
A quick guide on how to use tapnet

Carsten F. Dormann

January 19, 2021

Abstract

This document presents the case study of Benadi et al. (2021), using the data of Tinoco et al. (2017). It
thereby also serves as tutorial for the use of the <tapnet= package.

Contents

1 Data preparation 2

2 Fit web1 using the tapnet approach 3

3 Predict from ûtted tapnet to new network 6

4 Using multiple networks 7

5 Prediction baseline: use only abundances in the new web 8

6 Preparing tapnet data as data.frame for statistical models 9

7 Prediction using GAM of phylogeny, traits and trait matching 9

8 Prediction using randomForest with phylogeny, traits and trait matching 11

9 Cross-validation for all approaches 12

9.1 Using tapnet . 12

9.2 Fit of the baseline, abundance-only model . 14

9.3 The GAM-approach . 14

9.4 The randomForest approach . 15

9.5 Summary of cross-validation results . 17

9.6 Fits . 18

10 Comparison with tapnet using marginal totals as abundances 18

This supplement presents the workûow for the case study. It may also serve as tutorial for the use of tapnet

functions.

References

Benadi, G., Dormann, C.F., Fründ, J., Stephan, R.& Vázquez, D.P. (2021) Quantitative prediction of interactions

in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press.

Tinoco, B.A, Graham, C.H., Aguilar, J.M. & Schleuning, M. (2017) Oikos 126, 52360. DOI: 10.1111/oik.02998

1

1 Data preparation

library(tapnet)

data(Tinoco)

First, we have to put all information into a single 8tapnet9 object, using make_tapnet:

Produce tapnet objects using each network separately (1=Forest, 2=shrub, 3=cattle farm)

tapnet_web1 <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree,

networks = networks[1], traits_low = plant_traits,

traits_high = humm_traits, abun_low=plant_abun[1],

abun_high=humm_abun[1], npems_lat = 4)

tapnet_web2 <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree,

networks = networks[2], traits_low = plant_traits,

traits_high = humm_traits, abun_low=plant_abun[2],

abun_high=humm_abun[2], npems_lat = NULL)

Note:

(a)We use only 4 phylogenetic eigenvectors (PEMs, for <maps=, and because PE is too short to be unambiguous)

for the ûrst network, but all for the other two for evaluation. The <value= NULL enforces the use of all PEMs.

(b) Because each web has only some species present, some PEMswill automatically be dropped (those relevant

only for themissing species). As a consequence, web2may nownot have the same PEMs used for web1 (which

are required for prediction from web1 to web 2). Let9s check:

colnames(tapnet_web1$networks[[1]]$pems$low) # names of fitted PEMs

[1] "V_1" "V_2" "V_3" "V_7"

colnames(tapnet_web1$networks[[1]]$pems$high)

[1] "V_1" "V_3" "V_6" "V_8"

colnames(tapnet_web2$networks[[1]]$pems$low) # names of PEMs all present

[1] "V_1" "V_2" "V_3" "V_5" "V_7" "V_8" "V_10" "V_11" "V_16" "V_19"

[11] "V_20" "V_21" "V_22" "V_25" "V_27" "V_28"

colnames(tapnet_web2$networks[[1]]$pems$high) # V_8 (high) is missing!

[1] "V_1" "V_3" "V_4" "V_6" "V_7" "V_9" "V_11" "V_12" "V_13"

We can see that for the lower level, all PEMs were computed for web2, but not for the higher level, where V_8
is missing. We compute that, using the helper function pems_from_tree, and add it to the tapnet-object.
(Because this function is not exported, we need to use the triple-colon when calling it explicitly from the
package.) Then we do the same with web3.

tapnet_web2$networks[[1]]$pems$high$V_8 <- tapnet:::pems_from_tree(humm_tree)[colnames(

tapnet_web2$networks[[1]]$web), "V_8"]

colnames(tapnet_web2$networks[[1]]$pems$high) # check: complete!

[1] "V_1" "V_3" "V_4" "V_6" "V_7" "V_9" "V_11" "V_12" "V_13" "V_8"

Using the colnames(.)-line we can check that they are now complete (not shown).
As an additional preliminary step, we may want to check for correlation between the phylogenetic eigenvec-
tors and the observed traits:

cor(cbind(tapnet_web1$networks[[1]]$pems$low, tapnet_web1$networks[[1]]$traits$low))

2

V_1 V_2 V_3 V_7

V_1 1.00000000 -0.03323508 0.19929407 0.01950265

V_2 -0.03323508 1.00000000 -0.02390179 0.02484880

V_3 0.19929407 -0.02390179 1.00000000 0.02538867

V_7 0.01950265 0.02484880 0.02538867 1.00000000

Corolla_length_mm 0.30147805 -0.14321786 0.23301956 -0.40838875

Corolla_length_mm

V_1 0.3014780

V_2 -0.1432179

V_3 0.2330196

V_7 -0.4083887

Corolla_length_mm 1.0000000

cor(cbind(tapnet_web1$networks[[1]]$pems$high, tapnet_web1$networks[[1]]$traits$high))

V_1 V_3 V_6 V_8

V_1 1.0000000 -0.21978007 -0.11948531 -0.14519738

V_3 -0.2197801 1.00000000 0.07786362 0.01687728

V_6 -0.1194853 0.07786362 1.00000000 0.28972218

V_8 -0.1451974 0.01687728 0.28972218 1.00000000

Bill_length_mean_mm 0.5839393 0.23682088 0.10121502 -0.28068808

Bill_length_mean_mm

V_1 0.5839393

V_3 0.2368209

V_6 0.1012150

V_8 -0.2806881

Bill_length_mean_mm 1.0000000

In this case, correlations are moderate (−0.4 for the strongest lower-level and 0.58 for the higher-level traits)

and indicate some phylogenetic signal in the observed trait. Note, however, that latent traits are linear com-

binations of phylogenetic traits and this correlation does not check for collinearity with such a construct. We

shall do that after ûtting.

2 Fit web1 using the tapnet approach

We here assume that all trait matches are best described using a normal distribution. Alternatively, we could
use the shifted log-normal. Next, we evaluate the goodness-of-ût of this ût:

fit_web1 <- fit_tapnet(tapnet = tapnet_web1, method="SANN") # very slow, but reliable

#fit_web1 <- fit_tapnet(tapnet = tapnet_web1) # the default way

#fit_web1ln <- fit_tapnet(tapnet = tapnet_web1, tmatch_type_obs = "shiftlnorm",

ini=fit_web1optpar*2) # requires some tempering with ini

gof_web1_norm <- gof_tapnet(fit_web1)

gof_web1_norm

$bc_sim_web

[1] 0.4700434

##

$cor_web

[1] 0.506687

##

$net_indices

$net_indices[[1]]

Index Observed Mean Median q2.5 q97.5

1 connectance 0.3250000 0.6944528 0.6917293 0.6041667 0.7857143

2 NODF 62.5076453 75.9450699 76.1949456 68.5033638 81.9754513

3 weighted NODF 39.1972477 54.5116352 54.7724833 45.5104924 61.8013420

4 H2 0.4496136 0.1386368 0.1381887 0.1166049 0.1601014

3

The goodness-of-ût function returns the similarity between ûtted and observed network expressed as Bray-

Curtis similarity (bc_sim_web), where 0.50 is not a bad value; as the correlation between ûtted and observed

number of interactions, expressed as Spearman correlation (cor_web), which is our key comparison criterion

at 0.52; and, ûnally, some selected network indices were computed for the observed and repeated draws from

the ûtted multinomial distribution. In this case, none of the four indices includes the observed even in the 95%

conûdence interval (i.e. not good).
We can also have a look at the ûtted model parameters:

fit_web1

$par_opt

par_optlat_low

V_1 V_2 V_3 V_7

2.64756311 4.43496460 -0.08270909 -1.13704950

##

par_optlat_high

V_1 V_3 V_6 V_8

5.2243635 2.9772795 -0.4693686 1.1060889

##

par_optpem_shift

pem_shift

-0.04238474

##

par_opttmatch_width_pem

tmatch_width_pem

0.4641643

##

par_opttmatch_width_obs

tmatch_width_obs1

6.093618

##

par_optdelta

delta

0.0156301

##

##

$tmatch_type_pem

[1] "normal"

##

$tmatch_type_obs

[1] "normal"

##

$lambda

[1] 0

##

$method

[1] "SANN"

##

$maxit

[1] 50000

##

$opt

optpar

V_1 V_2 V_3 V_7

0.97363964 4.43496460 -0.08270909 -1.13704950

V_1 V_3 V_6 V_8

5.22436353 2.97727948 -0.46936861 1.10608885

pem_shift tmatch_width_pem tmatch_width_obs1 delta

-0.04238474 -0.76751674 1.80724201 -4.14280305

##

4

optvalue

[1] 1368.485

##

optcounts

function gradient

50000 NA

##

optconvergence

[1] 0

##

optmessage

NULL

##

##

attr(,"class")

[1] "fitted.tapnet"

attr(,"tapnet_name")

[1] "tapnet_web1"

The output is a bit confusing, as it contains the ûtted parameters twice: ûrst, under par_opt in the inter-

pretable form, i.e. back-transformed for those parameters that were constraint (PEM 1, the standard devia-

tions of the trait-matching function and δ); then again, under opt, in their untransformed form, as spit out

by optim.

At least two things are interesting here:

1. The standard deviation of the trait-matching function (the normal, in this case) for the observed traits

is rather wide (at 7.6, see par_opt$tmatch_width_obs). Typically, this indicates that the traits were

not ûtting very well to each other and the model did not ûnd the observed traits useful. (We have seen

much worse, with values > 1000, though.)

2. The value of δ is (practically) 1. A value of 1 indicates that traits (observed and latent) are as important

as the abundance.

3. Putting the two previous points together: this model hinges on the matching of the phylogenetic-

informed latent traits. One reason may be that the phylogenies code up the eûect of the traits, so that

the trait has no remaining additional eûect. Parameter lambda imposes a shrinkage to prioritise the

observed trait eûect over the latent traits. (Imposing some shrinkge, e.g. setting lambda=0.1, in this

case reduced predictive ût to below the abundance-only model.)

4. The absolute values of the PEM-parameters matters little.

With the ûtted object, we can correlate the latent and the observed traits. The code is rather ugly, since we
need to access data in the belly of the object:

fitted_lin_low <- fit_web1par_optlat_low[which(names(fit_web1par_optlat_low) %in%

colnames(tapnet_web1$networks[[1]]$pems$low))]

fitted_lat_low <- as.vector(scale(rowSums(matrix(fitted_lin_low,

nrow = nrow (tapnet_web1$networks[[1]]$pems$low),

ncol = ncol(tapnet_web1$networks[[1]]$pems$low), byrow = TRUE) *

tapnet_web1$networks[[1]]$pems$low)))

cor(fitted_lat_low, tapnet_web1$networks[[1]]$traits$low)

Corolla_length_mm

[1,] 0.1341827

fitted_lin_high <- fit_web1par_optlat_high[which(names(fit_web1par_optlat_high) %in%

colnames(tapnet_web1$networks[[1]]$pems$high))]

fitted_lat_high <- as.vector(scale(rowSums(matrix(fitted_lin_high,

nrow = nrow (tapnet_web1$networks[[1]]$pems$high),

5

ncol = ncol(tapnet_web1$networks[[1]]$pems$high), byrow = TRUE) *

tapnet_web1$networks[[1]]$pems$high)))

cor(fitted_lat_high, tapnet_web1$networks[[1]]$traits$high)

Bill_length_mean_mm

[1,] 0.6047337

In neither case was there any correlation between latent and observed traits.
Finally, we can also check for correlation between the latent trait and the (independent) abundance of the
species:

cor(fitted_lat_low, tapnet_web1$networks[[1]]$abuns$low)

[1] 0.2421337

cor(fitted_lat_high, tapnet_web1$networks[[1]]$abuns$high)

[1] -0.4024925

3 Predict from ûtted tapnet to new network

Fitting characteristics are all nice and ûne, but how good does tapnet predict to a new network?
To predict to a new network, we have to provide the tapnet ût-object and the abundances for that network.
This allows for changing abundances, or indeed including or excluding species, independent from network
observations. The tapnet-object itself is referenced by name in the ût, and is used to compute the phyloge-
netic information for the species in the new network. In this case, we provide the abundances based on the
tapnet_web2-object we created earlier. We could however also simply make a list with the abundances of
each level for the second network (see code in next section, or help page of tapnet_predict).

preds2.tapnet <- predict_tapnet(fit=fit_web1, abuns=tapnet_web2$networks[[1]]$abuns)

cor(as.vector(preds2.tapnet), as.vector(tapnet_web2$networks[[1]]$web))

[1] 0.175038

So the correlation is actually not very high! Let9s visualise that. To do so, we need to multiply the predic-
tions by the number of observed interactions, as the predictions are probabilities that sum to one. Also, since
interactions are approximately log-normally distributed, we depict the ût as log-log-plot.

sum(tapnet_web2$networks[[1]]$web)

[1] 3979

par(mar=c(5,5,1,1))

plot(preds2.tapnet*3979 + 1, tapnet_web2$networks[[1]]$web + 1, log="xy", las=1,

xlab="predicted number of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

6

1 5 10 50 100 500

1

5

10

50

100

500

1000

predicted number of interactions + 1

o
b

s
e

rv
e

d
 n

u
m

b
e

r
o

f
in

te
ra

c
ti
o

n
s
 +

 1

Finally, we can compute the multinomial log-likelihood of the data, given the prediction:

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.tapnet),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -9214.783

4 Using multiple networks

In the tapnet approach, we can also ût several networks simultaneously, and use the resulting ût for prediction.
For example, we can ût tapnet to the networks from shrub and cattle, and predict to (1 =) forest:

data(Tinoco)

tap <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2:3],

traits_low = plant_traits, traits_high = humm_traits,

abun_low = plant_abun[2:3], abun_high=humm_abun[2:3] , npems_lat = 4)

fit <- fit_tapnet(tap) # uses two networks for fitting!

gof_tapnet(fit)

$bc_sim_web

[1] 0.3788003 0.4667962

##

$cor_web

[1] 0.3992802 0.5672018

##

$net_indices

$net_indices[[1]]

Index Observed Mean Median q2.5 q97.5

1 connectance 0.2324561 0.7164868 0.7107843 0.6578947 0.7914439

2 NODF 43.5864979 81.1276132 81.5320299 73.2460589 86.9142656

3 weighted NODF 30.7805907 64.0236824 64.3139011 56.9753183 69.5455754

4 H2 0.5022179 0.1207073 0.1206267 0.1110184 0.1307422

##

$net_indices[[2]]

Index Observed Mean Median q2.5 q97.5

1 connectance 0.3040936 0.6559816 0.6491228 0.6081871 0.7291941

2 NODF 56.5180793 81.0418944 81.3004335 73.9846550 87.0980051

3 weighted NODF 38.3391890 63.4218334 63.5538500 56.7025985 69.5373901

4 H2 0.3713669 0.1161382 0.1163632 0.1020925 0.1303586

7

predict to omitted forest network:

pred1 <- predict_tapnet(fit, abuns=list("low"=plant_abun[[1]], "high"=humm_abun[[1]]))

cor(as.vector(pred1*sum(networks[[1]])), as.vector(networks[[1]]))

[1] 0.1188132

And we can do the same for the other two networks (ûrst to 2 = shrubs, then to 3 = cattle):

[1] 0.1732161

[1] 0.4418444

If we compare this single-network predictions (see towards the end of this document), we notice a variable

eûect on performance: more is not necessarily better. This will probably depend on the similarity of the

habitats and hence interacting species.

5 Prediction baseline: use only abundances in the new web

As a baseline, we compute the information contained in the abundances. If the hummingbirds had no prefer-
ences, but only interacted strictly with probability proportional to abundance, then abundant hummingbird
species would interact with high probability with abundant plant species, but with low probability with rare
plant species.

preds2.abunonly <- (tapnet_web2$networks[[1]]$abuns$low /

sum(tapnet_web2$networks[[1]]$abuns$low)) %*% t(tapnet_web2$networks[[1]]$abuns$high /

sum(tapnet_web2$networks[[1]]$abuns$high)) * sum(tapnet_web2$networks[[1]]$web)

cor(as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web))

[1] 0.09473036

par(mar=c(5,5,1,1))

plot(preds2.abunonly + 1, tapnet_web2$networks[[1]]$web + 1, log="xy", las=1,

xlab="predicted number of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

1 2 5 10 20 50 100 200 500

1

5

10

50

100

500

1000

predicted number of interactions + 1

o
b

s
e

rv
e

d
 n

u
m

b
e

r
o

f
in

te
ra

c
ti
o

n
s
 +

 1

And the log-likelihood:

8

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.abunonly),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -9202.007

Thismeans, our tapnet model is superior in prediction to the abundance-onlymodel, indicating that the (latent

and observed) traits do carry some information on the interactions. Note, however, that the prediction quality

of the abundance-only is very low.

6 Preparing tapnet data as data.frame for statistical models

To prepare the data for a statistical model, we provide the function tapnet2df:

web1.df <- tapnet2df(tapnet_web1)

web2.df <- tapnet2df(tapnet_web2)

head(web1.df)

IDhigher IDlower interactions pemLV_1 pemLV_2

1 Coeligena iris Alloplectus peruvianum 13 0.19958316 -0.01721758

2 Coeligena iris Macleania rupestris 22 0.06143519 0.01314354

3 Coeligena iris Myrcianthes fragrans 0 -0.17608854 0.22809965

4 Coeligena iris Salvia hirta 4 0.21167754 -0.01945177

5 Coeligena iris Cavendishia bracteata 0 0.06143519 0.01314354

6 Coeligena iris Mutisia lehmannii 6 0.20823846 -0.02230535

pemLV_3 pemLV_7 pemHV_1 pemHV_3 pemHV_6 pemHV_8 abunL

1 0.298458999 0.110246748 0.3026318 0.09104722 -0.2849888 0.5647174 3.428571

2 0.014975823 0.006401991 0.3026318 0.09104722 -0.2849888 0.5647174 38.529412

3 -0.006808424 -0.005932541 0.3026318 0.09104722 -0.2849888 0.5647174 69.500000

4 0.346816571 0.323487833 0.3026318 0.09104722 -0.2849888 0.5647174 10.783505

5 0.014975823 0.006401991 0.3026318 0.09104722 -0.2849888 0.5647174 26.111111

6 -0.310376666 0.013295514 0.3026318 0.09104722 -0.2849888 0.5647174 2.740741

abunH traitLCorolla_length_mm traitHBill_length_mean_mm

1 3.950695 48.1 28.1

2 3.950695 16.5 28.1

3 3.950695 1.3 28.1

4 3.950695 22.9 28.1

5 3.950695 24.5 28.1

6 3.950695 29.3 28.1

These data.frames contain all the information coded in the tapnet object, but no matches of traits.

7 Prediction using GAM of phylogeny, traits and trait matching

To apply the approach of Brousseau et al. (2018) to our quantitative network, we use a negative binomial

GAM. It uses, as predictors, the ûrst two PEMs of each group, plus the observed traits, plus the squared trait

diûerence, plus the abundances.
We augment the data.frames from the previous section by the trait-matching variables (in this case only one
pair: bill and corolla length):

web1.df.extended <- cbind.data.frame(web1.df, "match"=(web1.df$traitHBill_length_mean_mm -

web1.df$traitLCorolla_length_mm)^2)

web2.df.extended <- cbind.data.frame(web2.df, "match"=(web2.df$traitHBill_length_mean_mm -

web2.df$traitLCorolla_length_mm)^2)

Nowwe can ût themodel. Note that we believe this approach to be statistically incorrect, as it assumes that the
observed interactions are independent, when (clearly?) they are not. Each bird selects a ûower based on what
is on oûer; thus, a decision to visit one ûower implies not visiting another, creating a negative dependence.
Anyway.

9

library(mgcv)

gam2 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +s(pemLV_2, pemHV_3, bs="ts",

k=24) + s(traitLCorolla_length_mm, k=3) + s(traitHBill_length_mean_mm, k=3) +

s(match, k=3) + s(abunL, k=3) + s(abunH, k=3), data=web1.df.extended, family=nb,

gamma=1.4)

summary(gam2)

##

Family: Negative Binomial(0.171)

Link function: log

##

Formula:

interactions ~ s(pemLV_1, pemHV_1, bs = "ts", k = 24) + s(pemLV_2,

pemHV_3, bs = "ts", k = 24) + s(traitLCorolla_length_mm,

k = 3) + s(traitHBill_length_mean_mm, k = 3) + s(match, k = 3) +

s(abunL, k = 3) + s(abunH, k = 3)

##

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.969 1.703 -3.505 0.000456 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(pemLV_1,pemHV_1) 1.480e+00 23.000 14.647 7.86e-05 ***

s(pemLV_2,pemHV_3) 1.724e-05 23.000 0.000 0.291704

s(traitLCorolla_length_mm) 1.772e+00 1.929 10.635 0.002754 **

s(traitHBill_length_mean_mm) 1.000e+00 1.000 0.442 0.506187

s(match) 1.000e+00 1.000 18.939 1.38e-05 ***

s(abunL) 1.917e+00 1.993 14.489 0.001103 **

s(abunH) 1.000e+00 1.000 12.618 0.000382 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

R-sq.(adj) = -5 Deviance explained = 49.3%

-REML = 203 Scale est. = 1 n = 160

preds2.gam <- predict(gam2, newdata=web2.df.extended)

cor(exp(preds2.gam), web2.df$interactions)

[1] -0.01210051

Here, the contributions of the diûerent predictors can easily be discerned. Abundances and trait-matching are

important, but phylogenetics are (apparently) not. Note that in this case corolla length and trait matching are

high (r = 0.84) correlated, representing the same information. That could be avoided by standardising the

trait values before ûtting the model. However, in that case we lose the direct interpretation of 0 indicating the

same length of corolla and bill.
Again, we can plot the result:

par(mar=c(5,5,1,1))

plot(exp(preds2.gam) +1 , web2.df$interactions + 1, log="xy", las=1, xlab="predicted

number of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

10

1 100 10000

1

5

10

50

100

500

1000

predicted

 number of interactions + 1

o
b

s
e

rv
e

d
 n

u
m

b
e

r
o

f
in

te
ra

c
ti
o

n
s
 +

 1

This prediction contains no information on the observed interactions.
And the log-likelihood:

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=exp(preds2.gam) /

sum(exp(preds2.gam)), size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -144756.9

So these values are abysmally poor.

8 Prediction using randomForest with phylogeny, traits and trait matching

We can use the same data with a diûerent algorithm, in this case randomForest (as implemented in ranger).
It provides an assessment of which predictors are important to the ût:

library(ranger)

rf2 <- ranger(interactions ~ ., data=web1.df.extended[, -c(1, 2)], importance="impurity")

rf2

Ranger result

##

Call:

ranger(interactions ~ ., data = web1.df.extended[, -c(1, 2)], importance = "impurity")

##

Type: Regression

Number of trees: 500

Sample size: 160

Number of independent variables: 13

Mtry: 3

Target node size: 5

Variable importance mode: impurity

Splitrule: variance

OOB prediction error (MSE): 599.1792

R squared (OOB): 0.0733405

sort(importance(rf2), decreasing=T)

abunL match traitLCorolla_length_mm

12558.832 12170.222 9190.177

11

pemLV_2 pemHV_3 abunH

7706.507 6818.601 6332.438

traitHBill_length_mean_mm pemHV_1 pemLV_3

5743.067 4890.467 4836.141

pemLV_1 pemLV_7 pemHV_6

4729.878 4617.740 1195.166

pemHV_8

1085.502

preds2.ranger <- predict(rf2, data=web2.df.extended)$predictions

cor(preds2.ranger, web2.df$interactions)

[1] 0.2219289

par(mar=c(5,5,1,1))

plot(preds2.ranger +1 , web2.df$interactions + 1, log="xy", las=1, xlab="predicted number

of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

1 2 5 10 20 50 100

1

5

10

50

100

500

1000

predicted number

 of interactions + 1

o
b

s
e

rv
e

d
 n

u
m

b
e

r
o

f
in

te
ra

c
ti
o

n
s
 +

 1

And the log-likelihood:

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.ranger/sum(preds2.ranger),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -11929.07

This model is better than the abundance-only, GAM 3 and tapnet.

9 Cross-validation for all approaches

Here we only present the code and results for the cross-validation, where the model it ût to one web and

predicts to the other two, for all three combinations. We use the same settings and data preparation as in the

sections above.

9.1 Using tapnet

12

tapnet_web1 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[1],

traits_low=plant_traits, traits_high=humm_traits,

abun_low=plant_abun[1], abun_high=humm_abun[1], npems_lat=4)

tapnet_web2 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[2],

traits_low=plant_traits, traits_high=humm_traits,

abun_low=plant_abun[2], abun_high=humm_abun[2], npems_lat=4)

tapnet_web3 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[3],

traits_low=plant_traits, traits_high=humm_traits,

abun_low=plant_abun[3], abun_high=humm_abun[3], npems_lat=4)

fit_web1 <- fit_tapnet(tapnet = tapnet_web1, method="SANN")

fit_web2 <- fit_tapnet(tapnet = tapnet_web2, method="SANN")

fit_web3 <- fit_tapnet(tapnet = tapnet_web3, method="SANN")

-c(fit_web1optvalue, fit_web2optvalue, fit_web3optvalue)

[1] -1726.225 -4331.951 -1901.977

preds2.tapnet1 <- predict_tapnet(fit=fit_web1, abuns=tapnet_web2$networks[[1]]$abuns)

preds3.tapnet1 <- predict_tapnet(fit=fit_web1, abuns=tapnet_web3$networks[[1]]$abuns)

preds1.tapnet2 <- predict_tapnet(fit=fit_web2, abuns=tapnet_web1$networks[[1]]$abuns)

preds3.tapnet2 <- predict_tapnet(fit=fit_web2, abuns=tapnet_web3$networks[[1]]$abuns)

preds1.tapnet3 <- predict_tapnet(fit=fit_web3, abuns=tapnet_web1$networks[[1]]$abuns)

preds2.tapnet3 <- predict_tapnet(fit=fit_web3, abuns=tapnet_web2$networks[[1]]$abuns)

cors.tapnet <- c(

cor(as.vector(preds2.tapnet1), as.vector(tapnet_web2$networks[[1]]$web)),

cor(as.vector(preds3.tapnet1), as.vector(tapnet_web3$networks[[1]]$web)),

cor(as.vector(preds1.tapnet2), as.vector(tapnet_web1$networks[[1]]$web)),

cor(as.vector(preds3.tapnet2), as.vector(tapnet_web3$networks[[1]]$web)),

cor(as.vector(preds1.tapnet3), as.vector(tapnet_web1$networks[[1]]$web)),

cor(as.vector(preds2.tapnet3), as.vector(tapnet_web2$networks[[1]]$web))

)

cors.tapnet

[1] 0.13508949 0.52398437 0.10842538 0.47967584 0.02909331 0.11391497

ellCV.tapnet <- c(

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.tapnet1),

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.vector(preds3.tapnet1),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=as.vector(preds1.tapnet2),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.vector(preds3.tapnet2),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=as.vector(preds1.tapnet3),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.tapnet3),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

)

ellCV.tapnet

[1] -7992.325 -2838.724 -2893.864 -4553.146 -3175.828 -8479.723

13

9.2 Fit of the baseline, abundance-only model

preds1.abunonly <- (tapnet_web1$networks[[1]]$abuns$low /

sum(tapnet_web1$networks[[1]]$abuns$low)) %*% t(tapnet_web1$networks[[1]]$abuns$high /

sum(tapnet_web1$networks[[1]]$abuns$high)) / sum(tapnet_web1$networks[[1]]$web)

preds2.abunonly <- (tapnet_web2$networks[[1]]$abuns$low /

sum(tapnet_web2$networks[[1]]$abuns$low)) %*% t(tapnet_web2$networks[[1]]$abuns$high /

sum(tapnet_web2$networks[[1]]$abuns$high)) / sum(tapnet_web2$networks[[1]]$web)

preds3.abunonly <- (tapnet_web3$networks[[1]]$abuns$low /

sum(tapnet_web3$networks[[1]]$abuns$low)) %*% t(tapnet_web3$networks[[1]]$abuns$high /

sum(tapnet_web3$networks[[1]]$abuns$high)) / sum(tapnet_web3$networks[[1]]$web)

cors.abun <- c(

cor(as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web)),

cor(as.vector(preds3.abunonly), as.vector(tapnet_web3$networks[[1]]$web)),

cor(as.vector(preds1.abunonly), as.vector(tapnet_web1$networks[[1]]$web)),

cor(as.vector(preds3.abunonly), as.vector(tapnet_web3$networks[[1]]$web)),

cor(as.vector(preds1.abunonly), as.vector(tapnet_web1$networks[[1]]$web)),

cor(as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web))

)

cors.abun

[1] 0.09473036 0.48561887 0.24775426 0.48561887 0.24775426 0.09473036

ellCV.abuns <- c(

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.abunonly),

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.vector(preds3.abunonly),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=as.vector(preds1.abunonly),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.vector(preds3.abunonly),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=as.vector(preds1.abunonly),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.abunonly),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

)

ellCV.abuns

[1] -9202.007 -2706.214 -2149.702 -2706.214 -2149.702 -9202.007

Comparing these values to the ûts of the tapnet we see that they are similar, sometimes tapnet is better,

sometimes abundance-only.

9.3 The GAM-approach

web3.df <- tapnet2df(tapnet_web3)

web3.df.extended <- cbind.data.frame(web3.df, "match"=(web3.df$traitHBill_length_mean_mm -

web3.df$traitLCorolla_length_mm)^2)

gam1 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +

s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +

s(traitHBill_length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +

s(abunH, k=3), data=web1.df.extended, family=nb, gamma=1.4)

14

gam2 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +

s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +

s(traitHBill_length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +

s(abunH, k=3), data=web2.df.extended, family=nb, gamma=1.4)

gam3 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +

s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +

s(traitHBill_length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +

s(abunH, k=3), data=web3.df.extended, family=nb, gamma=1.4)

preds2.gam1 <- predict(gam1, newdata=web2.df.extended, type="response")

preds3.gam1 <- predict(gam1, newdata=web3.df.extended, type="response")

preds1.gam2 <- predict(gam2, newdata=web1.df.extended, type="response")

preds3.gam2 <- predict(gam2, newdata=web3.df.extended, type="response")

preds1.gam3 <- predict(gam3, newdata=web1.df.extended, type="response")

preds2.gam3 <- predict(gam3, newdata=web2.df.extended, type="response")

cors.gam <- c(

cor(preds2.gam1, web2.df$interactions),

cor(preds3.gam1, web3.df$interactions),

cor(preds1.gam2, web1.df$interactions),

cor(preds3.gam2, web3.df$interactions),

cor(preds1.gam3, web1.df$interactions),

cor(preds2.gam3, web2.df$interactions)

)

ellCV.gam <- c(

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.gam1/sum(preds2.gam1),

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=preds3.gam1/sum(preds3.gam1),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=preds1.gam2/sum(preds1.gam2),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=preds3.gam2/sum(preds3.gam2),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=preds1.gam3/sum(preds1.gam3),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.gam3/sum(preds2.gam3),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

)

cors.gam

[1] -0.01210051 0.33249537 0.25840986 0.13461081 -0.01344406 -0.01974305

ellCV.gam

[1] -77771.757 -6943.118 -2750.557 -6029.040 -26537.792 -162237.116

Compared to the tapnet, this GAM-approach is inferior in all instances.

9.4 The randomForest approach

Note that we now have to append the correct PEMs to the data. For the GAM, we only used the ûrst PEM, but
here the ûrst 4 (or all)!

15

tapnet_web1 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[1],

traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[1],

abun_high=humm_abun[1], npems_lat=NULL, use.all.pems=T)

tapnet_web2 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[2],

traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[2],

abun_high=humm_abun[2], npems_lat=NULL, use.all.pems=T)

tapnet_web3 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[3],

traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[3],

abun_high=humm_abun[3], npems_lat=NULL, use.all.pems=T)

web1.df <- tapnet2df(tapnet_web1)

web1.df.extended <- cbind.data.frame(web1.df, "match"=(web1.df$traitHBill_length_mean_mm -

web1.df$traitLCorolla_length_mm)^2)

web2.df <- tapnet2df(tapnet_web2)

web2.df.extended <- cbind.data.frame(web2.df, "match"=(web2.df$traitHBill_length_mean_mm -

web2.df$traitLCorolla_length_mm)^2)

web3.df <- tapnet2df(tapnet_web3)

web3.df.extended <- cbind.data.frame(web3.df, "match"=(web3.df$traitHBill_length_mean_mm -

web3.df$traitLCorolla_length_mm)^2)

rf1 <- ranger(interactions ~ ., data=web1.df.extended[, -c(1, 2)], importance="impurity")

rf2 <- ranger(interactions ~ ., data=web2.df.extended[, -c(1, 2)], importance="impurity")

rf3 <- ranger(interactions ~ ., data=web3.df.extended[, -c(1, 2)], importance="impurity")

head(sort(round(importance(rf1)), decreasing=T))

match pemLV_26 pemHV_13 pemLV_5 pemHV_1 pemHV_11

4938 4374 4229 3763 3685 3422

head(sort(round(importance(rf2)), decreasing=T))

abunH match pemHV_6 pemHV_8 pemLV_19 pemLV_1

101714 67596 61361 54057 49847 48585

head(sort(round(importance(rf3)), decreasing=T))

pemHV_13 pemHV_10 abunH pemHV_11 pemHV_12 pemHV_3

29495 22599 19986 18073 16328 16191

preds2.ranger1 <- predict(rf1, data=web2.df.extended)$predictions

preds3.ranger1 <- predict(rf1, data=web3.df.extended)$predictions

preds1.ranger2 <- predict(rf2, data=web1.df.extended)$predictions

preds3.ranger2 <- predict(rf2, data=web3.df.extended)$predictions

preds1.ranger3 <- predict(rf3, data=web1.df.extended)$predictions

preds2.ranger3 <- predict(rf3, data=web2.df.extended)$predictions

cors.rf <- c(

cor(preds2.ranger1, web2.df$interactions),

cor(preds3.ranger1, web3.df$interactions),

cor(preds1.ranger2, web1.df$interactions),

cor(preds3.ranger2, web3.df$interactions),

cor(preds1.ranger3, web1.df$interactions),

cor(preds2.ranger3, web2.df$interactions)

)

16

ellCV.rf <- c(

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.ranger1/sum(preds2.ranger1),

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=preds3.ranger1/sum(preds3.ranger1),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=preds1.ranger2/sum(preds1.ranger2),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=preds3.ranger2/sum(preds3.ranger2),

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web1$networks[[1]]$web), prob=preds1.ranger3/sum(preds1.ranger3),

size=sum(tapnet_web1$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.ranger3/sum(preds2.ranger3),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

)

cors.rf

[1] 0.2387133 0.3691158 0.3436329 0.1385993 0.3938876 0.1709911

ellCV.rf

[1] -13323.572 -4668.409 -3038.646 -5661.888 -2049.030 -10548.967

Compared to tapnet, the randomForest approach is consistently better in validation (correlations), but yields

very poor ûts in terms of log-likelihood.

9.5 Summary of cross-validation results

To summarise all of this, here are the correlations, sorted by overall prediction quality:

all.cors.res <- rbind(cors.tapnet, cors.abun, cors.rf, cors.gam)

all.cors.res <- cbind(all.cors.res, rowMeans(all.cors.res))

colnames(all.cors.res) <- c("1 to 2", "1 to 3", "2 to 1", "2 to 3", "3 to 1", "3 to 2",

"average")

round(all.cors.res, 2)

1 to 2 1 to 3 2 to 1 2 to 3 3 to 1 3 to 2 average

cors.tapnet 0.14 0.52 0.11 0.48 0.03 0.11 0.23

cors.abun 0.09 0.49 0.25 0.49 0.25 0.09 0.28

cors.rf 0.24 0.37 0.34 0.14 0.39 0.17 0.28

cors.gam -0.01 0.33 0.26 0.13 -0.01 -0.02 0.11

And here the log-likelihoods on the hold-out (larger, i.e. less negative, is better):

all.ellCV.res <- rbind(ellCV.tapnet, ellCV.abuns, ellCV.rf, ellCV.gam)

all.ellCV.res <- cbind(all.ellCV.res, rowMeans(all.ellCV.res))

colnames(all.ellCV.res) <- colnames(all.cors.res)

round(all.ellCV.res)

1 to 2 1 to 3 2 to 1 2 to 3 3 to 1 3 to 2 average

ellCV.tapnet -7992 -2839 -2894 -4553 -3176 -8480 -4989

ellCV.abuns -9202 -2706 -2150 -2706 -2150 -9202 -4686

ellCV.rf -13324 -4668 -3039 -5662 -2049 -10549 -6548

ellCV.gam -77772 -6943 -2751 -6029 -26538 -162237 -47045

In summary, these results show that tapnet, abundance-only and randomForest yield very similar performance

on prediction to a new network, based only on abundances. In absolute terms, these predictions are poor.

Among the possible explanations for the poor predictionwe thinkwe can exclude the very skewed distribution

17

of interaction intensities, as the data can be ût satisfactorily (by tapnet and randomForest). A more likely

explanation is that bipartite networks have no representation of interactions within a group, e.g. competitive

interactions among hummingbirds. As they diûer in size, a larger species not occurring in forest may <bully=

smaller birds into deviating from their feeding preferences; or very similar species may display character

displacement in the presence of the other.

9.6 Fits

Just for completeness, here also the information on the goodness-of-ût for all approaches. This is an inferior
measure of an approache9s performance if the aim is prediction. As sometimes people want to only use an
approach in an exploratory way, e.g. to identify which elements contribute to describing the data, we show
the same measures as before for the ût (again sorted by quality of prediction, not by quality of ût).

fits.cors.res <- rbind(

"tapnet"=cbind(

cor(as.vector(tapnet_web1$networks[[1]]$web), as.vector(predict_tapnet(fit_web1,

abuns=tapnet_web1$networks[[1]]$abuns))),

cor(as.vector(tapnet_web2$networks[[1]]$web), as.vector(predict_tapnet(fit_web2,

abuns=tapnet_web2$networks[[1]]$abuns))),

cor(as.vector(tapnet_web3$networks[[1]]$web), as.vector(predict_tapnet(fit_web3,

abuns=tapnet_web3$networks[[1]]$abuns)))

),

"abuns"=cbind(

cor(as.vector(tapnet_web1$networks[[1]]$web), as.vector(preds1.abunonly)),

cor(as.vector(tapnet_web2$networks[[1]]$web), as.vector(preds2.abunonly)),

cor(as.vector(tapnet_web3$networks[[1]]$web), as.vector(preds3.abunonly))

),

"rf"=cbind(

cor(predict(rf1, data=web1.df.extended)$predictions, web1.df$interactions),

cor(predict(rf2, data=web2.df.extended)$predictions, web2.df$interactions),

cor(predict(rf3, data=web3.df.extended)$predictions, web3.df$interactions)

),

"gam"=cbind(

cor(predict(gam1, data=web1.df.extended, type="response"), web1.df$interactions),

cor(predict(gam2, data=web2.df.extended, type="response"), web2.df$interactions),

cor(predict(gam3, data=web3.df.extended, type="response"), web3.df$interactions)

)

)

fits.cors.res <- cbind(fits.cors.res, rowMeans(fits.cors.res))

colnames(fits.cors.res) <- c("1 to 1", "2 to 2", "3 to 3", "average")

round(fits.cors.res, 2)

1 to 1 2 to 2 3 to 3 average

[1,] 0.45 0.70 0.69 0.62

[2,] 0.25 0.09 0.49 0.28

[3,] 0.94 0.92 0.91 0.92

[4,] 0.56 0.29 0.40 0.42

10 Comparison with tapnet using marginal totals as abundances

Often, no information on species abundances are available or reported (e.g. in the interaction web data base).

For null models, we thus typically use marginal totals as substitute for external abundances, arguing that

when species abundances are not strongly dependent on the network itself, these marginal totals should be

highly correlated with a species9 overall abundance in that habitat.

Here, we show how misleading this reasoning is for the situation of the Tinoco data. We follow the same

approach as above, but now withhold the information of independent plant and pollinator abundance, and

use marginal totals instead. For the test data, this leads to the weird situation that we know how often a

18

species has been observed in an interaction, but pretend not to know with whom. (The situation would be

that of two ecologists collecting the data side-by-side, with one only noting own the plants visited, but not

the birds visiting them, and the other the other way around. Concieveable, but unlikely.)

tapnet_web1.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=

networks[1], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[1],

: No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[1],

: No abundances for higher trophic level were provided. Using marginal totals instead.

tapnet_web2.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=

networks[2], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2],

: No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2],

: No abundances for higher trophic level were provided. Using marginal totals instead.

tapnet_web3.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=

networks[3], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[3],

: No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[3],

: No abundances for higher trophic level were provided. Using marginal totals instead.

fit_web1.w <- fit_tapnet(tapnet=tapnet_web1.w)

fit_web2.w <- fit_tapnet(tapnet=tapnet_web2.w)

fit_web3.w <- fit_tapnet(tapnet=tapnet_web3.w)

preds2.tapnet1.w <- predict_tapnet(fit=fit_web1.w, abuns=tapnet_web2.w$networks[[1]]$abuns)

preds3.tapnet1.w <- predict_tapnet(fit=fit_web1.w, abuns=tapnet_web3.w$networks[[1]]$abuns)

preds1.tapnet2.w <- predict_tapnet(fit=fit_web2.w, abuns=tapnet_web1.w$networks[[1]]$abuns)

preds3.tapnet2.w <- predict_tapnet(fit=fit_web2.w, abuns=tapnet_web3.w$networks[[1]]$abuns)

preds1.tapnet3.w <- predict_tapnet(fit=fit_web3.w, abuns=tapnet_web1.w$networks[[1]]$abuns)

preds2.tapnet3.w <- predict_tapnet(fit=fit_web3.w, abuns=tapnet_web2.w$networks[[1]]$abuns)

cors.tapnet.w <- c(

cor(as.vector(preds2.tapnet1.w), as.vector(tapnet_web2.w$networks[[1]]$web)),

cor(as.vector(preds3.tapnet1.w), as.vector(tapnet_web3.w$networks[[1]]$web)),

cor(as.vector(preds1.tapnet2.w), as.vector(tapnet_web1.w$networks[[1]]$web)),

cor(as.vector(preds3.tapnet2.w), as.vector(tapnet_web3.w$networks[[1]]$web)),

cor(as.vector(preds1.tapnet3.w), as.vector(tapnet_web1.w$networks[[1]]$web)),

cor(as.vector(preds2.tapnet3.w), as.vector(tapnet_web2.w$networks[[1]]$web))

)

cors.tapnet.w

[1] 0.8044350 0.7580522 0.8108440 0.5426476 0.7749173 0.7946178

mean(cors.tapnet.w)

[1] 0.7475857

Please post comments, corrections or additions through github.com/biometry/tapnet.

19

