Package ‘templr’

January 13, 2026

Type Package

Title MASCOTNUM / RT-UQ Algorithms Template Tools

Version 0.2-3

Date 2026-12-01

Author Yann Richet [aut, cre] (ORCID: <https://orcid.org/0000-0002-5677-8458>)
Maintainer Yann Richet <yann.richet@asnr.fr>

Description Helper functions for MASCOTNUM / RT-UQ <https:
//uq.math.cnrs. fr/> algorithm template, for design of numerical experiments practice:
algorithm template parser to support MASCOTNUM specification <https:
//github.com/MASCOTNUM/algorithms>,
'ask & tell' decoupling injection (inspired by <https:
//search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html>)
touse " " crimped" algorithms (like uniroot(), optim(), ...) from outside R,
basic template examples: Brent algorithm for 1 dim root finding and L-BFGS-
B from base optim().

License Apache License (>=2)

Encoding UTF-8

Depends R (>=4.0)

Imports utils, stats, remotes, xml2, jsonlite

Suggests testthat, future

URL https://github.com/MASCOTNUM/templr
RoxygenNote 7.2.1

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-13 08:30:02 UTC

Contents

https://orcid.org/0000-0002-5677-8458
https://uq.math.cnrs.fr/
https://uq.math.cnrs.fr/
https://github.com/MASCOTNUM/algorithms
https://github.com/MASCOTNUM/algorithms
https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html
https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html
https://github.com/MASCOTNUM/templr

asK_ X . 5
ask_ Y L e e e e e 6
fromO1 e e 7
IMPOTt o o e 8
listresults L e e e 9
MAX_INPUL . . . o o v o e 9
MIN_INPUL oo e e e e e e e e e e 10
parse.algorithmo 10
read.algorithm 11
run.algorithm oL 11
tell_dY . . e e e e 12
tellY .. e e e e e 13
10105 15
Index 16
ask_dX ask&tell component function to "ask’ where objective function gradi-

ent evaluation is required.

Description

ask&tell component function to ask’ where objective function gradient evaluation is required.

Usage

ask_dX(
id = o,
dX.tmp = "dX.todo",
tmp_path = file.path(tempdir(), "..", "asktell.tmp"),
sleep_step = 0.1,
sleep_init = 0,
timeout = 360000,
trace = function(...) cat(paste@d(..., "\n")),

clean = TRUE
)
Arguments
id unique identifier for this asktell loop (default: "0")
dX. tmp temporary "X" values file (default: "dX.todo")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp’)
sleep_step delay between checking X.tmp and Y.tmp (default: 0.1 sec.)
sleep_init initial delay before checking X.tmp and Y.tmp (default: O sec.)
timeout maximum delay before breaking loop if X.tmp or Y.tmp doesn’t appear (default:
36000 sec. = 10 min.) .
trace function to display asktell loop status (default : "cat’)

clean should we cleanup temporary files after reading ? (default: TRUE)

ask dY 3

Details

“ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing “ask_X’, and when you know what values returns from the external objective, just call “tell_Y’
to give 1t.

Value

input values of objective function to compute externally

Author(s)

Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.

Examples

Not run: ### Assumes you can use two independent R sessions
In main R session
ask_dY(x=123)
In another R session
ask_dX() # returns 123
tell_dY(y=456)
Then ask_dY in main R session returns with value '456'

End(Not run)

ask_dY ask&tell component function to ’ask’ objective function gradient eval-
uation using finite difference.

Description

ask&tell component function to ’ask’ objective function gradient evaluation using finite difference.

Usage
ask_dY(
X’
dX = 0.001,
id = o,

dX.tmp = "dX.todo",

dY.tmp = "dY.done",

tmp_path = file.path(tempdir(), "..", "asktell.tmp"),
sleep_step = 0.1,

sleep_init = 0,

timeout = 360000,

trace = function(...) cat(paste@(..., "\n")),

4 ask_ dY

clean = TRUE,
force_cleanup = FALSE
)
Arguments
X input values of objective function gradient to compute
dX finite difference applied to input values to compute gradient
id unique identifier for this asktell loop (default: "0")
dX. tmp temporary "X" values file (default: "dX.todo")
dY.tmp temporary "Y" values file (default: "dY.done")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp”)
sleep_step delay between checking X.tmp and Y.tmp (default: 0.1 sec.)
sleep_init initial delay before checking X.tmp and Y.tmp (default: O sec.)
timeout maximum delay before breaking loop if X.tmp or Y.tmp doesn’t appear (default:
36000 sec. = 10 min.) .
trace function to display asktell loop status (default : *cat’)
clean should we cleanup temporary files after reading ? (default: TRUE)

force_cleanup should we cleanup temporary files before writing (possible conflicting asktell
calls) ? (default: FALSE)

Details

*ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ’ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing ’ask_X’, and when you know what values returns from the external objective, just call "tell_Y’
to give it.

Value

output value of objective function gradient, as given by tell_dY() call in parallel session

Author(s)

Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.

Examples

Not run: ### Assumes you can use two independent R sessions
In main R session
ask_dY(x=123)
In another R session
ask_dX() # returns 123
tell_dY(y=456)
Then ask_dY in main R session returns with value '456'

End(Not run)

ask X 5

ask_X ask&tell component function to "ask’ where objective function evalu-
ation is required.

Description

ask&tell component function to ’ask’ where objective function evaluation is required.

Usage
ask_X(
id = o,
X.tmp = "X.todo",
tmp_path = file.path(tempdir(), "..", "asktell.tmp"),

sleep_step = 0.1,
sleep_init = 0.1,
timeout = 360000,

trace = function(...) cat(paste@d(..., "\n")),
clean = TRUE
)
Arguments
id unique identifier for this asktell loop (default: "0")
X.tmp temporary "X" values file (default: "X.todo")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp’)
sleep_step delay between checking X.tmp and Y.tmp (default: 0.1 sec.)
sleep_init initial delay before checking X.tmp and Y.tmp (default: O sec.)
timeout maximum delay before breaking loop if X.tmp or Y.tmp doesn’t appear (default:
36000 sec. = 10 min.) .
trace function to display asktell loop status (default : ’cat’)
clean should we cleanup temporary files after reading ? (default: TRUE)
Details

“ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing “ask_X’, and when you know what values returns from the external objective, just call “tell_Y’
to give it.

Value

input value of objective function to compute externally

6 ask 'Y
Author(s)
Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.
Examples
Not run: ### Assumes you can use two independent R sessions
In main R session
ask_Y(x=123)
In another R session
ask_X() # returns 123
tell_Y(y=456)
Then ask_dY in main R session returns with value '456'
End(Not run)
ask_Y ask&tell component function to "ask’ objective function evaluation.
Description
ask&tell component function to ’ask’ objective function evaluation.
Usage
ask_Y(
X)
id = o,
X.tmp = "X.todo",
Y.tmp = "Y.done",
tmp_path = file.path(tempdir(), "..", "asktell.tmp"),
sleep_step = 0.1,
sleep_init = 0,
timeout = 360000,
trace = function(...) cat(paste@d(..., "\n")),
clean = TRUE,
force_cleanup = FALSE
)
Arguments
X input values of objective function to compute
id unique identifier for this asktell loop (default: "0")
X.tmp temporary "X" values file (default: "X.todo")
Y. tmp temporary "Y" values file (default: "Y.done")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp’)
sleep_step delay between checking X.tmp and Y.tmp (default: 0.1 sec.)

from01 7

sleep_init initial delay before checking X.tmp and Y.tmp (default: O sec.)

timeout maximum delay before breaking loop if X.tmp or Y.tmp doesn’t appear (default:
36000 sec. = 10 min.) .

trace function to display asktell loop status (default : *cat’)

clean should we cleanup temporary files after reading ? (default: TRUE)

force_cleanup should we cleanup temporary files before writing (possible conflicting asktell
calls) ? (default: FALSE)

Details

“ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing ’ask_X’, and when you know what values returns from the external objective, just call "tell_Y’
to give it.

Value

output value of objective function, as given by tell_Y() call in parallel session

Author(s)

Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.

Examples

Not run: #i## Assumes you can use two independent R sessions
In main R session
ask_Y(x=123)
In another R session
ask_X() # returns 123
tell_Y(y=456)
Then ask_Y in main R session returns with value '456'

End(Not run)

fromo1 Helper function to scale from [0,1] to [min,max]

Description

Helper function to scale from [0,1] to [min,max]

Usage
fromo1(X, inp)

8 import

Arguments

X values to scale

inp list containing *min’ and *max’ values
Value

X scaled in [inpmin, inpmax]

Examples

from@1(data.frame(x=matrix(runif(10))),list(x=list(min=10,max=20)))

import Dependencies loader, supports many protocols like github:, gitlab:, ...
using remotes::instal_... Will create a local ’.lib’ directory to store
packages installed

Description

Dependencies loader, supports many protocols like github:, gitlab:, ... using remotes::instal_... Will
create a local ’.lib’ directory to store packages installed

Usage
import(..., lib.loc = NULL, trace = function(...) cat(paste@(..., "\n")))
Arguments
dependencies/libraries/packages to load
lib.loc use to setup a dedicated libPath directory to install packages
trace display info
Value

(list of) load status of packages (TRUE/FALSE)

Examples

if(interactive()){
import('VGAM')
}

list.results

list.results Parse algorithm string result in R list

Description

Parse algorithm string result in R list

Usage

list.results(result)

Arguments

result templated algorithm result string

Value

list of string parsed: extract XML or JSON content

Examples

list.results(paste@(

"<HTML name='minimum'>minimum is @.523431237543406 found at ...</HTML>",
"<min> 0.523431237543406 </min>",

"<argmin>[0.543459029033452,0.173028395040855]</argmin>"))

max_input Helper function to get $max from ’input’ list

Description

Helper function to get $max from input’ list

Usage

max_input (inp)

Arguments

inp Ist of objects containing 'max’ field (as list)

Value

array of inp$...$max values

Examples

max_input(list(x1=list(min=0,max=1),x2=1ist(min=2,max=3)))

10 parse.algorithm

min_input Helper function to get $min from ’input’ list

Description

Helper function to get $min from *input’ list

Usage

min_input(inp)

Arguments

inp Ist of objects containing 'min’ field (as list)

Value

array of inp$...$min values

Examples

min_input(list(x1=list(min=0,max=1),x2=1ist(min=2,max=3)))

parse.algorithm Parse algorithm file and returns its (header) indos and methods

Description

Parse algorithm file and returns its (header) indos and methods

Usage

parse.algorithm(file)

Arguments

file Template algorithm file to parse

Value

list of header infos and environment containing methods <constructor>,getInitialDesign,getNextDesign,displayResults

Examples

parse.algorithm(system.file("Brent.R", package="templr"))

read.algorithm

11

read.algorithm Read algorithm file and returns one header info

Description

Read algorithm file and returns one header info

Usage

read.algorithm(file, info = "help")

Arguments
file Template algorithm file to read
info header info to return

Value

list of header infos

Examples

read.algorithm(system.file("Brent.R", package="templr"),"help"”)

run.algorithm Apply a template algorithm file to an objective function

Description

Apply a template algorithm file to an objective function

Usage

run.algorithm(
algorithm_file,
objective_function,
input,
output = NULL,
options = NULL,
work_dir = ".",
trace = function(...) cat(paste@d(..., "\n")),
silent = FALSE,
save_data = TRUE

12 tell dY

Arguments

algorithm_file templated algorithm file
objective_function
function to apply algorithm on

input list of input arguments of function (eg. list(x 1=list(min=0,max=1),x2=list(min=10,max=20)))
output list of output names
options algorithm options to overload default ones
work_dir working directory to run algorithm. will store output files, images, ..
trace display running info
silent quietness
save_data enable (by default) saving of data (in .Rds) along algorithm iterations.
Value

algorithm result (and algorithm object & files as attributes)

Examples

run.algorithm(
system.file("Brent.R", package="templr"),
function(x) sin(x)-0.75,
list(x=list(min=0,max=pi/2)),
work_dir=tempdir()

)
tell_dY ask&tell component function to ’tell’ objective function value to wait-
ing 'ask_Y’ call in another R session.
Description

ask&tell component function to tell” objective function value to waiting *ask_Y’ call in another R
session.

Usage

tell_dY(
dy,
id = o,
dY.tmp = "dY.done",
tmp_path = file.path(tempdir(), "..", "asktell.tmp"),
trace = function(...) cat(paste@(..., "\n")),
force_cleanup = FALSE

tell 'Y 13

Arguments
dy output value of objective function gradient to return
id unique identifier for this asktell loop (default: "0")
dY.tmp temporary "Y" values file (default: "dY.done")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp’)
trace function to display asktell loop status (default : *cat’)

force_cleanup should we cleanup temporary files before writing (possible conflicting asktell
calls) ? (default: FALSE)

Details

“ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ’ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing ’ask_X’, and when you know what values returns from the external objective, just call "tell_Y’
to give it.

Value

input value of objective function to compute externally

Author(s)

Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.

Examples

Not run: #i## Assumes you can use two independent R sessions
In main R session
ask_dY(x=123)
In another R session
ask_dX() # returns c(123, 123.123)
tell_dY(dy=c(456,456.123))
Then ask_dY in main R session returns with value '1'

End(Not run)

tell Y ask&tell component function to ’tell’ objective function value to wait-
ing ask_Y’ call in another R session.

Description

ask&tell component function to ’tell” objective function value to waiting ask_Y’ call in another R
session.

14 tel LY

Usage
tell_Y(
Y,
id = o,
Y.tmp = "Y.done",
tmp_path = file.path(tempdir(), "..", "asktell.tmp"),
trace = function(...) cat(paste@(..., "\n")),
force_cleanup = FALSE
)
Arguments
y output value of objective function to return
id unique identifier for this asktell loop (default: "0")
Y. tmp temporary "Y" values file (default: "Y.done")
tmp_path temporary directory to store X.tmp & Y.tmp (default: "tempdir()/../asktell.tmp’)
trace function to display asktell loop status (default : *cat’)

force_cleanup should we cleanup temporary files before writing (possible conflicting asktell
calls) ? (default: FALSE)

Details

“ask&tell” injection loop to call an external objective function within an inline algorithm (like op-
tim(...)) Main idea: pass ask_Y’ as objectve function argument of algorithm, which will wait until
you call "tell_Y” in another R process. In this secondary process, you can read what X is called us-
ing “ask_X’, and when you know what values returns from the external objective, just call “tell_Y’
to give it.

Value

input value of objective function to compute externally

Author(s)

Y. Richet, discussions with D. Sinoquet. Async IO principle was defined by G. Pujol.

Examples

Not run: ### Assumes you can use two independent R sessions
In main R session
ask_Y(x=123)
In another R session
ask_X() # returns 123
tell_Y(y=456)
Then ask_dY in main R session returns with value '456'

End(Not run)

to01

15

to01 Helper function to scale from [min,max] to [0,1]

Description

Helper function to scale from [min,max] to [0,1]

Usage

to@1(X, inp)

Arguments

X values to scale

inp list containing *min’ and *max’ values

Value

X scaled in [0,1]

Examples

to01(10+10xdata. frame(x=matrix(runif(10))),list(x=list(min=10,max=20)))

Index

ask_dX, 2
ask_dY, 3
ask_X, 5
ask_Y, 6

fromd1, 7
import, 8
list.results, 9

max_input, 9
min_input, 10

parse.algorithm, 10

read.algorithm, 11
run.algorithm, 11

tell_dY, 12
tell_ Y, 13
to01, 15

16

	ask_dX
	ask_dY
	ask_X
	ask_Y
	from01
	import
	list.results
	max_input
	min_input
	parse.algorithm
	read.algorithm
	run.algorithm
	tell_dY
	tell_Y
	to01
	Index

