A quick guide on how to use tapnet

Carsten F. Dormann

January 19, 2021

Abstract

This document presents the case study of Benadi et al. (2021), using the data of Tinoco et al. (2017). It
thereby also serves as tutorial for the use of the “tapnet” package.

Contents
1 Data preparation 2
2 Fit web1 using the tapnet approach 3
3 Predict from fitted tapnet to new network 6
4 Using multiple networks 7
5 Prediction baseline: use only abundances in the new web 8
6 Preparing tapnet data as data.frame for statistical models 9
7 Prediction using GAM of phylogeny, traits and trait matching 9
8 Prediction using randomForest with phylogeny, traits and trait matching 11
9 Cross-validation for all approaches 12
9.1 Usingtapnet 12
9.2 Fit of the baseline, abundance-only model 0L 14
9.3 The GAM-approach 14
9.4 The randomForest approach L 15
9.5 Summary of cross-validationresults Lo L 17
9.6 Fits 18
10 Comparison with tapnet using marginal totals as abundances 18

This supplement presents the workflow for the case study. It may also serve as tutorial for the use of tapnet
functions.

References

Benadi, G., Dormann, C.F,, Friind, J., Stephan, R.& Vazquez, D.P. (2021) Quantitative prediction of interactions
in bipartite networks based on traits, abundances, and phylogeny. The American Naturalist, in press.

Tinoco, B.A, Graham, C.H., Aguilar,].M. & Schleuning, M. (2017) Oikos 126, 52—-60. DOI: 10.1111/0ik.02998

Data preparation

library (tapnet)
data(Tinoco)

First, we have to put all information into a single ‘tapnet’ object, using make_tapnet:

Produce tapnet objects using each network separately (1=Forest, Z2=shrub, 3=cattle farm)
tapnet_webl <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree,
networks = networks[1], traits_low = plant_traits,
traits_high = humm_traits, abun_low=plant_abun[1],
abun_high=humm_abun[1], npems_lat = 4)
tapnet_web2 <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree,
networks = networks[2], traits_low = plant_traits,
traits_high = humm_traits, abun_low=plant_abun[2],
abun_high=humm_abun[2], npems_lat = NULL)

Note:

(a) We use only 4 phylogenetic eigenvectors (PEMs, for “maps”, and because PE is too short to be unambiguous)
for the first network, but all for the other two for evaluation. The “value” NULL enforces the use of all PEMs.
(b) Because each web has only some species present, some PEMs will automatically be dropped (those relevant
only for the missing species). As a consequence, web2 may now not have the same PEMs used for web1 (which
are required for prediction from web1 to web 2). Let’s check:

colnames(tapnet_webl$networks[[1]]$pems$low) # names of fitted PEMs

[1] "v_1" "v_2" "V_3" "v_7"
colnames(tapnet_webl$networks[[1]]$pems$high)

[1] "v_1" "V_3" "v_6" "v_8"
colnames(tapnet_web2$networks[[1]]$pems$low) # names of PEMs all present

H# [1] "y 1" "y 2" "y 3" "y 5" "y 7" "y 8" "v 10" "V 11" "V 16" "V 19"
HH [11] "V_ZO" "V_Zl" uv_zzu "V_ZS" "V_27" "V_28"

colnames(tapnet_web2$networks[[1]]$pems$high) # V. 8 (high) is missing!
[1] llV 1" llV 3" IIV 4” "V 6" "V 7" "V 9" HV 11" NV 12” "V 13”

We can see that for the lower level, all PEMs were computed for web2, but not for the higher level, where v_8
is missing. We compute that, using the helper function pems_from_tree, and add it to the tapnet-object.
(Because this function is not exported, we need to use the triple-colon when calling it explicitly from the
package.) Then we do the same with web3.

tapnet_web2$networks[[1]]$pems$high$Vv_8 <- tapnet:::pems_from_tree(humm_tree) [colnames (
tapnet_web2$networks[[1]]$web), "V_8"]
colnames(tapnet_web2$networks[[1]]$pems$high) # check: complete!

H# [1] "y 1" "y 3" "y 4" "w 6" UAVARAL "y gn "V 11" "v 12" "y 13" "y 8"

Using the colnames (.)-line we can check that they are now complete (not shown).
As an additional preliminary step, we may want to check for correlation between the phylogenetic eigenvec-
tors and the observed traits:

cor (cbind(tapnet_webl$networks[[1]]$pems$low, tapnet_webl$networks[[1]]$traits$low))

#H# V_1 vV_2 v_3 V_7

V_1 1.00000000 -0.03323508 0.19929407 0.01950265
V_2 -0.03323508 1.00000000 -0.02390179 0.02484880
V_3 0.19929407 -0.02390179 1.00000000 0.02538867
H# V_7 0.01950265 0.02484880 0.02538867 1.00000000
Corolla_length_mm 0.30147805 -0.14321786 0.23301956 -0.40838875
#4 Corolla_length_mm
V_1 0.3014780
H# V_2 -0.1432179
V_3 0.2330196
H# V_7 -0.4083887
Corolla_length_mm 1.0000000

cor(cbind(tapnet_webl$networks[[1]]$pems$high, tapnet_webl$networks[[1]]$traits$high))

H# V_1 V_3 V_6 V_8
V_1 1.0000000 -0.21978007 -0.11948531 -0.14519738
V_3 -0.2197801 1.00000000 0.07786362 0.01687728
V_6 -0.1194853 0.07786362 1.00000000 0.28972218
H## V_8 -0.1451974 0.01687728 0.28972218 1.00000000
Bill_length_mean_mm 0.5839393 0.23682088 0.10121502 -0.28068808
H# Bill_length_mean_mm
V_1 0.5839393
V_3 0.2368209
H## V_6 0.1012150
H# V_8 -0.2806881
Bill_length_mean_mm 1.0000000

In this case, correlations are moderate (—0.4 for the strongest lower-level and 0.58 for the higher-level traits)
and indicate some phylogenetic signal in the observed trait. Note, however, that latent traits are linear com-
binations of phylogenetic traits and this correlation does not check for collinearity with such a construct. We
shall do that after fitting.

Fit web1 using the tapnet approach

We here assume that all trait matches are best described using a normal distribution. Alternatively, we could
use the shifted log-normal. Next, we evaluate the goodness-of-fit of this fit:

fit_webl <- fit_tapnet(tapnet = tapnet_webl, method="SANN") # very slow, but reliable
#fit_webl <- fit_tapnet(tapnet = tapnet_webl) # the default way

#fit_weblln <- fit_tapnet (tapnet = tapnet_webl, tmatch_type_obs = "shiftlnorm",

ini=fit_webloptpar*2) # requires some tempering with ini
gof_webl_norm <- gof_tapnet(fit_webl)

gof_webl_norm

$bc_sim_web
[1] 0.4700434

HH

$cor_web

[1] 0.506687
H#

$net indices
$net_indices[[1]]

#t Index Observed Mean Median q2.5 q97.5
1 connectance 0.3250000 0.6944528 0.6917293 0.6041667 0.7857143
2 NODF 62.5076453 75.9450699 76.1949456 68.5033638 81.9754513
3 weighted NODF 39.1972477 54.5116352 54.7724833 45.5104924 61.8013420
H# 4 H2 0.4496136 0.1386368 0.1381887 0.1166049 0.1601014

The goodness-of-fit function returns the similarity between fitted and observed network expressed as Bray-
Curtis similarity (bc_sim_web), where 0.50 is not a bad value; as the correlation between fitted and observed
number of interactions, expressed as Spearman correlation (cor_web), which is our key comparison criterion
at 0.52; and, finally, some selected network indices were computed for the observed and repeated draws from
the fitted multinomial distribution. In this case, none of the four indices includes the observed even in the 95%

confidence interval (i.e. not good).
We can also have a look at the fitted model parameters:

fit webil

$par_opt

par_optlat_low

HH V_1 V_2 V_3 V_7
2.64756311 4.43496460 -0.08270909 -1.13704950
##

par_optlat_high

HH V_1 V_3 V_6 V_8

5.2243635 2.9772795 -0.4693686 1.1060889

##

par_optpem_shift

H# pem_shift

-0.04238474

H#

par_opttmatch_width_pem

tmatch_width_pem

H# 0.4641643

H#

par_opttmatch_width_obs

tmatch_width_obs1

HHt 6.093618

##

par_optdelta

HH delta

0.0156301

#H#

##

$tmatch_type_pem

[1] "normal"

H#

$tmatch_type_obs

[1] "normal"

##

$lambda

[1] O

H#

$method

[1] "SANN"

H#

$maxit

[1] 50000

He

$opt

Soptpar

v 1 v 2 V. 3 v_7
0.97363964 4.43496460 -0.08270909 -1.13704950
H# V_1 V_3 V_6 V_8
HH 5.22436353 2.97727948 -0.46936861 1.10608885
H# pem_shift tmatch_width_pem tmatch_width_obs1 delta
H# -0.04238474 -0.76751674 1.80724201 -4.14280305
H#

Soptvalue

[1] 1368.485

H#

optcounts

function gradient
H# 50000 NA
H#

optconvergence

[1] O

H#

optmessage

NULL

H##

H#

attr(,"class")

[1] "fitted.tapnet"
attr(,"tapnet_name")
[1] "tapnet_webl"

The output is a bit confusing, as it contains the fitted parameters twice: first, under par_opt in the inter-
pretable form, i.e. back-transformed for those parameters that were constraint (PEM 1, the standard devia-
tions of the trait-matching function and §); then again, under opt, in their untransformed form, as spit out
by optim.

At least two things are interesting here:

1. The standard deviation of the trait-matching function (the normal, in this case) for the observed traits
is rather wide (at 7.6, see par_opt$tmatch_width_obs). Typically, this indicates that the traits were
not fitting very well to each other and the model did not find the observed traits useful. (We have seen
much worse, with values > 1000, though.)

2. The value of § is (practically) 1. A value of 1 indicates that traits (observed and latent) are as important
as the abundance.

3. Putting the two previous points together: this model hinges on the matching of the phylogenetic-
informed latent traits. One reason may be that the phylogenies code up the effect of the traits, so that
the trait has no remaining additional effect. Parameter lambda imposes a shrinkage to prioritise the
observed trait effect over the latent traits. (Imposing some shrinkge, e.g. setting lambda=0. 1, in this
case reduced predictive fit to below the abundance-only model.)

4. The absolute values of the PEM-parameters matters little.

With the fitted object, we can correlate the latent and the observed traits. The code is rather ugly, since we
need to access data in the belly of the object:

fitted_lin_low <- fit_weblpar_optlat_low[which(names(fit_weblpar_optlat_low) %in%
colnames(tapnet_webl$networks[[1]]$pems$low))]
fitted_lat_low <- as.vector(scale(rowSums(matrix(fitted_lin_low,
nrow = nrow(tapnet_webl$networks[[1]]$pems$low),
ncol = ncol(tapnet_webl$networks[[1]]$pems$low), byrow = TRUE)
tapnet_webl$networks[[1]]$pems$low)))
cor(fitted_lat_low, tapnet_webl$networks[[1]]$traits$low)

*

H# Corolla_length_mm
[1,] 0.1341827

fitted_lin_high <- fit_weblpar_optlat_high[which(names(fit_weblpar_optlat_high) %in%
colnames(tapnet_webl$networks[[1]]$pems$high))]
fitted_lat_high <- as.wvector(scale(rowSums(matrix(fitted_lin_high,
nrow = nrow(tapnet_webl$networks[[1]]$pems$high),

ncol = ncol(tapnet_webl$networks[[1]]$pems$high), byrow = TRUE)

tapnet_webl$networks[[1]]$pems$high)))
cor(fitted_lat_high, tapnet_webl$networks[[1]]$traits$high)

H# Bill_length_mean_mm
[1,] 0.6047337

In neither case was there any correlation between latent and observed traits.
Finally, we can also check for correlation between the latent trait and the (independent) abundance of the
species:

cor(fitted_lat_low, tapnet_webl$networks[[1]]$abuns$low)
[1] 0.2421337
cor(fitted_lat_high, tapnet_webl$networks[[1]]$abuns$high)

[1] -0.4024925

Predict from fitted tapnet to new network

Fitting characteristics are all nice and fine, but how good does tapnet predict to a new network?

To predict to a new network, we have to provide the tapnet fit-object and the abundances for that network.
This allows for changing abundances, or indeed including or excluding species, independent from network
observations. The tapnet-object itself is referenced by name in the fit, and is used to compute the phyloge-
netic information for the species in the new network. In this case, we provide the abundances based on the
tapnet_web2-object we created earlier. We could however also simply make a list with the abundances of
each level for the second network (see code in next section, or help page of tapnet_predict).

preds2.tapnet <- predict_tapnet(fit=fit_webl, abuns=tapnet_web2$networks[[1]]$abuns)
cor(as.vector(preds2.tapnet), as.vector(tapnet_web2$networks[[1]]$web))

[1] 0.175038

So the correlation is actually not very high! Let’s visualise that. To do so, we need to multiply the predic-
tions by the number of observed interactions, as the predictions are probabilities that sum to one. Also, since
interactions are approximately log-normally distributed, we depict the fit as log-log-plot.

sum(tapnet_web2$networks[[1]]$web)

[1] 3979

par(mar=c(5,5,1,1))

plot(preds2.tapnet*3979 + 1, tapnet_web2$networks[[1]]$web + 1, log="xy", las=1,

xlab="predicted number of interactions + 1", ylab="observed number of interactions + 1")
abline(0,1)

*

1000
o
500
o o °
_ o o
+ (o) le)
%) e}
S 100 R o
§ ° % o
Q -
g % o o
< o
@ OCo
€ %o o
2 ° ° o
o 10 — (o)
2 ° o/ o o
Q o
& 5-4o o
o [e) o [
@ o o
o o o
1 00®O0D 00 00 o o
T T T T T T T
1 5 10 50 100 500

predicted number of interactions + 1
Finally, we can compute the multinomial log-likelihood of the data, given the prediction:

dmultinom(as. vector (tapnet_web2$networks[[1]]$web), prob=as.vector(preds2.tapnet),
size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -9214.783

Using multiple networks

In the tapnet approach, we can also fit several networks simultaneously, and use the resulting fit for prediction.
For example, we can fit tapnet to the networks from shrub and cattle, and predict to (1 =) forest:

data(Tinoco)
tap <- make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2:3],
traits_low = plant_traits, traits_high = humm_traits,
abun_low = plant_abun[2:3], abun_high=humm_abun[2:3] , npems_lat = 4)
fit <- fit_tapnet(tap) # uses two networks for fitting!
gof_tapnet(fit)

$bc_sim_web

[1] 0.3788003 0.4667962
#i

$cor_web

[1] 0.3992802 0.5672018
H#

$net_indices

$net_indices[[1]]

#H# Index Observed Mean Median q2.5 q97.5
1 connectance 0.2324561 0.7164868 0.7107843 0.6578947 0.7914439
H## 2 NODF 43.5864979 81.1276132 81.5320299 73.2460589 86.9142656
3 weighted NODF 30.7805907 64.0236824 64.3139011 56.9753183 69.5455754
##t 4 H2 0.5022179 0.1207073 0.1206267 0.1110184 0.1307422
#H

$net_indices[[2]]

H# Index Observed Mean Median q2.5 q97.5
H# 1 connectance 0.3040936 0.6559816 0.6491228 0.6081871 0.7291941
2 NODF 56.5180793 81.0418944 81.3004335 73.9846550 87.0980051
3 weighted NODF 38.3391890 63.4218334 63.5538500 56.7025985 69.5373901
4 H2 0.3713669 0.1161382 0.1163632 0.1020925 0.1303586

predict to omitted forest network:
predl <- predict_tapnet(fit, abuns=list("low"=plant_abun[[1]], "high"=humm_abun[[1]]))

cor (as.vector(predl*sum(networks[[1]])), as.wvector(networks[[1]]))
[1] 0.1188132

And we can do the same for the other two networks (first to 2 = shrubs, then to 3 = cattle):

[1] 0.1732161

[1] 0.4418444

If we compare this single-network predictions (see towards the end of this document), we notice a variable
effect on performance: more is not necessarily better. This will probably depend on the similarity of the
habitats and hence interacting species.

Prediction baseline: use only abundances in the new web

As a baseline, we compute the information contained in the abundances. If the hummingbirds had no prefer-
ences, but only interacted strictly with probability proportional to abundance, then abundant hummingbird
species would interact with high probability with abundant plant species, but with low probability with rare
plant species.

preds2.abunonly <- (tapnet_web2$networks[[1]]$abuns$low /
sum(tapnet_web2$networks[[1]]$abuns$low)) %*% t(tapnet_web2$networks[[1]]$abuns$high /
sum(tapnet_web2$networks[[1]]$abuns$high)) * sum(tapnet_web2$networks[[1]]$web)

cor (as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web))

[1] 0.09473036

par(mar=c(5,5,1,1))

plot(preds2.abunonly + 1, tapnet_web2$networks[[1]]$web + 1, log="xy", las=1,
xlab="predicted number of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

1000

500

100

50

observed number of interactions + 1

1 2 5 10 20 50 100 200 500

predicted number of interactions + 1

And the log-likelihood:

dmultinom(as.vector (tapnet_web2$networks[[1]]$web), prob=as.wvector(preds2.abunonly),
size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -9202.007

This means, our tapnet model is superior in prediction to the abundance-only model, indicating that the (latent
and observed) traits do carry some information on the interactions. Note, however, that the prediction quality
of the abundance-only is very low.

Preparing tapnet data as data.frame for statistical models
To prepare the data for a statistical model, we provide the function tapnet2df:
webl.df <- tapnet2df(tapnet_webl)

web2.df <- tapnet2df(tapnet_web2)
head (web1.df)

#H# IDhigher IDlower interactions pemLV_1 pemLV_2

1 Coeligena iris Alloplectus peruvianum 13 0.19958316 -0.01721758

2 Coeligena iris Macleania rupestris 22 0.06143519 0.01314354

3 Coeligena iris Myrcianthes fragrans 0 -0.17608854 0.22809965

4 Coeligena iris Salvia hirta 4 0.21167754 -0.01945177

5 Coeligena iris Cavendishia bracteata 0 0.06143519 0.01314354

6 Coeligena iris Mutisia lehmannii 6 0.20823846 -0.02230535

H# pemLV_3 pemLV_7 pemHV_1 pemHV_3 pemHV_6 pemHV_8 abunL
1 0.298458999 0.110246748 0.3026318 0.09104722 -0.2849888 0.5647174 3.428571
2 0.014975823 0.006401991 0.3026318 0.09104722 -0.2849888 0.5647174 38.529412
3 -0.006808424 -0.005932541 0.3026318 0.09104722 -0.2849888 0.5647174 69.500000
4 0.346816571 0.323487833 0.3026318 0.09104722 -0.2849888 0.5647174 10.783505
5 0.014975823 0.006401991 0.3026318 0.09104722 -0.2849888 0.5647174 26.111111
6 -0.310376666 0.013295514 0.3026318 0.09104722 -0.2849888 0.5647174 2.740741
H# abunH traitLCorolla_length_mm traitHBill_ length_mean_mm

1 3.950695 48.1 28.1

2 3.950695 16.5 28.1

3 3.950695 1.3 28.1

4 3.950695 22.9 28.1

5 3.950695 24.5 28.1

6 3.950695 29 .3 28.1

These data.frames contain all the information coded in the tapnet object, but no matches of traits.

Prediction using GAM of phylogeny, traits and trait matching

To apply the approach of Brousseau et al. (2018) to our quantitative network, we use a negative binomial
GAM. It uses, as predictors, the first two PEMs of each group, plus the observed traits, plus the squared trait
difference, plus the abundances.

We augment the data.frames from the previous section by the trait-matching variables (in this case only one
pair: bill and corolla length):

webl.df.extended <- cbind.data.frame(webl.df, "match"=(webl.df$traitHBill_ length_mean_mm -
webl.df$traitLCorolla_length _mm)A2)

web2.df .extended <- cbind.data.frame(web2.df, "match"=(web2.df$traitHBill_ length_mean_mm -
web2.df$traitLCorolla_length_mm)A2)

Now we can fit the model. Note that we believe this approach to be statistically incorrect, as it assumes that the
observed interactions are independent, when (clearly?) they are not. Each bird selects a flower based on what
is on offer; thus, a decision to visit one flower implies not visiting another, creating a negative dependence.
Anyway.

library (mgcv)

gam2 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +s(pemLV_2, pemHV_3, bs="ts",
k=24) + s(traitLCorolla_length_mm, k=3) + s(traitHBill_length_mean_mm, k=3) +
s(match, k=3) + s(abunL, k=3) + s(abunH, k=3),

gamma=1.4)
summary (gam2)

##
Family: Negative Binomial(0.171)
Link function: log

##t

Formula:

interactions ~ s(pemLV_1, pemHV_1, bs = "ts", k = 24) + s(pemLV_2,
H# pemHV_3, bs = "ts", k = 24) + s(traitLCorolla_length_mm,

H# k = 3) + s(traitHBill_length_mean_mm, k = 3) + s(match, k =
H# s(abunL, k = 3) + s(abunH, k = 3)

##t

Parametric coefficients:

H# Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.969 1.703 -3.505 0.000456 ***

Het ---

Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05

#i

Approximate significance of smooth terms:

edf Ref.df Chi
s(pemLV_1,pemHV_1) 1.480e+00 23.000 14.
s(pemLV_2,pemHV_3) 1.724e-05 23.000 O.

s(traitLCorolla_length_mm) 1.772e+00 1.929 10.
s(traitHBill length _mean_mm) 1.000e+00 1.000 O.
s(match) 1.000e+00 1.000 18.
s(abunL) 1.917e+00 1.993 14.
s(abunH) 1.000e+00 1.000 12.

Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05
#H#

R-sq.(adj) = -5 Deviance explained = 49.3%
-REML = 203 Scale est. =1 n 160

.sq
647
000
635
442
939
489
618

preds2.gam <- predict(gam2, newdata=web2.df.extended)

cor(exp(preds2.gam), web2.df$interactions)

[1] -0.01210051

SO O r O O O 3

data=web1l.df.extended,

p-value
.86e-05
.291704
.002754
.506187
.38e-05
.001103
.000382

*

3) +

*

family=nb,

Here, the contributions of the different predictors can easily be discerned. Abundances and trait-matching are
important, but phylogenetics are (apparently) not. Note that in this case corolla length and trait matching are
high (r = 0.84) correlated, representing the same information. That could be avoided by standardising the
trait values before fitting the model. However, in that case we lose the direct interpretation of 0 indicating the

same length of corolla and bill.
Again, we can plot the result:

par(mar=c(5,5,1,1))
plot(exp(preds2.gam) +1 , web2.df$interactions + 1,

abline(0,1)

10

log:"Xy",

las=1,

xlab="predicted
number of interactions + 1", ylab="observed number of interactions + 1")

1000

500 —

100

50

observed number of interactions + 1

1 100 10000
predicted
number of interactions + 1

This prediction contains no information on the observed interactions.

And the log-likelihood:

dmultinom(as. vector (tapnet_web2$networks[[1]]$web), prob=exp(preds2.gam) /
sum(exp(preds2.gam)), size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -144756.9

So these values are abysmally poor.

Prediction using randomForest with phylogeny, traits and trait matching

We can use the same data with a different algorithm, in this case randomForest (as implemented in ranger).
It provides an assessment of which predictors are important to the fit:

library (ranger)
rf2 <- ranger(interactions ~ ., data=webl.df.extended[, -c(1, 2)], importance="impurity")
rf2

Ranger result

H#

Call:

ranger(interactions ~ ., data = webl.df.extended[, -c(1, 2)], importance = "impurity")
##

Type: Regression
Number of trees: 500

Sample size: 160

Number of independent variables: 13

Mtry: 3

Target node size: 5

Variable importance mode: impurity
Splitrule: variance
OOB prediction error (MSE): 599.1792
R squared (OOB): 0.0733405

sort(importance(rf2), decreasing=T)

abunL match traitLCorolla_length_mm
H# 12558.832 12170.222 9190.177

11

H## pemLV_2 pemHV_3 abunH

H# 7706.507 6818.601 6332.438
traitHBill_length_mean_mm pemHV_1 pemLV_3
H# 5743.067 4890.467 4836.141
pemLV_1 pemLV_7 pemHV_6
H4 4729.878 4617.740 1195.166
H# pemHV_8

H# 1085.502

preds2.ranger <- predict(rf2, data=web2.df.extended)$predictions
cor(preds2.ranger, web2.df$interactions)

[1] 0.2219289

par(mar=c(5,5,1,1))

plot(preds2.ranger +1 , web2.df$interactions + 1, log="xy", las=1, xlab="predicted number
of interactions + 1", ylab="observed number of interactions + 1")

abline(0,1)

1000

500 o

100

50

observed number of interactions + 1

1 2 5 10 20 50 100
predicted number
of interactions + 1

And the log-likelihood:

dmultinom(as.vector (tapnet_web2$networks[[1]]$web), prob=preds2.ranger/sum(preds2.ranger),
size=sum(tapnet_web2$networks[[1]]$web), log=T)

[1] -11929.07

This model is better than the abundance-only, GAM - and tapnet.

Cross-validation for all approaches

Here we only present the code and results for the cross-validation, where the model it fit to one web and
predicts to the other two, for all three combinations. We use the same settings and data preparation as in the
sections above.

Using tapnet

12

tapnet_webl <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[1],
traits_low=plant_traits, traits_high=humm_traits,
abun_low=plant_abun[1], abun_high=humm_abun[1], npems_lat=4)

<- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[2],
traits_low=plant_traits, traits_high=humm_traits,
abun_low=plant_abun[2], abun_high=humm_abun[2], npems_lat=4)

<- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[3],

tapnet_web2

tapnet_web3
traits_low=plant_traits, traits_high=humm_traits,

abun_low=plant_abun[3], abun_high=humm_abun[3], npems_lat=4)

fit_webl <- fit_tapnet(tapnet = tapnet_webl, method="SANN")
fit_web2 <- fit_tapnet(tapnet = tapnet_web2, method="SANN")
fit_web3 <- fit_tapnet(tapnet = tapnet_web3, method="SANN")

-c(fit_webloptvalue, fit_web2optvalue, fit_web3optvalue)

[1] -1726.225 -4331.951 -1901.977

preds2.tapnetl <- predict_tapnet(fit=fit_webl, abuns=tapnet_web2$networks[[1]]$abuns)
preds3.tapnetl <- predict_tapnet(fit=fit_webl, abuns=tapnet_web3$networks[[1]]$abuns)
preds1.tapnet2 <- predict_tapnet(fit=fit_web2, abuns=tapnet_webl$networks[[1]]$abuns)
preds3.tapnet2 <- predict_tapnet(fit=fit_web2, abuns=tapnet_web3$networks[[1]]$abuns)
predsi.tapnet3 <- predict_tapnet(fit=fit_web3, abuns=tapnet_webl$networks[[1]]$abuns)
preds2.tapnet3 <- predict_tapnet(fit=fit_web3, abuns=tapnet_web2$networks[[1]]$abuns)

cors.tapnet <- c(

cor(as.vector(preds2.tapnetl), as.vector(tapnet_web2$networks[[1]]$web)),
cor(as.vector(preds3.tapnetl), as.vector(tapnet_web3$networks[[1]]$web)),
cor(as.vector(predsl.tapnet2), as.vector(tapnet_webl$networks[[1]]$web)),
cor(as.vector(preds3.tapnet2), as.vector(tapnet_web3$networks[[1]]$web)),
cor(as.vector(predsl.tapnet3), as.vector(tapnet_webl$networks[[1]]$web)),
cor(as.vector(preds2.tapnet3), as.vector(tapnet_web2$networks[[1]]$web))

)

cors.tapnet

[1] 0.13508949 0.52398437 0.10842538 0.47967584 0.02909331 0.11391497

ellCV.tapnet <- c(

)

dmultinom(as. vector (tapnet_web2$networks[[1]]$web), prob=as.

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as. vector (tapnet_web3$networks[[1]]$web), prob=as.

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_webl$networks[[1]]$web), prob=as.

size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as. vector (tapnet_web3$networks[[1]]$web), prob=as.

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as. vector (tapnet_webl$networks[[1]]$web), prob=as.

size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.

size=sum(tapnet_web2$networks[[1]]$web), log=T)

ellCV. tapnet

[1]

-7992.325 -2838.724 -2893.864

13

vector (preds2.
vector (preds3.
vector (preds1.
vector (preds3.
vector (preds1.

vector (preds2.

-4553.146 -3175.828 -8479.723

tapnetl),
tapnetl),
tapnet2),
tapnet2),
tapnet3),

tapnet3),

9.2 Fit of the baseline, abundance-only model

predsl.abunonly <- (tapnet_webl$networks[[1]]$abuns$low /
sum(tapnet_webl$networks[[1]]$abuns$low)) %*% t(tapnet_webl$networks[[1]]$abuns$high /
sum(tapnet_webl$networks[[1]]$abuns$high)) / sum(tapnet_webl$networks[[1]]$web)
preds2.abunonly <- (tapnet_web2$networks[[1]]$abuns$low /
sum(tapnet_web2$networks[[1]]$abuns$low)) %*% t(tapnet_web2$networks[[1]]$abuns$high /
sum(tapnet_web2$networks[[1]]$abuns$high)) / sum(tapnet_web2$networks[[1]]$web)
preds3.abunonly <- (tapnet_web3$networks[[1]]$abuns$low /
sum(tapnet_web3$networks[[1]]$abuns$low)) %*% t(tapnet_web3$networks[[1]]$abuns$high /
sum(tapnet_web3$networks[[1]]$abuns$high)) / sum(tapnet_web3$networks[[1]]$web)

cors.abun <- c(
cor (as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web)),
cor (as.vector(preds3.abunonly), as.vector(tapnet_web3$networks[[1]]$web)),
cor (as.vector(predsl.abunonly), as.vector(tapnet_webl$networks[[1]]$web)),
cor (as.vector(preds3.abunonly), as.vector(tapnet_web3$networks[[1]]$web)),
cor(as.vector(predsl.abunonly), as.vector(tapnet_webl$networks[[1]]$web)),
cor (as.vector(preds2.abunonly), as.vector(tapnet_web2$networks[[1]]$web))

)

cors.abun

[1] 0.09473036 0.48561887 0.24775426 0.48561887 0.24775426 0.09473036

ellCv.abuns <- c(
dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.wvector(preds2.abunonly),
size=sum(tapnet_web2$networks[[1]]$web), log=T),
dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.wvector(preds3.abunonly),
size=sum(tapnet_web3$networks[[1]]$web), log=T),
dmultinom(as.vector(tapnet_webl$networks[[1]]$web), prob=as.wvector(predsl.abunonly),
size=sum(tapnet_webl$networks[[1]]$web), log=T),
dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=as.wvector(preds3.abunonly),
size=sum(tapnet_web3$networks[[1]]$web), log=T),
dmultinom(as.vector(tapnet_webl$networks[[1]]$web), prob=as.wvector(predsl.abunonly),
size=sum(tapnet_webl$networks[[1]]$web), log=T),
dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=as.wvector(preds2.abunonly),
size=sum(tapnet_web2$networks[[1]]$web), log=T)
)
ellCv.abuns

[1] -9202.007 -2706.214 -2149.702 -2706.214 -2149.702 -9202.007

Comparing these values to the fits of the tapnet we see that they are similar, sometimes tapnet is better,
sometimes abundance-only.

9.2 The GAM-approach

web3.df <- tapnet2df(tapnet_web3)
web3.df .extended <- cbind.data.frame(web3.df, "match"=(web3.df$traitHBill_length_mean_mm -
web3.df$traitLCorolla_length_mm)A2)

gaml <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +
s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +
s(traitHBill_length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +

s(abunH, k=3), data=webl.df.extended, family=nb, gamma=1.4)

14

9.4

gam2 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +
s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +
s(traitHBill_length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +
s(abunH, k=3), data=web2.df.extended, family=nb, gamma=1.4)

gam3 <- gam(interactions ~ s(pemLV_1, pemHV_1, bs="ts", k=24) +
s(pemLV_2, pemHV_3, bs="ts", k=24) + s(traitLCorolla_length_mm, k=3) +
s(traitHBill_ length_mean_mm, k=3) + s(match, k=3) + s(abunL, k=3) +
s(abunH, k=3), data=web3.df.extended, family=nb, gamma=1.4)

preds2.gaml <- predict(gaml, newdata=web2.df.extended, type="response")
preds3.gaml <- predict(gaml, newdata=web3.df.extended, type="response")
predsl.gam2 <- predict(gam2, newdata=webl.df.extended, type="response")
preds3.gam2 <- predict(gam2, newdata=web3.df.extended, type="response")
predsl.gam3 <- predict(gam3, newdata=webl.df.extended, type="response")
preds2.gam3 <- predict(gam3, newdata=web2.df.extended, type="response")
cors.gam <- c(

cor(preds2.gaml, web2.df$interactions),

cor(preds3.gaml, web3.df$interactions),

cor(predsl.gam2, webl.df$interactions),

cor(preds3.gam2, web3.df$interactions),

cor(predsl.gam3, webl.df$interactions),

cor(preds2.gam3, web2.df$interactions)
)
ellCv.gam <- c(

dmultinom(as. vector(tapnet_web2$networks[[1]]$web), prob=preds2.

size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web3$networks[[1]]$web), prob=preds3.

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector (tapnet_webl$networks[[1]]$web), prob=predsl.

size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as. vector(tapnet_web3$networks[[1]]$web), prob=preds3.

size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_webl$networks[[1]]$web), prob=predsl.

size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.

gaml/sum(preds2.
gaml/sum(preds3.
gam2/sum(preds1.
gam2/sum(preds3.
gam3/sum(preds1.

gam3/sum(preds2.

gaml),
gaml),
gam2),
gam2)
gam3)

gam3),

size=sum(tapnet_web2$networks[[1]]$web), log=T)

)

cors.gam

[1] -0.01210051 0.33249537 0.25840986 0.13461081 -0.01344406 -0.01974305
ellCv.gam

[1] -77771.757 -6943.118 -2750.557 -6029.040 -26537.792 -162237.116

Compared to the tapnet, this GAM-approach is inferior in all instances.

The randomForest approach

Note that we now have to append the correct PEMs to the data. For the GAM, we only used the first PEM, but
here the first 4 (or all)!

15

tapnet_webl <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[1],
traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[1],
abun_high=humm_abun[1], npems_lat=NULL, use.all.pems=T)

tapnet_web2 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[2],
traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[2],
abun_high=humm_abun[2], npems_lat=NULL, use.all.pems=T)

tapnet_web3 <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=networks[3],
traits_low=plant_traits, traits_high=humm_traits, abun_low=plant_abun[3],
abun_high=humm_abun[3], npems_lat=NULL, use.all.pems=T)

webl.df <- tapnet2df(tapnet_webl)

webl.df.extended <- cbind.data.frame(webl.df, "match"=(webl.df$traitHBill_length_mean_mm -
webl.df$traitLCorolla_length_mm)A2)

web2.df <- tapnet2df(tapnet_web2)

web2.df .extended <- cbind.data.frame(web2.df, "match"=(web2.df$traitHBill_ length_mean_mm -
web2.df$traitLCorolla_length_mm)A2)

web3.df <- tapnet2df(tapnet_web3)

web3.df .extended <- cbind.data.frame(web3.df, "match"=(web3.df$traitHBill_length_mean_mm -
web3.df$traitLCorolla_length_mm)A2)

rfl <- ranger(interactions ~ ., data=webl.df.extended[, -c(1, 2)], importance="impurity")
rf2 <- ranger(interactions ~ ., data=web2.df.extended[, -c(1, 2)], importance="impurity")
rf3 <- ranger(interactions ~ ., data=web3.df.extended[, -c(1, 2)], importance="impurity")

head (sort (round (importance(rf1)), decreasing=T))

#t match pemLV_26 pemHV_13 pemLV_5 pemHV_1 pemHV_ 11
#t 4938 4374 4229 3763 3685 3422

head (sort (round (importance(rf2)), decreasing=T))

#t abunH match pemHV_6 pemHV_8 pemLV_19 pemLV_1
101714 67596 61361 54057 49847 48585

head (sort (round (importance(rf3)), decreasing=T))

pemHV_13 pemHV_10 abunH pemHV_11 pemHV_12 pemHV_3
29495 22599 19986 18073 16328 16191

preds2.rangerl <- predict(rfl, data=web2.df.extended)$predictions
preds3.rangerl <- predict(rfl, data=web3.df.extended)$predictions
predsl.ranger2 <- predict(rf2, data=webl.df.extended)$predictions
preds3.ranger2 <- predict(rf2, data=web3.df.extended)$predictions
predsl.ranger3 <- predict(rf3, data=webl.df.extended)$predictions
preds2.ranger3 <- predict(rf3, data=web2.df.extended)$predictions

cors.rf <- c(
cor(preds2.rangerl, web2.df$interactions),
cor(preds3.rangerl, web3.df$interactions),
cor(predsl.ranger2, webl.df$interactions),
cor(preds3.ranger2, web3.df$interactions),
cor(predsl.ranger3, webl.df$interactions),
cor(preds2.ranger3, web2.df$interactions)

16

ellcv.rf <- c(

dmultinom(as.vector(tapnet_web2$networks[[1]]$web), prob=preds2.rangerl/sum(preds2.rangerl),
size=sum(tapnet_web2$networks[[1]]$web), log=T),

dmultinom(as. vector (tapnet_web3$networks[[1]]$web), prob=preds3.rangerl/sum(preds3.rangerl),
size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as. vector (tapnet_webl$networks[[1]]$web), prob=predsl.ranger2/sum(predsl.ranger2),
size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as.vector (tapnet_web3$networks[[1]]$web), prob=preds3.ranger2/sum(preds3.ranger2),
size=sum(tapnet_web3$networks[[1]]$web), log=T),

dmultinom(as.vector(tapnet_webl$networks[[1]]$web), prob=predsl.ranger3/sum(predsl.ranger3),
size=sum(tapnet_webl$networks[[1]]$web), log=T),

dmultinom(as.vector (tapnet_web2$networks[[1]]$web), prob=preds2.ranger3/sum(preds2.ranger3),
size=sum(tapnet_web2%$networks[[1]]$web), log=T)

cors.rf
[1] 0.2387133 0.3691158 0.3436329 0.1385993 0.3938876 0.1709911
ellCv.rf

[1] -13323.572 -4668.409 -3038.646 -5661.888 -2049.030 -10548.967

Compared to tapnet, the randomForest approach is consistently better in validation (correlations), but yields
very poor fits in terms of log-likelihood.

Summary of cross-validation results

To summarise all of this, here are the correlations, sorted by overall prediction quality:

all.cors.res <- rbind(cors.tapnet, cors.abun, cors.rf, cors.gam)

all.cors.res <- cbind(all.cors.res, rowMeans(all.cors.res))

colnames(all.cors.res) <- c("1 to 2", "1 to 3", "2 to 1", "2 to 3", "3 to 1", "3 to 2",
"average")

round(all.cors.res, 2)

#t 1 to21to3 2 to1l1l2¢to3 3 to1l1l 3 to 2 average
cors.tapnet 0.14 0,5% 0.11 0.48 0.03 0.11 0.23
cors.abun 0.09 0.49 0.25 0.49 0.25 0.09 0.28
cors.rf 0.24 0.37 0.34 0.14 0.39 0.17 0.28
cors.gam -0.01 0.33 0.26 0. 13 -0.01 -0.02 0.11

And here the log-likelihoods on the hold-out (larger, i.e. less negative, is better):

all.ellCV.res <- rbind(ellCV.tapnet, ellCV.abuns, ellCv.rf, ellCV.gam)
all.ellCV.res <- cbind(all.ellCV.res, rowMeans(all.ellCV.res))
colnames(all.ellCV.res) <- colnames(all.cors.res)

round(all.ellCV.res)

##t 1 to21to32to1l1l2¢to33¢tol 3 to 2 average
ellCV.tapnet -7992 -2839 -2894 -4553 -3176 -8480 -4989
ellCV.abuns -9202 -2706 -2150 -2706 -2150 -9202 -4686
ellCv.rf -13324 -4668 -3039 -5662 -2049 -10549 -6548
ellCV.gam -77772 -6943 -2751 -6029 -26538 -162237 -47045

In summary, these results show that tapnet, abundance-only and randomForest yield very similar performance
on prediction to a new network, based only on abundances. In absolute terms, these predictions are poor.
Among the possible explanations for the poor prediction we think we can exclude the very skewed distribution

17

of interaction intensities, as the data can be fit satisfactorily (by tapnet and randomForest). A more likely
explanation is that bipartite networks have no representation of interactions within a group, e.g. competitive
interactions among hummingbirds. As they differ in size, a larger species not occurring in forest may “bully”
smaller birds into deviating from their feeding preferences; or very similar species may display character
displacement in the presence of the other.

Fits

Just for completeness, here also the information on the goodness-of-fit for all approaches. This is an inferior
measure of an approache’s performance if the aim is prediction. As sometimes people want to only use an
approach in an exploratory way, e.g. to identify which elements contribute to describing the data, we show
the same measures as before for the fit (again sorted by quality of prediction, not by quality of fit).

fits.cors.res <- rbind(
"tapnet"=cbind (
cor (as.vector(tapnet_webl$networks[[1]]$web), as.vector(predict_tapnet(fit_webl,
abuns=tapnet_webl$networks[[1]]$abuns))),
cor(as.vector(tapnet_web2%$networks[[1]]$web), as.vector(predict_tapnet(fit_web2,
abuns=tapnet_web2$networks[[1]]$abuns))),
cor (as.vector (tapnet_web3$networks[[1]]$web), as.vector(predict_tapnet(fit_web3,
abuns=tapnet_web3$networks[[1]]$abuns)))
),
"abuns"=cbind(
cor (as.vector(tapnet_webl$networks[[1]]$web), as.wvector(predsl.abunonly)),
cor (as. vector (tapnet_web2$networks[[1]]$web), as.wvector(preds2.abunonly)),
cor (as.vector (tapnet_web3$networks[[1]]$web), as.wvector(preds3.abunonly))

)

"rf"=cbind (
cor(predict(rf1l, data=webl.df.extended)$predictions, webl.df$interactions),
cor(predict(rf2, data=web2.df.extended)$predictions, web2.df$interactions),
cor (predict(rf3, data=web3.df.extended)$predictions, web3.df$interactions)

)

"gam"=cbind (
cor(predict(gaml, data=webl.df.extended, type="response"), webl.df$interactions),
cor (predict(gam2, data=web2.df.extended, type="response"), web2.df$interactions),
cor (predict(gam3, data=web3.df.extended, type="response"), web3.df$interactions)

)
)
fits.cors.res <- cbind(fits.cors.res, rowMeans(fits.cors.res))
colnames(fits.cors.res) <- c("1 to 1", "2 to 2", "3 to 3", "average")

round(fits.cors.res, 2)

#H# 1 to1 2 to 2 3 to 3 average
[1,] 0.45 0.70 0.69 0.62
[2,] 0.25 0.09 0.49 0.28
[3,] 0.94 01,92 0.91 01.92
[4,] 0.56 0.29 0.40 0.42

Comparison with tapnet using marginal totals as abundances

Often, no information on species abundances are available or reported (e.g. in the interaction web data base).
For null models, we thus typically use marginal totals as substitute for external abundances, arguing that
when species abundances are not strongly dependent on the network itself, these marginal totals should be
highly correlated with a species’ overall abundance in that habitat.

Here, we show how misleading this reasoning is for the situation of the Tinoco data. We follow the same
approach as above, but now withhold the information of independent plant and pollinator abundance, and
use marginal totals instead. For the test data, this leads to the weird situation that we know how often a

18

species has been observed in an interaction, but pretend not to know with whom. (The situation would be
that of two ecologists collecting the data side-by-side, with one only noting own the plants visited, but not
the birds visiting them, and the other the other way around. Concieveable, but unlikely.)

tapnet_webl.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=
networks[1], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[1],
No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[1],
No abundances for higher trophic level were provided. Using marginal totals instead.

tapnet_web2.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=
networks[2], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2],
No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[2],
No abundances for higher trophic level were provided. Using marginal totals instead.

tapnet_web3.w <- make_tapnet(tree_low=plant_tree, tree_high=humm_tree, networks=
networks[3], traits_low=plant_traits, traits_high=humm_traits, npems_lat=4)

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[3],
No abundances for lower trophic level were provided. Using marginal totals instead.

Warning in make_tapnet(tree_low = plant_tree, tree_high = humm_tree, networks = networks[3],
No abundances for higher trophic level were provided. Using marginal totals instead.

fit_webl.w <- fit_tapnet(tapnet=tapnet_webl.w)
fit_web2.w <- fit_tapnet(tapnet=tapnet_web2.w)
fit_web3.w <- fit_tapnet(tapnet=tapnet_web3.w)

preds2.tapnetl.
preds3.tapnetl.
predsl.tapnet2.
preds3.tapnet2.
predsl.tapnet3.
preds2.tapnet3.

<- predict_tapnet(fit=fit_webl.w, abuns=tapnet_web2.w$networks[[1]]$abuns)
<- predict_tapnet(fit=fit_webl.w, abuns=tapnet_web3.w$networks[[1]]$abuns)
<- predict_tapnet(fit=fit_web2.w, abuns=tapnet_webl.w$networks[[1]]$abuns)
predict_tapnet(fit=fit_web2.w, abuns=tapnet_web3.w$networks[[1]]$abuns)
<- predict_tapnet(fit=fit_web3.w, abuns=tapnet_webl.w$networks[[1]]$abuns)
<- predict_tapnet(fit=fit_web3.w, abuns=tapnet_web2.w$networks[[1]]$abuns)

£ = 5 = % %
A
|

cors.tapnet.w <- c(
cor(as.vector(preds2.tapnetl.w), as.vector(tapnet_web2.w$networks[[1]]$web)),
cor(as.vector(preds3.tapnetl.w), as.vector(tapnet_web3.w$networks[[1]]$web)),
cor(as.vector(predsl.tapnet2.w), as.vector(tapnet_webl.w$networks[[1]]$web)),
cor(as.vector(preds3.tapnet2.w), as.vector(tapnet_web3.w$networks[[1]]$web)),
cor(as.vector(predsl.tapnet3.w), as.vector(tapnet_webl.w$networks[[1]]$web)),
cor (as.vector(preds2.tapnet3.w), as.vector(tapnet_web2.w$networks[[1]]$web))

)
cors.tapnet.w
[1] 0.8044350 0.7580522 0.8108440 0.5426476 0.7749173 0.7946178

mean(cors. tapnet.w)

[1] 0.7475857

Please post comments, corrections or additions through github.com/biometry/tapnet.

19

