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sits-package sits

Description

Satellite Image Time Series Analysis for Earth Observation Data Cubes

Purpose

The SITS package provides a set of tools for analysis, visualization and classification of satellite
image time series. It includes methods for filtering, clustering, classification, and post-processing.

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.
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8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

Author(s)

Maintainer: Gilberto Camara <gilberto.camara.inpe@gmail.com> [thesis advisor]

Authors:

• Rolf Simoes <rolfsimoes@gmail.com>

• Felipe Souza <felipe.carvalho@inpe.br>

• Felipe Carlos <efelipecarlos@gmail.com>

Other contributors:

• Lorena Santos <lorena.santos@inpe.br> [contributor]

• Charlotte Pelletier <charlotte.pelletier@univ-ubs.fr> [contributor]

• Estefania Pizarro <eapizarroa@ine.gob.cl> [contributor]

• Karine Ferreira <karine.ferreira@inpe.br> [contributor, thesis advisor]

• Alber Sanchez <alber.ipia@inpe.br> [contributor]

• Alexandre Assuncao <alexcarssuncao@gmail.com> [contributor]

• Daniel Falbel <dfalbel@gmail.com> [contributor]

• Gilberto Queiroz <gilberto.queiroz@inpe.br> [contributor]

• Johannes Reiche <johannes.reiche@wur.nl> [contributor]

• Pedro Andrade <pedro.andrade@inpe.br> [contributor]

• Pedro Brito <pedro_brito1997@hotmail.com> [contributor]

• Renato Assuncao <assuncaoest@gmail.com> [contributor]

• Ricardo Cartaxo <rcartaxoms@gmail.com> [contributor]

See Also

Useful links:

• https://github.com/e-sensing/sits/

• https://e-sensing.github.io/sitsbook/

• https://e-sensing.github.io/sits/

• Report bugs at https://github.com/e-sensing/sits/issues

https://github.com/e-sensing/sits/
https://e-sensing.github.io/sitsbook/
https://e-sensing.github.io/sits/
https://github.com/e-sensing/sits/issues
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cerrado_2classes Samples of classes Cerrado and Pasture

Description

A dataset containing a tibble with time series samples for the Cerrado and Pasture areas of the Mato
Grosso state. The time series come from MOD13Q1 collection 5 images.

Usage

data(cerrado_2classes)

Format

A tibble with 736 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

hist.probs_cube histogram of prob cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'probs_cube'
hist(x, ..., tile = x[["tile"]][[1L]], label = NULL, size = 100000L)

Arguments

x Object of classes "raster_cube".

... Further specifications for summary.

tile Tile to be shown

label Label to be shown

size Number of cells to be sampled

Value

A histogram of one label of a probability cube.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
modis_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
probs_cube <- sits_classify(

data = modis_cube,
ml_model = rfor_model,
output_dir = tempdir()

)
hist(probs_cube, label = "Forest")

}

hist.raster_cube histogram of data cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'raster_cube'
hist(
x,
...,
tile = x[["tile"]][[1L]],
date = NULL,
band = NULL,
size = 100000L

)

Arguments

x Object of classes "raster_cube".

... Further specifications for summary.

tile Tile to be shown
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date Date to be shown

band Band to be shown

size Number of cells to be sampled

Value

A histogram of one band of data cube.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
hist(cube)

}

hist.sits Histogram

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'sits'
hist(x, ...)

Arguments

x Object of classes "sits".

... Further specifications for hist.

Value

A summary of the sits tibble.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
hist(cube)

}

hist.uncertainty_cube Histogram uncertainty cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'uncertainty_cube'
hist(x, ..., tile = x[["tile"]][[1L]], size = 100000L)

Arguments

x Object of class "variance_cube"

... Further specifications for hist.

tile Tile to be summarized

size Sample size

Value

A histogram of a uncertainty cube

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
uncert_cube <- sits_uncertainty(

cube = probs_cube,
output_dir = tempdir()

)
hist(uncert_cube)

}

impute_linear Replace NA values by linear interpolation

Description

Remove NA by linear interpolation

Usage

impute_linear(data = NULL)

Arguments

data A time series vector or matrix

Value

A set of filtered time series using the imputation function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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impute_mean Remove NA using mean

Description

Remove NA using mean

Usage

impute_mean(data = NULL)

Arguments

data A time series vector or matrix

Value

A set of filtered time series using the imputation function.

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

impute_mean_window Remove NA using weighted moving average

Description

Remove NA using weighted moving average

Usage

impute_mean_window(data = NULL, k = 2, weighting = "simple")

Arguments

data A time series vector or matrix

k A integer width of the moving average window. Expands to both sides of the
center element e.g. k = 2 means 4 observations (2 left, 2 right) are taken into
account. If all observations in the current window are NA, the window size is
automatically increased until there are at least 2 non-NA values present

weighting A string with the weighting strategy to be used. More details below (default is
"simple").
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Value

A set of filtered time series using the imputation function.

Note

The weighting parameter defines the weighting strategy used in the moving window. The strategies
available are:

• simple - Simple Moving Average (SMA) (default option)

• linear - Linear Weighted Moving Average (LWMA)

• exponential - Exponential Weighted Moving Average (EWMA)

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

References

The implementation of this function was adapted from the imputeTS R Package. The code is open-
source, under the GPL license, and is available on GitHub https://github.com/SteffenMoritz/
imputeTS.

impute_median Remove NA using median

Description

Remove NA using median

Usage

impute_median(data = NULL)

Arguments

data A time series vector or matrix

Value

A set of filtered time series using the imputation function.

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

https://github.com/SteffenMoritz/imputeTS
https://github.com/SteffenMoritz/imputeTS


16 plot

plot Plot time series and data cubes

Description

This is a generic function. Parameters depend on the specific type of input. See each function
description for the required parameters.

• sits tibble: see plot.sits

• patterns: see plot.patterns

• classified time series: see plot.predicted

• raster cube: see plot.raster_cube

• SAR cube: see plot.sar_cube

• DEM cube: see plot.dem_cube

• vector cube: see plot.vector_cube

• classification probabilities: see plot.probs_cube

• classification uncertainty: see plot.uncertainty_cube

• uncertainty of vector cubes: see plot.uncertainty_vector_cube

• classified cube: see plot.class_cube

• classified vector cube: see plot.class_vector_cube

• dendrogram cluster: see plot.sits_cluster

• SOM map: see plot.som_map

• SOM evaluate cluster: see plot.som_evaluate_cluster

• geo-distances: see plot.geo_distances

• random forest model: see plot.rfor_model

• xgboost model: see plot.xgb_model

• torch ML model: see plot.torch_model

Plots the time series to be used for classification

Usage

## S3 method for class 'sits'
plot(x, y, ..., together = TRUE)

Arguments

x Object of class "sits".

y Ignored.

... Further specifications for plot.

together A logical value indicating whether the samples should be plotted together.
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Value

A series of plot objects produced by ggplot2 showing all time series associated to each combination
of band and label, and including the median, and first and third quartile ranges.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# plot sets of time series
plot(cerrado_2classes)

}

plot.class_cube Plot classified images

Description

plots a classified raster using tmap.

Usage

## S3 method for class 'class_cube'
plot(
x,
y,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
legend = NULL,
palette = "Spectral",
scale = 1,
max_cog_size = 1024L,
legend_position = "outside"

)

Arguments

x Object of class "class_cube".

y Ignored.

... Further specifications for plot.

tile Tile to be plotted.

roi Spatial extent to plot (see note)
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legend Named vector that associates labels to colors.

palette A RColorBrewer or "cols4all" palette

scale Relative scale (0.4 to 1.0) of plot text

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "outside")

Value

A color map, where each pixel has the color associated to a label, as defined by the legend parameter.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). The following optional
parameters are available to allow for detailed control over the plot output:

• graticules_labels_size: size of coord labels (default = 0.8)

• legend_title_size: relative size of legend title (default = 1.0)

• legend_text_size: relative size of legend text (default = 1.0)

• legend_bg_color: color of legend background (default = "white")

• legend_bg_alpha: legend opacity (default = 0.5)

#’ To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(
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data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label cube with the most likely class
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
# plot the resulting classified image
plot(label_cube)

}

plot.class_vector_cube

Plot Segments

Description

Plot vector classified cube

Usage

## S3 method for class 'class_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
legend = NULL,
roi = NULL,
seg_color = "black",
line_width = 0.5,
palette = "Spectral",
scale = 1,
legend_position = "outside"

)

Arguments

x Object of class "segments".
... Further specifications for plot.
tile Tile to be plotted.
legend Named vector that associates labels to colors.
roi Region of interest (see note)
seg_color Segment color.
line_width Segment line width.
palette A RColorBrewer or "cols4all" palette
scale Scale to plot map (0.4 to 1.0)
legend_position

Where to place the legend (default = "outside")
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Value

A plot object with an RGB image or a B/W image on a color scale using the chosen palette

Note

To see which color palettes are supported, please run cols4all::c4a_gui().

To define a roi use one of:

• A path to a shapefile with polygons;
• A sfc or sf object from sf package;
• A SpatExtent object from terra package;
• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;
• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the image
segments <- sits_segment(

cube = cube,
output_dir = tempdir()

)
# create a classification model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify the segments
probs_segs <- sits_classify(

data = segments,
ml_model = rfor_model,
output_dir = tempdir()

)
#
# Create a classified vector cube
class_segs <- sits_label_classification(

cube = probs_segs,
output_dir = tempdir(),
multicores = 2,
memsize = 4

)
# plot the segments
plot(class_segs)

}
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plot.dem_cube Plot DEM cubes

Description

Plot RGB raster cube

Usage

## S3 method for class 'dem_cube'
plot(
x,
...,
band = "ELEVATION",
tile = x[["tile"]][[1L]],
roi = NULL,
palette = "Spectral",
rev = TRUE,
scale = 1,
max_cog_size = 1024L,
legend_position = "inside"

)

Arguments

x Object of class "dem_cube".

... Further specifications for plot.

band Band for plotting grey images.

tile Tile to be plotted.

roi Spatial extent to plot in WGS 84 - (see notes)

palette An RColorBrewer or "cols4all" palette

rev Reverse the color order in the palette?

scale Scale to plot map (0.4 to 1.0)

max_cog_size Maximum size of COG overviews (lines or columns)

legend_position

Where to place the legend (default = "inside")

Value

A plot object with a DEM cube or a B/W image on a color scale
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Note

To see which color palettes are supported, please run cols4all::c4a_gui(). Use scale parameter for
general output control. The following optional parameters are available to allow for detailed control
over the plot output:

• graticules_labels_size: size of coord labels (default = 0.7)
• legend_title_size: relative size of legend title (default = 0.7)
• legend_text_size: relative size of legend text (default = 0.7)
• legend_bg_color: color of legend background (default = "white")
• legend_bg_alpha: legend opacity (default = 0.3)

To define a roi use one of:

• A path to a shapefile with polygons;
• A sfc or sf object from sf package;
• A SpatExtent object from terra package;
• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;
• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# obtain the DEM cube
dem_cube_19HBA <- sits_cube(

source = "MPC",
collection = "COP-DEM-GLO-30",
bands = "ELEVATION",
tiles = "19HBA"

)
# plot the DEM reversing the palette
plot(dem_cube_19HBA, band = "ELEVATION")

}

plot.geo_distances Make a kernel density plot of samples distances.

Description

Make a kernel density plot of samples distances.

Usage

## S3 method for class 'geo_distances'
plot(x, y, ...)
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Arguments

x Object of class "geo_distances".

y Ignored.

... Further specifications for plot.

Value

A plot showing the sample-to-sample distances and sample-to-prediction distances.

Author(s)

Felipe Souza, <lipecaso@gmail.com>

Rolf Simoes, <rolfsimoes@gmail.com>

Alber Sanchez, <alber.ipia@inpe.br>

References

Hanna Meyer and Edzer Pebesma, "Machine learning-based global maps of ecological variables
and the challenge of assessing them" Nature Communications, 13,2022. doi:10.1038/s41467022-
298389.

Examples

if (sits_run_examples()) {
# read a shapefile for the state of Mato Grosso, Brazil
mt_shp <- system.file("extdata/shapefiles/mato_grosso/mt.shp",

package = "sits"
)
# convert to an sf object
mt_sf <- sf::read_sf(mt_shp)
# calculate sample-to-sample and sample-to-prediction distances
distances <- sits_geo_dist(samples_modis_ndvi, mt_sf)
# plot sample-to-sample and sample-to-prediction distances
plot(distances)

}

plot.patterns Plot patterns that describe classes

Description

Plots the patterns (one plot per band/class combination) Useful to understand the trends of time
series.

Usage

## S3 method for class 'patterns'
plot(x, y, ..., bands = NULL, year_grid = FALSE)

https://doi.org/10.1038/s41467-022-29838-9
https://doi.org/10.1038/s41467-022-29838-9
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Arguments

x Object of class "patterns".

y Ignored.

... Further specifications for plot.

bands Bands to be viewed (optional).

year_grid Plot a grid of panels using labels as columns and years as rows. Default is
FALSE.

Value

A plot object produced by ggplot2 with one average pattern per label.

Note

This code is reused from the dtwSat package by Victor Maus.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Victor Maus, <vwmaus1@gmail.com>

Examples

if (sits_run_examples()) {
# plot patterns
plot(sits_patterns(cerrado_2classes))

}

plot.predicted Plot time series predictions

Description

Given a sits tibble with a set of predictions, plot them. Useful to show multi-year predictions for a
time series.

Usage

## S3 method for class 'predicted'
plot(x, y, ..., bands = "NDVI", palette = "Harmonic")
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Arguments

x Object of class "predicted".

y Ignored.

... Further specifications for plot.

bands Bands for visualization.

palette HCL palette used for visualization in case classes are not in the default sits
palette.

Value

A plot object produced by ggplot2 showing the time series and its label.

Note

This code is reused from the dtwSat package by Victor Maus.

Author(s)

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train an svm model
ml_model <- sits_train(samples_modis_ndvi, ml_method = sits_svm)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
point_class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)
plot(point_class)

}

plot.probs_cube Plot probability cubes

Description

plots a probability cube
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Usage

## S3 method for class 'probs_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
labels = NULL,
palette = "YlGn",
rev = FALSE,
quantile = NULL,
scale = 1,
max_cog_size = 512L,
legend_position = "outside",
legend_title = "probs"

)

Arguments

x Object of class "probs_cube".

... Further specifications for plot.

tile Tile to be plotted.

roi Spatial extent to plot in WGS 84 - named vector (see notes below)

labels Labels to plot.

palette RColorBrewer or "cols4all" palette

rev Reverse order of colors in palette?

quantile Minimum quantile to plot

scale Scale to plot map (0.4 to 1.0)

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "outside")

legend_title Title of legend (default = "probs")

Value

A plot containing probabilities associated to each class for each pixel.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). To define a roi use one
of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;
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• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified. sits_regularize() function will crop the images that contain the region
of interest().

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the resulting probability cube
plot(probs_cube)

}

plot.probs_vector_cube

Plot probability vector cubes

Description

Plots a probability vector cube, which result from first running a segmentation sits_segment and
then running a machine learning classification model. The result is a set of polygons, each with an
assigned probability of belonging to a specific class.

Usage

## S3 method for class 'probs_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
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roi = NULL,
labels = NULL,
palette = "YlGn",
rev = FALSE,
scale = 1,
legend_position = "outside"

)

Arguments

x Object of class "probs_vector_cube".

... Further specifications for plot.

tile Tile to be plotted.

roi Region of interest (see notes below).

labels Labels to plot

palette RColorBrewer or "cols4all" palette

rev Reverse order of colors in palette?

scale Scale to plot map (0.4 to 1.0)
legend_position

Where to place the legend (default = "outside")

Value

A plot containing probabilities associated to each class for each pixel.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). To define a roi use one
of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
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cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the image
segments <- sits_segment(

cube = cube,
seg_fn = sits_snic(

grid_seeding = "diamond",
spacing = 7,
compactness = 0.5,
padding = 0

),
output_dir = tempdir()

)
# classify a data cube
probs_vector_cube <- sits_classify(

data = segments,
ml_model = rfor_model,
output_dir = tempdir()

)
# plot the resulting probability cube
plot(probs_vector_cube)

}

plot.raster_cube Plot RGB data cubes

Description

Plot RGB raster cube

Usage

## S3 method for class 'raster_cube'
plot(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tile = x[["tile"]][[1L]],
dates = NULL,
roi = NULL,
palette = "RdYlGn",
rev = FALSE,
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scale = 1,
first_quantile = 0.02,
last_quantile = 0.98,
max_cog_size = 1024L,
legend_position = "inside"

)

Arguments

x Object of class "raster_cube".

... Further specifications for plot.

band Band for plotting grey images.

red Band for red color.

green Band for green color.

blue Band for blue color.

tile Tile to be plotted.

dates Dates to be plotted

roi Spatial extent to plot in WGS 84 - named vector (see notes)

palette An RColorBrewer palette

rev Reverse the color order in the palette?

scale Scale to plot map (0.4 to 1.0)

first_quantile First quantile for stretching images

last_quantile Last quantile for stretching images

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "inside")

Value

A plot object with an RGB image or a B/W image on a color scale

Note

Use scale parameter for general output control. The dates parameter indicates the date allows
plotting of different dates when a single band and three dates are provided, ‘sits‘ will plot a multi-
temporal RGB image for a single band (useful in the case of SAR data). For RGB bands with
multi-dates, multiple plots will be produced.

To see which color palettes are supported, please run cols4all::c4a_gui().

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;
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• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

If the user does not provide band names for b/w or RGB plots, and also does not provide dates,
plot.raster_cube tries to display some reasonable color composites, using the following algo-
rithm:

1. Each image in sits is associated to a source and a collection (e.g, "MPC" and "SENTINEL-
2-L2A").

2. For each source/collection pair, sits has a set of possible color composites stored in "./ext-
data/config_colors.yml". For example, the following composites are available for all "SENTINEL-
2" images:

• AGRICULTURE: ("B11", "B08", "B02")
• AGRICULTURE2: ("B11", "B8A", "B02")
• SWIR: ("B11", "B08", "B04")
• SWIR2: ("B12", "B08", "B04")
• SWIR3: ("B12", "B8A", "B04")
• RGB: ("B04", "B03", "B02")
• RGB-FALSE1 : ("B08", "B06", "B04")
• RGB-FALSE2 : ("B08", "B11", "B04")

3. sits tries to find if the bands required for one of the color composites are part of the cube. If
they exist, that RGB composite is selected. Otherwise, the first available band is chosen.

4. After selecting the bands, the algorithm looks for the date with the smallest percentage of
cloud cover and selects that date to be displayed.

. The following optional parameters are available to allow for detailed control over the plot output:

• graticules_labels_size: size of coord labels (default = 0.7)

• legend_title_size: size of legend title (default = 0.7)

• legend_text_size: size of legend text (default = 0.7)

• legend_bg_color: color of legend background (default = "white")

• legend_bg_alpha: legend opacity (default = 0.3)

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
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# plot NDVI band of the least cloud cover date
plot(cube)

}

plot.rfor_model Plot Random Forest model

Description

Plots the important variables in a random forest model.

Usage

## S3 method for class 'rfor_model'
plot(x, y, ...)

Arguments

x Object of class "rf_model".

y Ignored.

... Further specifications for plot.

Value

A random forest object.

Note

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor())
# plot the model
plot(rf_model)

}

https://e-sensing.github.io/sitsbook/
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plot.sar_cube Plot SAR data cubes

Description

Plot SAR raster cube

Usage

## S3 method for class 'sar_cube'
plot(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tile = x[["tile"]][[1L]],
dates = NULL,
roi = NULL,
palette = "Greys",
rev = FALSE,
scale = 1,
first_quantile = 0.05,
last_quantile = 0.95,
max_cog_size = 1024L,
legend_position = "inside"

)

Arguments

x Object of class "raster_cube".

... Further specifications for plot.

band Band for plotting grey images.

red Band for red color.

green Band for green color.

blue Band for blue color.

tile Tile to be plotted.

dates Dates to be plotted.

roi Spatial extent to plot (see notes)

palette An RColorBrewer or "cols4all" palette

rev Reverse the color order in the palette?

scale Scale to plot map (0.4 to 1.0)
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first_quantile First quantile for stretching images

last_quantile Last quantile for stretching images

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "inside")

Value

A plot object with an RGB image or a B/W image on a color scale for SAR cubes

Note

Use scale parameter for general output control. The dates parameter indicates the date allows
plotting of different dates when a single band and three dates are provided, ‘sits‘ will plot a multi-
temporal RGB image for a single band (useful in the case of SAR data). For RGB bands with
multi-dates, multiple plots will be produced.

To see which color palettes are supported, please run cols4all::c4a_gui().

The following optional parameters are available to allow for detailed control over the plot output:

• graticules_labels_size: size of coord labels (default = 0.7)

• legend_title_size: relative size of legend title (default = 0.7)

• legend_text_size: relative size of legend text (default = 0.7)

• legend_bg_color: color of legend background (default = "white")

• legend_bg_alpha: legend opacity (default = 0.3)

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a SAR data cube from cloud services
cube_s1_grd <- sits_cube(

source = "MPC",
collection = "SENTINEL-1-GRD",
bands = c("VV", "VH"),
orbit = "descending",
tiles = c("21LUJ"),
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start_date = "2021-08-01",
end_date = "2021-09-30"

)
# plot VH band of the first date of the data cube
plot(cube_s1_grd, band = "VH")

}

plot.sits_accuracy Plot confusion matrix

Description

Plot a table with informations about the confusion matrix or the accuracy metrics

Usage

## S3 method for class 'sits_accuracy'
plot(x, y, ..., type = "confusion_matrix")

Arguments

x Object of class "plot.sits_accuracy".

y Ignored.

... Further specifications for plot.

type Type of plot (either "confusion_matrix" or "metrics")

Value

Called for side package containing color bars showing the confusion between classes.

Author(s)

Gilberto Camara <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# select a set of samples
samples <- samples_modis_ndvi
# index samples to split train/test
samples[["sample_idx"]] <- 1:nrow(samples)
# select training data
train_data <- sits_sample(samples, frac = 0.8)
# select test data
sel <- !(samples[["sample_idx"]]

%in% train_data[["sample_idx"]])
test_data <- samples[sel, ]
# compute a random forest model
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rfor_model <- sits_train(train_data, sits_rfor())
# classify training points
points_class <- sits_classify(

data = test_data, ml_model = rfor_model
)
# calculate accuracy
acc <- sits_accuracy(points_class)
# plot accuracy
plot(acc)

}

plot.sits_cluster Plot a dendrogram cluster

Description

Plot a dendrogram

Usage

## S3 method for class 'sits_cluster'
plot(x, ..., cluster, cutree_height, palette)

Arguments

x sits tibble with cluster indexes.

... Further specifications for plot.

cluster cluster object produced by ‘sits_cluster‘ function.

cutree_height dashed horizontal line to be drawn indicating the height of dendrogram cutting.

palette HCL color palette.

Value

The dendrogram object.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
samples <- sits_cluster_dendro(cerrado_2classes,

bands = c("NDVI", "EVI")
)

}
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plot.sits_model Message for models whose plots are not available

Description

Plots trees in an extreme gradient boosting model.

Usage

## S3 method for class 'sits_model'
plot(x, ...)

Arguments

x Object of class "sits_model".

... Further specifications for plot.

Value

Called for side effects

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train an extreme gradient boosting
svm_model <- sits_train(samples_modis_ndvi,

ml_method = sits_svm()
)
plot(svm_model)

}

plot.som_clean_samples

Plot SOM samples evaluated

Description

It is useful to visualize the output of the SOM evaluation, which classifies the samples as "clean"
(good samples), "remove" (possible outliers), and "analyse" (borderline cases). This function plots
the percentual distribution of the SOM evaluation per class. To use it, please run sits_som_clean_samples
using the parameter "keep" as "c("clean", "analyze", "remove").
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Usage

## S3 method for class 'som_clean_samples'
plot(x, ...)

Arguments

x Object of class "som_clean_samples".

... Further specifications for plot.

Value

Called for side effects.

Author(s)

Estefania Pizarro, <eapizarroa@ine.gob.cl>

Examples

if (sits_run_examples()) {
# create a SOM map
som_map <- sits_som_map(samples_modis_ndvi)
# plot the SOM map
eval <- sits_som_clean_samples(som_map)
plot(eval)

}

plot.som_evaluate_cluster

Plot confusion between clusters

Description

Plot a bar graph with informations about each cluster. The percentage of mixture between the
clusters.

Usage

## S3 method for class 'som_evaluate_cluster'
plot(
x,
y,
...,
legend = NULL,
name_cluster = NULL,
title = "Confusion by cluster"

)
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Arguments

x Object of class "plot.som_evaluate_cluster".

y Ignored.

... Further specifications for plot.

legend Legend to use for plotting

name_cluster Choose the cluster to plot.

title Title of plot.

Value

A plot object produced by the ggplot2 package containing color bars showing the confusion between
classes.

Author(s)

Lorena Santos <lorena.santos@inpe.br>

Examples

if (sits_run_examples()) {
# create a SOM map
som_map <- sits_som_map(samples_modis_ndvi)
# evaluate the SOM cluster
som_clusters <- sits_som_evaluate_cluster(som_map)
# plot the SOM cluster evaluation
plot(som_clusters)

}

plot.som_map Plot a SOM map

Description

plots a SOM map generated by "sits_som_map". The plot function produces different plots based
on the input data. If type is "codes", plots the vector weight for in each neuron. If type is "mapping",
shows where samples are mapped.

Usage

## S3 method for class 'som_map'
plot(x, y, ..., type = "codes", legend = NULL, band = NULL)
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Arguments

x Object of class "som_map".

y Ignored.

... Further specifications for plot.

type Type of plot: "codes" for neuron weight (time series) and "mapping" for the
number of samples allocated in a neuron.

legend Legend with colors to be plotted

band What band will be plotted (character)

Value

Called for side effects.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a SOM map
som_map <- sits_som_map(samples_modis_ndvi)
# plot the SOM map
plot(som_map)

}

plot.torch_model Plot Torch (deep learning) model

Description

Plots a deep learning model developed using torch.

Usage

## S3 method for class 'torch_model'
plot(x, y, ...)

Arguments

x Object of class "torch_model".

y Ignored.

... Further specifications for plot.
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Value

A plot object produced by the ggplot2 package showing the evolution of the loss and accuracy of
the model.

Note

This code has been lifted from the "keras" package.

Author(s)

Felipe Carvalho, <lipecaso@gmail.com>

Rolf Simoes, <rolfsimoes@gmail.com>

Alber Sanchez, <alber.ipia@inpe.br>

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a tempCNN model
ml_model <- sits_train(samples_modis_ndvi, ml_method = sits_tempcnn)
# plot the model
plot(ml_model)

}

plot.uncertainty_cube Plot uncertainty cubes

Description

plots a uncertainty cube

Usage

## S3 method for class 'uncertainty_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
palette = "RdYlGn",
rev = TRUE,
scale = 1,
first_quantile = 0.02,
last_quantile = 0.98,
max_cog_size = 1024L,
legend_position = "inside"

)
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Arguments

x Object of class "probs_image".

... Further specifications for plot.

tile Tiles to be plotted.

roi Spatial extent to plot (see note)

palette An RColorBrewer or "cols4all" palette

rev Reverse the color order in the palette?

scale Scale to plot map (0.4 to 1.0)

first_quantile First quantile for stretching images

last_quantile Last quantile for stretching images

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "inside")

Value

A plot object produced showing the uncertainty associated to each classified pixel.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). The following optional
parameters are available to allow for detailed control over the plot output:

• graticules_labels_size: size of coord labels (default = 0.7)

• legend_title_size: relative size of legend title (default = 1.0)

• legend_text_size: relative size of legend text (default = 1.0)

• legend_bg_color: color of legend background (default = "white")

• legend_bg_alpha: legend opacity (default = 0.5)

#’ To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# calculate uncertainty
uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir())
# plot the resulting uncertainty cube
plot(uncert_cube)

}

plot.uncertainty_vector_cube

Plot uncertainty vector cubes

Description

plots a probability cube using stars

Usage

## S3 method for class 'uncertainty_vector_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
palette = "RdYlGn",
rev = TRUE,
scale = 1,
legend_position = "inside"

)

Arguments

x Object of class "probs_vector_cube".

... Further specifications for plot.

tile Tile to be plotted.
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roi Region of interest (see note)

palette RColorBrewer or "cols4all" palette

rev Reverse order of colors in palette?

scale Scale to plot map (0.4 to 1.0)
legend_position

Where to place the legend (default = "inside")

Value

A plot containing probabilities associated to each class for each pixel.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). To define a roi use one
of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the image
segments <- sits_segment(

cube = cube,
seg_fn = sits_snic(

grid_seeding = "hexagonal",
spacing = 7,
compactness = 0.6,
padding = 0

),
output_dir = tempdir()

)
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# classify a data cube
probs_vector_cube <- sits_classify(

data = segments,
ml_model = rfor_model,
output_dir = tempdir()

)
# measure uncertainty
uncert_vector_cube <- sits_uncertainty(

cube = probs_vector_cube,
type = "margin",
output_dir = tempdir()

)
# plot the resulting uncertainty cube
plot(uncert_vector_cube)

}

plot.variance_cube Plot variance cubes

Description

Plots a variance cube, useful to understand how local smoothing will work.

Usage

## S3 method for class 'variance_cube'
plot(
x,
...,
tile = x[["tile"]][[1L]],
roi = NULL,
labels = NULL,
palette = "YlGnBu",
rev = FALSE,
type = "map",
quantile = 0.75,
scale = 1,
max_cog_size = 1024L,
legend_position = "inside",
legend_title = "logvar"

)

Arguments

x Object of class "variance_cube".

... Further specifications for plot.

tile Tile to be plotted.
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roi Spatial extent to plot (see notes)

labels Labels to plot.

palette RColorBrewer or "cols4all" palette

rev Reverse order of colors in palette?

type Type of plot ("map" or "hist")

quantile Minimum quantile to plot

scale Scale to plot map (0.4 to 1.0)

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "inside")

legend_title Title of legend (default = "probs")

Value

A plot containing local variances associated to the logit probability for each pixel and each class.

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). To define a roi use one
of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
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# obtain a variance cube
var_cube <- sits_variance(probs_cube, output_dir = tempdir())
# plot the variance cube
plot(var_cube)

}

plot.vector_cube Plot RGB vector data cubes

Description

Plot vector data cube with segments on top of raster image. Vector cubes have both a vector and
a raster component. The vector part are the segments produced by sits_segment. Their visual
output is controlled by "seg_color" and "line_width" parameters. The raster output works in the
same way as the false color and RGB plots.

Usage

## S3 method for class 'vector_cube'
plot(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tile = x[["tile"]][[1L]],
dates = NULL,
roi = NULL,
seg_color = "black",
line_width = 0.2,
palette = "RdYlGn",
rev = FALSE,
scale = 1,
first_quantile = 0.02,
last_quantile = 0.98,
max_cog_size = 1024L,
legend_position = "inside"

)

Arguments

x Object of class "raster_cube".

... Further specifications for plot.

band Band for plotting grey images.

red Band for red color.
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green Band for green color.

blue Band for blue color.

tile Tile to be plotted.

dates Dates to be plotted.

roi Spatial extent to plot in WGS 84 - (see notes)

seg_color Color to show the segment boundaries

line_width Line width to plot the segments boundary (in pixels)

palette An RColorBrewer or "cols4all" palette

rev Reverse the color order in the palette?

scale Scale to plot map (0.4 to 1.5)

first_quantile First quantile for stretching images

last_quantile Last quantile for stretching images

max_cog_size Maximum size of COG overviews (lines or columns)
legend_position

Where to place the legend (default = "inside")

Value

A plot object with an RGB image or a B/W image on a color scale using the palette

Note

To see which color palettes are supported, please run cols4all::c4a_gui(). The following optional
parameters are available to allow for detailed control over the plot output:

• graticules_labels_size: size of coord labels (default = 0.7)

• legend_title_size: relative size of legend title (default = 0.7)

• legend_text_size: relative size of legend text (default = 0.7)

• legend_bg_color: color of legend background (default = "white")

• legend_bg_alpha: legend opacity (default = 0.3)

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# Segment the cube
segments <- sits_segment(

cube = cube,
output_dir = tempdir(),
multicores = 2,
memsize = 4

)
# plot NDVI band of the second date date of the data cube
plot(segments, band = "NDVI", date = sits_timeline(cube)[1])

}

plot.xgb_model Plot XGB model

Description

Plots trees in an extreme gradient boosting model.

Usage

## S3 method for class 'xgb_model'
plot(x, ..., tree_idx = 1)

Arguments

x Object of class "xgb_model".

... Further specifications for plot.

tree_idx Number of tree to be plotted

Value

A plot

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train an extreme gradient boosting
xgb_model <- sits_train(samples_modis_ndvi,

ml_method = sits_xgboost()
)
plot(xgb_model)

}

point_mt_6bands A time series sample with data from 2000 to 2016

Description

A dataset containing a tibble with one time series samples in the Mato Grosso state of Brazil. The
time series comes from MOD13Q1 collection 6 images.

Usage

data(point_mt_6bands)

Format

A tibble with 1 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

samples_l8_rondonia_2bands

Samples of Amazon tropical forest biome for deforestation analysis

Description

A sits tibble with time series samples from Brazilian Amazonia rain forest.

The labels are: "Deforestation", "Forest", "NatNonForest" and "Pasture".

The time series were extracted from the Landsat-8 BDC data cube (collection = "LC8_30_16D_STK-
1", tiles = "038047"). These time series comprehends a period of 12 months (25 observations) from
"2018-07-12" to "2019-07-28". The extracted bands are NDVI and EVI. Cloudy values were re-
moved and interpolated.

Usage

data("samples_l8_rondonia_2bands")
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Format

A sits tibble with 160 samples.

samples_modis_ndvi Samples of nine classes for the state of Mato Grosso

Description

A dataset containing a tibble with time series samples for the Mato Grosso state in Brasil. The
time series come from MOD13Q1 collection 6 images. The data set has the following classes:
Cerrado(379 samples), Forest (131 samples), Pasture (344 samples), and Soy_Corn (364 samples).

Usage

data(samples_modis_ndvi)

Format

A tibble with 1308 rows and 7 variables: longitude: East-west coordinate of the time series sample
(WGS 84), latitude (North-south coordinate of the time series sample in WGS 84), start_date (initial
date of the time series), end_date (final date of the time series), label (the class label associated to
the sample), cube (the name of the cube associated with the data), time_series (list containing a
tibble with the values of the time series).

sits_accuracy Assess classification accuracy

Description

This function calculates the accuracy of the classification result. The input is either a set of classi-
fied time series or a classified data cube. Classified time series are produced by sits_classify.
Classified images are generated using sits_classify followed by sits_label_classification.

For a set of time series, sits_accuracy creates a confusion matrix and calculates the resulting
statistics using package caret. For a classified image, the function uses an area-weighted technique
proposed by Olofsson et al. according to references [1-3] to produce reliable accuracy estimates at
95% confidence level. In both cases, it provides an accuracy assessment of the classified, includ-
ing Overall Accuracy, Kappa, User’s Accuracy, Producer’s Accuracy and error matrix (confusion
matrix).
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Usage

sits_accuracy(data, ...)

## S3 method for class 'sits'
sits_accuracy(data, ...)

## S3 method for class 'class_vector_cube'
sits_accuracy(data, ..., prediction_attr, reference_attr)

## S3 method for class 'class_cube'
sits_accuracy(data, ..., validation, method = "olofsson")

## S3 method for class 'raster_cube'
sits_accuracy(data, ...)

## S3 method for class 'derived_cube'
sits_accuracy(data, ...)

## S3 method for class 'tbl_df'
sits_accuracy(data, ...)

## Default S3 method:
sits_accuracy(data, ...)

Arguments

data Either a data cube with classified images or a set of time series
... Specific parameters
prediction_attr

Name of the column of the segments object that contains the predicted values
(only for vector class cubes)

reference_attr Name of the column of the segments object that contains the reference values
(only for vector class cubes)

validation Samples for validation (see below) Only required when data is a raster class
cube.

method A character with ’olofsson’ or ’pixel’ to compute accuracy (only for raster class
cubes)

Value

A list of lists: The error_matrix, the class_areas, the unbiased estimated areas, the standard error
areas, confidence interval 95 and the accuracy (user, producer, and overall), or NULL if the data is
empty. The result is assigned to class "sits_accuracy" and can be visualized directly on the screen.

Note

The ‘validation‘ data needs to contain the following columns: "latitude", "longitude", "start_date",
"end_date", and "label". It can be either a path to a CSV file, a sits tibble, a data frame, or an sf
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object.

When ‘validation‘ is an sf object, the columns "latitude" and "longitude" are not required as the
locations are extracted from the geometry column. The ‘centroid‘ is calculated before extracting
the location values for any geometry type.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Alber Sanchez, <alber.ipia@inpe.br>

References

[1] Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E. (2013). Making better use of accu-
racy data in land change studies: Estimating accuracy and area and quantifying uncertainty using
stratified estimation. Remote Sensing of Environment, 129, pp.122-131.

[2] Olofsson, P., Foody G.M., Herold M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. (2014)
Good practices for estimating area and assessing accuracy of land change. Remote Sensing of
Environment, 148, pp. 42-57.

[3] FAO, Map Accuracy Assessment and Area Estimation: A Practical Guide. National forest
monitoring assessment working paper No.46/E, 2016.

Examples

if (sits_run_examples()) {
# show accuracy for a set of samples
train_data <- sits_sample(samples_modis_ndvi, frac = 0.5)
test_data <- sits_sample(samples_modis_ndvi, frac = 0.5)
rfor_model <- sits_train(train_data, sits_rfor())
points_class <- sits_classify(

data = test_data, ml_model = rfor_model
)
acc <- sits_accuracy(points_class)

# show accuracy for a data cube classification
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
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output_dir = tempdir()
)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
# make accuracy assessment
as <- sits_accuracy(label_cube, validation = ground_truth)

}

sits_add_base_cube Add base maps to a time series data cube

Description

This function add base maps to time series data cube. Base maps have information that is stable in
time (e.g, DEM) which provide relevant information for modelling and classification.

To add a base cube to an existing data cube, they should share the same sensor, resolution, bounding
box, timeline, and have different bands.

Usage

sits_add_base_cube(cube1, cube2)

Arguments

cube1 Data cube (tibble of class "raster_cube") .

cube2 Data cube (tibble of class "dem_cube") .

Value

a merged data cube with the inclusion of a base_info tibble

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
s2_cube <- sits_cube(

source = "MPC",
collection = "SENTINEL-2-L2A",
tiles = "18HYE",
bands = c("B8A", "CLOUD"),
start_date = "2022-01-01",
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end_date = "2022-03-31"
)
output_dir <- paste0(tempdir(), "/reg")
if (!dir.exists(output_dir)) {

dir.create(output_dir)
}
dem_cube <- sits_cube(

source = "MPC",
collection = "COP-DEM-GLO-30",
tiles = "18HYE",
bands = "ELEVATION"

)
s2_reg <- sits_regularize(

cube = s2_cube,
period = "P1M",
res = 240,
output_dir = output_dir,
multicores = 2,
memsize = 4

)
dem_reg <- sits_regularize(

cube = dem_cube,
res = 240,
tiles = "18HYE",
output_dir = output_dir,
multicores = 2,
memsize = 4

)
s2_reg <- sits_add_base_cube(s2_reg, dem_reg)

}

sits_apply Apply a function on a set of time series

Description

Apply a named expression to a sits cube or a sits tibble to be evaluated and generate new bands
(indices). In the case of sits cubes, it creates a new band in output_dir.

Usage

sits_apply(data, ...)

## S3 method for class 'sits'
sits_apply(data, ...)

## S3 method for class 'raster_cube'
sits_apply(
data,
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...,
window_size = 3L,
memsize = 4L,
multicores = 2L,
normalized = TRUE,
output_dir,
progress = TRUE

)

## S3 method for class 'derived_cube'
sits_apply(data, ...)

## Default S3 method:
sits_apply(data, ...)

Arguments

data Valid sits tibble or cube

... Named expressions to be evaluated (see details).

window_size An odd number representing the size of the sliding window of sits kernel func-
tions used in expressions (for a list of supported kernel functions, please see
details).

memsize Memory available for classification (in GB).

multicores Number of cores to be used for classification.

normalized Does the expression produces a normalized band?

output_dir Directory where files will be saved.

progress Show progress bar?

Value

A sits tibble or a sits cube with new bands, produced according to the requested expression.

Kernel functions available

• w_median(): returns the median of the neighborhood’s values.

• w_sum(): returns the sum of the neighborhood’s values.

• w_mean(): returns the mean of the neighborhood’s values.

• w_sd(): returns the standard deviation of the neighborhood’s values.

• w_min(): returns the minimum of the neighborhood’s values.

• w_max(): returns the maximum of the neighborhood’s values.

• w_var(): returns the variance of the neighborhood’s values.

• w_modal(): returns the modal of the neighborhood’s values.
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Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

sits_apply() allows any valid R expression to compute new bands. Use R syntax to pass an
expression to this function. Besides arithmetic operators, you can use virtually any R function that
can be applied to elements of a matrix (functions that are unaware of matrix sizes, e.g. sqrt(),
sin(), log()).

Examples of valid expressions:

1. NDVI = (B08 - B04) / (B08 + B04) for Sentinel-2 images.

2. EVI = 2.5 * (B05 – B04) / (B05 + 6 * B04 – 7.5 * B02 + 1) for Landsat-8/9 images.

3. VV_VH_RATIO = VH/VV for Sentinel-1 images. In this case, set the normalized parameter to
FALSE.

4. VV_DB = 10 * log10(VV) to convert Sentinel-1 RTC images available in Planetary Computer
to decibels. Also, set the normalized parameter to FALSE.

sits_apply() also accepts a predefined set of kernel functions (see below) that can be applied to
pixels considering its neighborhood. The function considers a neighborhood of a pixel as a set of
pixels equidistant to it (including itself). This neighborhood forms a square window (also known as
kernel) around the central pixel (Moore neighborhood). Users can set the window_size parameter
to adjust the size of the kernel window. The image is conceptually mirrored at the edges so that
neighborhood including a pixel outside the image is equivalent to take the ’mirrored’ pixel inside
the edge.

sits_apply() applies a function to the kernel and its result is assigned to a corresponding central
pixel on a new matrix. The kernel slides throughout the input image and this process generates an
entire new matrix, which is returned as a new band to the cube. The kernel functions ignores any
NA values inside the kernel window. If all pixels in the window are NA the result will be NA.

By default, the indexes generated by sits_apply() function are normalized between -1 and 1,
scaled by a factor of 0.0001. Normalized indexes are saved as INT2S (Integer with sign). If the
normalized parameter is FALSE, no scaling factor will be applied and the index will be saved as
FLT4S (signed float) and the values will vary between -3.4e+38 and 3.4e+38.
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Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# get a time series
# Apply a normalization function

point2 <-
sits_select(point_mt_6bands, "NDVI") |>
sits_apply(NDVI_norm = (NDVI - min(NDVI)) / (max(NDVI) - min(NDVI)))

# Example of generation texture band with variance
# Create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)

# Generate a texture images with variance in NDVI images
cube_texture <- sits_apply(

data = cube,
NDVITEXTURE = w_median(NDVI),
window_size = 5,
output_dir = tempdir()

)
}

sits_as_sf Return a sits_tibble or raster_cube as an sf object.

Description

Converts a sits_tibble or raster_cube as an sf object.

Usage

sits_as_sf(data, ...)

## S3 method for class 'sits'
sits_as_sf(data, ..., crs = "EPSG:4326", as_crs = NULL)

## S3 method for class 'raster_cube'
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sits_as_sf(data, ..., as_crs = NULL)

## S3 method for class 'vector_cube'
sits_as_sf(data, ..., as_crs = NULL)

## Default S3 method:
sits_as_sf(data, ...)

Arguments

data A sits tibble or sits cube.

... Additional parameters.

crs Input coordinate reference system.

as_crs Output coordinate reference system.

Value

An sf object of point or polygon geometry.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Alber Sanchez, <alber.ipia@inpe.br>

Examples

if (sits_run_examples()) {
# convert sits tibble to an sf object (point)
sf_object <- sits_as_sf(cerrado_2classes)

# convert sits cube to an sf object (polygon)
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
sf_object <- sits_as_sf(cube)

}

sits_as_stars Convert a data cube into a stars object

Description

Uses the information about files, bands and dates in a data cube to produce an object of class stars.
User has to select a tile from the data cube. By default, all bands and dates are included in the stars
object. Users can select bands and dates.
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Usage

sits_as_stars(
cube,
tile = cube[1L, ]$tile,
bands = NULL,
dates = NULL,
proxy = FALSE

)

Arguments

cube A sits cube.

tile Tile of the data cube.

bands Bands of the data cube to be part of stars object.

dates Dates of the data cube to be part of stars object.

proxy Produce a stars proxy object.

Value

An space-time stars object.

Note

By default, the stars object will be loaded in memory. This can result in heavy memory usage. To
produce a stars.proxy object, uses have to select a single date, since stars does not allow proxy
objects to be created with two dimensions.

Author(s)

Gilberto Camara, <gilberto.camara.inpe@gmail.com>

Examples

if (sits_run_examples()) {
# convert sits cube to an sf object (polygon)
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
stars_object <- sits_as_stars(cube)

}
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sits_as_terra Convert a data cube into a Spatial Raster object from terra

Description

Uses the information about files, bands and dates in a data cube to produce an object of class terra.
User has to select a tile and a date from the data cube. By default, all bands are included in the
terra object. Users can select bands.

Usage

sits_as_terra(cube, tile = cube[1L, ]$tile, ...)

## S3 method for class 'raster_cube'
sits_as_terra(cube, tile = cube[1L, ]$tile, ..., bands = NULL, date = NULL)

## S3 method for class 'probs_cube'
sits_as_terra(cube, tile = cube[1L, ]$tile, ...)

## S3 method for class 'class_cube'
sits_as_terra(cube, tile = cube[1L, ]$tile, ...)

## S3 method for class 'variance_cube'
sits_as_terra(cube, tile = cube[1L, ]$tile, ...)

## S3 method for class 'uncertainty_cube'
sits_as_terra(cube, tile = cube[1L, ]$tile, ...)

Arguments

cube A sits cube.

tile Tile of the data cube.

... Other parameters for specific types of data cubes.

bands Bands of the data cube to be part of terra object.

date Date of the data cube to be part of terra object.

Value

An Spatial Raster object from terra.

Author(s)

Gilberto Camara, <gilberto.camara.inpe@gmail.com>
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Examples

if (sits_run_examples()) {
# convert sits cube to an sf object (polygon)
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
spat_raster <- sits_as_terra(cube)

}

sits_bands Get the names of the bands

Description

Finds the names of the bands of a set of time series or of a data cube

Usage

sits_bands(x)

## S3 method for class 'sits'
sits_bands(x)

## S3 method for class 'raster_cube'
sits_bands(x)

## S3 method for class 'patterns'
sits_bands(x)

## S3 method for class 'sits_model'
sits_bands(x)

## Default S3 method:
sits_bands(x)

sits_bands(x) <- value

## S3 replacement method for class 'sits'
sits_bands(x) <- value

## S3 replacement method for class 'raster_cube'
sits_bands(x) <- value

## Default S3 replacement method:
sits_bands(x) <- value
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Arguments

x Valid sits tibble (time series or a cube)

value New value for the bands

Value

A vector with the names of the bands.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# Create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# Get the bands from a daya cube
bands <- sits_bands(cube)
# Get the bands from a sits tibble
bands <- sits_bands(samples_modis_ndvi)
# Get the bands from patterns
bands <- sits_bands(sits_patterns(samples_modis_ndvi))
# Get the bands from ML model
rf_model <- sits_train(samples_modis_ndvi, sits_rfor())
bands <- sits_bands(rf_model)
# Set the bands for a SITS time series
sits_bands(samples_modis_ndvi) <- "NDVI2"
# Set the bands for a SITS cube
sits_bands(cube) <- "NDVI2"

}

sits_bbox Get the bounding box of the data

Description

Obtain a vector of limits (either on lat/long for time series or in projection coordinates in the case
of cubes)
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Usage

sits_bbox(data, ..., crs = "EPSG:4326", as_crs = NULL)

## S3 method for class 'sits'
sits_bbox(data, ..., crs = "EPSG:4326", as_crs = NULL)

## S3 method for class 'raster_cube'
sits_bbox(data, ..., as_crs = NULL)

## S3 method for class 'tbl_df'
sits_bbox(data, ..., crs = "EPSG:4326", as_crs = NULL)

## Default S3 method:
sits_bbox(data, ..., crs = "EPSG:4326", as_crs = NULL)

Arguments

data samples (class "sits") or cube.

... parameters for specific types

crs CRS of the time series.

as_crs CRS to project the resulting bbox.

Value

A bbox.

Note

Time series in sits are associated with lat/long values in WGS84, while each data cubes is associ-
ated to a cartographic projection. To obtain the bounding box of a data cube in a different projection
than the original, use the as_crs parameter.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# get the bbox of a set of samples
sits_bbox(samples_modis_ndvi)
# get the bbox of a cube in WGS84
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
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sits_bbox(cube, as_crs = "EPSG:4326")
}

sits_classify Classify time series or data cubes

Description

This function classifies a set of time series or data cube using a trained model prediction model
created by sits_train.

The sits_classify function takes three types of data as input and produce there types of output.
Users should call sits_classify but be aware that the parameters are different for each type of
input.

• sits_classify.sits is called when the input is a set of time series. The output is the same
set with the additional column predicted.

• sits_classify.raster_cube is called when the input is a regular raster data cube. The
output is a probability cube, which has the same tiles as the raster cube. Each tile contains a
multiband image; each band contains the probability that each pixel belongs to a given class.
Probability cubes are objects of class "probs_cube".

• sits_classify.vector_cube is called for vector data cubes. Vector data cubes are produced
when closed regions are obtained from raster data cubes using sits_segment. Classification
of a vector data cube produces a vector data structure with additional columns expressing the
class probabilities for each object. Probability cubes for vector data cubes are objects of class
"probs_vector_cube".

Usage

sits_classify(data, ml_model, ...)

## S3 method for class 'tbl_df'
sits_classify(data, ml_model, ...)

## S3 method for class 'derived_cube'
sits_classify(data, ml_model, ...)

## Default S3 method:
sits_classify(data, ml_model, ...)

Arguments

data Data cube (tibble of class "raster_cube")

ml_model R model trained by sits_train

... Other parameters for specific functions.
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Value

Time series with predicted labels for each point (tibble of class "sits") or a data cube with probabil-
ities for each class (tibble of class "probs_cube").

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

SITS supports the following models:

• support vector machines: sits_svm;

• random forests: sits_rfor;

• extreme gradient boosting: sits_xgboost;

• light gradient boosting: sits_lightgbm;

• multi-layer perceptrons: sits_mlp;

• temporal CNN: sits_tempcnn;

• residual network encoders: sits_resnet;

• LSTM with convolutional networks: sits_lstm_fcn;

• temporal self-attention encoders: sits_lighttae and sits_tae.

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carvalho, <lipecaso@gmail.com>

Felipe Carlos, <efelipecarlos@gmail.com>

https://e-sensing.github.io/sitsbook/
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sits_classify.raster_cube

Classify a regular raster cube

Description

Called when the input is a regular raster data cube. The output is a probability cube, which has the
same tiles as the raster cube. Each tile contains a multiband image; each band contains the proba-
bility that each pixel belongs to a given class. Probability cubes are objects of class "probs_cube".

Usage

## S3 method for class 'raster_cube'
sits_classify(
data,
ml_model,
...,
roi = NULL,
exclusion_mask = NULL,
filter_fn = NULL,
impute_fn = impute_linear(),
start_date = NULL,
end_date = NULL,
memsize = 8L,
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
output_dir,
version = "v1",
verbose = FALSE,
progress = TRUE

)

Arguments

data Data cube (tibble of class "raster_cube")

ml_model R model trained by sits_train

... Other parameters for specific functions.

roi Region of interest (either an sf object, shapefile, or a numeric vector in WGS
84 with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long
values ("lon_min", "lat_min", "lon_max", "lat_max").

exclusion_mask Areas to be excluded from the classification process. It can be defined by a sf
object or by a shapefile.

filter_fn Smoothing filter to be applied - optional (closure containing object of class
"function").
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impute_fn Imputation function to remove NA.

start_date Starting date for the classification (Date in YYYY-MM-DD format).

end_date Ending date for the classification (Date in YYYY-MM-DD format).

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.

output_dir Directory for output file.

version Version of the output.

verbose Logical: print information about processing time?

progress Logical: Show progress bar?

Value

Time series with predicted labels for each point (tibble of class "sits") or a data cube with probabil-
ities for each class (tibble of class "probs_cube").

Note

The roi parameter defines a region of interest. Either:

1. A path to a shapefile with polygons;

2. An sf object with POLYGON or MULTIPOLYGON geometry;

3. A named XY vector (xmin, xmax, ymin, ymax) in WGS84;

4. A name lat/long vector (lon_min, lon_max, lat_min, lat_max);

Parameter filter_fn parameter specifies a smoothing filter to be applied to each time series for
reducing noise. Currently, options are Savitzky-Golay (see sits_sgolay) and Whittaker (see
sits_whittaker) filters.

Parameter impute_fn defines a 1D function that will be used to interpolate NA values in each
time series. Currently sits supports the impute_linear function, but users can define imputation
functions which are defined externally.

Parameter memsize controls the amount of memory available for classification, while multicores
defines the number of cores used for processing. We recommend using as much memory as possible.

Parameter exclusion_mask defines a region that will not be classify. The region can be defined
by multiple polygons. Either a path to a shapefile with polygons or a sf object with POLYGON or
MULTIPOLYGON geometry;

When using a GPU for deep learning, gpu_memory indicates the memory of the graphics card which
is available for processing. The parameter batch_size defines the size of the matrix (measured in
number of rows) which is sent to the GPU for classification. Users can test different values of
batch_size to find out which one best fits their GPU architecture.

It is not possible to have an exact idea of the size of Deep Learning models in GPU memory, as
the complexity of the model and factors such as CUDA Context increase the size of the model in
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memory. Therefore, we recommend that you leave at least 1GB free on the video card to store the
Deep Learning model that will be used.

For users of Apple M3 chips or similar with a Neural Engine, be aware that these chips share
memory between the GPU and the CPU. Tests indicate that the memsize should be set to half to the
total memory and the batch_size parameter should be a small number (we suggest the value of
64). Be aware that increasing these parameters may lead to memory conflicts.

Examples

if (sits_run_examples()) {
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
# Example of classification of a data cube
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube,
ml_model = rf_model,
output_dir = tempdir(),
version = "classify"

)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir(),
version = "ex_classify"

)
# plot the classified image
plot(label_cube)

}

sits_classify.sits Classify a set of time series

Description

sits_classify.sits is called when the input is a set of time series. The output is the same set
with the additional column predicted.
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Usage

## S3 method for class 'sits'
sits_classify(
data,
ml_model,
...,
filter_fn = NULL,
impute_fn = impute_linear(),
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
progress = TRUE

)

Arguments

data Set of time series ("sits tibble")

ml_model R model trained by sits_train (closure of class "sits_model")

... Other parameters for specific functions.

filter_fn Smoothing filter to be applied - optional (closure containing object of class
"function").

impute_fn Imputation function to remove NA.

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.

progress Logical: Show progress bar?

Value

Time series with predicted labels for each point (tibble of class "sits").

Note

Parameter filter_fn specifies a smoothing filter to be applied to each time series for reducing
noise. Currently, options are Savitzky-Golay (see sits_sgolay) and Whittaker (see sits_whittaker)
filters. Note that this parameter should also have been applied to the training set to obtain the model.

Parameter impute_fn defines a 1D function that will be used to interpolate NA values in each
time series. Currently sits supports the impute_linear function, but users can define imputation
functions which are defined externally.

Parameter multicores defines the number of cores used for processing. We recommend using as
much memory as possible.

When using a GPU for deep learning, gpu_memory indicates the memory of the graphics card which
is available for processing. The parameter batch_size defines the size of the matrix (measured in
number of rows) which is sent to the GPU for classification. Users can test different values of
batch_size to find out which one best fits their GPU architecture.
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It is not possible to have an exact idea of the size of Deep Learning models in GPU memory, as
the complexity of the model and factors such as CUDA Context increase the size of the model in
memory. Therefore, we recommend that you leave at least 1GB free on the video card to store the
Deep Learning model that will be used.

For users of Apple M3 chips or similar with a Neural Engine, be aware that these chips share
memory between the GPU and the CPU. Tests indicate that the memsize should be set to half to the
total memory and the batch_size parameter should be a small number (we suggest the value of
64). Be aware that increasing these parameters may lead to memory conflicts.

Examples

if (sits_run_examples()) {
# Example of classification of a time series
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)

# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = c("NDVI"))
point_class <- sits_classify(

data = point_ndvi, ml_model = rf_model
)
plot(point_class)

}

sits_classify.vector_cube

Classify a segmented data cube

Description

This function is called when the input is a vector data cube. Vector data cubes are produced when
closed regions are obtained from raster data cubes using sits_segment. Classification of a vector
data cube produces a vector data structure with additional columns expressing the class probabilities
for each segment. Probability cubes for vector data cubes are objects of class "probs_vector_cube".

Usage

## S3 method for class 'vector_cube'
sits_classify(
data,
ml_model,
...,
roi = NULL,
filter_fn = NULL,
impute_fn = impute_linear(),
start_date = NULL,
end_date = NULL,
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memsize = 8L,
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
output_dir,
version = "v1",
n_sam_pol = 15L,
verbose = FALSE,
progress = TRUE

)

Arguments

data Data cube (tibble of class "raster_cube")

ml_model R model trained by sits_train (closure of class "sits_model")

... Other parameters for specific functions.

roi Region of interest (either an sf object, shapefile, or a numeric vector in WGS
84 with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long
values ("lon_min", "lat_min", "lon_max", "lat_max").

filter_fn Smoothing filter to be applied - optional (closure containing object of class
"function").

impute_fn Imputation function to remove NA.

start_date Starting date for the classification (Date in YYYY-MM-DD format).

end_date Ending date for the classification (Date in YYYY-MM-DD format).

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.

output_dir Directory for output file.

version Version of the output.

n_sam_pol Number of time series per segment to be classified (integer, min = 10, max =
50).

verbose Logical: print information about processing time?

progress Logical: Show progress bar?

Value

Vector data cube with probabilities for each class included in new columns of the tibble. (tibble of
class "probs_vector_cube").
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Note

The roi parameter defines a region of interest. Either:

1. A path to a shapefile with polygons;

2. An sf object with POLYGON or MULTIPOLYGON geometry;

3. A named XY vector (xmin, xmax, ymin, ymax) in WGS84;

4. A name lat/long vector (lon_min, lon_max, lat_min, lat_max);

Parameter filter_fn parameter specifies a smoothing filter to be applied to each time series for
reducing noise. Currently, options are Savitzky-Golay (see sits_sgolay) and Whittaker (see
sits_whittaker) filters.

Parameter impute_fn defines a 1D function that will be used to interpolate NA values in each
time series. Currently sits supports the impute_linear function, but users can define imputation
functions which are defined externally.

Parameter memsize controls the amount of memory available for classification, while multicores
defines the number of cores used for processing. We recommend using as much memory as possible.

For classifying vector data cubes created by sits_segment, n_sam_pol controls is the number of
time series to be classified per segment.

When using a GPU for deep learning, gpu_memory indicates the memory of the graphics card which
is available for processing. The parameter batch_size defines the size of the matrix (measured in
number of rows) which is sent to the GPU for classification. Users can test different values of
batch_size to find out which one best fits their GPU architecture.

It is not possible to have an exact idea of the size of Deep Learning models in GPU memory, as
the complexity of the model and factors such as CUDA Context increase the size of the model in
memory. Therefore, we recommend that you leave at least 1GB free on the video card to store the
Deep Learning model that will be used.

For users of Apple M3 chips or similar with a Neural Engine, be aware that these chips share
memory between the GPU and the CPU. Tests indicate that the memsize should be set to half to the
total memory and the batch_size parameter should be a small number (we suggest the value of
64). Be aware that increasing these parameters may lead to memory conflicts.

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Examples

if (sits_run_examples()) {
# train a random forest model
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
# Example of classification of a data cube
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the image

https://e-sensing.github.io/sitsbook/
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segments <- sits_segment(
cube = cube,
seg_fn = sits_snic(

grid_seeding = "hexagonal",
spacing = 10,
compactness = 0.5,
padding = 2

),
output_dir = tempdir()

)
# Create a classified vector cube
probs_segs <- sits_classify(

data = segments,
ml_model = rf_model,
output_dir = tempdir(),
multicores = 4,
n_sam_pol = 15,
version = "segs"

)
# Create a labelled vector cube
class_segs <- sits_label_classification(

cube = probs_segs,
output_dir = tempdir(),
multicores = 2,
memsize = 4,
version = "segs_classify"

)
# plot class_segs
plot(class_segs)

}

sits_clean Cleans a classified map using a local window

Description

Applies a modal function to clean up possible noisy pixels keeping the most frequently values within
the neighborhood. In a tie, the first value of the vector is considered. Modal functions applied to
classified cubes are useful to remove salt-and-pepper noise in the result.

Usage

sits_clean(cube, ...)

## S3 method for class 'class_cube'
sits_clean(
cube,
...,
window_size = 5L,
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memsize = 4L,
multicores = 2L,
output_dir,
version = "v1-clean",
progress = TRUE

)

## S3 method for class 'raster_cube'
sits_clean(cube, ...)

## S3 method for class 'derived_cube'
sits_clean(cube, ...)

## Default S3 method:
sits_clean(cube, ...)

Arguments

cube Classified data cube (tibble of class "class_cube").

... Specific parameters for specialised functions

window_size An odd integer representing the size of the sliding window of the modal function
(min = 1, max = 15).

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

output_dir Valid directory for output file. (character vector of length 1).

version Version of the output file (character vector of length 1)

progress Logical: Show progress bar?

Value

A tibble with an classified map (class = "class_cube").

Note

The sits_clean function is useful to further remove classification noise which has not been de-
tected by sits_smooth. It improves the spatial consistency of the classified maps.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Examples

if (sits_run_examples()) {
rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
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source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube,
ml_model = rf_model,
output_dir = tempdir()

)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
# apply a mode function in the labelled cube
clean_cube <- sits_clean(

cube = label_cube,
window_size = 5,
output_dir = tempdir(),
multicores = 1

)
}

sits_cluster_clean Removes labels that are minority in each cluster.

Description

Takes a tibble with time series that has an additional ‘cluster‘ produced by sits_cluster_dendro()
and removes labels that are minority in each cluster.

Usage

sits_cluster_clean(samples)

Arguments

samples Tibble with set of time series with additional cluster information produced by
sits_cluster_dendro()

Value

Tibble with time series (class "sits")

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>
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Examples

if (sits_run_examples()) {
clusters <- sits_cluster_dendro(cerrado_2classes)
freq1 <- sits_cluster_frequency(clusters)
freq1
clean_clusters <- sits_cluster_clean(clusters)
freq2 <- sits_cluster_frequency(clean_clusters)
freq2

}

sits_cluster_dendro Find clusters in time series samples

Description

These functions support hierarchical agglomerative clustering in sits. They provide support from
creating a dendrogram and using it for cleaning samples.

sits_cluster_dendro() takes a tibble with time series and produces a sits tibble with an added
"cluster" column. The function first calculates a dendrogram and obtains a validity index for best
clustering using the adjusted Rand Index. After cutting the dendrogram using the chosen validity
index, it assigns a cluster to each sample.

sits_cluster_frequency() computes the contingency table between labels and clusters and pro-
duces a matrix. Its input is a tibble produced by sits_cluster_dendro().

sits_cluster_clean() takes a tibble with time series that has an additional ‘cluster‘ produced by
sits_cluster_dendro() and removes labels that are minority in each cluster.

Usage

sits_cluster_dendro(
samples,
bands = NULL,
dist_method = "dtw_basic",
linkage = "ward.D2",
k = NULL,
palette = "RdYlGn",
...

)

Arguments

samples Tibble with input set of time series (class "sits").

bands Bands to be used in the clustering (character vector)

dist_method One of the supported distances (single char vector) "dtw": DTW with a Sakoe-
Chiba constraint. "dtw2": DTW with L2 norm and Sakoe-Chiba constraint.
"dtw_basic": A faster DTW with less functionality. "lbk": Keogh’s lower bound
for DTW. "lbi": Lemire’s lower bound for DTW.
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linkage Agglomeration method to be used (single char vector) One of "ward.D", "ward.D2",
"single", "complete", "average", "mcquitty", "median" or "centroid".

k Desired number of clusters (overrides default value)

palette Color palette as per ‘grDevices::hcl.pals()‘ function.

... Additional parameters to be passed to dtwclust::tsclust() function.

Value

Tibble with "cluster" column (class "sits_cluster").

Note

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

References

"dtwclust" R package.

Examples

if (sits_run_examples()) {
# default
clusters <- sits_cluster_dendro(cerrado_2classes)
# with parameters
clusters <- sits_cluster_dendro(cerrado_2classes,

bands = "NDVI", k = 5
)

}

sits_cluster_frequency

Show label frequency in each cluster produced by dendrogram analy-
sis

Description

Show label frequency in each cluster produced by dendrogram analysis

Usage

sits_cluster_frequency(samples)

https://e-sensing.github.io/sitsbook/
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Arguments

samples Tibble with input set of time series with additional cluster information produced
by sits_cluster_dendro().

Value

A matrix containing frequencies of labels in clusters.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
clusters <- sits_cluster_dendro(cerrado_2classes)
freq <- sits_cluster_frequency(clusters)
freq

}

sits_colors Function to retrieve sits color table

Description

Returns the default color table.

Usage

sits_colors(legend = NULL)

Arguments

legend One of the accepted legends in sits

Value

A tibble with color names and values

Note

SITS has a predefined color palette with 238 class names. These colors are grouped by typical leg-
ends used by the Earth observation community, which include “IGBP”, “UMD”, “ESA_CCI_LC”,
and “WORLDCOVER”. Use sits_colors_show to see a specific palette. The default color table
can be extended using sits_colors_set.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# return the names of all colors supported by SITS
sits_colors()

}

sits_colors_qgis Function to save color table as QML style for data cube

Description

Saves a color table associated to a classified data cube as a QGIS style file

Usage

sits_colors_qgis(cube, file)

## S3 method for class 'class_cube'
sits_colors_qgis(cube, file)

## S3 method for class 'class_vector_cube'
sits_colors_qgis(cube, file)

Arguments

cube a classified data cube

file a QGIS style file to be written to

Value

No return, called for side effects

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/classif", package = "sits")
ro_class <- sits_cube(

source = "MPC",
collection = "SENTINEL-2-L2A",
data_dir = data_dir,
parse_info = c(

"X1", "X2", "tile", "start_date", "end_date",
"band", "version"

),
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bands = "class",
labels = c(

"1" = "Clear_Cut_Burned_Area",
"2" = "Clear_Cut_Bare_Soil",
"3" = "Clear_Cut_Vegetation",
"4" = "Forest"

)
)
qml_file <- paste0(tempdir(), "/qgis.qml")
sits_colors_qgis(ro_class, qml_file)

}

sits_colors_reset Function to reset sits color table

Description

Resets the color table

Usage

sits_colors_reset()

Value

No return, called for side effects

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# reset the default colors supported by SITS
sits_colors_reset()

}
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sits_colors_set Function to set sits color table

Description

Includes new colors in the SITS color sets. If the colors exist, replace them with the new HEX
value. Optionally, the new colors can be associated to a legend. In this case, the new legend name
should be informed. The colors parameter should be a data.frame or a tibble with name and HEX
code. Colour names should be one character string only. Composite names need to be combined
with underscores (e.g., use "Snow_and_Ice" and not "Snow and Ice").

This function changes the global sits color table and the global set of sits color legends. To undo
these effects, please use "sits_colors_reset()".

Usage

sits_colors_set(colors, legend = NULL)

Arguments

colors New color table (a tibble or data.frame with name and HEX code)

legend Legend associated to the color table (optional)

Value

A modified sits color table (invisible)

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Define a color table based on the Anderson Land Classification System
us_nlcd <- tibble::tibble(name = character(), color = character())
us_nlcd <- us_nlcd |>

tibble::add_row(name = "Urban_Built_Up", color = "#85929E") |>
tibble::add_row(name = "Agricultural_Land", color = "#F0B27A") |>
tibble::add_row(name = "Rangeland", color = "#F1C40F") |>
tibble::add_row(name = "Forest_Land", color = "#27AE60") |>
tibble::add_row(name = "Water", color = "#2980B9") |>
tibble::add_row(name = "Wetland", color = "#D4E6F1") |>
tibble::add_row(name = "Barren_Land", color = "#FDEBD0") |>
tibble::add_row(name = "Tundra", color = "#EBDEF0") |>
tibble::add_row(name = "Snow_and_Ice", color = "#F7F9F9")

# Load the color table into `sits`
sits_colors_set(colors = us_nlcd, legend = "US_NLCD")
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# Show the new color table used by sits
sits_colors_show("US_NLCD")

# Change colors in the sits global color table
# First show the default colors for the UMD legend
sits_colors_show("UMD")
# Then change some colors associated to the UMD legend
mycolors <- tibble::tibble(name = character(), color = character())
mycolors <- mycolors |>

tibble::add_row(name = "Savannas", color = "#F8C471") |>
tibble::add_row(name = "Grasslands", color = "#ABEBC6")

sits_colors_set(colors = mycolors)
# Notice that the UMD colors change
sits_colors_show("UMD")
# Reset the color table
sits_colors_reset()
# Show the default colors for the UMD legend
sits_colors_show("UMD")

}

sits_colors_show Function to show colors in SITS

Description

Shows the default SITS colors

Usage

sits_colors_show(legend = NULL, font_family = "sans")

Arguments

legend One of the accepted legends in sits
font_family A font family loaded in SITS

Value

no return, called for side effects

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# show the colors supported by SITS
sits_colors_show()

}
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sits_combine_predictions

Estimate ensemble prediction based on list of probs cubes

Description

Calculate an ensemble predictor based a list of probability cubes. The function combines the output
of two or more models to derive a weighted average. The supported types of ensemble predictors
are ’average’ and ’uncertainty’. In the latter case, the uncertainty cubes need to be provided using
param uncert_cubes.

Usage

sits_combine_predictions(cubes, type = "average", ...)

## S3 method for class 'average'
sits_combine_predictions(
cubes,
type = "average",
...,
weights = NULL,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1",
progress = FALSE

)

## S3 method for class 'uncertainty'
sits_combine_predictions(
cubes,
type = "uncertainty",
...,
uncert_cubes,
memsize = 8L,
multicores = 2L,
output_dir,
version = "v1",
progress = FALSE

)

## Default S3 method:
sits_combine_predictions(cubes, type, ...)

Arguments

cubes List of probability data cubes (class "probs_cube")
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type Method to measure uncertainty. One of "average" or "uncertainty"

... Parameters for specific functions.

weights Weights for averaging (numeric vector).

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

output_dir Valid directory for output file. (character vector of length 1).

version Version of the output (character vector of length 1).

progress Set progress bar?

uncert_cubes Uncertainty cubes to be used as local weights when type = "uncertainty" is se-
lected (list of tibbles with class "uncertainty_cube")

Value

A combined probability cube (tibble of class "probs_cube").

Note

The distribution of class probabilities produced by machine learning models such as random forest
is quite different from that produced by deep learning models such as temporal CNN. Combining
the result of two different models is recommended to remove possible bias induced by a single
model.

By default, the function takes the average of the class probabilities of two or more model results.
If desired, users can use the uncertainty estimates for each results to compute the weights for each
pixel. In this case, the uncertainties produced by the models for each pixel are used to compute the
weights for producing the combined result.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube using rfor model
probs_rfor_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir(),
version = "rfor"
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)
# create an SVM model
svm_model <- sits_train(samples_modis_ndvi, sits_svm())
# classify a data cube using SVM model
probs_svm_cube <- sits_classify(

data = cube, ml_model = svm_model, output_dir = tempdir(),
version = "svm"

)
# create a list of predictions to be combined
pred_cubes <- list(probs_rfor_cube, probs_svm_cube)
# combine predictions
comb_probs_cube <- sits_combine_predictions(

pred_cubes,
output_dir = tempdir()

)
# plot the resulting combined prediction cube
plot(comb_probs_cube)

}

sits_confidence_sampling

Suggest high confidence samples to increase the training set.

Description

Suggest points for increasing the training set. These points are labelled with high confidence so they
can be added to the training set. They need to have a satisfactory margin of confidence to be selected.
The input is a probability cube. For each label, the algorithm finds out location where the machine
learning model has high confidence in choosing this label compared to all others. The algorithm
also considers a minimum distance between new labels, to minimize spatial autocorrelation effects.
This function is best used in the following context:

1. Select an initial set of samples.

2. Train a machine learning model.

3. Build a data cube and classify it using the model.

4. Run a Bayesian smoothing in the resulting probability cube.

5. Perform confidence sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the like-
lihood that the resulting pixels with provide good quality samples for each class.

Usage

sits_confidence_sampling(
probs_cube,
n = 20L,
min_margin = 0.5,
sampling_window = 10L,
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multicores = 2L,
memsize = 4L,
progress = TRUE

)

Arguments

probs_cube A smoothed probability cube. See sits_classify and sits_smooth.

n Number of suggested points per class.

min_margin Minimum margin of confidence to select a sample
sampling_window

Window size for collecting points (in pixels). The minimum window size is 10.

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

memsize Maximum overall memory (in GB) to run the function.

progress Show progress bar?

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet
the minimum distance criteria.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# build a random forest model
rfor_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor())
# classify the cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# obtain a new set of samples for active learning
# the samples are located in uncertain places
new_samples <- sits_confidence_sampling(probs_cube)

}
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sits_config Configure parameters for sits package

Description

These functions load and show sits configurations.

The ‘sits‘ package uses a configuration file that contains information on parameters required by
different functions. This includes information about the image collections handled by ‘sits‘.

sits_config() loads the default configuration file and the user provided configuration file. The
final configuration is obtained by overriding the options by the values provided by the user.

Usage

sits_config(config_user_file = NULL)

Arguments

config_user_file

YAML user configuration file (character vector of a file with "yml" extension)

Details

Users can provide additional configuration files, by specifying the location of their file in the envi-
ronmental variable SITS_CONFIG_USER_FILE or as parameter to this function.

To see the key entries and contents of the current configuration values, use link[sits]{sits_config_show()}.

Value

Called for side effects

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

yaml_user_file <- system.file("extdata/config_user_example.yml",
package = "sits"

)
sits_config(config_user_file = yaml_user_file)
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sits_config_show Show current sits configuration

Description

Prints the current sits configuration options. To show specific configuration options for a source, a
collection, or a palette, users can inform the corresponding keys to source and collection.

Usage

sits_config_show()

Value

No return value, called for side effects.

Examples

sits_config_show()

sits_config_user_file Create a user configuration file.

Description

Creates a user configuration file.

Usage

sits_config_user_file(file_path, overwrite = FALSE)

Arguments

file_path file to store the user configuration file

overwrite replace current configuration file?

Value

Called for side effects

Examples

user_file <- paste0(tempdir(), "/my_config_file.yml")
sits_config_user_file(user_file)
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sits_cube Create data cubes from image collections

Description

Creates a data cube based on spatial and temporal restrictions in collections available in cloud
services or local repositories. Available options are:

• To create data cubes from providers which support the STAC protocol, use sits_cube.stac_cube.

• To create raster data cubes from local image files, use sits_cube.local_cube.

• To create vector data cubes from local image and vector files, use sits_cube.vector_cube.

• To create raster data cubes from local image files which have been classified or labelled, use
sits_cube.results_cube.

Usage

sits_cube(source, collection, ...)

Arguments

source Data source: one of "AWS", "BDC", "CDSE", "DEAFRICA", "DEAUSTRALIA", "HLS",
"PLANETSCOPE", "MPC", "SDC" or "USGS".

collection Image collection in data source. To find out the supported collections, use
sits_list_collections()).

... Other parameters to be passed for specific types.

Value

A tibble describing the contents of a data cube.

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.
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8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

The following cloud providers are supported, based on the STAC protocol: Amazon Web Services
(AWS), Brazil Data Cube (BDC), Copernicus Data Space Ecosystem (CDSE), Digital Earth Africa
(DEAFRICA), Digital Earth Australia (DEAUSTRALIA), Microsoft Planetary Computer (MPC),
Nasa Harmonized Landsat/Sentinel (HLS), Swiss Data Cube (SDC), TERRASCOPE and USGS
Landsat (USGS). Data cubes can also be created using local files.

In sits, a data cube is represented as a tibble with metadata describing a set of image files obtained
from cloud providers. It contains information about each individual file.

A data cube in sits is:

• A set of images organized in tiles of a grid system (e.g., MGRS).

• Each tile contains single-band images in a unique zone of the coordinate system (e.g, tile
20LMR in MGRS grid) covering the period between start_date and end_date.

• Each image of a tile is associated to a unique temporal interval. All intervals share the same
spectral bands.

• Different tiles may cover different zones of the same grid system.

A regular data cube is a data cube where:

• All tiles share the same set of regular temporal intervals.

• All tiles share the same spectral bands and indices.

• All images have the same spatial resolution.

• Each location in a tile is associated a set of multi-band time series.

• For each tile, interval and band, the cube is reduce to a 2D image.

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# --- Access to the Brazil Data Cube
# create a raster cube file based on the information in the BDC
cbers_tile <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
bands = c("NDVI", "EVI"),
tiles = "007004",
start_date = "2018-09-01",
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end_date = "2019-08-28"
)
# --- Access to Digital Earth Africa
# create a raster cube file based on the information about the files
# DEAFRICA does not support definition of tiles
cube_deafrica <- sits_cube(

source = "DEAFRICA",
collection = "SENTINEL-2-L2A",
bands = c("B04", "B08"),
roi = c(

"lat_min" = 17.379,
"lon_min" = 1.1573,
"lat_max" = 17.410,
"lon_max" = 1.1910

),
start_date = "2019-01-01",
end_date = "2019-10-28"

)
# --- Create a cube based on a local MODIS data
# MODIS local files have names such as
# "TERRA_MODIS_012010_NDVI_2013-09-14.jp2"
# see the parse info parameter as an example on how to
# decode local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
modis_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir,
parse_info = c("satellite", "sensor", "tile", "band", "date")

)
}

sits_cube.local_cube Create sits cubes from cubes in flat files in a local

Description

Creates data cubes based on files on local directory. Assumes users have downloaded the data from
a known cloud collection or the data has been created by sits.

Usage

## S3 method for class 'local_cube'
sits_cube(
source,
collection,
...,
bands = NULL,
tiles = NULL,
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start_date = NULL,
end_date = NULL,
data_dir,
parse_info = c("X1", "X2", "tile", "band", "date"),
delim = "_",
multicores = 2L,
progress = TRUE

)

Arguments

source Data source: one of "AWS", "BDC", "CDSE", "DEAFRICA", "DEAUSTRALIA", "HLS",
"PLANETSCOPE", "MPC", "SDC" or "USGS". This is the source from which the
data has been downloaded.

collection Image collection in data source. To find out the supported collections, use
sits_list_collections()).

... Other parameters to be passed for specific types.

bands Spectral bands and indices to be included in the cube (optional).

tiles Tiles from the collection to be included in the cube (see details below).
start_date, end_date

Initial and final dates to include images from the collection in the cube (op-
tional). (Date in YYYY-MM-DD format).

data_dir Local directory where images are stored.

parse_info Parsing information for local files.

delim Delimiter for parsing local files (default = "_")

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

progress Logical: show a progress bar?

Value

A tibble describing the contents of a data cube.

Note

To create a cube from local files, please inform:

• source: The data provider from which the data was downloaded (e.g, "BDC", "MPC");

• collection: The collection from which the data comes from. (e.g., "SENTINEL-2-L2A" for
the Sentinel-2 MPC collection level 2A);

• data_dir: The local directory where the image files are stored.

• parse_info: Defines how to extract metadata from file names by specifying the order and
meaning of each part, separated by the "delim" character. Default value is c("X1", "X2",
"tile", "band", "date").

• delim: The delimiter character used to separate components in the file names. Default is "_".

Please ensure that local files meet the following requirements:
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• All image files must have the same spatial resolution and projection;

• Each file should represent a single image band for a single date;

• File names must include information about the tile, date, and band in their names.

• The parse_info parameter tells sits how to extract metadata from file names.

• By default the parse_info parameter is c(satellite, sensor, tile, band, date).

Example of supported file names are:

• "CBERS-4_WFI_022024_B13_2021-05-15.tif";

• "SENTINEL-1_GRD_30TXL_VV_2023-03-10.tif";

• "LANDSAT-8_OLI_198030_B04_2020-09-12.tif".

When you load a local data cube specifying the source (e.g., AWS, MPC) and collection, sits
assumes that the data properties (e.g., scale factor, minimum, and maximum values) match those de-
fined for the selected provider. If you are working with custom data from an unsupported source or
data that does not follow the standard definitions of providers in sits, refer to the Technical Annex of
the sits online book for guidance on handling such cases (e-sensing.github.io/sitsbook/technical-
annex.html).

Examples

if (sits_run_examples()) {
# --- Create a cube based on a local MODIS data
# MODIS local files have names such as
# "TERRA_MODIS_012010_NDVI_2013-09-14.jp2"
# see the parse info parameter as an example on how to
# decode local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
modis_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir,
parse_info = c("satellite", "sensor", "tile", "band", "date")

)
}

sits_cube.results_cube

Create a results cube from local files

Description

Creates a data cube from local files produced by sits operations that produces results (such as
probs_cubs and class_cubes)
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Usage

## S3 method for class 'results_cube'
sits_cube(
source,
collection,
...,
data_dir,
tiles = NULL,
bands,
labels = NULL,
parse_info = c("X1", "X2", "tile", "start_date", "end_date", "band", "version"),
version = "v1",
delim = "_",
multicores = 2L,
memsize = 2L,
progress = TRUE

)

Arguments

source Data source: one of "AWS", "BDC", "CDSE", "DEAFRICA", "DEAUSTRALIA", "HLS",
"PLANETSCOPE", "MPC", "SDC" or "USGS". This is the source from which the
original data has been downloaded.

collection Image collection in data source from which the original data has been down-
loaded. To find out the supported collections, use sits_list_collections()).

... Other parameters to be passed for specific types.

data_dir Local directory where images are stored

tiles Tiles from the collection to be included in the cube.

bands Results bands to be retrieved ("probs", "bayes", "variance", "class", "uncer-
tainty")

labels Named vector with labels associated to the classes

parse_info Parsing information for local files (see notes below).

version Version of the classified and/or labelled files.

delim Delimiter for parsing local results cubes (default = "_")

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

memsize Memory available (in GB)

progress Logical: show a progress bar?

Value

A tibble describing the contents of a data cube.
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Note

This function creates result cubes from local files produced by classification or post-classification
algorithms. In this case, the parse_info is specified differently, and additional parameters are
required. The parameter bands should be a single character vector with the name associated to the
type of result:

• "probs", for probability cubes produced by sits_classify.

• "bayes", for smoothed cubes produced by sits_smooth.

• "entropy" when using sits_uncertainty to measure entropy in pixel classification.

• "margin" when using sits_uncertainty to measure probability margin in pixel classifica-
tion.

• "least" when using sits_uncertainty to measure difference between 100% and most prob-
able class in pixel classification.

• "class" for cubes produced by sits_label_classification.

For cubes of type "probs", "bayes", "class", the labels parameter should be named vector
associated to the classification results. For "class" cubes, its names should be integers associated
to the values of the raster files that represent the classified cube.

Parameter parse_info should contain parsing information to deduce the values of tile, start_date,
end_date and band from the file name. Default is c("X1", "X2", "tile", "start_date", "end_date",
"band"). Cubes processed by sits adhere to this format.

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
output_dir <- file.path(tempdir(), "local_results")
dir.create(output_dir, showWarnings = FALSE)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = output_dir
)
# plot the probability cube
plot(probs_cube)

# obtain and name the labels of the local probs cube
labels <- sits_labels(rfor_model)
names(labels) <- seq_along(labels)

# recover the local probability cube
probs_local_cube <- sits_cube(
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source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = output_dir,
bands = "probs",
labels = labels,
multicores = 1

)
# compare the two plots (they should be the same)
plot(probs_local_cube)

# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = output_dir)
# plot the smoothed cube
plot(bayes_cube)

# recover the local smoothed cube
smooth_local_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = output_dir,
bands = "bayes",
labels = labels

)
# compare the two plots (they should be the same)
plot(smooth_local_cube)

# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = output_dir

)
# plot the labelled cube
plot(label_cube)

# recover the local classified cube
class_local_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = output_dir,
bands = "class",
labels = labels

)
# compare the two plots (they should be the same)
plot(class_local_cube)

# obtain an uncertainty cube with entropy
entropy_cube <- sits_uncertainty(

cube = bayes_cube,
type = "entropy",
output_dir = output_dir

)
# plot entropy values
plot(entropy_cube)
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# recover an uncertainty cube with entropy
entropy_local_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = output_dir,
bands = "entropy"

)
# plot recovered entropy values
plot(entropy_local_cube)

# obtain an uncertainty cube with margin
margin_cube <- sits_uncertainty(

cube = bayes_cube,
type = "margin",
output_dir = output_dir

)
# plot entropy values
plot(margin_cube)

# recover an uncertainty cube with entropy
margin_local_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = output_dir,
bands = "margin"

)
# plot recovered entropy values
plot(margin_local_cube)

}

sits_cube.stac_cube Create data cubes from image collections accessible by STAC

Description

Creates a data cube based on spatial and temporal restrictions in collections accessible by the STAC
protocol

Usage

## S3 method for class 'stac_cube'
sits_cube(
source,
collection,
...,
bands = NULL,
tiles = NULL,
roi = NULL,
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crs = NULL,
start_date = NULL,
end_date = NULL,
orbit = "descending",
platform = NULL,
multicores = 2L,
progress = TRUE

)

Arguments

source Data source: one of "AWS", "BDC", "CDSE", "DEAFRICA", "DEAUSTRALIA", "HLS",
"PLANETSCOPE", "MPC", "SDC" or "USGS".

collection Image collection in data source. To find out the supported collections, use
sits_list_collections()).

... Other parameters to be passed for specific types.

bands Spectral bands and indices to be included in the cube (optional). Use sits_list_collections()
to find out the bands available for each collection.

tiles Tiles from the collection to be included in the cube (see details below).

roi Region of interest (see below).

crs The Coordinate Reference System (CRS) of the roi. (see details below).
start_date, end_date

Initial and final dates to include images from the collection in the cube (op-
tional). (Date in YYYY-MM-DD format).

orbit Orbit name ("ascending", "descending") for SAR cubes.

platform Optional parameter specifying the platform in case of "LANDSAT" collection.
Options: Landsat-5,Landsat-7, Landsat-8, Landsat-9.

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

progress Logical: show a progress bar?

Value

A tibble describing the contents of a data cube.

Note

Data cubes are identified on cloud providers using sits_cube. The result of sits_cube is a de-
scription of the location of the requested data in the cloud provider. No download is done.

To create data cube objects from cloud providers, users need to inform:

• source: Name of the cloud provider. One of "AWS", "BDC", "CDSE", "DEAFRICA",
"DEAUSTRALIA", "HLS", "PLANETSCOPE", "MPC", "SDC", "TERRASCOPE", or "USGS";

• collection: Name of an image collection available in the cloud provider (e.g, "SENTINEL-
1-RTC" in MPC). Use sits_list_collections() to see which collections are supported;

• tiles: A set of tiles defined according to the collection tiling grid (e.g, c("20LMR", "20LMP")
in MGRS);
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• roi: Region of interest (see below)

The parameters bands, start_date, and end_date are optional for cubes created from cloud
providers.

Either tiles or roi must be informed. The tiles should specify a set of valid tiles for the ARD
collection. For example, Landsat data has tiles in WRS2 tiling system and Sentinel-2 data uses the
MGRS tiling system. The roi parameter is used to select all types of images. This parameter does
not crop a region; it only selects images that intersect it.

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified.

To get more details about each provider and collection available in sits, please read the online
sits book (e-sensing.github.io/sitsbook). The chapter Earth Observation data cubes provides a
detailed description of all collections you can use with sits (e-sensing.github.io/sitsbook/earth-
observation-data-cubes.html).

Examples

if (sits_run_examples()) {
# --- Creating Sentinel cube from MPC
s2_cube <- sits_cube(

source = "MPC",
collection = "SENTINEL-2-L2A",
tiles = "20LKP",
bands = c("B05", "CLOUD"),
start_date = "2018-07-18",
end_date = "2018-08-23"

)

# --- Creating Landsat cube from MPC
roi <- c(

"lon_min" = -50.410, "lon_max" = -50.379,
"lat_min" = -10.1910, "lat_max" = -10.1573

)
mpc_cube <- sits_cube(

source = "MPC",
collection = "LANDSAT-C2-L2",
bands = c("BLUE", "RED", "CLOUD"),
roi = roi,
start_date = "2005-01-01",
end_date = "2006-10-28"

)
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## Sentinel-1 SAR from MPC
roi_sar <- c(

"lon_min" = -50.410, "lon_max" = -50.379,
"lat_min" = -10.1910, "lat_max" = -10.1573

)

s1_cube_open <- sits_cube(
source = "MPC",
collection = "SENTINEL-1-GRD",
bands = c("VV", "VH"),
orbit = "descending",
roi = roi_sar,
start_date = "2020-06-01",
end_date = "2020-09-28"

)
# --- Access to the Brazil Data Cube
# create a raster cube file based on the information in the BDC
cbers_tile <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
bands = c("NDVI", "EVI"),
tiles = "007004",
start_date = "2018-09-01",
end_date = "2019-08-28"

)
# --- Access to Digital Earth Africa
# create a raster cube file based on the information about the files
# DEAFRICA does not support definition of tiles
cube_deafrica <- sits_cube(

source = "DEAFRICA",
collection = "SENTINEL-2-L2A",
bands = c("B04", "B08"),
roi = c(

"lat_min" = 17.379,
"lon_min" = 1.1573,
"lat_max" = 17.410,
"lon_max" = 1.1910

),
start_date = "2019-01-01",
end_date = "2019-10-28"

)
# --- Access to Digital Earth Australia
cube_deaustralia <- sits_cube(

source = "DEAUSTRALIA",
collection = "GA_LS8CLS9C_GM_CYEAR_3",
bands = c("RED", "GREEN", "BLUE"),
roi = c(

lon_min = 137.15991,
lon_max = 138.18467,
lat_min = -33.85777,
lat_max = -32.56690

),
start_date = "2018-01-01",
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end_date = "2018-12-31"
)
# --- Access to CDSE open data Sentinel 2/2A level 2 collection
# --- remember to set the appropriate environmental variables
# It is recommended that `multicores` be used to accelerate the process.
s2_cube <- sits_cube(

source = "CDSE",
collection = "SENTINEL-2-L2A",
tiles = c("20LKP"),
bands = c("B04", "B08", "B11"),
start_date = "2018-07-18",
end_date = "2019-01-23"

)

## --- Sentinel-1 SAR from CDSE
# --- remember to set the appropriate environmental variables
# --- Obtain a AWS_ACCESS_KEY_ID and AWS_ACCESS_SECRET_KEY_ID
# --- from CDSE
roi_sar <- c(

"lon_min" = 33.546, "lon_max" = 34.999,
"lat_min" = 1.427, "lat_max" = 3.726

)
s1_cube_open <- sits_cube(

source = "CDSE",
collection = "SENTINEL-1-RTC",
bands = c("VV", "VH"),
orbit = "descending",
roi = roi_sar,
start_date = "2020-01-01",
end_date = "2020-06-10"

)

# -- Access to World Cover data (2021) via Terrascope
cube_terrascope <- sits_cube(

source = "TERRASCOPE",
collection = "WORLD-COVER-2021",
roi = c(

lon_min = -62.7,
lon_max = -62.5,
lat_min = -8.83,
lat_max = -8.70

)
)

}

sits_cube.vector_cube Create a vector cube from local files
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Description

Creates a data cube from local files which include a vector file produced by a segmentation algo-
rithm.

Usage

## S3 method for class 'vector_cube'
sits_cube(
source,
collection,
...,
raster_cube,
vector_dir,
vector_band,
parse_info = c("X1", "X2", "tile", "start_date", "end_date", "band", "version"),
version = "v1",
delim = "_",
multicores = 2L,
progress = TRUE

)

Arguments

source Data source: one of "AWS", "BDC", "CDSE", "DEAFRICA", "DEAUSTRALIA", "HLS",
"PLANETSCOPE", "MPC", "SDC" or "USGS". This is the source from which the
data has been downloaded.

collection Image collection in data source. To find out the supported collections, use
sits_list_collections()).

... Other parameters to be passed for specific types.

raster_cube Raster cube to be merged with vector data

vector_dir Local directory where vector files are stored

vector_band Band for vector cube ("segments", "probs", "class")

parse_info Parsing information for local image files

version Version of the classified and/or labelled files.

delim Delimiter for parsing local files (default = "_")

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

progress Logical: show a progress bar?

Value

A tibble describing the contents of a data cube.
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Note

This function creates vector cubes from local files produced by sits_segment, sits_classify or
sits_label_classification when the output is a vector cube. In this case, parse_info is speci-
fied differently as c("X1", "X2", "tile","start_date", "end_date", "band"). The parameter
vector_dir is the directory where the vector file is stored. Parameter vector_band is band name
of the type of vector cube:

• "segments", for vector cubes produced by sits_segment.

• "probs", for probability cubes produced by sits_classify.vector_cube.

• "entropy" when using sits_uncertainty.probs_vector_cube.

• "class" for cubes produced by sits_label_classification.

Examples

if (sits_run_examples()) {
# --- Create a cube based on a local MODIS data
# MODIS local files have names such as
# "TERRA_MODIS_012010_NDVI_2013-09-14.jp2"
# see the parse info parameter as an example on how to
# decode local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
modis_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir,
parse_info = c("satellite", "sensor", "tile", "band", "date")

)
# segment the vector cube
segs_cube <- sits_segment(

cube = modis_cube,
seg_fn = sits_snic(

grid_seeding = "rectangular",
spacing = 15,
compactness = 0.4,
padding = 2

),
output_dir = tempdir()

)
plot(segs_cube)

# recover the local segmented cube
local_segs_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
raster_cube = modis_cube,
vector_dir = tempdir(),
vector_band = "segments"

)
# plot the recover model and compare
plot(local_segs_cube)
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# classify the segments
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
probs_vector_cube <- sits_classify(

data = segs_cube,
ml_model = rfor_model,
output_dir = tempdir(),
n_sam_pol = 10

)
plot(probs_vector_cube)

# recover vector cube
local_probs_vector_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
raster_cube = modis_cube,
vector_dir = tempdir(),
vector_band = "probs"

)
plot(local_probs_vector_cube)

# label the segments
class_vector_cube <- sits_label_classification(

cube = probs_vector_cube,
output_dir = tempdir(),

)
plot(class_vector_cube)

# recover vector cube
local_class_vector_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
raster_cube = modis_cube,
vector_dir = tempdir(),
vector_band = "class"

)
plot(local_class_vector_cube)

}

sits_cube_copy Copy the images of a cube to a local directory

Description

This function downloads the images of a cube in parallel. A region of interest (roi) can be provided
to crop the images and a resolution (res) to resample the bands. sits_cube_copy is useful to
improve processing time in the regularization operation.
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Usage

sits_cube_copy(
cube,
roi = NULL,
res = NULL,
crs = NULL,
n_tries = 3L,
multicores = 2L,
output_dir,
progress = TRUE

)

Arguments

cube A data cube (class "raster_cube")

roi Region of interest. Either:

1. A path to a shapefile with polygons;
2. A sf object from sf package;
3. A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;
4. A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates

in WGS84.

res An integer value corresponds to the output spatial resolution of the images. De-
fault is NULL.

crs The Coordinate Reference System (CRS) of the roi. (see details below).

n_tries Number of attempts to download the same image. Default is 3.

multicores Number of cores for parallel downloading (integer, min = 1, max = 2048).

output_dir Output directory where images will be saved. (character vector of length 1).

progress Logical: show progress bar?

Value

Copy of input data cube (class "raster cube").

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.
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8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

The roi parameter is used to crop cube images. To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified.

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Examples

if (sits_run_examples()) {
# Creating a sits cube from BDC
bdc_cube <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
tiles = c("007004", "007005"),
bands = c("B15", "CLOUD"),
start_date = "2018-01-01",
end_date = "2018-01-12"

)
# Downloading images to a temporary directory
cube_local <- sits_cube_copy(

cube = bdc_cube,
output_dir = tempdir(),
roi = c(

lon_min = -46.5,
lat_min = -45.5,
lon_max = -15.5,
lat_max = -14.6

),
multicores = 2L,
res = 250

)
}
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sits_factory_function Create a closure for calling functions with and without data

Description

This function implements the factory method pattern. Its creates a generic interface to closures in R
so that the functions in the sits package can be called in two different ways: 1. Called directly, pass-
ing input data and parameters. 2. Called as second-order values (parameters of another function).
In the second case, the call will pass no data values and only pass the parameters for execution

The factory pattern is used in many situations in the sits package, to allow different alternatives for
filtering, pattern creation, training, and cross-validation

Please see the chapter "Technical Annex" in the sits book for details.

Usage

sits_factory_function(data, fun)

Arguments

data Input data.

fun Function that performs calculation on the input data.

Value

A closure that encapsulates the function applied to data.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

# example code
if (sits_run_examples()) {

# Include a new machine learning function (multiple linear regression)
# function that returns mlr model based on a sits sample tibble

sits_mlr <- function(samples = NULL, formula = sits_formula_linear(),
n_weights = 20000, maxit = 2000) {

train_fun <- function(samples) {
# Data normalization
ml_stats <- sits_stats(samples)
train_samples <- sits_predictors(samples)
train_samples <- sits_pred_normalize(

pred = train_samples,
stats = ml_stats
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)
formula <- formula(train_samples[, -1])
# call method and return the trained model
result_mlr <- nnet::multinom(

formula = formula,
data = train_samples,
maxit = maxit,
MaxNWts = n_weights,
trace = FALSE,
na.action = stats::na.fail

)

# construct model predict closure function and returns
predict_fun <- function(values) {

# retrieve the prediction (values and probs)
prediction <- tibble::as_tibble(

stats::predict(result_mlr,
newdata = values,
type = "probs"

)
)
return(prediction)

}
class(predict_fun) <- c("sits_model", class(predict_fun))
return(predict_fun)

}
result <- sits_factory_function(samples, train_fun)
return(result)

}
# create an mlr model using a set of samples
mlr_model <- sits_train(samples_modis_ndvi, sits_mlr)
# classify a point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
point_class <- sits_classify(point_ndvi, mlr_model, multicores = 1)
plot(point_class)

}

sits_filter Filter time series with smoothing filter

Description

Applies a filter to all bands, using a filter function such as sits_whittaker or sits_sgolay.

Usage

sits_filter(data, filter = sits_whittaker())
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Arguments

data Time series (tibble of class "sits") or matrix.

filter Filter function to be applied.

Value

Filtered time series

Examples

if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit,

suffix = c("", ".WHIT")
)
# Plot the two points to see the smoothing effect
plot(point_ndvi)

}

sits_formula_linear Define a linear formula for classification models

Description

Provides a symbolic description of a fitting model. Tells the model to do a linear transformation of
the input values. The ‘predictors_index‘ parameter informs the positions of fields corresponding to
formula independent variables. If no value is given, that all fields will be used as predictors.

Usage

sits_formula_linear(predictors_index = -2L:0L)

Arguments

predictors_index

Index of the valid columns whose names are used to compose formula (default:
-2:0).

Value

A function that computes a valid formula using a linear function.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_ndvi,

ml_method = sits_svm(formula = sits_formula_logref())
)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)
plot(point_class)

}

sits_formula_logref Define a loglinear formula for classification models

Description

A function to be used as a symbolic description of some fitting models such as svm and random for-
est. This function tells the models to do a log transformation of the inputs. The ‘predictors_index‘
parameter informs the positions of ‘tb‘ fields corresponding to formula independent variables. If no
value is given, the default is NULL, a value indicating that all fields will be used as predictors.

Usage

sits_formula_logref(predictors_index = -2L:0L)

Arguments

predictors_index

Index of the valid columns to compose formula (default: -2:0).

Value

A function that computes a valid formula using a log function.
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Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_ndvi,

ml_method = sits_svm(formula = sits_formula_logref())
)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)
plot(point_class)

}

sits_geo_dist Compute the minimum distances among samples and prediction
points.

Description

Compute the minimum distances among samples and samples to prediction points, following the
approach proposed by Meyer and Pebesma(2022).

Usage

sits_geo_dist(samples, roi, n = 1000L, crs = "EPSG:4326")

Arguments

samples Time series (tibble of class "sits").

roi A region of interest (ROI), either a file containing a shapefile or an "sf" object

n Maximum number of samples to consider (integer)

crs CRS of the samples.

Value

A tibble with sample-to-sample and sample-to-prediction distances (object of class "distances").
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Note

As pointed out by Meyer and Pebesma, many classifications using machine learning assume that the
reference data are independent and well-distributed in space. In practice, many training samples are
strongly concentrated in some areas, and many large areas have no samples. This function compares
two distributions:

1. The distribution of the spatial distances of reference data to their nearest neighbor (sample-to-
sample.

2. The distribution of distances from all points of study area to the nearest reference data point
(sample-to-prediction).

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Meyer, H., Pebesma, E. "Machine learning-based global maps of ecological variables and the chal-
lenge of assessing them", Nature Communications 13, 2208 (2022). doi:10.1038/s4146702229838-
9.

Examples

if (sits_run_examples()) {
# read a shapefile for the state of Mato Grosso, Brazil
mt_shp <- system.file("extdata/shapefiles/mato_grosso/mt.shp",

package = "sits"
)
# convert to an sf object
mt_sf <- sf::read_sf(mt_shp)
# calculate sample-to-sample and sample-to-prediction distances
distances <- sits_geo_dist(

samples = samples_modis_ndvi,
roi = mt_sf

)
# plot sample-to-sample and sample-to-prediction distances
plot(distances)

}

https://doi.org/10.1038/s41467-022-29838-9
https://doi.org/10.1038/s41467-022-29838-9
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sits_get_class Get values from classified maps

Description

Given a set of lat/long locations and a classified cube, retrieve the class of each point. This function
is useful to obtain values from classified cubes for accuracy estimates.

Usage

sits_get_class(cube, samples)

## Default S3 method:
sits_get_class(cube, samples)

## S3 method for class 'csv'
sits_get_class(cube, samples)

## S3 method for class 'shp'
sits_get_class(cube, samples)

## S3 method for class 'sf'
sits_get_class(cube, samples)

## S3 method for class 'sits'
sits_get_class(cube, samples)

## S3 method for class 'data.frame'
sits_get_class(cube, samples)

Arguments

cube Classified data cube.

samples Location of the samples to be retrieved. Either a tibble of class "sits", an "sf" ob-
ject, the name of a shapefile or csv file, or a data.frame with columns "longitude"
and "latitude"

Value

A tibble of with columns <longitude, latitude, start_date, end_date, label>.

Note

There are four ways of specifying data to be retrieved using the samples parameter: (a) CSV file:
a CSV file with columns longitude, latitude; (b) SHP file: a shapefile in POINT geometry; (c)
sits object: A sits tibble; (d) sf object: An link[sf]{sf} object with POINT or geometry; (e)
data.frame: A data.frame with longitude and latitude.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# obtain the a set of points for sampling
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
# get the classification values for a selected set of locations
labels_samples <- sits_get_class(label_cube, ground_truth)

}

sits_get_data Get time series from data cubes and cloud services

Description

Retrieve a set of time series from a data cube and and put the result in a sits tibble, which
contains both the satellite image time series and their metadata.

There are five options for the specifying the input samples parameter:

• A CSV file: see sits_get_data.csv.
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• A shapefile: see sits_get_data.shp.

• An sf object: see sits_get_data.sf.

• A sits tibble: see sits_get_data.sits.

• A data.frame: see sits_get_data.data.frame.

Usage

sits_get_data(cube, samples, ...)

## Default S3 method:
sits_get_data(cube, samples, ...)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").

samples Location of the samples to be retrieved. Either a tibble of class "sits", an "sf" ob-
ject, the name of a shapefile or csv file, or a data.frame with columns "longitude"
and "latitude".

... Specific parameters for each input.

Value

A tibble of class "sits" with set of time series <longitude, latitude, start_date, end_date, label,
time_series>.

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.
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To be able to build a machine learning model to classify a data cube, one needs to use a set of
labelled time series. These time series are created by taking a set of known samples, expressed as
labelled points or polygons. This sits_get_data function uses these samples to extract time series
from a data cube. It needs a cube parameter which points to a regularized data cube, and a samples
parameter that describes the locations of the training set.

Author(s)

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# reading a lat/long from a local cube
# create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
samples <- tibble::tibble(longitude = -55.66738, latitude = -11.76990)
point_ndvi <- sits_get_data(raster_cube, samples)
#
# reading samples from a cube based on a CSV file
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
points <- sits_get_data(cube = raster_cube, samples = csv_file)

# reading a shapefile from BDC (Brazil Data Cube)
bdc_cube <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
bands = c("NDVI", "EVI"),
tiles = c("007004", "007005"),
start_date = "2018-09-01",
end_date = "2018-10-28"

)
# define a shapefile to be read from the cube
shp_file <- system.file("extdata/shapefiles/bdc-test/samples.shp",

package = "sits"
)
# get samples from the BDC based on the shapefile
time_series_bdc <- sits_get_data(

cube = bdc_cube,
samples = shp_file

)
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}

sits_get_data.csv Get time series using CSV files

Description

Retrieve a set of time series from a data cube and and put the result in a "sits tibble", which contains
both the satellite image time series and their metadata. The samples parameter must point to a file
with extension ".csv", with mandatory columns longitude, latitude, label, start_date and
end_date.

Usage

## S3 method for class 'csv'
sits_get_data(
cube,
samples,
...,
bands = NULL,
crs = "EPSG:4326",
impute_fn = impute_linear(),
multicores = 2L,
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").

samples Location of a csv file.

... Specific parameters for each kind of input.

bands Bands to be retrieved - optional.

crs A character with the samples crs. Default is "EPSG:4326".

impute_fn Imputation function to remove NA.

multicores Number of threads to process the time series (integer, with min = 1 and max =
2048).

progress Logical: show progress bar?

Value

A tibble of class "sits" with set of time series and metadata with <longitude, latitude, start_date,
end_date, label, time_series>.
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Examples

if (sits_run_examples()) {
# reading a lat/long from a local cube
# create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# reading samples from a cube based on a CSV file
csv_file <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
points <- sits_get_data(cube = raster_cube, samples = csv_file)

}

sits_get_data.data.frame

Get time series using sits objects

Description

Retrieve a set of time series from a data cube and and put the result in a sits tibble. The
samples parameter should be a data.frame which which contains mandatory columns longitude
and latitude, and optional columns start_date, end_date and label for each sample.

Usage

## S3 method for class 'data.frame'
sits_get_data(
cube,
samples,
...,
start_date = NULL,
end_date = NULL,
bands = NULL,
impute_fn = impute_linear(),
label = "NoClass",
crs = "EPSG:4326",
multicores = 2,
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").
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samples A data.frame with mandatory columns longitude, and latitude, and optional
columns start_date, end_date, label.

... Specific parameters for specific cases.

start_date Start of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

end_date End of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

bands Bands to be retrieved - optional.

impute_fn Imputation function to remove NA.

label Label to be assigned to all time series if column label is not provided in the
data.frame.

crs A character with the samples crs. Default is "EPSG:4326".

multicores Number of threads to process the time series (integer, with min = 1 and max =
2048).

progress Logical: show progress bar?

Value

A tibble of class "sits" with set of time series <longitude, latitude, start_date, end_date, label>.

Examples

if (sits_run_examples()) {
# create a cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
raster_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# read a lat/long from a local cube
samples <- data.frame(longitude = -55.66738, latitude = -11.76990)
point_ndvi <- sits_get_data(raster_cube, samples)

}

sits_get_data.sf Get time series using sf objects

Description

Retrieve a set of time series from a data cube and and put the result in a "sits tibble", which contains
both the satellite image time series and their metadata. The samples parameter must be a sf object
in POINT or POLYGON geometry. If start_date and end_date are not informed, the function
uses these data from the cube.



sits_get_data.sf 121

Usage

## S3 method for class 'sf'
sits_get_data(
cube,
samples,
...,
start_date = NULL,
end_date = NULL,
bands = NULL,
impute_fn = impute_linear(),
label = "NoClass",
label_attr = NULL,
n_sam_pol = 30L,
pol_avg = FALSE,
sampling_type = "random",
multicores = 2L,
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").

samples The name of a shapefile.

... Specific parameters for specific cases.

start_date Start of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

end_date End of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

bands Bands to be retrieved - optional (character vector).

impute_fn Imputation function to remove NA.

label Label to be assigned to all time series - optional

label_attr Attribute in the sf object to be used as a polygon label.

n_sam_pol Number of samples per polygon to be read for POLYGON or MULTIPOLY-
GON objects.

pol_avg Logical: summarize samples for each polygon?

sampling_type Spatial sampling type: random, hexagonal, regular, or Fibonacci.

multicores Number of threads to process the time series (integer, with min = 1 and max =
2048).

progress Logical: show progress bar?

Value

A tibble of class "sits" with set of time series <longitude, latitude, start_date, end_date, label>.
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Note

For sf objects, the following parameters are relevant:

• label: label to be assigned to the samples. Should only be used if all geometries have a single
label.

• label_attr: defines which attribute should be used as a label, required for POINT and POLY-
GON geometries if label has not been set.

• n_sam_pol: indicates how many points are extracted from each polygon, required for POLY-
GON geometry (default = 15).

• sampling_type: defines how sampling is done, required for POLYGON geometry (default =
"random").

• pol_avg: indicates if average of values for POLYGON geometry should be computed (default
= "FALSE").

Examples

if (sits_run_examples()) {
# reading a shapefile from BDC (Brazil Data Cube)
bdc_cube <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
bands = c("NDVI", "EVI"),
tiles = c("007004", "007005"),
start_date = "2018-09-01",
end_date = "2018-10-28"

)
# define a shapefile to be read from the cube
shp_file <- system.file("extdata/shapefiles/bdc-test/samples.shp",

package = "sits"
)
# read a shapefile into an sf object
sf_object <- sf::st_read(shp_file)
# get samples from the BDC using an sf object
time_series_bdc <- sits_get_data(

cube = bdc_cube,
samples = sf_object

)
}

sits_get_data.shp Get time series using shapefiles

Description

Retrieve a set of time series from a data cube and and put the result in a sits tibble, which
contains both the satellite image time series and their metadata. The samples parameter must point
to a file with extension ".shp" which should be a valid shapefile in POINT or POLYGON geometry.
If start_date and end_date are not informed, the function uses these data from the cube.
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Usage

## S3 method for class 'shp'
sits_get_data(
cube,
samples,
...,
start_date = NULL,
end_date = NULL,
bands = NULL,
impute_fn = impute_linear(),
label = "NoClass",
label_attr = NULL,
n_sam_pol = 30L,
pol_avg = FALSE,
sampling_type = "random",
multicores = 2L,
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").

samples The name of a shapefile.

... Specific parameters for specific cases.

start_date Start of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

end_date End of the interval for the time series - optional (Date in "YYYY-MM-DD"
format).

bands Bands to be retrieved - optional

impute_fn Imputation function to remove NA.

label Label to be assigned to all time series - optional

label_attr Attribute in the shapefile to be used as a polygon label.

n_sam_pol Number of samples per polygon to be read for POLYGON or MULTIPOLY-
GON shapefiles.

pol_avg Logical: summarize samples for each polygon?

sampling_type Spatial sampling type: random, hexagonal, regular, or Fibonacci.

multicores Number of threads to process the time series (integer, with min = 1 and max =
2048).

progress Logical: show progress bar?

Value

A tibble of class "sits" with set of time series and metadata <longitude, latitude, start_date, end_date,
label, time_series>.
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Note

For shapefiles, the following parameters are relevant:

• label: label to be assigned to the samples. Should only be used if all geometries have a single
label.

• label_attr: defines which attribute should be used as a label, required for POINT and POLY-
GON geometries if label has not been set.

• n_sam_pol: indicates how many points are extracted from each polygon, required for POLY-
GON geometry (default = 15).

• sampling_type: defines how sampling is done, required for POLYGON geometry (default =
"random").

• pol_avg: indicates if average of values for POLYGON geometry should be computed (default
= "FALSE").

Examples

if (sits_run_examples()) {
# reading a shapefile from BDC (Brazil Data Cube)
bdc_cube <- sits_cube(

source = "BDC",
collection = "CBERS-WFI-16D",
bands = c("NDVI", "EVI"),
tiles = c("007004", "007005"),
start_date = "2018-09-01",
end_date = "2018-10-28"

)
# define a shapefile to be read from the cube
shp_file <- system.file("extdata/shapefiles/bdc-test/samples.shp",

package = "sits"
)
# get samples from the BDC based on the shapefile
time_series_bdc <- sits_get_data(

cube = bdc_cube,
samples = shp_file

)
}

sits_get_data.sits Get time series using sits objects

Description

Retrieve a set of time series from a data cube and and put the result in a sits tibble. The samples
parameter should be a valid sits tibble which which contains columns longitude, latitude,
start_date, end_date and label for each sample.
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Usage

## S3 method for class 'sits'
sits_get_data(
cube,
samples,
...,
bands = NULL,
crs = "EPSG:4326",
impute_fn = impute_linear(),
multicores = 2L,
progress = FALSE

)

Arguments

cube Data cube from where data is to be retrieved. (tibble of class "raster_cube").

samples Location of the samples to be retrieved. Either a tibble of class "sits", an "sf" ob-
ject, the name of a shapefile or csv file, or a data.frame with columns "longitude"
and "latitude".

... Specific parameters for specific cases.

bands Bands to be retrieved - optional.

crs A character with the samples crs. Default is "EPSG:4326".

impute_fn Imputation function to remove NA.

multicores Number of threads to process the time series (integer, with min = 1 and max =
2048).

progress Logical: show progress bar?

Value

A tibble of class "sits" with set of time series <longitude, latitude, start_date, end_date, label>.

sits_get_probs Get values from probability maps

Description

Given a set of lat/long locations and a probability cube, retrieve the prob values of each point.
This function is useful to estimate probability distributions and to assess the differences between
classifiers.
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Usage

sits_get_probs(cube, samples, window_size = NULL)

## S3 method for class 'csv'
sits_get_probs(cube, samples, window_size = NULL)

## S3 method for class 'shp'
sits_get_probs(cube, samples, window_size = NULL)

## S3 method for class 'sf'
sits_get_probs(cube, samples, window_size = NULL)

## S3 method for class 'sits'
sits_get_probs(cube, samples, window_size = NULL)

## S3 method for class 'data.frame'
sits_get_probs(cube, samples, window_size = NULL)

## Default S3 method:
sits_get_probs(cube, samples, window_size = NULL)

Arguments

cube Probability data cube.

samples Location of the samples to be retrieved. Either a tibble of class "sits", an "sf"
object with POINT geometry, the location of a POINT shapefile, the location of
csv file with columns "longitude" and "latitude", or a data.frame with columns
"longitude" and "latitude"

window_size Size of window around pixel (optional)

Value

A tibble of with columns <longitude, latitude, values> in case no windows are requested and <lon-
gitude, latitude, neighbors> in case windows are requested

Note

There are four ways of specifying data to be retrieved using the samples parameter:

• CSV: a CSV file with columns longitude, latitude.

• SHP: a shapefile in POINT geometry.

• sf object: An link[sf]{sf} object with POINT geometry.

• sits object: A valid tibble with sits timeseries.

• data.frame: A data.frame with longitude and latitude.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# obtain the a set of points for sampling
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",

package = "sits"
)
# get the classification values for a selected set of locations
probs_samples <- sits_get_probs(probs_cube, ground_truth)

}

sits_impute Replace NA values in time series with imputation function

Description

Remove NA

Usage

sits_impute(samples, impute_fn = impute_linear())

Arguments

samples A time series tibble

impute_fn Imputation function

Value

A set of filtered time series using the imputation function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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sits_kfold_validate Cross-validate time series samples

Description

Splits the set of time series into training and validation and perform k-fold cross-validation.

Usage

sits_kfold_validate(
samples,
folds = 5L,
ml_method = sits_rfor(),
filter_fn = NULL,
impute_fn = impute_linear(),
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
progress = TRUE

)

Arguments

samples Time series.

folds Number of partitions to create.

ml_method Machine learning method.

filter_fn Smoothing filter to be applied - optional (closure containing object of class
"function").

impute_fn Imputation function to remove NA.

multicores Number of cores to process in parallel.

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.

progress Logical: Show progress bar?

Value

A caret::confusionMatrix object to be used for validation assessment.

Note

Cross-validation is a technique for assessing how the results of a statistical analysis will generalize
to an independent data set. It is mainly used in settings where the goal is prediction, and one wants
to estimate how accurately a predictive model will perform. One round of cross-validation involves
partitioning a sample of data into complementary subsets, performing the analysis on one subset
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(called the training set), and validating the analysis on the other subset (called the validation set or
testing set).

The k-fold cross validation method involves splitting the dataset into k-subsets. For each subset is
held out while the model is trained on all other subsets. This process is completed until accuracy is
determine for each instance in the dataset, and an overall accuracy estimate is provided.

This function returns the confusion matrix, and Kappa values.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# A dataset containing a tibble with time series samples
# for the Mato Grosso state in Brasil
# create a list to store the results
results <- list()
# accuracy assessment lightTAE
acc_rfor <- sits_kfold_validate(

samples_modis_ndvi,
folds = 5,
ml_method = sits_rfor()

)
# use a name
acc_rfor$name <- "Rfor"
# put the result in a list
results[[length(results) + 1]] <- acc_rfor
# save to xlsx file
sits_to_xlsx(

results,
file = tempfile("accuracy_mato_grosso_dl_", fileext = ".xlsx")

)
}

sits_labels Get labels associated to a data set

Description

Finds labels in a sits tibble or data cube
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Usage

sits_labels(data)

## S3 method for class 'sits'
sits_labels(data)

## S3 method for class 'derived_cube'
sits_labels(data)

## S3 method for class 'derived_vector_cube'
sits_labels(data)

## S3 method for class 'raster_cube'
sits_labels(data)

## S3 method for class 'patterns'
sits_labels(data)

## S3 method for class 'sits_model'
sits_labels(data)

## Default S3 method:
sits_labels(data)

Arguments

data Time series (tibble of class "sits"), patterns (tibble of class "patterns"), data cube
(tibble of class "raster_cube"), or model (closure of class "sits_model").

Value

The labels of the input data (character vector).

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# get the labels for a time series set
labels_ts <- sits_labels(samples_modis_ndvi)
# get labels for a set of patterns
labels_pat <- sits_labels(sits_patterns(samples_modis_ndvi))
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# get lables for the model
labels_mod <- sits_labels(rfor_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
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cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# get the labels for a probs cube
labels_probs <- sits_labels(probs_cube)

}

sits_labels<- Change the labels of a set of time series

Description

Given a sits tibble with a set of labels, renames the labels to the specified in value.

Usage

sits_labels(data) <- value

Arguments

data Data cube or time series.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.

Value

A sits tibble or data cube with modified labels.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

# show original samples ("Cerrado" and "Pasture")
sits_labels(cerrado_2classes)
# rename label samples to "Savanna" and "Grasslands"
sits_labels(cerrado_2classes) <- c("Savanna", "Grasslands")
# see the change
sits_labels(cerrado_2classes)
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sits_labels<-.class_cube

Change the labels of a classified raster cube

Description

Change the labels of a classified raster cube

Usage

## S3 replacement method for class 'class_cube'
sits_labels(data) <- value

Arguments

data Classified raster data cube.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.

sits_labels<-.class_vector_cube

Change the labels of a class vector data cube

Description

A "class_vector_cube" is a data cube with a set of segments that contain the probability values of
each class for each polygon and also list the most probable class. When a user changes the labels
of the class, this function modifies the labels associated to the cube’s metadata and also changes the
names in the segments file. The GPKG file containing the segments and the probability values is
replace with a new file with the desired labels.

Usage

## S3 replacement method for class 'class_vector_cube'
sits_labels(data) <- value

Arguments

data Class vector data cube.

value A character vector used to convert labels.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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sits_labels<-.default Change the labels of other data structures

Description

Change the labels of other data structures

Usage

## Default S3 replacement method:
sits_labels(data) <- value

Arguments

data Data cube or time series.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.

sits_labels<-.probs_cube

Change the labels of a probs raster cube

Description

Change the labels of a probs raster cube

Usage

## S3 replacement method for class 'probs_cube'
sits_labels(data) <- value

Arguments

data Raster cube with probability values.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.
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sits_labels<-.probs_vector_cube

Change the labels of a probs vector data cube

Description

A "probs_vector_cube" is a data cube with a set of segments that contain the probability values of
each class for each polygon. When a user changes the labels of the class, this function modifies
the labels associated to the cube’s metadata and also changes the names in the segments file. The
GPKG file containing the segments and the probability values is replace with a new file with the
desired labels.

Usage

## S3 replacement method for class 'probs_vector_cube'
sits_labels(data) <- value

Arguments

data Probs vector data cube.

value A character vector used to convert labels.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

sits_labels<-.sits Change the labels of a set of time series

Description

Change the labels of a set of time series

Usage

## S3 replacement method for class 'sits'
sits_labels(data) <- value

Arguments

data Time series.

value A character vector used to convert labels. Labels will be renamed to the respec-
tive value positioned at the labels order returned by sits_labels.
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sits_labels_summary Inform label distribution of a set of time series

Description

Describes labels in a sits tibble

Usage

sits_labels_summary(data)

## S3 method for class 'sits'
sits_labels_summary(data)

Arguments

data Data.frame - Valid sits tibble

Value

A tibble with the frequency of each label.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

# read a tibble with 400 samples of Cerrado and 346 samples of Pasture
data(cerrado_2classes)
# print the labels
sits_labels_summary(cerrado_2classes)

sits_label_classification

Build a labelled image from a probability cube

Description

Takes a set of classified raster layers with probabilities, and labels them based on the maximum
probability for each pixel. This function is the final step of main the land classification workflow.
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Usage

sits_label_classification(cube, ...)

## S3 method for class 'probs_cube'
sits_label_classification(
cube,
...,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE

)

## S3 method for class 'probs_vector_cube'
sits_label_classification(
cube,
...,
output_dir,
version = "v1",
progress = TRUE

)

## S3 method for class 'raster_cube'
sits_label_classification(cube, ...)

## S3 method for class 'derived_cube'
sits_label_classification(cube, ...)

## Default S3 method:
sits_label_classification(cube, ...)

Arguments

cube Classified image data cube.

... Other parameters for specific functions.

memsize maximum overall memory (in GB) to label the classification.

multicores Number of workers to label the classification in parallel.

output_dir Output directory for classified files.

version Version of resulting image (in the case of multiple runs).

progress Show progress bar?

Value

A data cube with an image with the classified map.
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Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Souza, <felipe.souza@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)

https://e-sensing.github.io/sitsbook/
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# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_lightgbm Train light gradient boosting model

Description

Use LightGBM algorithm to classify samples. This function is a front-end to the lightgbm pack-
age. LightGBM (short for Light Gradient Boosting Machine) is a gradient boosting framework
developed by Microsoft that’s designed for fast, scalable, and efficient training of decision tree-
based models. It is widely used in machine learning for classification, regression, ranking, and
other tasks, especially with large-scale data.

Usage

sits_lightgbm(
samples = NULL,
boosting_type = "gbdt",
objective = "multiclass",
min_samples_leaf = 20,
max_depth = 6,
learning_rate = 0.1,
num_iterations = 100,
n_iter_no_change = 10,
validation_split = 0.2,
...

)

Arguments

samples Time series with the training samples.

boosting_type Type of boosting algorithm (default = "gbdt")

objective Aim of the classifier (default = "multiclass").
min_samples_leaf

Minimal number of data in one leaf. Can be used to deal with over-fitting.

max_depth Limit the max depth for tree model.

learning_rate Shrinkage rate for leaf-based algorithm.

num_iterations Number of iterations to train the model.
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n_iter_no_change

Number of iterations without improvements until training stops.
validation_split

Fraction of the training data for validation. The model will set apart this fraction
and will evaluate the loss and any model metrics on this data at the end of each
epoch.

... Other parameters to be passed to ‘lightgbm::lightgbm‘ function.

Value

Model fitted to input data (to be passed to sits_classify).

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train a random forest model
lgb_model <- sits_train(samples_modis_ndvi,

ml_method = sits_lightgbm
)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = lgb_model
)
plot(point_class)

}

sits_lighttae Train a model using Lightweight Temporal Self-Attention Encoder

Description

Implementation of Light Temporal Attention Encoder (L-TAE) for satellite image time series. This
is a lightweight version of the temporal attention encoder proposed by Garnot et al. For the TAE,
please see sits_tae.

TAE is a simplified version of the well-known self-attention architecture which is used in large
language models. Its modified self-attention scheme that uses the input embeddings as values. TAE
defines a single master query for each sequence, computed from the temporal average of the queries.
This master query is compared to the sequence of keys to produce a single attention mask used to
weight the temporal mean of values into a single feature vector.
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The lightweight version of TAE further simplifies the TAE model. It defines master query of each
head as a model parameter instead of the results of a linear layer, as is done it TAE. The authors
argue that such simplification reduces the number of parameters, while the lack of flexibility is
compensated by the larger number of available heads.

Usage

sits_lighttae(
samples = NULL,
samples_validation = NULL,
epochs = 150L,
batch_size = 128L,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 5e-04, eps = 1e-08, weight_decay = 7e-04),
lr_decay_epochs = 50L,
lr_decay_rate = 1,
patience = 20L,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)

Arguments

samples Time series with the training samples (tibble of class "sits").
samples_validation

Time series with the validation samples (tibble of class "sits"). If samples_validation
parameter is provided, validation_split is ignored.

epochs Number of iterations to train the model (integer, min = 1, max = 20000).

batch_size Number of samples per gradient update (integer, min = 16L, max = 2048L)
validation_split

Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization rate.

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.



sits_lighttae 141

Value

A fitted model to be used for classification of data cubes.

Note

sits provides a set of default values for all classification models. These settings have been chosen
based on testing by the authors. Nevertheless, users can control all parameters for each model.
Novice users can rely on the default values, while experienced ones can fine-tune deep learning
models using sits_tuning.

This function is based on the paper by Vivien Garnot referenced below and code available on github
at https://github.com/VSainteuf/lightweight-temporal-attention-pytorch If you use
this method, please cite the original TAE and the LTAE paper.

We also used the code made available by Maja Schneider in her work with Marco Körner referenced
below and available at https://github.com/maja601/RC2020-psetae.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

References

Vivien Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata, "Satellite Image Time
Series Classification with Pixel-Set Encoders and Temporal Self-Attention", 2020 Conference on
Computer Vision and Pattern Recognition. pages 12322-12331. doi:10.1109/CVPR42600.2020.01234

Vivien Garnot, Loic Landrieu, "Lightweight Temporal Self-Attention for Classifying Satellite Im-
ages Time Series", arXiv preprint arXiv:2007.00586, 2020.

Schneider, Maja; Körner, Marco, "[Re] Satellite Image Time Series Classification with Pixel-Set
Encoders and Temporal Self-Attention." ReScience C 7 (2), 2021. doi:10.5281/zenodo.4835356

Examples

if (sits_run_examples()) {
# create a lightTAE model
torch_model <- sits_train(samples_modis_ndvi, sits_lighttae())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = torch_model, output_dir = tempdir()

https://github.com/VSainteuf/lightweight-temporal-attention-pytorch
https://github.com/maja601/RC2020-psetae
https://doi.org/10.1109/CVPR42600.2020.01234
https://doi.org/10.5281/zenodo.4835356
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)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_list_collections List the cloud collections supported by sits

Description

Prints the collections available in each cloud service supported by sits. Users can select to get
information only for a single service by using the source parameter.

Usage

sits_list_collections(source = NULL)

Arguments

source Data source to be shown in detail.

Value

Prints collections available in each cloud service supported by sits.

Examples

if (sits_run_examples()) {
# show the names of the colors supported by SITS
sits_list_collections()

}
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sits_lstm_fcn Train a Long Short Term Memory Fully Convolutional Network

Description

Uses a branched neural network consisting of a lstm (long short term memory) branch and a three-
layer fully convolutional branch (FCN) followed by concatenation to classify time series data.

This function is based on the paper by Fazle Karim, Somshubra Majumdar, and Houshang Darabi.
If you use this method, please cite the original LSTM with FCN paper.

The original python code is available at the website https://github.com/titu1994/LSTM-FCN.
This code is licensed as GPL-3.

Usage

sits_lstm_fcn(
samples = NULL,
samples_validation = NULL,
cnn_layers = c(128, 256, 128),
cnn_kernels = c(8, 5, 3),
lstm_width = 8,
lstm_dropout = 0.8,
epochs = 50,
batch_size = 64,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 5e-04, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1,
lr_decay_rate = 0.95,
patience = 20,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

cnn_layers Number of 1D convolutional filters per layer

cnn_kernels Size of the 1D convolutional kernels.

lstm_width Number of neurons in the lstm hidden layer.

lstm_dropout Dropout rate of the lstm layer.

epochs Number of iterations to train the model.

https://github.com/titu1994/LSTM-FCN
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batch_size Number of samples per gradient update.
validation_split

Fraction of training data to be used for validation.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Author(s)

Alexandre Assuncao, <alexcarssuncao@gmail.com>

References

F. Karim, S. Majumdar, H. Darabi and S. Chen, "LSTM Fully Convolutional Networks for Time Se-
ries Classification," in IEEE Access, vol. 6, pp. 1662-1669, 2018, doi:10.1109/ACCESS.2017.2779939.

sits_merge Merge two data sets (time series or cubes)

Description

To merge two series, we consider that they contain different attributes but refer to the same data
cube and spatiotemporal location. This function is useful for merging different bands of the same
location. For example, one may want to put the raw and smoothed bands for the same set of
locations in the same tibble.

In the case of data cubes, the function merges the images based on the following conditions:

1. If the two cubes have different bands but compatible timelines, the bands are combined, and
the timeline is adjusted to overlap. To create the overlap, we align the timelines like a "zip-
per": for each interval defined by a pair of consecutive dates in the first timeline, we include
matching dates from the second timeline. If the second timeline has multiple dates in the same
interval, only the minimum date is kept. This ensures the final timeline avoids duplicates and
is consistent. This is useful when merging data from different sensors (e.g., Sentinel-1 with
Sentinel-2).

https://doi.org/10.1109/ACCESS.2017.2779939


sits_merge 145

2. If the bands are the same, the cube will have the combined timeline of both cubes. This is
useful for merging data from the same sensors from different satellites (e.g., Sentinel-2A with
Sentinel-2B).

3. otherwise, the function will produce an error.

Usage

sits_merge(data1, data2, ...)

## S3 method for class 'sits'
sits_merge(data1, data2, ..., suffix = c(".1", ".2"))

## S3 method for class 'raster_cube'
sits_merge(data1, data2, ...)

## Default S3 method:
sits_merge(data1, data2, ...)

Arguments

data1 Time series (tibble of class "sits") or data cube (tibble of class "raster_cube") .

data2 Time series (tibble of class "sits") or data cube (tibble of class "raster_cube") .

... Additional parameters

suffix If data1 and data2 are tibble with duplicate bands, this suffix will be added
(character vector).

Value

merged data sets (tibble of class "sits" or tibble of class "raster_cube")

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Examples

if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit, suffix = c("", ".WHIT"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

}
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sits_mgrs_to_roi Convert MGRS tile information to ROI in WGS84

Description

Takes a list of MGRS tiles and produces a ROI covering them

Usage

sits_mgrs_to_roi(tiles)

Arguments

tiles Character vector with names of MGRS tiles

Value

roi Valid ROI to use in other SITS functions

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@gmail.com>

sits_mixture_model Multiple endmember spectral mixture analysis

Description

Create a multiple endmember spectral mixture analyses fractions images. We use the non-negative
least squares (NNLS) solver to calculate the fractions of each endmember. The NNLS was imple-
mented by Jakob Schwalb-Willmann in RStoolbox package (licensed as GPL>=3).

Usage

sits_mixture_model(data, endmembers, ...)

## S3 method for class 'sits'
sits_mixture_model(
data,
endmembers,
...,
rmse_band = TRUE,
multicores = 2L,
progress = TRUE



sits_mixture_model 147

)

## S3 method for class 'raster_cube'
sits_mixture_model(
data,
endmembers,
...,
rmse_band = TRUE,
memsize = 4L,
multicores = 2L,
output_dir,
progress = TRUE

)

## S3 method for class 'derived_cube'
sits_mixture_model(data, endmembers, ...)

## S3 method for class 'tbl_df'
sits_mixture_model(data, endmembers, ...)

## Default S3 method:
sits_mixture_model(data, endmembers, ...)

Arguments

data A sits data cube or a sits tibble.

endmembers Reference spectral endmembers. (see details below).

... Parameters for specific functions.

rmse_band A boolean indicating whether the error associated with the linear model should
be generated. If true, a new band with errors for each pixel is generated using
the root mean square measure (RMSE). Default is TRUE.

multicores Number of cores to be used for generate the mixture model.

progress Show progress bar? Default is TRUE.

memsize Memory available for the mixture model (in GB).

output_dir Directory for output images.

Value

In case of a cube, a sits cube with the fractions of each endmember will be returned. The sum
of all fractions is restricted to 1 (scaled from 0 to 10000), corresponding to the abundance of the
endmembers in the pixels. In case of a sits tibble, the time series will be returned with the values
corresponding to each fraction.

Note

Many pixels in images of medium-resolution satellites such as Landsat or Sentinel-2 contain a mix-
ture of spectral responses of different land cover types. In many applications, it is desirable to
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obtain the proportion of a given class inside a mixed pixel. For this purpose, the literature pro-
poses mixture models; these models represent pixel values as a combination of multiple pure land
cover types. Assuming that the spectral response of pure land cover classes (called endmembers) is
known, spectral mixture analysis derives new bands containing the proportion of each endmember
inside a pixel.

The endmembers parameter should be a tibble, csv or a shapefile. endmembers parameter must have
the following columns: type, which defines the endmembers that will be created and the columns
corresponding to the bands that will be used in the mixture model. The band values must follow the
product scale. For example, in the case of sentinel-2 images the bands should be in the range 0 to
1. See the example in this documentation for more details.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Rolf Simoes, <rolfsimoes@gmail.com>

References

RStoolbox R package.

Examples

if (sits_run_examples()) {
# Create a sentinel-2 cube
s2_cube <- sits_cube(

source = "AWS",
collection = "SENTINEL-2-L2A",
tiles = "20LKP",
bands = c("B02", "B03", "B04", "B8A", "B11", "B12", "CLOUD"),
start_date = "2019-06-13",
end_date = "2019-06-30"

)
# create a directory to store the regularized file
reg_dir <- paste0(tempdir(), "/mix_model")
dir.create(reg_dir)
# Cube regularization for 16 days and 160 meters
reg_cube <- sits_regularize(

cube = s2_cube,
period = "P16D",
res = 160,
roi = c(

lon_min = -65.54870165,
lat_min = -10.63479162,
lon_max = -65.07629670,
lat_max = -10.36046639

),
multicores = 2,
output_dir = reg_dir

)
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# Create the endmembers tibble
em <- tibble::tribble(

~class, ~B02, ~B03, ~B04, ~B8A, ~B11, ~B12,
"forest", 0.02, 0.0352, 0.0189, 0.28, 0.134, 0.0546,
"land", 0.04, 0.065, 0.07, 0.36, 0.35, 0.18,
"water", 0.07, 0.11, 0.14, 0.085, 0.004, 0.0026

)

# Generate the mixture model
mm <- sits_mixture_model(

data = reg_cube,
endmembers = em,
memsize = 4,
multicores = 2,
output_dir = tempdir()

)
}

sits_mlp Train multi-layer perceptron models using torch

Description

Use a multi-layer perceptron algorithm to classify data. This function uses the R "torch" and "luz"
packages. Please refer to the documentation of those package for more details.

Usage

sits_mlp(
samples = NULL,
samples_validation = NULL,
layers = c(512L, 512L, 512L),
dropout_rates = c(0.2, 0.3, 0.4),
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
epochs = 100L,
batch_size = 64L,
validation_split = 0.2,
patience = 20L,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)
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Arguments

samples Time series with the training samples.

samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

layers Vector with number of hidden nodes in each layer.

dropout_rates Vector with the dropout rates (0,1) for each layer.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability.. weight_decay: L2
regularization

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.

validation_split

Number between 0 and 1. Fraction of the training data for validation. The model
will set apart this fraction and will evaluate the loss and any model metrics on
this data at the end of each epoch.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A torch mlp model to be used for classification.

Note

sits provides a set of default values for all classification models. These settings have been chosen
based on testing by the authors. Nevertheless, users can control all parameters for each model.
Novice users can rely on the default values, while experienced ones can fine-tune deep learning
models using sits_tuning.

The default parameters for the MLP have been chosen based on the work by Wang et al. 2017 that
takes multilayer perceptrons as the baseline for time series classifications: (a) Three layers with 512
neurons each, specified by the parameter ‘layers‘; (b) dropout rates of 10 (c) the "optimizer_adam"
as optimizer (default value); (d) a number of training steps (‘epochs‘) of 100; (e) a ‘batch_size‘
of 64, which indicates how many time series are used for input at a given steps; (f) a validation
percentage of 20 will be randomly set side for validation. (g) The "relu" activation function.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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References

Zhiguang Wang, Weizhong Yan, and Tim Oates, "Time series classification from scratch with
deep neural networks: A strong baseline", 2017 international joint conference on neural networks
(IJCNN).

Examples

if (sits_run_examples()) {
# create an MLP model
torch_model <- sits_train(

samples_modis_ndvi,
sits_mlp(epochs = 20, verbose = TRUE)

)
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = torch_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_model_export Export classification models

Description

Given a trained machine learning or deep learning model, exports the model as an object for further
exploration outside the sits package.
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Usage

sits_model_export(ml_model)

## S3 method for class 'sits_model'
sits_model_export(ml_model)

Arguments

ml_model A trained machine learning model

Value

An R object containing the model in the original format of machine learning or deep learning
package.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

if (sits_run_examples()) {
# create a classification model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# export the model
rfor_object <- sits_model_export(rfor_model)

}

sits_mosaic Mosaic classified cubes

Description

Creates a mosaic of all tiles of a sits cube. Mosaics can be created from both regularized ARD
images or from classified maps. In the case of ARD images, a mosaic will be produce for each
band/date combination. It is better to first regularize the data cubes and then use sits_mosaic.

Usage

sits_mosaic(
cube,
crs = "EPSG:3857",
roi = NULL,
multicores = 2L,
output_dir,
res = NULL,
version = "v1",
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progress = TRUE
)

Arguments

cube A sits data cube.

crs A target coordinate reference system of raster mosaic. The provided crs could
be a string (e.g, "EPSG:4326" or a proj4string), or an EPSG code number (e.g.
4326). Default is "EPSG:3857" - WGS 84 / Pseudo-Mercator.

roi Region of interest (see below).

multicores Number of cores that will be used to crop the images in parallel.

output_dir Directory for output images.

res Spatial resolution of the mosaic. Default is NULL.

version Version of resulting image (in the case of multiple tests)

progress Show progress bar? Default is TRUE.

Value

a sits cube with only one tile.

Note

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

The user should specify the CRS of the mosaic. We use "EPSG:3857" (Pseudo-Mercator) as the
default.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carlos, <efelipecarlos@gmail.com>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
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source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# create roi
roi <- sf::st_sfc(

sf::st_polygon(
list(rbind(

c(-55.64768, -11.68649),
c(-55.69654, -11.66455),
c(-55.62973, -11.61519),
c(-55.64768, -11.68649)

))
),
crs = "EPSG:4326"

)
# crop and mosaic classified image
mosaic_cube <- sits_mosaic(

cube = label_cube,
roi = roi,
crs = "EPSG:4326",
output_dir = tempdir()

)
}

sits_patterns Find temporal patterns associated to a set of time series

Description

This function takes a set of time series samples as input estimates a set of patterns. The patterns are
calculated using a GAM model. The idea is to use a formula of type y ~ s(x), where x is a temporal
reference and y if the value of the signal. For each time, there will be as many predictions as there
are sample values. The GAM model predicts a suitable approximation that fits the assumptions of
the statistical model, based on a smooth function.

This method is based on the "createPatterns" method of the R dtwSat package, which is also de-
scribed in the reference paper.
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Usage

sits_patterns(data = NULL, freq = 8L, formula = y ~ s(x), ...)

Arguments

data Time series.

freq Interval in days for estimates.

formula Formula to be applied in the estimate.

... Any additional parameters.

Value

Time series with patterns.

Author(s)

Victor Maus, <vwmaus1@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

References

Maus V, Camara G, Cartaxo R, Sanchez A, Ramos F, Queiroz GR. A Time-Weighted Dynamic
Time Warping Method for Land-Use and Land-Cover Mapping. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 9(8):3729-3739, August 2016. ISSN 1939-1404.
doi:10.1109/JSTARS.2016.2517118.

Maus, V., Câmara, G., Appel, M., & Pebesma, E. (2019). dtwSat: Time-Weighted Dynamic Time
Warping for Satellite Image Time Series Analysis in R. Journal of Statistical Software, 88(5), 1–31.
doi:10.18637/jss.v088.i05.

Examples

if (sits_run_examples()) {
patterns <- sits_patterns(cerrado_2classes)
plot(patterns)

}

https://doi.org/10.1109/JSTARS.2016.2517118
https://doi.org/10.18637/jss.v088.i05
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sits_predictors Obtain predictors for time series samples

Description

Predictors are X-Y values required for machine learning algorithms, organized as a data table where
each row corresponds to a training sample. The first two columns of the predictors table are cate-
gorical (label_id and label). The other columns are the values of each band and time, organized
first by band and then by time.

Usage

sits_predictors(samples)

Arguments

samples Time series in sits format (tibble of class "sits")

Value

The predictors for the sample: a data.frame with one row per sample.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Include a new machine learning function (multiple linear regression)
# function that returns mlr model based on a sits sample tibble

sits_mlr <- function(samples = NULL, formula = sits_formula_linear(),
n_weights = 20000, maxit = 2000) {

# create a training function
train_fun <- function(samples) {

# Data normalization
ml_stats <- sits_stats(samples)
train_samples <- sits_predictors(samples)
train_samples <- sits_pred_normalize(

pred = train_samples,
stats = ml_stats

)
formula <- formula(train_samples[, -1])
# call method and return the trained model
result_mlr <- nnet::multinom(

formula = formula,
data = train_samples,
maxit = maxit,
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MaxNWts = n_weights,
trace = FALSE,
na.action = stats::na.fail

)

# construct model predict closure function and returns
predict_fun <- function(values) {

# retrieve the prediction (values and probs)
prediction <- tibble::as_tibble(

stats::predict(result_mlr,
newdata = values,
type = "probs"

)
)
return(prediction)

}
class(predict_fun) <- c("sits_model", class(predict_fun))
return(predict_fun)

}
result <- sits_factory_function(samples, train_fun)
return(result)

}
# create an mlr model using a set of samples
mlr_model <- sits_train(samples_modis_ndvi, sits_mlr)
# classify a point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
point_class <- sits_classify(point_ndvi, mlr_model, multicores = 1)
plot(point_class)

}

sits_pred_features Obtain numerical values of predictors for time series samples

Description

Predictors are X-Y values required for machine learning algorithms, organized as a data table where
each row corresponds to a training sample. The first two columns of the predictors table are cate-
gorical ("label_id" and "label"). The other columns are the values of each band and time, organized
first by band and then by time. This function returns the numeric values associated to each sample.

Usage

sits_pred_features(pred)

Arguments

pred X-Y predictors: a data.frame with one row per sample.
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Value

The Y predictors for the sample: data.frame with one row per sample.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
pred <- sits_predictors(samples_modis_ndvi)
features <- sits_pred_features(pred)

}

sits_pred_normalize Normalize predictor values

Description

Most machine learning algorithms require data to be normalized. This applies to the "SVM" method
and to all deep learning ones. To normalize the predictors, it is required that the statistics per band
for each sample have been obtained by the "sits_stats" function.

Usage

sits_pred_normalize(pred, stats)

Arguments

pred X-Y predictors: a data.frame with one row per sample.

stats Values of time series for Q02 and Q98 of the data (list of numeric values with
two elements)

Value

A data.frame with normalized predictor values

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
stats <- sits_stats(samples_modis_ndvi)
pred <- sits_predictors(samples_modis_ndvi)
pred_norm <- sits_pred_normalize(pred, stats)

}
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sits_pred_references Obtain categorical id and predictor labels for time series samples

Description

Predictors are X-Y values required for machine learning algorithms, organized as a data table where
each row corresponds to a training sample. The first two columns of the predictors table are cate-
gorical ("label_id" and "label"). The other columns are the values of each band and time, organized
first by band and then by time. This function returns the numeric values associated to each sample.

Usage

sits_pred_references(pred)

Arguments

pred X-Y predictors: a data.frame with one row per sample.

Value

A character vector with labels associated to training samples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
pred <- sits_predictors(samples_modis_ndvi)
ref <- sits_pred_references(pred)

}

sits_pred_sample Obtain a fraction of the predictors data frame

Description

Many machine learning algorithms (especially deep learning) use part of the original samples as
test data to adjust its hyperparameters and to find an optimal point of convergence using gradient
descent. This function extracts a fraction of the predictors to serve as test values for the deep
learning algorithm.

Usage

sits_pred_sample(pred, frac)
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Arguments

pred X-Y predictors: a data.frame with one row per sample.

frac Fraction of the X-Y predictors to be extracted

Value

A data.frame with the chosen fraction of the X-Y predictors.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
pred <- sits_predictors(samples_modis_ndvi)
pred_frac <- sits_pred_sample(pred, frac = 0.5)

}

sits_reclassify Reclassify a classified cube

Description

Apply a set of named expressions to reclassify a classified image. The expressions should use
character values to refer to labels in logical expressions.

Usage

sits_reclassify(cube, ...)

## S3 method for class 'class_cube'
sits_reclassify(
cube,
...,
mask,
rules,
exclude_mask_na = TRUE,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE

)

## Default S3 method:
sits_reclassify(cube, ...)
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Arguments

cube Image cube to be reclassified (class = "class_cube")

... Other parameters for specific functions.

mask Image cube with additional information to be used in expressions (class = "class_cube").

rules Expressions to be evaluated (named list).
exclude_mask_na

Should cube pixels set to NA when NA values are found in mask pixels? (logi-
cal, default to TRUE)

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

output_dir Directory where files will be saved (character vector of length 1 with valid loca-
tion).

version Version of resulting image (character).

progress Set progress bar??

Value

An object of class "class_cube" (reclassified cube).

Note

Reclassification of a remote sensing map refers to changing the classes assigned to different pixels in
the image. Reclassification involves assigning new classes to pixels based on additional information
from a reference map. Users define rules according to the desired outcome. These rules are then
applied to the classified map to produce a new map with updated classes.

sits_reclassify() allow any valid R expression to compute/ reclassification. User should refer
to cube and mask to construct logical expressions. Users can use can use any R expression that
evaluates to logical. TRUE values will be relabeled to expression name. Updates are done in asyn-
chronous manner, that is, all expressions are evaluated using original classified values. Expressions
are evaluated sequentially and resulting values are assigned to output cube. Last expressions has
precedence over first ones.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Open mask map
data_dir <- system.file("extdata/raster/prodes", package = "sits")
prodes2021 <- sits_cube(

source = "USGS",
collection = "LANDSAT-C2L2-SR",
data_dir = data_dir,
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parse_info = c(
"X1", "X2", "tile", "start_date", "end_date",
"band", "version"

),
bands = "class",
version = "v20220606",
labels = c(

"1" = "Forest", "2" = "Water", "3" = "NonForest",
"4" = "NonForest2", "6" = "d2007", "7" = "d2008",
"8" = "d2009", "9" = "d2010", "10" = "d2011",
"11" = "d2012", "12" = "d2013", "13" = "d2014",
"14" = "d2015", "15" = "d2016", "16" = "d2017",
"17" = "d2018", "18" = "r2010", "19" = "r2011",
"20" = "r2012", "21" = "r2013", "22" = "r2014",
"23" = "r2015", "24" = "r2016", "25" = "r2017",
"26" = "r2018", "27" = "d2019", "28" = "r2019",
"29" = "d2020", "31" = "r2020", "32" = "Clouds2021",
"33" = "d2021", "34" = "r2021"

),
progress = FALSE

)
#' Open classification map
data_dir <- system.file("extdata/raster/classif", package = "sits")
ro_class <- sits_cube(

source = "MPC",
collection = "SENTINEL-2-L2A",
data_dir = data_dir,
parse_info = c(

"X1", "X2", "tile", "start_date", "end_date",
"band", "version"

),
bands = "class",
labels = c(

"1" = "ClearCut_Fire", "2" = "ClearCut_Soil",
"3" = "ClearCut_Veg", "4" = "Forest"

),
progress = FALSE

)
# Reclassify cube
ro_mask <- sits_reclassify(

cube = ro_class,
mask = prodes2021,
rules = list(

"Old_Deforestation" = mask %in% c(
"d2007", "d2008", "d2009",
"d2010", "d2011", "d2012",
"d2013", "d2014", "d2015",
"d2016", "d2017", "d2018",
"r2010", "r2011", "r2012",
"r2013", "r2014", "r2015",
"r2016", "r2017", "r2018",
"d2019", "r2019", "d2020",
"r2020", "r2021"
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),
"Water_Mask" = mask == "Water",
"NonForest_Mask" = mask %in% c("NonForest", "NonForest2")

),
memsize = 4,
multicores = 2,
output_dir = tempdir(),
version = "ex_reclassify"

)
}

sits_reduce Reduces a cube or samples from a summarization function

Description

Apply a temporal reduction from a named expression in cube or sits tibble. In the case of cubes, it
materializes a new band in output_dir. The result will be a cube with only one date with the raster
reduced from the function.

Usage

sits_reduce(data, ...)

## S3 method for class 'sits'
sits_reduce(data, ...)

## S3 method for class 'raster_cube'
sits_reduce(
data,
...,
impute_fn = impute_linear(),
memsize = 4L,
multicores = 2L,
output_dir,
progress = TRUE

)

Arguments

data Valid sits tibble or cube
... Named expressions to be evaluated (see details).
impute_fn Imputation function to remove NA values.
memsize Memory available for classification (in GB).
multicores Number of cores to be used for classification.
output_dir Directory where files will be saved.
progress Show progress bar?
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Details

sits_reduce() allows valid R expression to compute new bands. Use R syntax to pass an expres-
sion to this function. Besides arithmetic operators, you can use virtually any R function that can
be applied to elements of a matrix. The provided functions must operate at line level in order to
perform temporal reduction on a pixel.

sits_reduce() Applies a function to each row of a matrix. In this matrix, each row represents a
pixel and each column represents a single date. We provide some operations already implemented
in the package to perform the reduce operation. See the list of available functions below:

Value

A sits tibble or a sits cube with new bands, produced according to the requested expression.

Summarizing temporal functions

• t_max(): Returns the maximum value of the series.

• t_min(): Returns the minimum value of the series

• t_mean(): Returns the mean of the series.

• t_median(): Returns the median of the series.

• t_std(): Returns the standard deviation of the series.

• t_skewness(): Returns the skewness of the series.

• t_kurtosis(): Returns the kurtosis of the series.

• t_amplitude(): Returns the difference between the maximum and minimum values of the
cycle. A small amplitude means a stable cycle.

• t_fslope(): Returns the maximum value of the first slope of the cycle. Indicates when the
cycle presents an abrupt change in the curve. The slope between two values relates the speed
of the growth or senescence phases

• t_mse(): Returns the average spectral energy density. The energy of the time series is dis-
tributed by frequency.

• t_fqr(): Returns the value of the first quartile of the series (0.25).

• t_tqr(): Returns the value of the third quartile of the series (0.75).

• t_iqr(): Returns the interquartile range (difference between the third and first quartiles).

Note

The t_sum(), t_std(), t_skewness(), t_kurtosis, t_mse indexes generate values greater than
the limit of a two-byte integer. Therefore, we save the images generated by these as Float-32 with
no scale.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>
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Examples

if (sits_run_examples()) {
# Reduce summarization function

point2 <-
sits_select(point_mt_6bands, "NDVI") |>
sits_reduce(NDVI_MEDIAN = t_median(NDVI))

# Example of generation mean summarization from a cube
# Create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)

# Reduce NDVI band with mean function
cube_mean <- sits_reduce(

data = cube,
NDVIMEAN = t_mean(NDVI),
output_dir = tempdir()

)
}

sits_reduce_imbalance Reduce imbalance in a set of samples

Description

Takes a sits tibble with different labels and returns a new tibble. Deals with class imbalance using
the synthetic minority oversampling technique (SMOTE) for oversampling. Undersampling is done
using the SOM methods available in the sits package.

Usage

sits_reduce_imbalance(
samples,
n_samples_over = 200L,
n_samples_under = 400L,
method = "smote",
multicores = 2L

)

Arguments

samples Sample set to rebalance
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n_samples_over Number of samples to oversample for classes with samples less than this num-
ber.

n_samples_under

Number of samples to undersample for classes with samples more than this num-
ber.

method Method for oversampling (default = "smote")

multicores Number of cores to process the data (default 2).

Value

A sits tibble with reduced sample imbalance.

Note

Many training samples for Earth observation data analysis are imbalanced. This situation arises
when the distribution of samples associated with each label is uneven. Sample imbalance is an
undesirable property of a training set. Reducing sample imbalance improves classification accuracy.

The function sits_reduce_imbalance increases the number of samples of least frequent labels,
and reduces the number of samples of most frequent labels. To generate new samples, sits uses
the SMOTE method that estimates new samples by considering the cluster formed by the nearest
neighbors of each minority label.

To perform undersampling, sits_reduce_imbalance) builds a SOM map for each majority label
based on the required number of samples. Each dimension of the SOM is set to ceiling(sqrt(new_number_samples/4))
to allow a reasonable number of neurons to group similar samples. After calculating the SOM map,
the algorithm extracts four samples per neuron to generate a reduced set of samples that approxi-
mates the variation of the original one. See also sits_som_map.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

References

The reference paper on SMOTE is N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique”, Journal of artificial intelligence research,
321-357, 2002, doi:10.1613/jair.953.

The SOM map technique for time series is described in the paper: Lorena Santos, Karine Ferreira,
Gilberto Camara, Michelle Picoli, Rolf Simoes, “Quality control and class noise reduction of satel-
lite image time series”. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 177, pp 75-88,
2021. doi:10.1016/j.isprsjprs.2021.04.014.

Examples

if (sits_run_examples()) {
# print the labels summary for a sample set
summary(samples_modis_ndvi)
# reduce the sample imbalance
new_samples <- sits_reduce_imbalance(samples_modis_ndvi,

https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.isprsjprs.2021.04.014
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n_samples_over = 200,
n_samples_under = 200,
multicores = 1

)
# print the labels summary for the rebalanced set
summary(new_samples)

}

sits_regularize Build a regular data cube from an irregular one

Description

Produces regular data cubes for analysis-ready data (ARD) image collections. Analysis-ready data
(ARD) collections available in AWS, MPC, USGS and DEAfrica are not regular in space and time.
Bands may have different resolutions, images may not cover the entire time, and time intervals are
not regular. For this reason, subsets of these collection need to be converted to regular data cubes
before further processing and data analysis. This function requires users to include the cloud band
in their ARD-based data cubes. This function uses the gdalcubes package.

Usage

sits_regularize(cube, ...)

## S3 method for class 'raster_cube'
sits_regularize(
cube,
...,
period,
res,
output_dir,
timeline = NULL,
roi = NULL,
crs = NULL,
tiles = NULL,
grid_system = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'sar_cube'
sits_regularize(
cube,
...,
period,
res,
output_dir,
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timeline = NULL,
grid_system = "MGRS",
roi = NULL,
crs = NULL,
tiles = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'combined_cube'
sits_regularize(
cube,
...,
period,
res,
output_dir,
grid_system = NULL,
roi = NULL,
crs = NULL,
tiles = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'rainfall_cube'
sits_regularize(
cube,
...,
period,
res,
output_dir,
timeline = NULL,
grid_system = "MGRS",
roi = NULL,
crs = NULL,
tiles = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'dem_cube'
sits_regularize(
cube,
...,
res,
output_dir,
grid_system = "MGRS",
roi = NULL,



sits_regularize 169

crs = NULL,
tiles = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'ogh_cube'
sits_regularize(
cube,
...,
period,
res,
output_dir,
timeline = NULL,
grid_system = "MGRS",
roi = NULL,
crs = NULL,
tiles = NULL,
multicores = 2L,
progress = TRUE

)

## S3 method for class 'derived_cube'
sits_regularize(cube, ...)

## Default S3 method:
sits_regularize(cube, ...)

Arguments

cube raster_cube object whose observation period and/or spatial resolution is not
constant.

... Additional parameters.

period ISO8601-compliant time period for regular data cubes, with number and unit,
where "D", "M" and "Y" stand for days, month and year; e.g., "P16D" for 16
days.

res Spatial resolution of regularized images (in meters).

output_dir Valid directory for storing regularized images.

timeline User-defined timeline for regularized cube.

roi Region of interest (see notes below).

crs Coordinate Reference System (CRS) of the roi. (see details below).

tiles Tiles to be produced.

grid_system Grid system to be used for the output images.

multicores Number of cores used for regularization; used for parallel processing of input
(integer)

progress show progress bar?
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Value

A raster_cube object with aggregated images.

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

The regularization operation converts subsets of image collections available in cloud providers into
regular data cubes. It is an essential part of the sits workflow. The input to sits_regularize
should be an ARD cube which includes the cloud band. The aggregation method used in sits_regularize
sorts the images based on cloud cover, putting images with the least clouds at the top of the stack.
Once the stack of images is sorted, the method uses the first valid value to create the temporal
aggregation.

The "period" parameter is mandatory, and defines the time interval between two images of the
regularized cube. When combining Sentinel-1A and Sentinel-1B images, experiments show that a
16-day period ("P16D") are a good default. Landsat images require a longer period of one to three
months.

By default, the date of the first image of the input cube is taken as the starting date for the regular
cube. In many situations, users may want to pre-define the required times using the "timeline"
parameter. The "timeline" parameter, if used, must contain a set of dates which are compatible with
the input cube.

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.
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Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified. sits_regularize() function will crop the images that contain the region
of interest().

The optional tiles parameter indicates which tiles of the input cube will be used for regularization.

The grid_system parameter allows the user to reproject the files to a grid system which is dif-
ferent from that used in the ARD image collection of the could provider. Currently, the package
supports the use of MGRS grid system and those used by the Brazil Data Cube ("BDC_LG_V2"
"BDC_MD_V2" "BDC_SM_V2").

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

References

Appel, Marius; Pebesma, Edzer. On-demand processing of data cubes from satellite image collec-
tions with the gdalcubes library. Data, v. 4, n. 3, p. 92, 2019. doi:10.3390/data4030092.

Examples

if (sits_run_examples()) {
# define a non-regular Sentinel-2 cube in AWS
s2_cube_open <- sits_cube(

source = "AWS",
collection = "SENTINEL-2-L2A",
tiles = c("20LKP", "20LLP"),
bands = c("B8A", "CLOUD"),
start_date = "2018-10-01",
end_date = "2018-11-01"

)
# regularize the cube
rg_cube <- sits_regularize(

cube = s2_cube_open,
period = "P16D",
res = 60,
multicores = 2,
output_dir = tempdir()

)

## Sentinel-1 SAR
roi <- c(

"lon_min" = -50.410, "lon_max" = -50.379,
"lat_min" = -10.1910, "lat_max" = -10.1573

)
s1_cube_open <- sits_cube(

source = "MPC",
collection = "SENTINEL-1-GRD",
bands = c("VV", "VH"),
orbit = "descending",
roi = roi,

https://doi.org/10.3390/data4030092
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start_date = "2020-06-01",
end_date = "2020-09-28"

)
# regularize the cube
rg_cube <- sits_regularize(

cube = s1_cube_open,
period = "P12D",
res = 60,
roi = roi,
multicores = 2,
output_dir = tempdir()

)
}

sits_resnet Train ResNet classification models

Description

Use a ResNet architecture for classifying image time series. The ResNet (or deep residual network)
was proposed by a team in Microsoft Research for 2D image classification. ResNet tries to address
the degradation of accuracy in a deep network. The idea is to replace a deep network with a combi-
nation of shallow ones. In the paper by Fawaz et al. (2019), ResNet was considered the best method
for time series classification, using the UCR dataset. Please refer to the paper for more details.

The R-torch version is based on the code made available by Zhiguang Wang, author of the original
paper. The code was developed in python using keras.

https://github.com/cauchyturing (repo: UCR_Time_Series_Classification_Deep_Learning_Baseline)

The R-torch version also considered the code by Ignacio Oguiza, whose implementation is available
at https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py.

There are differences between Wang’s Keras code and Oguiza torch code. In this case, we have
used Wang’s keras code as the main reference.

Usage

sits_resnet(
samples = NULL,
samples_validation = NULL,
blocks = c(64, 128, 128),
kernels = c(7, 5, 3),
epochs = 100,
batch_size = 64,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1,
lr_decay_rate = 0.95,

https://github.com/cauchyturing
https://github.com/timeseriesAI/tsai/blob/main/tsai/models/ResNet.py
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patience = 20,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. If the parameter is provided, the validation_split
is ignored.

blocks Number of 1D convolutional filters for each block of three layers.

kernels Size of the 1D convolutional kernels

epochs Number of iterations to train the model. for each layer of each block.

batch_size Number of samples per gradient update.
validation_split

Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@inpe.br>

Felipe Souza, <lipecaso@gmail.com>

Felipe Carlos, <efelipecarlos@gmail.com>

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Daniel Falbel, <dfalbel@gmail.com>
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References

Hassan Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller,
"Deep learning for time series classification: a review", Data Mining and Knowledge Discovery,
33(4): 917–963, 2019.

Zhiguang Wang, Weizhong Yan, and Tim Oates, "Time series classification from scratch with
deep neural networks: A strong baseline", 2017 International Joint conference on Neural Networks
(IJCNN).

Examples

if (sits_run_examples()) {
# create a ResNet model
torch_model <- sits_train(samples_modis_ndvi, sits_resnet())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = torch_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube, output_dir = tempdir()
)
# plot the labelled cube
plot(label_cube)

}

sits_rfor Train random forest models

Description

Use Random Forest algorithm to classify samples. This function is a front-end to the randomForest
package. Please refer to the documentation in that package for more details.
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Usage

sits_rfor(samples = NULL, num_trees = 100L, mtry = NULL, ...)

Arguments

samples Time series with the training samples (tibble of class "sits").

num_trees Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times (default: 100) (integer,
min = 20).

mtry Number of variables randomly sampled as candidates at each split (default:
NULL - use default value of randomForest::randomForest() function, i.e.
floor(sqrt(features))).

... Other parameters to be passed to ‘randomForest::randomForest‘ function.

Value

Model fitted to input data (to be passed to sits_classify).

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train a random forest model
rf_model <- sits_train(samples_modis_ndvi,

ml_method = sits_rfor
)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = rf_model
)
plot(point_class)

}
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sits_roi_to_mgrs Given a ROI, find MGRS tiles intersecting it.

Description

Takes a a ROI and produces a list of MGRS tiles intersecting it

Usage

sits_roi_to_mgrs(roi)

Arguments

roi Valid ROI to use in other SITS functions

Value

tiles Character vector with names of MGRS tiles

Note

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Examples

if (sits_run_examples()) {
# Defining a ROI
roi <- c(

lon_min = -64.037,
lat_min = -9.644,
lon_max = -63.886,
lat_max = -9.389

)
# Finding tiles
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tiles <- sits_roi_to_mgrs(roi)
}

sits_roi_to_tiles Find tiles of a given ROI and Grid System

Description

Given an ROI and grid system, this function finds the intersected tiles and returns them as an SF
object.

Usage

sits_roi_to_tiles(roi, crs = NULL, grid_system = "MGRS")

Arguments

roi Region of interest (see notes below).

crs Coordinate Reference System (CRS) of the roi. (see details below).

grid_system Grid system to be used for the output images. (Default is "MGRS")

Value

A sf object with the intersect tiles with three columns tile_id, epsg, and the percentage of coverage
area.

Note

To define a roi use one of:

• A path to a shapefile with polygons;

• A sfc or sf object from sf package;

• A SpatExtent object from terra package;

• A named vector ("lon_min", "lat_min", "lon_max", "lat_max") in WGS84;

• A named vector ("xmin", "xmax", "ymin", "ymax") with XY coordinates.

Defining a region of interest using SpatExtent or XY values not in WGS84 requires the crs pa-
rameter to be specified.

The grid_system parameter allows the user to reproject the files to a grid system which is dif-
ferent from that used in the ARD image collection of the could provider. Currently, the package
supports the use of MGRS grid system and those used by the Brazil Data Cube ("BDC_LG_V2"
"BDC_MD_V2" "BDC_SM_V2").

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>
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Examples

if (sits_run_examples()) {
# Defining a ROI
roi <- c(

lon_min = -64.037,
lat_min = -9.644,
lon_max = -63.886,
lat_max = -9.389

)
# Finding tiles
tiles <- sits_roi_to_tiles(roi, grid_system = "MGRS")
}

sits_run_examples Informs if sits examples should run

Description

This function informs if sits examples should run. To run the examples, set "SITS_RUN_EXAMPLES"
to "YES" using Sys.setenv("SITS_RUN_EXAMPLES" = "YES") To come back to the default be-
haviour, please set Sys.setenv("SITS_RUN_EXAMPLES" = "NO")

Usage

sits_run_examples()

Value

A logical value

sits_run_tests Informs if sits tests should run

Description

To run the tests, set "SITS_RUN_TESTS" environment to "YES" using Sys.setenv("SITS_RUN_TESTS"
= "YES") To come back to the default behaviour, please set Sys.setenv("SITS_RUN_TESTS" =
"NO")

Usage

sits_run_tests()

Value

TRUE/FALSE
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sits_sample Sample a percentage of a time series

Description

Takes a sits tibble with different labels and returns a new tibble. For a given field as a group
criterion, this new tibble contains a percentage of the total number of samples per group. If frac > 1
, all sampling will be done with replacement.

Usage

sits_sample(data, frac = 0.2, oversample = TRUE)

Arguments

data Sits time series tibble

frac Percentage of samples to extract (range: 0.0 to 2.0, default = 0.2)

oversample Logical: oversample classes with small number of samples? (TRUE/FALSE)

Value

A sits tibble with a fixed quantity of samples.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the labels of the resulting tibble
summary(cerrado_2classes)
# Sample by fraction
data_02 <- sits_sample(cerrado_2classes, frac = 0.2)
# Print the labels
summary(data_02)
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sits_sampling_design Allocation of sample size to strata

Description

Takes a class cube with different labels and allocates a number of sample sizes per strata to obtain
suitable values of error-adjusted area, providing five allocation strategies.

Usage

sits_sampling_design(
cube,
expected_ua = 0.75,
alloc_options = c(100L, 75L, 50L),
std_err = 0.01,
rare_class_prop = 0.1

)

Arguments

cube Classified cube

expected_ua Expected values of user’s accuracy

alloc_options Fixed sample allocation for rare classes

std_err Standard error we would like to achieve
rare_class_prop

Proportional area limit for rare classes

Value

A matrix with options to decide allocation of sample size to each class. This matrix uses the same
format as Table 5 of Olofsson et al.(2014).

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

References

[1] Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E. (2013). Making better use of accu-
racy data in land change studies: Estimating accuracy and area and quantifying uncertainty using
stratified estimation. Remote Sensing of Environment, 129, pp.122-131.

[2] Olofsson, P., Foody G.M., Herold M., Stehman, S.V., Woodcock, C.E., Wulder, M.A. (2014)
Good practices for estimating area and assessing accuracy of land change. Remote Sensing of
Environment, 148, pp. 42-57.
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Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
# estimated UA for classes
expected_ua <- c(

Cerrado = 0.75, Forest = 0.9,
Pasture = 0.8, Soy_Corn = 0.8

)
sampling_design <- sits_sampling_design(label_cube, expected_ua)

}

sits_segment Segment an image

Description

Apply a spatial-temporal segmentation on a data cube based on a user defined segmentation func-
tion. The function applies the segmentation algorithm "seg_fn" to each tile. The output is a vector
data cube, which is a data cube with an additional vector file in "geopackage" format.

Usage

sits_segment(
cube,
seg_fn = sits_snic(),
roi = NULL,
impute_fn = impute_linear(),
start_date = NULL,
end_date = NULL,
memsize = 4L,
multicores = 2L,
output_dir,
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version = "v1",
progress = TRUE

)

Arguments

cube Regular data cube

seg_fn Function to apply the segmentation

roi Region of interest (see below)

impute_fn Imputation function to remove NA values.

start_date Start date for the segmentation

end_date End date for the segmentation.

memsize Memory available for classification (in GB).

multicores Number of cores to be used for classification.

output_dir Directory for output file.

version Version of the output (for multiple segmentations).

progress Show progress bar?

Value

A tibble of class ’segs_cube’ representing the segmentation.

Note

Segmentation requires the following steps:

1. Create a regular data cube with sits_cube and sits_regularize;

2. Run sits_segment to obtain a vector data cube with polygons that define the boundary of the
segments;

3. Classify the time series associated to the segments with sits_classify, to get obtain a vector
probability cube;

4. Use sits_label_classification to label the vector probability cube;

5. Display the results with plot or sits_view.

The "roi" parameter defines a region of interest. It can be an sf_object, a shapefile, or a bounding
box vector with named XY values ("xmin", "xmax", "ymin", "ymax") or named lat/long values
("lon_min", "lat_min", "lon_max", "lat_max").

As of version 1.5.4, two segmentation functions are available. The preferred option is sits_snic,
which implements the Simple Non-Iterative Clustering (SNIC) algorithm to generate compact and
homogeneous superpixels directly from uniformly distributed seeds. SNIC avoids the iterative re-
finement step used in SLIC and is generally faster and more memory-efficient, making it suitable
for large multispectral or multitemporal data cubes.

The previous function sits_slic, based on the Simple Linear Iterative Clustering (SLIC) algo-
rithm as adapted by Nowosad and Stepinski for multispectral and multitemporal imagery, remains
available but is now deprecated and will be removed in a future release. SLIC clusters pixels using
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spectral similarity and spatial–temporal proximity to produce nearly uniform superpixels, but its
iterative nature makes it less efficient for large-scale Earth observation workflows.

The result of sits_segment is a data cube tibble with an additional vector file in the geopackage
format. The location of the vector file is included in the data cube tibble in a new column, called
vector_info.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

References

Achanta, Radhakrishna, and Sabine Susstrunk. 2017. “Superpixels and Polygons Using Simple
Non-Iterative Clustering.” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 4651–60.

Achanta, Radhakrishna, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.
2012. “SLIC Superpixels Compared to State-of-the-Art Superpixel Methods.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 34 (11): 2274–82.

Nowosad, Jakub, and Tomasz F. Stepinski. 2022. “Extended SLIC Superpixels Algorithm for Ap-
plications to Non-Imagery Geospatial Rasters.” International Journal of Applied Earth Observation
and Geoinformation 112 (August): 102935.

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
# create a data cube
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the vector cube
segments <- sits_segment(

cube = cube,
seg_fn = sits_snic(

grid_seeding = "diamond",
spacing = 15,
compactness = 0.5,
padding = 2

),
output_dir = tempdir()

)
# create a classification model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify the segments
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seg_probs <- sits_classify(
data = segments,
ml_model = rfor_model,
output_dir = tempdir()

)
# label the probability segments
seg_label <- sits_label_classification(

cube = seg_probs,
output_dir = tempdir()

)
}

sits_select Filter a data set (tibble or cube) for bands, tiles, and dates

Description

Filter the bands, tiles, dates and labels from a set of time series or from a data cube.

Usage

sits_select(data, ...)

## S3 method for class 'sits'
sits_select(
data,
...,
bands = NULL,
start_date = NULL,
end_date = NULL,
dates = NULL,
labels = NULL

)

## S3 method for class 'raster_cube'
sits_select(
data,
...,
bands = NULL,
start_date = NULL,
end_date = NULL,
dates = NULL,
tiles = NULL

)

## Default S3 method:
sits_select(data, ...)
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Arguments

data Tibble with time series or data cube.

... Additional parameters to be provided

bands Character vector with the names of the bands.

start_date Date in YYYY-MM-DD format: start date to be filtered.

end_date Date in YYYY-MM-DD format: end date to be filtered.

dates Character vector with sparse dates to be selected.

labels Character vector with sparse labels to be selected (Only applied for sits tibble
data).

tiles Character vector with the names of the tiles.

Value

Tibble with time series or data cube.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Examples

# Retrieve a set of time series with 2 classes
data(cerrado_2classes)
# Print the original bands
sits_bands(cerrado_2classes)
# Select only the NDVI band
data <- sits_select(cerrado_2classes, bands = c("NDVI"))
# Print the labels of the resulting tibble
sits_bands(data)
# select start and end date
point_2010 <- sits_select(point_mt_6bands,

start_date = "2000-09-13",
end_date = "2017-08-29"

)

sits_sgolay Filter time series with Savitzky-Golay filter

Description

An optimal polynomial for warping a time series. The degree of smoothing depends on the filter
order (usually 3.0). The order of the polynomial uses the parameter ‘order‘ (default = 3), the size
of the temporal window uses the parameter ‘length‘ (default = 5).
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Usage

sits_sgolay(data = NULL, order = 3L, length = 5L)

Arguments

data Time series or matrix.

order Filter order (integer).

length Filter length (must be odd).

Value

Filtered time series

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

References

A. Savitzky, M. Golay, "Smoothing and Differentiation of Data by Simplified Least Squares Proce-
dures". Analytical Chemistry, 36 (8): 1627–39, 1964.

Examples

if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")

# Filter the point using the Savitzky-Golay smoother
point_sg <- sits_filter(point_ndvi,

filter = sits_sgolay(order = 3, length = 5)
)
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_sg, suffix = c("", ".SG"))

# Plot the two points to see the smoothing effect
plot(point_ndvi)

}
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sits_slic Segment an image using SLIC

Description

Apply a segmentation on a data cube using either the supercells or snic packages, depending
on the chosen algorithm. As of version 1.5.4, two segmentation methods are supported. The rec-
ommended option is SNIC, implemented via the snic package, which applies a non-iterative clus-
tering strategy to generate compact, homogeneous superpixels from uniformly distributed seeds
(Achanta and Susstrunk, 2017). The alternative method uses the SLIC algorithm implemented in
the supercells package, adapted for remote sensing data following Achanta et al. (2012). This
SLIC variant is deprecated and will be removed in a future release. See references for more details.

Usage

sits_slic(
data = NULL,
step = 30L,
compactness = 1,
dist_fun = "euclidean",
avg_fun = "median",
iter = 30L,
minarea = 10L,
verbose = FALSE

)

Arguments

data A matrix with time series.

step Distance (in number of cells) between initial supercells’ centers

compactness A compactness value. Larger values cause clusters to be more compact/even
(square).

dist_fun Distance function. Currently implemented: euclidean, jsd, dtw, and any dis-
tance function from the philentropy package. See philentropy::getDistMethods().

avg_fun Averaging function to calculate the values of the supercells’ centers. Accepts
any fitting R function (e.g., base::mean() or stats::median()) or one of internally
implemented "mean" and "median". Default: "median"

iter Number of iterations to create the output.

minarea Specifies the minimal size of a supercell (in cells).

verbose Show the progress bar?

Value

Set of segments for a single tile
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Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

References

Achanta, Radhakrishna, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.
2012. “SLIC Superpixels Compared to State-of-the-Art Superpixel Methods.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 34 (11): 2274–82.

Nowosad, Jakub, and Tomasz F. Stepinski. 2022. “Extended SLIC Superpixels Algorithm for Ap-
plications to Non-Imagery Geospatial Rasters.” International Journal of Applied Earth Observation
and Geoinformation 112 (August): 102935.

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
# create a data cube
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the vector cube
segments <- sits_segment(

cube = cube,
seg_fn = sits_snic(

grid_seeding = "rectangular",
spacing = 10,
compactness = 0.3,
padding = 0

),
output_dir = tempdir(),
version = "snic-demo"

)
# create a classification model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify the segments
seg_probs <- sits_classify(

data = segments,
ml_model = rfor_model,
output_dir = tempdir(),
version = "snic-demo"

)
# label the probability segments
seg_label <- sits_label_classification(

cube = seg_probs,
output_dir = tempdir(),
version = "snic-demo"
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)
plot(seg_label)

}

sits_smooth Smooth probability cubes with spatial predictors

Description

Takes a set of classified raster layers with probabilities, whose metadata is created by sits_cube,
and applies a Bayesian smoothing function.

Usage

sits_smooth(cube, ...)

## S3 method for class 'probs_cube'
sits_smooth(
cube,
...,
window_size = 9L,
neigh_fraction = 0.5,
smoothness = 20,
exclusion_mask = NULL,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE

)

## S3 method for class 'probs_vector_cube'
sits_smooth(cube, ...)

## S3 method for class 'raster_cube'
sits_smooth(cube, ...)

## S3 method for class 'derived_cube'
sits_smooth(cube, ...)

## Default S3 method:
sits_smooth(cube, ...)

Arguments

cube Probability data cube.

... Other parameters for specific functions.
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window_size Size of the neighborhood (integer, min = 3, max = 21)

neigh_fraction Fraction of neighbors with high probabilities to be used in Bayesian inference.
(numeric, min = 0.1, max = 1.0)

smoothness Estimated variance of logit of class probabilities (Bayesian smoothing parame-
ter) (integer vector or scalar, min = 1, max = 200).

exclusion_mask Areas to be excluded from the classification process. It can be defined as a sf
object or a shapefile.

memsize Memory available for classification in GB (integer, min = 1, max = 16384).

multicores Number of cores to be used for classification (integer, min = 1, max = 2048).

output_dir Valid directory for output file. (character vector of length 1).

version Version of the output (character vector of length 1).

progress Check progress bar?

Value

A data cube.

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

Machine learning algorithms rely on training samples that are derived from “pure” pixels, hand-
picked by users to represent the desired output classes. Given the presence of mixed pixels in images
regardless of resolution, and the considerable data variability within each class, these classifiers
often produce results with misclassified pixels.

Post-processing the results of sits_classify using sits_smooth reduces salt-and-pepper and bor-
der effects. By minimizing noise, sits_smooth brings a significant gain in the overall accuracy and
interpretability of the final output.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

References

Gilberto Camara, Renato Assunção, Alexandre Carvalho, Rolf Simões, Felipe Souza, Felipe Carlos,
Anielli Souza, Ana Rorato, Ana Paula Dal’Asta, “Bayesian inference for post-processing of remote
sensing image classification”. Remote Sensing, 16(23), 4572, 2024. doi:10.3390/rs16234572.

Examples

if (sits_run_examples()) {
# create am xgboost model
xgb_model <- sits_train(samples_modis_ndvi, sits_xgboost())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = xgb_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_snic Segment an image using SNIC

Description

Apply a segmentation on a data cube based on the snic package. This is an adaptation and extension
to remote sensing data of the SNIC superpixels algorithm proposed by Achanta and Süsstrunk
(2017). See reference for more details.

https://doi.org/10.3390/rs16234572
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Usage

sits_snic(
data = NULL,
grid_seeding = "rectangular",
spacing = 10,
compactness = 0.5,
padding = floor(spacing/2)

)

Arguments

data A matrix with time series.

grid_seeding Method for grid seeding (one of "rectangular", "diamond", "hexagonal", "ran-
dom").

spacing Distance (in number of cells) between initial supercells’ centers

compactness A compactness value. Larger values cause clusters to be more compact/even
(square).

padding Distance (in pixels) from the image borders within which no seeds are placed.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

References

"Superpixels and Polygons Using Simple Non-Iterative Clustering", R. Achanta and S. Süsstrunk,
CVPR 2017.

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
# create a data cube
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# segment the vector cube
segments <- sits_segment(

cube = cube,
seg_fn = sits_snic(

grid_seeding = "rectangular",
spacing = 10,
compactness = 0.5,
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padding = 5
),
output_dir = tempdir(),
version = "snic-demo"

)
# create a classification model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify the segments
seg_probs <- sits_classify(

data = segments,
ml_model = rfor_model,
output_dir = tempdir(),
version = "snic-demo"

)
# label the probability segments
seg_label <- sits_label_classification(

cube = seg_probs,
output_dir = tempdir(),
version = "snic-demo"

)
plot(seg_label)

}

sits_som_clean_samples

Cleans the samples based on SOM map information

Description

sits_som_clean_samples() evaluates the quality of the samples based on the results of the SOM
map.

Usage

sits_som_clean_samples(
som_map,
prior_threshold = 0.6,
posterior_threshold = 0.6,
keep = c("clean", "analyze", "remove")

)

Arguments

som_map Returned by sits_som_map.
prior_threshold

Threshold of conditional probability (frequency of samples assigned to the same
SOM neuron).

posterior_threshold

Threshold of posterior probability (influenced by the SOM neighborhood).
keep Which types of evaluation to be maintained in the data.
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Value

tibble with an two additional columns. The first indicates if each sample is clean, should be analyzed
or should be removed. The second is the posterior probability of the sample. The "keep" parameter
indicates which

Note

The algorithm identifies noisy samples, using ‘prior_threshold‘ for the prior probability and ‘pos-
terior_threshold‘ for the posterior probability. Each sample receives an evaluation tag, accord-
ing to the following rule: (a) If the prior probability is < ‘prior_threshold‘, the sample is tagged
as "remove"; (b) If the prior probability is >= ‘prior_threshold‘ and the posterior probability is
>=‘posterior_threshold‘, the sample is tagged as "clean"; (c) If the prior probability is >= ‘pos-
terior_threshold‘ and the posterior probability is < ‘posterior_threshold‘, the sample is tagged as
"analyze" for further inspection. The user can define which tagged samples will be returned using
the "keep" parameter, with the following options: "clean", "analyze", "remove".

Author(s)

Lorena Alves, <lorena.santos@inpe.br>

Karine Ferreira. <karine.ferreira@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a som map
som_map <- sits_som_map(samples_modis_ndvi)
# plot the som map
plot(som_map)
# evaluate the som map and create clusters
clusters_som <- sits_som_evaluate_cluster(som_map)
# plot the cluster evaluation
plot(clusters_som)
# clean the samples
new_samples <- sits_som_clean_samples(som_map)

}

sits_som_evaluate_cluster

Evaluate cluster

Description

sits_som_evaluate_cluster() produces a tibble with the clusters found by the SOM map. For
each cluster, it provides the percentage of classes inside it.
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Usage

sits_som_evaluate_cluster(som_map)

Arguments

som_map A SOM map produced by the som_map() function

Value

A tibble stating the purity for each cluster

Author(s)

Lorena Alves, <lorena.santos@inpe.br>

Karine Ferreira. <karine.ferreira@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a som map
som_map <- sits_som_map(samples_modis_ndvi)
# plot the som map
plot(som_map)
# evaluate the som map and create clusters
clusters_som <- sits_som_evaluate_cluster(som_map)
# plot the cluster evaluation
plot(clusters_som)
# clean the samples
new_samples <- sits_som_clean_samples(som_map)

}

sits_som_map Build a SOM for quality analysis of time series samples

Description

These function use self-organized maps to perform quality analysis in satellite image time series.

Usage

sits_som_map(
data,
grid_xdim = 10L,
grid_ydim = 10L,
alpha = 1,
rlen = 100L,
distance = "dtw",
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som_radius = 2L,
mode = "online"

)

Arguments

data A tibble with samples to be clustered.

grid_xdim X dimension of the SOM grid (default = 25).

grid_ydim Y dimension of the SOM grid.

alpha Starting learning rate (decreases according to number of iterations).

rlen Number of iterations to produce the SOM.

distance The type of similarity measure (distance). The following similarity measure-
ments are supported: "euclidean" and "dtw". The default similarity measure
is "dtw".

som_radius Radius of SOM neighborhood.

mode Type of learning algorithm. The following learning algorithm are available:
"online", "batch", and "pbatch". The default learning algorithm is "online".

Value

sits_som_map() produces a list with three members: (1) the samples tibble, with one additional
column indicating to which neuron each sample has been mapped; (2) the Kohonen map, used for
plotting and cluster quality measures; (3) a tibble with the labelled neurons, where each class of
each neuron is associated to two values: (a) the prior probability that this class belongs to a cluster
based on the frequency of samples of this class allocated to the neuron; (b) the posterior probability
that this class belongs to a cluster, using data for the neighbours on the SOM map.

Note

sits_som_map creates a SOM map, where high-dimensional data is mapped into a two dimensional
map, keeping the topological relations between data patterns. Each sample is assigned to a neuron,
and neurons are placed in the grid based on similarity.

sits_som_evaluate_cluster analyses the neurons of the SOM map, and builds clusters based on
them. Each cluster is a neuron or a set of neuron categorized with same label. It produces a tibble
with the percentage of mixture of classes in each cluster.

sits_som_clean_samples evaluates sample quality based on the results of the SOM map. The
algorithm identifies noisy samples, using ‘prior_threshold‘ for the prior probability and ‘poste-
rior_threshold‘ for the posterior probability. Each sample receives an evaluation tag, according
to the following rule: (a) If the prior probability is < ‘prior_threshold‘, the sample is tagged
as "remove"; (b) If the prior probability is >= ‘prior_threshold‘ and the posterior probability is
>=‘posterior_threshold‘, the sample is tagged as "clean"; (c) If the prior probability is >= ‘pos-
terior_threshold‘ and the posterior probability is < ‘posterior_threshold‘, the sample is tagged as
"analyze" for further inspection.

The user can define which tagged samples will be returned using the "keep" parameter, with the
following options: "clean", "analyze", "remove".

To learn more about the learning algorithms, check the kohonen::supersom function.
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The sits package implements the "dtw" (Dynamic Time Warping) similarity measure. The "euclidean"
similarity measurement come from the kohonen::supersom (dist.fcts) function.

Author(s)

Lorena Alves, <lorena.santos@inpe.br>

Karine Ferreira. <karine.ferreira@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Lorena Santos, Karine Ferreira, Gilberto Camara, Michelle Picoli, Rolf Simoes, “Quality control
and class noise reduction of satellite image time series”. ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 177, pp 75-88, 2021. doi:10.1016/j.isprsjprs.2021.04.014.

Examples

if (sits_run_examples()) {
# create a som map
som_map <- sits_som_map(samples_modis_ndvi)
# plot the som map
plot(som_map)
# evaluate the som map and create clusters
clusters_som <- sits_som_evaluate_cluster(som_map)
# plot the cluster evaluation
plot(clusters_som)
# clean the samples
new_samples <- sits_som_clean_samples(som_map)

}

sits_som_remove_samples

Evaluate cluster

Description

Remove samples from a given class inside a neuron of another class

Usage

sits_som_remove_samples(som_map, som_eval, class_cluster, class_remove)

Arguments

som_map A SOM map produced by the som_map() function
som_eval An evaluation produced by the som_eval() function
class_cluster Dominant class of a set of neurons
class_remove Class to be removed from the neurons of "class_cluster"

https://doi.org/10.1016/j.isprsjprs.2021.04.014
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Value

A new set of samples with the desired class neurons remove

Author(s)

Lorena Alves, <lorena.santos@inpe.br>

Karine Ferreira. <karine.ferreira@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a som map
som_map <- sits_som_map(samples_modis_ndvi)
# evaluate the som map and create clusters
som_eval <- sits_som_evaluate_cluster(som_map)
# clean the samples
new_samples <- sits_som_remove_samples(

som_map, som_eval,
"Pasture", "Cerrado"

)
}

sits_stats Obtain statistics for all sample bands

Description

Most machine learning algorithms require data to be normalized. This applies to the "SVM" method
and to all deep learning ones. To normalize the predictors, it is necessary to extract the statistics
of each band of the samples. This function computes the 2 of the distribution of each band of the
samples. This values are used as minimum and maximum values in the normalization operation
performed by the sits_pred_normalize() function.

Usage

sits_stats(samples)

Arguments

samples Time series samples uses as training data.

Value

A list with the 2 training data.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
stats <- sits_stats(samples_modis_ndvi)

}

sits_stratified_sampling

Allocation of sample size to strata

Description

Takes a class cube with different labels and a sampling design with a number of samples per class
and allocates a set of locations for each class

Usage

sits_stratified_sampling(
cube,
sampling_design,
alloc = "alloc_prop",
overhead = 1.2,
multicores = 2L,
memsize = 2L,
shp_file = NULL,
progress = TRUE

)

Arguments

cube Classified cube
sampling_design

Result of sits_sampling_design

alloc Allocation method chosen

overhead Additional percentage to account for border points

multicores Number of cores that will be used to sample the images in parallel.

memsize Memory available for sampling.

shp_file Name of shapefile to be saved (optional)

progress Show progress bar? Default is TRUE.

Value

samples Point sf object with required samples
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
# estimated UA for classes
expected_ua <- c(

Cerrado = 0.95, Forest = 0.95,
Pasture = 0.95, Soy_Corn = 0.95

)
# design sampling
sampling_design <- sits_sampling_design(label_cube, expected_ua)
# select samples
samples <- sits_stratified_sampling(

label_cube,
sampling_design, "alloc_prop"

)
}

sits_svm Train support vector machine models

Description

This function receives a tibble with a set of attributes X for each observation Y. These attributes are
the values of the time series for each band. The SVM algorithm is used for multiclass-classification.
For this purpose, it uses the "one-against-one" approach, in which k(k-1)/2 binary classifiers are
trained; the appropriate class is found by a voting scheme. This function is a front-end to the "svm"
method in the "e1071" package. Please refer to the documentation in that package for more details.
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Usage

sits_svm(
samples = NULL,
formula = sits_formula_linear(),
scale = FALSE,
cachesize = 1000L,
kernel = "radial",
degree = 3L,
coef0 = 0L,
cost = 10,
tolerance = 0.001,
epsilon = 0.1,
cross = 10L,
...

)

Arguments

samples Time series with the training samples.
formula Symbolic description of the model to be fit. (default: sits_formula_linear).
scale Logical vector indicating the variables to be scaled.
cachesize Cache memory in MB (default = 1000).
kernel Kernel used in training and predicting. options: "linear", "polynomial", "radial",

"sigmoid" (default: "radial").
degree Exponential of polynomial type kernel (default: 3).
coef0 Parameter needed for kernels of type polynomial and sigmoid (default: 0).
cost Cost of constraints violation (default: 10).
tolerance Tolerance of termination criterion (default: 0.001).
epsilon Epsilon in the insensitive-loss function (default: 0.1).
cross Number of cross validation folds applied to assess the quality of the model (de-

fault: 10).
... Other parameters to be passed to e1071::svm function.

Value

Model fitted to input data (to be passed to sits_classify)

Note

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>
Rolf Simoes, <rolfsimoes@gmail.com>
Gilberto Camara, <gilberto.camara@inpe.br>

https://e-sensing.github.io/sitsbook/
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Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train an SVM model
ml_model <- sits_train(samples_modis_ndvi, ml_method = sits_svm)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)
plot(point_class)

}

sits_tae Train a model using Temporal Self-Attention Encoder

Description

Implementation of Temporal Attention Encoder (TAE) for satellite image time series classification.

TAE is a simplified version of the well-known self-attention architecture used in large language
models. Its modified self-attention scheme that uses the input embeddings as values. TAE defines
a single master query for each sequence, computed from the temporal average of the queries. This
master query is compared to the sequence of keys to produce a single attention mask used to weight
the temporal mean of values into a single feature vector.

Usage

sits_tae(
samples = NULL,
samples_validation = NULL,
epochs = 150L,
batch_size = 64L,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 0.001, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1L,
lr_decay_rate = 0.95,
patience = 20L,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)
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Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.
validation_split

Number between 0 and 1. Fraction of training data to be used as validation data.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.

lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

sits provides a set of default values for all classification models. These settings have been chosen
based on testing by the authors. Nevertheless, users can control all parameters for each model.
Novice users can rely on the default values, while experienced ones can fine-tune deep learning
models using sits_tuning.

This function is based on the paper by Vivien Garnot referenced below and code available on github
at https://github.com/VSainteuf/pytorch-psetae.

We also used the code made available by Maja Schneider in her work with Marco Körner referenced
below and available at https://github.com/maja601/RC2020-psetae.

If you use this method, please cite Garnot’s and Schneider’s work.

Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Souza, <lipecaso@gmail.com>

https://github.com/VSainteuf/pytorch-psetae
https://github.com/maja601/RC2020-psetae
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References

Vivien Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata, "Satellite Image Time
Series Classification with Pixel-Set Encoders and Temporal Self-Attention", 2020 Conference on
Computer Vision and Pattern Recognition. pages 12322-12331. doi:10.1109/CVPR42600.2020.01234.

Schneider, Maja; Körner, Marco, "[Re] Satellite Image Time Series Classification with Pixel-Set
Encoders and Temporal Self-Attention." ReScience C 7 (2), 2021. doi:10.5281/zenodo.4835356.

Examples

if (sits_run_examples()) {
# create a TAE model
torch_model <- sits_train(samples_modis_ndvi, sits_tae())
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = torch_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_tempcnn Train temporal convolutional neural network models

Description

Use a TempCNN algorithm to classify data, which has two stages: a 1D CNN and a multi-layer
perceptron. Users can define the depth of the 1D network, as well as the number of perceptron
layers.

https://doi.org/10.1109/CVPR42600.2020.01234
https://doi.org/10.5281/zenodo.4835356


sits_tempcnn 205

Usage

sits_tempcnn(
samples = NULL,
samples_validation = NULL,
cnn_layers = c(64L, 64L, 64L),
cnn_kernels = c(3L, 3L, 3L),
cnn_dropout_rates = c(0.2, 0.2, 0.2),
dense_layer_nodes = 256L,
dense_layer_dropout_rate = 0.5,
epochs = 150L,
batch_size = 64L,
validation_split = 0.2,
optimizer = torch::optim_adamw,
opt_hparams = list(lr = 5e-04, eps = 1e-08, weight_decay = 1e-06),
lr_decay_epochs = 1L,
lr_decay_rate = 0.95,
patience = 20L,
min_delta = 0.01,
seed = NULL,
verbose = FALSE

)

Arguments

samples Time series with the training samples.
samples_validation

Time series with the validation samples. if the samples_validation parameter
is provided, the validation_split parameter is ignored.

cnn_layers Number of 1D convolutional filters per layer

cnn_kernels Size of the 1D convolutional kernels.
cnn_dropout_rates

Dropout rates for 1D convolutional filters.
dense_layer_nodes

Number of nodes in the dense layer.
dense_layer_dropout_rate

Dropout rate (0,1) for the dense layer.

epochs Number of iterations to train the model.

batch_size Number of samples per gradient update.
validation_split

Fraction of training data to be used for validation.

optimizer Optimizer function to be used.

opt_hparams Hyperparameters for optimizer: lr : Learning rate of the optimizer eps: Term
added to the denominator to improve numerical stability. weight_decay: L2
regularization

lr_decay_epochs

Number of epochs to reduce learning rate.
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lr_decay_rate Decay factor for reducing learning rate.

patience Number of epochs without improvements until training stops.

min_delta Minimum improvement in loss function to reset the patience counter.

seed Seed for random values.

verbose Verbosity mode (TRUE/FALSE). Default is FALSE.

Value

A fitted model to be used for classification.

Note

sits provides a set of default values for all classification models. These settings have been chosen
based on testing by the authors. Nevertheless, users can control all parameters for each model.
Novice users can rely on the default values, while experienced ones can fine-tune deep learning
models using sits_tuning.

This function is based on the paper by Charlotte Pelletier referenced below. If you use this method,
please cite the original tempCNN paper.

The torch version is based on the code made available by the BreizhCrops team: Marc Russwurm,
Charlotte Pelletier, Marco Korner, Maximilian Zollner. The original python code is available at the
website https://github.com/dl4sits/BreizhCrops. This code is licensed as GPL-3.

Author(s)

Charlotte Pelletier, <charlotte.pelletier@univ-ubs.fr>

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Souza, <lipecaso@gmail.com>

References

Charlotte Pelletier, Geoffrey Webb and François Petitjean, "Temporal Convolutional Neural Net-
work for the Classification of Satellite Image Time Series", Remote Sensing, 11,523, 2019. doi:10.3390/
rs11050523.

Examples

if (sits_run_examples()) {
# create a TempCNN model
torch_model <- sits_train(

samples_modis_ndvi,
sits_tempcnn(epochs = 20, verbose = TRUE)

)
# plot the model
plot(torch_model)
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

https://github.com/dl4sits/BreizhCrops
https://doi.org/10.3390/rs11050523
https://doi.org/10.3390/rs11050523
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source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = torch_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(

bayes_cube,
output_dir = tempdir()

)
# plot the labelled cube
plot(label_cube)

}

sits_texture Apply a set of texture measures on a data cube.

Description

A set of texture measures based on the Grey Level Co-occurrence Matrix (GLCM) described by
Haralick. Our implementation follows the guidelines and equations described by Hall-Beyer (both
are referenced below).

Usage

sits_texture(cube, ...)

## S3 method for class 'raster_cube'
sits_texture(
cube,
...,
window_size = 3L,
angles = 0,
memsize = 4L,
multicores = 2L,
output_dir,
progress = TRUE

)

## S3 method for class 'derived_cube'



208 sits_texture

sits_texture(cube, ...)

## Default S3 method:
sits_texture(cube, ...)

Arguments

cube Valid sits cube

... GLCM function (see details).

window_size An odd number representing the size of the sliding window.

angles The direction angles in radians related to the central pixel and its neighbor (See
details). Default is 0.

memsize Memory available for classification (in GB).

multicores Number of cores to be used for classification.

output_dir Directory where files will be saved.

progress Show progress bar?

Details

The spatial relation between the central pixel and its neighbor is expressed in radians values, where:
#’

• 0: corresponds to the neighbor on right-side

• pi/4: corresponds to the neighbor on the top-right diagonals

• pi/2: corresponds to the neighbor on above

• 3*pi/4: corresponds to the neighbor on the top-left diagonals

Our implementation relies on a symmetric co-occurrence matrix, which considers the opposite di-
rections of an angle. For example, the neighbor pixels based on 0 angle rely on the left and right
direction; the neighbor pixels of pi/2 are above and below the central pixel, and so on. If more than
one angle is provided, we compute their average.

Value

A sits cube with new bands, produced according to the requested measure.

Available texture functions

• glcm_contrast(): measures the contrast or the amount of local variations present in an im-
age. Low contrast values indicate regions with low spatial frequency.

• glcm_homogeneity(): also known as the Inverse Difference Moment, it measures image
homogeneity by assuming larger values for smaller gray tone differences in pair elements.

• glcm_asm(): the Angular Second Moment (ASM) measures textural uniformity. High ASM
values indicate a constant or a periodic form in the window values.

• glcm_energy(): measures textural uniformity. Energy is defined as the square root of the
ASM.
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• glcm_mean(): measures the mean of the probability of co-occurrence of specific pixel values
within the neighborhood.

• glcm_variance(): measures the heterogeneity and is strongly correlated to first order statis-
tical variables such as standard deviation. Variance values increase as the gray-level values
deviate from their mean.

• glcm_std(): measures the heterogeneity and is strongly correlated to first order statistical
variables such as standard deviation. STD is defined as the square root of the variance.

• glcm_correlation(): measures the gray-tone linear dependencies of the image. Low corre-
lation values indicate homogeneous region edges.

Author(s)

Felipe Carvalho, <felipe.carvalho@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Rolf Simoes, <rolf.simoes@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Robert M. Haralick, K. Shanmugam, Its’Hak Dinstein, "Textural Features for Image Classification",
IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 6, 610-621, 1973, doi:10.1109/
TSMC.1973.4309314.

Hall-Beyer, M., "GLCM Texture Tutorial", 2007, doi:10.13140/RG.2.2.12424.21767.

Hall-Beyer, M., "Practical guidelines for choosing GLCM textures to use in landscape classifica-
tion tasks over a range of moderate spatial scales", International Journal of Remote Sensing, 38,
1312–1338, 2017, doi:10.1080/01431161.2016.1278314.

A. Baraldi and F. Panniggiani, "An investigation of the textural characteristics associated with gray
level co-occurrence matrix statistical parameters," IEEE Transactions on Geoscience and Remote
Sensing, 33, 2, 293-304, 1995, doi:10.1109/TGRS.1995.8746010.

Shokr, M. E., "Evaluation of second-order texture parameters for sea ice classification from radar
images", J. Geophys. Res., 96, 10625–10640, 1991, doi:10.1029/91JC00693.

Peng Gong, Danielle J. Marceau, Philip J. Howarth, "A comparison of spatial feature extraction
algorithms for land-use classification with SPOT HRV data", Remote Sensing of Environment, 40,
2, 1992, 137-151, doi:10.1016/00344257(92)900118.

Examples

if (sits_run_examples()) {
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)

# Compute the NDVI variance

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.13140/RG.2.2.12424.21767
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1109/TGRS.1995.8746010
https://doi.org/10.1029/91JC00693
https://doi.org/10.1016/0034-4257%2892%2990011-8
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cube_texture <- sits_texture(
cube = cube,
NDVIVAR = glcm_variance(NDVI),
window_size = 5,
output_dir = tempdir()

)
}

sits_tiles_to_roi Convert MGRS tile information to ROI in WGS84

Description

Takes a list of MGRS tiles and produces a ROI covering them

Usage

sits_tiles_to_roi(tiles, grid_system = "MGRS")

Arguments

tiles Character vector with names of MGRS tiles

grid_system Grid system to be used

Value

roi Valid ROI to use in other SITS functions

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolf.simoes@gmail.com>

sits_timeline Get timeline of a cube or a set of time series

Description

This function returns the timeline for a given data set, either a set of time series, a data cube, or a
trained model.
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Usage

sits_timeline(data)

## S3 method for class 'sits'
sits_timeline(data)

## S3 method for class 'sits_model'
sits_timeline(data)

## S3 method for class 'raster_cube'
sits_timeline(data)

## S3 method for class 'derived_cube'
sits_timeline(data)

## S3 method for class 'tbl_df'
sits_timeline(data)

## Default S3 method:
sits_timeline(data)

Arguments

data Tibble of class "sits" or class "raster_cube"

Value

Vector of class Date with timeline of samples or data cube.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

sits_timeline(samples_modis_ndvi)

sits_timeseries_to_csv

Export a a full sits tibble to the CSV format

Description

Converts metadata and data from a sits tibble to a CSV file. The CSV file will not contain the actual
time series. Its columns will be the same as those of a CSV file used to retrieve data from ground
information ("latitude", "longitude", "start_date", "end_date", "cube", "label"), plus the all the time
series for each data
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Usage

sits_timeseries_to_csv(data, file = NULL)

Arguments

data Time series (tibble of class "sits").

file Full path of the exported CSV file (valid file name with extension ".csv").

Value

Return data.frame with CSV columns (optional)

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

csv_ts <- sits_timeseries_to_csv(cerrado_2classes)
csv_file <- paste0(tempdir(), "/cerrado_2classes_ts.csv")
sits_timeseries_to_csv(cerrado_2classes, file = csv_file)

sits_to_csv Export a sits tibble metadata to the CSV format

Description

Converts metadata from a sits tibble to a CSV file. The CSV file will not contain the actual time
series. Its columns will be the same as those of a CSV file used to retrieve data from ground
information ("latitude", "longitude", "start_date", "end_date", "cube", "label"). If the file is NULL,
returns a data.frame as an object

Usage

sits_to_csv(data, file = NULL)

## S3 method for class 'sits'
sits_to_csv(data, file = NULL)

## S3 method for class 'tbl_df'
sits_to_csv(data, file)

## Default S3 method:
sits_to_csv(data, file)
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Arguments

data Time series (tibble of class "sits").

file Full path of the exported CSV file (valid file name with extension ".csv").

Value

Return data.frame with CSV columns (optional)

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

csv_file <- paste0(tempdir(), "/cerrado_2classes.csv")
sits_to_csv(cerrado_2classes, file = csv_file)

sits_to_xlsx Save accuracy assessments as Excel files

Description

Saves confusion matrices as Excel spreadsheets. This function takes the a list of accuracy assess-
ments generated by sits_accuracy and saves them in an Excel spreadsheet.

Usage

sits_to_xlsx(acc, file)

## S3 method for class 'sits_accuracy'
sits_to_xlsx(acc, file)

## S3 method for class 'list'
sits_to_xlsx(acc, file)

Arguments

acc Accuracy statistics (either an output of sits_accuracy or a list of those)

file The file where the XLSX data is to be saved.

Value

No return value, called for side effects.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>
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Examples

if (sits_run_examples()) {
# A dataset containing a tibble with time series samples
# for the Mato Grosso state in Brasil
# create a list to store the results
results <- list()

# accuracy assessment lightTAE
acc_ltae <- sits_kfold_validate(samples_modis_ndvi,

folds = 5,
multicores = 1,
ml_method = sits_lighttae()

)
# use a name
acc_ltae$name <- "LightTAE"

# put the result in a list
results[[length(results) + 1]] <- acc_ltae

# save to xlsx file
sits_to_xlsx(

results,
file = tempfile("accuracy_mato_grosso_dl_", fileext = ".xlsx")

)
}

sits_train Train classification models

Description

Given a tibble with a set of time series, returns trained models. Currently, sits supports the following
models:

• support vector machines: sits_svm;

• random forests: sits_rfor;

• extreme gradient boosting: sits_xgboost;

• light gradient boosting: sits_lightgbm;

• multi-layer perceptrons: sits_mlp;

• temporal CNN: sits_tempcnn;

• residual network encoders: sits_resnet;

• LSTM with convolutional networks: sits_lstm_fcn;

• temporal self-attention encoders: sits_lighttae and sits_tae.

Usage

sits_train(samples, ml_method = sits_svm())
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Arguments

samples Time series with the training samples.

ml_method Machine learning method.

Value

Model fitted to input data to be passed to sits_classify

Note

The main sits classification workflow has the following steps:

1. sits_cube: selects a ARD image collection from a cloud provider.

2. sits_cube_copy: copies an ARD image collection from a cloud provider to a local directory
for faster processing.

3. sits_regularize: create a regular data cube from an ARD image collection.

4. sits_apply: create new indices by combining bands of a regular data cube (optional).

5. sits_get_data: extract time series from a regular data cube based on user-provided labelled
samples.

6. sits_train: train a machine learning model based on image time series.

7. sits_classify: classify a data cube using a machine learning model and obtain a probability
cube.

8. sits_smooth: post-process a probability cube using a spatial smoother to remove outliers and
increase spatial consistency.

9. sits_label_classification: produce a classified map by selecting the label with the high-
est probability from a smoothed cube.

sits_train provides a standard interface to machine learning models. It takes two mandatory
parameters: the training data (samples) and the ML algorithm (ml_method). The output is a model
that can be used to classify individual time series or data cubes with sits_classify.

sits provides a set of default values for all classification models. These settings have been chosen
based on testing by the authors. Nevertheless, users can control all parameters for each model.
Novice users can rely on the default values, while experienced ones can fine-tune deep learning
models using sits_tuning.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Alexandre Ywata de Carvalho, <alexandre.ywata@ipea.gov.br>
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Examples

if (sits_run_examples()) {
# Retrieve the set of samples for Mato Grosso
# fit a training model (rfor model)
ml_model <- sits_train(samples_modis_ndvi, sits_rfor(num_trees = 50))
# get a point and classify the point with the ml_model
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)

}

sits_tuning Tuning machine learning models hyper-parameters

Description

This function performs a random search on values of selected hyperparameters, and produces a data
frame with the accuracy and kappa values produced by a validation procedure. The result allows
users to select appropriate hyperparameters for deep learning models.

Usage

sits_tuning(
samples,
samples_validation = NULL,
validation_split = 0.2,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(optimizer = torch::optim_adamw, opt_hparams = list(lr =

loguniform(0.01, 1e-04))),
trials = 30L,
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
progress = FALSE

)

Arguments

samples Time series set to be validated.
samples_validation

Time series set used for validation.
validation_split

Percent of original time series set to be used for validation (if samples_validation
is NULL)

ml_method Machine learning method.
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params List with hyper parameters to be passed to ml_method. User can use uniform,
choice, randint, normal, lognormal, loguniform, and beta distribution func-
tions to randomize parameters.

trials Number of random trials to perform the search.

multicores Number of cores to process in parallel.

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.

progress Show progress bar?

Value

A tibble containing all parameters used to train on each trial ordered by accuracy.

Note

Machine learning algorithms have hyperparameters that control the algorithm’s behaviour. This
function allows users to test different combinations of hyperparameters for a given sample set, thus
selecting a set of values which fits the training data. The sits_tuning function can be used with
both traditional machine learning methods (e.g., random forests) as well as deep learning ones.

Instead of performing an exhaustive test of all parameter combinations, sits_tuning selects them
randomly. Validation is done using an independent set of samples or by a validation split. The
function returns the best hyper-parameters in a list. Hyper-parameters passed to params parameter
should be passed by calling sits_tuning_hparams.

Deep learning models use stochastic gradient descent (SGD) techniques to find optimal solutions.
To perform SGD, models use optimization algorithms which have hyperparameters that have to be
adjusted to achieve best performance for each application.

When using a GPU for deep learning, gpu_memory indicates the memory of the graphics card which
is available for processing. The parameter batch_size defines the size of the matrix (measured in
number of rows) which is sent to the GPU for classification. Users can test different values of
batch_size to find out which one best fits their GPU architecture.

It is not possible to have an exact idea of the size of Deep Learning models in GPU memory, as
the complexity of the model and factors such as CUDA Context increase the size of the model in
memory. Therefore, we recommend that you leave at least 1GB free on the video card to store the
Deep Learning model that will be used.

For users of Apple M3 chips or similar with a Neural Engine, be aware that these chips share
memory between the GPU and the CPU. Tests indicate that the memsize should be set to half to the
total memory and the batch_size parameter should be a small number (we suggest the value of
64). Be aware that increasing these parameters may lead to memory conflicts.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

References

James Bergstra, Yoshua Bengio, "Random Search for Hyper-Parameter Optimization". Journal of
Machine Learning Research. 13: 281–305, 2012.
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Examples

if (sits_run_examples()) {
# find best learning rate for TempCNN
tuned <- sits_tuning(

samples_modis_ndvi,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(

optimizer = choice(
torch::optim_adamw

),
opt_hparams = list(

lr = loguniform(10^-2, 10^-4)
)

),
trials = 4,
multicores = 2,
progress = FALSE

)
# obtain best accuracy, kappa and best_lr
accuracy <- tuned$accuracy[[1]]
kappa <- tuned$kappa[[1]]
best_lr <- tuned$opt_hparams[[1]]$lr

# find best number of trees for random foresr
rf_tuned <- sits_tuning(

samples_modis_ndvi,
ml_method = sits_rfor(),
params = sits_tuning_hparams(

num_trees = choice(100, 200, 300)
),
trials = 10,
multicores = 2,
progress = FALSE

)
# obtain best accuracy, kappa and best_lr
rf_accuracy <- rf_tuned$accuracy[[1]]
rf_kappa <- rf_tuned$kappa[[1]]
rf_best_num_trees <- rf_tuned$num_trees

}

sits_tuning_hparams Tuning machine learning models hyper-parameters

Description

This function allow user building the hyper-parameters space used by sits_tuning() function
search randomly the best parameter combination.

Users should pass the possible values for hyper-parameters as constants or by calling the following
random functions:
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• uniform(min = 0, max = 1, n = 1): returns random numbers from a uniform distribution with
parameters min and max.

• choice(..., replace = TRUE, n = 1): returns random objects passed to ... with replace-
ment or not (parameter replace).

• randint(min, max, n = 1): returns random integers from a uniform distribution with param-
eters min and max.

• normal(mean = 0, sd = 1, n = 1): returns random numbers from a normal distribution with
parameters min and max.

• lognormal(meanlog = 0, sdlog = 1, n = 1): returns random numbers from a lognormal dis-
tribution with parameters min and max.

• loguniform(minlog = 0, maxlog = 1, n = 1): returns random numbers from a loguniform
distribution with parameters min and max.

• beta(shape1, shape2, n = 1): returns random numbers from a beta distribution with param-
eters min and max.

These functions accepts n parameter to indicate how many values should be returned.

Usage

sits_tuning_hparams(...)

Arguments

... Used to prepare hyper-parameter space

Value

A list containing the hyper-parameter space to be passed to sits_tuning()’s params parameter.

Examples

if (sits_run_examples()) {
# find best learning rate parameters for TempCNN
tuned <- sits_tuning(

samples_modis_ndvi,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(

optimizer = choice(
torch::optim_adamw,
torch::optim_adagrad

),
opt_hparams = list(

lr = loguniform(10^-2, 10^-4),
weight_decay = loguniform(10^-2, 10^-8)

)
),
trials = 20,
multicores = 2,
progress = FALSE
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)
}

sits_uncertainty Estimate classification uncertainty based on probs cube

Description

Calculate the uncertainty cube based on the probabilities produced by the classifier. Takes a probability
cube as input and produces a uncertainty cube.

Usage

sits_uncertainty(cube, ...)

## S3 method for class 'probs_cube'
sits_uncertainty(
cube,
...,
type = "entropy",
multicores = 2L,
memsize = 4L,
output_dir,
version = "v1",
progress = TRUE

)

## S3 method for class 'probs_vector_cube'
sits_uncertainty(
cube,
...,
type = "entropy",
multicores = 2L,
memsize = 4L,
output_dir,
version = "v1"

)

## S3 method for class 'raster_cube'
sits_uncertainty(cube, ...)

## Default S3 method:
sits_uncertainty(cube, ...)
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Arguments

cube Probability data cube.

... Other parameters for specific functions.

type Method to measure uncertainty. See details.

multicores Number of cores to run the function.

memsize Maximum overall memory (in GB) to run the function.

output_dir Output directory for image files.

version Version of resulting image (in the case of multiple tests).

progress Check progress bar?

Value

An uncertainty data cube

Note

The output of sits_classify and sits_smooth is a probability cube containing the class prob-
ability for all pixels, which are generated by the machine learning model. The sits_uncertainty
function takes a probability cube and produces a uncertainty code which contains a measure
of uncertainty for each pixel, based on the class probabilities.

The uncertainty measure is relevant in the context of active leaning, and helps to increase the quan-
tity and quality of training samples by providing information about the confidence of the model.

The supported types of uncertainty are:

1. entropy: the difference between all predictions expressed a Shannon measure of entropy.

2. least: the difference between 1.0 and most confident prediction.

3. margin: the difference between the two most confident predictions.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Alber Sanchez, <alber.ipia@inpe.br>

References

Monarch, Robert Munro. Human-in-the-Loop Machine Learning: Active learning and annotation
for human-centered AI. Simon and Schuster, 2021.
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Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# calculate uncertainty
uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir())
# plot the resulting uncertainty cube
plot(uncert_cube)

}

sits_uncertainty_sampling

Suggest samples for enhancing classification accuracy

Description

Suggest samples for regions of high uncertainty as predicted by the model. The function selects
data points that have confused an algorithm. These points don’t have labels and need be manually
labelled by experts and then used to increase the classification’s training set.

This function is best used in the following context: 1. Select an initial set of samples. 2. Train a
machine learning model. 3. Build a data cube and classify it using the model. 4. Run a Bayesian
smoothing in the resulting probability cube. 5. Create an uncertainty cube. 6. Perform uncertainty
sampling.

The Bayesian smoothing procedure will reduce the classification outliers and thus increase the like-
lihood that the resulting pixels with high uncertainty have meaningful information.

Usage

sits_uncertainty_sampling(
uncert_cube,
n = 100L,
min_uncert = 0.4,
sampling_window = 10L,
multicores = 2L,
memsize = 4L

)
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Arguments

uncert_cube An uncertainty cube. See sits_uncertainty.

n Number of suggested points to be sampled per tile.

min_uncert Minimum uncertainty value to select a sample.
sampling_window

Window size for collecting points (in pixels). The minimum window size is 10.

multicores Number of workers for parallel processing (integer, min = 1, max = 2048).

memsize Maximum overall memory (in GB) to run the function.

Value

A tibble with longitude and latitude in WGS84 with locations which have high uncertainty and meet
the minimum distance criteria.

Author(s)

Alber Sanchez, <alber.ipia@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>

Felipe Carvalho, <felipe.carvalho@inpe.br>

Gilberto Camara, <gilberto.camara@inpe.br>

References

Robert Monarch, "Human-in-the-Loop Machine Learning: Active learning and annotation for human-
centered AI". Manning Publications, 2021.

Examples

if (sits_run_examples()) {
# create a data cube
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# build a random forest model
rfor_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor())
# classify the cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# create an uncertainty cube
uncert_cube <- sits_uncertainty(probs_cube,

type = "entropy",
output_dir = tempdir()

)
# obtain a new set of samples for active learning
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# the samples are located in uncertain places
new_samples <- sits_uncertainty_sampling(

uncert_cube,
n = 10, min_uncert = 0.4

)
}

sits_validate Validate time series samples

Description

One round of cross-validation involves partitioning a sample of data into complementary subsets,
performing the analysis on one subset (called the training set), and validating the analysis on the
other subset (called the validation set or testing set).

The function takes two arguments: a set of time series with a machine learning model and another
set with validation samples. If the validation sample set is not provided, The sample dataset is split
into two parts, as defined by the parameter validation_split. The accuracy is determined by the
result of the validation test set.

This function returns the confusion matrix, and Kappa values.

Usage

sits_validate(
samples,
samples_validation = NULL,
validation_split = 0.2,
ml_method = sits_rfor(),
gpu_memory = 4L,
batch_size = 2L^gpu_memory

)

Arguments

samples Time series to be validated (class "sits").
samples_validation

Optional: Time series used for validation (class "sits")
validation_split

Percent of original time series set to be used for validation if samples_validation
is NULL (numeric value).

ml_method Machine learning method (function)

gpu_memory Memory available in GPU in GB (default = 4)

batch_size Batch size for GPU classification.
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Value

A caret::confusionMatrix object to be used for validation assessment.

Note

When using a GPU for deep learning, gpu_memory indicates the memory of the graphics card which
is available for processing. The parameter batch_size defines the size of the matrix (measured in
number of rows) which is sent to the GPU for classification. Users can test different values of
batch_size to find out which one best fits their GPU architecture.

It is not possible to have an exact idea of the size of Deep Learning models in GPU memory, as
the complexity of the model and factors such as CUDA Context increase the size of the model in
memory. Therefore, we recommend that you leave at least 1GB free on the video card to store the
Deep Learning model that will be used.

For users of Apple M3 chips or similar with a Neural Engine, be aware that these chips share
memory between the GPU and the CPU. Tests indicate that the memsize should be set to half to the
total memory and the batch_size parameter should be a small number (we suggest the value of
64). Be aware that increasing these parameters may lead to memory conflicts.

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
samples <- sits_sample(cerrado_2classes, frac = 0.5)
samples_validation <- sits_sample(cerrado_2classes, frac = 0.5)
conf_matrix_1 <- sits_validate(

samples = samples,
samples_validation = samples_validation,
ml_method = sits_rfor()

)
conf_matrix_2 <- sits_validate(

samples = cerrado_2classes,
validation_split = 0.2,
ml_method = sits_rfor()

)
}

sits_variance Calculate the variance of a probability cube

Description

Takes a probability cube and estimate the local variance of the logit of the probability, to support
the choice of parameters for Bayesian smoothing.
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Usage

sits_variance(cube, ...)

## S3 method for class 'probs_cube'
sits_variance(
cube,
...,
window_size = 9L,
neigh_fraction = 0.5,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE

)

## S3 method for class 'raster_cube'
sits_variance(cube, ...)

## S3 method for class 'derived_cube'
sits_variance(cube, ...)

## Default S3 method:
sits_variance(cube, ...)

Arguments

cube Probability data cube (class "probs_cube")
... Parameters for specific functions
window_size Size of the neighborhood (odd integer)
neigh_fraction Fraction of neighbors with highest probability for Bayesian inference (numeric

from 0.0 to 1.0)
memsize Maximum overall memory (in GB) to run the smoothing (integer, min = 1, max

= 16384)
multicores Number of cores to run the smoothing function (integer, min = 1, max = 2048)
output_dir Output directory for image files (character vector of length 1)
version Version of resulting image (character vector of length 1)
progress Check progress bar?

Value

A variance data cube.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Rolf Simoes, <rolfsimoes@gmail.com>
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Examples

if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
var_cube <- sits_variance(probs_cube, output_dir = tempdir())
# plot the variance cube
plot(var_cube)

}

sits_view View data cubes and samples in leaflet

Description

Uses leaflet to visualize time series, raster cube and classified images.

Usage

sits_view(x, ...)

## S3 method for class 'sits'
sits_view(x, ..., legend = NULL, palette = "Set3", radius = 10L, add = FALSE)

## S3 method for class 'data.frame'
sits_view(x, ..., legend = NULL, palette = "Harmonic", add = FALSE)

## S3 method for class 'som_map'
sits_view(
x,
...,
id_neurons,
legend = NULL,
palette = "Harmonic",
radius = 10L,
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add = FALSE
)

## S3 method for class 'raster_cube'
sits_view(
x,
...,
band = NULL,
red = NULL,
green = NULL,
blue = NULL,
tiles = x[["tile"]][[1L]],
dates = NULL,
palette = "RdYlGn",
rev = FALSE,
opacity = 0.85,
max_cog_size = 2048L,
first_quantile = 0.02,
last_quantile = 0.98,
leaflet_megabytes = 64L,
add = FALSE

)

## S3 method for class 'uncertainty_cube'
sits_view(
x,
...,
tiles = x[["tile"]][[1L]],
legend = NULL,
palette = "RdYlGn",
rev = FALSE,
opacity = 0.85,
max_cog_size = 2048L,
first_quantile = 0.02,
last_quantile = 0.98,
leaflet_megabytes = 64L,
add = FALSE

)

## S3 method for class 'class_cube'
sits_view(
x,
...,
tiles = x[["tile"]],
legend = NULL,
palette = "Set3",
version = NULL,
opacity = 0.85,
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max_cog_size = 2048L,
leaflet_megabytes = 32L,
add = FALSE

)

## S3 method for class 'probs_cube'
sits_view(
x,
...,
tiles = x[["tile"]][[1L]],
label = x[["labels"]][[1L]][[1L]],
legend = NULL,
palette = "YlGn",
rev = FALSE,
opacity = 0.85,
max_cog_size = 2048L,
first_quantile = 0.02,
last_quantile = 0.98,
leaflet_megabytes = 64L,
add = FALSE

)

## S3 method for class 'vector_cube'
sits_view(
x,
...,
tiles = x[["tile"]][[1L]],
seg_color = "yellow",
line_width = 0.5,
add = FALSE

)

## S3 method for class 'class_vector_cube'
sits_view(
x,
...,
tiles = x[["tile"]][[1L]],
seg_color = "yellow",
line_width = 0.2,
version = NULL,
legend = NULL,
palette = "Set3",
opacity = 0.85,
add = FALSE

)

## Default S3 method:
sits_view(x, ...)
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Arguments

x Object of class "sits", "data.frame", "som_map", "raster_cube", "probs_cube",
"vector_cube", or "class cube".

... Further specifications for sits_view.

legend Named vector that associates labels to colors.

palette Color palette from RColorBrewer

radius Radius of circle markers

add Add image to current leaflet

id_neurons Neurons from the SOM map to be shown.

band Single band for viewing false color images.

red Band for red color.

green Band for green color.

blue Band for blue color.

tiles Tiles to be plotted (in case of a multi-tile cube).

dates Dates to be plotted.

rev Revert color palette?

opacity Opacity of segment fill or class cube

max_cog_size Maximum size of COG overviews (lines or columns)

first_quantile First quantile for stretching images

last_quantile Last quantile for stretching images
leaflet_megabytes

Maximum size for leaflet (in MB)

version Version name (to compare different classifications)

label Label to be plotted (in case of probs cube)

seg_color Color for segment boundaries

line_width Line width for segments (in pixels)

Value

A leaflet object containing either samples or data cubes embedded in a global map that can be
visualized directly in an RStudio viewer.

Note

To show a false color image, use "band" to chose one of the bands, "tiles" to select tiles, "first_quantile"
and "last_quantile" to set the cutoff points. Choose only one date in the "dates" parameter. The color
scheme is defined by either "palette" (use an available color scheme) or legend (user-defined color
scheme). To see which palettes are pre-defined, use cols4all::g4a_gui or select any ColorBrewer
name. The "rev" parameter reverts the order of colors in the palette.

To show an RGB composite, select "red", "green" and "blue" bands, "tiles", "dates", "opacity",
"first_quantile" and "last_quantile". One can also get an RGB composite, by selecting one band and
three dates. In this case, the first date will be shown in red, the second in green and third in blue.
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Probability cubes are shown in false color. The parameter "labels" controls which labels are shown.
If left blank, only the first map is shown. For color control, use "palette", "legend", and "rev" (as
described above).

Vector cubes have both a vector and a raster component. The vector part are the segments produced
by sits_segment. Their visual output is controlled by "seg_color" and "line_width" parameters.
The raster output works in the same way as the false color and RGB views described above.

Classified cubes need information on how to render each class. There are three options: (a) the
classes are part of an existing color scheme; (b) the user provides a legend which associates each
class to a color; (c) use a generic palette (such as "Spectral") and allocate colors based on this
palette. To find out how to create a customized color scheme, read the chapter "Data Visualisation
in sits" in the sits book.

To compare different classifications, use the "version" parameter to distinguish between the different
maps that are shown.

Vector classified cubes are displayed as classified cubes, with the segments overlaid on top of the
class map, controlled by "seg_color" and "line_width".

Samples are shown on the map based on their geographical locations and on the color of their
classes assigned in their color scheme. Users can also assign a legend or a palette to choose colors.
See information above on the display of classified cubes.

For all types of data cubes, the following parameters apply:

• opacity: controls the transparency of the map.

• max_cog_size: For COG data, controls the level of aggregation to be used for display, mea-
sured in pixels, e.g., a value of 512 will select a 512 x 512 aggregated image. Small values are
faster to show, at a loss of visual quality.

• leaflet_megabytes: maximum size of leaflet to be shown associated to the map (in megabytes).
Bigger values use more memory.

• add: controls whether a new visualisation will be overlaid on top of an existing one. Default
is FALSE.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# view samples
sits_view(cerrado_2classes)
# create a local data cube
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
modis_cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# view the data cube
sits_view(modis_cube,

band = "NDVI"
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)
# train a model
rf_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify the cube
modis_probs <- sits_classify(

data = modis_cube,
ml_model = rf_model,
output_dir = tempdir()

)
# generate a map
modis_label <- sits_label_classification(

modis_probs,
output_dir = tempdir()

)
# view the classified map
sits_view(modis_label)
# add the NDVI band for the first date
sits_view(modis_cube,

band = "NDVI",
class_cube = modis_label,
dates = sits_timeline(modis_cube)[[1]],
add = TRUE

)
# view the classified map with the RGB image
sits_view(modis_cube,

red = "NDVI", green = "NDVI", blue = "NDVI",
class_cube = modis_label,
dates = sits_timeline(modis_cube)[[1]],
add = TRUE

)
# create an uncertainty cube
modis_uncert <- sits_uncertainty(

cube = modis_probs,
output_dir = tempdir()

)
# view the uncertainty cube
sits_view(modis_uncert, rev = TRUE, add = TRUE)

}

sits_whittaker Filter time series with whittaker filter

Description

The algorithm searches for an optimal warping polynomial. The degree of smoothing depends on
smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5 for very slight smoothing
and lambda = 5.0 for strong smoothing.

Usage

sits_whittaker(data = NULL, lambda = 0.5)
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Arguments

data Time series or matrix.

lambda Smoothing factor to be applied (default 0.5).

Value

Filtered time series

Author(s)

Rolf Simoes, <rolfsimoes@gmail.com>

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>

References

Francesco Vuolo, Wai-Tim Ng, Clement Atzberger, "Smoothing and gap-filling of high resolution
multi-spectral time series: Example of Landsat data", Int Journal of Applied Earth Observation and
Geoinformation, vol. 57, pg. 202-213, 2107.

See Also

sits_apply

Examples

if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit,

suffix = c("", ".WHIT")
)
# Plot the two points to see the smoothing effect
plot(point_ndvi)

}

sits_xgboost Train extreme gradient boosting models

Description

This function uses the extreme gradient boosting algorithm. Boosting iteratively adds basis func-
tions in a greedy fashion so that each new basis function further reduces the selected loss function.
This function is a front-end to the methods in the "xgboost" package. Please refer to the documen-
tation in that package for more details.
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Usage

sits_xgboost(
samples = NULL,
learning_rate = 0.15,
min_split_loss = 1,
max_depth = 5L,
min_child_weight = 1,
max_delta_step = 1,
subsample = 0.85,
nfold = 5L,
nrounds = 100L,
nthread = 6L,
early_stopping_rounds = 20L,
verbose = FALSE

)

Arguments

samples Time series with the training samples.

learning_rate Learning rate: scale the contribution of each tree by a factor of 0 < lr < 1 when
it is added to the current approximation. Used to prevent overfitting. Default:
0.15

min_split_loss Minimum loss reduction to make a further partition of a leaf. Default: 1.

max_depth Maximum depth of a tree. Increasing this value makes the model more complex
and more likely to overfit. Default: 5.

min_child_weight

If the leaf node has a minimum sum of instance weights lower than min_child_weight,
tree splitting stops. The larger min_child_weight is, the more conservative the
algorithm is. Default: 1.

max_delta_step Maximum delta step we allow each leaf output to be. If the value is set to 0, there
is no constraint. If it is set to a positive value, it can help making the update step
more conservative. Default: 1.

subsample Percentage of samples supplied to a tree. Default: 0.8.

nfold Number of the subsamples for the cross-validation.

nrounds Number of rounds to iterate the cross-validation (default: 100)

nthread Number of threads (default = 6)
early_stopping_rounds

Training with a validation set will stop if the performance doesn’t improve for k
rounds.

verbose Print information on statistics during the process

Value

Model fitted to input data (to be passed to sits_classify)
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Note

Please refer to the sits documentation available in https://e-sensing.github.io/sitsbook/
for detailed examples.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

References

Tianqi Chen, Carlos Guestrin, "XGBoost : Reliable Large-scale Tree Boosting System", SIG KDD
2016.

Examples

if (sits_run_examples()) {
# Example of training a model for time series classification
# Retrieve the samples for Mato Grosso
# train a xgboost model
ml_model <- sits_train(samples_modis_ndvi, ml_method = sits_xgboost)
# classify the point
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# classify the point
point_class <- sits_classify(

data = point_ndvi, ml_model = ml_model
)
plot(point_class)

}

summary.class_cube Summarize data cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'class_cube'
summary(object, ...)

Arguments

object Object of class "class_cube"

... Further specifications for summary.

Value

A summary of a classified cube

https://e-sensing.github.io/sitsbook/
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
summary(label_cube)

}

summary.raster_cube Summarize data cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'raster_cube'
summary(object, ..., tile = NULL, date = NULL)

Arguments

object Object of classes "raster_cube".

... Further specifications for summary.

tile Tile to be summarized

date Date to be summarized

Value

A summary of the data cube.
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Souza, <felipe.souza@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
summary(cube)

}

summary.sits Summarize sits

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'sits'
summary(object, ...)

Arguments

object Object of class "sits".

... Further specifications for summary.

Value

A summary of the sits tibble.

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carvalho, <felipe.carvalho@inpe.br>
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Examples

if (sits_run_examples()) {
summary(samples_modis_ndvi)

}

summary.sits_accuracy Summarize accuracy matrix for training data

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'sits_accuracy'
summary(object, ...)

Arguments

object Object of class "sits_accuracy".
... Further specifications for summary.

Value

A summary of the sample accuracy

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
data(cerrado_2classes)
# split training and test data
train_data <- sits_sample(cerrado_2classes, frac = 0.5)
test_data <- sits_sample(cerrado_2classes, frac = 0.5)
# train a random forest model
rfor_model <- sits_train(train_data, sits_rfor())
# classify test data
points_class <- sits_classify(

data = test_data,
ml_model = rfor_model

)
# measure accuracy
acc <- sits_accuracy(points_class)
summary(acc)

}
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summary.sits_area_accuracy

Summarize accuracy matrix for area data

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'sits_area_accuracy'
summary(object, ...)

Arguments

object Object of classe "sits_accuracy".

... Further specifications for summary.

Value

A summary of the sample accuracy

Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(

probs_cube,
output_dir = tempdir()

)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",
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package = "sits"
)
# make accuracy assessment
as <- sits_accuracy(label_cube, validation = ground_truth)
summary(as)

}

summary.variance_cube Summarize variance cubes

Description

This is a generic function. Parameters depend on the specific type of input.

Usage

## S3 method for class 'variance_cube'
summary(
object,
...,
intervals = 0.05,
sample_size = 10000L,
multicores = 2L,
memsize = 2L,
quantiles = c("75%", "80%", "85%", "90%", "95%", "100%")

)

Arguments

object Object of class "class_cube"

... Further specifications for summary.

intervals Intervals to calculate the quantiles

sample_size The approximate size of samples will be extracted from the variance cube (by
tile).

multicores Number of cores to summarize data (integer, min = 1, max = 2048).

memsize Memory in GB available to summarize data (integer, min = 1, max = 16384).

quantiles Quantiles to be shown

Value

A summary of a variance cube
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Author(s)

Gilberto Camara, <gilberto.camara@inpe.br>

Felipe Carlos, <efelipecarlos@gmail.com>

Felipe Souza, <lipecaso@gmail.com>

Examples

if (sits_run_examples()) {
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(

source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir

)
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# classify a data cube
probs_cube <- sits_classify(

data = cube, ml_model = rfor_model, output_dir = tempdir()
)
variance_cube <- sits_variance(

data = probs_cube,
output_dir = tempdir()

)
summary(variance_cube)

}
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