(x, type="points", crs="")

S4 method for signature 'SpatExtent'
vect(x, crs="")

S4 method for signature 'SpatVectorCollection'
vect(x)

S4 method for signature 'sf'
vect(x)

Arguments

x character. A filename; or a "Well Known Text" string; SpatExtent, data.frame
(to make a SpatVector of points); a "geom" matrix to make a SpatVector of
any supported geometry (see examples and geom); a spatial vector data object
defined in the sf or sp packages; or a list with either matrices with coordinates,
or raw "Well Known Binary" (WKB) blobs

layer character. layer name to select a layer from a file (database) with multiple layers

query character. A query to subset the dataset

dialect character. The SQL dialect to use (if any). For example: "SQLite". "" refers to
the default OGR-SQL dialect

extent Spat* object. The extent of the object is used as a spatial filter to select the
geometries to read. Ignored if filter is not NULL

filter SpatVector. Used as a spatial filter to select geometries to read (the convex hull
is used for lines or points). It is guaranteed that all features that overlap with
the extent of filter will be returned. It can happen that additional geometries are
returned

type character. Geometry type. Must be "points", "lines", or "polygons". Ignored if
x is a WKB list

atts data.frame with the attributes. The number of rows must match the number of
geometrical elements

crs character. The coordinate reference system in one of the following formats:
WKT/WKT2, <authority>:<code>, or PROJ-string notation (see crs). If x is
a data.frame, crs==NULL, and geom is c("lon", "lat") or a variation thereof,
"+proj=longlat" is assigned

proxy logical. If TRUE a SpatVectorProxy is returned

what character indicating what to read. Either "" for geometries and attributes, or
"geoms" to only read the geometries, "attributes" to only read the attributes
(that are returned as a data.frame)

opts character. GDAL dataset open options. For example "ENCODING=LATIN1"

geom character. The field name(s) with the geometry data. Either two names for x and
y coordinates of points, or a single name for a single column with WKT geome-
tries. If NULL the function will use or c("x", "y"), c("lon", "lat"), c("longitude",
"latitude") and a few variations thereof, if one of these pairs is in the data

https://gdal.org/en/latest/user/ogr_sql_dialect.html

vect 331

keepgeom logical. If TRUE the geom variable(s), e.g. spatial coordinates, is (are) also
included in the attributes table

quiet logical. If TRUE a warning is given when x is a data.frame and the values for
geom and/or the crs are guessed from the data

Value

SpatVector

See Also

geom, vector_layers

Examples

SpatVector from file
f <- system.file("ex/lux.shp", package="terra")
f
v <- vect(f)
v

subsetting (large) files
with attribute query
v <- vect(f, query="SELECT NAME_1, NAME_2, ID_2 FROM lux WHERE ID_2 < 4")

with an extent
e <- ext(5.9, 6.3, 49.9, 50)
v <- vect(f, extent=e)

with polygons
p <- as.polygons(e)
v <- vect(f, filter=p)

SpatVector from a geom matrix
x1 <- rbind(c(-180,-20), c(-140,55), c(10, 0), c(-140,-60))
x2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
hole <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z <- rbind(cbind(object=1, part=1, x1, hole=0), cbind(object=2, part=1, x3, hole=0),
cbind(object=3, part=1, x2, hole=0), cbind(object=3, part=1, hole, hole=1))
colnames(z)[3:4] <- c('x', 'y')

p <- vect(z, "polygons")
p

z[z[, "hole"]==1, "object"] <- 4
lns <- vect(z[,1:4], "lines")
plot(p)
lines(lns, col="red", lwd=2)

from wkt

332 vector_layers

v <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")

wkt <- c("MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)),
((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20)))",
"POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
w <- vect(wkt)

combine two SpatVectors
vw <- rbind(w, v)

add a data.frame
d <- data.frame(id=1:2, name=c("a", "b"))
values(w) <- d

add data.frame on creation, here from a geom matrix
g <- geom(w)
d <- data.frame(id=1:2, name=c("a", "b"))
m <- vect(g, "polygons", atts=d, crs="+proj=longlat +datum=WGS84")

SpatVector from a data.frame
d$wkt <- wkt
x <- vect(d, geom="wkt")

d$wkt <- NULL
d$lon <- c(0,10)
d$lat <- c(0,10)
x <- vect(d, geom=c("lon", "lat"))

SpatVector to sf
#sf::st_as_sf(x)

vector_layers List or remove layers from a vector file

Description

List or remove layers from a vector file that supports layers such as GPGK

Usage

vector_layers(filename, delete="", return_error=FALSE)

Arguments

filename character. filename

delete character. layers to be deleted (ignored if the value is ""

return_error logical. If TRUE, an error occurs if some layers cannot be deleted. Otherwise a
warning is given

viewshed 333

viewshed Compute a viewshed

Description

Use elevation data to compute the locations that can be seen, or how much higher they would have
to be to be seen, from a certain position. The raster data coordinate reference system must be
planar (not lon/lat), with the elevation values in the same unit as the distance unit of the coordinate
reference system.

Usage

S4 method for signature 'SpatRaster'
viewshed(x, loc, observer=1.80, target=0, curvcoef=6/7, output="yes/no", filename="", ...)

Arguments

x SpatRaster, single layer with elevation values. Values should have the same unit
as the map units

loc location (x and y coordinates) or a cell number

observer numeric. The height above the elevation data of the observer

target numeric. The height above the elevation data of the targets

curvcoef numeric. Coefficient to consider the effect of the curvature of the earth and re-
fraction of the atmosphere. The elevation values are corrected with: elevation
= elevation - curvcoeff * (distance)^2 / (earth_diameter). This means
that with the default value of 0.85714, you lose sight of about 1 meter of eleva-
tion for each 385 m of planar distance

output character. Can be "yes/no" to get a binary (logical) output showing what areas
are visible; "land" to get the height above the current elevation that would be
visible; or "sea" the elevation above sea level that would be visible

filename character. Output filename

... Options for writing files as in writeRaster

References

The algorithm used is by Wang et al.: https://www.asprs.org/wp-content/uploads/pers/2000journal/january/2000_jan_87-
90.pdf.

See Also

terrain

334 voronoi

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- project(r, "EPSG:2169")
p <- cbind(70300, 96982)
v <- viewshed(x, p, 0, 0, 0.85714)

voronoi Voronoi diagram and Delaunay triangles

Description

Get a Voronoi diagram or Delaunay triangles for points, or the nodes of lines or polygons

Usage

S4 method for signature 'SpatVector'
voronoi(x, bnd=NULL, tolerance=0, as.lines=FALSE, deldir=FALSE)

S4 method for signature 'SpatVector'
delaunay(x, tolerance=0, as.lines=FALSE, constrained=FALSE)

Arguments

x SpatVector

bnd SpatVector to set the outer boundary of the voronoi diagram

tolerance numeric >= 0, snapping tolerance (0 is no snapping)

as.lines logical. If TRUE, lines are returned without the outer boundary

constrained logical. If TRUE, a constrained delaunay triangulation is returned

deldir logical. If TRUE, the deldir is used instead of the GEOS C++ library method.
It has been reported that deldir does not choke on very large data sets

Value

SpatVector

Examples

wkt <- c("MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)),
((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20)))",
"POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")

x <- vect(wkt)
v <- voronoi(x)
v

d <- delaunay(x)
d

vrt 335

plot(v, lwd=2, col=rainbow(15))
lines(x, col="gray", lwd=2)
points(x)

vrt Virtual Raster Dataset

Description

Create a Virtual Raster Dataset (VRT) from a collection of file-based raster datasets (tiles). See
gdalbuildvrt for details.

Usage

S4 method for signature 'character'
vrt(x, filename="", options=NULL, overwrite=FALSE, set_names=FALSE, return_filename=FALSE)

S4 method for signature 'SpatRasterCollection'
vrt(x, filename="", options=NULL, overwrite=FALSE, return_filename=FALSE)

Arguments

x SpatRasterCollection or character vector with filenames of raster "tiles". That
is, files that have data for, typically non-overlapping, sub-regions of an raster.
See makeTiles

filename character. output VRT filename

options character. All arguments as separate vector elements. Options as for gdalbuild-
vrt

overwrite logical. Should filename be overwritten if it exists?

set_names logical. Add the layer names of the first tile to the vrt? If options includes
"-separate" the name of each source file is added, and each input goes into a
separate band in the VRT dataset

return_filename

logical. If TRUE the filename is returned, otherwise a SpatRaster is returned

Value

SpatRaster

Note

A VRT can reference very many datasets. These are not all opened at the same time. The default
is to open not more than 100 files. To increase performance, this maximum limit can be increased
by setting the GDAL_MAX_DATASET_POOL_SIZE configuration option to a bigger value with
setGDALconfig. Note that a typical user process on Linux is limited to 1024 simultaneously opened
files.

https://gdal.org/en/latest/programs/gdalbuildvrt.html
https://gdal.org/en/latest/programs/gdalbuildvrt.html
https://gdal.org/en/latest/programs/gdalbuildvrt.html

336 vrt_tiles

See Also

makeTiles to create tiles; makeVRT to create a .vrt file for a binary raster file that does not have a
header file. vrt_tiles to get the filenames of the tiles in a VRT.

Examples

r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)
filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff

#vrtfile <- paste0(tempfile(), ".vrt")
#v <- vrt(ff, vrtfile)

output in lower resolution
#vrtfile <- paste0(tempfile(), ".vrt")
#v <- vrt(ff, vrtfile, options = c("-tr", 5, 5))
#head(readLines(vrtfile))
#v

vrt_tiles filenames of VRT tiles

Description

Get the filenames of the tiles in a Virtual Raster Dataset (VRT)

Usage

vrt_tiles(x)

Arguments

x character (filename) or SpatRaster

Value

character

See Also

vrt

watershed 337

watershed Catchment delineation

Description

delineate the area covered by a catchment from a SpatRaster with flow direction and a pour-point
(catchment outlet).

Usage

S4 method for signature 'SpatRaster'
watershed(x, pourpoint, filename="",...)

Arguments

x SpatRaster with flow direction. See terrain.

pourpoint matrix or SpatVector with the pour point location

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

Author(s)

Ezio Crestaz, Emanuele Cordano, Roman Seliger

Examples

elev <- rast(system.file('ex/elev_vinschgau.tif', package="terra"))
flowdir <- terrain(elev, "flowdir")
pour point at Naturns
pp <- cbind(653358.3, 5168222)
w <- watershed(flowdir, pp)

338 weighted.mean

weighted.mean Weighted mean of layers

Description

Compute the weighted mean for each cell of the layers of a SpatRaster. The weights can be spatially
variable or not.

Usage

S4 method for signature 'SpatRaster,numeric'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)

S4 method for signature 'SpatRaster,SpatRaster'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)

Arguments

x SpatRaster

w A vector of weights (one number for each layer), or for spatially variable weights,
a SpatRaster with weights (should have the same extent, resolution and number
of layers as x)

na.rm Logical. Should missing values be removed?

filename character. Output filename

... options for writing files as in writeRaster

Value

SpatRaster

See Also

Summary-methods, weighted.mean

Examples

b <- rast(system.file("ex/logo.tif", package="terra"))

give least weight to first layer, most to last layer
wm1 <- weighted.mean(b, w=1:3)

spatially varying weights
weigh by column number
w1 <- init(b, "col")

weigh by row number
w2 <- init(b, "row")

where 339

w <- c(w1, w2, w2)

wm2 <- weighted.mean(b, w=w)

where Where are the cells with the min or max values?

Description

This method returns the cell numbers for the cells with the min or max values of each layer in a
SpatRaster.

Usage

S4 method for signature 'SpatRaster'
where.min(x, values=TRUE, list=FALSE)

S4 method for signature 'SpatRaster'
where.max(x, values=TRUE, list=FALSE)

Arguments

x SpatRaster

values logical. If TRUE the min or max values are also returned

list logical. If TRUE a list is returned instead of a matrix

Value

matrix or list

See Also

which and Summary-methods for which.min and which.max

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
where.min(r)

340 width

which.lyr Which cells are TRUE?

Description

This method returns a single layer SpatRaster with cell values indicating the first layer in the input
that is TRUE. All numbers that are not zero (or FALSE), are considered to be TRUE.

Usage

S4 method for signature 'SpatRaster'
which.lyr(x)

Arguments

x SpatRaster

Value

SpatRaster

See Also

isTRUE, which, See Summary-methods for which.min and which.max

Examples

s <- rast(system.file("ex/logo.tif", package="terra"))
x <- which.lyr(s > 100)

width SpatVector geometric properties

Description

width returns the minimum diameter of the geometry, defined as the smallest band that contains the
geometry, where a band is a strip of the plane defined by two parallel lines. This can be thought of
as the smallest hole that the geometry can be moved through, with a single rotation.

clearance returns the minimum clearance of a geometry. The minimum clearance is the smallest
amount by which a vertex could be moved to produce an invalid polygon, a non-simple linestring,
or a multipoint with repeated points. If a geometry has a minimum clearance of ’mc’, it can be said
that "no two distinct vertices in the geometry are separated by less than "mc". No vertex is closer
than "mc" to a line segment of which it is not an endpoint".

If the minimum clearance cannot be defined for a geometry (such as with a single point), NA is
returned.

window 341

Usage

S4 method for signature 'SpatVector'
width(x, as.lines=FALSE)
S4 method for signature 'SpatVector'
clearance(x, as.lines=FALSE)

Arguments

x SpatVector of lines or polygons

as.lines logical. If TRUE lines are returned that define the width or clearance

Value

numeric or SpatVector

See Also

hull

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

width(v)
clearance(v)

width_lines <- width(v, as.lines=TRUE)
plot(v)
lines(width_lines, col="blue")

window Set a window

Description

Assign a window (area of interest) to a SpatRaster with a SpatExtent, or set it to NULL to remove
the window. This is similar to crop without actually creating a new dataset.

The window is intersect with the extent of the SpatRaster. It is envisioned that in a future version,
the window may also go outside these boundaries.

Usage

S4 replacement method for signature 'SpatRaster'
window(x)<-value

S4 method for signature 'SpatRaster'
window(x)

342 wrap

Arguments

x SpatRaster

value SpatExtent

Value

none for window<- and logical for window

See Also

crop, extend

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
global(r, "mean", na.rm=TRUE)
e <- ext(c(5.9, 6,49.95, 50))

window(r) <- e
global(r, "mean", na.rm=TRUE)
r

x <- rast(f)
xe <- crop(x, e)
global(xe, "mean", na.rm=TRUE)

b <- c(xe, r)
window(b)
b

window(r) <- NULL
r

wrap wrap and unwrap

Description

Use wrap to pack a SpatVector or SpatRaster* to create a Packed* object. Packed objects can be
passed over a connection that serializes (e.g. to nodes on a computer cluster). At the receiving end
they need to be unpacked with unwrap.

wrapCache 343

Usage

S4 method for signature 'SpatRaster'
wrap(x, proxy=FALSE)

S4 method for signature 'SpatRasterDataset'
wrap(x, proxy=FALSE)

S4 method for signature 'SpatRasterCollection'
wrap(x, proxy=FALSE)

S4 method for signature 'SpatVector'
wrap(x)

S4 method for signature 'ANY'
unwrap(x)

Arguments

x SpatVector, SpatRaster, SpatRasterDataset or SpatRasterCollection

proxy logical. If FALSE raster cell values are forced to memory if possible. If TRUE, a
reference to source filenames is stored for data sources that are not in memory

Value

wrap: Packed* object

unwrap: SpatVector, SpatRaster, SpatRasterCollection, SpatRasterDataset

Examples

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
p <- wrap(v)
p
vv <- vect(p)
vv

wrapCache SpatRaster wrap with caching options

Description

Use wrap to pack a SpatRaster with caching options. See wrap for the general approach that is
easier and better to use in most cases.

This method allows for specifying a folder, or filenames, to cache all sources of a SpatRaster in a
specific location (on disk).

344 writeCDF

Usage

S4 method for signature 'SpatRaster'
wrapCache(x, filename=NULL, path=NULL, overwrite=FALSE, ...)

Arguments

x SpatRaster

filename character. A single filename, or one filename per SpatRaster data source. If not
NULL, the raster sources are saved in these files

path character. If not NULL, the path where raster sources will be saved. Ignored if
filenames is not NULL

overwrite Should existing files be overwritten when files or path is not NULL? If this
value is not TRUE or FALSE, only files that do not exist are created

... Additional arguments for writeRaster. Only used for raster sources that are in
memory, as other sources are cached by copying the files

Value

PackedSpatRaster

See Also

wrap, unwrap

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

x <- wrapCache(r, path=tempdir())
x

writeCDF Write raster data to a NetCDF file

Description

Write a SpatRaster or SpatRasterDataset to a NetCDF file.

When using a SpatRasterDataset, the varname, longname, and unit should be set in the object (see
examples).

Always use the ".nc" or ".cdf" file extension to assure that the file can be properly read again by
GDAL

You can write multiple rasters (variables) that are two (x, y), three (x, y, z or x, y, time) or four
dimensional (x, y, z, time).

See depth and time for specifying the axes of the thrid and/or fourth dimension(s).

writeCDF 345

Usage

S4 method for signature 'SpatRaster'
writeCDF(x, filename, varname, longname="", unit="", split=FALSE, ...)

S4 method for signature 'SpatRasterDataset'
writeCDF(x, filename, overwrite=FALSE, timename="time", atts="",

gridmap="", prec="float", compression=NA, missval, tags=FALSE, ...)

Arguments

x SpatRaster or SpatRasterDataset

filename character. Output filename

varname character. Name of the dataset

longname character. Long name of the dataset

unit character. Unit of the data

split logical. If TRUE each layer of x is treated as a sub-dataset

atts character. A vector of additional global attributes to write. The must be format-
ted like c("x=a value", "y=abc")

gridmap character. The crs is always written to the file in standard formats. With this ar-
gument you can also write the format commonly used in netcdf files. Something
like c("grid_mapping_name=lambert_azimuthal_equal_area", "longitude_of_projection_origin=10",
"latitude_of_projection_origin=52", "false_easting=4321000", "false_northing=3210000")

overwrite logical. If TRUE, filename is overwritten

timename character. The name of the "time" dimension

prec character. One of "double", "float", "integer", "short", "byte" or "char"

compression Can be set to an integer between 1 (least compression) and 9 (most compression)

missval numeric, the number used to indicate missing values

tags logical. If TRUE the value returned by metags are written to the file as attributes

... additional arguments passed on to the SpatRasterDataset method, and from there
possibly to ncvar_def

Value

SpatRaster or SpatDataSet

See Also

see writeRaster for writing other file formats

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
fname <- paste0(tempfile(), ".nc")
rr <- writeCDF(r, fname, overwrite=TRUE, varname="alt",

346 writeRaster

longname="elevation in m above sea level", unit="m")

a <- rast(ncols=5, nrows=5, nl=50)
values(a) <- 1:prod(dim(a))
time(a) <- as.Date("2020-12-31") + 1:nlyr(a)
aa <- writeCDF(a, fname, overwrite=TRUE, varname="power",

longname="my nice data", unit="U/Pa")

b <- sqrt(a)
s <- sds(a, b)
names(s) <- c("temp", "prec")
longnames(s) <- c("temperature (C)", "precipitation (mm)")
units(s) <- c("°C", "mm")
ss <- writeCDF(s, fname, overwrite=TRUE)

four dimensional
r1 <- rast(nrow=5, ncol=5, vals=1:100, nlyr=4)
depth(r1) <- c(0, 2, 0, 2)
time(r1) <- c(as.Date("2012-12-12") + c(1,1,2,2))
depthName(r1) <- "angle"

r2 <- rast(nrow=5, ncol=5, vals=1:150, nlyr=6)
depth(r2) <- c(10, 10, 20, 20, 30, 30)
time(r2) <- c(as.Date("2012-12-12") + c(1:2, 1:2, 1:2))
depthName(r2) <- "height"
depthUnit(r2) <- "cm"

s <- sds(r1, r2)
names(s) <- c("TH", "DBZH")
units(s) <- c("-", "Pa")
x <- writeCDF(s, filename = fname, overwrite=TRUE)
x[1]
time(x[1])
depth(x[1])

x[2]
time(x[2])
depth(x[2])

for CRAN
file.remove(fname)

writeRaster Write raster data to a file

Description

Write a SpatRaster to a file.

writeRaster 347

Usage

S4 method for signature 'SpatRaster,character'
writeRaster(x, filename, overwrite=FALSE, ...)

Arguments

x SpatRaster
filename character. Output filename. Can be a single filename, or as many filenames as

nlyr(x) to write a file for each layer
overwrite logical. If TRUE, filename is overwritten
... additional arguments for for writing files. See Details

Details

In writeRaster, and in other methods that generate SpatRasters, options for writing raster files to
disk can be provided as additional arguments or, in a few cases, as the wopt argument (a named list)
if the additional arguments are already used for a different purpose. See terraOptions to get or set
default values. The following options are available:

name description
datatype values accepted are "INT1U", "INT2U", "INT2S", "INT4U", "INT4S", "FLT4S", "FLT8S". With GDAL >= 3.5 you can also use "INT8U" and "INT8S". And with GDAL >= 3.7 you can use also use "INT1S". See gdal to discover the GDAL version you are using. The first three letters indicate whether the datatype is an integer (whole numbers) of a real number ("float", decimal numbers), the fourth character indicates the number of bytes used for each number. Higher values allow for storing larger numbers and/or more precision; but create larger files. The "S" or "U" indicate whether the values are signed (both negative and positive) or unsigned (zero and positive values only).
filetype file format expresses as GDAL driver names. If this argument is not supplied, the driver is derived from the filename. You can use gdal(drivers=TRUE) to see what drivers are available in your installation
gdal GDAL driver specific datasource creation options. See the GDAL documentation. For example, with the GeoTiff file format you can use gdal=c("COMPRESS=DEFLATE", "TFW=YES").
tempdir the path where temporary files are to be written to.
progress positive integer. If the number of chunks is larger, a progress bar is shown.
memfrac numeric between 0 and 0.9 (higher values give a warning). The fraction of available RAM that terra is allowed to use.
memmax memmax - the maximum amount of RAM (in GB) that terra can use when processing a raster dataset. Should be less than what is detected (see mem_info, and higher values are ignored. Set it to a negative number or NA to ignore this value).
names output layer names.
NAflag numeric. value to represent missing (NA or NaN) values. See note
scale numeric. Cell values written to disk are divided by this value (default is 1). See scoff
offset numeric. Value that is subtracted from the cell values written to disk (default is 0). See scoff
verbose logical. If TRUE debugging information is printed
steps positive integers. In how many steps (chunks) do you want to process the data (for debugging)
todisk logical. If TRUE processing operates as if the dataset is very large and needs to be written to a temporary file (for debugging).
metadata character, see metags<- to write metadata

Value

SpatRaster. This function is used for the side-effect of writing values to a file.

Note

GeoTiff files are, by default, written with LZW compression. If you do not want compression, use
gdal="COMPRESS=NONE".

When writing integer values the lowest available value (given the datatype) is used to represent NA
for signed types, and the highest value is used for unsigned values. This can be a problem with byte
data (between 0 and 255) as the value 255 is reserved for NA. To keep the value 255, you need to set
another value as NAflag, or do not set a NAflag (with NAflag=NA)

https://gdal.org/en/latest/drivers/raster/index.html
https://gdal.org/en/latest/drivers/raster/gtiff.html

348 writeVector

See Also

see writeCDF for writing NetCDF files.

Examples

r <- rast(nrows=5, ncols=5, vals=1:25)

create a temporary filename for the example
f <- file.path(tempdir(), "test.tif")

writeRaster(r, f, overwrite=TRUE)

writeRaster(r, f, overwrite=TRUE, gdal=c("COMPRESS=NONE", "TFW=YES"), datatype='INT1U')

Or with a wopt argument:

writeRaster(r, f, overwrite=TRUE, wopt= list(gdal=c("COMPRESS=NONE"), datatype='INT1U'))

remove the file
unlink(f)

writeVector Write SpatVector data to a file

Description

Write a SpatVector to a file. You can choose one of many file formats.

Usage

S4 method for signature 'SpatVector,character'
writeVector(x, filename, filetype=NULL, layer=NULL, insert=FALSE,

overwrite=FALSE, options="ENCODING=UTF-8")

Arguments

x SpatVector

filename character. Output filename

filetype character. A file format associated with a GDAL "driver" such as "ESRI Shape-
file". See gdal(drivers=TRUE) or the GDAL docs. If NULL it is attempted to
guess the filetype from the filename extension

layer character. Output layer name. If NULL the filename is used

insert logical. If TRUE, a new layer is inserted into the file, or an existing layer over-
written (if overwrite=TRUE), if the format supports it (e.g. GPKG allows that).
See vector_layers to remove a layer

https://gdal.org/en/latest/drivers/vector/index.html

xapp 349

overwrite logical. If TRUE and insert=FALSE, filename is overwritten if the file format
and layer structure permits it. If TRUE and insert=TRUE, only the target layer is
overwritten if the format supports it (e.g. GPKG).

options character. Format specific GDAL options such as "ENCODING=UTF-8". Use
NULL or "" to not use any options

Examples

v <- vect(cbind(1:5,1:5))
crs(v) <- "+proj=longlat +datum=WGS84"
v$id <- 1:length(v)
v$name <- letters[1:length(v)]
tmpf1 <- paste0(tempfile(), ".gpkg")
writeVector(v, tmpf1, overwrite=TRUE)
x <- vect(tmpf1)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
tmpf2 <- paste0(tempfile(), ".gpkg")
writeVector(v, tmpf2, overwrite=TRUE)
y <- vect(tmpf2)

xapp Apply a function to the cells of two SpatRasters

Description

Apply a function to the values of each cell of two (multilayer) SpatRasters.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
xapp(x, y, fun, ..., filename="", overwrite=FALSE, wopt=list())

Arguments

x SpatRaster

y SpatRaster with the same geometry as x

fun a function that operates on two vectors

... additional arguments for fun. These are typically numerical constants. They
should *never* be another SpatRaster

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

350 xmin

Value

SpatRaster

See Also

app, lapp, tapp, Math-methods, roll

Examples

r <- rast(ncols=10, nrows=10, nlyr=5)
set.seed(1)
r <- init(r, runif)
s <- init(r, runif)
x <- xapp(r, s, fun=cor)

xmin Get or set single values of an extent

Description

Get or set single values of an extent. Values can be set for a SpatExtent or SpatRaster, but not for a
SpatVector)

Usage

S4 method for signature 'SpatExtent'
xmin(x)

S4 method for signature 'SpatExtent'
xmax(x)

S4 method for signature 'SpatExtent'
ymin(x)

S4 method for signature 'SpatExtent'
ymax(x)

S4 method for signature 'SpatRaster'
xmin(x)

S4 method for signature 'SpatRaster'
xmax(x)

S4 method for signature 'SpatRaster'
ymin(x)

S4 method for signature 'SpatRaster'

xmin 351

ymax(x)

S4 method for signature 'SpatVector'
xmin(x)

S4 method for signature 'SpatVector'
xmax(x)

S4 method for signature 'SpatVector'
ymin(x)

S4 method for signature 'SpatVector'
ymax(x)

S4 replacement method for signature 'SpatRaster,numeric'
xmin(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
xmax(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
ymin(x)<-value

S4 replacement method for signature 'SpatRaster,numeric'
ymax(x)<-value

Arguments

x SpatRaster, SpatExtent, or SpatVector

value numeric

Value

SpatExtent or numeric coordinate

See Also

ext

Examples

r <- rast()
ext(r)
ext(c(0, 20, 0, 20))

xmin(r)
xmin(r) <- 0
xmin(r)

352 xyRowColCell

xyRowColCell Coordinates from a row, column or cell number and vice versa

Description

Get coordinates of the center of raster cells for a row, column, or cell number of a SpatRaster. Or
get row, column, or cell numbers from coordinates or from each other.

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top
to bottom. The last cell number equals the number of cells of the SpatRaster (see ncell). Row
numbers start at 1 at the top, column numbers start at 1 at the left.

When computing row, column, or cell numbers from coordinates, and coordinates fall on the edge
of two or four cells, they are assigned to the right-most and/or lowest cell. That is, in these cases of
ambiguity, the highest row, column, or cell number is returned.

Usage

S4 method for signature 'SpatRaster,numeric'
xFromCol(object, col)

S4 method for signature 'SpatRaster,numeric'
yFromRow(object, row)

S4 method for signature 'SpatRaster,numeric'
xyFromCell(object, cell)

S4 method for signature 'SpatRaster,numeric'
xFromCell(object, cell)

S4 method for signature 'SpatRaster,numeric'
yFromCell(object, cell)

S4 method for signature 'SpatRaster,numeric'
colFromX(object, x)

S4 method for signature 'SpatRaster,numeric'
rowFromY(object, y)

S4 method for signature 'SpatRaster,numeric,numeric'
cellFromRowCol(object, row, col)

S4 method for signature 'SpatRaster,numeric,numeric'
cellFromRowColCombine(object, row, col)

S4 method for signature 'SpatRaster,numeric,numeric'
rowColCombine(object, row, col)

xyRowColCell 353

S4 method for signature 'SpatRaster,numeric'
rowFromCell(object, cell)

S4 method for signature 'SpatRaster,numeric'
colFromCell(object, cell)

S4 method for signature 'SpatRaster,numeric'
rowColFromCell(object, cell)

S4 method for signature 'SpatRaster,matrix'
cellFromXY(object, xy)

Arguments

object SpatRaster

cell integer. cell number(s)

col integer. column number(s) or missing (equivalent to all columns)

row integer. row number(s) or missing (equivalent to all rows)

x x coordinate(s)

y y coordinate(s)

xy matrix of x and y coordinates

Value

xFromCol, yFromCol, xFromCell, yFromCell: vector of x or y coordinates

xyFromCell: matrix(x,y) with coordinate pairs

colFromX, rowFromY, cellFromXY, cellFromRowCol, rowFromCell, colFromCell: vector of row,
column, or cell numbers

rowColFromCell, rowColCombine: matrix of row and column numbers

See Also

crds

Examples

r <- rast()

xFromCol(r, c(1, 120, 180))
yFromRow(r, 90)
xyFromCell(r, 10000)
xyFromCell(r, c(0, 1, 32581, ncell(r), ncell(r)+1))

cellFromRowCol(r, 5, 5)
cellFromRowCol(r, 1:2, 1:2)
cellFromRowCol(r, 1, 1:3)

354 zonal

all combinations
cellFromRowColCombine(r, 1:2, 1:2)

colFromX(r, 10)
rowFromY(r, 10)
xy <- cbind(lon=c(10,5), lat=c(15, 88))
cellFromXY(r, xy)

if no row/col specified all are returned
range(xFromCol(r))
length(yFromRow(r))

zonal Zonal statistics

Description

Compute zonal statistics, that is summarize values of a SpatRaster for each "zone" defined by an-
other SpatRaster, or by a SpatVector with polygon geometry.

If fun is a true R function, the <SpatRaster,SpatRaster> method may fail when using very large
SpatRasters, except for the functions ("mean", "min", "max", "sum", "isNA", and "notNA").

You can also summarize values of a SpatVector for each polygon (zone) defined by another SpatVec-
tor.

Usage

S4 method for signature 'SpatRaster,SpatRaster'
zonal(x, z, fun="mean", ..., w=NULL, wide=TRUE,
as.raster=FALSE, filename="", overwrite=FALSE, wopt=list())

S4 method for signature 'SpatRaster,SpatVector'
zonal(x, z, fun="mean", na.rm=FALSE, w=NULL, weights=FALSE,
exact=FALSE, touches=FALSE, small=TRUE, as.raster=FALSE,
as.polygons=FALSE, wide=TRUE, filename="", wopt=list())

S4 method for signature 'SpatVector,SpatVector'
zonal(x, z, fun=mean, ..., weighted=FALSE, as.polygons=FALSE)

Arguments

x SpatRaster or SpatVector

z SpatRaster with cell-values representing zones or a SpatVector with each poly-
gon geometry representing a zone. z can have multiple layers to define inter-
secting zones

fun function to be applied to summarize the values by zone. Either as character:
"mean", "min", "max", "sum", "isNA", and "notNA" and, for relatively small
SpatRasters, a proper function

zonal 355

... additional arguments passed to fun, such as na.rm=TRUE

w SpatRaster with weights. Should have a single-layer with non-negative values

wide logical. Should the values returned in a wide format? For the SpatRaster,
SpatRaster method this only affects the results when nlyr(z) == 2. For the
SpatRaster, SpatVector method this only affects the results when fun=table

as.raster logical. If TRUE, a SpatRaster is returned with the zonal statistic for each zone

filename character. Output filename (ignored if as.raster=FALSE

overwrite logical. If TRUE, filename is overwritten

wopt list with additional arguments for writing files as in writeRaster

weights logical. If TRUE and y has polygons, the approximate fraction of each cell that is
covered is returned as well, for example to compute a weighted mean

exact logical. If TRUE and y has polygons, the exact fraction of each cell that is covered
is returned as well, for example to compute a weighted mean

touches logical. If TRUE, values for all cells touched by lines or polygons are extracted,
not just those on the line render path, or whose center point is within the poly-
gon. Not relevant for points; and always considered TRUE when weights=TRUE
or exact=TRUE

small logical. If TRUE, values for all cells in touched polygons are extracted if none of
the cells center points is within the polygon; even if touches=FALSE

weighted logical. If TRUE, a weighted.mean is computed and fun is ignored. Weights are
based on the length of the lines or the area of the polygons in x that intersect
with z. This argument is ignored of x is a SpatVector or points

as.polygons logical. Should the zonal statistics be combined with the geometry of z?

na.rm logical. If TRUE, NAs are removed

Value

A data.frame with a value for each zone, or a SpatRaster, or SpatVector of polygons.

See Also

See global for "global" statistics (i.e., all of x is considered a single zone), app for local statistics,
and extract for an alternative way to summarize values of a SpatRaster with a SpatVector. With
aggregate you can compute statistics for cell blocks defined by a number of rows and columns.

Examples

SpatRaster, SpatRaster
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
z <- rast(r)
values(z) <- rep(c(1:2, NA, 3:4), each=20)
names(z) <- "zone"
zonal(r, z, "sum", na.rm=TRUE)

with weights

356 zoom

w <- init(r, "col")
zonal(r, z, w=w, "mean", na.rm=TRUE)

multiple layers
r <- rast(system.file("ex/logo.tif", package = "terra"))
zonal layer
z <- rast(r, 1)
names(z) <- "zone"
values(z) <- rep(c(1:2, NA, c(3:4)), each=ncell(r)/5, length.out=ncell(r))

zonal(r, z, "mean", na.rm = TRUE)

raster of zonal values
zr <- zonal(r, z, "mean", na.rm = TRUE, as.raster=TRUE)

SpatRaster, SpatVector
x <- rast(ncol=2,nrow=2, vals=1:4, xmin=0, xmax=1, ymin=0, ymax=1, crs="+proj=utm +zone=1")
p <- as.polygons(x)
pp <- shift(p, .2)
r <- disagg(x, 4)

zonal(r, p)
zonal(r, p, sum)
zonal(x, pp, exact=TRUE)
zonal(c(x, x*10), pp, w=x)

SpatVector, SpatVector

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)[,c(2,4)]

p <- spatSample(v, 100)
values(p) <- data.frame(b2=1:100, ssep1=100:1)

zonal(p, v, mean)

zoom Zoom in on a map

Description

Zoom in on a map (plot) by providing a new extent, by default this is done by clicking twice on the
map.

Usage

S4 method for signature 'SpatRaster'
zoom(x, e=draw(), maxcell=100000, layer=1, new=FALSE, ...)

zoom 357

S4 method for signature 'SpatVector'
zoom(x, e=draw(), new=FALSE, ...)

Arguments

x SpatRaster

e SpatExtent

maxcell positive integer. Maximum number of cells used for the map

layer positive integer to select the layer to be used

new logical. If TRUE, the zoomed in map will appear on a new device (window)

... additional arguments passed to plot

Value

SpatExtent (invisibly)

See Also

draw, plot

Index

!,SpatRaster-method (Compare-methods),
72

∗ classes
options, 203
SpatExtent-class, 287
SpatRaster-class, 287
SpatVector-class, 290

∗ math
Arith-methods, 37
atan2, 46
Compare-methods, 72
Math-methods, 185
modal, 191

∗ methods
activeCat, 22
add_abline, 24
add_box, 24
add_grid, 25
add_legend, 26
add_mtext, 26
aggregate, 29
animate, 33
app, 34
Arith-methods, 37
as.data.frame, 40
as.list, 42
as.raster, 45
barplot, 48
boundaries, 51
cartogram, 56
catalyze, 57
cells, 58
cellSize, 59
colors, 69
combineGeoms, 70
Compare-methods, 72
concats, 75
contour, 76
cover, 78

crosstab, 82
datatype, 85
deepcopy, 87
densify, 87
diff, 92
disagg, 96
dots, 102
elongate, 104
erase, 105
expanse, 106
extract, 111
extractAlong, 114
extractRange, 115
extremes, 116
factors, 117
fillHoles, 119
fillTime, 121
focalValues, 134
gaps, 136
geomtype, 140
graticule, 142
headtail, 145
hist, 146
hull, 147
image, 150
impose, 151
inset, 155
interpolation, 159
intersect, 162
is.bool, 164
is.flipped, 166
is.rotated, 168
lapp, 171
lines, 176
makeTiles, 177
makeVRT, 179
map_extent, 182
mask, 182
match, 184

358

INDEX 359

Math-methods, 185
merge, 187
mergeTime, 189
meta, 190
mosaic, 192
normalize.longitude, 199
not.na, 201
nseg, 202
panel, 206
patches, 207
perim, 208
persp, 209
plet, 211
plot, 214
plot_extent, 222
plot_graticule, 222
plotRGB, 220
predict, 225
quantile, 233
query, 234
rapp, 236
rast, 237
readwrite, 247
regress, 249
relate, 250
replace_layers, 255
replace_values, 256
RGB, 259
sapp, 265
scatterplot, 270
scoff, 271
sds, 272
selectRange, 276
serialize, 277
setValues, 279
sharedPaths, 281
simplifyGeom, 284
sources, 286
split, 292
sprc, 293
summarize, 302
summary, 305
svc, 307
symdif, 308
tapp, 309
text, 313
toMemory, 318
topology, 319

union, 322
values, 326
vect, 329
vector_layers, 332
vrt, 335
vrt_tiles, 336
width, 340
window, 341
wrap, 342
wrapCache, 343
writeCDF, 344
writeRaster, 346
writeVector, 348
xapp, 349

∗ package
terra-package, 8

∗ spatial
activeCat, 22
add, 23
add_abline, 24
add_box, 24
add_grid, 25
add_legend, 26
add_mtext, 26
adjacent, 27
aggregate, 29
align, 31
all.equal, 32
animate, 33
app, 34
approximate, 36
ar_info, 39
Arith-methods, 37
as.character, 39
as.data.frame, 40
as.lines, 41
as.list, 42
as.points, 43
as.polygons, 44
as.raster, 45
atan2, 46
autocorrelation, 47
barplot, 48
bestMatch, 49
boundaries, 51
boxplot, 52
buffer, 53
c, 54

360 INDEX

cartogram, 56
catalyze, 57
cells, 58
cellSize, 59
centroids, 61
chunk, 62
clamp, 63
clamp_ts, 64
classify, 65
click, 67
coerce, 68
colors, 69
combineGeoms, 70
Compare-methods, 72
compareGeom, 73
concats, 75
contour, 76
costDist, 77
cover, 78
crds, 79
crop, 81
crosstab, 82
crs, 83
datatype, 85
deepcopy, 87
densify, 87
density, 89
depth, 90
describe, 91
diff, 92
dimensions, 93
direction, 95
disagg, 96
distance, 97
divide, 100
dots, 102
draw, 103
elongate, 104
erase, 105
expanse, 106
ext, 108
extend, 109
extract, 111
extractAlong, 114
extractRange, 115
extremes, 116
factors, 117
fillHoles, 119

fillTime, 121
flip, 122
flowAccumulation, 123
focal, 125
focal3D, 127
focalCpp, 128
focalMat, 130
focalPairs, 131
focalReg, 133
focalValues, 134
forceCCW, 134
freq, 135
gaps, 136
gdal, 137
geom, 139
geomtype, 140
global, 141
graticule, 142
gridDist, 143
headtail, 145
hist, 146
hull, 147
identical, 148
ifel, 149
image, 150
impose, 151
initialize, 152
inplace, 153
inset, 155
interpIDW, 157
interpNear, 158
interpolation, 159
intersect, 162
is.bool, 164
is.empty, 166
is.flipped, 166
is.lonlat, 167
is.rotated, 168
is.valid, 169
k_means, 170
lapp, 171
linearUnits, 175
lines, 176
makeTiles, 177
makeVRT, 179
map.pal, 180
map_extent, 182
mask, 182

INDEX 361

match, 184
Math-methods, 185
mem, 186
merge, 187
mergeTime, 189
meta, 190
metags, 190
mosaic, 192
na.omit, 194
NAflag, 194
names, 195
nearest, 196
NIDP, 198
normalize.longitude, 199
north, 200
not.na, 201
nseg, 202
options, 203
origin, 204
pairs, 205
panel, 206
patches, 207
perim, 208
persp, 209
pitfinder, 210
plet, 211
plot, 214
plot_extent, 222
plot_graticule, 222
plotRGB, 220
prcomp, 224
predict, 225
princomp, 228
project, 230
quantile, 233
query, 234
rangeFill, 235
rapp, 236
rast, 237
rasterize, 241
rasterizeGeom, 243
rasterizeWin, 244
rcl, 246
readwrite, 247
rectify, 249
regress, 249
relate, 250
rep, 253

replace_dollar, 254
replace_layers, 255
replace_values, 256
resample, 257
rescale, 258
RGB, 259
roll, 261
rotate, 262
rowSums, 264
same.crs, 265
sapp, 265
sbar, 266
scale, 268
scale_linear, 269
scatterplot, 270
scoff, 271
sds, 272
segregate, 273
sel, 274
selectHighest, 275
selectRange, 276
serialize, 277
setValues, 279
shade, 280
sharedPaths, 281
shift, 282
sieve, 283
simplifyGeom, 284
sort, 285
sources, 286
SpatExtent-class, 287
SpatRaster-class, 287
spatSample, 288
SpatVector-class, 290
spin, 291
split, 292
sprc, 293
stretch, 294
subset, 295
subset_dollar, 297
subset_double, 298
subset_single, 300
subst, 301
summarize, 302
summary, 305
surfArea, 306
svc, 307
symdif, 308

362 INDEX

tapp, 309
terra-package, 8
terrain, 310
text, 313
thresh, 314
tighten, 315
time, 316
tmpFiles, 317
toMemory, 318
topology, 319
transpose, 320
trim, 321
union, 322
unique, 323
units, 324
update, 325
values, 326
varnames, 328
vect, 329
vector_layers, 332
viewshed, 333
voronoi, 334
vrt, 335
vrt_tiles, 336
watershed, 337
where, 339
which.lyr, 340
width, 340
window, 341
wrap, 342
wrapCache, 343
writeCDF, 344
writeRaster, 346
writeVector, 348
xapp, 349
xmin, 350
xyRowColCell, 352
zonal, 354
zoom, 356

∗ univar
freq, 135
modal, 191

[, 15, 17, 163, 164, 296, 298, 299
[(subset_single), 300
[,SpatExtent,missing,missing-method

(subset_single), 300
[,SpatExtent,numeric,missing-method

(subset_single), 300

[,SpatRaster,ANY,ANY,ANY-method
(subset_single), 300

[,SpatRaster,ANY,ANY-method
(subset_single), 300

[,SpatRaster,SpatExtent,missing-method
(subset_single), 300

[,SpatRaster,SpatRaster,missing-method
(subset_single), 300

[,SpatRaster,SpatVector,missing-method
(subset_single), 300

[,SpatRaster,data.frame,missing-method
(subset_single), 300

[,SpatRaster,matrix,missing-method
(subset_single), 300

[,SpatRaster,missing,missing-method
(subset_single), 300

[,SpatRaster,missing,numeric-method
(subset_single), 300

[,SpatRaster,numeric,missing-method
(subset_single), 300

[,SpatRaster,numeric,numeric-method
(subset_single), 300

[,SpatRasterCollection,numeric,missing-method
(subset_single), 300

[,SpatRasterDataset,character,missing-method
(subset_single), 300

[,SpatRasterDataset,logical,missing-method
(subset_single), 300

[,SpatRasterDataset,missing,logical-method
(subset_single), 300

[,SpatRasterDataset,missing,numeric-method
(subset_single), 300

[,SpatRasterDataset,numeric,logical-method
(subset_single), 300

[,SpatRasterDataset,numeric,missing-method
(subset_single), 300

[,SpatRasterDataset,numeric,numeric-method
(subset_single), 300

[,SpatVector,SpatExtent,missing-method
(subset_single), 300

[,SpatVector,SpatVector,missing-method
(subset_single), 300

[,SpatVector,character,missing-method
(subset_single), 300

[,SpatVector,data.frame,ANY-method
(subset_single), 300

[,SpatVector,data.frame,missing-method
(subset_single), 300

INDEX 363

[,SpatVector,logical,character-method
(subset_single), 300

[,SpatVector,logical,logical-method
(subset_single), 300

[,SpatVector,logical,missing-method
(subset_single), 300

[,SpatVector,logical,numeric-method
(subset_single), 300

[,SpatVector,matrix,missing-method
(subset_single), 300

[,SpatVector,missing,character-method
(subset_single), 300

[,SpatVector,missing,logical-method
(subset_single), 300

[,SpatVector,missing,missing-method
(subset_single), 300

[,SpatVector,missing,numeric-method
(subset_single), 300

[,SpatVector,numeric,character-method
(subset_single), 300

[,SpatVector,numeric,logical-method
(subset_single), 300

[,SpatVector,numeric,missing-method
(subset_single), 300

[,SpatVector,numeric,numeric-method
(subset_single), 300

[,SpatVectorCollection,numeric,missing-method
(svc), 307

[<- (replace_values), 256
[<-,SpatExtent,numeric,missing-method

(replace_values), 256
[<-,SpatRaster,ANY,ANY,ANY-method

(replace_values), 256
[<-,SpatRaster,ANY,ANY-method

(replace_values), 256
[<-,SpatRasterDataset,numeric,missing-method

(sds), 272
[<-,SpatVector,ANY,ANY-method

(replace_values), 256
[<-,SpatVector,ANY,missing-method

(replace_values), 256
[<-,SpatVector,missing,ANY-method

(replace_values), 256
[<-,SpatVectorCollection,numeric,missing-method

(svc), 307
[[, 296, 298, 300
[[(subset_double), 298
[[,SpatRaster,ANY,missing-method

(subset_double), 298
[[,SpatRaster,character,missing-method

(subset_double), 298
[[,SpatRaster,logical,missing-method

(subset_double), 298
[[,SpatRaster,numeric,missing-method

(subset_double), 298
[[,SpatRasterDataset,ANY,ANY-method

(subset_double), 298
[[,SpatVector,character,missing-method

(subset_double), 298
[[,SpatVector,logical,missing-method

(subset_double), 298
[[,SpatVector,numeric,missing-method

(subset_double), 298
[[,SpatVectorCollection,ANY,missing-method

(subset_double), 298
[[,SpatVectorCollection,numeric,missing-method

(svc), 307
[[<- (replace_layers), 255
[[<-,SpatRaster,character-method

(replace_layers), 255
[[<-,SpatRaster,numeric-method

(replace_layers), 255
[[<-,SpatVector,character-method

(replace_layers), 255
[[<-,SpatVector,numeric-method

(replace_layers), 255
$, 254, 296, 299, 300
$ (subset_dollar), 297
$,SpatExtent-method (subset_dollar), 297
$,SpatRaster-method (subset_dollar), 297
$,SpatRasterDataset-method

(subset_dollar), 297
$,SpatVector-method (subset_dollar), 297
$,SpatVectorCollection-method

(subset_dollar), 297
$<- (replace_dollar), 254
$<-,SpatExtent-method (replace_dollar),

254
$<-,SpatRaster-method (replace_dollar),

254
$<-,SpatVector-method (replace_dollar),

254
%in% (match), 184
%in%,SpatRaster-method (match), 184

abline, 24
activeCat, 13, 22, 57, 118

364 INDEX

activeCat,SpatRaster-method
(activeCat), 22

activeCat<- (activeCat), 22
activeCat<-,SpatRaster-method

(activeCat), 22
add, 23
add<-, 8, 20
add<- (add), 23
add<-,SpatRaster,SpatRaster-method

(add), 23
add<-,SpatRasterCollection,SpatRaster-method

(add), 23
add<-,SpatRasterDataset,SpatRaster-method

(add), 23
add_abline, 24, 25
add_box, 19, 24, 24, 25–27, 182, 218
add_grid, 24, 25, 25, 26, 27, 182, 217
add_legend, 19, 24, 25, 26, 27, 182, 218
add_mtext, 24–26, 26
addCats (factors), 117
addCats,SpatRaster-method (factors), 117
adjacent, 10, 15, 27, 197, 251
adjacent,SpatRaster-method (adjacent),

27
adjacent,SpatVector-method (adjacent),

27
aggregate, 9, 16, 29, 71, 97, 257, 258, 309,

322, 355
aggregate,SpatRaster-method

(aggregate), 29
aggregate,SpatVector-method

(aggregate), 29
align, 18, 31
align,SpatExtent,numeric-method

(align), 31
align,SpatExtent,SpatRaster-method

(align), 31
all (summarize), 302
all,SpatRaster-method (summarize), 302
all.equal, 32, 73, 148, 149
all.equal,SpatExtent,SpatExtent-method

(all.equal), 32
all.equal,SpatRaster,SpatRaster-method

(all.equal), 32
all.equal,SpatVector,SpatVector-method

(all.equal), 32
all.equal.numeric, 32
allNA (summarize), 302

allNA,SpatRaster-method (summarize), 302
animate, 33
animate,SpatRaster-method (animate), 33
any (summarize), 302
any,SpatRaster-method (summarize), 302
anyNA (summarize), 302
anyNA,SpatRaster-method (summarize), 302
app, 9, 20, 34, 38, 73, 142, 171, 172, 184, 186,

233, 236, 237, 266, 302, 304, 309,
310, 350, 355

app,SpatRaster-method (app), 34
app,SpatRasterDataset-method (app), 34
apply, 34
approx, 36
approximate, 10, 20, 36, 121
approximate,SpatRaster-method

(approximate), 36
ar_info, 39, 91, 239
area (expanse), 106
area,SpatRaster-method (expanse), 106
area,SpatVector-method (expanse), 106
Arith,logical,SpatRaster-method

(Arith-methods), 37
Arith,matrix,SpatRaster-method

(Arith-methods), 37
Arith,missing,SpatRaster-method

(Arith-methods), 37
Arith,numeric,SpatExtent-method

(Arith-methods), 37
Arith,numeric,SpatRaster-method

(Arith-methods), 37
Arith,SpatExtent,numeric-method

(Arith-methods), 37
Arith,SpatExtent,SpatExtent-method

(Arith-methods), 37
Arith,SpatRaster,logical-method

(Arith-methods), 37
Arith,SpatRaster,matrix-method

(Arith-methods), 37
Arith,SpatRaster,missing-method

(Arith-methods), 37
Arith,SpatRaster,numeric-method

(Arith-methods), 37
Arith,SpatRaster,SpatRaster-method

(Arith-methods), 37
Arith,SpatVector,SpatVector-method

(Arith-methods), 37
Arith-methods, 9, 37, 73

INDEX 365

arrows, 177
as.array, 11
as.array (coerce), 68
as.array,SpatRaster-method (coerce), 68
as.array,SpatRasterDataset-method

(coerce), 68
as.bool, 10, 85
as.bool (is.bool), 164
as.bool,SpatRaster-method (is.bool), 164
as.character, 39
as.character,SpatExtent-method

(as.character), 39
as.character,SpatRaster-method

(as.character), 39
as.contour, 19
as.contour (contour), 76
as.contour,SpatRaster-method (contour),

76
as.data.frame, 11, 16, 40, 69, 318, 326, 327
as.data.frame,SpatRaster-method

(as.data.frame), 40
as.data.frame,SpatVector-method

(as.data.frame), 40
as.factor, 13, 118
as.factor (is.bool), 164
as.factor,SpatRaster-method (is.bool),

164
as.int, 10
as.int (is.bool), 164
as.int,SpatRaster-method (is.bool), 164
as.integer,SpatRaster-method (is.bool),

164
as.lines, 19, 41, 44, 45
as.lines,matrix-method (as.lines), 41
as.lines,SpatExtent-method (as.lines),

41
as.lines,SpatRaster-method (as.lines),

41
as.lines,SpatVector-method (as.lines),

41
as.list, 16, 21, 41, 42
as.list,SpatRaster-method (as.list), 42
as.list,SpatRasterCollection-method

(as.list), 42
as.list,SpatRasterDataset-method

(as.list), 42
as.list,SpatVector-method (as.list), 42
as.list,SpatVectorCollection-method

(as.list), 42
as.logical,SpatRaster-method (is.bool),

164
as.matrix, 11, 41, 327
as.matrix (coerce), 68
as.matrix,SpatExtent-method (coerce), 68
as.matrix,SpatRaster-method (coerce), 68
as.numeric, 13
as.numeric (catalyze), 57
as.numeric,SpatRaster-method

(catalyze), 57
as.points, 19, 21, 41, 43, 44, 45
as.points,SpatExtent-method

(as.points), 43
as.points,SpatRaster-method

(as.points), 43
as.points,SpatVector-method

(as.points), 43
as.polygons, 19, 21, 41, 44, 69
as.polygons,SpatExtent-method

(as.polygons), 44
as.polygons,SpatRaster-method

(as.polygons), 44
as.polygons,SpatVector-method

(as.polygons), 44
as.raster, 45, 45
as.raster,SpatRaster-method

(as.raster), 45
as.vector (coerce), 68
as.vector,SpatExtent-method (coerce), 68
as.vector,SpatRaster-method (coerce), 68
atan2, 46
atan2,SpatRaster,SpatRaster-method

(atan2), 46
atan_2 (atan2), 46
atan_2,SpatRaster,SpatRaster-method

(atan2), 46
autocor, 11
autocor (autocorrelation), 47
autocor,numeric-method

(autocorrelation), 47
autocor,SpatRaster-method

(autocorrelation), 47
autocorrelation, 47
axis, 216

barplot, 20, 48, 49, 218
barplot,SpatRaster-method (barplot), 48
bestMatch, 49

366 INDEX

bestMatch,SpatRaster,data.frame-method
(bestMatch), 49

bestMatch,SpatRaster,matrix-method
(bestMatch), 49

bestMatch,SpatRaster,SpatVector-method
(bestMatch), 49

blocks, 14
blocks (readwrite), 247
blocks,SpatRaster-method (readwrite),

247
boundaries, 10, 51, 207
boundaries,SpatRaster-method

(boundaries), 51
box, 24
boxplot, 20, 49, 52, 52, 146, 205, 218
boxplot,SpatRaster-method (boxplot), 52
buffer, 16, 53, 104, 163
buffer,SpatRaster-method (buffer), 53
buffer,SpatVector-method (buffer), 53
bxp, 52

c, 8, 20, 23, 54, 189
c,SpatRaster-method (c), 54
c,SpatRasterCollection-method (c), 54
c,SpatRasterDataset-method (c), 54
c,SpatVector-method (c), 54
c,SpatVectorCollection-method (c), 54
cartogram, 19, 56, 102
cartogram,SpatVector-method

(cartogram), 56
catalyze, 13, 57, 118
catalyze,SpatRaster-method (catalyze),

57
categories, 153
categories (factors), 117
categories,SpatRaster-method (factors),

117
cats, 13, 22, 57, 75, 164, 165
cats (factors), 117
cats,SpatRaster-method (factors), 117
cellFromRowCol, 12, 246
cellFromRowCol (xyRowColCell), 352
cellFromRowCol,SpatRaster,numeric,numeric-method

(xyRowColCell), 352
cellFromRowColCombine, 13
cellFromRowColCombine (xyRowColCell),

352
cellFromRowColCombine,SpatRaster,numeric,numeric-method

(xyRowColCell), 352

cellFromXY, 12
cellFromXY (xyRowColCell), 352
cellFromXY,SpatRaster,data.frame-method

(xyRowColCell), 352
cellFromXY,SpatRaster,matrix-method

(xyRowColCell), 352
cells, 13, 20, 58, 112
cells,SpatRaster,missing-method

(cells), 58
cells,SpatRaster,numeric-method

(cells), 58
cells,SpatRaster,SpatExtent-method

(cells), 58
cells,SpatRaster,SpatVector-method

(cells), 58
cellSize, 10, 20, 59, 107, 307
cellSize,SpatRaster-method (cellSize),

59
centroids, 15, 61
centroids,SpatRaster-method

(centroids), 61
centroids,SpatVector-method

(centroids), 61
chunk, 62
chunk,SpatRaster-method (chunk), 62
clamp, 10, 63, 64, 66, 302
clamp,numeric-method (clamp), 63
clamp,SpatRaster-method (clamp), 63
clamp_ts, 64
clamp_ts,numeric-method (clamp_ts), 64
clamp_ts,SpatRaster-method (clamp_ts),

64
classify, 10, 21, 63, 65, 149, 187, 188, 194,

195, 256, 301, 302
classify,SpatRaster-method (classify),

65
clearance, 17
clearance (width), 340
clearance,SpatVector-method (width), 340
clearVSIcache (gdal), 137
click, 16, 19, 67, 103, 275
click,missing-method (click), 67
click,SpatRaster-method (click), 67
click,SpatVector-method (click), 67
coerce, 43, 68
colFromCell (xyRowColCell), 352
colFromCell,SpatRaster,numeric-method

(xyRowColCell), 352

INDEX 367

colFromX, 12
colFromX (xyRowColCell), 352
colFromX,SpatRaster,numeric-method

(xyRowColCell), 352
colMeans (rowSums), 264
colMeans,SpatRaster-method (rowSums),

264
colorize, 19, 220, 221
colorize (RGB), 259
colorize,SpatRaster-method (RGB), 259
colorRamp, 180
colors, 69
colSums (rowSums), 264
colSums,SpatRaster-method (rowSums), 264
coltab (colors), 69
coltab,SpatRaster-method (colors), 69
coltab<- (colors), 69
coltab<-,SpatRaster-method (colors), 69
combineGeoms, 17, 70, 322
combineGeoms,SpatVector,SpatVector-method

(combineGeoms), 70
combineLevels (factors), 117
compare (Compare-methods), 72
Compare,matrix,SpatRaster-method

(Compare-methods), 72
Compare,numeric,SpatRaster-method

(Compare-methods), 72
Compare,SpatExtent,SpatExtent-method

(Compare-methods), 72
Compare,SpatRaster,character-method

(Compare-methods), 72
Compare,SpatRaster,matrix-method

(Compare-methods), 72
Compare,SpatRaster,numeric-method

(Compare-methods), 72
Compare,SpatRaster,SpatRaster-method

(Compare-methods), 72
compare,SpatRaster-method

(Compare-methods), 72
Compare-methods, 9, 72
compareGeom, 12, 20, 32, 73, 149, 251
compareGeom,SpatRaster,list-method

(compareGeom), 73
compareGeom,SpatRaster,SpatRaster-method

(compareGeom), 73
compareGeom,SpatRaster,SpatRasterCollection-method

(compareGeom), 73
compareGeom,SpatRasterCollection,missing-method

(compareGeom), 73
compareGeom,SpatVector,missing-method

(compareGeom), 73
compareGeom,SpatVector,SpatVector-method

(compareGeom), 73
concats, 13, 75
concats,SpatRaster-method (concats), 75
contour, 19, 76, 76, 218
contour,SpatRaster-method (contour), 76
convHull (hull), 147
convHull,SpatVector-method (hull), 147
cor, 205
costDist, 11, 77, 99, 144
costDist,SpatRaster-method (costDist),

77
countNA (summarize), 302
countNA,SpatRaster-method (summarize),

302
cov.wt, 174
cover, 10, 16, 78, 149
cover,SpatRaster,missing-method

(cover), 78
cover,SpatRaster,SpatRaster-method

(cover), 78
cover,SpatVector,SpatVector-method

(cover), 78
cppFunction, 129
crds, 15, 20, 79, 140, 353
crds,SpatRaster-method (crds), 79
crds,SpatVector-method (crds), 79
crop, 9, 14, 16, 18, 81, 104, 105, 110, 163,

164, 178, 183, 251, 257, 258, 275,
322, 341, 342

crop,SpatGraticule-method (crop), 81
crop,SpatRaster-method (crop), 81
crop,SpatRasterCollection-method

(crop), 81
crop,SpatRasterDataset-method (crop), 81
crop,SpatVector-method (crop), 81
crosstab, 10, 82
crosstab,SpatRaster,missing-method

(crosstab), 82
crs, 15, 17, 41, 44, 45, 83, 175, 231, 232, 239,

289, 330
crs,character-method (crs), 83
crs,sf-method (crs), 83
crs,SpatExtent-method (crs), 83
crs,SpatRaster-method (crs), 83

368 INDEX

crs,SpatRasterDataset-method (crs), 83
crs,SpatVector-method (crs), 83
crs,SpatVectorCollection-method (crs),

83
crs,SpatVectorProxy-method (crs), 83
crs<- (crs), 83
crs<-,SpatRaster,ANY-method (crs), 83
crs<-,SpatRaster-method (crs), 83
crs<-,SpatVector,ANY-method (crs), 83
crs<-,SpatVector-method (crs), 83
cummax, 64
cummin, 64
cumsum, 261, 262
cumsum (Math-methods), 185
cumsum,SpatRaster-method

(Math-methods), 185
cut, 49

data.frame, 40, 248, 327
datatype, 85, 140
datatype,SpatRaster-method (datatype),

85
datatype,SpatVector-method (datatype),

85
Date, 316
deepcopy, 87
deepcopy,SpatRaster-method (deepcopy),

87
deepcopy,SpatVector-method (deepcopy),

87
delaunay, 15
delaunay (voronoi), 334
delaunay,SpatVector-method (voronoi),

334
deldir, 334
densify, 87, 284, 292
densify,SpatVector-method (densify), 87
density, 20, 89, 218
density,SpatRaster-method (density), 89
deprecated, 89
depth, 13, 90, 316, 344
depth,SpatRaster-method (depth), 90
depth<- (depth), 90
depth<-,SpatRaster-method (depth), 90
depthName, 13
depthName (depth), 90
depthName,SpatRaster-method (depth), 90
depthName<- (depth), 90

depthName<-,SpatRaster-method (depth),
90

depthUnit, 13
depthUnit (depth), 90
depthUnit,SpatRaster-method (depth), 90
depthUnit<- (depth), 90
depthUnit<-,SpatRaster-method (depth),

90
describe, 39, 91, 138, 272, 273
describe,character-method (describe), 91
describe,SpatRaster-method (describe),

91
diff, 92
diff,SpatRaster-method (diff), 92
dim (dimensions), 93
dim,SpatRaster-method (dimensions), 93
dim,SpatRasterCollection-method

(dimensions), 93
dim,SpatRasterDataset-method

(dimensions), 93
dim,SpatVector-method (dimensions), 93
dim,SpatVectorProxy-method

(dimensions), 93
dim<-,SpatRaster-method (dimensions), 93
dimensions, 93
direction, 11, 95
direction,SpatRaster-method

(direction), 95
disagg, 9, 16, 20, 30, 81, 96, 257, 258
disagg,SpatRaster-method (disagg), 96
disagg,SpatVector-method (disagg), 96
distance, 10, 20, 54, 78, 95, 97, 144, 197
distance,data.frame,data.frame-method

(distance), 97
distance,data.frame,missing-method

(distance), 97
distance,matrix,matrix-method

(distance), 97
distance,matrix,missing-method

(distance), 97
distance,SpatRaster,missing-method

(distance), 97
distance,SpatRaster,sf-method

(distance), 97
distance,SpatRaster,SpatVector-method

(distance), 97
distance,SpatVector,ANY-method

(distance), 97

INDEX 369

distance,SpatVector,SpatVector-method
(distance), 97

divide, 100, 178, 314
divide,SpatRaster-method (divide), 100
divide,SpatVector-method (divide), 100
dots, 19, 102
dots,SpatVector-method (dots), 102
draw, 18–20, 31, 68, 103, 275, 357
draw,character-method (draw), 103
draw,missing-method (draw), 103
droplevels (factors), 117
droplevels,SpatRaster-method (factors),

117

elongate, 17, 54, 104, 110
elongate,SpatVector-method (elongate),

104
emptyGeoms (topology), 319
emptyGeoms,SpatVector-method

(topology), 319
erase, 16, 17, 71, 104, 105, 308
erase,SpatGraticule,SpatVector-method

(erase), 105
erase,SpatVector,missing-method

(erase), 105
erase,SpatVector,SpatExtent-method

(erase), 105
erase,SpatVector,SpatVector-method

(erase), 105
expanse, 10, 16, 20, 60, 106, 307
expanse,SpatRaster-method (expanse), 106
expanse,SpatVector-method (expanse), 106
ext, 12, 15, 18, 20, 31, 81, 94, 108, 110, 287,

351
ext,bbox-method (ext), 108
ext,data.frame-method (ext), 108
ext,Extent-method (ext), 108
ext,matrix-method (ext), 108
ext,missing-method (ext), 108
ext,numeric-method (ext), 108
ext,PackedSpatExtent-method (ext), 108
ext,Raster-method (ext), 108
ext,sf-method (ext), 108
ext,SpatExtent-method (ext), 108
ext,SpatGraticule-method (ext), 108
ext,Spatial-method (ext), 108
ext,SpatRaster-method (ext), 108
ext,SpatRasterCollection-method (ext),

108

ext,SpatRasterDataset-method (ext), 108
ext,SpatRasterGraticule-method (ext),

108
ext,SpatVector-method (ext), 108
ext,SpatVectorCollection-method (ext),

108
ext,SpatVectorProxy-method (ext), 108
ext<- (ext), 108
ext<-,SpatRaster,numeric-method (ext),

108
ext<-,SpatRaster,SpatExtent-method

(ext), 108
extend, 9, 81, 82, 104, 109, 257, 321, 322, 342
extend,SpatExtent-method (extend), 109
extend,SpatRaster-method (extend), 109
extract, 11, 16, 21, 111, 114–116, 142, 276,

277, 298–300, 355
extract,SpatRaster,data.frame-method

(extract), 111
extract,SpatRaster,matrix-method

(extract), 111
extract,SpatRaster,numeric-method

(extract), 111
extract,SpatRaster,sf-method (extract),

111
extract,SpatRaster,SpatExtent-method

(extract), 111
extract,SpatRaster,SpatVector-method

(extract), 111
extract,SpatRasterCollection,ANY-method

(extract), 111
extract,SpatRasterDataset,ANY-method

(extract), 111
extract,SpatVector,data.frame-method

(extract), 111
extract,SpatVector,matrix-method

(extract), 111
extract,SpatVector,SpatVector-method

(extract), 111
extractAlong, 11, 113, 114
extractRange, 113, 115
extractRange,SpatRaster,ANY-method

(extractRange), 115
extractRange,SpatRaster-method

(extractRange), 115
extremes, 116

factor, 117
factors, 117

370 INDEX

fileBlocksize (readwrite), 247
filled.contour, 76
fillHoles, 15, 17, 119, 136, 319
fillHoles,SpatRaster-method

(fillHoles), 119
fillHoles,SpatVector-method

(fillHoles), 119
fillTime, 13, 37, 121, 189
fillTime,SpatRaster-method (fillTime),

121
flip, 9, 17, 122, 166, 167, 239, 259, 272, 282,

293, 320
flip,SpatRaster-method (flip), 122
flip,SpatVector-method (flip), 122
flowAccumulation, 123, 198, 210
flowAccumulation,SpatRaster-method

(flowAccumulation), 123
focal, 11, 36, 37, 51, 62, 125, 127–133, 142,

178, 207, 261, 262, 283, 312
focal,SpatRaster-method (focal), 125
focal3D, 11, 126, 127, 132, 133
focal3D,SpatRaster-method (focal3D), 127
focalCor (focalPairs), 131
focalCor,SpatRaster-method

(focalPairs), 131
focalCpp, 11, 126, 128
focalCpp,SpatRaster-method (focalCpp),

128
focalMat, 126, 130
focalPairs, 11, 20, 126, 131
focalPairs,SpatRaster-method

(focalPairs), 131
focalReg, 11, 126, 132, 133
focalReg,SpatRaster-method (focalReg),

133
focalValues, 126, 129, 133, 134, 327
focalValues,SpatRaster-method

(focalValues), 134
forceCCW, 17, 134, 319
forceCCW,SpatVector-method (forceCCW),

134
formatC, 216
free_RAM (mem), 186
freq, 10, 83, 135
freq,SpatRaster-method (freq), 135

gaps, 17, 120, 136, 281, 284, 319
gaps,SpatVector,SpatExtent-method

(gaps), 136

gaps,SpatVector-method (gaps), 136
gdal, 137, 240, 347
gdalCache (gdal), 137
geom, 15, 41, 43, 80, 139, 145, 329–331
geom,SpatVector-method (geom), 139
geomtype, 140
geomtype,Spatial-method (geomtype), 140
geomtype,SpatVector-method (geomtype),

140
geomtype,SpatVectorProxy-method

(geomtype), 140
getGDALconfig (gdal), 137
getTileExtents, 62
getTileExtents (makeTiles), 177
getTileExtents,SpatRaster-method

(makeTiles), 177
global, 10, 20, 35, 107, 141, 174, 233, 264,

305, 306, 355
global,SpatRaster-method (global), 141
graticule, 18, 24, 25, 142, 217, 222, 223
grid, 25
gridDist, 10, 78, 89, 99, 143
gridDist,SpatRaster-method (gridDist),

143
gridDistance (deprecated), 89
gridDistance,SpatRaster-method

(deprecated), 89

halo, 19, 144, 313
has.colors (colors), 69
has.colors,SpatRaster-method (colors),

69
has.RGB (RGB), 259
has.RGB,SpatRaster-method (RGB), 259
has.time (time), 316
has.time,SpatRaster-method (time), 316
has.time,SpatRasterDataset-method

(time), 316
hasMinMax (extremes), 116
hasMinMax,SpatRaster-method (extremes),

116
hasValues (sources), 286
hasValues,SpatRaster-method (sources),

286
head (headtail), 145
head,SpatRaster-method (headtail), 145
head,SpatVector-method (headtail), 145
headtail, 145
hist, 20, 49, 52, 146, 146, 205, 218

INDEX 371

hist,SpatRaster-method (hist), 146
hull, 15, 147, 341
hull,SpatVector-method (hull), 147

identical, 32, 148, 324
identical,SpatExtent,SpatExtent-method

(identical), 148
identical,SpatRaster,SpatRaster-method

(identical), 148
identical,SpatVector,SpatVector-method

(identical), 148
ifel, 38, 73, 149
ifel,SpatRaster-method (ifel), 149
ifelse, 149
image, 19, 150, 150, 218, 223
image,SpatRaster-method (image), 150
impose, 14, 151
impose,SpatRasterCollection-method

(impose), 151
inext (inset), 155
inext,SpatVector-method (inset), 155
init, 10, 279
init (initialize), 152
init,SpatRaster-method (initialize), 152
initialize, 152
inMemory, 12, 14, 318
inMemory (sources), 286
inMemory,SpatRaster-method (sources),

286
inplace, 153
inset, 19, 155, 201, 258, 259, 267
inset,SpatRaster-method (inset), 155
inset,SpatVector-method (inset), 155
interpIDW, 11, 157, 159, 160, 245
interpIDW,SpatRaster,matrix-method

(interpIDW), 157
interpIDW,SpatRaster,SpatVector-method

(interpIDW), 157
interpNear, 11, 158, 158, 160, 245
interpNear,SpatRaster,matrix-method

(interpNear), 158
interpNear,SpatRaster,SpatVector-method

(interpNear), 158
interpolate, 11, 158, 159, 226
interpolate (interpolation), 159
interpolate,SpatRaster-method

(interpolation), 159
interpolation, 159

intersect, 16, 18, 71, 81, 82, 105, 162, 251,
275, 322

intersect,SpatExtent,SpatExtent-method
(intersect), 162

intersect,SpatExtent,SpatRaster-method
(intersect), 162

intersect,SpatExtent,SpatVector-method
(intersect), 162

intersect,SpatRaster,SpatExtent-method
(intersect), 162

intersect,SpatRaster,SpatRaster-method
(intersect), 162

intersect,SpatVector,SpatExtent-method
(intersect), 162

intersect,SpatVector,SpatVector-method
(intersect), 162

is.bool, 164
is.bool,SpatRaster-method (is.bool), 164
is.empty, 166
is.empty,SpatExtent-method (is.empty),

166
is.empty,SpatVector-method (is.empty),

166
is.factor, 13, 118
is.factor (is.bool), 164
is.factor,SpatRaster-method (is.bool),

164
is.finite,SpatRaster-method

(Compare-methods), 72
is.flipped, 166, 168
is.flipped,SpatRaster-method

(is.flipped), 166
is.infinite,SpatRaster-method

(Compare-methods), 72
is.int (is.bool), 164
is.int,SpatRaster-method (is.bool), 164
is.lines (geomtype), 140
is.lines,SpatVector-method (geomtype),

140
is.lonlat, 15, 18, 20, 167
is.lonlat,character-method (is.lonlat),

167
is.lonlat,SpatRaster-method

(is.lonlat), 167
is.lonlat,SpatVector-method

(is.lonlat), 167
is.na, 319
is.na,SpatRaster-method

372 INDEX

(Compare-methods), 72
is.na,SpatVector-method (na.omit), 194
is.nan,SpatRaster-method

(Compare-methods), 72
is.num (is.bool), 164
is.num,SpatRaster-method (is.bool), 164
is.points (geomtype), 140
is.points,SpatVector-method (geomtype),

140
is.polygons (geomtype), 140
is.polygons,SpatVector-method

(geomtype), 140
is.related, 163
is.related (relate), 250
is.related,SpatExtent,SpatRaster-method

(relate), 250
is.related,SpatExtent,SpatVector-method

(relate), 250
is.related,SpatRaster,SpatExtent-method

(relate), 250
is.related,SpatRaster,SpatRaster-method

(relate), 250
is.related,SpatRaster,SpatVector-method

(relate), 250
is.related,SpatVector,SpatExtent-method

(relate), 250
is.related,SpatVector,SpatRaster-method

(relate), 250
is.related,SpatVector,SpatVector-method

(relate), 250
is.rotated, 167, 168, 249
is.rotated,SpatRaster-method

(is.rotated), 168
is.valid, 17, 106, 169, 284
is.valid,SpatExtent-method (is.valid),

169
is.valid,SpatVector-method (is.valid),

169
isFALSE,SpatRaster-method (is.bool), 164
isTRUE, 340
isTRUE,SpatRaster-method (is.bool), 164

jitter, 177, 313

k_means, 11, 170, 288, 289
k_means,ANY-method (k_means), 170
k_means,SpatRaster-method (k_means), 170
kmeans, 101, 170

lapp, 9, 20, 35, 171, 237, 266, 350
lapp,SpatRaster-method (lapp), 171
lapp,SpatRasterDataset-method (lapp),

171
lapply, 266
layerCor, 10, 20, 132, 173, 229
layerCor,SpatRaster-method (layerCor),

173
legend, 26, 216
length, 14, 17
length (dimensions), 93
length,SpatRasterCollection-method

(dimensions), 93
length,SpatRasterDataset-method

(dimensions), 93
length,SpatVector-method (dimensions),

93
length,SpatVectorCollection-method

(dimensions), 93
levels, 13, 22, 164, 165
levels (factors), 117
levels,SpatRaster-method (factors), 117
levels<- (factors), 117
levels<-,SpatRaster-method (factors),

117
libVersion (gdal), 137
linearUnits, 15, 18, 175
linearUnits,SpatRaster-method

(linearUnits), 175
linearUnits,SpatVector-method

(linearUnits), 175
lines, 19, 25, 176, 214, 218, 222, 223
lines,leaflet-method (plet), 211
lines,sf-method (lines), 176
lines,SpatExtent-method (lines), 176
lines,SpatGraticule,missing-method

(plot_graticule), 222
lines,SpatGraticule-method (lines), 176
lines,SpatRaster-method (lines), 176
lines,SpatVector-method (lines), 176
locator, 67
log (Math-methods), 185
log,SpatRaster-method (Math-methods),

185
logic (Compare-methods), 72
Logic,logical,SpatRaster-method

(Compare-methods), 72
Logic,numeric,SpatRaster-method

INDEX 373

(Compare-methods), 72
Logic,SpatRaster,logical-method

(Compare-methods), 72
Logic,SpatRaster,numeric-method

(Compare-methods), 72
Logic,SpatRaster,SpatRaster-method

(Compare-methods), 72
logic,SpatRaster-method

(Compare-methods), 72
Logic-methods, 9
Logic-methods (Compare-methods), 72
longnames (varnames), 328
longnames,SpatRaster-method (varnames),

328
longnames,SpatRasterDataset-method

(varnames), 328
longnames<- (varnames), 328
longnames<-,SpatRaster-method

(varnames), 328
longnames<-,SpatRasterDataset-method

(varnames), 328

make.names, 196, 225
make.unique, 196, 329
makeNodes, 17
makeNodes (topology), 319
makeNodes,SpatVector-method (topology),

319
makeTiles, 101, 177, 335, 336
makeTiles,SpatRaster-method

(makeTiles), 177
makeValid, 17, 106, 284
makeValid (is.valid), 169
makeValid,SpatVector-method (is.valid),

169
makeVRT, 179, 336
map.pal, 19, 180
map_extent, 19, 182
mask, 10, 81, 105, 149, 182, 231, 242
mask,SpatRaster,sf-method (mask), 182
mask,SpatRaster,SpatExtent-method

(mask), 182
mask,SpatRaster,SpatRaster-method

(mask), 182
mask,SpatRaster,SpatVector-method

(mask), 182
mask,SpatVector,sf-method (mask), 182
mask,SpatVector,SpatExtent-method

(mask), 182

mask,SpatVector,SpatVector-method
(mask), 182

match, 184, 184
match,SpatRaster-method (match), 184
math, 172
math (Math-methods), 185
Math,SpatExtent-method (Math-methods),

185
Math,SpatRaster-method (Math-methods),

185
math,SpatRaster-method (Math-methods),

185
Math-methods, 9, 18, 185
Math2,SpatExtent-method (Math-methods),

185
Math2,SpatRaster-method (Math-methods),

185
Math2,SpatVector-method (Math-methods),

185
Math2-methods (Math-methods), 185
max (summarize), 302
max,SpatRaster-method (summarize), 302
mean (summarize), 302
mean,SpatExtent-method (summarize), 302
mean,SpatRaster-method (summarize), 302
mean,SpatVector-method (summarize), 302
median (summarize), 302
median,SpatRaster-method (summarize),

302
median,SpatVector-method (summarize),

302
mem, 186
mem_info, 14, 203, 347
mem_info (mem), 186
merge, 9, 14, 16, 110, 118, 187, 187, 192, 193,

293, 322
merge,SpatRaster,SpatRaster-method

(merge), 187
merge,SpatRasterCollection,missing-method

(merge), 187
merge,SpatVector,data.frame-method

(merge), 187
merge,SpatVector,SpatVector-method

(merge), 187
mergeLines, 17
mergeLines (topology), 319
mergeLines,SpatVector-method

(topology), 319

374 INDEX

mergeTime, 13, 189
mergeTime,SpatRasterDataset-method

(mergeTime), 189
meta, 190
meta,SpatRaster-method (meta), 190
metags, 190, 239, 240, 272, 294, 345
metags,SpatRaster-method (metags), 190
metags,SpatRasterCollection-method

(metags), 190
metags,SpatRasterDataset-method

(metags), 190
metags<-, 347
metags<- (metags), 190
metags<-,SpatRaster-method (metags), 190
metags<-,SpatRasterCollection-method

(metags), 190
metags<-,SpatRasterDataset-method

(metags), 190
min (summarize), 302
min,SpatRaster-method (summarize), 302
minmax, 11
minmax (extremes), 116
minmax,SpatRaster-method (extremes), 116
modal, 191, 302, 304
modal,SpatRaster-method (modal), 191
mosaic, 9, 14, 188, 192, 293, 322
mosaic,SpatRaster,SpatRaster-method

(mosaic), 192
mosaic,SpatRasterCollection,missing-method

(mosaic), 192
mtext, 26

na.omit, 15, 194
na.omit,SpatVector-method (na.omit), 194
NAflag, 12, 20, 194
NAflag,SpatRaster-method (NAflag), 194
NAflag<- (NAflag), 194
NAflag<-,SpatRaster-method (NAflag), 194
name (names), 195
name<- (names), 195
names, 12, 14, 15, 146, 195, 225, 325
names,SpatRaster-method (names), 195
names,SpatRasterCollection-method

(names), 195
names,SpatRasterDataset-method (names),

195
names,SpatVector-method (names), 195
names,SpatVectorCollection-method

(names), 195

names,SpatVectorProxy-method (names),
195

names<- (names), 195
names<-,SpatRaster-method (names), 195
names<-,SpatRasterCollection-method

(names), 195
names<-,SpatRasterDataset-method

(names), 195
names<-,SpatVector-method (names), 195
names<-,SpatVectorCollection-method

(names), 195
nany (summarize), 302
nany,ANY-method (summarize), 302
nany,SpatRaster-method (summarize), 302
ncell, 12, 352
ncell (dimensions), 93
ncell,ANY-method (dimensions), 93
ncell,SpatRaster-method (dimensions), 93
ncell,SpatRasterDataset-method

(dimensions), 93
ncol, 12, 15
ncol (dimensions), 93
ncol,SpatRaster-method (dimensions), 93
ncol,SpatRasterCollection-method

(dimensions), 93
ncol,SpatRasterDataset-method

(dimensions), 93
ncol,SpatVector-method (dimensions), 93
ncol<- (dimensions), 93
ncol<-,SpatRaster,numeric-method

(dimensions), 93
ncvar_def, 345
nearby, 16, 28, 99, 251
nearby (nearest), 196
nearby,SpatVector-method (nearest), 196
nearest, 16, 28, 99, 196
nearest,SpatVector-method (nearest), 196
NIDP, 123, 198, 210
NIDP,SpatRaster-method (NIDP), 198
nlyr, 12, 20
nlyr (dimensions), 93
nlyr,SpatRaster-method (dimensions), 93
nlyr,SpatRasterCollection-method

(dimensions), 93
nlyr,SpatRasterDataset-method

(dimensions), 93
nlyr<- (dimensions), 93
nlyr<-,SpatRaster,numeric-method

INDEX 375

(dimensions), 93
noNA, 72
noNA (summarize), 302
noNA,SpatRaster-method (summarize), 302
normalize.longitude, 17, 199, 263
normalize.longitude,SpatVector-method

(normalize.longitude), 199
north, 19, 200, 218, 223, 267
not.na, 9, 72, 201
not.na,SpatRaster-method (not.na), 201
nrow, 12, 15
nrow (dimensions), 93
nrow,SpatRaster-method (dimensions), 93
nrow,SpatRasterCollection-method

(dimensions), 93
nrow,SpatRasterDataset-method

(dimensions), 93
nrow,SpatVector-method (dimensions), 93
nrow<- (dimensions), 93
nrow<-,SpatRaster,numeric-method

(dimensions), 93
nseg, 202
nseg,SpatVector-method (nseg), 202
nsrc (dimensions), 93
nsrc,SpatRaster-method (dimensions), 93

options, 203
origin, 12, 204
origin,SpatRaster-method (origin), 204
origin<- (origin), 204
origin<-,SpatRaster-method (origin), 204

PackedSpatRaster-class
(SpatRaster-class), 287

PackedSpatVector-class
(SpatVector-class), 290

pairs, 20, 52, 146, 205, 205, 218
pairs,SpatRaster-method (pairs), 205
panel, 19, 206, 218
panel,SpatRaster-method (panel), 206
par, 177, 213
patches, 11, 20, 51, 207
patches,SpatRaster-method (patches), 207
perim, 16, 208
perim,SpatVector-method (perim), 208
perimeter (perim), 208
perimeter,SpatVector-method (perim), 208
persp, 19, 209, 209, 218
persp,SpatRaster-method (persp), 209

pitfinder, 210
pitfinder,SpatRaster-method

(pitfinder), 210
plet, 211
plet,missing-method (plet), 211
plet,SpatRaster-method (plet), 211
plet,SpatRasterCollection-method

(plet), 211
plet,SpatVector-method (plet), 211
plet,SpatVectorCollection-method

(plet), 211
plot, 19, 20, 33, 56, 76, 89, 102, 145, 150,

201, 206, 211, 213, 214, 220–223,
259, 267, 313, 357

plot,SpatExtent,missing-method
(plot_extent), 222

plot,SpatGraticule,missing-method
(plot_graticule), 222

plot,SpatRaster,character-method
(plot), 214

plot,SpatRaster,missing-method (plot),
214

plot,SpatRaster,numeric-method (plot),
214

plot,SpatRaster,SpatRaster-method
(scatterplot), 270

plot,SpatVector,character-method
(plot), 214

plot,SpatVector,data.frame-method
(plot), 214

plot,SpatVector,missing-method (plot),
214

plot,SpatVector,numeric-method (plot),
214

plot,SpatVectorCollection,missing-method
(plot), 214

plot,SpatVectorCollection,numeric-method
(plot), 214

plot,SpatVectorProxy,missing-method
(plot), 214

plot<SpatGraticule>, 18, 19, 143
plot_extent, 222
plot_graticule, 222
plotRGB, 19, 212, 218, 220, 259
plotRGB,SpatRaster-method (plotRGB), 220
points, 19, 102, 177, 214, 218, 223
points (lines), 176
points,leaflet-method (plet), 211

376 INDEX

points,sf-method (lines), 176
points,SpatExtent-method (lines), 176
points,SpatRaster-method (lines), 176
points,SpatVector-method (lines), 176
polys, 19, 214, 218, 223
polys (lines), 176
polys,leaflet-method (plet), 211
polys,sf-method (lines), 176
polys,SpatExtent-method (lines), 176
polys,SpatRaster-method (lines), 176
polys,SpatVector-method (lines), 176
POSIXlt, 316
prcomp, 11, 224, 225, 229
prcomp,SpatRaster-method (prcomp), 224
predict, 11, 66, 159, 160, 225
predict,SpatRaster-method (predict), 225
princomp, 11, 224, 225, 228, 229
princomp,SpatRaster-method (princomp),

228
prod (summarize), 302
prod,SpatRaster-method (summarize), 302
proj_ok (gdal), 137
project, 9, 12, 15, 21, 83, 209, 230, 257, 258
project,matrix-method (project), 230
project,SpatExtent-method (project), 230
project,SpatRaster-method (project), 230
project,SpatVector-method (project), 230
project,SpatVectorCollection-method

(project), 230
projNetwork (gdal), 137
projPaths (gdal), 137

quantile, 10, 21, 233, 305, 306
quantile,SpatRaster-method (quantile),

233
quantile,SpatVector-method (quantile),

233
query, 234
query,SpatVectorProxy-method (query),

234

rainbow, 49
range (summarize), 302
range,SpatRaster-method (summarize), 302
rangeFill, 10, 235
rangeFill,SpatRaster-method

(rangeFill), 235
rapp, 9, 113, 236, 236, 276, 277
rapp,SpatRaster-method (rapp), 236

rast, 8, 18, 20, 237, 287
rast,ANY-method (rast), 237
rast,array-method (rast), 237
rast,character-method (rast), 237
rast,data.frame-method (rast), 237
rast,list-method (rast), 237
rast,matrix-method (rast), 237
rast,missing-method (rast), 237
rast,PackedSpatRaster-method (rast), 237
rast,SpatExtent-method (rast), 237
rast,SpatRaster-method (rast), 237
rast,SpatRasterDataset-method (rast),

237
rast,SpatVector-method (rast), 237
rast,stars-method (rast), 237
rast,stars_proxy-method (rast), 237
rasterImage, 45
rasterize, 18, 111, 158, 159, 241, 243–245
rasterize,data.frame,SpatRaster-method

(rasterize), 241
rasterize,matrix,SpatRaster-method

(rasterize), 241
rasterize,sf,SpatRaster-method

(rasterize), 241
rasterize,SpatVector,SpatRaster-method

(rasterize), 241
rasterizeGeom, 19, 242, 243, 245
rasterizeGeom,SpatVector,SpatRaster-method

(rasterizeGeom), 243
rasterizeWin, 19, 158, 159, 242, 244
rasterizeWin,data.frame,SpatRaster-method

(rasterizeWin), 244
rasterizeWin,SpatVector,SpatRaster-method

(rasterizeWin), 244
RasterSource (SpatRaster-class), 287
RasterSource-class (SpatRaster-class),

287
rbind, 71, 322
rbind (c), 54
rcl, 246
rcl,SpatRaster-method (rcl), 246
Rcpp_RasterSource-class

(SpatRaster-class), 287
Rcpp_SpatCategories-class

(SpatRaster-class), 287
Rcpp_SpatExtent-class

(SpatExtent-class), 287
Rcpp_SpatRaster-class

INDEX 377

(SpatRaster-class), 287
Rcpp_SpatVector-class

(SpatVector-class), 290
readRDS (serialize), 277
readRDS,character-method (serialize),

277
readStart, 14
readStart (readwrite), 247
readStart,SpatRaster-method

(readwrite), 247
readStart,SpatRasterDataset-method

(readwrite), 247
readStop, 14
readStop (readwrite), 247
readStop,SpatRaster-method (readwrite),

247
readStop,SpatRasterDataset-method

(readwrite), 247
readValues, 14, 318
readValues (readwrite), 247
readValues,SpatRaster-method

(readwrite), 247
readValues,SpatRasterDataset-method

(readwrite), 247
readwrite, 247
rectify, 168, 249
rectify,SpatRaster-method (rectify), 249
regress, 10, 249
regress,SpatRaster,numeric-method

(regress), 249
regress,SpatRaster,SpatRaster-method

(regress), 249
relate, 16, 28, 164, 197, 250
relate,SpatExtent,SpatExtent-method

(relate), 250
relate,SpatExtent,SpatRaster-method

(relate), 250
relate,SpatExtent,SpatVector-method

(relate), 250
relate,SpatRaster,SpatExtent-method

(relate), 250
relate,SpatRaster,SpatRaster-method

(relate), 250
relate,SpatRaster,SpatVector-method

(relate), 250
relate,SpatVector,missing-method

(relate), 250
relate,SpatVector,SpatExtent-method

(relate), 250
relate,SpatVector,SpatRaster-method

(relate), 250
relate,SpatVector,SpatVector-method

(relate), 250
removeDupNodes, 17
removeDupNodes (topology), 319
removeDupNodes,SpatVector-method

(topology), 319
rep, 253, 253
rep,SpatRaster-method (rep), 253
replace_dollar, 254
replace_layers, 255
replace_values, 256
res, 12, 240
res (dimensions), 93
res,SpatRaster-method (dimensions), 93
res,SpatRasterDataset-method

(dimensions), 93
res<- (dimensions), 93
res<-,SpatRaster,numeric-method

(dimensions), 93
res<-,SpatRaster-method (dimensions), 93
resample, 9, 21, 29–31, 81, 97, 110, 151, 188,

232, 249, 257
resample,SpatRaster,numeric-method

(resample), 257
resample,SpatRaster,SpatRaster-method

(resample), 257
rescale, 17, 56, 108, 156, 258, 291
rescale,SpatRaster-method (rescale), 258
rescale,SpatVector-method (rescale), 258
rev (flip), 122
rev,SpatRaster-method (flip), 122
RGB, 221, 259
RGB,SpatRaster-method (RGB), 259
RGB<- (RGB), 259
RGB<-,SpatRaster-method (RGB), 259
roll, 10, 20, 35, 186, 261, 350
roll,numeric-method (roll), 261
roll,SpatRaster-method (roll), 261
rotate, 9, 17, 122, 200, 259, 262, 282, 320
rotate,SpatRaster-method (rotate), 262
rotate,SpatVector-method (rotate), 262
round, 49
round (Math-methods), 185
round,SpatRaster-method (Math-methods),

185

378 INDEX

round,SpatVector-method (Math-methods),
185

rowColCombine, 246
rowColCombine (xyRowColCell), 352
rowColCombine,SpatRaster,numeric,numeric-method

(xyRowColCell), 352
rowColFromCell, 12
rowColFromCell (xyRowColCell), 352
rowColFromCell,SpatRaster,numeric-method

(xyRowColCell), 352
rowFromCell (xyRowColCell), 352
rowFromCell,SpatRaster,numeric-method

(xyRowColCell), 352
rowFromY, 12
rowFromY (xyRowColCell), 352
rowFromY,SpatRaster,numeric-method

(xyRowColCell), 352
rowMeans (rowSums), 264
rowMeans,SpatRaster-method (rowSums),

264
rowSums, 264
rowSums,SpatRaster-method (rowSums), 264
runif, 152

same.crs, 265
sapp, 9, 172, 265
sapp,SpatRaster-method (sapp), 265
sapp,SpatRasterDataset-method (sapp),

265
saveRDS, 8, 278
saveRDS (serialize), 277
saveRDS,SpatExtent-method (serialize),

277
saveRDS,SpatRaster-method (serialize),

277
saveRDS,SpatRasterCollection-method

(serialize), 277
saveRDS,SpatRasterDataset-method

(serialize), 277
saveRDS,SpatVector-method (serialize),

277
sbar, 19, 156, 201, 218, 223, 266
scale, 10, 224, 268, 268, 269
scale,SpatRaster-method (scale), 268
scale_linear, 268, 269
scale_linear,SpatRaster-method

(scale_linear), 269
scatterplot, 218, 270
scoff, 239, 271, 347

scoff,SpatRaster-method (scoff), 271
scoff<- (scoff), 271
scoff<-,SpatRaster-method (scoff), 271
sds, 14, 240, 272, 294
sds,array-method (sds), 272
sds,character-method (sds), 272
sds,list-method (sds), 272
sds,missing-method (sds), 272
sds,SpatRaster-method (sds), 272
sds,stars-method (sds), 272
sds,stars_proxy-method (sds), 272
segregate, 10, 20, 273, 292
segregate,SpatRaster-method

(segregate), 273
sel, 16, 19, 274
sel,SpatRaster-method (sel), 274
sel,SpatVector-method (sel), 274
selectHighest, 275
selectHighest,SpatRaster-method

(selectHighest), 275
selectRange, 8, 21, 236, 237, 276
selectRange,SpatRaster-method

(selectRange), 276
serialize, 277, 278
serialize,SpatExtent-method

(serialize), 277
serialize,SpatRaster-method

(serialize), 277
serialize,SpatRasterCollection-method

(serialize), 277
serialize,SpatRasterDataset-method

(serialize), 277
serialize,SpatVector-method

(serialize), 277
set.cats, 13, 118
set.cats (inplace), 153
set.cats,SpatRaster-method (inplace),

153
set.crs (inplace), 153
set.crs,SpatRaster-method (inplace), 153
set.crs,SpatVector-method (inplace), 153
set.ext, 87, 108
set.ext (inplace), 153
set.ext,SpatRaster-method (inplace), 153
set.ext,SpatVector-method (inplace), 153
set.names, 195
set.names (inplace), 153
set.names,SpatRaster-method (inplace),

INDEX 379

153
set.names,SpatRasterCollection-method

(inplace), 153
set.names,SpatRasterDataset-method

(inplace), 153
set.names,SpatVector-method (inplace),

153
set.names,SpatVectorCollection-method

(inplace), 153
set.RGB, 260
set.RGB (inplace), 153
set.RGB,SpatRaster-method (inplace), 153
set.values, 256
set.values (inplace), 153
set.values,SpatRaster-method (inplace),

153
set.values,SpatRasterDataset-method

(inplace), 153
set.window (inplace), 153
set.window,SpatRaster-method (inplace),

153
setGDALconfig, 239, 335
setGDALconfig (gdal), 137
setMinMax, 11
setMinMax (extremes), 116
setMinMax,SpatRaster-method (extremes),

116
setValues, 11, 279
setValues,SpatRaster,ANY-method

(setValues), 279
setValues,SpatRaster-method

(setValues), 279
setValues,SpatVector,ANY-method

(setValues), 279
setValues,SpatVector-method

(setValues), 279
shade, 11, 280
sharedPaths, 17, 71, 136, 281, 284, 319
sharedPaths,SpatVector-method

(sharedPaths), 281
shift, 9, 16, 156, 259, 263, 282, 291
shift,SpatExtent-method (shift), 282
shift,SpatRaster-method (shift), 282
shift,SpatVector-method (shift), 282
show, 145
show,SpatExtent-method

(SpatExtent-class), 287
show,SpatRaster-method

(SpatRaster-class), 287
show,SpatVector-method

(SpatVector-class), 290
sieve, 11, 283
sieve,SpatRaster-method (sieve), 283
simplifyGeom, 17, 88, 284, 319
simplifyGeom,SpatVector-method

(simplifyGeom), 284
simplifyLevels (factors), 117
simplifyLevels,SpatRaster-method

(factors), 117
size (dimensions), 93
size,SpatRaster-method (dimensions), 93
smoothScatter, 270
snap, 17, 120
snap (topology), 319
snap,SpatVector-method (topology), 319
sort, 16, 285
sort,data.frame-method (sort), 285
sort,SpatRaster-method (sort), 285
sort,SpatVector-method (sort), 285
sources, 12, 14, 286
sources,SpatRaster-method (sources), 286
sources,SpatRasterCollection-method

(sources), 286
sources,SpatRasterDataset-method

(sources), 286
sources,SpatVector-method (sources), 286
sources,SpatVectorProxy-method

(sources), 286
SpatCategories (SpatRaster-class), 287
SpatCategories-class

(SpatRaster-class), 287
SpatExtent, 109, 214, 218, 273
SpatExtent (SpatExtent-class), 287
SpatExtent-class, 287
SpatGraticule, 214, 218
SpatRaster (SpatRaster-class), 287
SpatRaster-class, 287
SpatRasterCollection

(SpatRaster-class), 287
SpatRasterCollection-class

(SpatRaster-class), 287
SpatRasterDataset (SpatRaster-class),

287
SpatRasterDataset-class

(SpatRaster-class), 287
spatSample, 11, 16, 21, 288, 305

380 INDEX

spatSample,SpatExtent-method
(spatSample), 288

spatSample,SpatRaster-method
(spatSample), 288

spatSample,SpatVector-method
(spatSample), 288

SpatVector (SpatVector-class), 290
SpatVector-class, 290
SpatVectorCollection

(SpatVector-class), 290
SpatVectorCollection-class

(SpatVector-class), 290
SpatVectorProxy (SpatVector-class), 290
SpatVectorProxy-class

(SpatVector-class), 290
spin, 16, 263, 291
spin,SpatVector-method (spin), 291
split, 274, 292
split,SpatRaster,ANY-method (split), 292
split,SpatVector,ANY-method (split), 292
split,SpatVector,SpatVector-method

(split), 292
sprc, 14, 240, 272, 273, 293, 308
sprc,character-method (sprc), 293
sprc,list-method (sprc), 293
sprc,missing-method (sprc), 293
sprc,SpatRaster-method (sprc), 293
sqrt (Math-methods), 185
sqrt,SpatRaster-method (Math-methods),

185
stdev (summarize), 302
stdev,SpatRaster-method (summarize), 302
stretch, 10, 221, 294
stretch,SpatRaster-method (stretch), 294
subset, 8, 20, 236, 295, 298–300
subset,SpatRaster-method (subset), 295
subset,SpatVector-method (subset), 295
subset_dollar, 297
subset_double, 298
subset_single, 300
subst, 10, 63, 66, 183, 256, 301
subst,SpatRaster-method (subst), 301
sum (summarize), 302
sum,SpatRaster-method (summarize), 302
summarize, 302
summary, 10, 305, 305
Summary,SpatExtent-method (summary), 305
Summary,SpatRaster-method (summary), 305

summary,SpatRaster-method (summary), 305
Summary,SpatVector-method (summary), 305
summary,SpatVector-method (summary), 305
Summary-methods, 9, 21
Summary-methods (summarize), 302
surfArea, 60, 107, 306
surfArea,SpatRaster-method (surfArea),

306
svc, 17, 307
svc,character-method (svc), 307
svc,list-method (svc), 307
svc,missing-method (svc), 307
svc,sf-method (svc), 307
svc,SpatVector-method (svc), 307
symdif, 16, 308
symdif,SpatVector,SpatVector-method

(symdif), 308

t, 9, 17, 259, 291
t (transpose), 320
t,SpatRaster-method (transpose), 320
t,SpatVector-method (transpose), 320
tail (headtail), 145
tail,SpatRaster-method (headtail), 145
tail,SpatVector-method (headtail), 145
tapp, 9, 21, 35, 171, 172, 237, 266, 277, 309,

350
tapp,SpatRaster-method (tapp), 309
tapply, 309
terra (terra-package), 8
terra-package, 8
terrain, 11, 123, 198, 210, 266, 280, 281,

310, 333, 337
terrain,SpatRaster-method (terrain), 310
terrain.colors, 181
terraOptions, 14, 318, 347
terraOptions (options), 203
text, 19, 27, 144, 145, 218, 275, 313, 313
text,SpatRaster-method (text), 313
text,SpatVector-method (text), 313
thresh, 101, 314
thresh,SpatRaster-method (thresh), 314
tighten, 315
tighten,SpatRaster-method (tighten), 315
tighten,SpatRasterDataset-method

(tighten), 315
time, 13, 90, 309, 316, 325, 344
time,SpatRaster-method (time), 316

INDEX 381

time,SpatRasterDataset-method (time),
316

time<- (time), 316
time<-,SpatRaster-method (time), 316
time<-,SpatRasterDataset-method (time),

316
timeInfo (time), 316
timeInfo,SpatRaster-method (time), 316
timeInfo,SpatRasterDataset-method

(time), 316
title, 218
tmpFiles, 14, 317
toMemory, 12, 21, 286, 318
toMemory,SpatRaster-method (toMemory),

318
toMemory,SpatRasterDataset-method

(toMemory), 318
topology, 136, 169, 281, 319
trans, 122
trans (transpose), 320
trans,SpatRaster-method (transpose), 320
transpose, 320
Trig, 46
trim, 9, 110, 321
trim,SpatRaster-method (trim), 321

union, 16–18, 71, 164, 188, 322
union,SpatExtent,SpatExtent-method

(union), 322
union,SpatVector,missing-method

(union), 322
union,SpatVector,SpatExtent-method

(union), 322
union,SpatVector,SpatVector-method

(union), 322
unique, 10, 15, 323, 324
unique,SpatRaster,ANY-method (unique),

323
unique,SpatRaster-method (unique), 323
unique,SpatVector,ANY-method (unique),

323
unique,SpatVector-method (unique), 323
units, 324
units,SpatRaster-method (units), 324
units,SpatRasterDataset-method (units),

324
units<- (units), 324
units<-,SpatRaster-method (units), 324

units<-,SpatRasterDataset-method
(units), 324

unloadGDALdrivers (gdal), 137
unserialize (serialize), 277
unserialize,ANY-method (serialize), 277
unwrap, 344
unwrap (wrap), 342
unwrap,ANY-method (wrap), 342
unwrap,PackedSpatExtent-method (wrap),

342
unwrap,PackedSpatRaster-method (wrap),

342
unwrap,PackedSpatRasterDC-method

(wrap), 342
unwrap,PackedSpatVector-method (wrap),

342
update, 325
update,SpatRaster-method (update), 325

values, 11, 16, 20, 21, 113, 256, 279, 318, 326
values,SpatRaster-method (values), 326
values,SpatVector-method (values), 326
values<-, 11, 16
values<- (setValues), 279
values<-,SpatRaster,ANY-method

(setValues), 279
values<-,SpatVector,ANY-method

(setValues), 279
values<-,SpatVector,data.frame-method

(setValues), 279
values<-,SpatVector,matrix-method

(setValues), 279
values<-,SpatVector,NULL-method

(setValues), 279
varnames, 328
varnames,SpatRaster-method (varnames),

328
varnames,SpatRasterDataset-method

(varnames), 328
varnames<- (varnames), 328
varnames<-,SpatRaster-method

(varnames), 328
varnames<-,SpatRasterDataset-method

(varnames), 328
vect, 15, 18, 21, 234, 240, 329
vect,character-method (vect), 329
vect,data.frame-method (vect), 329
vect,list-method (vect), 329
vect,matrix-method (vect), 329

382 INDEX

vect,missing-method (vect), 329
vect,PackedSpatVector-method (vect), 329
vect,sf-method (vect), 329
vect,sfc-method (vect), 329
vect,SpatExtent-method (vect), 329
vect,SpatGraticule-method (vect), 329
vect,Spatial-method (vect), 329
vect,SpatVector-method (vect), 329
vect,SpatVectorCollection-method

(vect), 329
vect,XY-method (vect), 329
vector_layers, 15, 331, 332, 348
viewshed, 11, 312, 333
viewshed,SpatRaster-method (viewshed),

333
voronoi, 15, 334
voronoi,SpatVector-method (voronoi), 334
vrt, 178, 180, 188, 335, 336
vrt,character-method (vrt), 335
vrt,SpatRasterCollection-method (vrt),

335
vrt_tiles, 336, 336

watershed, 123, 210, 337
watershed,SpatRaster-method

(watershed), 337
weighted.mean, 174, 338, 338
weighted.mean,SpatRaster,numeric-method

(weighted.mean), 338
weighted.mean,SpatRaster,SpatRaster-method

(weighted.mean), 338
where, 339
where.max, 117
where.min, 117
which, 339, 340
which.lyr, 10, 304, 340
which.lyr,SpatRaster-method

(which.lyr), 340
which.max (summarize), 302
which.max,SpatRaster-method

(summarize), 302
which.min (summarize), 302
which.min,SpatRaster-method

(summarize), 302
width, 17, 340
width,SpatVector-method (width), 340
window, 239, 341
window,SpatRaster-method (window), 341
window<- (window), 341

window<-,SpatRaster-method (window), 341
wrap, 8, 240, 277, 342, 343, 344
wrap,SpatExtent-method (wrap), 342
wrap,SpatRaster-method (wrap), 342
wrap,SpatRasterCollection-method

(wrap), 342
wrap,SpatRasterDataset-method (wrap),

342
wrap,SpatVector-method (wrap), 342
wrapCache, 343
wrapCache,SpatRaster-method

(wrapCache), 343
writeCDF, 13, 344, 348
writeCDF,SpatRaster-method (writeCDF),

344
writeCDF,SpatRasterDataset-method

(writeCDF), 344
writeRaster, 8, 13, 29, 35, 37, 46, 50, 51, 54,

57, 60, 62–64, 66, 73, 75, 77, 79, 82,
85, 92, 95, 96, 98, 110, 118,
121–123, 125, 128, 129, 132, 133,
143, 149, 151, 152, 157, 158, 160,
165, 170, 172, 178, 183, 185,
187–189, 192, 193, 198, 202, 203,
207, 210, 226, 231, 233, 235, 237,
240, 242, 243, 245, 248–250, 258,
260, 261, 263, 266, 269, 274, 277,
280, 282, 283, 285, 295, 296, 301,
304, 306, 310, 311, 314, 320, 321,
333, 337, 338, 345, 346, 349, 355

writeRaster,SpatRaster,character-method
(writeRaster), 346

writeStart, 14
writeStart (readwrite), 247
writeStart,SpatRaster,character-method

(readwrite), 247
writeStop, 14
writeStop (readwrite), 247
writeStop,SpatRaster-method

(readwrite), 247
writeValues, 14
writeValues (readwrite), 247
writeValues,SpatRaster,vector-method

(readwrite), 247
writeVector, 15, 348
writeVector,SpatVector,character-method

(writeVector), 348

xapp, 349

INDEX 383

xapp,SpatRaster,SpatRaster-method
(xapp), 349

xFromCell, 12
xFromCell (xyRowColCell), 352
xFromCell,SpatRaster,numeric-method

(xyRowColCell), 352
xFromCol, 12
xFromCol (xyRowColCell), 352
xFromCol,SpatRaster,missing-method

(xyRowColCell), 352
xFromCol,SpatRaster,numeric-method

(xyRowColCell), 352
xmax, 12, 109
xmax (xmin), 350
xmax,SpatExtent-method (xmin), 350
xmax,SpatRaster-method (xmin), 350
xmax,SpatVector-method (xmin), 350
xmax<- (xmin), 350
xmax<-,SpatExtent,numeric-method

(xmin), 350
xmax<-,SpatRaster,numeric-method

(xmin), 350
xmin, 12, 109, 350
xmin,SpatExtent-method (xmin), 350
xmin,SpatRaster-method (xmin), 350
xmin,SpatVector-method (xmin), 350
xmin<- (xmin), 350
xmin<-,SpatExtent,numeric-method

(xmin), 350
xmin<-,SpatRaster,numeric-method

(xmin), 350
xres, 12
xres (dimensions), 93
xres,SpatRaster-method (dimensions), 93
xyFromCell, 12, 80, 112, 114, 140
xyFromCell (xyRowColCell), 352
xyFromCell,SpatRaster,numeric-method

(xyRowColCell), 352
xyRowColCell, 352

yFromCell, 12
yFromCell (xyRowColCell), 352
yFromCell,SpatRaster,numeric-method

(xyRowColCell), 352
yFromRow, 12
yFromRow (xyRowColCell), 352
yFromRow,SpatRaster,missing-method

(xyRowColCell), 352

yFromRow,SpatRaster,numeric-method
(xyRowColCell), 352

ymax, 12, 109
ymax (xmin), 350
ymax,SpatExtent-method (xmin), 350
ymax,SpatRaster-method (xmin), 350
ymax,SpatVector-method (xmin), 350
ymax<- (xmin), 350
ymax<-,SpatExtent,numeric-method

(xmin), 350
ymax<-,SpatRaster,numeric-method

(xmin), 350
ymin, 12, 109
ymin (xmin), 350
ymin,SpatExtent-method (xmin), 350
ymin,SpatRaster-method (xmin), 350
ymin,SpatVector-method (xmin), 350
ymin<- (xmin), 350
ymin<-,SpatExtent,numeric-method

(xmin), 350
ymin<-,SpatRaster,numeric-method

(xmin), 350
yres, 12
yres (dimensions), 93
yres,SpatRaster-method (dimensions), 93

zonal, 10, 83, 107, 111, 113, 142, 354
zonal,SpatRaster,SpatRaster-method

(zonal), 354
zonal,SpatRaster,SpatVector-method

(zonal), 354
zonal,SpatVector,SpatVector-method

(zonal), 354
zoom, 19, 356
zoom,SpatRaster-method (zoom), 356
zoom,SpatVector-method (zoom), 356

	terra-package
	activeCat
	add
	add_abline
	add_box
	add_grid
	add_legend
	add_mtext
	adjacent
	aggregate
	align
	all.equal
	animate
	app
	approximate
	Arith-methods
	ar_info
	as.character
	as.data.frame
	as.lines
	as.list
	as.points
	as.polygons
	as.raster
	atan2
	autocorrelation
	barplot
	bestMatch
	boundaries
	boxplot
	buffer
	c
	cartogram
	catalyze
	cells
	cellSize
	centroids
	chunk
	clamp
	clamp_ts
	classify
	click
	coerce
	colors
	combineGeoms
	Compare-methods
	compareGeom
	concats
	contour
	costDist
	cover
	crds
	crop
	crosstab
	crs
	datatype
	deepcopy
	densify
	density
	deprecated
	depth
	describe
	diff
	dimensions
	direction
	disagg
	distance
	divide
	dots
	draw
	elongate
	erase
	expanse
	ext
	extend
	extract
	extractAlong
	extractRange
	extremes
	factors
	fillHoles
	fillTime
	flip
	flowAccumulation
	focal
	focal3D
	focalCpp
	focalMat
	focalPairs
	focalReg
	focalValues
	forceCCW
	freq
	gaps
	gdal
	geom
	geomtype
	global
	graticule
	gridDist
	halo
	headtail
	hist
	hull
	identical
	ifel
	image
	impose
	initialize
	inplace
	inset
	interpIDW
	interpNear
	interpolation
	intersect
	is.bool
	is.empty
	is.flipped
	is.lonlat
	is.rotated
	is.valid
	k_means
	lapp
	layerCor
	linearUnits
	lines
	makeTiles
	makeVRT
	map.pal
	map_extent
	mask
	match
	Math-methods
	mem
	merge
	mergeTime
	meta
	metags
	modal
	mosaic
	na.omit
	NAflag
	names
	nearest
	NIDP
	normalize.longitude
	north
	not.na
	nseg
	options
	origin
	pairs
	panel
	patches
	perim
	persp
	pitfinder
	plet
	plot
	plotRGB
	plot_extent
	plot_graticule
	prcomp
	predict
	princomp
	project
	quantile
	query
	rangeFill
	rapp
	rast
	rasterize
	rasterizeGeom
	rasterizeWin
	rcl
	readwrite
	rectify
	regress
	relate
	rep
	replace_dollar
	replace_layers
	replace_values
	resample
	rescale
	RGB
	roll
	rotate
	rowSums
	same.crs
	sapp
	sbar
	scale
	scale_linear
	scatterplot
	scoff
	sds
	segregate
	sel
	selectHighest
	selectRange
	serialize
	setValues
	shade
	sharedPaths
	shift
	sieve
	simplifyGeom
	sort
	sources
	SpatExtent-class
	SpatRaster-class
	spatSample
	SpatVector-class
	spin
	split
	sprc
	stretch
	subset
	subset_dollar
	subset_double
	subset_single
	subst
	summarize
	summary
	surfArea
	svc
	symdif
	tapp
	terrain
	text
	thresh
	tighten
	time
	tmpFiles
	toMemory
	topology
	transpose
	trim
	union
	unique
	units
	update
	values
	varnames
	vect
	vector_layers
	viewshed
	voronoi
	vrt
	vrt_tiles
	watershed
	weighted.mean
	where
	which.lyr
	width
	window
	wrap
	wrapCache
	writeCDF
	writeRaster
	writeVector
	xapp
	xmin
	xyRowColCell
	zonal
	zoom
	Index

