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Abstract

We describe the R package sstvars, which provides tools for estimating and analyzing
the reduced form and structural smooth transition vector autoregressive (STVAR) models.
This includes also threshold vector autoregressive models. The package implements various
transition weight functions, conditional distributions, identiĄcation methods, and parameter
restrictions. The model parameters are estimated with the method of (penalized) maximum
likelihood (ML) by running multiple rounds of a two-phase or a three-step procedure estima-
tion procedure. In the two-phase procedure, a genetic algorithm is used in the Ąrst phase to
Ąnd starting values for a gradient based variable metric algorithm, which is ran in the second
phase. In the three-step procedure, autoregressive and weight parameters are Ąrst estimated
by (nonlinear) least squares, then the rest of the parameters are estimated by ML conditional
on them with a genetic algorithm, and Ąnally all the parameters are estimated by (penal-
ized) ML by initializing the variable metric algorithm from the initial estimates obtained
from the Ąrst two steps. Both penalized and "normal" ML estimation are supported. For
evaluating the adequacy of the estimated models, sstvars utilizes residuals based diagnostics
and provides functions for graphical diagnostics and for calculating formal diagnostic tests.
sstvars also accommodates the computation of linear impulse response functions, nonlinear
generalized impulse response functions, generalized forecast error variance decompositions,
and historical decompositions, as well as conducting counterfactual analysis. Further func-
tionality includes hypothesis testing, plotting the proĄle log-likelihood functions about the
estimate, simulation from STVAR processes, and forecasting, to name a few. We illustrate
the use of sstvars with a quarterly series consisting of two U.S. variables: the percentage
change of real GDP and the percentage change of GDP implicit price deĆator.

Keywords: smooth transition vector autoregressive model, structural smooth transition vector
autoregressive model, regime-switching, threshold VAR model, SVAR, TVAR, STVAR.
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1. Introduction

Linear vector autoregressive (VAR) models are a standard tools in time series econometrics.
They can be employed to answer questions about the statistical relationships of different vari-
ables or to forecast future values of the process, for example. Structural VAR models, in
particular, allow to trace out the effects of economic shocks. With an appropriate choice
of the autoregressive order p, a linear VAR model is often able to Ąlter out autocorrelation
from the series very well. If the errors are assumed to follow an autoregressive conditional het-
eroskedasticity (ARCH) process, the model is also often able to adequately Ąlter out conditional
heteroskedasticity from the series.

In some cases, linear VAR models are not, however, capable of capturing all the relevant char-
acteristics of the data. This includes shifts in the mean or volatility, and changes in the autore-
gressive dynamics of the process. Such nonlinear features frequently occur in economic time
series when the underlying data generating dynamics vary in time, for example, depending the
speciĄc state of the economy. Various types of time series models capable of capturing this
kind of regime-switching behavior have been proposed, one of them is the smooth transition
vector autoregressive (STVAR) models that allow to capture gradual shifts in the dynamics of
the data. They consist of a Ąnite number of regimes, each of which are linear vector autore-
gressions that are characterized by different autoregressive coefficients or error term covariance
matrices. The package sstvars considers STVAR models in which, at each point of time, the
observation is a weighted average of the conditional means of the regimes plus a random error
whose covariance matrix is a weighted average of the covariance matrices of the regimes. The
weights, in turn, are expressed in terms of time-varying transition weights that either depend
on the preceding observations or are exogenous. Different STVAR models can be created by
specifying the transition weights or the error distribution in various ways.

This manuscript describes the R package sstvars providing a set of easy-to-use tools for STVAR
modeling, including also threshold vector autoregressive models. There are tools for uncon-
strained and constrained (penalized) maximum likelihood (ML) estimation of the model pa-
rameters, residual based model diagnostics, counterfactual analysis, as well as for computation
of linear impulse response functions, nonlinear generalized impulse response functions, gener-
alized forecast error variance decompositions, and historical decompositions. In addition to
"normal" ML estimation, sstvars also accommodates penalized ML estimation, in which a pe-
nalization term is added to the log-likelihood function, penalizing parameter values that are
inside or are close entering instability region (where the usual stability condition does not hold).
This enables to allow for unstable parameter values in estimation, letting the optimization al-
gorithm to explore the unstable region of the parameter space, often substantially improving
its performance. By penalizing instability sufficiently, the optimization algorithm eventually
steers back to the stable region. Further functionality includes hypothesis testing, plotting
the proĄle log-likelihood functions about the estimate, simulation from STVAR processes, and
forecasting, to name a few. Various transition weight functions are accommodated, includ-
ing exogenous weights, logistic weights (Anderson and Vahid 1998), multinomial logit weights,
exponential weights (e.g., Hubrich and Teräsvirta 2013), threshold weights (Tsay 1998), and
transition weights that deĄned as weighted relative likelihoods of the regimes corresponding
to the preceding p observations (Lanne and Virolainen 2025). Currently, the accommodated
conditional distributions include Gaussian distribution, StudentŠs t distribution, StudentŠs t
distribution with mutually independent components, and skewed t distribution with mutually
independent components. The accommodated identiĄcation methods include recursive identiĄ-
cation, identiĄcation by heteroskedasticity (Lütkepohl and Netšunajev 2017), and identiĄcation
by non-Gaussianity (Virolainen 2025a).

The estimation of the model parameters can, in some cases, be rather tricky. Particularly when
the transition weights are determined endogenously, there is a very large number of modes
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to the (penalized) log-likelihood function, and large areas of the parameter space, where the
(penalized) log-likelihood function is Ćat in multiple directions. Therefore, the model parameters
are estimated by running multiple rounds of a two-phase or three phase estimation procedure.
In the two-phase procedure, a genetic algorithm is used in the Ąrst phase to Ąnd starting values
for a gradient based variable metric algorithm, which is ran in the second phase. In the three-
step procedure, autoregressive and weight parameters are Ąrst estimated by (nonlinear) least
squares (LS), then the rest of the parameters are estimated by (penalized) ML conditional on
them with a genetic algorithm, and Ąnally all the parameters are estimated by (penalized)
ML by initializing the variable metric algorithm from the initial estimates obtained from the
Ąrst two steps. Because of the multimodality of the (penalized) log-likelihood function, some
of the estimation rounds may end up in different local maximum points, thereby enabling the
researcher to build models not only based on the global maximum point but also on the local
ones. The estimated models can be conveniently examined with the summary and plot methods.

The three-step procedure facilitates estimating larger model and substantially reduces to com-
putation time as opposed to the two-phase procedure, as a substantially smaller number of
estimation rounds are required due to the initial estimates from (nonlinear) LS estimation.
However, the three-step procedure tends to produce estimates that are close to the initial (N)LS
estimates, while the two-phase procedure explores the parameter space more thoroughly (when
a large enough number of estimation rounds is ran). The penalized ML estimation is particu-
larly useful when the data is persistent (which macroeconomic data typically is), as it allows
the optimization algorithm to explore the unstable region of the parameter space (including
the boundary), often improving its performance substantially. Moreover, penalized estimation
can more effectively make use of (N)LS estimates that are outside the stability region, as with
penalized estimation they do not need to be adjusted when switching to ML estimation in the
latter phases.

The remainder of this paper is organized as follows. Section 2 deĄnes the implemented reduced
form STVAR models and discusses some of their properties. Section 3 discusses the accommo-
dated structural STVAR models and discusses identiĄcation of the structural shocks. Section 4
discusses estimation of the model parameters. We also illustrate how the STVAR models can
be estimated and examined with sstvars and how various parameter restrictions can be imposed
in the estimation. Section 6 discusses how to evaluate the model adequacy with sstvars using
residual based diagnostics. Section 7 discusses impulse response analysis, including generalized
impulse response functions and generalized forecast error variance decompositions. Section 8
discusses computation of historical decompositions and Section 9 counterfactual analysis. Sec-
tion 10 shows how the STVAR models can be constructed with given parameter values. In
Section 11, we Ąrst show how to simulate observations from a STVAR process, and then we
illustrate how to forecast future values of a STVAR process with a simulation-based Monte
Carlo method. Finally, Section 12 concludes, and some useful functions in sstvars are collected
to a single table in Section 12 for convenience. Throughout this paper, we illustrate the use
of sstvars with a quarterly series consisting of two U.S. variables: the percentage change of
real GDP and the percentage change of GDP implicit price deĆator, covering the period from
1959Q1 to 2019Q4.

2. Smooth Transition Vector Autoregressive Models

This section describes the STVAR models implemented in sstvars. First, we describe the general
framework of STVAR models accommodated by sstvars and present a sufficient condition for
their ergodic stationarity. Then, we present the implemented speciĄcations of transition weight
functions and conditional distributions. Finally, we discuss structural STVAR models and
implemented methods for identiĄcation of the shocks.
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2.1. General framework for STVAR models

Let yt, t = 1, 2, ..., be the d-dimensional time series of interest and Ft−1 denote the σ-algebra
generated by the random vectors ¶yt−j , j > 0♢. We consider STVAR models with M regimes
and autoregressive order p assumed to satisfy

yt =
M∑

m=1

αm,tµm,t + ut, ut ∼ MD(0, Ωy,t) (1)

µm,t = ϕm +
p
∑

i=1

Am,iyt−i, m = 1, ..., M, (2)

where ϕm ∈ R
d are intercept parameters, Am,i is the lag i autoregression matrix of Regime

m, and ut is a martingale difference sequence of reduced form innovations. The transition
weights αm,t are assumed to be Ft−1-measurable functions of ¶yt−j , j = 1, ..., p♢ and to satisfy
∑M

m=1 αm,t = 1 at all t. They express the proportions of the regimes the process is on at each
point of time, and how the process shifts between the regimes. Through, a STVAR model with
autoregressive order p and M regimes is referred to as a STVAR(p, M) model, whenever the
order of the model needs to be emphasized.

Conditional on Ft−1, the conditional mean of the above described process is µy,t ≡ E[yt♣Ft−1] =
∑M

m=1 αm,tµm,t. The conditional mean is thereby a weighted sum the regime-speciĄc means
µm,t with the weights given by the transition weights αm,t The speciĄcation of the conditional
covariance matrix Ωy,t ≡ Cov(yt♣Ft−1) = Cov(ut♣Ft−1) depends on the error term distribution.
If the conditional distribution of ut is either Gaussian or StudentŠs t-distribution, the conditional
covariance matrix is assumed to be the weighted average of the covariance matrices of the
regimes:

Ωy,t =
M∑

m=1

αm,tΩm, (3)

where Ω1, ..., ΩM are the positive deĄnite (d × d) covariance matrices of the regimes.

If the distribution of ut is the StudentŠs t-distribution with mutually independent components
(hereafter independent t-distribution) or independent skewed t-distribution with mutually inde-
pendent components (see Hansen 1994), the conditional covariance matrix is different, because
in that case the model is directly parametrized with the invertible (d × d) impact matrices Bm

of the regimes as:

yt =
M∑

m=1

αm,tµm,t + By,tet, et ∼ IID(0, Id) (4)

By,t =
M∑

m=1

αm,tBm, (5)

where B1, ..., BM are the invertible (d×d) impact matrices of the regimes and et is the sequence
of structural errors. See Virolainen (2025a) for further details.

Different STVAR models are obtained by specifying the transition weights or the error distri-
bution (i.e., the conditional distribution) in various ways. See Hubrich and Teräsvirta (2013)
for a survey on STVAR literature, including formulations more general than our framework.
The package sstvars accommodates completely exogenous transition weight functions as well
as transition weights that are functions of ¶yt−j , j = 1, ..., p♢. In the latter case, the station-
arity condition presented below applies. Moreover, if the transition weights are not exogenous,
their Ft−1-measurability ensures that the true generalized impulse responses functions (Koop,
Pesaran, and Potter 1996) can be easily estimated, as completely exogenous switching-variables
are excluded from affecting the weights. We also assume that the transition weights are identical
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for all the individual equations in (1), which is also required for applicability of the stationarity
condition. Consequently, at each t‚ the process can be described as a weighted sum of linear
vector autoregressions.

2.2. Stationarity condition

Excluding models with exogenous transition weights, it can be shown that when the conditional
covariance matrix is of the form (3). a sufficient condition for the ergodic stationarity of the
STVAR model (1)-(2) can expressed in terms of the joint spectral radius (JSR) of certain
matrices (Kheifets and Saikkonen 2020). When the model is parametrized with the impact
matrix (5), the same stationarity condition often applies, but depending on the case, it may
require certain additional conditions (see Virolainen 2025a, for details). The JSR of a Ąnite set
of square matrices A is deĄned by

ρ(A) = lim sup
j→∞

(

sup
A∈Aj

ρ(A)

1/j

, (6)

where Aj = ¶A1A2...Aj : Ai ∈ A♢ and ρ(A) is the spectral radius of the square matrix A.

Consider the companion form AR matrices of the regimes deĄned as

Am =











Am,1 Am,2 · · · Am,p−1 Am,p

Id 0 · · · 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0











(dp×dp)

, m = 1, ..., M. (7)

Kheifets and Saikkonen (2020, Theorem 1) and Lanne and Virolainen (2025) (see also Saikkonen
2008) show that if the following condition holds, the STVAR process is ergodic stationary (both
strictly and second-order).

Condition 1 ρ(¶A1, ...,AM ♢) < 1.

Condition 1 is, however, computationally demanding the check in practice with a reasonable
accuracy (e.g., Chang and Blondel 2013), making it impractical to use in the estimation. There-
fore, we consider a necessary condition for Condition 1 that is easier to check in practice, which
is that the usual stability condition is satisĄed for each of the regimes. SpeciĄcally, the following
condition, which is analogous to Corollary 1 of Kheifets and Saikkonen (2020), is necessary for
Condition 1.

Condition 2 max¶ρ(A1), ..., ρ(AM )♢ < 1,

where ρ(Am) is the spectral radius of Am, m = 1, ..., M .

Note that validity Condition 2 does not imply the validity of Condition 1, which guarantees
ergodic stationarity of the model. However, in practice models that satisfy Condition 2 and are
not very close to breaking this condition usually satisfy Condition 1. For checking the validity
of Condition 1, sstvars implements (the function bound_JSR) implements the branch-and-bound
method by Gripenberg (1996). For large models sstvarsŠs implementation of the GripenbergŠs
method may, however, take very long if tight bounds are required. Other implementations
of methods bounding the JSR include the MATLAB toolbox JSR by Jungers (2023), which
automatically combines several methods and Ąnds accurate bounds much faster than sstvars.
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The R package sstvars operates largely by assuming that all of the regimes satisfy the usual
stability condition. However, also estimates that do not satisfy the usual stability condition are
allowed in sstvars. In this case, the argument allow_unstab should be set to TRUE.

2.3. SpeciĄcations of the conditional distribution

Currently, sstvars accommodates two types of error distributions: Gaussian distribution, Stu-
dentŠs t, and independent StudentŠs t distribution, which are discussed below.

Gaussian distribution

Assuming the structural errors et have standard normal distributions, the conditional distribu-
tion of yt conditional on Ft−1 is Gaussian and characterized by the density function

f(yt♣Ft−1) = nd(yt; µt, Ωt) = (2π)−d/2 det(Ωt)
−1/2 exp



−
1

2
(yt − µt)

′Ω−1
t (yt − µt)



. (8)

That is, the conditional distribution is simply the d-dimensional Gaussian distribution with
mean µt and covariance matrix Ωt. The Gaussian distribution simple and can be used with all
of our transition weight functions, but in some cases it is useful to employ the more heavy tailed
StudentŠs t distribution instead.

Student’s t distribution

To accommodate more heavy tailed data, instead of using Gaussian errors one may consider
StudentŠs t errors and assume the shocks et are StudentŠs t distributed with the mean zero,
identity covariance matrix, and ν > 2 degrees of freedom (where the assumption ν > 2 is made
to ensure the existence of second moments). The StudentŠs t STVAR model has the conditional
distribution, conditional Ft−1, characterized by the density function

f(yt♣Ft−1) = td(yt; µt, Ωt, ν) = Cd(ν)det(Ωt)
−1/2

(

1 +
(yt − µt)

′Ω−1
t (yt − µt)

ν − 2

−(d+ν)/2

, (9)

where

Cd(ν) =
Γ
(

d+ν
2

)

√

πd(ν − 2)dΓ
(

ν
2

) , (10)

and Γ (·) is the gamma function. The conditional distribution is, hence, the d-dimensional
StudentŠs t distribution with mean µt, covariance matrix Ωt, and ν degrees of freedom. Note
that the parametrization differs from the conventional one, as the distribution is parametrized
with a covariance matrix instead a scale matrix (see, e.g., Meitz, Preve, and Saikkonen 2023,
Appendix A for details about the parametrization).

The StudentŠs t errors are more Ćexible than the Gaussian ones, but they cannot be used with the
transition weight function that is deĄned as weighted ratios of the regimeŠs stationary densities
(see Section 2.4.1). This is because it requires the knowledge of the stationary distributions
of the regimes corresponding to p consecutive observations, and the stationary distribution is
not known for the StudentŠs t regimes. Moreover, StudentŠs t STVAR models are more difficult
estimate in practice than the Gaussian ones, and estimation of the STVAR models can be
demanding.

Independent Student’s t distribution

In addition to the conventional multivariate StudentŠs t distribution, sstvars accommodates Stu-
dentŠs t distribution with mutually independent components, i.e., each component of the error
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term follows a univariate StudentŠs t distribution independently from the the other components.
The independent StudentŠs t STVAR model has the conditional distribution, conditional Ft−1,
characterized by the density function

f(yt♣Ft−1) = ♣ det(Bt)♣
−1

d∏

i=1

t1(ι′
iB

−1
t (yt − µt); 0, 1, νi) (11)

where ιi = (0, ...0, 1, 0, .., 0) is a (d × 1) has one in the ith entry and zeros in the other entries,
t1(·; 0, 1, νi) is the density function of univariate t-distribution with mean zero, variance one,
and νi degrees of freedom (obtained from the d-dimensional density described in Section 2.3.2),
and

By,t =
M∑

m=1

α
1/2
m,tBm, (12)

where B1, ..., BM are invertible (d × d) impact matrices of the regimes.

The independent StudentŠs t distribution is more Ćexible than the conventional t-distribution, as
it allows for different degrees of freedom parameter values for each component. However, the for
structural analysis, a more substantial advantage is that under mutually independent StudentŠs
t shocks, the structural shocks are statistically identiĄed without further restrictions on the
model (Virolainen 2025a). But this comes at a cost: due to the structure of the conditional
distribution, evaluation of the log-likelihood function is computationally more costly than with
the conventional t-distribution. Therefore, maximum likelihood estimation of STVAR with
independent StudentŠs t shocks is somewhat slower.

Independent skewed t distribution

We also accommodate the skewed t distribution with mutually independent components as con-
ditional distribution. In other words, each shock eit in the structural error et = (e1t, ..., edt) is
assumed to follow a univariate skewed t distribution described in Hansen (1994, Section 2.4)
independently from the other shocks. The independent skewed t STVAR model has the condi-
tional distribution, conditional Ft−1, characterized by the density function

f(yt♣Ft−1) = ♣ det(Bt)♣
−1

d∏

i=1

st(ι′
iB

−1
t (yt − µt); νi, λi), (13)

where ιi = (0, ...0, 1, 0, .., 0) is a (d × 1) has one in the ith entry and zeros in the other entries,
By,t is as in (12), and st(·; νi, λi) is the density function of univariate skewed t-distribution
with zero mean, unit variance, νi degrees of freedom, and skewness controlled by the parameter
λi ∈ (−1, 1). The density function of the skewed t-distribution, st(·; νi, λi), is given as (Hansen
1994, Equations (10)-(13)):

st(eit; νi, λi) = bici

(

1 +
1

νi − 2

(
bieit + ai

1 − 1¶eit < −ai/bi♢λi + 1¶eit ≥ −ai/bi♢λi

)2
−(νi+1)/2

(14)

where 1¶eit < −ai/bi♢ is an indicator function that takes the value one if eit < −ai/bi and zero
otherwise, and 1¶eit ≥ −ai/bi♢ is an indicator function that takes the value one if eit ≥ −ai/bi

and zero otherwise. The constants ai, bi, and ci are deĄned as

ai = 4λici

(
νi − 2

νi − 1

)

, (15)

bi = (1 + 3λ2
i − a2

i )1/2, and (16)

ci =
Γ
(

νi+1
2

)

(π(νi − 2))1/2Γ
(νi

2

) , (17)
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where Γ(·) is Gamma function.

Independent skewed t distribution accommodates the independent StudentŠs t distribution as
the special case λi = 0. The independent skewed t distribution is, however, more Ćexible
than the independent StudentŠs t distribution, as it allows for skewed distributions for each
component. On the other hand, models incorporating skewed shocks can be substantially more
difficult to estimate in practice, because of the increased complexity and since the estimation
algorithm might have difficulties in distinguishing between skewness and shifts in the mean.

2.4. SpeciĄcations of the transition weights

Various speciĄcations of the transition weights αm,t can be considered to obtain smooth transi-
tion VARs with different properties. We assume that the transition weights are either completely
exogenous or functions of ¶yt−j , j = 1, ..., p♢. Under the latter type of weights, the stationar-
ity condition discussed in Section 2.2 applies. Moreover, Ft−1-measurability of the transition
weights ensures that the true generalized impulse responses functions can be easily estimated,
as completely exogenous switching-variables are excluded from affecting the weights.1 We also
assume that the transition weights are identical for all the individual equations in (1), which is
required for applicability of the stationarity condition. Consequently, at each t‚ the process can
be described as a weighted sum of linear VARs.

Weighted relative likelihoods

If the conditional distribution is speciĄed to be Gaussian, weighted relative likelihoods of the
regimes can be used as transition weights (Lanne and Virolainen 2025). In this speciĄcation,
the transitions weights depend on the full distribution of the preceding p observations, they
are deĄned identically to the mixing weights in the Gaussian mixture vector autoregressive
(GMVAR) model of Kalliovirta, Meitz, and Saikkonen (2016). Denoting yt−1 = (yt−1, ..., yt−p),
the transition weights are deĄned as

αm,t =
αmndp(yt−1; 1p ⊗ µm, Σm,p)

∑M
n=1 αnndp(yt−1; 1p ⊗ µn, Σn,p)

, m = 1, ..., M, (18)

where α1, ..., αM are transition weight parameters that satisfy
∑M

m=1 αm = 1 and ndp(·; 1p ⊗
µm, Σm,p) is the density function of the dp-dimensional Gaussian distribution with mean 1p⊗µm

and covariance matrix Σm,p. The symbol 1p denotes a p-dimensional vector of ones, ⊗ is
Kronecker product, µm = (Id −

∑p
i=1 Am,i)

−1ϕm, and the covariance matrix Σm,p is given in
Lütkepohl (2005, Equation (2.1.39)), but using the parameters of the mth regime. That is,
ndp(·; 1p ⊗ µm, Σm,p) corresponds to the density function of the stationary distribution of the
mth regime.

The transition weights are thus weighted ratios of the stationary densities of the regimes cor-
responding to the preceding p observations. This speciĄcation is appealing, as it states that
the greater the weighted relative likelihood of a regime is, the greater the weight of this regime
is. The regimes are, hence, formed based on the statistical properties of the data and are not
affected by the choice of the switching variables similarly to the logistic weights.

In the GMVAR model (Kalliovirta et al. 2016), the deĄnition of the mixing weights also leads
to attractive theoretical properties such as the the knowledge of the stationary distribution of
p + 1 consecutive observations. But this is not the case in our STVAR model, as the structure
of the model is different. The GMVAR model has been implemented to the R package gmvarkit

(Virolainen 2018a), which works quite similarly to sstvars.

1Weaker forms of exogeneity of speciĄc variables can also be imposed by constraining the AR matrices Am,i,
m = 1, ..., M , i = 1, ..., p, or the impact matrix Bt accordingly (see Section 4.8).
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Logistic transition weights

A common speciĄcation assumes logistic transition weights (e.g., Anderson and Vahid 1998)
that vary according to the level of the switching variable, which we assume to be a lagged
endogenous variable. Here we assume that the model has only two regimes (M = 2), and in
the next section, we show how the logistic weights generalize to multinomial logit weights that
accommodate more regimes.

The logistic transition weights are deĄned as

α1,t = 1 − α2,t,

α2,t = [1 + exp¶−γ(yit−j − c)♢]−1,
(19)

where yit−j is the jth lagged observation (j ∈ ¶1, ..., p♢) of the ith variable (i ∈ ¶1, ..., d♢), c ∈ R

is a location parameter, and γ > 0 is a scale parameter. The location parameter c determines
the mid point of the transition function, i.e., the value of the (lagged) switching variable when
the weights are equal. The scale parameter γ, in turn, determines the smoothness of the
transitions (smaller γ implies smoother transitions), and it is assumed strictly positive so that
α2,t is increasing in yit−j .

Compared to weighted relative likelihoods, an advantage of the logistic weights is that it allows
to specify switching variables in a way that leads to the regimes the econometrician is interested
in in a speciĄc application. For instance, if one is interested in how the effects of the shocks
vary along with business cycle Ćuctuations, yit−j may be set as a lagged output gap variable.
STVAR models with logistics weights are also easier to estimate than those with the transition
weights determined by weighted relative likelihoods of the regimes. A disadvantage is that the
empirical results depend highly on the choice of the switching variable, and only the level of
the switching variable affects the transition weights.

Multinomial logit transition weights

The logistic transition weights can be generalized to multinomial logit weights that accommo-
date more than two regimes as well as multiple lags of multiple switching variables as regressors
in the logit sub model. The generality, however, comes at the cost of signiĄcantly more diffi-
cult estimation in the practice and loss of the intuitive interpretations of the parameters of the
transition function. With M ≥ 2 regimes, we specify the multinomial logit weights as

αm,t =
exp¶γ′

mzt−1♢
∑M

n=1 exp¶γ′
nzt−1♢

, m = 1, ..., M, (20)

where zt−1 is an (k × 1) Ft−1-measurable vector containing the (lagged) switching variables
and a constant term, γm, m = 1, ..., M − 1, are (k × 1) coefficient vectors, and the last one is
normalized as γM = 0 (k × 1) to facilitate identiĄcation.2 Denote the set of switching variables
as I ⊂ ¶1, ..., d♢ (with the indices in I corresponding to the ordering of the variables in yt) and
assume that p̃ ∈ ¶1, ..., p♢ lags are included in the transition weights. We assume

zt−1 = (1, z̃min¶I♢, ..., z̃max¶I♢), z̃j = (yit−1, ..., yit−p̃), i ∈ I. (21)

So k = 1 + ♣I♣p̃ where ♣I♣ is the cardinality of the set I (i.e., the number of elements in I). For
instance, if the switching variables are the Ąrst two variables in yt, I = ¶1, 2♢ and only the Ąrst
lag is included, p̃ = 1, we have zt−1 = (1, y1t−1, y2t−1).

The speciĄcation implies

log
αm,t

αM,t
= γ′

mzt−1, m = 1, ..., M − 1. (22)

2Burgard, Neuenkirch, and Nöckel (2019) specify the mixing weights of their mixture VAR in a similar fashion,
but unlike us, they allow for exogenous switching variables.
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Our speciĄcation assumes that all the lags up to the lag p̃ are included in the transition weights.
The inclusion of only some speciĄc lags in the transition weights is, however, accommodated by
imposing constraints on the parameters α ≡ (γ1, ..., γM−1) ((M − 1)k × 1). SpeciĄcally, sstvars

assumes constraints of the form
α = Rξ + r, (23)

where R is a known ((M − 1)k × l) constraint matrix, r is a known ((M − 1)k × 1) constant,
and ξ is an unknown (l × 1) parameter. For instance, by assuming that R is a matrix of zeros,
the weight parameter α can be constrained to a known constant.

The logistic weights discussed in the previous section, with yit−j as the switching variable for
some lag j ∈ ¶1, ..., p♢ and i ∈ ¶1, ..., d♢, are obtained as a special case as follows. Assume
M = 2, p̃ = j, and I = ¶i♢, so that zt−1 = (1, yit−1, ..., yit−j). Then, impose the constraints
r = 0 and

R =









1 0
0 0
...

...
0 1









(j + 1 × 2), (24)

so ξ = (γ1,1, γj+1,1), where γl,m is the lth element of γm.

A direct calculation shows that the "scale parameter" is −γj+1,1) and the "location parameter" is
γ1,1

−γj+1,1
. The linear constraints (23) do not, however, enable to constrain the location parameter

γ1,1

−γj+1,1)
to a speciĄc value while leaving the scale parameter −γ(j+1),1) unconstrained (or vice

versa), or to constrain the scale parameter strictly positive. Therefore, it is more convenient to
use the logistic weights and parametrization discussed in Section 2.4.2 when only two regimes
and one lag of one switching variable are used. Also, due to the structure of the weights, the
multinomial logit weights are more difficult to estimate than the logistic weights.

Exponential transition weights

Exponential transition weights (see, e.g., Teräsvirta 1994) vary according to the level of the
switching variable, which we assume to be a lagged endogenous variable. Similarly to the logistic
transition weights discussed in Section 2.4.2, the exponential weights depend on a location
parameter c and a scale parameter γ that determine the mid point of the transition curve
and smoothness of the transitions, respectively. But instead of logistic transition function, we
consider an exponential transition function.

SpeciĄcally, we assume M = 2 and deĄne the exponential transition weights as

α1,t = 1 − α2,t,

α2,t = 1 − exp¶−γ(yit−j − c)2♢
(25)

where yit−j is the jth lagged observation (j ∈ ¶1, ..., p♢) of the ith variable (i ∈ ¶1, ..., d♢),
c ∈ R is a location parameter, and γ > 0 is a scale parameter. The location parameter c
determines the value of the (lagged) switching variable when the process is completely in Ąrst
regime, i.e., α1,t = 1 and α2,t = 0. The closer yit−j is to c, the greater the weight of the Ąrst
regime is. Conversely, when the deviation of yit−j from c increases, the weight of the second
regime increases (and the weight of the Ąrst regime decreases). The scale parameter γ, in turn,
determines the smoothness of the transitions (smaller γ implies smoother transitions), and it is
assumed strictly positive so that α2,t ∈ [0, 1] for all yit−j .

Threshold transition weights

Threshold transition weights assume discrete regime switches such that the regime switches
when the level of the switching variable exceeds or falls below a threshold value. This type
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model nonlinear VARs are often referred to as Threshold VAR (TVAR) models (Tsay 1998)
or self-exciting TVAR models (due to the endogenous switching-variable). We interpret the
TVAR model as a special case of the STVAR models, despite of the regime switches being
discrete rather than smooth.

For a model with M > 1 regimes, consider the M −1 threshold values r1, ., .., rM−1 ∈ R such that
r1 < · · · < rM−1, and suppose the switching variable is i ∈ ¶1, ..., d♢ with the lag j ∈ ¶1, ..., p♢.
The transition function is deĄned as

αm,t =

{

1 if rm−1 < yit−j ≤ rm,
0 otherwise,

(26)

where r0 ≡ −∞, rM ≡ ∞, and m = 1, ..., M . In other words, at each t‚ the model deĄned in
Equations (1), (2) and (26) reduces to a linear VAR corresponding to one of the regimes that
is determined according to the level of the switching variable yit−j .

Compared to smoothly varying transition weights, threshold transition weights have the ad-
vantage that the resulting model is easier to estimate in practice and the regimes have clearer
interpretations. An obvious disadvantage is the inability to capture gradual shifts between the
regimes or more complex regime-switching dynamics that depend on other factors than just on
the level of the switching variable.

Exogenous transition weights

In addition to the endogenous transition weights described above, sstvars accommodates com-
pletely exogenous transition weights. These weights are speciĄed by the user by supplying them
as a matrix. The only restrictions are that they must sum to one for each time period t and they
must be weakly larger than zero. If exogenous weights are provided, the stationarity condition
does not apply, but sstvars still assumes that each of the regimes satisĄes the usual stability
condition. Moreover, computation of the generalized impulse response functions requires that
the exogenous transition weights that should be used for the sample paths are provided by
the user. Linear impulse response functions based on a speciĄc regime can, nonetheless, be
calculated.

3. Structural STVAR models

Constructing a structural STVAR model from a reduced form STVAR model amounts to iden-
tifying the mutually and serially uncorrelated structural shocks et = (et1, .., etd). The structural
shocks are recovered from the reduced form innovations ut based on the identity et = B−1

t ut,
where Bt is a time-varying invertible (d × d) impact matrix that governs the contemporaneous
relationships of the shocks. Since many different solutions to the impact matrix generally lead
to observationally equivalent models, further assumptions are required for unique identiĄcation
of the structural shocks.

The R package sstvars currently accommodates three types of identiĄcation methods: recursive
identiĄcation, identiĄcation by heteroskedasticity, and identiĄcation by non-Gaussianity. Iden-
tiĄcation by non-Gaussianity requires mutually independent shocks at most one of which can be
Gaussian (Virolainen 2025a), and therefore, it is available only for model with independent Stu-
dentŠs t errors distribution. In that case, the shocks are statistically identiĄed without further
assumptions, and thus we have excluded the availability of the other two identiĄcation methods
to these models. Overidentifying restrictions on the impact responses of the variables to the
shocks can, however, be imposed. Structural models incorporating Gaussian or conventional t
shocks can be identiĄed in sstvars recursively or by heteroskedasticity.

3.1. Recursive identiĄcation
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A conventional way of identifying the shocks is to impose restrictions on the impact responses of
variables. A commonly applied identiĄcation is to assume a recursive lower-triangular structure
on Bt, implying that Bt is obtained as the Cholesky decomposition of the conditional covariance
matrix Ωy,t. The recursive identiĄcation is straightforward to apply and it allows many of the
impact responses to vary in time but constraints many of them to zero. This is particularly
disadvantageous if the shock of interest is ordered last or almost last (which is typically the
case in small-scale monetary policy shock applications), as then the impact responses of many
of the variables to the shock of interest are zero, and therefore, time-invariant.

With our speciĄcation of the STVAR model, recursive identiĄcation does not, however, allow
to impose over-identifying restrictions on the impact matrix Bt. This is because there does
not exist a direct parametrization of a lower-triangular Bt such that the conditional covariance
matrix Ωy,t is a weighted sum of the regime-speciĄc covariance matrices with time-varying
weights.

3.2. IdentiĄcation via heteroskedasticity

An alternative identiĄcation method proposed by Lütkepohl and Netšunajev (2017) for struc-
tural VARs with smooth transitions in variances (see also the seminal paper by Rigobon 2003)
identiĄes the shocks by simultaneously diagonalizing the covariance matrices Ω1, ..., ΩM . This
restricts the relative impact responses of the variables to be constant over time (for each shock)
but does not necessarily require any zero restrictions. Since Lütkepohl and Netšunajev (2017)
assume only two regimes and do not normalize the conditional covariance matrix of the struc-
tural error to a constant, their speciĄcation does not directly apply to our model. Therefore,
we adopt the more suitable speciĄcation of Virolainen (2025b), and decompose the covariance
matrices as

Ωm = WΛmW ′, m = 1, ..., M, (27)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ−1

1 and the columns of the nonsingular W are the related eigenvectors (that
are the same for all m by construction). When M = 2, the decomposition (27) always exists
(Muirhead 1982, Theorem A9.9), but for M > 2 its existence requires that the matrices ΩmΩ−1

1

share the common eigenvectors in W . This is, however, testable.

The impact matrix is then obtained as

Bt = W

(
M∑

m=1

αm,tΛm

1/2

, (28)

where Λ1 = Id. The shocks are identiĄed up to ordering and sign if none of the pairs of λmi,
i = 1, ..., d, is identical for all m = 2, ..., M . Assuming that his condition is satisĄed, the shocks
can be labelled according to the unrestricted impact responses on Bt, and if necessary, further
economically motivated restrictions can be imposed. The additional economic restrictions on
the impact matrix are testable, as they are overidentifying. See Virolainen (2025b) for a more
detailed discussion on the identiĄcation and labelling of the shocks.

Shocks identiĄed by heteroskedasticity impose constant relative impact responses for the vari-
ables, making them unsuitable for some applications concerned with time-varying impulse re-
sponse functions. Similarly to the recursive identiĄcation, this method is straightforward to ap-
ply, but unlike the recursive identiĄcation, it does not necessarily require any zero constraints on
the impact responses. Compared to the recursive identiĄcation, identiĄcation by heteroskedas-
ticity is therefore particularly advantageous when the recursive identiĄcation would imply that
the shock of interest is order last. In this case, the assumption of time-invariant relative impact
responses is less restrictive than the zero restrictions of the recursive identiĄcation. In contrast,
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the recursive identiĄcation is particularly appealing when the shock of interest is ordered Ąrst
(or almost Ąrst), as then the impact responses to the shock of interest can vary freely in time.

3.3. IdentiĄcation by non-Gaussianity

When to shocks are mutually independent and at most one of them is Gaussian (i.e., under
independent t shocks or skewed t shocks, see Sections 2.3.3 and 2.3.4), they are generally
statistically identiĄed without imposing further restrictions on the models (Virolainen 2025a).
SpeciĄcally, the required identifying assumptions are:

Assumption 1 1. The structural error process et = (e1t, ..., edt) is a sequence of independent
and identically distributed random vectors such that et is independent of Ft−1 and each
component eit, i = 1, ..., d, follows a continuous distribution with zero mean, unit variance,
and a density that is strictly positive almost everywhere in R.

2. The components of et = (e1t, ..., edt) are mutually independent and at most one of them
has a Gaussian marginal distribution.

Under Assumption 1 the impact matrix 12 is uniquely identiĄed at each t up to ordering and
signs of its columns (Virolainen 2025a, Lemma 2). That is, at each t‚ changing the ordering or
signs of the columns of By,t would lead to an observationally equivalent model, but changing
By,t in any other way would lead to an observationally distinct model. It follows that if the
impact matrix is time-invariant as in Lanne, Meitz, and Saikkonen (2017), i.e., By,t = B for
some constant matrix B, the structural shocks are identiĄed up to ordering and signs. However,
when the impact matrix varies over time, two complications arise.

First, because By,t (12) is identiĄed only up to column ordering and signs at each t, its unique
identiĄcation requires constraints on the regime-speciĄc impact matrices B1, ..., BM such that
any reordering or sign changes in their columns lead to observationally distinct By,t at some
t. Second, since By,t is not a matrix of constant parameters but a function of parameters, it
needs to be shown that the parameters in its functional form are identiĄed. Also, in addition to
B1, ..., BM , the impact matrix By,t depends on the transition weights αm,t, m = 1, ..., M , which
must therefore be identiĄed as well. To that end, we assume either the logistic, threshold, or
exogenous transition weights considered in (Virolainen 2025a).

Identification of the shocks in STVAR models

Having established the identiĄcation result for TVAR models, or more generally to models
incorporating discrete regime switches, we now consider "smoothly varying" transition weights
that may take other values as well. In particular, following Virolainen (2025a), we assume that
the weights are logistic or exogenous (nonrandom). The identiĄcation result can be extended
to other suitable weight functions as well, but the identiĄcation of the AR and weight function
parameters, and thus the identiĄcation of B1, ..., BM , is shown only for these weight functions
in Virolainen (2025a). The following proposition, Proposition 1 of Virolainen (2025a), states
the identiĄcation result:

The following proposition, similar to Proposition 1 of Virolainen (2025a), establishes unique
identiĄcation of B1, ..., BM for models with logistic or exogenous transition weights.

Proposition 1 Consider the STVAR model deĄned in Equations (1), (2), and (12) with As-
sumption 1, and let the transition weights be either exogenous (nonrandom) or follow the logistic
process deĄned in (19) (with M = 2 assumed and γ < ∞). Suppose also that the switching vari-
able zt for logistic weights is a lagged endogenous variable, i.e., zt = yit−j for some i ∈ ¶1, ..., d♢
and j ∈ ¶1, ..., p♢. Moreover, suppose the following conditions hold:
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1. (ϕm, vec(Am,1), ..., vec(Am,p)) ̸= (ϕn, vec(An,1), ..., vec(An,p)) for all m ̸= n ∈ ¶1, ..., M♢,
and

2. (for exogenous weights) there exists M indices t1, ..., tM ∈ ¶1, ...., T♢ such that the corre-
sponding coefficient vectors (α1,ti

, ..., αM,ti
), i = 1, ..., M , are linearly independent.

3. the ordering and signs of the columns of B1 are Ąxed, and

4. (for exogenous weights) the vector (α1,t, ..., αM,t) takes a value for some t such that none
of its entries is zero.

Then, the matrices B1, ..., BM are uniquely identiĄed almost everywhere in [B1 : ... : BM ] ∈
R

d×dM .

Proposition 1 essentially states that if the structural shocks are independent and at most one
of them is Gaussian (Assumption 1), the impact matrices B1, ..., BM , and hence, the structural
shocks are identiĄed. The result holds for almost every [B1 : ... : BM ] ∈ R

d×dM because the
identiĄcation may fail in some special cases, but this set has Lebesgue measure zero.

Condition 1 of Proposition 1 implies distinguishable regimes, whereas Condition 2 guarantees
(for exogenous weights) at least a certain small degree of variation in the transition weights.
Condition 3 of Proposition 1 states that the ordering and signs of the columns of B1 should
be Ąxed (e.g., by assuming that the Ąrst nonzero entry in each column is positive and the Ąrst
nonzero entries are in a decreasing order, given that none of them are equal), which Ąxes the
ordering and signs of the columns of By,t for all t. If the shocks follow, for example, the skewed
t-distributions, any Ąxed ordering and signs of the columns of B1 can be assumed without loss of
generality. This is because reordering the columns would just reorder the shocks and swapping a
sign of a column corresponds to swapping the sign of the related shock and skewness parameter.
Condition 4 states that exogenous transition weights should, for some t, be strictly positive
for all the regimes, which is used to establish that Condition 3 Ąxes the ordering and signs of
the columns of By,t for all t. For logistic weights, this is achieved via the assumption γ < ∞,
guaranteeing that the regime-switches are not discrete.

Somewhat surprisingly, our experience shows that identiĄcation appears to be often weak in the
sense that there are multiple local maxima of the (penalized) log-likelihood function (discussed in
Section 4) with (penalized) log-likelihoods close to each other and to the global maximum. The
parameter values related to each such local maximum seem to be often largely quite similar to
each other, but have some differences, frequently but not exclusively related to different ordering
and signs of the columns of B2, ..., BM . Since such different local solutions may produce different
results in structural analysis, this weak identiĄcation should be appropriately addressed, for
instance, by combining Proposition 1 with supplementary identifying information as discussed
in Section 3.3.3.

Identification of the shocks in TVAR models

Suppose the transition weights are binary, αm,t ∈ ¶0, 1♢, for all t and m = 1, ..., M , speciĄcally,
being either exogenous or of the threshold form (26). Then, at each t, the process is completely
in one of the regimes, making the impact matrix By,t = Bm for the active regime m with
αm,t = 1. If the allocation of the time periods to the regimes is uniquely identiĄed, it then
follows from Lemma 2 of Virolainen (2025a) that B1, ..., BM are identiĄed up to ordering and
signs of their columns.Thus, to obtain identiĄcation up to ordering and signs, identiĄcation of the
threshold and AR parameters is established in the following proposition, which Proposition A.1
of Virolainen (2025a).
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Proposition 2 onsider the STVAR model deĄned in Equations (1), (2), and (12) with B1, ..., BM

invertible; Assumption 1 satisĄed; αm,t either of the threshold form (26) or exogenous (nonran-
dom) with αm,t ∈ ¶0, 1♢ for all t and m = 1, ..., M . Suppose the following conditions hold:

1. (ϕm, vec(Am,1), ..., vec(Am,p)) ̸= (ϕn, vec(An,1), ..., vec(An,p)) for all m ̸= n ∈ ¶1, ..., M♢,

2. (for exogenous weights) there exists M indices t1, ..., tM ∈ ¶1, ...., T♢ such that the corre-
sponding coefficient vectors (α1,ti

, ..., αM,ti
), i = 1, ..., M , are linearly independent.

Then, the parameters ϕm, Am,1, ...Am,p, m = 1, ..., M , and (for threshold models) r1, ..., rM−1

are uniquely identiĄed. Moreover, B1, ..., BM are identiĄed up to ordering and signs of their
columns.

Condition 1 of Proposition 2 implies distinguishable regimes, whereas Condition 2 guarantees
(for exogenous weights) that each regime prevails in at least one time period. Under these
conditions, AR parameters and the partition of the time periods into the regimes is uniquely
identiĄed, and moreover, the regime-speciĄc impact matrices B1, ..., BM are identiĄed up to
ordering and signs of their columns.

By Proposition 2, the shocks are identiĄed by Ąxing the ordering and signs of the columns
of B1, ..., BM . In general, Ąxing them in one regime does not necessarily determine them
in the others, and whether such constraints are purely normalizations or overidentifying de-
pends on the distributions of the shocks. In practice, we recommend Ąxing the ordering and
signs in all B1, ..., BM as a part of blended identiĄcation in Section 3.3.3, which combines
non-Gaussianity with supplementary information to address weak identiĄcation discussed in
Sections 3.3.1 and 3.3.3.

Labelling the shocks and blended identification

As in the linear SVAR model of Lanne et al. (2017), the statistically identiĄed structural shocks
do not necessarily have economic interpretations, and labeling them as economic shocks requires
external information. However, labeling the shocks based on the estimates of the impact ma-
trices B1, ..., BM might not always be straightforward, as the same shock must be associated
with the same column of the impact matrix Bm in all regimes. For example, if a positive supply
shock should increase output and decrease prices on impact in all regimes, labeling the ith shock
as the supply shock requires the ith column of all B1, ..., BM to satisfy such signs. Moreover,
as discussed in Section 3.3.1, our experience shows that identiĄcation is often weak in the sense
that there are multiple local solutions with Ąt close to the global optimum. While we Ąnd
such local solutions to be often largely quite similar to each other, they may produce different
impulse response functions even when the shock of interest is associated with the same column
of all B1, ..., BM .

To formally address weak identiĄcation and the problem of labeling the shocks, we recommend
employing a "blended identiĄcation" strategy that combines identiĄcation by non-Gaussianity
with supplementary identifying information (cf. Carriero, Marcellino, and Tornese 2024). Specif-
ically, we propose imposing overidentifying restrictions that are sufficient to yield a unique local
solution (among the ones with Ąt close to the global solution) and facilitate labeling the shocks
of interest. Since different local solutions may yield different results, the restrictions should be
economically reasonable and serve to exclude less plausible alternative solutions.

As a simple example, in a bivariate system of output and prices, it may be reasonable to assume
that for each variable, one the shocks has greater impact effect on that variable than the other
shock, and that this effect has the same sign across regimes. If one of the shocks is to be
interpreted as a demand shock, it might be useful to further assume that the shock with the
largest effect on output also moves prices in the same direction in all regimes. Similarly, if the
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other shock is intended to represent a supply shock, it could be useful to assume that it moves
output and prices in the opposite directions in all regimes.3

As a practical consideration, the estimation method implemented to sstvars (and described in
Section 4) produces a set of alternative local solutions. By Ąltering these local solutions based on
whether they satisfy the imposed overidentifying restrictions, it is straightforward to determine
which restrictions are sufficient in the considered speciĄcation to exclude all but one of the local
maximums (among the ones with a Ąt close to the presumed global optimum). Finally, to label
the shocks of interest, the imposed restrictions can often be used to uniquely associate each of
them to the same column of the impact matrix across all regimes. In sstvars, different local
solutions can be conveniently examined with the functions alt_stvar and filter_estimates

by adjust their arguments which_largest. Structural models that impose overidentifying short-
run sign or zero restrictions can, in turn, be estimated with the function fitSSTVAR.

4. Estimation

We consider maximum likelihood estimation (ML) as well as penalized maximum likelihood
(PML) estimation of the STVAR models. The formed maximizes the log-likelihood function,
and the latter maximizes the penalized log-likelihood function that penalizes from estimates
that are close to the boundary or outside the stability region (i.e., a region where the usual
stability condition is satisĄed by each of the regimes). In either case, the numerical estimation
will be conducted in two or three phases,which are discussed after introducing the log-likelihood
function and the penalized log-likelihood function.

The parameters of the reduced form STVAR model are collected to the vector

θ = (ϕ1, ..., ϕM , φ1, ..., φM , σ, α, ν), (29)

where φm = (vec(Am,1), ...., vec(Am,p)), m = 1, ..., M , σ contains the covariance matrix param-
eters ((vech(Ω1), ..., vech(ΩM )) for Gaussian and Student t models, and (vec(B1), ..., vec(BM ))
for independent StudentŠs t models), α contains the transition weight parameters, ν contains
the distribution degrees of freedom and skewness parameter(s) (if any, completely omitted
for Gaussian models), vec is a vectorization operator that stacks the columns of a matrix on
top of each other, and vech stacks the columns of a matrix from the main diagonal down-
wards (including the main diagonal). Structural models identiĄed by heteroskedasticity assume
σ = (vec(W ), λm, ..., λM ), λm = (λm1, ..., λmd), m = 2, ..., M , whereas structural models identi-
Ąed recursively or by non-Gaussianity use the same parameter vector as reduced form models.

If relative stationary densities are used as transition weights, α = (α1, ..., αM−1) (αM is not
included because it is obtained from the constraint

∑M
m=1 αm = 1), where we assume, for

identiĄcation, that α1, ..., αM−1 are in a decreasing order. For exponential and logistic transition
weights, α = (c, γ), for multinomial logit transition weights α = (γ1, ..., γM−1) (γM is not
included because γM = 0 is assumed for identiĄcation), and with threshold transition weights,
α = (r1, ..., rM−1). With exogenous transition weights, the parameter α is dropped.

4.1. The log-likelihood function

sstvars employs the method of maximum likelihood (ML) for estimating the parameters of
the STVAR models. Indexing the observed data as y−p+1, ..., y0, y1, ..., yT , the conditional log-

3Other forms of information can also be incorporated into the blended identiĄcation strategy, such as narrative
restrictions and zero impact effect restrictions (the latter of which are testable due to statistical identiĄcation),
for instance.
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likelihood function conditional on the initial values y0 = (y−p+1, ..., y0) is given as

Lt(θ) =
T∑

t=1

lt(θ) =
T∑

t=1

log dd(yt; µy,t, Ωy,t, ν). (30)

where dd(yt; µy,t, Ωy,t, ν) is the d-dimensional conditional density of the process, conditional on
Ft−1, at time t, given in Section 2.3. When the conditional distribution is Gaussian, the degrees
of freedom parameter(s) ν is/are dropped from the right side of (30). The ML estimator of
θ maximizes the log-likelihood function Lt(θ) over the parameter space speciĄed in the below
assumption.

We summarize the constraints (often) imposed on the parameter space in the following assump-
tion.

Assumption 2 The true parameter value θ0 is an interior point of Θ, which is a compact
subset of ¶θ = (ϕ1, ..., ϕM , φ1, ..., φM , σ, α, ν) ∈ R

M(d+d2p+d(d+1)/2) × S × V : Ωm is positive
deĄnite (or Bm is invertible) for all m = 1, ..., M , and Condition 1 holds. ♢.

Above, S = (0, 1)M−1 for relative densities transition weights, S = R × (0, ∞) for logistic and
exponential weights, S = R

(M−1)k for multinomial logistic weights, S = R
M−1 for threshold

weights, and S is an empty set for exogenous weights. Also, V is omitted for Gaussian models,
V = (2, ∞) for StudentŠs t models, V = (0, ∞)d for independent StudentŠs t models, and
V = (0, ∞)d × (0, 1)d for skewed t models.

As noted before, Condition 1 is not necessary, but it ensures stationarity and ergodicity of the
process, unless the transition weights are exogenous. In estimation, we impose the more easily
veriĄed Condition 2, however, and the sufficient condition can be check after the estimation with
the function bound_JSR. As noted in Section 2.2, the sufficient condition is in practice usually
satisĄed if the necessary condition is satisĄed and not very close to being violated. Given that
under Condition 1 the process is ergodic stationary, there is no particular reason to believe that
the standard asymptotic results of consistency and limiting Gaussian distribution would not
apply to the ML estimator.

As also noted before, we also allow estimation does not impose Condition 2, in particular, with
the penalized ML estimation. This is particularly beneĄcial when the data is persisent or the
estimated model is large, as allowing the estimation algorithm to explore the parameter space
more freely generally seems to improve the performance of the estimation algorithms (in our
experience). Moreover, in the three-step estimation the initial (nonlinear) LS estimates do not
often satisfy the usual stability condition, and allowing for unstable estimates thereby allows to
use them more effectively. When penalized ML estimation is used, unstability of the estimates is
penalized in the objective function, so that the optimization algorithm often eventually converge
back to the stability region.

4.2. The penalized log-likelihood function

The penalized likelihood function can be written as

PL(θ) = L(θ) − P (θ), (31)

where L(θ) is deĄned in (30) and p(θ) ≥ 0 is a penalization term that penalizes the log-likelihood
function from parameter values that are close to entering or are in an uninteresting region of
the parameter space. We focus on avoiding estimates that do not satisfy the usual stability
condition for all the regimes. Hence, we deĄne the penalization term as

P (θ) = κTd
M∑

m=1

dp
∑

i=1

max¶0, ♣ρ(Am(θ))i♣ − (1 − η)♢2, (32)
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where ♣ρ(Am(θ))i♣ is the modulus of the ith eigenvalue of the companion form AR matrix of
Regime m, the tuning parameter η ∈ (0, 1) determines how close to the boundary of the stability
region the penalization starts, and κ > 0 determines the strength of the penalization. The PML
estimate of θ maximizes the log-likelihood function (31) with respect to θ.

Whenever the companion form AR matrix of a regime has eigenvalues greater than (1 − η) in
modulus, the penalization term (32) is greater than zero, and it increases in the modulus of
these eigenvalues. Finally, our penalization term has the multiplicative coefficient Td, as the
value of the log-likelihood function (30) tends to scale both with number of observations T and
with the number of variables d. The default values of tuning parameter values are η = 0.05
and κ = 0.2, thus, penalizing signiĄcantly estimates that are outside the stability region, while
maintaining some Ćexibility near the boundary. In sstvars, the tuning parameter values can be
adjusted with the argument penalty_params.

Penalized log-likelihood estimation can be used both with the two-phase and three-step esti-
mation procedures. As already noted, the penalized ML estimation is particularly useful with
persistent data and more complex models, because it allows the estimation algorithm to explore
the parameter space more freely, assuming that allow_unstab=TRUE is used. The penalized
ML estimation is particularly useful in the three-step estimation when the initial (nonlinear)
LS estimates are unstable, as the penalization term in the objective function often eventually
drives the optimization algorithm back to the stability region.

4.3. Two-phase estimation procedure

Finding the ML estimate amounts maximizing the log-likelihood function (30) over a high
dimensional parameter space satisfying the constraints summarized in Assumption 2. Due to
the complexity of the log-likelihood function, numerical optimization methods are required. The
maximization problem can be challenging in practice due to the dependence of the transition
weights on the preceding observations, which induces a large number of modes to the surface of
the log-likelihood function, and large areas to the parameter space, where it is Ćat in multiple
directions.

Therefore, we follow Meitz et al. (2023) and Virolainen (2022b) and employ a two-phase esti-
mation procedure that is run for a large number of times. In the Ąrst phase, a genetic algorithm
is used to Ąnd parameter values (hopefully) near local maximums. Since genetic algorithms
tend to converge slowly near local solutions, a gradient based variable algorithm (Nash 1990,
algorithm 21, implemented by R Core Team 2022) is ran for each of the starting values, resulting
in a number of alternative local solutions. Some of the estimation rounds may end up in saddle
points or near-the-boundary points that are not local solutions, and some of the local solutions
may be inappropriate for econometric inference (for instance, there might be only a few obser-
vations from some of the regimes). After the estimation rounds have been ran, the researcher
can choose the local solution that maximizes the log-likelihood among the appropriate local
solutions. Inappropriate solutions are automatically Ąltered by sstvars, but this functionality
can also be turned off and the researchers can use estimates based any estimation round. The R
package sstvars employs a modiĄed genetic algorithm that works similarly to the one described
in the R packages uGMAR (Virolainen 2018b) and gmvarkit (Virolainen 2018a) (the genetic
algorithm and implemented in former is brieĆy described in Virolainen 2022b). See Virolainen
(2022a, Chapter 3) for a related discussion on complex numerical estimation problems using the
two-phase procedure.

4.4. Three-step estimation procedure

The two-phase procedure facilitates Ąnding the ML estimate, but often a very large number of
estimation rounds is required to obtain reliable results, particularly when the model is large.
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Running a very large number of estimation rounds, however, often requires very substantial
computation power, making the estimation tedious in practice. Consequently, estimation of
large models often infeasible with computer available for the practitioners.

To address the issue of the extreme computation power required for estimating large models,
Virolainen (2025a) propose a more computationally efficient three-step estimation procedure
by adapting the three-step procedure of Lanne et al. (2017) to nonlinear SVAR models. The
three-step estimation procedure operates with the following steps:

1. Estimate the autoregressive and the threshold parameters θ1 ≡ (ϕ1, ..., ϕM , φ1, ..., φM , α)
by the method of (penalized) nonlinear least squares NLS. Denote this estimate of θ1 as

θ̂
NLS
1 .

2. Estimate the error distribution parameters θ2 ≡ (σ, ν) by (P)ML with a genetic algorithm

conditionally on the PLS estimate θ̂
NLS
1 . Denote the obtained estimate of θ2 as θ̂

GA
2 .

3. Estimate the full parameter vector θ = (θ1,θ2) by (P)ML by initializing a standard

gradient based optimization algorithm from (θ̂
NLS
1 , θ̂

GA
2 ).

Step 1 obtains initial estimates for the AR and weight function parameters, and it is comparable
to Step 1 of Lanne et al. (2017) but with the nonlinearity of the model explicitly accounted for.
Notably, the NLS estimation often produces estimates that do not satisfy the usual stability
condition for each of the regimes, and thus allowing for instability (but penalizing it) facilitates
utilization of the NLS estimates in our three-step procedure. Step 2 is comparable to Step 2 of
Lanne et al. (2017), but the multimodality of the (penalized) log-likelihood function is taken into
account by making use of a robust estimation algorithm that is able to escape from local maxima.
Step 3 Ąnalizes the estimation by initializing a standard gradient based optimization algorithm
from the initial estimates obtained from the previous steps, often converging to a nearby local
maximum of the (penalized) log-likelihood function. sstvars uses the variable metric algorithm
described in (Nash 1990, Algorithm 21), which is implemented to the standard R function
optim, but other gradient based algorithms could be also used. This steps is comparable to
Step 3 estimation of Lanne et al. (2017).

Due to the complexity and high multimodality of the log-likelihood function, Step 2 should be
ran a number times to improve the reliability of the results. Since multiple estimation rounds
are ran, the procedure produces a set of estimates, possibly corresponding to different local
maximums of the (penalized) log-likelihood function. However, due to the initial estimates
obtained from Step 1, a smaller number of estimation rounds is required than in the two-phase
procedure.

4.5. Examples of unconstrained estimation

In this section, we demonstrate how to estimate STVAR models with sstvars. The examples

use two-phase estimation, but three-step estimation can be employed in a similar

manner. In the examples, we only consider p = 1 models for simplicity and merely because
then the code outputs Ąt in the margins better. This order may not be the best in the modeling
perspective, however.

In sstvars, the STVAR models are deĄned as class stvar S3 objects, which can be created with
given parameter values using the constructor function STVAR (see Section 10) or by using the
estimation function fitSTVAR, which estimates the parameters and then builds the (reduced
form) model. Structural models are estimated based on a reduced form model with the function
fitSSTVAR. For estimation, fitSTVAR needs to be supplied with a multivariate time series
and the arguments specifying the model. The necessary arguments for specifying the model
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include the autoregressive order p, the number of regimes M, the transition weight function
weight_function, with some weight functions the switching variable(s) weightfun_pars, and
the conditional distribution cond_dist.

Additional arguments may be supplied to fitSTVAR in order to specify, most importantly, how
many estimation rounds should be performed (nrounds) and how many central processing unit
(CPU) cores should be used in the estimation (ncores). Some of the estimation rounds may
end up in local-only maximum points or saddle points, but reliability of the estimation results
can be improved by increasing the number of estimation rounds. A large number of estimation
rounds may be required particularly when the number of regimes is large or there are many
variables in the data, as the surface of the log-likelihood function becomes increasingly more
challenging. It is also possible to adjust the settings of the genetic algorithm that is used to
Ąnd the starting values. The available options are listed in the documentation of the function
GAfit to which the arguments adjusting the settings will be passed.

In general, we recommend being conservative with choice of M due to the identifa-

tion problems induced if the number of regimes is chosen too large. Also, estimation

of models that contain more than two regimes can be extremely challenging. An-

other important thing to know about estimation is that the estimation algorithm

performs very poorly if some of the AR coefficients are very large, substantially

larger than one. This means that you need to scale each component time series

so that they vary approximately in the same magnitude. For instance, typically

in macroeconomic time series, log-differences should be multiplied by hundred. If

the suitable scales are not obvious, you can try out different scales and estimate

linear VARs with your favorite package to see whether the AR coeffients are in a

reasonable range. When a suitable scale is found, proceed to the STVAR models.

We illustrate the use of sstvars with a quarterly series consisting of two U.S. variables: the per-
centage change of real GDP and the percentage change of GDP implicit price deĆator, covering
the period from 1959Q1 to 2019Q4. The following code Ąts a STVAR(p = 1, M = 2) model
with StudentŠs t conditional distribution and logistic transition weights by performing 24 esti-
mation rounds with 8 CPU cores. In practice, hundreds or even thousands of estimation

rounds is often required to obtain reliable results. The larger the dimension of the

series is and the larger the order of the model is and the more there are regimes,

the more estimation rounds is required. The model in our example is easy to esti-

mate, as it is small in dimension and order. We set the switching variable to be the Ąrst
lag of the second variable, i.e., the GDP deĆator by setting argument weightfun_pars=c(2,

1).

The argument seeds supplies the seeds that initialize the random number generator at the
beginning of each call to the genetic algorithm, thereby yielding reproducible results.

R> library(sstvars)

R> data("gdpdef", package="sstvars")

R> fit12 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", estim_method="two-phase",

+ nrounds=24, ncores=8, seeds=1:24)

Using 8 cores for 24 estimations rounds...

PHASE 1: Estimating all the parameters with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=16s

Results from the genetic algorithm:

The lowest loglik: -278.505

The largest loglik: -251.32

PHASE 2: Estimating all the parameters with a variable metric algorithm...
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|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s

Results from the variable metric algorithm:

The lowest loglik: -273.766

The largest loglik: -250.236

Filtering inappropriate estimates...

Filtered through 0 inappropriate estimates with a larger log-likelihood

Calculating approximate standard errors...

Finished!

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

Because the log-likelihood function is highly multimodal, and the estimation algorithm is ran a
large number of times, it produces a set of local solutions, possibly representing various modes
in the log-likelihood function. Some of the local solutions may be inappropriate for econometric
inference, for instance, because they contain a near-singular error term covariance matrix or
regimes that have only a very small number of observations generated (even partially) from
them. Such inappropriate solutions, i.e., estimates that are not solutions of interest, are Ąltered
automatically by sstvars. SpeciĄcally, solutions that incorporate a near-singular error term
covariance matrix (any eigenvalue less than 0.002), any modulus "bold A" eigenvalues larger
than 0.9985 (indicating the necessary condition for stationarity is close to break), or transition
weights such that they are close to zero for almost all t for at least one regime. With relative
densities transition weights, also solutions in which a weight parameter estimate is close to zero
are Ąltered out.

The various local solutions (from any estimation round) can also be easily browsed and examined
by using the function alt_stvar and adjusting its argument which_largest or which_round.
Also, the function filter_estimates can be used to conveniently browse various estimates
that are not deemed inappropriate.

The estimates can be examined with the print method.

R> print(fit12)

logistic Student STVAR model, reduced form model no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Regime means: 0.71, 0.49

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Regime 2

Weight params: 1.22 (location), 5.01 (scale)

Regime means: 0.77, 1.76

Y phi0 A1 Omega 1/2
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1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2

The parameter estimates are reported for each mixture component separately so that the es-
timates can be easily interpreted. Each regimeŠs autoregressive formula is presented in the
form

yt = φm,0 + Am,1yt−1 + ... + Am,pyt−p + Ω1/2
m et. (33)

The other statistics are listed above the formula: the degrees of freedom parameter estimate,
the unconditional means of the regimes, and estimates of the transition weight parameters. For
models incorporating mutually independent StudentŠs t shocks (cond_dist="ind_Student"),
estimates of the impact matrices Bm, m = 1, ..., M , are presented in the place of the covariance
matrices Ωm. Based on the estimate of the location parameter and the conditional means in the
above printout, the second regime accommodates periods of high inĆation and the Ąrst regime
thereby periods of lower inĆation.

A more detailed printout is obtained with the summary method as follows:

R> summary(fit12)

logistic Student STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

loglik/T: -1.03, AIC: 2.23, HQIC: 2.35, BIC: 2.53

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Moduli of 'bold A' eigenvalues: 0.49, 0.49

Cov. matrix 'Omega' eigenvalues: 0.37, 0.03

Regime means: 0.71, 0.49

Regime sdevs: 0.66, 0.24

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 0.028

[2,] 0.028 1.000

Regime 2

Moduli of 'bold A' eigenvalues: 0.71, 0.06

Cov. matrix 'Omega' eigenvalues: 1.29, 0.18

Weight params: 1.22 (location), 5.01 (scale)

Regime means: 0.77, 1.76

Regime sdevs: 1.32, 0.59

Y phi0 A1 Omega 1/2

1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2



22 Structural Smooth Transition Vector Autoregressive Models R

Error term correlation matrix:

[,1] [,2]

[1,] 1.00 -0.12

[2,] -0.12 1.00

Print approximate standard errors with the argument 'standard_error_print=TRUE'.

The above summary printout shows additional information compared to the print method,
including moduli of the eigenvalues of the companion form AR matrices (to assess how close
Condition 2 is to break), eigenvalues of the error term covariance matrices (to assess how close
they are to being non-positive deĄnite), marginal standard deviations of the variables in each
regime, error term correlation matrices, and the log-likelihood as well as the values of the
information criteria divided by the number of observations T − p.

Approximate standard errors can be printed by specifying the argument standard_error_print

= TRUE in the print method, which prints the standard errors in the same form as the print
method prints the estimates. There is no standard error for the intercepts if mean parametriza-
tion is used (by setting parametrization = "mean" in fitSTVAR) and vice versa. In order to
obtain standard errors for the regimewise unconditional means or intercepts, one can easily swap
between the mean and intercept parametrizations with the function swap_parametrization.
Note that approximate standard errors are based on the mere assumption of the standard Gaus-
sian asymptotic distribution of the estimator. Hence, they should be interpreted with caution.

Finally, we show how STVAR models incorporating exogenous transition weights can be es-
timated. In the below example, we assume two regimes (M = 2), autoregressive order one
(p = 1), and mutually independent StudentŠs t shocks. As an arbitrary example of exogenous
transition weights, we draw the weights of Regime 1 by random from the uniform distribution,
and construct the transition weights matrix as follows:

R> set.seed(1)

R> tw1 <- runif(nrow(gdpdef) - 1) # Transition weights of Regime 1

R> twmat <- cbind(tw1, 1 - tw1) # Transition weights of both regimes

Each column of the transition weight matrix gives the weights of the corresponding regime, and
each row gives the time t weights. There should be as many rows as there are observations in
the data minus the autoregressive order p, as the Ąrst p observations are the initial values. Each
row should sum to one and all the elements need to be weakly larger than zero.

A two-regime p = 1 STVAR model with the randomly drawn exogenous transition weights can
be estimated by specifying the transition weights in the argument weightfun_pars as follows:

R> fitexo12 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="exogenous",

+ weightfun_pars=twmat, cond_dist="ind_Student", estim_method="two-phase",

+ nrounds=24, ncores=8, seeds=1:24)

Using 8 cores for 24 estimations rounds...

PHASE 1: Estimating all the parameters with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=24s

Results from the genetic algorithm:

The lowest loglik: -287.191

The largest loglik: -272.426

PHASE 2: Estimating all the parameters with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s
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Results from the variable metric algorithm:

The lowest loglik: -271.593

The largest loglik: -271.593

Filtering inappropriate estimates...

Filtered through 0 inappropriate estimates with a larger log-likelihood

Calculating approximate standard errors...

Finished!

We examine the estimates with the summary printout:

R> summary(fitexo12)

exogenous ind_Student STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 22, #observations = 243 x 2

loglik/T: -1.12, AIC: 2.42, HQIC: 2.54, BIC: 2.73

Regime 1

Degrees of freedom: 3.73, 3.78 (for all regimes)

Moduli of 'bold A' eigenvalues: 0.90, 0.08

Cov. matrix 'Omega' eigenvalues: 0.51, 0.10

Regime means: 0.68, 0.47

Regime sdevs: 0.72, 0.70

Y phi0 A1 B

1 y1 = [ 0.63 ] + [ 0.08 -0.01 ] y1.1 + [ 0.71 0.11 ] eps1

2 y2 [ 0.03 ] [ 0.02 0.90 ] y2.1 [ 0.03 -0.31 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 -0.065

[2,] -0.065 1.000

Regime 2

Moduli of 'bold A' eigenvalues: 0.87, 0.48

Cov. matrix 'Omega' eigenvalues: 0.82, 0.06

Regime means: 0.90, 0.91

Regime sdevs: 1.03, 0.54

Y phi0 A1 B

1 y1 = [ 0.65 ] + [ 0.47 -0.19 ] y1.1 + [ 0.78 0.47 ] eps1

2 y2 [ 0.09 ] [ 0.02 0.88 ] y2.1 [ 0.17 -0.20 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.00 0.16

[2,] 0.16 1.00

Print approximate standard errors with the argument 'standard_error_print=TRUE'.

As the above printout shows, the impact matrices of the regimes, B1, ..., BM are directly esti-
mated and their estimates presented in the place where the estimates of Ωm are for models with
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Figure 1: The Ągure produced by the command plot(fit12). On the top, a quarterly series
consisting of two U.S. variables: the percentage change of real GDP and the percentage change
of GDP implicit price deĆator, covering the period from 1959Q1 to 2019Q4. On the bottom,
the estimated transition weights of the STVAR model fit12gs Ątted the series.

cond_dist="Gaussian" or cond_dist="ind_Student".

4.6. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model by
plotting the transition weights together with the time series. That is exactly what the plot
method for STVAR models does. The following command creates the time series plot along
with estimated transition weights:

R> plot(fit12, type="series")

The resulting plot is presented in Figure 1. The Ągure conĄrms our earlier observation: the
second regime is dominant during the periods of high inĆation, particularly in the volatile
periods of 1970Šs and 1980Šs.

It is also sometimes interesting to examine the time series of (one-step) conditional means of
the process along with the time series the model was Ątted to. This can be done conveniently
with the function by setting the argument plot_type="cond_mean" in the plot method. This
plot depicts the contribution of each regime to the conditional mean of the process and how
close the conditional mean is to the observed series in each point of time.

The variable metric algorithm employed in the Ąnal estimation does not necessarily stop at a
local maximum point. The algorithm might also stop at a saddle point or near a local maximum,
when the algorithm is not able to increase the log-likelihood, or at any point, when the maximum
number of iterations has been reached. In the latter case, the estimation function throws a
warning, but saddle points and inaccurate estimates need to be detected by the researcher.
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It is well known that in a local maximum point, the gradient of the log-likelihood function is zero,
and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the eigenvalues
of the Hessian matrix are all positive, whereas in a saddle point, some of them are positive
and some negative. Nearly numerically singular Hessian matrices occur when the surface of
the log-likelihood function is very Ćat about the estimate in some directions. This particularly
happens when the transition weights αm,t are estimated close to zero for all t = 1, ..., T for some
regime m.

sstvars provides several functions for evaluating whether the estimate is a local maximum point.
The function get_foc returns the (numerically approximated) gradient of the log-likelihood
function evaluated at the estimate, and the function get_soc returns eigenvalues of the (nu-
merically approximated) Hessian matrix of the log-likelihood function evaluated at the estimate.
The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (34)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element. By
default, the difference h = 6 · 10−6 is used.

For example, the following code calculates the Ąrst order condition for the G-StMVAR model
fit12:

R> get_foc(fit12)

[1] 0.0013350596 0.0338560277 0.0001781006 0.0027846292 0.0011998654

[6] 0.0313456858 0.0003378474 0.0179776013 0.0003544770 0.0051172636

[11] 0.0002186068 0.0022140706 -0.0055795827 0.0071732765 0.5804849358

[16] -0.0002884765 0.0008926041 0.0258026645 -0.0204821154 -0.0018359291

[21] 0.0004548983

and the following code calculates the second order condition:

R> get_soc(fit12)

[1] 0.0013350596 0.0338560277 0.0001781006 0.0027846292 0.0011998654

[6] 0.0313456858 0.0003378474 0.0179776013 0.0003544770 0.0051172636

[11] 0.0002186068 0.0022140706 -0.0055795827 0.0071732765 0.5804849358

[16] -0.0002884765 0.0008926041 0.0258026645 -0.0204821154 -0.0018359291

[21] 0.0004548983

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, and the
gradient of the log-likelihood function is close to zero. The gradient is not exactly zero, because
it is based on a numerical approximation. It is also possible that the estimate is inaccurate,
because it is based on approximative numerical estimation, and the estimates are therefore
not expected to be exactly accurate. Whether the estimate is a local maximum point with
accuracy that is reasonable enough, can be evaluated by plotting the graphs of the proĄle log-
likelihood functions about the estimate. In sstvars, this can be done conveniently with the
function profile_logliks.

The exemplify, the following command plots the graphs of proĄle log-likelihood functions of the
estimated G-StMVAR model fit12:

R> profile_logliks(fit12)
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Figure 2: The Ągure produced by the command profile_logliks(fit12). The graphs of
the proĄle log-likelihood functions of the logistic StudentŠs t STVAR model drawn about the
estimate. The red vertical lines denote the estimate.

The resulting plot is presented in Figure 2.

The output shows that the estimateŠs accuracy is reasonable, as changing any individual pa-
rameter value marginally would not increase the log-likelihood much. The argument scale can
be adjusted to shorten or lengthen the interval shown in the horizontal axis. If one zooms in
enough by setting scale to a very small number, it can be seen that the estimate is not exactly
at the local maximum, but it is so close that moving there would not increase the log-likelihood
notably. The argument precision can be adjusted to increase the number of points the graph
is based on. For faster plotting, it can be decreased, and for more precision, it can be increased.
The argument which_pars is used to specify the parameters whose proĄle log-likelihood func-
tions should be plotted. This argument is particularly useful when creating as many plots as
there are parameters in the model to a single Ągure would cause the individual plots to be
very small. In such a case, proĄle log-likelihood functions for subsets of the parameters can be
plotted separately by specifying this argument accordingly.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the estimate
is the global maximum. With sstvars, the best way to increase the reliability that the found
estimate is the global maximum (among the appropriate solutions), is to run more estimation
rounds by adjusting the argument nrounds of the estimation function fitSTVAR.

If the model is very large, a very large number of estimation rounds may be required to Ąnd the
global maximum. If there are two regimes in the model, p is reasonable, and the dimension of the
time series at most four, the required number of estimation rounds typically varies from several
hundred to several thousand depending on the model and the data. In the simpler models, less
estimation rounds are required. In the larger models, and in particular if M > 2 or d > 4,
a signiĄcantly large number of estimation rounds may be required obtain the MLE. Another



Savi Virolainen 27

thing that makes the estimation more challenging, are exotic parameter constraints that do
not reduce the dimension of the parameter much. Constraints that greatly reduce complexity
of the parameter space (such as constraining the autoregressive matrices to be identical in all
regimes4), on the other hand, make the estimation easier, and reliable estimation of such models
thereby require less estimation rounds. Constrained estimation is discussed in Section 4.8.

4.7. Estimation of structural STVAR models

As explained, sstvars currently supports three types of structural models: structural models
identiĄed recursively by the lower triangular Cholesky decomposition, structural models identi-
Ąed by conditional heteroskedasticity, and structural models identiĄed by non-Gaussianity. In
either case, the structural models are estimated with the function fitSSTVAR based on pre-
liminary estimates from a reduced form model. If the structural model is not overidentifying,
which is always the case for recursively identiĄed models, model identiĄed by non-Gaussianity,
as well as for models identiĄed by heteroskedasticity when there are two regimes and further
constraints are not imposed on the impact matrix, there is no need for estimation but at most
for a reparametrization of the model. In any case, the fitSSTVAR constructs the structural
model appropriately.

To exemplify, we Ąrst create a recursively identiĄed structural model based on the reduced form
model fit12 by setting the argument identification="recursive". Then, we will study an
example of a structural model identiĄed by heteroskedasticity. The following code builds the
recursively identiĄed model:

R> fit12rec <- fitSSTVAR(fit12, identification="recursive")

Since the parametrization did not change nor was any estimation required, fit12rec is essen-
tially the reduced form model fit12 with has the property that can be used as a structural
model in structural analysis such as for estimating the generalized impulse response functions.

The following code creates a structural model identiĄed by heteroskedasticity based on the
reduced form model fit12 and then prints it:

R> fit12het <- fitSSTVAR(fit12, identification="heteroskedasticity")

R> print(fit12het)

logistic Student STVAR model, identified by heteroskedasticity, no AR_constraints,

no mean_constraints, no B_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Regime means: 0.71, 0.49

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Regime 2

Weight params: 1.22 (location), 5.01 (scale)

4Models constrained in this way can often be reliably estimated with a reasonable number of estimation rounds
even when M > 2
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Regime means: 0.77, 1.76

Y phi0 A1 Omega 1/2

1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2

Structural parameters:

W lamb2

1 [ 0.17 0.59 ] [ 5.67 ]

2 [ -0.18 0.06 ] , [ 3.29 ]

The impact matrix is subject to 0 zero constraints and 0 sign constraints.

Since the structural model identiĄed by heteroskedasticity is not overidentiĄed, no estimation
was performed but merely a reparametrization. The estimates for the structural parameters W
and λ2, ..., λM are presented at the bottom of the printout.

If the structural model is identiĄed by heteroskedasticity or non-Gaussianity, additional restric-
tions can be imposed on the impact matrix by setting them in the argument B_constraints.
A structural model identiĄed by heteroskedasticity is overidentifying also when there are more
than two regimes in the model, as then the matrix decomposition employed in the identiĄcation
does not always exist. In either case, the structural model needs be estimated, which is per-
formed in sstvars based on preliminary estimates obtained either from a reduced form model
or from a structural model. The estimation is performed with the function fitSSTVAR, which
implements a two-phase estimation procedure in which a robust estimation method is used in
the Ąrst phase and a variable algorithm in the second phase. The default option for the robust
method is Nelder-Mead algorithm implemented by R Core Team (2022) in the function optim

of the package stats.

It is important to note that if the initial estimates are far from the ML estimate of the overi-
dentiĄed model, the resulting solution is likely local only due to the high multimodality of
the log-likelihood function. However, it is not often very appealing to impose overidentiĄed
constraints that far from the unrestricted estimates in the Ąrst place. But in any case, since
the estimation may be unrealiable if the restricted ML estimate is far from the unrestricted
ML estimate, we recommend using our package to estimate only such overidentifying structural
models in which the unrestricted estimate is close to satisfying the imposed constraints.

The exemplify, we estimate a structural model identiĄed by heteroskedasticity based on the
structural model fit12het by setting the argument identification="heteroskedasticity"

and imposing the constraint that the second element of the second column of the impact matrix
is zero (the above estimates of W show that the corresponding unrestricted estimate is close
to zero). The zero constraint is imposed by setting the argument B_constraints as matrix
such that the second element of the second column is zero and all other elements are NA. Sign
constraints can be set similarly by setting the corresponding elements to 1 or -1 (or any other
strictly positive of negative value). The following code estimates the model:

R> fit12hetb <- fitSSTVAR(fit12, identification="heteroskedasticity",

+ B_constraints=matrix(c(NA, NA, NA, 0), nrow=2))

R> print(fit12het)

The log-likelihood of the supplied model: -250.236

Constrained log-likelihood prior estimation: -260.164

The log-likelihood after robust estimation: -250.556

The log-likelihood after final estimation: -250.486
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The log-likelihoods of the original model, the initial estimates of the constrained model, the
estimates after the robust estimation, and the Ąnal estimates are printed. If the log-likelihood of
after Ąnal estimation is bad compared to the log-likelihood of the original model, the estimation
is likely unreliable. The command print(fit12hetb) prints the estimated overidentiĄed model
(we ommit the printout for brevity).

After creating a structural model identiĄed by heteroskedasticity, the columns of W can be
reordered with the function reorder_B_columns which also reorders all λmi accordingly (and
hence the resulting model will coincide with the original reduced form model). Also, all signs of
any column of W can be swapped with the function swap_B_signs, which also swaps the signs
of the corresponding skewness parameter values when cond_dist = "ind_skewed_t". so that
the resulting model is observationally equivalent with the original one.

If cond_dist = "ind_Student" or "ind_skewed_t", i.e., the shocks are identiĄed by non-
Gaussianity, fitSSTVAR also enables to conveniently estimate models based on different order-
ings of signs changes of the columns any of B1, ..., BM . Such investigation is of interest when the
identiĄcation is suspected to be weak with respect to the ordering or signs of some of B2, ..., BM

(Virolainen 2025a, see Section 3.3, and for further discussion). Structural models based on
different orderings or signs of the columns of B2, ..., BM can be by specifying the arguments
B_pm_reg, B_perm, and B_signs in fitSSTVAR accordingly.

4.8. Constrained estimation

sstvars supports constrained ML estimation of the STVAR models, including several types
of constraints. Linear constraints can be imposed on the autoregressive matrices (argument
AR_constraints), unconditional means of the regimes can be constrained equal across (groups
of) regimes (argument mean_constraints), and weight function parameters can be constrained
to a Ąxed value or linear constraints can be impose on them (argument weight_constraints).
Following sections give examples of constrained estimation imposing some of these constraints.

Linear constraints on the autoregressive parameters

Imposing linear constraints on the autoregressive parameters of a STVAR model is straight-
forward in sstvars. The constraints are expressed in a somewhat general form which allows to
impose a wide class of constraints but one needs to take the time to construct the constraint
matrix carefully for each particular case.

We consider constraints of form

(φ1, ...,φM ) = Cψ, (35)

φm = (vec(Am,1), ..., vec(Am,p)) (pd2x1), m = 1, ..., M, (36)

where C is known (Mpd2xq) constraint matrix (of full column rank) and ψ is unknown (qx1)
parameter vector.

To give couple examples, consider the following two common uses of linear constraints: restrict-
ing the autoregressive matrices to be the equal across all regimes and constraining some of the
AR parameters to zero.

Restricting AR matrices to be the equal across the regimes

To restrict the AR matrices to be equal across the regimes, we want φm to be the same for all
m = 1, ..., M . The parameter vector ψ (qx1) then corresponds to any φm = φ, and therefore
q = pd2. For the constraint matrix we choose

C = [Ipd2 : · · · : Ipd2 ]′ (Mpd2xpd2), (37)

that is, M pieces of (pd2xpd2) diagonal matrices stacked on top of each other, because then

Cψ = (ψ, ...,ψ) = (φ, ...,φ). (38)
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For instance, if there are two regimes in the model, the appropriate constraint matrix then
created as

R> p <- 1 # The autoregressive order of the model

R> d <- 2 # Whatever the dimension of the time series is

R> I_pd2 <- diag(p*d^2) # The appropriate diagonal matrix

R> (C1 <- rbind(I_pd2, I_pd2)) # Stack them on top of each other

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

[5,] 1 0 0 0

[6,] 0 1 0 0

[7,] 0 0 1 0

[8,] 0 0 0 1

The command

R> fit12c1 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C1,

+ estim_method="two-phase")

would then estimate a logistic StudentŠs t STVAR(1, 2) model with Ąrst lag of the second variable
as the switching variable such that the AR matrices constrained to be the equal in both regimes.
We omit the output for brevity. In practice, you might want to adjust the number of CPU cores
used (ncores), the of estimation rounds (nrounds), and set seeds (seeds).

Restricting AR parameters to be the same for all regimes and constraining non-

diagonal elements of coefficient matrices to be zero

The previous example shows how to restrict the AR parameters to be the same for all regimes,
but say we also want to constrain the non-diagonal elements of coefficient matrices Am,i (m =
1, ..., M, i = 1, ..., p) to be zero. We have the constrained parameter ψ (qx1) representing the un-
constrained parameters (φ1, ...,φM ), where the restrictions imply φm = φ = (vec(A1), ..., vec(Ap))
(pd2x1) and the elements of vec(Ai) (i = 1, ..., p) corresponding to the diagonal are zero.

For illustrative purposes, letŠs consider a STVAR model with autoregressive degree p = 2,
number of regimes M = 2, and number of time series in the system d = 2. Then we have

φ = (A1(1, 1), 0, 0, A1(2, 2), A2(1, 1), 0, 0, A2(2, 2)) (8x1) and (39)

ψ = (A1(1, 1), A1(2, 2), A2(1, 1), A2(2, 2)) (4x1), (40)

where Al(i, j) is the ijth elements of Al. By a direct calculation, we can see that choosing the
constraint matrix

C =



c̃

c̃

]

(Mpd2x4), (41)

where

c̃ =

















1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

















(pd2x4) (42)
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satisĄes Cψ = (φ, ...,φ).

The above constraint matrix can be created as

R> c_tilde <- matrix(0, nrow=2*2^2, ncol=4)

R> c_tilde[c(1, 12, 21, 32)] <- 1

R> C2 <- rbind(c_tilde, c_tilde)

R> C2

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 1 0 0

[5,] 0 0 1 0

[6,] 0 0 0 0

[7,] 0 0 0 0

[8,] 0 0 0 1

[9,] 1 0 0 0

[10,] 0 0 0 0

[11,] 0 0 0 0

[12,] 0 1 0 0

[13,] 0 0 1 0

[14,] 0 0 0 0

[15,] 0 0 0 0

[16,] 0 0 0 1

The command

R> fit12c2 <- fitSTVAR(gdpdef, p=2, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C2,

+ estim_method="two-phase")

would then estimate a logistic StudentŠs t STVAR(1, 2) model with Ąrst lag of the second
variable as the switching variable such that the AR matrices are constrained to be the equal in
both regimes and the off-diagonal elements are restricted to zero. Again, we omit the output
for brevity (and you may want to adjust the arguments nrounds, ncores, and seeds when
estimating the model in practice).

Constraining the unconditional means of some regimes to be equal

In addition to constraining the autoregressive parameters, sstvars allows to constrain the un-
conditional means of some regimes to be the equal. This feature is, however, only available
for models that are parametrized with the unconditional means instead of intercepts (because
some of the estimation is always done with mean-parametrization and one cannot generally
swap the parametrization when constraints are imposed on means/intercepts). With the mean-
parametrization employed (by setting parametrization="mean"), one may deĄne groups of
regimes that have the same mean parameters using the argument mean_constraints. For in-
stance, with three regime model (M = 3) the argument mean_constraints=list(c(1, 3),

2) sets the unconditional means of the Ąrst and third regimes to be the same while allows the
second regime to have different mean.

One can also combine linear constraints on the AR parameters with constraining some of the
means to be the same. This allows, for instance, to estimate a model in which only the covari-
ance matrix varies in time. To exemplify, the following code estimates a StudentŠs t logistic
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STVAR(p = 1, M = 2) model such that the unconditional means and autoregression matrices
are constrained be the same in both regimes. The resulting model thereby has time-varying
covariance matrix but otherwise it is linear.

R> fit12c3 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C1,

+ mean_constraints=list(1:2), parametrization="mean",

+ estim_method="two-phase")

The output is omitted for brevity.

Constraining weight functions parameters

It is also possible to constrain the weight functions parameters α (e.g., the location and scale
parameters for logistic models). sstvars accommodates two types of alternative constraints
on the weight function parameters: linear constraints and Ąxed values. Note that weights
constraints are not available for models with exogenous weights, as they do not contain any
weight function parameters.

Linear constraints

Linear constraints on the weight function parameters are of the form

α = Rξ + r, (43)

where α (a × 1) contains the weight funtion parameters, R is a known (a × l) constraint matrix
of full column rank, r is a known (a × 1) constant, and ξ is an unknown (l × 1) parameter.
The constraint matrix R and the constant r are set in the argument weight_constraints as
a list of two elements, R in the Ąrst element and r in the second element. The number of
unknown parameters l is the number of columns of R. For instance, the following argument
imposes constraints for the scale and location parameters of a logistic STVAR model (in which
α = (c, γ)) such that the location parameter is the scale parameter divided by two plus 0.3:
weight_constraints=list(R=matrix(c(0.5, 1), nrow=2), r=c(0.3, 0)).

Fixed values

Imposing the weight function parameters to be known Ąxed values is very straightforward. In
this case, the argument weight_constraints should still be a list including the elements R
and r, but the former is set to zero, R = 0, and the latter is set to the desired Ąxed values. For
instance the following argument imposes constraints for the location and location parameters
of a logistic STVAR model (in which α = (c, γ)) such that the location parameter is 0.3 and
the scale parameter is 0.5: weight_constraints=list(R=0, r=c(0.3, 0.5).

5. Testing parameter constraints

One way to asses the validity of the imposed constraints is to compare the values of infor-
mation criteria of the constrained and unconstrained models. sstvars, however, also provides
functions for testing the constraints with the likelihood ratio test, Wald test, and RaoŠs test,
whose applicability requires that the ML estimator of the STVAR model has the conventional
asymptotic distribution. As noted before, this is a mere assumption, but given the process is
ergodic stationary, there is no particular reason to believe that the standard asymptotic results
would not hold. For a discussion on the tests, see Buse (1982) and the references therein, for
example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0 satisĄes
some constraints imposed on these parameters (such that the constrained parameter space is
a subset of the parameter space, which is presented in Assumption 2). Denoting by L̂U and
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L̂C the (maximized) log-likelihoods based on the unconstrained and constrained ML estimates,
respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (44)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter spaces.
With sstvars, the likelihood ratio test can be calculated with the function LR_test, which takes
the unconstrained model (a class ’stvar’ object) as its Ąrst argument and the constrained
model as the second argument.

sstvars implements the Wald test of the null hypothesis

Aθ0 = c, (45)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The Wald
test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (46)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is
the difference in dimensions of the constrained and unconstrained parameter spaces). With
sstvars, the Wald test can be calculated with function Wald_test, which takes the estimated
unconstrained model (as a class ’stvar’ object) as the Ąrst argument, the matrix A as the
second argument, and the vector c as the third argument.

Finally, RaoŠs test is implemented to the function Rao_test. See the function documentation
on how to use it.

6. Residual based model diagnostics

sstvars employs residual based diagnostics for assessing the adequacy of the Ątted model. Con-
ventional graphical diagnostics can be examined with function diagnostic_plot, which plots
the residual time series, auto- and crosscorrelation functions of the residuals, auto- and cross-
correlation functions of the squared residuals, and normal quantile-quantile plots as well as
histograms of the residuals. The plots can be created for both unstandardized residuals or for
standardized residuals by adjusting the argument standardize to FALSE or TRUE according.
Using unstandardized residuals is advisable when checking for remaining autocorrelation. But
standardized residuals should be used to check for remaining conditional heteroskedasticity and
to check the modelŠs adequacy to capture the marginal distribution of the series, because the
STVAR models are conditionally heteroskedastic and the unstandardized residuals do not take
into account the time-varying conditional covariance matrix.

Remaining autocorrelation in the residuals can also be tested with the (adjusted) Portmanteau
test, which is implemented to the function Portmantau_test. The test can also be applied to
standardized squared residuals to test for remaining conditional heteroskedasticity by setting
the argument which_test="het.sked". The number of lags that should be taken into account
in the test is set with the argument nlags.

7. Impulse response analysis

7.1. Generalized impulse response function
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The expected effects of the structural shocks in the structural STVAR models generally depend
on the initial values as well as on the sign and size of the shock, which makes the conventional way
of calculating impulse responses unsuitable (see, e.g., Kilian and Lütkepohl 2017, Chapter 4).
Therefore, we consider the generalized impulse response function (GIRF) (Koop et al. 1996)
deĄned as

GIRF(n, δj , Ft−1) = E[yt+n♣δj , Ft−1] − E[yt+n♣Ft−1], (47)

where n is the chosen horizon, Ft−1 = σ¶yt−j , j > 0♢ as before, the Ąrst term on the right side is
the expected realization of the process at time t + n conditionally on a structural shock of sign
and size δj ∈ R in the jth element of et at time t and the previous observations, and the second
term on the right side is the expected realization of the process conditionally on the previous
observations only. GIRF thus expresses the expected difference in the future outcomes when
the speciĄc structural shock hits the system at time t as opposed to all shocks being random.

Due to the p-step Markov property of the implemented STVAR models, conditioning on (the
σ-algebra generated by) the p previous observations yt−1 ≡ (yt−1, ..., yt−p) is effectively the
same as conditioning on Ft−1 at the time t and later. The initial values (or history) yt−1 can be
either Ąxed or random, but with random history the GIRF becomes a random vector, however.
Using Ąxed yt−1 makes sense when one is interested in the effects of the shock in a particular
point of time. Alternatively, one can estimate GIRFs conditional on the initial values being
from a speciĄc regime, in which case yt−1 should generated from the regime of interest.

In practice, the GIRF and its distributional properties can be approximated with a Monte Carlo
algorithm that generates independent realizations of the process and then takes the sample
mean for point estimate. If yt−1 is random and follows the distribution G, the GIRF should
be estimated for different values of yt−1 generated from G, and then the sample mean and
sample quantiles can be taken to obtain the point estimate and conĄdence intervals. sstvars

accommodates generating the initial values from the full STVAR process or from a given regime.
Alternatively, the GIRF can be estimated for a set of Ąxed initial values, such as for the length
p histories in the data. This can be done by setting the argument use_data_shocks=TRUE, in
which case, the related signs and sizes of the structural shocks recovered from the data are also
in calculation of the GIRF, thereby reĆecting the properties of the data (adjust the argument
data_girf_pars to adjust whether a speciĄc regime should be dominant in the histories, or
whether only shocks of speciĄc sign or size should be used). The algorithm foe calculating the
GIRFs implemented in sstvars is presented in Lanne and Virolainen (2025).

Because the STVAR models allow to associate speciĄc features or economic interpretations
for different regimes, and because shifts in the regime are the source of asymmetries in the
impulse responses, it might be interesting to also examine the effects of a structural shock to the
transition weights αm,t, m = 1, ..., M . We then consider the related GIRFs E[αm,t+n♣δj ,yt−1] −
E[αm,t+n♣yt−1] for which point estimates and conĄdence intervals can be constructed similarly
to (47).

In sstvars, the GIRF can be estimated with the function GIRF which should be supplied with
the estimated STVAR model or a STVAR model built with hand-speciĄed parameter values
using the function STVAR. Structural models can be created based on a reduced form model with
the function fitSSTVAR. The sign and size of the structural shock can be set with the argument
shock_size (ignored if use_data_shocks=TRUE). If not speciĄed, a positive shock with the size
of one standard deviation is used; that is, the size is one. Among other arguments, the function
may also be supplied with the argument init_regime which speciĄes from which regime the
initial values are generated from (ignored if use_data_shocks=TRUE)). Alternatively, one may
specify Ąxed initial values with the argument init_values (ignored if use_data_shocks=TRUE),
or use initial values in the observed data with use_data_shocks=TRUE as described above. Note
that the conĄdence intervals (whose conĄdence level can be speciĄed with the argument ci)
reĆect uncertainty about the initial value only and not about the parameter estimates.
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Due to the nonlinear nature of the model, GIRFs estimated from different starting values, or with
different sign or magnitude of the shock, generally move the variables differently. Sometimes it
is, however, of interest to scale the impulse responses so that they correspond to instantaneous
movement of some speciĄc sign and size of some speciĄc variable. In sstvars, this is most
conveniently achieved with the arguments scale. The argument scale can be speciĄed in
order to scale the GIRFs to some of the shocks so that they correspond to a speciĄc sign and
size of instantaneous response of some speciĄc variable. Alternatively, the GIRFs can be scaled
to correspond to a speciĄc peak response of some variable by setting scale_type="peak". For
a single shock, the argument scale should a length three vector where the shock of interest
is given in the Ąrst element (an integer in 1, ..., d), the variable according to which the GIRFs
should be scaled in the second element (an integer in 1, ..., d), and the sign and size of the given
variableŠs instantaneous response in the third element (a non-zero real number). If the GIRFs
of multiple shocks should be scaled, provide a matrix which has one column for each of the
shocks with the columns being the length three vectors described above. Note that if you scale
the GIRFs, the scaled GIRFs of transition weights can be outside the interval from zero to one.

Because estimating the GIRF and their conĄdence intervals is computationally demanding,
parallel computing is taken use of to shorten the estimation time. The number of CPU cores
used can be set with the argument ncores. The objects returned by the GIRF function have their
own plot and print methods. Also, cumulative impulse responses of the speciĄed variables
can be obtained directly by specifying the argument which_cumulative.

7.2. Generalized forecast error variance decomposition

Similarly to the conventional impulse response functions are unsuitable for impulse response
analysis (due to their inability to capture asymmetries the effects of the shocks), the conventional
forecast error variance decomposition is unsuitable for tracking the contribution of each shock
to the variance of the forecast errors. We consider the generalized forecast error variance
decomposition (GFEVD) (Lanne and Nyberg 2016) that is deĄned for variable i, shock j, and
horizon h as

GFEVD(j, yit, δj , Ft−1) =

∑h
l=0 GIRF(l, δj , Ft−1)2

i
∑d

k=1

∑h
l=0 GIRF(l, δk, Ft−1)2

i

, (48)

where h is the chosen horizon and GIRF(l, δj , Ft−1)i is the ith element of the related GIRF
(see also the notation described for GIRF in the previous section). That is, the GFEVD is
otherwise similar to the conventional forecast error variance decomposition but with GIRFs in
the place of conventional impulse response functions. Because the GFEVDs sum to unity (for
each variable), they can be interpreted in a similar manner to the conventional FEVD.

In sstvars, the GFEVD can be estimated with the function GFEVD. As with the GIRF, the
GFEVD is dependent on the initial values. The type of the initial values is set with the
argument initval_type, and there are three options:

1. "data" which estimates the GFEVDs for all, or a subset of, possible length p histories in
the data, and then the Ąnal GFEVD is obtained as the sample mean over them.

2. "random" which generates the initial values from one of the speciĄc regimes, speciĄed by
the argument init_regimes. The GFEVD is calculated for each initial value, and then
the Ąnal GFEVD is obtained as the sample mean over them.

3. "fixed" which estimates the GFEVD for a single Ąxed initial value that is set with the
argument init_values.

The shock size is the same for all scalar components of the structural shock and it can be
adjusted with the argument shock_size. If the GIRFs for some variables should be cumulative
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before calculating the GFEVD, specify them with the argument which_cumulative. Finally,
note that the GFEVD objects have their own plot and print methods.

sstvars also implements a special feature in which for every possible length p history in the
data, the GFEVD is estimated for a shock that has the sign and size of the corresponding
structural shock recovered from the Ątted model. This can be done by setting the argument
use_data_shocks=TRUE. The GFEVD is then calculated as the average of the GFEVDs obtained
from the GIRFs estimated for the data shocks. The plot and print methods can be used as usual
for this GFEVD. However, this feature also estimates the contribution of each shock to the
variance of the forecast errors at various horizons in speciĄc historical points of time. This can be
done by using the plot method with the argument data_shock_pars. Note that the arguments
shock_size, initval_type, and init_regime are ignored if use_data_shocks == TRUE. Use
the argument data_gfevd_pars to further adjust the settings with initval_type="data" or
use_data_shocks=TRUE.

7.3. Linear impulse response functions

It is also possible to calculate linear impulse response functions (IRF) based on a speciĄc regime
of the estimated model by using the function linear_IRF. If the autoregressive dynamics of
the model are linear (i.e., either M = 1 or mean and AR parameters are constrained identical
across the regimes), conĄdence bounds can be estimated based on a type of a Ąxed-design wild
residual bootstrap method. sstvars implements the method proposed Herwartz and Lütkepohl
(2014).

8. Historical decompositions

sstvars implements the historical decomposition of the observed time series into the contri-
butions of the structural shocks, initial conditions, and so-called "steady state component" as
described in Wong (2018). To obtain the historical decomposition, it convenient to reformu-
late the STVAR model in the VAR(1) companion form. First, note that the model (1) can be
written as

yt = ϕy,t +
p
∑

i=1

Ay,t,iyt−i + By,tet, (49)

where ϕy,t ≡
∑M

m=1 αm,tϕm (d × 1) and Ay,t,i ≡
∑M

m=1 αm,tAm,i contain the time-varying AR
coefficients. Depending on the shock distributions and the idenitication method, the impact
matrix By,t is either directly parametrized to the model or obtained at each t by decomposing
the conditional covariance matrix Ωy,t accordingly.

Denoting yt ≡ (yt, ..., yt−p+1) (pd × 1), the model can then be written in the companion form
as

yt = Hϕy,t + Ay,tyt−1 + HBy,tet, (50)

where

H =



Id

0d(p−1)×d

]

(pd×d)

, Ay,t =



Ay,t,1 · · · Ay,t,p

Id(p−1) 0d(p−1)×d

]

(pd×pd)

, (51)

Id is the (d×d) diagonal matrix, and 0d(p−1)×d is the (d(p−1)×d) dimensional matrix of zeros.

Suppose the observed time series is indexed as yt−p+1, ..., y0, y1, ..., yT . As described in Wong
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(2018, Section 2), recursive substitution of Equation (50) yields:

yt = HBy,tet +
t−1∑

j=1





j−1
∏

i=0

Ay,t−i



HBy,tet−j

︸ ︷︷ ︸

Contribution of the shocks

+

(
t−1∏

i=0

Ay,t−i



y0

︸ ︷︷ ︸

Initial conditions

+ Hϕy,t +
t−1∑

j=1





j−1
∏

i=0

Ay,t−i



Hϕy,t−j

︸ ︷︷ ︸

Steady state component
︸ ︷︷ ︸

Baseline projection

.
(52)

The cumulative contributions of the shocks to the Ćuctuations of the variables are obtained form
the block "Contribution of the shocks" in the above equation, whereas the effect of the initial
conditions are obtained from the block "Initial conditions". The block "Steady state component"
contains so-called steady-state component of the historical decomposition, which is discussed in
Wong (2018), Section 3.2.

In sstvars, the historical decomposition is computed with the function hist_decomp, which
should be supplied by a Ątted STVAR model (a class stvar object). The returned historical
decomposition object has its own plot and print methods for convenient examination of the
contributions of the shocks. While included in the returned object, the initial condition and
steady state -components are not included in the print and plot methods, however.

9. Counterfactual analysis

Counterfactual analysis addresses questions of the form "What would (have) happen(ed) if...?",
and many different types of counterfactuals have been discussed in the literature (see, e.g.,
Kilian and Lütkepohl 2017, Chapter 4, and the references therein). Two different types of
policy counterfactuals are implemented to sstvars: counterfactuals in which the policy variable
takes some given path in given points of given (e.g., Bernanke, Gertler, and Watson 1997) and
counterfactuals in which the policy variable does not response to lagged movements of some
given variable nor to a given shock in given points of time (e.g., Kilian and Lewis 2011, consider
a closery related counterfactual, where the policy variable does not response to lagged nor
contemporaneous movements of some given variable). Following Bernanke et al. (1997), Kilian
and Lewis (2011), and others, we simulate the counterfactual scenarios by creating hypothetical
shocks to the policy variable that yield the counterfactual outcome. This approach has the
appealing feature that counterfactual deviations from the policy reaction function are treated
as policy surprises, allowing them to propagate normally. Thus, the dynamics of the model are
not, per se, tampered but just the policy surprises are.

Consider Ąrst counterfactual scenarios in which the policy variable of interest takes some given
values in a given points of time. Here, it is shown for a single time period how the shock to policy
variable that sets it take a given value is found. In the following sections, the algorithms sim-
ulating historical counterfactuals, counterfactual forecast scenarios, and counterfactual GIRFs
are established by making use the single time period case iteratively.

Consider the counterfactual scenario in which the i1th variable takes some speciĄc value in
the time period t, and denote this counterfactual value of the i1th variable as y∗

i1t ∈ R. To
simulate the counterfactual scenario in which this observation of the i1th variable is achieved,
we follow Bernanke et al. (1997) and create a hypothetical shock to it that sets yi1t = y∗

i1t.
Assuming that the i1th shock is the shock the i1th variable, the task is then to manipulate
the value of ei1t to obtained the desired observation of the i1th variable (the policy variable of
interest). For recursively identiĄed models, this should be automatically satisĄed. In models
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identiĄed by heteroskedasticity or non-Gaussianity, the ordering of the shocks can generally be
changed without loss of generality, in which case the ordering be changed with the function
reorder_B_columns so that the i1th shock is the shock to the i1th variable.

Consider the STVAR model (1) in the form (49). The (estimated) values of ϕy,t, Ay,t,1, ..., Ay,t,p,
and By,t are known by assumption conditionally on Ft−1. Therefore, for a given time period t,
the value of ei1t that sets yi1t = y∗

i1t is found as a solution to the single linear equation obtained
from the ith row of (49) with yi1t = y∗

i1t substituted:

y∗
i1t = µt,i1 +

d∑

j=1

bt,i1jejt, (53)

where µt,i1 is the i1th element of the vector ϕy,t +
∑p

i=1 Ay,t,iyt−i and bt,i1j is the i1jth element
of the impact matrix By,t. Solving this equation with respect to ei1t gives

ei1t = b−1
t,i1i1



y∗
i1t − µt,i1 −

d∑

j=1,j ̸=i1

bt,i1jejt



 , (54)

where it is assumed that bt,i1i1 ̸= 0 (i.e., that the shock to the policy variable affects the policy
on impact). Denote this solution of ei1t as e∗

i1t. The implied counterfactual time t observations
are obtained by replacing the i1th shock in the vector et by e∗

i1t, and then calculating the implied
observations from (49) by using the obtained hypothetical structural error.

Consider then a counterfactual scenario in which the response of the policy variable is shut off
to lagged movements of a given variable and to a given shock, but policy variable is allowed to
respond normally to movements of the other included included variables (and shocks). Following
Kilian and Lewis (2011, who consider a closely related type of counterfactual), we the simulate
the counterfactual scenario by creating hypothetical shocks to the policy variable that off set
the response of the policy variable to the movements of a given variable and shock. Suppose
the policy variable of interest is the i1th variable and variable (and shock) whose movements
the policy variable should not react to at the time t is the i2th variable (and shock) satisfying
i2 ̸= i1. Assume that the i1th shock is the shock related to the i1th variable and that the i2th
shock is the shock related to the i2th variable (again, this should be automatically satisĄed for
recursively identiĄed models, whereas the function reorder_B_columns can be used to change
the ordering of the shocks for model identiĄed by heteroskedasticity or non-Gaussianity).5

The lagged effects of the i2th variable and the effect of the i2th shock to the i1th variable are

p
∑

i=1

at,i,i1i2yi2t−i + bt,i1i2ei2t (55)

where at,i,i1i2 is the i1i2th element of the coefficient matrix At,i and bt,i1i2 is the i1i2th element
of the impact matrix Bt, (estimated) values of which are, conditionally on Ft−1, by assumption
known at the time t. Thus, subtracting the quantity

b−1
t,i1i1

( p
∑

i=1

at,i,i1i2yi2t−i + bt,i1i2ei2t



(56)

from the i1th shock ei1t shuts off these effects from the movements of the i1th variable (assuming
bt,i1i1 ̸= 0).

5For instance, if the monetary policy variable is the i1th variable, we assume that the monetary policy shock
is the i1th shock, and so on. Note that both i1th and i2th shocks should be labelled, and that our approach is
intended for policy counterfactuals only, where the policymaker can (to a reasonable extend) control the policy
variable.
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Now, to simulate the counterfactual scenario in which the response of the i1th variable does not
respond to the lagged movements of the i2th variable nor to the i2th shock, is obtained by Ąrst
replacing the i1th shock in the vector et by

e∗
i1t = ei1t − b−1

t,i1i1

( p
∑

i=1

at,i,i1i2yi2t−i + bt,i1i2ei2t



, (57)

where ei1t is the i1th element of et before manipulating it. Then, the implied counterfactual
observations are calculated from (49) by using the obtained hypothetical structural error.

Next, we show how the above techniques derived for a single time period can be applied itera-
tively to simulate several types of counterfactual scenarios, including historical counterfactuals,
forecast scenarios, and counterfactual GIRFs.

9.1. Historical counterfactuals

We consider historical policy counterfactual scenarios where, in given historical points of time,
the policy variable(s) of interest takes some hypothetical path, or its responses to lagged move-
ments of some given variable and to some given shock is shut off. Suppose the observed time
series is yt−p+1, ..., y0, y1, ..., yT . Consider a counterfactual scenario in which the i1th variable
either takes some speciĄc values, or its responses to lagged movements of the i2th variable and
to i2th shock (i2 ̸= i1) are shut off, in the time periods t∗, t∗ + 1, ..., t∗ + k, t∗ ∈ ¶1, ...., T − k♢,
k ≤ T − t∗. Assuming that the i1th shock is the shock related to the i1th variable, the task
is then to manipulate the values of ei1t∗ , ..., ei1t∗+k, with the rest of the shocks are taken to be
the structural shocks recovered from the (Ątted) model, to obtain the desired counterfactual
scenario. In the latter scenario we also assume that the i2th shock is the shock to the i2th
variable.

Using the results derived in Section 9, the counterfactual scenario can be simulated iteratively
with the following algorithm:

Algorithm 1 Historical counterfactual

1: for each t in t∗, ..., T do

2: Compute the values of ϕt, At,1, ..., At,p, and Bt based on the preceding observations, and
take the structural error et recovered from the (Ątted) model.

3: if t ∈ ¶t∗, ..., t∗ + k♢ then

4: Calculate the counterfactual shock e∗
i1t from (54) or (56) depending on the type of the

counterfactual, and replace the i1th element of et by this hypothetical shock.
5: end if

6: Take the structural error et obtained from the previous steps and compute the corre-
sponding (counterfactual) observation yt from (49).

7: end for

The resulting counterfactual path of the observable variables represents the model implied
scenario in which, ceteris paribus, the policy variable either takes the speciĄed path or does
not respond to lagged movements of the i2th variable nor to the i2th shock (depending on the
considered scenario) in the time periods t∗, ..., t∗ + k. In sstvars, the historical counterfactuals
can be simulated with the function cfact_hist.

9.2. Forecast scenarios

Forecast scenarios refer to alternative predictions of future outcomes based on different hypo-
thetical conditions or assumptions. For instance, when evaluating economic policy, one might
create a baseline forecast assuming no policy change, and alternative scenarios assuming speciĄc
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policy implementations. We consider the type of forecast scenarios in which a policy variable
either takes some speciĄc values at given forecast horizons (as opposed to its predicted values
without such assumptions) or its responses to lagged movements of some given variable and to
some given shock are shut off.

Deriving multistep predictions and prediction intervals analytically for nonlinear SVAR models
can be challenging, as the dynamics of the model may vary depending the realized observations.
Therefore, we consider simulation based forecasting in which a large number of potential future
sample paths of the process is simulated, and the sample mean (or median) over the Monte
Carlo (MC) repetitions is taken as the point prediction and sample quantiles as the prediction
intervals. See Section 11 discussion about forecasting by simulation. The counterfactual forecast
scenario is created by manipulating the shocks to the policy variable in each MC repetition.

To formally describe the method, consider the counterfactual scenario in which the i1th variable
either takes some speciĄc values, or its responses to lagged movements of the i2th variable and
to the i2th shock (i2 ̸= i1) are shut off, in the forecast horizons h∗, h∗ +1, ..., h∗ +k, where h∗ > 0
and k ≥ 0. Again, we assume that the i1th shock is the shock related to the i1th variable (and
in the latter type of scenario also that the i2th shock is the shock related to the i2th variable).
Suppose that the forecast is based on the information up to the time T . The forecast scenario
is simulated iteratively with the following steps:

Algorithm 2 Counterfactual forecast scenario

1: Set the horizon H and the number of repetitions R.
2: for each h in 1, 2..., H do

3: Conditionally on FT +h−1, draw eT +h from its (estimated) distribution.
4: if h ∈ ¶h∗, ..., h∗ + k♢ then

5: Calculate the counterfactual shock e∗
i1T +h from (54) or (56) depending on the type of

the counterfactual, and replace the i1th element of eT +h by this hypothetical shock.
6: end if

7: Conditionally on FT +h−1 and eT +h obtained from the previous steps, compute the corre-
sponding observation yT +h from (49).

8: end for

9: Repeat Steps 2-8 R times, and the sample mean or median over the MC repetitions for the
point prediction and desired sample quantiles for the prediction intervals.

The baseline (not counterfactual) point prediction and prediction intervals are obtained from
Algorithm 2 by dropping Steps 4-6 from it. See also Section 11. In sstvars, the counterfactual
forecast scenarios can be simulated with the function cfact_fore.

9.3. Counterfactual GIRFs

It can also be interesting to incorporate counterfactual scenarios impulse response analysis, to
assess what the effects a shock if the policy variable moves in a some speciĄc way. Similarly
to the historical counterfactuals and forecast scenarios, we consider the type of counterfactual
GIRFs in which a policy variable either takes some speciĄc values at given GIRF horizons (as
opposed to its simulated values without such assumptions) or its responses to lagged movements
of some given variable and to some given shock are shut off. In particular, we simulate the coun-
terfactuals by creating hypothetical shocks to the policy variable that yield the counterfactual
outcome. See Section 7.1 for the deĄnition of GIRFs.

Consider a counterfactual scenario in which the i1th variable either takes some speciĄc values,
or its responses to lagged movements of the i2th variable and to the i2th shock (i2 ̸= 1) are shut
off, in the GIRF horizons h∗, h∗ + 1, ..., h∗ + k, where h∗ ≥ 0 and k ≥ 0. In the following, for

the lth Monte Carlo repetition, y
(l)
t+h(δj ,yt−1) denotes a realization of the process at time t + h
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conditional on the history yt−1 and the jth structural shock of sign and size δj ∈ R arriving

at time t, whereas y
(l)
t+h(yt−1) denotes an alternative realization conditional on the history yt−1

only.

For a single history yt−1 and given sign and size δj of the jth structural shock, the counterfactual
GIRF can be estimated with the following algorithm (adapted from the GIRF algorithm in
Lanne and Virolainen 2025, Appendix B), where we assume that the shock j is not the shock
related to the policy variable, i.e., j ̸= i1:

Algorithm 3 Counterfactual GIRF

1: Set the horizon H and the number of repetitions R.
2: for each h in 0, 1, ..., H do

3: Conditionally on Ft+h−1, draw et+h from its (estimated) distribution.
4: if h = 0 then

5: Impose the sign and size δj to the jth element of et+h to obtain the modiĄed structural
error ẽt+h.

6: end if

7: if h ∈ ¶h∗, ..., h∗ + k♢ then

8: Calculate the counterfactual shock e∗
i1t+h from (54) or (56) depending on the type of

the counterfactual, and replace the i1th element of et+h by this hypothetical shock.
9: if h = 0 then

10: Calculate also the modiĄed counterfactual shock ẽ∗
i1t+h using the modiĄed structural

error ẽt+h in (54) or (56) depending on the type of the counterfactual, and replace
the i1th element of ẽt+h by this hypothetical shock.

11: end if

12: end if

13: Calculate y
(l)
t+h(δj ,yt−1) by using the previous observations (yt−1, y

(l)
t (δj ,yt−1), ...,

y
(l)
t+h−1(δj ,yt−1) and the structural error et+h (or ẽt+h if h = 0) obtained from Steps 3-12.

14: Calculate y
(l)
t+h(yt−1) by using the previous observations (yt−1, y

(l)
t (yt−1), ..., y

(l)
t+h−1(yt−1)

and the structural error et+h obtained from Steps 3-12.
15: end for

16: Calculate y
(l)
t+h(δj ,yt−1) − y

(l)
t+h(yt−1).

17: Repeat Steps 2-16 R times and calculate the sample mean of y
(l)
t+h(δj ,yt−1) − y

(l)
t+h(yt−1)

over the Monte Carl repetitions l = 1, ..., R to obtain the (counterfactual) GIRF related to
the history yt−1 for the jth structural shock of sign and size δj .

The GIRF that does not impose a counterfactual scenario is obtained from Algorithm 3 by
simply dropping the Steps 7-12 from it. See also Section 7.1. In sstvars, the counterfactual
GIRFs can be simulated with the function cfact_girf.

10. Building a STVAR model with speciĄc parameter values

The function STVAR facilitates building STVAR models without estimation, for instance, in order
to simulate observations from a STVAR process with speciĄc parameter values. The function
should be supplied at least with the arguments p, M, and d specifying the autoregressive order,
the number of regimes, and the dimension of the time series, respectively. The argument params

should be used to specify the parameter values, whereas the weight function and weight function
parameters are speciĄed in the arguments weight_function and weightfun_pars, respectively,
and the conditional distribution in the function cond_dist.

To exemplify, we build a reduced form Gaussian STVAR p = 1, M = 1, d = 2 model with
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relative stationary densities as the transition weights. The model has intercept parametrization
and parameter values φ1,0 = (0, 1), φ12,0 = (0, 2), vec(A1,1) = (0.2, 0.2, 0.2, −0.2), vec(A1,1) =
(0.3, 0.3, 0.3, −0.3), vech(Ω1) = (1, 0.1, 1), vech(Ω2) = (4, 0.4, 4), and α1=0.6. After building
the model, we use the print method to examine it:

R> params122 <- c(0, 1, 0, 2, 0.2, 0.2, 0.2, -0.2, 0.3, 0.3, 0.3, -0.3, 1,

+ 0.1, 1, 4, 0.4, 4, 0.6)

R> mod122 <- STVAR(p=1, M=2, d=2, params=params122,

+ weight_function="relative_dens")

R> mod122

relative_dens Gaussian STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 19,

Regime 1

Weight param: 0.60

Regime means: 0.22, 0.87

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.20 0.20 ] y1.1 + [ 1.00 0.10 ] eps1

2 y2 [ 1.00 ] [ 0.20 -0.20 ] y2.1 [ 0.10 1.00 ] eps2

Regime 2

Weight param: 0.40

Regime means: 0.73, 1.71

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.30 0.30 ] y1.1 + [ 4.00 0.40 ] eps1

2 y2 [ 2.00 ] [ 0.30 -0.30 ] y2.1 [ 0.40 4.00 ] eps2

It is possible to include data in the models built with STVAR by either providing the data in the
argument data. When the model is supplied with data, the transition weights and other data
dependent statistics are calculated for the model as well. It is also possible to build models that
do not satisfy the usual stability condition for all the regimes. In this case, you should set the
argument allow_unstab to FALSE.

11. Simulation and forecasting

11.1. Simulation

sstvars implements the S3 method simulate for simulating observations from STVAR pro-
cesses (see ?simulate.stvar). The method requires the process to be given as a class stvar

object, which are typically created either by estimating a model with the function fitSTVAR

(or fitSSTVAR) or by specifying the parameter values by hand and building the model with
the constructor function STVAR. The initial values required to simulate the Ąrst p observations
can be either set by hand (with the argument init_values) or drawn from (the stationary
distribution of) some regime (with the argument init_regime). The argument nsim sets the
length of the sample path to be simulated.

To give an example, the following code sets the random number generator seed to one and
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simulates 500 observations long sample from the STVAR model built in Section 10, drawing
initial values from the Ąrst regime:

R> mysim <- simulate(mod122, nsim=500, init_regime=1, seed=1)

Our implementation of simulate returns a list containing the simulated sample path in $sample,
the mixture component that generated each observation in $component, and the transition
weights in $transition_weights.

11.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the
STVAR models is complicated, so sstvars employs the following simulation-based method. By
using the last p observations of the data up to the date of forecasting as initial values, a large
number of sample paths for the future values of the process are simulated. Then, sample
quantiles from the simulated sample paths are calculated to obtain prediction intervals, and the
median or mean is used for point predictions. A similar procedure is also applied to forecast
future values of the transition weights, which might be of interest because the researcher can
often associate statistical characteristics or economic interpretations to the regimes.

Forecasting is most conveniently done with the predict method (see ?predict.stvar). The
available arguments include the number of steps ahead to be predicted (nsteps), the number
sample paths the forecast is based on (nsim), possibly multiple conĄdence levels for predic-
tion intervals (pi), prediction type (pred_type), and prediction interval type (pi_type). The
prediction type can be either median, mean for the point forecast.

To exemplify, the following code forecasts the two-dimensional time-series of U.S. GDP and
GDP deĆator growth using the logistic StudentŠs t STVAR(1, 2) model fit12 estimated in
Section 4.5. The forecast is 10 steps (quarters in this case) ahead, based on 10000 Monte Carlo
repetitions with the point forecast based on the mean of those repetitions. The prediction
intervals are two-sided with conĄdence levels 0.95 and 0.90.

R> mypred <- predict(fit12, nsteps=10, nsim=10000, pred_type="mean",

+ pi=c(0.95, 0.90))

The results can be printed with the print method using the command print(mypred) or plotted
with the plot method using the command plot(mypred).

12. Summary

Smooth transition vector autoregressive models are a valuable tool in modelling multivariate
time series in which the data generating dynamics vary in time, exhibiting gradual shifts in
the autoregressive coefficients or conditional covariance matrices. We described the R package
sstvars, which accommodates STVAR models with various transition weight functions, includ-
ing exogenous weights, logistic weights (Anderson and Vahid 1998), multinomial logit weights,
exponential weights (e.g., Hubrich and Teräsvirta 2013), threshold weights (Tsay 1998), and
transition weights that deĄned as weighted relative likelihoods of the regimes corresponding
to the preceding p observations (Lanne and Virolainen 2025). Currently, the accommodated
conditional distributions include Gaussian distribution, StudentŠs t distribution, StudentŠs t
distribution with mutually independent components, and skewed t distribution with mutu-
ally independent components (see Hansen 1994). The accommodated identiĄcation methods
include recursive identiĄcation, identiĄcation by heteroskedasticity, and identiĄcation by non-
Gaussianity. We discussed the various model speciĄcations and several features implemented in
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sstvars for STVAR modeling: unconstrained and constrained maximum likelihood estimation
of the model parameters, impulse response analysis, historical decompositions, counterfactual
analysis residual based diagnostics, hypothesis testing, simulation, forecasting, and more. For
convenience, we have collected some useful functions in sstvars to Table 1. For all the exported
functions and their usage, see the reference manual.



Savi Virolainen 45

A table of some useful functions

Related to Name Description
Estimation fitSTVAR Estimate STVAR models.

fitSSTVAR Estimate or construct structural STVAR models.
alt_stvar Construct a STVAR model based on any estimation round.
filter_estimates Browse estimates, not deemed inappropriate, from various

estimation rounds.
iterate_more Run more iterations of the variable metric algorithm for a

preliminary estimated STVAR model.
Estimates print (method) Print the estimates or their approximate standard errors.

summary (method) Detailed printout of the model.
plot (method) Plot the series with the Ątted transition weights of the

model.
get_foc Calculate numerically approximated gradient of the log-

likelihood function evaluated at the estimate.
get_soc Calculate eigenvalues of numerically approximated Hessian

of the log-likelihood function evaluated at the estimate.
profile_logliks Plot the graphs of the proĄle log-likelihood functions about

the estimate.
profile_struct_shocks Plot the time series of the structural shocks.

Diagnostics Portmanteau_test Calculate the (adjusted) Portmanteau test.
diagnostic_plot Plot residual diagnostics (raw or standardized residuals).

Forecasting predict (method) Forecast future observations and transition weights of the
process.

Simulation simulate (method) Simulate from a STVAR process.
Create model STVAR Construct a STVAR model based on given parameter val-

ues.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Rao_test Calculate RaoŠs test.

Impulse responses GIRF Estimate generalized impulse response functions.
GFEVD Estimate generalized forecast error variance decomposition.
linear_IRF Estimate linear impulse response functions.

Hist. decomp. hist_decomp Compute historical decompositions.
Counterfactuals cfact_hist Simulate historical counterfactuals.

cfact_fore Simulate counterfactual forecast scenarios.
cfact_girf Simulate counterfactual generalized impulse response func-

tions.
Other bound_JSR Calculate bounds for the joint spectral radius of the com-

panion form AR matrices of the regimes.
swap_parametrization Swap between mean and intercept parametrizations
uncond_moments Calculate unconditional moments of the regimes.
check_params Check whether given parameter values satisfy our assump-

tions.
swap_B_signs Swap the signs of the columns of the impact matrix of mod-

els identiĄed by heteroskedasticity or non-Gaussianity.
reorder_B_columns Reorder the columns of the impact matrix of models iden-

tiĄed by heteroskedasticity or non-Gaussianity.

Table 1: Some useful functions in sstvars sorted according to their usage. The note "method" in
parentheses after the name of a function signiĄes that it is an S3 method for a class stvar object
(often generated by the function fitSTVAR, fitSSTVAR or STVAR).
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