Package ‘shinyjs’

January 15, 2026
Title Easily Improve the User Experience of Your Shiny Apps in Seconds

Version 2.1.1

Description Perform common useful JavaScript operations in Shiny apps that will
greatly improve your apps without having to know any JavaScript. Examples
include: hiding an element, disabling an input, resetting an input back to
its original value, delaying code execution by a few seconds, and many more
useful functions for both the end user and the developer. 'shinyjs' can also
be used to easily call your own custom JavaScript functions from R.

URL https://deanattali.com/shinyjs/

BugReports https://github.com/daattali/shinyjs/issues
Depends R (>=3.1.0)
Imports digest (>= 0.6.8), jsonlite, shiny (>= 1.0.0)

Suggests htmltools (>= 0.2.9), knitr (>= 1.7), rmarkdown, shinyAce,
shinydisconnect, testthat (>= 0.9.1)

License MIT + file LICENSE

VignetteBuilder knitr

RoxygenNote 7.3.3

Encoding UTF-8

NeedsCompilation no

Author Dean Attali [aut, cre] (ORCID: <https://orcid.org/0000-0002-5645-3493>)
Maintainer Dean Attali <daattali@gmail.com>

Repository CRAN

Date/Publication 2026-01-15 06:10:08 UTC

Contents

classFuncs e e
click . . . e e
delay e

https://deanattali.com/shinyjs/
https://github.com/daattali/shinyjs/issues
https://orcid.org/0000-0002-5645-3493

2 classFuncs
extendShinyjs L e e e 7
hidden L L e e e 12
html . . . e e e e e 13
inlineCSS e e 15
messageFuncs 16
ONEVENL v v e v e e e e e e e e e e e e e e e 17
refresh Lo 19
removeEvent 20
TESCL . v v e e e e e e e e e 21
TUNCOAE L e e e e e e 22
runExample oL e e 24
TUIJS & v v v v e 25
ShOWLOZ e e e e 26
stateFuncs L L e 27
useShinyjs 29
visibilityFuneso 30
Index 34
classFuncs Add/remove CSS class
Description
Add or remove a CSS class from an HTML element.
addClass adds a CSS class, removeClass removes a CSS class, toggleClass adds the class if
it is not set and removes the class if it is already set.
addCssClass, removeCssClass, and toggleCssClass are synonyms that may be safer to use if
you’re working with S4 classes (since they don’t mask any existing S4 functions).
If condition is given to toggleClass, that condition will be used to determine if to add or re-
move the class. The class will be added if the condition evaluates to TRUE and removed otherwise.
If you find yourself writing code such as if (test()) addClass(id, cl) else removeClass(id,
cl) then you can use toggleClass instead: toggleClass(id, cl, test()).
CSS is a simple way to describe how elements on a web page should be displayed (position, colour,
size, etc.). You can learn the basics at W3Schools.
Usage

addClass(id = NULL, class = NULL, selector = NULL, asis = FALSE)

addCssClass(id

removeClass(id

NULL, class = NULL, selector = NULL, asis = FALSE)

NULL, class = NULL, selector = NULL, asis = FALSE)

https://www.w3schools.com/css/

classFuncs 3

removeCssClass(id = NULL, class = NULL, selector = NULL, asis = FALSE)

toggleClass(
id = NULL,
class = NULL,
condition = NULL,
selector = NULL,
asis = FALSE

)

toggleCssClass(
id = NULL,
class = NULL,
condition = NULL,
selector = NULL,

asis = FALSE
)
Arguments
id The id of the element/Shiny tag
class The CSS class to add/remove
selector JQuery selector of the elements to target. Ignored if the id argument is given.
For example, to add a certain class to all inputs with class x, use selector =
"input.x”
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
condition An optional argument to toggleClass, see 'Details’ below.
Note

If you use S4 classes, you should be aware of the fact that both S4 and shinyjs use the removeClass()
function. This means that when using S4, it is recommended to use removeCssClass() from
shinyjs, and to use methods: : removeClass() for S4 object.

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample, inlineCSS,

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs

4 click

Add a CSS class for red text colour
inlineCSS(list(.red = "background: red")),
actionButton(”"btn”, "Click me"),
p(id = "element”, "Watch what happens to me")
),
server = function(input, output) {
observeEvent(input$btn, {
Change the following line for more examples
toggleClass("element”, "red")
b))
}
)
}
Not run:
The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
toggleClass(class = "red”, id = "element")
addClass("element”, "red")
removeClass("element”, "red")

End(Not run)

toggleClass can be given an optional “condition™ argument, which
determines if to add or remove the class
if (interactive()) {
shinyApp(
ui = fluidPage(
useShinyjs(),
inlineCSS(list(.red = "background: red")),
checkboxInput(”checkbox”, "Make it red”),
p(id = "element”, "Watch what happens to me")
),
server = function(input, output) {
observe({
toggleClass(id = "element”, class = "red”,
condition = input$checkbox)
»
3
)
3

click Click on a Shiny button

Description

The click() function can be used to programatically simulate a click on a Shiny actionButton().

Usage

click(id, asis = FALSE)

delay 5

Arguments
id The id of the button
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
"Count:", textOutput(”"number”, inline = TRUE), br(),
actionButton("btn"”, "Click me"), br(),
"The button will be pressed automatically every 3 seconds”
),
server = function(input, output) {
output$number <- renderText({
input$btn
1))
observe({
click("btn")
invalidatelater(3000)
1))
}
)
3

delay Execute R code after a specified number of milliseconds has elapsed

Description

You can use delay if you want to wait a specific amount of time before running code. This function
can be used in combination with other shinyjs functions, such as hiding or resetting an element in
a few seconds, but it can also be used with any code as long as it’s used inside a Shiny app.

Usage

delay(ms, expr)

6 disabled

Arguments
ms The number of milliseconds to wait (1000 milliseconds = 1 second) before run-
ning the expression.
expr The R expression to run after the specified number of milliseconds has elapsed.
Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample

Examples

if (interactive()) {
library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(),
p(id = "text", "This text will disappear after 3 seconds”),
actionButton(”close”, "Close the app in half a second”)
),
server = function(input, output) {
delay (3000, hide("text"))
observeEvent (input$close, {
delay (500, stopApp())
1))
}
)
3

disabled Initialize a Shiny input as disabled

Description
Create a Shiny input that is disabled when the Shiny app starts. The input can be enabled later with
toggleState() or enable().

Usage
disabled(...)

Arguments

Shiny input (or tagList or list of of tags that include inputs) to disable.

extendShinyjs 7

Value

The tag (or tags) that was given as an argument in a disabled state.

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs(), toggleState(), enable(), disable()

Examples

if (interactive()) {
library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton(”"btn”, "Click me"),
disabled(
textInput(”element”, NULL, "I was born disabled”)
)
),
server = function(input, output) {
observeEvent (input$btn, {
enable("element")
b))
}
)
3

library(shiny)
disabled(numericInput(”num”, NULL, 5), dateInput(”date”, NULL))

extendShinyjs Extend shinyjs by calling your own JavaScript functions

Description

Add your own JavaScript functions that can be called from R as if they were regular R functions.
This is a more advanced technique and can only be used if you know JavaScript. See *Basic Usage’
below for more information or view the shinyjs webpage to learn more.

Usage

extendShinyjs(script, text, functions)

https://deanattali.com/shinyjs/

8 extendShinyjs

Arguments
script Path to a JavaScript file that contains all the functions. Each function name must
begin with "shinyjs.", for example "shinyjs.myfunc". Note that the path
to the file must be discoverable by the browser (meaning that it needs to be in
a "www/" directory or available via addResourcePath()). See 'Basic Usage’
below for more details.
text Inline JavaScript code to use instead of providing a file. See ’Basic Usage’
below.
functions The names of the shinyjs JavaScript functions which are defined and you want
to be able to call using shinyjs. For example, if you defined JavaScript func-
tions named shinyjs.foo and shinyjs.bar, then use functions = c("foo",
n ba r. n) 3
Value

Scripts that are required by shinyjs.

Basic Usage

Any JavaScript function defined in your script that begins with "shinyjs." and that’s provided in
the functions argument will be available to run from R using the "js$" variable. For example,
if you write a JavaScript function called "shinyjs.myfunc" and used functions = c("myfunc"),
then you can call it from R with js$myfunc().

It’s recommended to write JavaScript code in a separate file and provide the filename as the script
argument, but it’s also possible to use the text argument to provide a string containing valid
JavaScript code.

Here is a basic example of using extendShinyjs() to define a function that changes the colour of
the page:

library(shiny)
library(shinyjs)

jsCode <- "shinyjs.pageCol = function(params){$('body').css('background', params);3}"

shinyApp(
ui = fluidPage(
useShinyjs(),
extendShinyjs(text = jsCode, functions = c("pageCol”)),
selectInput(”col”, "Colour:",
c("white”, "yellow”, "red”, "blue”, "purple"))
),

server = function(input, output) {
observeEvent (input$col, {
js$pageCol (input$col)
1))
}

extendShinyjs 9

You can add more functions to the JavaScript code, but remember that every function you want to
use in R has to have a name beginning with "shinyjs.". See the section on passing arguments and
the examples below for more information on how to write effective functions.

Running JavaScript code on page load

If there is any JavaScript code that you want to run immediately when the page loads, you can place
it inside a shinyjs.init function. The function shinyjs.init will automatically be called when
the Shiny app’s HTML is initialized. A common use for this is when registering event handlers
or initializing JavaScript objects, as these usually just need to run once when the page loads. The
functions parameter does not need to be told about the init function, so you can use an empty
list such as functions = c() (or if you have an init function together with other shinyjs functions,
simply list all the functions except for init).

For example, the following example uses shinyjs.init to register an event handler so that every
keypress will print its corresponding key code:

n

jscode <-
shinyjs.init = function() {
$(document) .keypress(function(e) { alert('Key pressed: ' + e.which); 3});
3
shinyApp(
ui = fluidPage(
useShinyjs(),
extendShinyjs(text = jscode, functions = c()),
"Press any key"
),
server = function(input, output) {}

)

Passing arguments from R to JavaScript

Any shinyjs function that is called will pass a single array-like parameter to its corresponding
JavaScript function. If the function in R was called with unnamed arguments, then it will pass an
Array of the arguments; if the R arguments are named then it will pass an Object with key-value
pairs.

For example, calling js$foo("bar”, 5) in R will call shinyjs.foo(["bar”, 5]) in JS, while
calling js$foo(num=5, id = "bar") in R will call shinyjs.foo({num : 5, id : "bar”}) in JS.
This means that the shinyjs. foo function needs to be able to deal with both types of parameters.

To assist in normalizing the parameters, shinyjs provides a shinyjs.getParams() function which
serves two purposes. First of all, it ensures that all arguments are named (even if the R function was
called without names). Secondly, it allows you to define default values for arguments.

Here is an example of a JS function that changes the background colour of an element and uses
shinyjs.getParams().

shinyjs.backgroundCol = function(params) {
var defaultParams =

id : null,

{

10 extendShinyjs

col : "red"

1

params = shinyjs.getParams(params, defaultParams);

var el = $("#" + params.id);
el.css("background-color”, params.col);

Note the defaultParams object that was defined and the call to shinyjs.getParams. It ensures
that calling js$backgroundCol("test”, "blue”) and js$backgroundCol(id = "test"”, col =
"blue”) and js$backgroundCol(col = "blue”, id = "test") are all equivalent, and that if the
colour parameter is not provided then "red" will be the default.

All the functions provided in shinyjs make use of shinyjs.getParams, and it is highly rec-
ommended to always use it in your functions as well. Notice that the order of the arguments in
defaultParams in the JavaScript function matches the order of the arguments when calling the
function in R with unnamed arguments.

See the examples below for a shiny app that uses this JS function.

Note

You still need to call useShinyjs() as usual, and the call to useShinyjs() must come before the
call to extendShinyjs().

See Also

runExample

Examples

Not run:
Example 1:
Change the page background to a certain colour when a button is clicked.

jsCode <- "shinyjs.pageCol = function(params){$('body').css('background', params);}"

shinyApp(
ui = fluidPage(
useShinyjs(),
extendShinyjs(text = jsCode, functions = c("pageCol”)),
selectInput(”col”, "Colour:",
c("white”, "yellow”, "red”, "blue"”, "purple"))
),
server = function(input, output) {
observeEvent (input$col, {
js$pageCol (input$col)
»

extendShinyjs 11

Example 2:
Change the background colour of an element, using "red"” as default
jsCode <- '
shinyjs.backgroundCol =
var defaultParams = {
id : null,
col : "red”
b

params = shinyjs.getParams(params, defaultParams);

function(params) {

var el = $("#" + params.id);
el.css("background-color”, params.col);

3!
shinyApp(
ui = fluidPage(
useShinyjs(),
extendShinyjs(text = jsCode, functions = c("backgroundCol")),
p(id = "name”, "My name is Dean"),
p(id = "sport”, "I like soccer"),
selectInput(”col”, "Colour",
c("green”, "yellow", "red”, "blue"”, "white")),
selectInput(”selector”, "Element”, c("sport”, "name"”, "button")),
actionButton("button”, "Go")
),

server = function(input, output) {
observeEvent (input$button, {
js$backgroundCol(input$selector, input$col)
b))

Example 3:

Create an “increment” function that increments the number inside an HTML

tag (increment by 1 by default, with an optional parameter). Use a separate
file instead of providing the JS code in a string.

Create a JavaScript file "myfuncs.js" in a "www/" directory:
shinyjs.increment = function(params) {
var defaultParams = {
id : null,
num : 1
b

params = shinyjs.getParams(params, defaultParams);

var el = $("#" + params.id);
el.text(parselnt(el.text()) + params.num);

12 hidden

And a shiny app that uses the custom function we just defined. Note how
the arguments can be either passed as named or unnamed, and how default
values are set if no value is given to a parameter.

library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(),
extendShinyjs("myfuncs. js"”, functions = c("increment")),
p(id = "number”, @),

actionButton("add"”, "js$increment('number')"),
actionButton("add5"”, "js$increment('number', 5)"),
actionButton("add10", "js$increment(num = 10, id = 'number')")

),
server = function(input, output) {
observeEvent (input$add, {
js$increment ('number"')
»
observeEvent (input$add5, {
js$increment('number', 5)

»
observeEvent (input$addio, {
js$increment(num = 10, id = 'number')
»
3

)

End(Not run)

hidden Initialize a Shiny tag as hidden

Description

Create a Shiny tag that is invisible when the Shiny app starts. The tag can be made visible later with
toggle() or show().

Usage
hidden(...)

Arguments

Shiny tag (or tagList or list of of tags) to make invisible

Value

The tag (or tags) that was given as an argument in a hidden state.

html 13

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs(), toggle(), show(), hide()

Examples

if (interactive()) {
library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton(”"btn”, "Click me"),
hidden(
p(id = "element”, "I was born invisible")
)
),
server = function(input, output) {
observeEvent (input$btn, {
show("element”)
1))
3
)
3

library(shiny)

hidden(span(id = "a"), div(id = "b"))
hidden(tagList(span(id = "a"), div(id = "b")))
hidden(list(span(id = "a"), div(id = "b")))

html Change the HTML (or text) inside an element

Description

Change the text or HTML inside an element. The given HTML can be any R expression, and it can
either be appended to the currentcontents of the element or overwrite it (default).

Usage

html(id = NULL, html = NULL, add = FALSE, selector = NULL, asis = FALSE)

14 html

Arguments
id The id of the element/Shiny tag
html The HTML/text to place inside the element. Can be either simple plain text or
valid HTML code.
add If TRUE, then append html to the contents of the element; otherwise overwrite it.
selector JQuery selector of the elements to target. Ignored if the id argument is given.
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton("btn”, "Click me"),
p(id = "element"”, "Watch what happens to me")
),
server = function(input, output) {
observeEvent (input$btn, {
Change the following line for more examples
html("element”, paste@("The date is ", date()))
b))
}
)
}
Not run:
The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
html("element”, "Hello!")
html("element”, " Hello!"”, TRUE)
html("element”, "bold that was achieved with HTML")
local({val <- "some text"”; html("element”, val)})
html(id = "element”, add = TRUE, html = input$btn)

End(Not run)

inlineCSS 15

inlineCSS Add inline CSS

Description

Add inline CSS to a Shiny app. This is simply a convenience function that gets called from a Shiny
app’s Ul to make it less tedious to add inline CSS. If there are many CSS rules, it is recommended
to use an external stylesheet.

CSS is a simple way to describe how elements on a web page should be displayed (position, colour,
size, etc.). You can learn the basics at W3Schools.

Usage
inlineCSS(rules)
Arguments
rules The CSS rules to add. Can either be a string with valid CSS code, or a named list
of the form list(selector =declarations), where selector is a valid CSS
selector and declarations is a string or vector of declarations. See examples
for clarification.
Value

Inline CSS code that is automatically inserted to the app’s <head> tag.

Examples

if (interactive()) {
library(shiny)

Method 1 - passing a string of valid CSS
shinyApp(
ui = fluidPage(
inlineCSS("#big { font-size:30px; }
.red { color: red; border: 1px solid black;}"),
p(id = "big", "This will be big"),
p(class = "red", "This will be red and bordered”)
),
server = function(input, output) {3}

)

Method 2 - passing a list of CSS selectors/declarations
where each declaration is a full declaration block
shinyApp(
ui = fluidPage(
inlineCSS(list(
"#big" = "font-size:30px",

https://www.w3schools.com/css/

16 messageFuncs

".red” = "color: red; border: 1px solid black;"
),
p(id = "big"”, "This will be big"),
p(class = "red"”, "This will be red and bordered")

)!

server = function(input, output) {3}

)

Method 3 - passing a list of CSS selectors/declarations
where each declaration is a vector of declarations
shinyApp(
ui = fluidPage(
inlineCSS(list(
"#big" = "font-size:30px",
".red"” = c("color: red”, "border: 1px solid black")
),
p(id = "big", "This will be big"),
p(class = "red”, "This will be red and bordered")

),
server = function(input, output) {3}
)
3
messageFuncs Show a message
Description

alert (and its alias info) shows a message to the user as a simple popup.
logjs writes a message to the JavaScript console. logjs is mainly used for debugging purposes as

a way to non-intrusively print messages, but it is also visible to the user if they choose to inspect
the console. You can also use the showLog function to print the JavaScript message directly to the

R console.

Usage

alert(text)
info(text)
logjs(text)

Arguments

text The message to show. Can be either simple text or an R object.

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

onevent 17

See Also

useShinyjs, runExample, showLog

Examples

if (interactive()) {
library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton("btn”, "Click me")
),
server = function(input, output) {
observeEvent (input$btn, {
Change the following line for more examples
alert(paste@("The date is ", date()))
1))
}
)

3

Not run:
The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
alert("Hello!")
alert(text = R.Version())
logjs(R.Version())

End(Not run)

onevent Run R code when an event is triggered on an element

Description

onclick runs an R expression (either a shinyjs function or any other code) when an element is
clicked.

onevent is similar, but can be used when any event is triggered on the element, not only a mouse
click. See below for a list of possible event types. Using "click" results in the same behaviour as
calling onclick.
This action can be reverted by calling removeEvent.

Usage

onclick(id, expr, add = FALSE, asis = FALSE)

onevent(event, id, expr, add = FALSE, properties = NULL, asis = FALSE)

18
Arguments

id

expr

add

asis

event

properties

Value

onevent

The id of the element/Shiny tag

The R expression or function to run after the event is triggered. If a function with
an argument is provided, it will be called with the JavaScript Event properties
as its argument. Using a function can be useful when you want to know, for
example, what key was pressed on a "keypress" event or the mouse coordinates
in a mouse event. See below for a list of properties.

If TRUE, then add expr to be executed after any other code that was previously
set using onevent or onclick; otherwise expr will overwrite any previous ex-
pressions. Note that this parameter works well in web browsers but is buggy
when using the RStudio Viewer.

If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).

The event that needs to be triggered to run the code. See below for a list of event
types.

A list of JavaScript Event properties that should be available to the argument of
the expr function. See below for more information about Event properties.

An ID that can be used by removeEvent to remove the event listener. See removeEvent for more

details.

Event types

Any standard mouse or keyboard events that are supported by JQuery can be used. The standard
list of events that can be used is: click, dblclick, hover, mousedown, mouseenter, mouseleave,
mousemove, mouseout, mouseover, mouseup, keydown, keypress, keyup. You can also use any
other non standard events that your browser supports or with the use of plugins (for example, there
is a mousewheel plugin that you can use to listen to mousewheel events).

Event properties

If a function is provided to expr, the function will receive a list of JavaScript Event properties
describing the current event as an argument. Different properties are available for different event
types. The full list of properties that can be returned is: altKey, button, buttons, clientX,
clientY, ctrlKey, pageX, pageY, screenX, screenY, shiftKey, which, charCode, key, keyCode,
offsetX, of fsetY. If you want to retrieve any additional properties that are available in JavaScript
for your event type, you can use the properties parameter.

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

removeEvent, useShinyjs, runExample

https://api.jquery.com/category/events/mouse-events/
https://api.jquery.com/category/events/keyboard-events/
https://github.com/jquery/jquery-mousewheel

refresh 19

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
p(id = "date”, "Click me to see the date"),

p(id = "coords”, "Click me to see the mouse coordinates"”),
p(id = "disappear”, "Move your mouse here to make the text below disappear"),
p(id = "text", "Hello")

)!
server = function(input, output) {
onclick("date"”, alert(date()))
onclick("coords"”, function(event) { alert(event) })

onevent("mouseenter”, "disappear”, hide("text"))
onevent("mouseleave”, "disappear”, show("text"))
3
)
3
Not run:

The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
onclick("disappear”, toggle("text"))

onclick(expr = text("date”, date()), id = "date")

End(Not run)

refresh Refresh the page

Description

Refresh the page

Usage
refresh()

Examples

if (interactive()) {
library(shiny)
ui <- fluidPage(
useShinyjs(),
textInput(”"text”, "Text", "text"),
actionButton("refresh”, "Refresh")

)

20 removeEvent

server <- function(input, output, session) {
observeEvent (input$refresh, {

refresh()
1)
3
shinyApp(ui, server)
3
removeEvent Remove an event that was added to an element
Description

This function can be used to revert the action of onclick or onevent.

Usage

removeEvent (event, id, asis = FALSE)

Arguments
event Either an event type (see below for a list of event types) or an event ID (the return
value from onclick or onevent). If an event type is provided (eg. "hover"), then
all events of this type attached to the given element will be removed. If an event
ID is provided, then only that specific event will be removed. See examples for
clarification.
id The ID of the element/Shiny tag. Must match the ID used in onclick or onevent.
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
Event types

Any standard mouse or keyboard events that are supported by JQuery can be used. The standard
list of events that can be used is: click, dblclick, hover, mousedown, mouseenter, mouseleave,
mousemove, mouseout, mouseover, mouseup, keydown, keypress, keyup. You can also use any
other non standard events that your browser supports or with the use of plugins (for example, there
is a mousewheel plugin that you can use to listen to mousewheel events).

See Also

onclick, onevent

https://api.jquery.com/category/events/mouse-events/
https://api.jquery.com/category/events/keyboard-events/
https://github.com/jquery/jquery-mousewheel

reset 21

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs

p(id = "myel”, "Hover over me to see the date, the time, and a random integer”),
actionButton("remove_date”, "Remove date hover event"),
actionButton("remove_all”, "Remove all hover events")

),
server = function(input, output) {
onevent("hover”, "myel”, print(format(Sys.time(), "%H:%M:%S")))
onevent("hover”, "myel”, print(sample(100, 1)), add = TRUE)
date_event_id <- onevent("hover”, "myel”, print(as.character(Sys.Date())), add = TRUE)

observeEvent (input$remove_all, {
removeEvent ("hover”, "myel”)

D)

observeEvent (input$remove_date, {
removeEvent (date_event_id, "myel”)

b))

reset Reset input elements to their original values

Description

Reset any input element back to its original value. You can either reset one specific input at a time

by providing the id of a shiny input, or reset all inputs within an HTML tag by providing the id of
an HTML tag.

Reset can be performed on any traditional Shiny input widget, which includes: textInput, nu-
mericlnput, sliderInput, selectInput, selectizelnput, radioButtons, dateInput, dateRangeInput, check-
boxInput, checkboxGrouplnput, colourInput, passwordInput, textArealnput. Note that actionButton
is not supported, meaning that you cannot reset the value of a button back to 0.

Usage
reset(id = "", asis = FALSE)
Arguments
id The id of the input element to reset or the id of an HTML tag to reset all inputs
inside it. If no id is provided, then all inputs on the page are reset.
asis If TRUE, use the ID as-is even when inside a module (instead of adding the

namespace prefix to the ID).

22 runcode

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(),
div(
id = "form”,
textInput("name”, "Name"”, "Dean"),
radioButtons("gender”, "Gender"”, c(”"Male”, "Female")),
selectInput(”letter”, "Favourite letter”, LETTERS)

),

actionButton("resetAll”, "Reset all"),
actionButton("resetName”, "Reset name"),
actionButton("resetGender”, "Reset Gender"),
actionButton("resetlLetter”, "Reset letter”)

),
server = function(input, output) {
observeEvent (input$resetName, {
reset("name")
1))
observeEvent (input$resetGender, {
reset("gender")
)]
observeEvent (input$resetLetter, {
reset("letter"”)
1))
observeEvent (input$resetAll, {
reset("form")

D

runcode Construct to let you run arbitrary R code live in a Shiny app

runcode

Description

23

Sometimes when developing a Shiny app, it’s useful to be able to run some R code on-demand. This
construct provides your app with a text input where you can enter any R code and run it immediately.

This can be useful for testing and while developing an app locally, but it should not be included in
an app that is accessible to other people, as letting others run arbitrary R code can open you up

to security attacks.

To use this construct, you must add a call to runcodeUI() in the UI of your app, and a call
to runcodeServer() in the server function. You also need to initialize shinyjs with a call to
useShinyjs() in the UL

Usage
runcodeUI (
code = "",
type = c("text"”, "textarea”, "ace"),
width = NULL,

height = NULL,
includeShinyjs = NULL,

id = NULL
)

runcodeServer ()

Arguments

code

type

width

height
includeShinyjs
id

Note

The initial R code to show in the text input when the app loads

One of "text" (default), "textarea”, or "ace”. When using a text input, the R
code will be limited to be typed within a single line, and is the recommended op-
tion. Textarea should be used if you want to write long multi-line R code. Note
that you can run multiple expressions even in a single line by appending each
R expression with a semicolon. Use of the "ace"” option requires the shinyAce
package.

The width of the editable code input (ignored when type="ace")
The height of the editable code input (ignored when type="text")
Deprecated. You should always make sure to initialize shinyjs using useShinyjs.

When used inside a shiny module, the module’s id needs to be provided to
runcodeUI. This argument should remain NULL when not used inside a mod-
ule.

You can only have one runcode construct in your shiny app. Calling this function multiple times
within the same app will result in unpredictable behaviour.

24 runExample

See Also

useShinyjs

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
runcodeUI(code = "shinyjs::alert('Hello!')")

))
server = function(input, output) {
runcodeServer()
3
)
3
runExample Run shinyjs examples
Description

Launch a shinyjs example Shiny app that shows how to easily use shinyjs in an app.

Run without any arguments to see a list of available example apps. The "demo" example is also
available online to experiment with.

Usage

runExample (example)
Arguments

example The app to launch
Examples

Only run this example in interactive R sessions
if (interactive()) {

List all available example apps

runExample ()

runExample("sandbox")
runExample("demo")

}

https://daattali.com/shiny/shinyjs-demo/

runjs

runjs Run JavaScript code

Description

Run arbitrary JavaScript code.

Usage

runjs(code)

Arguments

code JavaScript code to run.

Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs

Examples

if (interactive()) {
library(shiny)
shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton("btn”, "Click me")
),
server = function(input, output) {
observeEvent (input$btn, {
Run JS code that simply shows a message
runjs("var today = new Date(); alert(today);")
1))
3
)
3

26 showLog

showLog Print any JavaScript console.log messages in the R console

Description

When developing and debugging a Shiny that uses custom JavaScript code, it can be helpful to use
console.log() messages in JavaScript. This function allows you to see these messages printed in
the R console directly rather than having to open the JavaScript console in the browser to view the
messages.

This function must be called in a Shiny app’s server.

Usage

showLog()

Note

Log messages that cannot be serialized in JavaScript (such as many JavaScript Event objects that
are cyclic) will not be printed in R.

See Also

logjs()

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(),
textInput("text”, "Type something”)
),
server = function(input, output) {
showLog()
logjs("App started”)
observe({
logjs(paste(”"Length of text:"”, nchar(input$text)))
b))
3
)
3

stateFuncs 27

stateFuncs Enable/disable an input element

Description

Enable or disable an input element. A disabled element is not usable and not clickable, while an en-
abled element (default) can receive user input. Any shiny input tag can be used with these functions.

enable enables an input, disable disabled an input,toggleState enables an input if it is dis-
abled and disables an input if it is already enabled.

If condition is given to toggleState, that condition will be used to determine if to enable or
disable the input. The element will be enabled if the condition evaluates to TRUE and disabled other-

wise. If you find yourself writing code such as if (test()) enable(id) else disable(id) then
you can use toggleState instead: toggleState(id, test()).

Usage

enable(id = NULL, selector = NULL, asis = FALSE)
disable(id = NULL, selector = NULL, asis = FALSE)

toggleState(id = NULL, condition = NULL, selector = NULL, asis = FALSE)

Arguments
id The id of the input element/Shiny tag
selector Query selector of the elements to target. Ignored if the id argument is given. For
example, to disable all text inputs, use selector = "input[type="'text']"
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
condition An optional argument to toggleState. The element will be enabled when the
condition is TRUE, and disabled otherwise.
Note

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample disabled

28

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton(”"btn”, "Click me"),
textInput(”element”, "Watch what happens to me")
),
server = function(input, output) {
observeEvent (input$btn, {
Change the following line for more examples
toggleState("element”)
»
3
)
3
Not run:
The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
toggleState(id = "element”)
enable("element”)
disable("element"”)

Similarly, the "element” text input can be changed to many other
input tags, such as the following examples

actionButton(”"element”, "I'm a button”)
fileInput(”element”, "Choose a file")
selectInput(”element”, "I'm a select box"”, 1:10)

End(Not run)

toggleState can be given an optional “condition™ argument, which
determines if to enable or disable the input
if (interactive()) {

shinyApp(
ui = fluidPage(
useShinyjs(),
textInput(”"text"”, "Please type at least 3 characters”),
actionButton("element”, "Submit")
),
server = function(input, output) {
observe({
toggleState(id = "element”, condition = nchar(input$text) >= 3)
b))
3
)

3

stateFuncs

useShinyjs 29

useShinyjs Set up a Shiny app to use shinyjs

Description

This function must be called from a Shiny app’s Ul in order for all other shinyjs functions to work.

You can call useShinyjs() from anywhere inside the U, as long as the final app UI contains
the result of useShinyjs().

Usage
useShinyjs(rmd = FALSE, debug = FALSE, html = FALSE)

Arguments
rmd Set this to TRUE only if you are using shinyjs inside an interactive R markdown
document. If using this option, view the README online to learn how to use
shinyjs in R markdown documents.
debug Set this to TRUE if you want to see detailed debugging statements in the JavaScript
console. Can be useful when filing bug reports to get more information about
what is going on.
html Set this to TRUE only if you are using shinyjs in a Shiny app that builds the
entire user interface with a custom HTML file. If using this option, view the
README online to learn how to use shinyjs in these apps.
Details

If you're a package author and including shinyjs in a function in your your package, you need to
make sure useShinyjs() is called either by the end user’s Shiny app or by your function’s UL

Value

Scripts that shinyjs requires that are automatically inserted to the app’s <head> tag. A side effect of
calling this function is that a shinyjs directory is added as a resource path using shiny: : addResourcePath().

See Also

runExample extendShinyjs

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs

https://github.com/daattali/shinyjs
https://github.com/daattali/shinyjs

30 visibilityFuncs
actionButton("btn”, "Click me"),
textInput(”element”, "Watch what happens to me")
))
server = function(input, output) {
observeEvent (input$btn, {
Run a simply shinyjs function
toggle("element™)
1))
}
)
3
visibilityFuncs Display/hide an element
Description
Display or hide an HTML element.
show makes an element visible, hide makes an element invisible, toggle displays the element
if it it hidden and hides it if it is visible.
showElement, hideElement, and toggleElement are synonyms that may be safer to use if you’re
working with S4 classes (since they don’t mask any existing S4 functions).
If condition is given to toggle, that condition will be used to determine if to show or hide the
element. The element will be shown if the condition evaluates to TRUE and hidden otherwise. If
you find yourself writing code such as if (test()) show(id) else hide(id) then you can use
toggle instead: toggle(id =id, condition =test())
Usage
show(
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,
selector = NULL,
asis = FALSE
)
showElement
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,

selector = NULL,

asis = FALSE

visibilityFuncs 31

)

hide(
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,
selector = NULL,
asis = FALSE

)

hideElement(
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,
selector = NULL,
asis = FALSE

)

toggle(
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,
selector = NULL,
condition = NULL,
asis = FALSE

)

toggleElement (
id = NULL,
anim = FALSE,
animType = "slide",
time = 0.5,
selector = NULL,
condition = NULL,

asis = FALSE
)
Arguments
id The id of the element/Shiny tag
anim If TRUE then animate the behaviour
animType The type of animation to use, either "slide” or "fade”
time The number of seconds to make the animation last
selector JQuery selector of the elements to show/hide. Ignored if the id argument is

given. For example, to select all span elements with class X, use selector =

32 visibilityFuncs

"span.x"
asis If TRUE, use the ID as-is even when inside a module (instead of adding the
namespace prefix to the ID).
condition An optional argument to toggle, see ’Details’ below.
Details

If you want to hide/show an element in a few seconds rather than immediately, you can use the
delay function.

Note

If you use S4 classes, you should be aware of the fact that both S4 and shinyjs use the show()
function. This means that when using S4, it is recommended to use showElement () from shinyjs,
and to use methods: : show() for S4 object.

shinyjs must be initialized with a call to useShinyjs() in the app’s ui.

See Also

useShinyjs, runExample, hidden, delay

Examples

if (interactive()) {
library(shiny)

shinyApp(
ui = fluidPage(
useShinyjs(), # Set up shinyjs
actionButton(”"btn”, "Click me"),
textInput("text"”, "Text")
),
server = function(input, output) {
observeEvent (input$btn, {
Change the following line for more examples
toggle("text")
b))
3
)
3
Not run:
The shinyjs function call in the above app can be replaced by
any of the following examples to produce similar Shiny apps
toggle(id = "text")
delay (1000, toggle(id = "text")) # toggle in 1 second
toggle("text"”, TRUE)
toggle("text"”, TRUE, "fade", 2)
toggle(id = "text”, time = 1, anim = TRUE, animType = "slide")
show("text")
show(id = "text"”, anim = TRUE)
hide("text")

visibilityFuncs 33

hide(id = "text"”, anim = TRUE)
End(Not run)

toggle can be given an optional “condition™ argument, which
determines if to show or hide the element
if (interactive()) {
shinyApp(
ui = fluidPage(

useShinyjs(),

checkboxInput("”checkbox"”, "Show the text", TRUE),

p(id = "element”, "Watch what happens to me")

),
server = function(input, output) {
observe({
toggle(id = "element”, condition = input$checkbox)
1))
}

)
}

Index

addClass (classFuncs), 2
addCssClass (classFuncs), 2
alert (messageFuncs), 16

classFuncs, 2
click, 4

delay, 5, 32

disable (stateFuncs), 27
disable(), 7
disabled, 6, 27

enable (stateFuncs), 27
enable(), 6, 7
extendShinyjs, 7, 29

hidden, 12, 32

hide (visibilityFuncs), 30
hide(), I3

hideElement (visibilityFuncs), 30
html, 13

info (messageFuncs), 16
inlineCSS, 3, 15

logjs (messageFuncs), 16
logjs(), 26

messageFuncs, 16

onclick, 20
onclick (onevent), 17
onevent, 17, 20

refresh, 19

removeClass (classFuncs), 2
removeCssClass (classFuncs), 2
removeEvent, 17, 18, 20
reset, 21

runcode, 22

runcodeServer (runcode), 22

34

runcodeUI (runcode), 22

runExample, 3, 5, 6, 10, 14, 17, 18, 22, 24, 27,
29, 32

runjs, 25

shiny: :addResourcePath(), 29
show (visibilityFuncs), 30
show(), 12, 13

showElement (visibilityFuncs), 30
showlLog, 16, 17, 26

stateFuncs, 27

toggle (visibilityFuncs), 30
toggle(), 12, 13

toggleClass (classFuncs), 2
toggleCssClass (classFuncs), 2
toggleElement (visibilityFuncs), 30
toggleState (stateFuncs), 27
toggleState(), 6, 7

useShinyjs, 3,5, 6, 14, 17, 18, 22-25, 27, 29,
32
useShinyjs(), 7, 13

visibilityFuncs, 30

	classFuncs
	click
	delay
	disabled
	extendShinyjs
	hidden
	html
	inlineCSS
	messageFuncs
	onevent
	refresh
	removeEvent
	reset
	runcode
	runExample
	runjs
	showLog
	stateFuncs
	useShinyjs
	visibilityFuncs
	Index

