
Package ‘spatstat.univar’
January 17, 2026

Version 3.1-6

Date 2026-01-17

Title One-Dimensional Probability Distribution Support for the
'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), stats

Imports spatstat.utils (>= 3.2-1), graphics

Description Estimation of one-dimensional probability distributions
including kernel density estimation, weighted empirical cumulative
distribution functions, Kaplan-Meier and reduced-sample estimators
for right-censored data, heat kernels, kernel properties,
quantiles and integration.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.univar/issues

Author Adrian Baddeley [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9499-8382>),

Tilman M. Davies [aut, ctb, cph] (ORCID:
<https://orcid.org/0000-0003-0565-1825>),

Martin L. Hazelton [aut, ctb, cph] (ORCID:
<https://orcid.org/0000-0001-7831-725X>),

Ege Rubak [aut, cph] (ORCID: <https://orcid.org/0000-0002-6675-533X>),
Rolf Turner [aut, cph] (ORCID: <https://orcid.org/0000-0001-5521-5218>),
Greg McSwiggan [ctb, cph]

Repository CRAN

Date/Publication 2026-01-17 06:10:09 UTC

1

http://spatstat.org/
https://github.com/spatstat/spatstat.univar/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0003-0565-1825
https://orcid.org/0000-0001-7831-725X
https://orcid.org/0000-0002-6675-533X
https://orcid.org/0000-0001-5521-5218

2 spatstat.univar-package

Contents
spatstat.univar-package . 2
bw.abram . 5
bw.abram.default . 6
bw.pow . 8
bw.taylor . 9
CDF . 11
densityAdaptiveKernel . 12
densityAdaptiveKernel.default . 12
densityBC . 15
dkernel . 19
dkernelBC . 20
ewcdf . 21
firstdigit . 22
hotrod . 24
indefinteg . 25
integral . 26
integral.density . 27
kaplan.meier . 28
kernel.factor . 29
kernel.moment . 30
kernel.squint . 31
km.rs . 32
knots.ewcdf . 34
mean.ewcdf . 35
quantile.density . 36
quantile.ewcdf . 37
quantilefun . 38
reduced.sample . 40
rounding . 41
stieltjes . 42
transformquantiles . 44
uniquemap.default . 45
unnormdensity . 46
weighted.median . 48
whist . 50

Index 52

spatstat.univar-package

The spatstat.univar Package

Description

The spatstat.univar package belongs to the spatstat family of packages. It provides utilities for
estimating the probability distribution of one-dimensional (real-valued) data.

spatstat.univar-package 3

Details

This package is a member of the spatstat family of packages. It provides utilities for estimation
of the probability distribution of one-dimensional (i.e. numerical, real-valued) data. The utilities
include:

kernel density estimation: including variable-bandwidth kernels, boundary correction, bandwidth
selection, unnormalised weighted densities, and cumulative distribution functions of density
estimates.

weighted distributions and weighted statistics: including weighted empirical cumulative distri-
butions, weighted median, weighted quantiles, calculating the CDF from a density estimate

estimation for right-censored data: including Kaplan-Meier, reduced-sample and other estima-
tors of the cumulative distribution function and hazard function from right-censored data

quantiles: including calculation of quantiles from an empirical cumulative distribution or a kernel
density estimate

kernels: including calculation of the probability density, cumulative distribution function, quan-
tiles, random generation, moments and partial moments of the standard smoothing kernels

heat kernel: calculation of the one-dimensional heat kernel in an interval

integration: Numerical integration including Stieltjes integrals and indefinite integrals.

The facilities are described in more detail below.

Kernel density estimation
The package supports fixed-bandwidth and variable-bandwidth kernel estimation of probability den-
sities from numerical data. It provides boundary corrections for kernel estimates of densities on the
positive half-line (applicable when the original observations are positive numbers) for both fixed-
bandwidth and variable-bandwidth estimates.

If the observations have numerical weights associated with them, these weights will not be auto-
matically normalised, and indeed the weights may be negative or zero. This is unlike the standard
R method density.default.

The main functions are:

unnormdensity extension of density.default allowing weights to be negative or zero.
densityBC fixed-bandwidth kernel estimate with optional boundary correction
densityAdaptiveKernel adaptive (variable-bandwidth) kernel estimation (generic)
densityAdaptiveKernel.default adaptive (variable-bandwidth) kernel estimate (method for numeric data, with optional boundary correction)
bw.abram.default calculate data-dependent bandwidths using Abramson rule
CDF.density cumulative distribution function from kernel density estimate

Weighted distributions and weighted statistics
Weighted versions of standard operations such as the histogram and empirical distribution function
are provided:

whist weighted histogram
ewcdf weighted empirical cumulative distribution function
mean.ewcdf mean of weighted ecdf
quantile.ewcdf quantiles of weighted ecdf

4 spatstat.univar-package

knots.ewcdf jump points of weighted ecdf
weighted.median weighted median of numeric values
weighted.quantile weighted quantile of numeric values

Estimation for right-censored data
Facilities are provided for estimating the probability distribution of right-censored lifetimes (non-
negative real random variables).

kaplan.meier Kaplan-Meier estimator of cumulative distribution function and hazard rate, from right-censored data
reduced.sample reduced-sample estimator of cumulative distribution function, from right-censored data

Quantiles
Facilities are provided for computing the quantiles of a probability distribution, given estimates of
the probability density or the cumulative distribution function and so on.

CDF.density cumulative distribution function from kernel density estimate
quantile.density quantiles of kernel density estimate
quantile.ewcdf quantiles of weighted ecdf
quantilefun quantiles as a function
quantilefun.ewcdf quantiles as a function
weighted.quantile weighted quantile of numeric values
transformquantiles transform the quantiles of a dataset

Kernels
The standard R function density.default recognises a list of smoothing kernels by name: "gaussian",
"rectangular", "triangular", "epanechnikov", "biweight", "cosine" and "optcosine". For
these kernels, spatstat.univar provides various characteristics:

dkernel probability density of the kernel
pkernel cumulative distribution function of the kernel
qkernel quantiles of the kernel
rkernel generate simulated realisations from the kernel
kernel.factor scale factor relating bandwidth to half-width of kernel
kernel.moment partial moment of kernel
kernel.squint integral of squared kernel
dkernelBC evaluate the kernel with boundary correction

Heat kernels
The heat kernel in an interval can be calculated.

hotrod calculate the heat kernel in an interval

Integration
A few facilities are provided for calculating integrals of real functions.

bw.abram 5

indefinteg indefinite integral
integral.density integral of a kernel density estimate
stieltjes Stieltjes integral

Utilities
A few utilities for numerical data are also provided.

uniquemap.default map duplicates to unique entries
rounding.default determine whether values have been rounded
firstdigit leading digit in decimal representation
lastdigit least significant digit in decimal representation
ndigits number of digits in decimal representation

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Tilman Davies <Tilman.Davies@otago.ac.nz>,
Martin Hazelton <Martin.Hazelton@otago.ac.nz>, Ege Rubak <rubak@math.aau.dk>, Rolf Turner
<rolfturner@posteo.net> and Greg McSwiggan.

bw.abram Abramson’s Adaptive Bandwidths

Description

Computes adaptive smoothing bandwidths according to the inverse-square-root rule of Abramson
(1982).

Usage

bw.abram(X, h0, ...)

Arguments

X Data to be smoothed.
h0 Global smoothing bandwidth. A numeric value.
... Additional arguments passed to methods.

Details

This function computes adaptive smoothing bandwidths for a dataset, using the methods of Abram-
son (1982) and Hall and Marron (1988).

The function bw.abram is generic. There is a default method bw.abram.default. The spatstat
package family includes methods for spatial objects.

6 bw.abram.default

Value

See the documentation for the particular method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram.default

bw.abram.default Abramson’s Adaptive Bandwidths For Numeric Data

Description

Computes adaptive smoothing bandwidths for numeric data, according to the inverse-square-root
rule of Abramson (1982).

Usage

Default S3 method:
bw.abram(X, h0, ...,

at = c("data", "grid"),
pilot = NULL, hp = h0, trim = 5, smoother = density.default)

Arguments

X Data for which bandwidths should be calculated. A numeric vector.

h0 A scalar value giving the global smoothing bandwidth in the same units as X.
The default is h0=bw.nrd0(X).

... Arguments passed to density.default (or to smoother) controlling the range
of values x at which the density will be estimated, when at="grid".

at Character string (partially matched) specifying whether to compute bandwidth
values only at the data points of X (at = 'data', the default) or on a grid of x
values (at = 'grid').

bw.abram.default 7

pilot Optional. Specification of a pilot density (possibly unnormalised). Either a
numeric vector giving the pilot density for each data point of X, a function in
the R language, or a probability density estimate (object of class "density"). If
pilot=NULL the pilot density is computed by applying fixed-bandwidth density
estimation to X using bandwidth hp.

hp Optional. A scalar pilot bandwidth, used for estimation of the pilot density, if
pilot is not given.

trim A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

smoother Smoother for the pilot. A function or character string, specifying the function to
be used to compute the pilot estimate when pilot is NULL.

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and
Hall and Marron (1988).

The function bw.abram is generic. The function bw.abram.default documented here is the default
method which is designed for numeric data.

If at="data" (the default) a smoothing bandwidth is computed for each data point in X. Alterna-
tively if at="grid" a smoothing bandwidth is computed for a grid of x values.

Under the Abramson-Hall-Marron rule, the bandwidth at location u is

h(u) = h0 ∗ min[
f̃(u)−1/2

γ
, trim]

where f̃(u) is a pilot estimate of the probability density. The variable bandwidths are rescaled by γ,
the geometric mean of the f̃(u)−1/2 terms evaluated at the data; this allows the global bandwidth h0
to be considered on the same scale as a corresponding fixed bandwidth. The trimming value trim
has the same interpretation as the required ‘clipping’ of the pilot density at some small nominal
value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths (which can occur at
very isolated observations).

The pilot density or intensity is determined as follows:

• If pilot is a function in the R language, this is taken as the pilot density.
• If pilot is a probability density estimate (object of class "density" produced by density.default)

then this is taken as the pilot density.
• If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity

estimate using density.default applied to the data X using the pilot bandwidth hp.

In each case the pilot density is renormalised to become a probability density, and then the Abram-
son rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another
density estimation procedure using the argument smoother. This should be either a function or
the character string name of a function. It will replace density.default as the function used to
calculate the pilot estimate. The pilot estimate will be computed as smoother(X, sigma=hp, ...)
if pilot is NULL, or smoother(pilot, sigma=hp, ...) if pilot is a point pattern. If smoother
does not recognise the argument name sigma for the smoothing bandwidth, then hp is effectively
ignored.

8 bw.pow

Value

Either a numeric vector of the same length as X giving the Abramson bandwidth for each point
(when at = "data", the default), or a function giving the Abramson bandwidths as a function of
location.

Author(s)

Tilman Davies <Tilman.Davies@otago.ac.nz>. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram, bw.nrd0.

Examples

xx <- rexp(20)
bw.abram(xx)

bw.pow Variable Bandwidths Proportional to a Power of the Data Value

Description

Computes variable smoothing bandwidths intended to be proportional to the observed data values,
raised to a given power.

Usage

bw.pow(X, h0, POW = 0.75, trim = 5, ...)

Arguments

X Data for which bandwidths should be calculated. A numeric vector of positive
values.

h0 A scalar value giving the global smoothing bandwidth in the same units as X.
The default is bw.nrd0(X).

POW Numeric value. The exponent of the power transformation to be applied to X.

bw.taylor 9

trim A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

... Ignored.

Details

This function computes adaptive smoothing bandwidths for the data values in X. Larger data values
are assigned larger bandwidths.

Bandwidths are proportional to X^POW. The bandwidth at location u is

h(u) = h0 ∗ min[
uPOW

γ
, trim]

where γ is the geometric mean of the values uPOW. This allows the global bandwidth h0 to be
considered on the same scale as a corresponding fixed bandwidth.

Value

A numeric vector of the same length as X.

Author(s)

Tilman Davies <Tilman.Davies@otago.ac.nz>. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

bw.abram, bw.nrd0.

Examples

xx <- sort(rexp(10))
bb <- bw.pow(xx)
signif(rbind(xx, bb), 3)

bw.taylor Bandwidth Selection for Kernel Density Estimation by Non-Random
Bootstrap

Description

Use Taylor’s non-random bootstrap technique to select the bandwidth for kernel density estimation
on the real line.

Usage

bw.taylor(x, ..., srange = NULL, useC = TRUE)

10 bw.taylor

Arguments

x Numeric vector.

... Ignored.

srange Range of bandwidths to be considered. A numeric vector of length 2.

useC Logical value specifying whether to use faster C code.

Details

This function selects a bandwidth for kernel density estimation of a probability density on the real
line, using the numeric data x and assuming a Gaussian kernel. The result is the numeric value of
the standard deviation of the Gaussian kernel.

The function uses the method of Taylor (1989) who showed that, when using the Gaussian kernel,
the optimisation criterion can be computed rapidly from the data without any randomised resam-
pling.

The domain of the probability density is assumed to be the entire real line. Boundary correction is
not currently implemented.

The result of bw.taylor is a single numeric value giving the selected bandwidth.

Value

A single numeric value.

Author(s)

Tilman Davies <Tilman.Davies@otago.ac.nz> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Taylor, C.C. (1989) Choice of the Smoothing Parameter in Kernel Density Estimation, Biometrika
76 4, 705–712.

See Also

bw.nrd in the stats package for standard bandwidth selectors.

Examples

x <- rnorm(30)
bw.taylor(x)

CDF 11

CDF Cumulative Distribution Function From Kernel Density Estimate

Description

Given a kernel estimate of a probability density, compute the corresponding cumulative distribution
function.

Usage

CDF(f, ...)

S3 method for class 'density'
CDF(f, ..., warn = TRUE)

Arguments

f Density estimate (object of class "density").
... Ignored.
warn Logical value indicating whether to issue a warning if the density estimate f had

to be renormalised because it was computed in a restricted interval.

Details

CDF is generic, with a method for class "density".

This calculates the cumulative distribution function whose probability density has been estimated
and stored in the object f. The object f must belong to the class "density", and would typically
have been obtained from a call to the function density.

Value

A function, which can be applied to any numeric value or vector of values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

density, quantile.density

Examples

b <- density(runif(10))
f <- CDF(b)
f(0.5)
plot(f)

12 densityAdaptiveKernel.default

densityAdaptiveKernel Adaptive Kernel Estimation of Density or Intensity

Description

Computes an adaptive estimate of probability density or intensity using a variable-bandwidth smooth-
ing kernel.

Usage

densityAdaptiveKernel(X, ...)

Arguments

X Data to be smoothed.

... Additional arguments passed to methods.

Details

This generic function computes an adaptive kernel estimate of probability density or intensity.

The function densityAdaptiveKernel is generic. The spatstat package family includes methods
for spatial objects.

Value

See documentation for each method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies <Tilman.Davies@otago.ac.nz>.

See Also

bw.abram.

densityAdaptiveKernel.default

Adaptive Kernel Estimation of Probability Density

Description

Computes an adaptive estimate of probability density from numeric data, using a variable-bandwidth
smoothing kernel.

densityAdaptiveKernel.default 13

Usage

Default S3 method:
densityAdaptiveKernel(X, bw, ...,

weights = NULL,
zerocor=c("none", "weighted", "convolution",

"reflection", "bdrykern", "JonesFoster"),
at = c("grid", "data"), ngroups=Inf, fast=TRUE)

Arguments

X Data to be smoothed. A numeric vector.

bw Smoothing bandwidths. Either a numeric vector of the same length as X giving
the bandwidth associated with each data value, or a function in the R language
that provides the smoothing bandwidth at any desired location. The default is to
compute bandwidths using bw.abram.default.

... Additional arguments passed to density.default controlling the range of x
values at which the density must be estimated, when at="grid".

weights Optional. Numeric vector of weights attached to each value in X.

zerocor Character string (partially matched) specifying a boundary correction. This is
appropriate when X contains only positive values.

at String (partially matched) specifying whether to evaluate the probability density
only at the data points (at="data") or on a grid of x values (at="grid", the
default).

ngroups Integer, Inf or NULL. If ngroups = Inf, the density estimate will be computed
exactly using C code. If ngroups is finite, then the fast subdivision technique of
Davies and Baddeley (2018) will be applied. If ngroups = NULL then a default
rule is used to choose an efficient number of groups.

fast Logical value specifying whether to use the Fast Fourier Transform to accelerate
computations, when appropriate.

Details

This function computes an adaptive kernel estimate of probability density on the real line (if zerocor="none")
or on the positive real line (if zerocor is another value).

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It may
be a numeric vector of bandwidth values, or a function yielding the bandwidth values.

If the values in X are x1, . . . , xn and the corresponding bandwidths are σ1, . . . , σn then the adaptive
kernel estimate of intensity at a location u is

λ̂(u) =

n∑
i=1

k(u, xi, σi)

where k(u, v, σ) is the value at u of the (possibly edge-corrected) smoothing kernel with bandwidth
σ induced by a data point at v.

Exact computation of the estimate above can be time-consuming: it takes n times longer than fixed-
bandwidth smoothing.

14 densityAdaptiveKernel.default

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partition-
ing the range of bandwidths into ngroups intervals, correspondingly subdividing X into ngroups
subsets according to bandwidth, and applying fixed-bandwidth smoothing to each subset.

If ngroups=NULL then we use a default rule where ngroups is the integer part of the square root
of the number of points in X, so that the computation time is only about

√
n times slower than

fixed-bandwidth smoothing. Any positive value of ngroups can be specified by the user. Spec-
ifying ngroups=Inf enforces exact computation of the estimate without partitioning. Specifying
ngroups=1 is the same as fixed-bandwidth smoothing with bandwidth sigma=median(bw).

Value

If at="data", a numeric vector of the same length as X. If at="grid", a probability density object
of class "density".

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel.default computes one adaptive estimate of probability
density, determined by the smoothing bandwidth values bw.

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity,
then using bw.abram.default to compute the vector of bandwidths according to Abramson’s rule.
This involves specifying a global bandwidth h0.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies <Tilman.Davies@otago.ac.nz>.

References

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability den-
sities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram.default

Examples

xx <- rexp(100, rate=5)
plot(density(xx))
curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid"))
curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid", zerocor="w"))

densityBC 15

curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid", zerocor="c"))
curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid", zerocor="r"))
curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid", zerocor="b"))
curve(5 * exp(-5 * x), add=TRUE, col=3)
plot(densityAdaptiveKernel(xx, at="grid", zerocor="J"))
curve(5 * exp(-5 * x), add=TRUE, col=3)

densityBC Kernel Density Estimation with Optional Boundary Correction

Description

Fixed-bandwidth kernel density estimation on the real line, or the positive real half-line, including
optional corrections for a boundary at zero.

Usage

densityBC(x, kernel = "epanechnikov", bw=NULL,
...,
h=NULL,
adjust = 1,
weights = rep(1, length(x))/length(x), from, to = max(x), n = 256,
zerocor = c("none", "weighted", "convolution", "reflection",

"bdrykern", "JonesFoster"),
fast=FALSE,
internal=list())

Arguments

x Numeric vector of observed values.

kernel String specifying kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used). Options are described in the help for density.default.

bw, h Alternative specifications of the scale factor for the kernel. The bandwidth bw
is the standard deviation of the kernel (this agrees with the argument bw in
density.default). The rescale factor h is the factor by which the ‘standard
form’ of the kernel is rescaled. For the Epanechnikov kernel, h = bw * sqrt(5)
is the half-width of the support, while for the Gaussian kernel, h = bw is the stan-
dard deviation. Either bw or h should be given, and should be a single numeric
value, or a character string indicating a bandwidth selection rule as described in
density.default.

adjust Numeric value used to rescale the bandwidth bw and halfwidth h. The bandwidth
used is adjust * bw. This makes it easy to specify values like ‘half the default’
bandwidth.

16 densityBC

weights Numeric vector of weights associated with x. The weights are not required to
sum to 1, and will not be normalised to sum to 1. The weights may include
negative values.

from, to Lower and upper limits of interval on which density should be computed. The
default value of from is from=min(x) if zerocor="none", and from=0 other-
wise.

n Number of r values for which density should be computed.

zerocor String (partially matched) specifying a correction for the boundary effect bias
at r = 0 when estimating a density on the positive half line. Possible values
are "none", "weighted", "convolution", "reflection", "bdrykern" and
"JonesFoster".

fast Logical value specifying whether to perform the calculation rapidly using the
Fast Fourier Transform (fast=TRUE) or to use slower, exact code (fast=FALSE,
the default).

internal Internal use only.

... Additional arguments are ignored.

Details

This function computes a fixed-bandwidth kernel estimate of a probability density on the real line,
or the positive half-line, including optional boundary corrections for truncation of the density onto
the positive half line.

Weighted estimates are supported, including negative weights. Weights are not renormalised to sum
to 1. The resulting probability density estimate is not renormalised to integrate to 1.

Options for the smoothing kernel are described in the help for density.default. The default is
the Epanechnikov (truncated quadratic) kernel.

If zerocor is missing, or given as "none", this function computes the fixed-bandwidth kernel esti-
mator of the probability density on the real line, using density.default. The estimated probability
density (unnormalised) is

f̂(x) =

n∑
i=1

wi κ(x− xi)

where x1, . . . , xn are the data values, w1, . . . , wn are the weights (defaulting to wi = 1/n), and κ
is the kernel, a probability density on the real line.

If zerocor is given, the probability density is assumed to be confined to the positive half-line; the
numerical values in x must all be non-negative; and a boundary correction is applied to compensate
for bias arising due to truncation at the origin:

zerocor="weighted": The contribution from each data point xi is weighted by the factor 1/m(xi)
where m(x) = 1 − F (−x) is the total mass of the kernel centred on x that lies in the pos-
itive half-line, and F (x) is the cumulative distribution function of the kernel. The corrected
estimate is

f̂W (x) =

n∑
i=1

wi
κ(x− xi)

1− F (−xi)

This is the “cut-and-normalization” method of Gasser and Müller (1979). Effectively the
kernel is renormalized so that it integrates to 1, and the adjusted kernel conserves mass.

densityBC 17

zerocor="convolution": The estimate of the density f(x) is weighted by the factor 1/m(x)
where m(r) = 1− F (−x) is given above. The corrected estimate is

f̂C(x) =

n∑
i=1

wi
κ(x− xi)

1− F (−x)

This is the “convolution”, “uniform” or “zero-order” boundary correction method often at-
tributed to Diggle (1985). This correction does not conserve mass. It is faster to compute than
the weighted correction.

zerocor="reflection": if the kernel centred at data point xi has a tail that lies on the negative
half-line, this tail is reflected onto the positive half-line. The corrected estimate is

f̂R(x) =

n∑
i=1

wi [κ(x− xi) + κ(−x− xi)]

This is the “reflection” method first proposed by Boneva et al (1971). This correction con-
serves mass. The estimated density always has zero derivative at the origin, f̂ ′

R(0) = 0, which
may or may not be desirable.

zerocor="bdrykern": The density estimate is computed using the Linear Boundary Kernel asso-
ciated with the chosen kernel (Wand and Jones, 1995, page 47). The estimated (unnormalised)
probability density is

f̂B(x) =

n∑
i=1

wi [A(x) + (x− xi)B(x)]κ(x− xi)

where A(x) = a2(x)/D(x) and B(x) = −a1(x)/D(x) with D(x) = a0(x)a2(x) − a1(x)
2

where ak(x) =
∫ x

−∞ tkκ(t)dt. That is, when estimating the density f(x) for values of x close
to zero (defined as x < h for all kernels except the Gaussian), the kernel contribution kh(x−
xi) is multiplied by a term that is a linear function of x−xi, with coefficients depending on x.
This correction does not conserve mass and may result in negative values, but is asymptotically
optimal. Computation time for this estimate is greater than for the options above.

zerocor="JonesFoster": The modification of the Boundary Kernel estimate proposed by Jones
and Foster (1996) is computed:

f̂JF (x) = f̂C(x) exp

(
f̂B(x)

f̂C(r)
− 1

)

where f̂C(r) is the convolution estimator and f̂B(r) is the linear boundary kernel estimator.
This ensures that the estimate is always nonnegative and retains the asymptotic optimality
of the linear boundary kernel. Computation time for this estimate is greater than for all the
options above.

If fast=TRUE, the calculations are performed rapidly using density.default which employs the
Fast Fourier Transform. If fast=FALSE (the default), the calculations are performed exactly using
slower C code.

18 densityBC

Value

An object of class "density" as described in the help file for density.default. It contains at
least the entries

x Vector of x values

y Vector of density values y = f(x)

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

References

Baddeley, A., Davies, T.M. and Hazelton, M. (2025) Submitted for publication.

Boneva, L.I., Kendall, D.G. and Stefanov, I. (1971) Spline transformations: three new diagnostic
aids for the statistical data-analyst (with discussion). Journal of the Royal Statistical Society, Series
B, 33, 1–70.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Journal of the Royal Statis-
tical Society, Series C (Applied Statistics), 34 138–147.

Gasser, Th. and Müller, H.-G. (1979). Kernel estimation of regression functions. In Th. Gasser
and M. Rosenblatt (editors) Smoothing Techniques for Curve Estimation, pages 23–68. Springer,
Berlin.

Jones, M.C. and Foster, P.J. (1996) A simple nonnegative boundary correction method for kernel
density estimation. Statistica Sinica, 6 (4) 1005–1013.

Wand, M.P. and Jones, M.C. (1995) Kernel Smoothing. Chapman and Hall.

See Also

density.default.

dkernel for the kernel itself.

densityAdaptiveKernel.default for adaptive (variable-bandwidth) estimation.

Examples

sim.dat <- rexp(500)
fhatN <- densityBC(sim.dat, "biweight", h=0.4)
fhatB <- densityBC(sim.dat, "biweight", h=0.4, zerocor="bdrykern")
plot(fhatN, ylim=c(0,1.1), main="density estimates")
lines(fhatB, col=2)
curve(dexp(x), add=TRUE, from=0, col=3)
legend(2, 0.8,

legend=c("fixed bandwidth", "boundary kernel", "true density"),
col=1:3, lty=rep(1,3))

dkernel 19

dkernel Kernel distributions and random generation

Description

Density, distribution function, quantile function and random generation for several distributions
used in kernel estimation for numerical data.

Usage

dkernel(x, kernel = "gaussian", mean = 0, sd = 1)
pkernel(q, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
qkernel(p, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
rkernel(n, kernel = "gaussian", mean = 0, sd = 1)

Arguments

x, q Vector of quantiles.
p Vector of probabilities.
kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",

"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

n Number of observations.
mean Mean of distribution.
sd Standard deviation of distribution.
lower.tail logical; if TRUE (the default), then probabilities are P (X ≤ x), otherwise,

P (X > x).

Details

These functions give the probability density, cumulative distribution function, quantile function and
random generation for several distributions used in kernel estimation for one-dimensional (numeri-
cal) data.

The available kernels are those used in density.default, namely "gaussian", "rectangular",
"triangular", "epanechnikov", "biweight", "cosine" and "optcosine". For more informa-
tion about these kernels, see density.default.

dkernel gives the probability density, pkernel gives the cumulative distribution function, qkernel
gives the quantile function, and rkernel generates random deviates.

Value

A numeric vector. For dkernel, a vector of the same length as x containing the corresponding
values of the probability density. For pkernel, a vector of the same length as x containing the
corresponding values of the cumulative distribution function. For qkernel, a vector of the same
length as p containing the corresponding quantiles. For rkernel, a vector of length n containing
randomly generated values.

20 dkernelBC

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

See Also

density.default, kernel.factor, kernel.moment, kernel.squint.

Examples

x <- seq(-3,3,length=100)
plot(x, dkernel(x, "epa"), type="l",

main=c("Epanechnikov kernel", "probability density"))
plot(x, pkernel(x, "opt"), type="l",

main=c("OptCosine kernel", "cumulative distribution function"))
p <- seq(0,1, length=256)
plot(p, qkernel(p, "biw"), type="l",

main=c("Biweight kernel", "cumulative distribution function"))
y <- rkernel(100, "tri")
hist(y, main="Random variates from triangular density")
rug(y)

dkernelBC Boundary-corrected Kernel Density Function

Description

Computes the boundary-corrected version of a smoothing kernel density function.

Usage

dkernelBC(x, mean, sd = 1, kernel = "gaussian",
zerocor = c("none", "weighted", "convolution",

"reflection", "bdrykern"))

Arguments

x Numeric. Values of the function argument, at which the function should be
evaluated.

mean Numeric. The mean of the uncorrected kernel.

sd Numeric value. The standard deviation of the uncorrected kernel.

kernel Character string giving the name of the kernel as recognised by match.kernel.

zerocor String (partially matched) specifying a correction for the boundary effect bias at
r = 0 when estimating a density on the positive half line. Possible values are
"none", "weighted", "convolution", "reflection", and "bdrykern".

ewcdf 21

Details

The kernel density function identified by kernel with standard deviation sd and mean mean will be
computed, and truncated onto the positive half-line. The boundary correction specified by zerocor
will then be applied. The result is the vector of corrected density values.

Value

Numeric value or numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

densityBC to compute a density estimate using the boundary-corrected kernel.

dkernel to compute the un-corrected kernel density function, and density.default to compute
an uncorrected density estimate.

match.kernel for the list of recognised names of kernels.

Examples

curve(dkernelBC(x, mean=1, zerocor="none"), to=5)
curve(dkernelBC(x, mean=1, zerocor="weighted"), to=5)
curve(dkernelBC(x, mean=1, zerocor="reflection"), to=5)
curve(dkernelBC(x, mean=1, zerocor="convolution"), to=5)
curve(dkernelBC(x, mean=1, zerocor="bdrykern"), to=5)

ewcdf Weighted Empirical Cumulative Distribution Function

Description

Compute a weighted version of the empirical cumulative distribution function.

Usage

ewcdf(x, weights = NULL, normalise=TRUE, adjust=1)

Arguments

x Numeric vector of observations.

weights Optional. Numeric vector of non-negative weights for x. Defaults to equal
weight 1 for each entry of x.

normalise Logical value indicating whether the weights should be rescaled so that they
sum to 1.

adjust Numeric value. Adjustment factor. The weights will be multiplied by adjust.

22 firstdigit

Details

This is a modification of the standard function ecdf allowing the observations x to have weights.

The weighted e.c.d.f. (empirical cumulative distribution function) Fn is defined so that, for any real
number y, the value of Fn(y) is equal to the total weight of all entries of x that are less than or equal
to y. That is Fn(y) = sum(weights[x <= y]).

Thus Fn is a step function which jumps at the values of x. The height of the jump at a point y is the
total weight of all entries in x number of tied observations at that value. Missing values are ignored.

If weights is omitted, the default is equivalent to ecdf(x) except for the class membership.

The result of ewcdf is a function, of class "ewcdf", inheriting from the classes "ecdf" (only if
normalise=TRUE) and "stepfun".

The class ewcdf has methods for print, quantile and mean.

The inherited classes ecdf and stepfun have methods for plot and summary.

Value

A function, of class "ewcdf", inheriting from "ecdf" (if normalise=TRUE) and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ecdf.

quantile.ewcdf, mean.ewcdf.

Integrals with respect to the weighted cumulative distribution function can be computed using
stieltjes.

Examples

x <- rnorm(100)
w <- runif(100)
plot(e <- ewcdf(x,w))
e

firstdigit Digits in Decimal Representation

Description

Find the first or last digit in the decimal representation of a number.

firstdigit 23

Usage

firstdigit(x)
lastdigit(x)
ndigits(x)

Arguments

x A numeric value or numeric vector.

Details

firstdigit(x) finds the first (most significant) digit, lastdigit(x) finds the last (least signifi-
cant) digit, and ndigits(x) finds the number of digits, in the decimal representation of each entry
of x. The decimal representation is truncated at the number of digits available for double precision
numbers on the hardware, usually 15.

Value

An integer or integer vector of the same length as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rounding

Examples

firstdigit(42)
lastdigit(42)
ndigits(42)

firstdigit(-0.1234)
lastdigit(-0.1234)
ndigits(-0.1234)

firstdigit(0)
lastdigit(0)
ndigits(0)

24 hotrod

hotrod Heat Kernel for a One-Dimensional Rod

Description

Calculate values of the heat kernel on a one-dimensional rod. The ends of the rod may be assumed
to be insulated, or absorbing.

Usage

hotrod(len, xsource, xquery, sigma, ends=c("insulated", "absorbing"), nmax=20)

Arguments

len Length of the rod. A single number or numeric vector.

xsource Positions of the source points, from the left end of the rod (in the same distance
units as len). A single number or numeric vector.

xquery Positions of the query points, from the left end of the rod (in the same distance
units as len). A single number or numeric vector.

sigma Bandwidth for kernel. A single number or a numeric vector.

ends Character string (partially matched) specifying whether the ends of the rod are
assumed to be insulated or absorbing.

nmax Number of terms in the infinite sum to use. A single integer or an integer vector.

Details

Computes the heat kernel as an infinite sum.

Value

Number or numeric vector.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

curve(hotrod(1, 0.1, x, 0.7))

check it's a probability density
f <- function(x) hotrod(1, 0.1, x, 0.7)
integrate(f, 0, 1)

absorbing ends
curve(hotrod(1, 0.1, x, 0.7, ends="a"))

indefinteg 25

indefinteg Indefinite Integral

Description

Computes the indefinite integral of the given function.

Usage

indefinteg(f, x, ...,
method=c("trapezoid", "quadrature"),
lower=min(x), nfine=8192)

Arguments

f an R function taking a numeric first argument and returning a numeric vector of
the same length.

x Vector of values of the argument for which the indefinite integral should be
evaluated.

... additional arguments to be passed to f.

method String (partially matched) specifying how to compute the integrals.

lower Lower limit of integration. A single number.

nfine Number of sub-intervals to use for computation if method='trapezoid'.

Details

The indefinite integral of the given function f is computed numerically at each of the desired values
x. The lower limit of integration is taken to be min(x).

The result is a numeric vector y of the same length as x, with entries

yi =

∫ xi

lower
f(t)dt

If method='trapezoid' (the default), the integrals are computed rapidly using the trapezoid rule.
If method='quadrature' the integrals are computed accurately but much more slowly, using the
numerical quadrature routine integrate.

If method='trapezoid' the function f is first evaluated on a finer grid of values of the function
argument. The fine grid contains nfine sample points. The values of the indefinite integral on
the fine grid are computed using the trapezoidal approximation. Finally the values of the indefinite
integral are extracted at the desired argument values x.

Value

Numeric vector of the same length as x.

26 integral

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

integrate

Examples

curve(indefinteg(sin, x), to=pi)

integral Integral of a Function or Spatial Object

Description

Computes the integral of a function or spatial object.

Usage

integral(f, domain=NULL, ...)

Arguments

f A function, or a spatial object that can be treated as a function.

domain Optional. Data specifying the domain of integration.

... Arguments passed to methods.

Details

The function integral is generic. It calculates the integral of a function, or the integral of a spatial
object that can be treated as a function. It has methods for one-dimensional functions ("density",
"fv") and for spatial objects ("im", "msr", "linim", "linfun").

Value

A single numeric or complex value, or a vector of such values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

integral.density.

integral.im in package spatstat.geom.

integral.density 27

integral.density Compute Integral of One-Dimensional Kernel Density Estimate.

Description

Compute the integral of a kernel density estimate over a specified range.

Usage

S3 method for class 'density'
integral(f, domain = NULL, weight=NULL, ...)

Arguments

f A one-dimensional probability density estimate (object of class "density") ob-
tained from the function density.default or from unnormdensity.

domain Optional. Range of values of the argument x over which the density f(x) should
be integrated. A numeric vector of length 2 giving the minimum and maximum
values of x. Infinite limits are permitted.

weight Optional. A function(x) specifying a weight integrand.

... Ignored.

Details

This is a method for the generic function integral. It computes the numerical integral

I =

∫
f(x)dx

of the density estimate f. If weight is specified, then the weighted integral

I =

∫
w(x)f(x)dx

is computed, where w is the function specified by weight. This function must return finite numeri-
cal values.

If domain is specified, the integral is restricted to the interval of x values given by the domain.

Integrals are calculated numerically using the trapezoidal rule restricted to the domain given.

Value

A single numerical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

28 kaplan.meier

See Also

density.default

quantile.density, CDF.density

Examples

x <- runif(10)
d <- density(x, bw=0.1)
integral(d) # should be approximately 1
integral(d, domain=c(-Inf, 0)) # mass on negative half-line
mean of density
integral(d, weight=function(x) x)

kaplan.meier Kaplan-Meier Estimator using Histogram Data

Description

Compute the Kaplan-Meier estimator of a survival time distribution function, from histogram data

Usage

kaplan.meier(obs, nco, breaks, upperobs=0)

Arguments

obs vector of n integers giving the histogram of all observations (censored or uncen-
sored survival times)

nco vector of n integers giving the histogram of uncensored observations (those sur-
vival times that are less than or equal to the censoring time)

breaks Vector of n+ 1 breakpoints which were used to form both histograms.

upperobs Number of observations beyond the rightmost breakpoint, if any.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
obs of all observed times T̃i. That is, obs[k] counts the number of values T̃i in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1. These two histograms are
the arguments passed to kaplan.meier.

kernel.factor 29

The vectors km and lambda returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).

The histogram breaks must include 0. If the histogram breaks do not span the range of the obser-
vations, it is important to count how many survival times T̃i exceed the rightmost breakpoint, and
give this as the value upperobs.

Value

A list with two elements:

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

lambda corresponding Nelson-Aalen estimate of the hazard rate λ(t)

These are numeric vectors of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

reduced.sample, km.rs

kernel.factor Scale factor for density kernel

Description

Returns a scale factor for the kernels used in density estimation for numerical data.

Usage

kernel.factor(kernel = "gaussian")

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

30 kernel.moment

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

This function computes a scale constant for the kernel. For the Gaussian kernel, this constant is
equal to 1. Otherwise, the constant c is such that the kernel with standard deviation 1 is supported
on the interval [−c, c].

For more information about these kernels, see density.default.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

See Also

density.default, dkernel, kernel.moment, kernel.squint

Examples

kernel.factor("rect")
bandwidth for Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")

kernel.moment Incomplete Moment of Smoothing Kernel

Description

Computes the complete or incomplete mth moment of a smoothing kernel.

Usage

kernel.moment(m, r, kernel = "gaussian", mean=0, sd=1/kernel.factor(kernel))

Arguments

m Exponent (order of moment). An integer.

r Upper limit of integration for the incomplete moment. A numeric value or nu-
meric vector. Set r=Inf to obtain the complete moment.

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

mean, sd Optional numerical values giving the mean and standard deviation of the kernel.

kernel.squint 31

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above. For more information about these kernels, see
density.default.

The function kernel.moment computes the integral∫ r

−∞
tmk(t)dt

where k(t) is the selected kernel, r is the upper limit of integration, and m is the exponent or order.

Note that, if mean and sd are not specified, the calculations assume that k(t) is the standard
form of the kernel, which has support [−1, 1] and standard deviation sigma = 1/c where c =
kernel.factor(kernel).

The code uses the explicit analytic expressions when m = 0, 1, 2 and numerical integration other-
wise.

Value

A single number, or a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

See Also

density.default, dkernel, kernel.factor, kernel.squint

Examples

kernel.moment(1, 0.1, "epa")
curve(kernel.moment(2, x, "epa"), from=-1, to=1)

kernel.squint Integral of Squared Kernel

Description

Computes the integral of the squared kernel, for the kernels used in density estimation for numerical
data.

Usage

kernel.squint(kernel = "gaussian", bw=1)

32 km.rs

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

bw Bandwidth (standard deviation) of the kernel.

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

This function computes the integral of the squared kernel,

R =

∫ ∞

−∞
k(x)2 dx

where k(x) is the kernel with bandwidth bw.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

See Also

density.default, dkernel, kernel.moment, kernel.factor

Examples

kernel.squint("gaussian", 3)

integral of squared Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")
kernel.squint("epa", bw)

km.rs Kaplan-Meier and Reduced Sample Estimator using Histograms

Description

Compute the Kaplan-Meier and Reduced Sample estimators of a survival time distribution function,
using histogram techniques

Usage

km.rs(o, cc, d, breaks)

km.rs 33

Arguments

o vector of observed survival times
cc vector of censoring times
d vector of non-censoring indicators
breaks Vector of breakpoints to be used to form histograms.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

The arguments to this function are vectors o, cc, d of observed values of T̃i, Ci and Di respectively.
The function computes histograms and forms the reduced-sample and Kaplan-Meier estimates of
F (t) by invoking the functions kaplan.meier and reduced.sample. This is efficient if the lengths
of o, cc, d (i.e. the number of observations) is large.

The vectors km and hazard returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).
This approximation is exact only if the survival times are discrete and the histogram breaks are fine
enough to ensure that each interval (breaks[k],breaks[k+1]) contains only one possible value
of the survival time.

The vector rs is the reduced-sample estimator, rs[k] being the reduced sample estimate of F(breaks[k+1]).
This value is exact, i.e. the use of histograms does not introduce any approximation error in the
reduced-sample estimator.

Value

A list with five elements

rs Reduced-sample estimate of the survival time c.d.f. F (t)

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

hazard corresponding Nelson-Aalen estimate of the hazard rate λ(t)

r values of t for which F (t) is estimated
breaks the breakpoints vector

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

reduced.sample, kaplan.meier

34 knots.ewcdf

knots.ewcdf Jump Points of an Empirical Weighted Cumulative Distribution Func-
tion

Description

Extract the knots (jump points) of an empirical cumulative distribution function.

Usage

S3 method for class 'ewcdf'
knots(Fn, ...)
S3 method for class 'ecdf'

knots(Fn, ...)

Arguments

Fn An empirical cumulative distribution function (object of class "ecdf" or "ewcdf").
... Ignored.

Details

The function knots is generic.

The function knots.ecdf is the method for the class "ecdf" of empirical cumulative distribution
functions; objects of this class are created by ecdf).

The function knots.ewcdf is the method for the class "ewcdf" of empirical weighted cumulative
distribution functions. Objects of class "ewcdf" are created by ewcdf.

The jump points (locations of increments) of the function Fn will be returned as a numeric vector.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ecdf, ewcdf, quantile.ewcdf

Examples

x <- c(1, 2, 5)
w <- runif(3)
e <- ewcdf(x,w)
knots(e)

mean.ewcdf 35

mean.ewcdf Mean of Empirical Cumulative Distribution Function

Description

Calculates the mean of a (weighted or unweighted) empirical cumulative distribution function.

Usage

S3 method for class 'ecdf'
mean(x, trim=0, ...)

S3 method for class 'ewcdf'
mean(x, trim=0, ...)

Arguments

x An empirical cumulative distribution function (object of class "ecdf" created by
ecdf) or a weighted empirical cumulative distribution function (object of class
"ewcdf" created by ewcdf).

trim The fraction (0 to 0.5) of data values to be trimmed from each end of their range,
before the mean is computed.

... Ignored.

Details

These functions are methods for the generic mean for the classes "ecdf" and "ewcdf".

They calculate the mean of the probability distribution corresponding to the cumulative distribution
function x. This is equivalent to calculating the (weighted or unweighted) mean of the original data
values.

For weighted empirical cumulative distribution functions (class "ewcdf") the weights will first be
normalised so that they sum to 1. The result of mean.ewcdf is always an average or weighted
average or the original data values. The argument trim is interpreted as a probability under this
normalised distribution; the corresponding quantiles are computed, and data outside these quantiles
is deleted before calculating the weighted mean.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

36 quantile.density

See Also

Generic mean and weighted.mean.

ecdf, ewcdf to create the cumulative distribution functions.

stieltjes for integration with respect to a cumulative distribution function.

Examples

x <- 1:5
mean(x)
mean(ecdf(x))
w <- 1:5
mean(ewcdf(x, w))

quantile.density Quantiles of a Density Estimate

Description

Given a kernel estimate of a probability density, compute quantiles.

Usage

S3 method for class 'density'
quantile(x, probs = seq(0, 1, 0.25), names = TRUE,

..., warn = TRUE)

Arguments

x Object of class "density" computed by a method for density

probs Numeric vector of probabilities for which the quantiles are required.

names Logical value indicating whether to attach names (based on probs) to the result.

... Ignored.

warn Logical value indicating whether to issue a warning if the density estimate x had
to be renormalised because it was computed in a restricted interval.

Details

This function calculates quantiles of the probability distribution whose probability density has been
estimated and stored in the object x. The object x must belong to the class "density", and would
typically have been obtained from a call to the function density.

The probability density is first normalised so that the total probability is equal to 1. A warning is
issued if the density estimate was restricted to an interval (i.e. if x was created by a call to density
which included either of the arguments from and to).

quantile.ewcdf 37

Next, the density estimate is numerically integrated to obtain an estimate of the cumulative distri-
bution function F (x). Then for each desired probability p, the algorithm finds the corresponding
quantile q.

The quantile q corresponding to probability p satisfies F (q) = p up to the resolution of the grid of
values contained in x. The quantile is computed from the right, that is, q is the smallest available
value of x such that F (x) ≥ p.

Value

A numeric vector containing the quantiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

quantile, quantile.ewcdf, CDF.

Examples

dd <- density(runif(10))
quantile(dd)

quantile.ewcdf Quantiles of Weighted Empirical Cumulative Distribution Function

Description

Compute quantiles of a weighted empirical cumulative distribution function.

Usage

S3 method for class 'ewcdf'
quantile(x, probs = seq(0, 1, 0.25),

names = TRUE, ...,
normalise = TRUE, type=1)

Arguments

x A weighted empirical cumulative distribution function (object of class "ewcdf",
produced by ewcdf) for which the quantiles are desired.

probs probabilities for which the quantiles are desired. A numeric vector of values
between 0 and 1.

names Logical. If TRUE, the resulting vector of quantiles is annotated with names cor-
responding to probs.

38 quantilefun

... Ignored.

normalise Logical value indicating whether x should first be normalised so that it ranges
between 0 and 1.

type Integer specifying the type of quantile to be calculated, as explained in quantile.default.
Only types 1, 2 and 4 are currently implemented.

Details

This is a method for the generic quantile function for the class ewcdf of empirical weighted
cumulative distribution functions.

The quantile for a probability p is computed as the right-continuous inverse of the cumulative dis-
tribution function x (assuming type=1, the default).

If normalise=TRUE (the default), the weighted cumulative function x is first normalised to have
total mass 1 so that it can be interpreted as a cumulative probability distribution function.

Value

Numeric vector of quantiles, of the same length as probs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Kevin Ummel.

See Also

ewcdf, quantile

Examples

z <- rnorm(50)
w <- runif(50)
Fun <- ewcdf(z, w)
quantile(Fun, c(0.95,0.99))

quantilefun Quantile Function

Description

Return the inverse function of a cumulative distribution function.

quantilefun 39

Usage

quantilefun(x, ...)

S3 method for class 'ecdf'
quantilefun(x, ..., type=1)

S3 method for class 'ewcdf'
quantilefun(x, ..., type=1)

Arguments

x Data for which the quantile function should be calculated. Either an object con-
taining data (such as a pixel image) or an object representing a cumulative dis-
tribution function (of class "ecdf" or "ewcdf").

... Other arguments passed to methods.

type Integer specifying the type of quantiles, as explained in quantile.default.
Only types 1, 2 and 4 are currently implemented.

Details

Whereas the command quantile calculates the quantiles of a dataset corresponding to desired
probabilities p, the command quantilefun returns a function which can be used to compute any
quantiles of the dataset.

If f <- quantilefun(x) then f is a function such that f(p) is the quantile associated with any
given probability p. For example f(0.5) is the median of the original data, and f(0.99) is the 99th
percentile of the original data.

If x is a pixel image (object of class "im") then the pixel values of x will be extracted and the
quantile function of the pixel values is constructed.

If x is an object representing a cumulative distribution function (object of class "ecdf" or "ewcdf")
then the quantile function of the original data is constructed.

Value

A function in the R language.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ewcdf, quantile.ewcdf, ecdf, quantile

40 reduced.sample

Examples

numeric data
z <- rnorm(50)
FZ <- ecdf(z)
QZ <- quantilefun(FZ)
QZ(0.5) # median value of z
if(interactive()) plot(QZ,xlim=c(0,1),xlab="probability",ylab="quantile of z")

reduced.sample Reduced Sample Estimator using Histogram Data

Description

Compute the Reduced Sample estimator of a survival time distribution function, from histogram
data

Usage

reduced.sample(nco, cen, ncc, show=FALSE, uppercen=0)

Arguments

nco vector of counts giving the histogram of uncensored observations (those survival
times that are less than or equal to the censoring time)

cen vector of counts giving the histogram of censoring times

ncc vector of counts giving the histogram of censoring times for the uncensored
observations only

uppercen number of censoring times greater than the rightmost histogram breakpoint (if
there are any)

show Logical value controlling the amount of detail returned by the function value
(see below)

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the reduced sample estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
cen of all censoring times Ci. That is, obs[k] counts the number of values Ci in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1, and the histogram of all
censoring times for which the survival time is uncensored, i.e. those Ci such that Di = 1. These
three histograms are the arguments passed to kaplan.meier.

rounding 41

The return value rs is the reduced-sample estimator of the distribution function F (t). Specifically,
rs[k] is the reduced sample estimate of F(breaks[k+1]). The value is exact, i.e. the use of
histograms does not introduce any approximation error.

Note that, for the results to be valid, either the histogram breaks must span the censoring times,
or the number of censoring times that do not fall in a histogram cell must have been counted in
uppercen.

Value

If show = FALSE, a numeric vector giving the values of the reduced sample estimator. If show=TRUE,
a list with three components which are vectors of equal length,

rs Reduced sample estimate of the survival time c.d.f. F (t)

numerator numerator of the reduced sample estimator

denominator denominator of the reduced sample estimator

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

kaplan.meier, km.rs

rounding Detect Numerical Rounding

Description

Given a numeric vector, determine whether the values have been rounded to a certain number of
decimal places.

Usage

rounding(x)

Default S3 method:
rounding(x)

Arguments

x A numeric vector, or an object containing numeric spatial coordinates.

42 stieltjes

Details

The function rounding is generic. Its purpose is to determine whether numerical values have been
rounded to a certain number of decimal places.

The spatstat family of packages provides methods for rounding for various spatial objects.

For a numeric vector x, the default method rounding.default determines whether the values in x
have been rounded to a certain number of decimal places.

• If the entries of x are not all integers, then rounding(x) returns the smallest number of digits
d after the decimal point such that round(x, digits=d) is identical to x. For example if
rounding(x) = 2 then the entries of x are rounded to 2 decimal places, and are multiples of
0.01.

• If all the entries of x are integers, then rounding(x) returns -d, where d is the smallest
number of digits before the decimal point such that round(x, digits=-d) is identical to x.
For example if rounding(x) = -3 then the entries of x are multiples of 1000. If rounding(x)
= 0 then the entries of x are integers but not multiples of 10.

• If all entries of x are equal to 0, a value of 0 is returned.

Value

An integer.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

round.ppp in package spatstat.geom.

Examples

rounding(c(0.1, 0.3, 1.2))
rounding(c(1940, 1880, 2010))
rounding(0)

stieltjes Compute Integral of Function Against Cumulative Distribution

Description

Computes the Stieltjes integral of a function f with respect to a function M .

Usage

stieltjes(f, M, ...)

stieltjes 43

Arguments

f The integrand. A function in the R language.

M The cumulative function against which f will be integrated. An object of class
"fv" or "stepfun".

... Additional arguments passed to f.

Details

This command computes the Stieltjes integral

I =

∫
f(x)dM(x)

of a real-valued function f(x) with respect to a nondecreasing function M(x).

One common use of the Stieltjes integral is to find the mean value of a random variable from its
cumulative distribution function F (x). The mean value is the Stieltjes integral of f(x) = x with
respect to F (x).

The argument f should be a function in the R language. It should accept a numeric vector argu-
ment x and should return a numeric vector of the same length.

The argument M should be either a step function (object of class "stepfun") or a function value
table (object of class "fv"). Objects of class "stepfun" are returned by ecdf, ewcdf, and other
utilities.

Value

A list containing the value of the Stieltjes integral computed using each of the versions of the
function M.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

x <- runif(100)
w <- runif(100)
H <- ewcdf(x, w)
stieltjes(function(x) { x^2 }, H)

44 transformquantiles

transformquantiles Transform the Quantiles

Description

Apply a transformation to the quantiles of a vector, or to the quantiles of the pixel values in a pixel
image.

Usage

transformquantiles(X, uniform = FALSE, reverse = FALSE, ...)

Arguments

X A numeric vector, matrix, array, or a pixel image (object of class "im").

uniform Logical value specifying whether each quantile value should be replaced by the
corresponding cumulative probability (called histogram equalisation, transfor-
mation to uniformity or probability integral transformation).

reverse Logical value specifying whether to swap the upper and lower quantiles.

... Ignored.

Details

The argument X may be a vector, matrix, array, or a pixel image (object of class "im").

The algorithm will first extract the entries or pixel values of X as a vector, and sort the values into
ascending order.

If uniform=TRUE, the entries in this vector will be replaced by the corresponding cumulative prob-
abilities (the kth smallest value will be replaced by the number (k-0.5)/n where n is the total
number of values).

If reverse=TRUE, the resulting vector will be reversed so that it is in descending order (so that the
kth smallest value will be swapped with the kth largest value).

Finally the transformed values will be replaced into the original positions in the vector, matrix,
array, or pixel image.

The case uniform=TRUE, reverse=FALSE is called transformation to uniformity, the probability
integral transformation, histogram equalisation, or quantile transformation. The resulting values
are uniformly distributed between 0 and 1; a histogram of the values in X is flat.

Value

Another object of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

uniquemap.default 45

See Also

To apply an arbitrary function f to the pixel values in an image, use the idiom X[] <- f(X[]).

Examples

X <- c(3, 5, 1, 2, 4)
transformquantiles(X, reverse=TRUE)
transformquantiles(X, uniform=TRUE)
transformquantiles(X, uniform=TRUE, reverse=TRUE)

uniquemap.default Map Duplicate Entries to Unique Entries

Description

Determine whether entries in a vector (or rows in a matrix or data frame) are duplicated, choose a
unique representative for each set of duplicates, and map the duplicates to the unique representative.

Usage

uniquemap(x)

Default S3 method:
uniquemap(x)

S3 method for class 'data.frame'
uniquemap(x)

S3 method for class 'matrix'
uniquemap(x)

Arguments

x A vector, data frame or matrix, or another type of data.

Details

The function uniquemap is generic, with methods for point patterns, data frames, and a default
method.

The default method expects a vector. It determines whether any entries of the vector x are dupli-
cated, and constructs a mapping of the indices of x so that all duplicates are mapped to a unique
representative index.

The result is an integer vector u such that u[j] = i if the entries x[i] and x[j] are identical and
point i has been chosen as the unique representative. The entry u[i] = i means either that point i
is unique, or that it has been chosen as the unique representative of its equivalence class.

46 unnormdensity

The method for data.frame determines whether any rows of the data frame x are duplicated, and
constructs a mapping of the row indices so that all duplicate rows are mapped to a unique represen-
tative row.

Value

An integer vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

duplicated.

uniquemap.ppp in spatstat.geom

Examples

x <- c(3, 5, 2, 4, 2, 3)
uniquemap(x)

df <- data.frame(A=x, B=42)
uniquemap(df)

z <- cbind(x, 10-x)
uniquemap(z)

unnormdensity Weighted kernel smoother

Description

An unnormalised version of kernel density estimation where the weights are not required to sum to
1. The weights may be positive, negative or zero.

Usage

unnormdensity(x, ..., weights = NULL, defaults)

Arguments

x Numeric vector of data

... Optional arguments passed to density.default. Arguments must be named.

‘

unnormdensity 47

weights Optional numeric vector of weights for the data. The default is equivalent to
assuming a weight of 1 for each observation.

defaults Optional, named list of arguments passed to density.default. These will be
overridden by arguments in

Details

This is an alternative to the standard R kernel density estimation function density.default.

The standard density.default requires the weights to be nonnegative numbers that add up to 1,
and returns a probability density (a function that integrates to 1).

This function unnormdensity does not impose any requirement on the weights except that they be
finite. Individual weights may be positive, negative or zero. The result is a function that does not
necessarily integrate to 1 and may be negative. The result is the convolution of the kernel k with
the weighted data,

f(x) =
∑
i

wik(x− xi)

where xi are the data points and wi are the weights.

The argument weights should be a numeric vector of the same length as x, or a single numeric
value. The default is to assume a weight of 1 for each observation in x.

The algorithm first selects the kernel bandwidth by applying density.default to the data x with
normalised, positive weight vector w = abs(weights)/sum(abs(weights)) and extracting the se-
lected bandwidth. Then the result is computed by applying applying density.default to x twice
using the normalised positive and negative parts of the weights.

Note that the arguments ... must be passed by name, i.e. in the form (name=value). Arguments
that do not match an argument of density.default will be ignored silently.

Value

Object of class "density" as described in density.default.

The result contains an additional component $kernel giving the name of the smoothing kernel that
was used.

Warning

If weights is not specified, the default is to assign a weight wi = 1 to each observation xi.

This is not the same behaviour as in density.default which effectively assumes a weight of 1/n
for each observation xi where n=length(x).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

density.default

48 weighted.median

Examples

d <- unnormdensity(1:3, weights=c(-1,0,1), bw=0.3)
if(interactive()) plot(d)

weighted.median Weighted Median, Quantiles or Variance

Description

Compute the median, quantiles or variance of a set of numbers which have weights associated with
them.

Usage

weighted.median(x, w, na.rm = TRUE, type=2, collapse=FALSE)

weighted.quantile(x, w, probs=seq(0,1,0.25), na.rm = TRUE, type=4, collapse=FALSE)

weighted.var(x, w, na.rm = TRUE)

Arguments

x Data values. A vector of numeric values, for which the median or quantiles are
required.

w Weights. A vector of nonnegative numbers, of the same length as x. If w is
missing or NULL, the default weights are all equal to 1.

probs Probabilities for which the quantiles should be computed. A numeric vector of
values between 0 and 1.

na.rm Logical. Whether to ignore NA values.

type Integer specifying the rule for calculating the median or quantile, corresponding
to the rules available for quantile. The currently available choices are type=1,
2, 3 and 4. See Details.

collapse Logical value specifying whether duplicated values in x should be pooled (re-
placing them by a unique x value whose weight is the sum of the associated
weights).

Details

The ith observation x[i] is treated as having a weight proportional to w[i].

The weighted sample median is a value m such that the total weight of data less than or equal to m is
equal to half the total weight. More generally, the weighted sample quantile with probability p is a
value q such that the total weight of data less than or equal to q is equal to p times the total weight.

Define the weighted empirical cumulative distribution function

F (x) =
∑

i:xi≤x

wi/

n∑
i=1

wi

weighted.median 49

That is, F (x) is the fraction of total weight that is associated with data values xi less than or equal
to the value x.

The weighted quantile for probability p is a number q defined so that F (q) = p wherever possible.
There are different definitions of the quantile depending on how this should be achieved.

For unweighted data, there are 9 different definitions of the sample median and sample quantile,
which enjoy slightly different properties. These 9 different definitions are explained in the help for
quantile.default. The user’s choice of algorithm is selected using the argument type.

For weighted data, the first 4 of the 9 definitions of sample quantile have been generalised to
weighted quantiles. The functions weighted.median and weighted.quantile documented here
provide these definitions of weighted sample quantile. The user’s choice of algorithm is again
selected using the argument type.

Suppose the data values have been arranged in increasing order as x[1] ≤ x[2] ≤ . . . ≤ x[n]. If one
of the data values x[k] satisfies F (x[k]) = p exactly, then

• if type=1, type=3 or type=4, the code returns this value, x[k];

• if type=2, the code returns the average of this value and the next largest value, (x[k] +
x[k+1])/2.

If there is no data value satisfying F (x[k]) = p exactly, then the code finds the two adjacent values
x[k] and x[k+1] which satisfy F (x[k]) < p and F (x[k+1]) > p, and defines the quantile as follows:

• if type=1 or type=2, the code returns the larger value x[k+1];

• if type=3, the code returns the value which minimises the discrepancy, that is, if we define
dk = |F (x[k])− p| and dk+1 = |F (x[k+1])− p|, then

– if dk < dk+1, the code returns x[k];
– if dk > dk+1, the code returns x[k+1];
– if dk = dk+1, then the even-numbered value is returned, that is, the code returns x[k∗]

where k∗ equals k if k is even, and equals k + 1 if k + 1 is even.

• if type=4, the code returns a value obtained by linearly interpolating between the two adjacent
values x[k] and x[k+1], that is, it returns the value (1 − a)x[k] + ax[k+1] where a = (p −
F (x[k]))/(F (x[k+1])− F (x[k])).

For very small probabilities p < F (x[1]) the value x[1] is returned. For very large probabilities
p > F (x[n]) the value x[n] is returned.

Type 1 is the left-continuous quantile function.

Type 2 is consistent with the traditional definition of the sample median.

Types 1 and 3 always return a value selected from the input data x, while types 2 and 4 sometimes
return values that are interpolated between the input data values.

Note that the default settings are different for weighted.median and weighted.quantile.

The implementation of type 3 is experimental and may be changed.

Value

weighted.median returns a numeric value. weighted.quantile returns a numeric vector of the
same length as probs.

50 whist

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

quantile, median.

Examples

x <- 1:20
w <- runif(20)
weighted.median(x, w)
weighted.quantile(x, w, probs=(0:4)/4)
weighted.var(x, w)

whist Weighted Histogram

Description

Computes the weighted histogram of a set of observations with a given set of weights.

Usage

whist(x, breaks, weights = NULL, method=c("C", "interpreted"))

Arguments

x Numeric vector of observed values.

breaks Vector of breakpoints for the histogram.

weights Numeric vector of weights for the observed values.

method Developer use only. A character string specifying whether to use internal C code
(method="C", the default) or interpreted R code (method="interpreted").

Details

This low-level function computes (but does not plot) the weighted histogram of a vector of obser-
vations x using a given vector of weights.

The arguments x and weights should be numeric vectors of equal length. They may include NA or
infinite values.

The argument breaks should be a numeric vector whose entries are strictly increasing. These values
define the boundaries between the successive histogram cells. The breaks do not have to span the
range of the observations.

There are N-1 histogram cells, where N = length(breaks). An observation x[i] falls in the jth
cell if breaks[j] <= x[i] < breaks[j+1] (for j < N-1) or breaks[j] <= x[i] <= breaks[j+1]

whist 51

(for j = N-1). The weighted histogram value h[j] for the jth cell is the sum of weights[i] for all
observations x[i] that fall in the cell.

Note that, in contrast to the function hist, the function whist does not require the breakpoints to
span the range of the observations x. Values of x that fall outside the range of breaks are handled
separately; their total weight is returned as an attribute of the histogram.

Value

A numeric vector of length N-1 containing the histogram values, where N = length(breaks).

The return value also has attributes "low" and "high" giving the total weight of all observations
that are less than the lowest breakpoint, or greater than the highest breakpoint, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

with thanks to Peter Dalgaard.

Examples

x <- rnorm(100)
b <- seq(-1,1,length=21)
w <- runif(100)
whist(x,b,w)

Index

∗ Adaptive smoothing
bw.abram, 5

∗ Bandwidth selection
bw.abram, 5
bw.taylor, 9

∗ Histogram equalisation
transformquantiles, 44

∗ Probability integral transformation
transformquantiles, 44

∗ Quantile transformation
transformquantiles, 44

∗ arith
whist, 50

∗ distribution
spatstat.univar-package, 2

∗ manip
transformquantiles, 44

∗ math
firstdigit, 22
hotrod, 24
indefinteg, 25
integral, 26
integral.density, 27
rounding, 41
stieltjes, 42
weighted.median, 48

∗ methods
densityBC, 15
dkernel, 19
integral.density, 27
kernel.factor, 29
kernel.moment, 30
kernel.squint, 31
mean.ewcdf, 35
quantile.density, 36
uniquemap.default, 45

∗ nonparametric
bw.abram, 5
bw.abram.default, 6

bw.pow, 8
CDF, 11
densityAdaptiveKernel, 12
densityAdaptiveKernel.default, 12
densityBC, 15
dkernel, 19
ewcdf, 21
integral.density, 27
kaplan.meier, 28
kernel.factor, 29
kernel.moment, 30
kernel.squint, 31
km.rs, 32
knots.ewcdf, 34
quantile.density, 36
quantile.ewcdf, 37
quantilefun, 38
reduced.sample, 40
spatstat.univar-package, 2
transformquantiles, 44

∗ package
spatstat.univar-package, 2

∗ smooth
bw.taylor, 9
densityBC, 15
dkernel, 19
kernel.factor, 29
kernel.moment, 30
kernel.squint, 31
spatstat.univar-package, 2
unnormdensity, 46

∗ spatial
integral, 26
kaplan.meier, 28
km.rs, 32
mean.ewcdf, 35
quantile.ewcdf, 37
quantilefun, 38
reduced.sample, 40

52

INDEX 53

stieltjes, 42
transformquantiles, 44
uniquemap.default, 45

∗ univar
bw.taylor, 9
CDF, 11
ewcdf, 21
integral.density, 27
knots.ewcdf, 34
mean.ewcdf, 35
quantile.density, 36
transformquantiles, 44

bw.abram, 5, 7–9, 12
bw.abram.default, 3, 5, 6, 6, 13, 14
bw.nrd, 10
bw.nrd0, 6, 8, 9
bw.pow, 8
bw.taylor, 9

CDF, 11, 37
CDF.density, 3, 4, 28

density, 11, 36
density.default, 3, 4, 6, 7, 13, 15–21, 27,

28, 30–32, 46, 47
densityAdaptiveKernel, 3, 12
densityAdaptiveKernel.default, 3, 12, 18
densityBC, 3, 15, 21
dkernel, 4, 18, 19, 21, 30–32
dkernelBC, 4, 20
duplicated, 46

ecdf, 22, 34–36, 39, 43
ewcdf, 3, 21, 34–39, 43

firstdigit, 5, 22

hist, 51
hotrod, 4, 24

indefinteg, 5, 25
integral, 26, 27
integral.density, 5, 26, 27
integrate, 25, 26

kaplan.meier, 4, 28, 33, 41
kernel.factor, 4, 20, 29, 31, 32
kernel.moment, 4, 20, 30, 30, 32
kernel.squint, 4, 20, 30, 31, 31

km.rs, 29, 32, 41
knots, 34
knots.ecdf (knots.ewcdf), 34
knots.ewcdf, 4, 34

lastdigit, 5
lastdigit (firstdigit), 22

match.kernel, 20, 21
mean, 22, 35, 36
mean.ecdf (mean.ewcdf), 35
mean.ewcdf, 3, 22, 35
median, 50

ndigits, 5
ndigits (firstdigit), 22

pkernel, 4
pkernel (dkernel), 19
plot, 22
print, 22

qkernel, 4
qkernel (dkernel), 19
quantile, 22, 37–39, 48, 50
quantile.default, 38, 39, 49
quantile.density, 4, 11, 28, 36
quantile.ewcdf, 3, 4, 22, 34, 37, 37, 39
quantilefun, 4, 38
quantilefun.ewcdf, 4

reduced.sample, 4, 29, 33, 40
rkernel, 4
rkernel (dkernel), 19
round, 42
rounding, 23, 41
rounding.default, 5

spatstat.univar
(spatstat.univar-package), 2

spatstat.univar-package, 2
stieltjes, 5, 22, 36, 42
summary, 22

transformquantiles, 4, 44

uniquemap (uniquemap.default), 45
uniquemap.default, 5, 45
unnormdensity, 3, 27, 46

weighted.mean, 36

54 INDEX

weighted.median, 4, 48
weighted.quantile, 4
weighted.quantile (weighted.median), 48
weighted.var (weighted.median), 48
whist, 3, 50

	spatstat.univar-package
	bw.abram
	bw.abram.default
	bw.pow
	bw.taylor
	CDF
	densityAdaptiveKernel
	densityAdaptiveKernel.default
	densityBC
	dkernel
	dkernelBC
	ewcdf
	firstdigit
	hotrod
	indefinteg
	integral
	integral.density
	kaplan.meier
	kernel.factor
	kernel.moment
	kernel.squint
	km.rs
	knots.ewcdf
	mean.ewcdf
	quantile.density
	quantile.ewcdf
	quantilefun
	reduced.sample
	rounding
	stieltjes
	transformquantiles
	uniquemap.default
	unnormdensity
	weighted.median
	whist
	Index

