Package ‘srcr’

January 16, 2026
Type Package
Title Simplify Connections to Database Sources
Version 1.1.2
Maintainer Charles Bailey <baileyc@chop.edu>

Description Connecting to databases requires boilerplate code to specify
connection parameters and to set up sessions properly with the DBMS.
This package provides a simple tool to fill two purposes: abstracting
connection details, including secret credentials, out of your source
code and managing configuration for frequently-used database connections
in a persistent and flexible way, while minimizing requirements on the
runtime environment.

License Artistic-2.0

Encoding UTF-8

ByteCompile TRUE

Imports DBI, dplyr, jsonlite, utils, lifecycle
Suggests knitr, rmarkdown, RSQLite, withr
VignetteBuilder knitr

RoxygenNote 7.3.3

URL https://github.com/baileych/srcr

BugReports https://github.com/baileych/srcr/issues
NeedsCompilation no

Author Charles Bailey [aut, cre],
Hanieh Razzaghi [aut]

Repository CRAN
Date/Publication 2026-01-16 12:20:02 UTC

Contents

find_config_files
SICT o v v e e e e e e

https://github.com/baileych/srcr
https://github.com/baileych/srcr/issues

2 find_config_files

Index 6

find_config_files Locate candidate configuration files

Description

Given vectors of directories, basenames, and suffices, combine them to find existing files.

Usage

find_config_files(
basenames = .basename.defaults(),
dirs = .dir.defaults(),
suffices = .suffix.defaults()

)
Arguments
basenames A vector of file names (without directory or file type) to use in searching for
configuration files.
dirs A vector of directory names to use in searching for configuration files.
suffices A vector of suffices (file "type"s) to use in searching for the configuration file.
Details

This function is intended to support a variety of installation patterns, so it attempts to be flexible in
looking for configuration files. First, environment variables of the form basename_CONFIG, where
basename is the uppercase form of each candidate basename, are examined to see whether any
translate to a file path.

Following this, the path name parts supplied as arguments are used to build potential file names. If
dirs is not specified, the following directories are checked by default:

. the user’s $HOME directory

. the directory named . srcr (no leading . on Windows) under $HOME

. the directory in which the executing script is located

A W D =

. the directory in which the calling function’s calling function’s source file is located (typically
an application-level library). For example, if the function my_setup() calls srcr(), which in
turn calls find_config_files(), then the directory of the file containing my_setup() will
be tried.

5. the directory in which the calling function’s source file is located (typically a utility function,
such as srcr())

Note that the current working directory is not part of the search by default. This is done to limit
the potential for accidentally introducing (potentially harmful) configuration files by setting the
working directory.

In each location, the file names given in basenames are checked; if none are specified, several
default file names are tried:

srcr 3

1. the name of the calling function’s source file
2. the name of the executing script

3. the directory in which the calling function’s calling function’s source file is located (typically
an application-level library). For example, if the function my_setup() calls srcr(), which
in turn calls find_config_files(), then the name of the file containing my_setup () will be
tried.

The suffices (file "type"s) of . json, .conf, and nothing, are tried with each candidate path; you
may override this default by using the suffices parameter. Finally, in order to accommodate the
Unix tradition of "hidden" configuration files, each basename is prefixed with a period before trying
the basename alone.

Value

A vector of path specifications, or an empty vector if none are found.

Examples

Not run:
find_config_files() # All defaults
find_config_files(dirs = c(file.path(Sys.getenv('HOME'), 'etc'),
'/usr/local/etc', '/etc'),
basenames = c('my_app'),
suffices = c¢('.conf', '.rc'))

End(Not run)

srcr Connect to database using config file

Description

Set up a or DBI or legacy dplyr database connection using information from a JSON configuration
file, and return the connection.

Usage

srcr(
basenames = NA,
dirs = NA,
suffices = NA,
paths = NA,
config = NA,
allow_post_connect = getOption("srcr.allow_post_connect”, c()),
allow_config_code = getOption("srcr.allow_config_code"”, allow_post_connect)

4 srcr

Arguments

basenames A vector of file names (without directory or file type) to use in searching for
configuration files.

dirs A vector of directory names to use in searching for configuration files.

suffices A vector of suffices (file "type"s) to use in searching for the configuration file.

paths A vector of full path names for the configuration file. If present, only these paths
are checked; find_config_files() is not called.

config A list containing the configuration data, to be used instead of reading a configu-

ration file, should you wish to skip that step.

allow_post_connect
[Deprecated] This has been superseded by the more generally functional allow_config_code
parameter. It currently generates a warning when used, and will be removed in
a future version.

allow_config_code
A vector specifying what session setup you will permit via code contained in the
config. If any element of the vector is sql, then the post_connect_sql section
of the configuration file is executed aftern the connection is established. If any
element is fun, then the pre- and post-connection functions will be executed (see
above).

Details

The configuration file must provide all of the information necessary to set up the DBI connection
or dplyr src. Given the variety of ways a data source can be specified, the JSON must be a hash
containing at least two elements:

* The src_name key typically points to a string containing name of a DBI driver method (e.g.
SQLite), as one might pass to DBI: :dbDriver(). In this case, an attempt will be made to
load the appropriate DBI-compliant database library (e.g. RSQLite for the above example) if
it hasn’t already been loaded. If the value associated with src_name begins with ’src_’, it is
taken as the name of a function to call directly, rather than a DBI class name.

» The src_args key points to a nested hash, whose keys are the arguments to that function, and
whose values are the argument values.

To locate the necessary configuration file, you can use all of the arguments taken by find_config_files(),
but remember that the contents of the file must be JSON, regardless of the file’s name. Alternatively,

if paths is present, only the specified paths are checked. The first file that exists, is readable, and
evaluates as legal JSON is used as the source of configuration data.

If your deployment strategy does not make use of configuration files (e.g. you access configuration
data via a web service or similar API), you may also pass a list containing the configuration data
directly via the config parameter. In this case, no configuration files are used.

Because some uses may require additional actions, such as setting up environment variables, exter-
nal authentication, or initialization work within the database session, you may include code to be
executed in your configuration file. The pre_connect_fun element, if present, should be an array of
text that will be joined linewise and evaluated as R source code. It must define an anonymouis func-
tion which will be called with one argument, the content of the config file. If this function returns a

srcr

DBI connection, the srcr will skip the default process for creating a connection and use this instead.
Any other non-NA return value replaces the configuration data originally read from the file during
further steps. Once the connection is established, the post_connect_sqgl and post_connect_fun
elements of the configuration data can be used to perform additional processing to set session char-
acteristics, roles, etc. However, because this entails the configuration file providing code that you
won’t see prior to runtime, you need to opt in to these features. You can make this choice globally
by setting the srcr.allow_config_code option via base::options(), or you can enable it on a

per-call basis with the allow_config_code parameter.

Value

A database connection. The specific class of the object is determined by the src_name in the

configuration data.

Examples

Not run:
Search all the (filename-based) defaults
srcr()

"The usual”
srcr('myproj_prod"')

Look around
srcr(dirs = c(Sys.getenv('PROJ_CONF_DIR'), 'var/lib', getwd()),
basenames = c('myproj', Sys.getenv('PROJ_NAME')))

No defaults
srcr(paths = c('/path/to/known/config.json'))

srcr(config =
list(src_name = 'Postgres',
src_args = list(host = 'my.host', dbname = 'my_db', user
post_connect_sql = 'set role project_role;"'),
allow_config_code = 'sql')

End(Not run)

= 'me"),

Index

base::options(), 5
DBI::dbDriver(), 4

find_config_files, 2
find_config_files(), 24

srcr, 3
srcr(),2, 3

	find_config_files
	srcr
	Index

