Package ‘shinyOAuth’

January 13, 2026

Title Provider-Agnostic OAuth Authentication for 'shiny' Applications
Version 0.2.0

Description Provides a simple, configurable, provider-agnostic 'OAuth 2.0' and
'OpenID Connect' (OIDC) authentication framework for 'shiny' applications
using 'S7' classes. Defines providers, clients, and tokens, as well
as various supporting functions and a 'shiny' module. Features include
cross-site request forgery (CSRF) protection, state encryption,

"Proof Key for Code Exchange' (PKCE) handling, validation of OIDC identity
tokens (nonces, signatures, claims), automatic user info retrieval, asynchronous
flows, and hooks for audit logging.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Imports S7 (>=0.2.0), R6 (>=2.0), rlang (>= 1.0.0), shiny (>=
1.7.0), jsonlite (>= 1.0), openssl (>= 2.0.0), httr2 (>=
1.1.0), cachem (>= 1.1.0), jose (>= 1.2.0), cli (>=3.0.0),
htmltools (>= 0.5.0)

Suggests testthat (>= 3.0.0), knitr, rmarkdown, webfakes, promises,
future, withr, later, sodium, shinytest2, xml2

Depends R (>=4.1.0)
Config/testthat/edition 3
VignetteBuilder knitr

URL https://github.com/lukakoning/shinyOAuth,
https://lukakoning.github.io/shinyOAuth/

BugReports https://github.com/lukakoning/shinyOAuth/issues
NeedsCompilation no

Author Luka Koning [aut, cre, cph]

Maintainer Luka Koning <koningluka@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 08:10:02 UTC

https://github.com/lukakoning/shinyOAuth
https://lukakoning.github.io/shinyOAuth/
https://github.com/lukakoning/shinyOAuth/issues

2 client_bearer_req

Contents
client_bearer_req i e e e e e e 2
custom_cache e 4
error_on_softened L e 5
get_userinfo L e 6
handle_callback e 7
introspect_token L 9
1S Ok hoSt s 11
OAuthClient o e e e e e 12
OAuthProvider e e e 19
OAuthToken e e e 24
oauth_client e e e 26
oauth_module_server e e 32
oauth_provider 40
oauth_provider_authO 46
oauth_provider_github 48
oauth_provider_google e 49
oauth_provider_keycloak 51
oauth_provider_microsoft 53
oauth_provider_oidc e 56
oauth_provider_oidc_discover L 58
oauth_provider_okta 62
oauth_provider_slack Lo 63
oauth_provider_spotify L 65
prepare_call 67
refresh_token L 68
revoke_token e 70
use_shinyOAuth. e 71

Index 73

client_bearer_req Build an authorized httr2 request with Bearer token
Description

Convenience helper to reduce boilerplate when calling downstream APIs. It creates an httr2: :request()
for the given URL, attaches the Authorization: Bearer <token> header, and applies the pack-
age’s standard HTTP defaults (timeout and User-Agent).

Accepts either a raw access token string or an OAuthToken object.

client_bearer_req 3

Usage

client_bearer_req(
token,
url,
method = "GET",
headers = NULL,

query = NULL,
follow_redirect = FALSE
)
Arguments
token Either an OAuthToken object or a raw access token string.
url The absolute URL to call.
method Optional HTTP method (character). Defaults to "GET".
headers Optional named list or named character vector of extra headers to set on the re-
quest. Header names are case-insensitive. Any user-supplied Authorization
header is ignored to ensure the Bearer token set by this function is not overrid-
den.
query Optional named list of query parameters to append to the URL.

follow_redirect
Logical. If FALSE (the default), HTTP redirects are disabled to prevent leaking
the Bearer token to unexpected hosts. Set to TRUE only if you trust all possible
redirect targets and understand the security implications.

Value

An httr2 request object, ready to be further customized or performed with httr2: :req_perform().

Examples

Make request using OAuthToken object

(code is not run because it requires a real token from user interaction)
Not run:

Get an OAuthToken

(typically provided as reactive return value by ~oauth_module_server()™)
token <- OAuthToken()

Build request

request <- client_bearer_req(
token,
"https://api.example.com/resource”,
query = list(limit = 5)

)

Perform request
response <- httr2::req_perform(request)

End(Not run)

4 custom_cache
custom_cache Create a custom cache backend (cachem-like)
Description
Builds a minimal cachem-like cache backend object that exposes cachem-compatible methods:
$get(key, missing), $set(key, value), $remove(key), and $info().
Use this helper when you want to plug a custom state store or JWKS cache into ’shinyOAuth’,
when cachem: :cache_mem() or cachem: :cache_disk() are not suitable. This may be useful
specifically when you deploy a Shiny app to a multi-process environment with non-sticky workers.
In such cases, you may want to use a shared external cache (e.g., database, Redis, Memcached).
The resulting object can be used in both places where ’shinyOAuth’ accepts a cache-like object:
* OAuthClient@state_store (requires $get, $set, $remove; optional $info)
* OAuthProvider @jwks_cache (requires $get, $set; optional $remove, $info)
The $info() method is optional, but if provided and it returns a list with max_age (seconds),
shinyOAuth will align browser cookie max-age in oauth_module_server () to that value.
Usage
custom_cache(get, set, remove, info = NULL)
Arguments
get A function(key, missing = NULL) -> value. Required. Should return the stored
value, or the missing argument if the key is not present. The missing parameter
is mandatory because both OAuthClient and OAuthProvider validators will
pass it explicitly.
set A function(key, value) -> invisible(NULL). Required. Should store the value
under the given key
remove A function(key) -> logical or sentinel. Required.
For state stores, this enforces single-use eviction. If your backend performs an
atomic "get-and-delete" (e.g., SQL DELETE .. RETURNING), you may supply
a function which does nothing here but returns TRUE. (The login flow will always
attempt to call $remove () after $get () as a best-effort cleanup.)
Recommended contract for interoperability and strong replay protection:
* Return TRUE when a key was actually deleted or if it already did not exist
* Return FALSE when they key could not be deleted or when it is unknown if
they key was deleted
When the return value is not TRUE, ’shinyOAuth’ will attempt to retrieve the
value from the state store to check if it may still be present; if that fails (i.e., key
is not present), it will treat the removal as succesful. If it does find the key, it
will produce an error indicating that removal did not succeed.
info Function() -> list(max_age = seconds, ...). Optional

This may be provided to because TTL information from $info() is used to align
browser cookie max age in oauth_module_server()

error_on_softened 5

Value

An R6 object exposing cachem-like $get/$set/$remove/$info methods

Examples

mem <- new.env(parent = emptyenv())

my_cache <- custom_cache(
get = function(key, missing = NULL) {
base::get@(key, envir = mem, ifnotfound = missing, inherits = FALSE)

}?

set = function(key, value) {
assign(key, value, envir = mem)
invisible(NULL)

}?

remove = function(key) {
if (exists(key, envir = mem, inherits = FALSE)) {
rm(list = key, envir = mem)
return(TRUE) # signal successful deletion

}
return(TRUE) # key did not exist
}7
info = function() list(max_age = 600)
)
error_on_softened Throw an error if any safety checks have been disabled
Description

This function checks if any safety checks have been disabled via options intended for local devel-
opment use only. If any such options are detected, an error is thrown to prevent accidental use in
production environments.

Usage

error_on_softened()

Details
It checks for the following options:
e shinyOAuth.skip_browser_token: Skips browser cookie presence check

* shinyOAuth.skip_id_sig: Skips ID token signature verification

* shinyOAuth.print_errors: Enables printing of error messages

6 get_userinfo

* shinyOAuth.print_traceback: Enables printing of tracebacks (opt-in only; default FALSE)
* shinyOAuth.expose_error_body: Exposes HTTP response bodies

Note: Tracebacks are only treated as a "softened" behavior when the shinyOAuth.print_traceback
option is explicitly set to TRUE. The default is FALSE, even in interactive or test sessions.

Value

Invisible TRUE if no safety checks are disabled; otherwise, an error is thrown.

Examples

Throw an error if any developer-only softening options are enabled
Below call does not error if run with default options:
error_on_softened()

Below call would error (is therefore not run):
Not run:

options(shinyOAuth.skip_id_sig = TRUE)
error_on_softened()

End(Not run)

get_userinfo Get user info from OAuth 2.0 provider

Description
Fetches user information from the provider’s userinfo endpoint using the provided access token.
Emits an audit event with redacted details.

Usage

get_userinfo(oauth_client, token)

Arguments

oauth_client OAuthClient object. The client must have a userinfo_url configured in its
OAuthProvider.

token Either an OAuthToken object or a raw access token string.

Value

A list containing the user information as returned by the provider.

handle_callback

Examples

Please note: “get_userinfo()™, “introspect_token()~, and “refresh_token()"
are typically not called by users of this package directly, but are called
internally by ~oauth_module_server()”. These functions are exported

nonetheless for advanced use cases. Most users will not need to

call these functions directly

Example requires a real token from a completed OAuth flow
(code is therefore not run; would error with placeholder values below)
Not run:
Define client
client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"
)

Have a valid OAuthToken object; fake example below
(typically provided by “oauth_module_server()™ or ~handle_callback()™)

token <- handle_callback(client, "<code>", "<payload>", "<browser_token>")

Get userinfo
user_info <- get_userinfo(client, token)

Introspect token (if supported by provider)
introspection <- introspect_token(client, token)

Refresh token
new_token <- refresh_token(client, token, introspect = TRUE)

End(Not run)

handle_callback Handle OAuth 2.0 callback: verify state, swap code for token, verify
token

Description

Handle OAuth 2.0 callback: verify state, swap code for token, verify token

Usage

handle_callback(
oauth_client,
code,
payload,
browser_token,
decrypted_payload = NULL,

handle_callback

state_store_values = NULL,
shiny_session = NULL

)

Arguments

oauth_client
code

payload

browser_token

An OAuthClient object representing the OAuth client configuration.
The authorization code received from the OAuth provider during the callback.

The encrypted state payload received from the OAuth provider during the call-
back (this should be the same value that was generated and sent in prepare_call()).

Browser token present in the user’s session (this is managed by oauth_module_server()
and should match the one used in prepare_call()).

decrypted_payload

Optional pre-decrypted and validated payload list (as returned by state_decrypt_gcm()
followed by internal validation). Supplying this allows callers to validate and

bind the state on the main thread before dispatching to a background worker for

async flows.

state_store_values

shiny_session

Value

Optional pre-fetched state store entry (a list with browser_token, pkce_code_verifier,
and nonce). When supplied, the function will skip reading/removing from
oauth_client@state_store and use the provided values instead. This sup-

ports async flows that prefetch and remove the single-use state entry on the main

thread to avoid cross-process cache visibility issues.

Optional pre-captured Shiny session context (from capture_shiny_session_context())
to include in audit events. Used when calling from async workers that lack ac-
cess to the reactive domain.

An OAuthToken* object containing the access token, refresh token, expiration time, user infor-
mation (if requested), and ID token (if applicable). If any step of the process fails (e.g., state
verification, token exchange, token validation), an error is thrown indicating the failure reason.

Examples

o o

Below code shows generic usage of “prepare_call()" and ~handle_callback()

Please note: “prepare_call()" & “handle_callback()™ are typically
not called by users of this package directly, but are called
internally by ~oauth_module_server()”. These functions are exported
nonetheless for advanced use cases. Most users will not need to
call these functions directly

(code is not run because it would require user interaction)

Not run:

Define client

client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),

introspect_token 9

redirect_uri = "http://127.0.0.1:8100"
)

Get authorization URL and and store state in client's state store
~<browser_token>" is a token that identifies the browser session
and would typically be stored in a browser cookie

(Coauth_module_server()~ handles this typically)
authorization_url <- prepare_call(client, "<browser_token>")

Redirect user to authorization URL; retrieve code & payload from query;
read also “<browser_token>" from browser cookie

(Coauth_module_server()" handles this typically)

code <- "..."

payload <-
browser_token <-

n "

” n

Handle callback, exchanging code for token and validating state
(Coauth_module_server()" handles this typically)
token <- handle_callback(client, code, payload, browser_token)

End(Not run)

introspect_token Introspect an OAuth 2.0 token

Description

Introspects an access or refresh token using RFC 7662 when the provider exposes an introspection
endpoint. Returns a list including at least supported (logical) and active (logicalNA) and the
parsed response (if any) under raw.

Authentication to the introspection endpoint mirrors the provider’s token_auth_style:

¢ "header" (default): HTTP Basic with client_id/client_secret.
* "body": form fields client_id and (when available) client_secret.

 "client_secret_jwt" / "private_key_jwt": a signed JWT client assertion is generated (RFC
7523) and sent via client_assertion_type and client_assertion, with aud resolved via
resolve_client_assertion_audience() (so client_assertion_audience overrides are
honored).

Usage

introspect_token(
oauth_client,
oauth_token,
which = c("access”, "refresh”),
async = FALSE,
shiny_session = NULL

10

introspect_token

Arguments

oauth_client OAuthClient object

oauth_token OAuthToken object to introspect

which Which token to introspect: "access" (default) or "refresh".

async Logical, default FALSE. If TRUE and promises is available, run in background

and return a promise resolving to the result list

shiny_session Optional pre-captured Shiny session context (from capture_shiny_session_context())

to include in audit events. Used when calling from async workers that lack ac-
cess to the reactive domain.

Details

Best-effort semantics:

Value

* If the provider does not expose an introspection endpoint, the function returns supported =
FALSE, active = NA, and status = "introspection_unsupported”.

* If the endpoint responds with an HTTP error (e.g., 404/500) or the body cannot be parsed or
does not include a usable active field, the function does not throw. It returns supported =
TRUE, active = NA, and a descriptive status (for example, "http_404", "invalid_json",
"missing_active”). In this context, NA means "unknown" and will not break flows unless
your code explicitly requires a definitive result (i.e., iSTRUE(result$active)).

* Providers vary in how they encode the RFC 7662 active field (logical, numeric, or character
variants like "true"/"false", 1/0). These are normalized to logical TRUE/FALSE when possible;
otherwise active is set to NA.

A list with fields: supported, active, raw, status

Examples

#
#
#
#
#

Please note: “get_userinfo()™, “introspect_token(), and “refresh_token()"
are typically not called by users of this package directly, but are called
internally by ~oauth_module_server()". These functions are exported
nonetheless for advanced use cases. Most users will not need to

call these functions directly

Example requires a real token from a completed OAuth flow

(code is therefore not run; would error with placeholder values below)
Not run:

Define client

client <- oauth_client(

provider = oauth_provider_github(),

client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"

Have a valid OAuthToken object; fake example below

is_ok_host 11

(typically provided by ~oauth_module_server()™ or ~handle_callback()™)
token <- handle_callback(client, "<code>", "<payload>", "<browser_token>")

Get userinfo
user_info <- get_userinfo(client, token)

Introspect token (if supported by provider)
introspection <- introspect_token(client, token)

Refresh token
new_token <- refresh_token(client, token, introspect = TRUE)

End(Not run)

is_ok_host Check if URL(s) are HTTPS and/or in allowed hosts lists

Description
Returns TRUE if every input URL is either:

* asyntactically valid HTTPS URL, and (if set) whose host matches allowed_hosts, or

e an HTTP URL whose host matches allowed_non_https_hosts (e.g. localhost, 127.0.0.1,
::1), and (if set) also matches allowed_hosts.

If the input omits the scheme (e.g., "localhost:8080/cb"), this function will first attempt to validate it
as HTTP (useful for loopback development), and if that fails, as HTTPS. This mirrors how helpers
normalize inputs for convenience while still enforcing the same host and scheme policies.

allowed_hosts is thus an allowlist of hosts/domains that are permitted, while allowed_non_https_hosts
defines which hosts are allowed to use HTTP instead of HTTPS. If allowed_hosts is NULL or
length 0, all hosts are allowed (subject to scheme rules), but HTTPS is still required unless the host

is in allowed_non_https_hosts.

Since allowed_hosts supports globs, a value like "*" matches any host and therefore effectively
disables endpoint host restrictions. Only use a catch-all pattern when you truly intend to allow any
host. In most deployments you should pin to your expected domain(s), e.g. c("”.example.com™)
or a specific host name.

Wildcards: allowed_hosts and allowed_non_https_hosts support globs: * = any chars, ? = one
char. A leading .example.com matches the domain itself and any subdomain.

Any non-URLSs, NAs, or empty strings cause a FALSE result.

Usage

is_ok_host(
url,
allowed_non_https_hosts = getOption("”shinyOAuth.allowed_non_https_hosts”, default =
c("localhost”, "127.0.0.1", "::1", "[::11")),
allowed_hosts = getOption("”shinyOAuth.allowed_hosts"”, default = NULL)
)

12 OAuthClient

Arguments

url Single URL or vector of URLs (character; length 1 or more)
allowed_non_https_hosts

Character vector of hostnames that are allowed to use HTTP instead of HTTPS.
Defaults to localhost equivalents. Supports globs

allowed_hosts Optional allowlist of hosts/domains; if supplied (length > 0), only these hosts
are permitted. Supports globs

Details

This function is used internally to validate redirect URIs in OAuth clients, but can be used else-

where to test if URLs would be allowed. Internally, it will always determine the default values for
allowed_non_https_hosts and allowed_hosts from the options shinyOAuth.allowed_non_https_hosts
and shinyOAuth.allowed_hosts, respectively.

Value

Logical indicator (TRUE if all URLSs pass all checks; FALSE otherwise)

Examples

HTTPS allowed by default
is_ok_host("https://example.com")

HTTP allowed for localhost
is_ok_host("http://localhost:8100")

Restrict to a specific domain (allowlist)
is_ok_host("https://api.example.com”, allowed_hosts = c(".example.com"))

Caution: a catch-all pattern disables host restrictions
(only scheme rules remain). Avoid unless you truly intend it
is_ok_host("https://anywhere.example”, allowed_hosts = c("*"))

OAuthClient OAuthClient S7 class

Description

S7 class representing an OAuth 2.0 client configuration, including a provider, client credentials,
redirect URI, requested scopes, and state management.

This is a low-level constructor intended for advanced use. Most users should prefer the helper
constructor cauth_client().

OAuthClient 13

Usage

OAuthClient(
provider = NULL,
client_id = character(0),
client_secret = character(9),
client_private_key = NULL,
client_private_key_kid = NA_character_,
client_assertion_alg = NA_character_,
client_assertion_audience = NA_character_,
redirect_uri = character(0),
scopes = character(9),
state_store = cachem: :cache_mem(max_age = 300),
state_payload_max_age = 300,
state_entropy = 64,
state_key = random_urlsafe(n = 128),
scope_validation = "strict”,
introspect = FALSE,
introspect_elements = character (@)

)

Arguments
provider OAuthProvider object
client_id OAuth client ID

client_secret OAuth client secret.
Validation rules:

* Required (non-empty) when the provider authenticates the client with HTTP
Basic auth at the token endpoint (token_auth_style = "header”, also known
as client_secret_basic).

* Optional for public PKCE-only clients when the provider is configured with
use_pkce = TRUE and uses form-body client authentication at the token
endpoint (token_auth_style = "body", also known as client_secret_post).
In this case, the secret is omitted from token requests.

Note: If your provider issues HS256 ID tokens and id_token_validation is
enabled, a non-empty client_secret is required for signature validation.
client_private_key
Optional private key for private_key_jwt client authentication at the token
endpoint. Can be an openssl::key or a PEM string containing a private key.
Required when the provider’s token_auth_style = 'private_key_jwt'. Ig-
nored for other auth styles.
client_private_key_kid
Optional key identifier (kid) to include in the JWT header for private_key_jwt
assertions. Useful when the authorization server uses kid to select the correct
verification key.
client_assertion_alg
Optional JWT signing algorithm to use for client assertions. When omitted, de-
faults to HS256 for client_secret_jwt. For private_key_jwt, a compatible

14

OAuthClient

default is selected based on the private key type/curve (e.g., RS256 for RSA,
ES256/ES384/ES512 for EC P-256/384/521, or EdDSA for Ed25519/Ed448). If
an explicit value is provided but incompatible with the key, validation fails
early with a configuration error. Supported values are HS256, HS384, HS512 for
client_secret_jwt and asymmetric algorithms supported by jose: : jwt_encode_sig
(e.g., RS256, PS256, ES256, EADSA) for private keys.

client_assertion_audience

redirect_uri
scopes

state_store

Optional override for the aud claim used when building JWT client assertions
(client_secret_jwt / private_key_jwt). By default, shinyOAuth uses the
exact token endpoint request URL. Some identity providers require a different
audience value; set this to the exact value your IdP expects.

Redirect URI registered with provider
Vector of scopes to request

State storage backend. Defaults to cachem: :cache_mem(max_age = 300). Al-
ternative backends could include cachem: :cache_disk() or a custom imple-
mentation (which you can create with custom_cache(). The backend must
implement cachem-like methods $get(key, missing), $set(key, value),
and $remove(key); $info() is optional.

Trade-offs: cache_mem is in-memory and thus scoped to a single R process
(good default for a single Shiny process). cache_disk persists to disk and can
be shared across multiple R processes (useful for multi-process deployments
or when Shiny workers aren’t sticky). A custom_cache() backend could use a
database or external store (e.g., Redis, Memcached). See also vignette("usage”,
package = "shinyOAuth").

The client automatically generates, persists (in state_store), and validates the
OAuth state parameter (and OIDC nonce when applicable) during the autho-
rization code flow

state_payload_max_age

state_entropy

state_key

Positive number of seconds. Maximum allowed age for the decrypted state pay-
load’s issued_at timestamp during callback validation.

This value is an independent freshness backstop against replay attacks on the
encrypted state payload. It is intentionally decoupled from state_store TTL
(which controls how long the single-use state entry can exist in the server-side
cache, and also drives browser cookie max-age in oauth_module_server()).

Default is 300 seconds.

Integer. The length (in characters) of the randomly generated state parameter.
Higher values provide more entropy and better security against CSRF attacks.
Must be between 22 and 128 (to align with validate_state()’s default min-
imum which targets ~128 bits for base64url-like strings). Default is 64, which
provides approximately 384 bits of entropy

Optional per-client secret used as the state sealing key for AES-GCM AEAD
(authenticated encryption) of the state payload that travels via the state query
parameter. This provides confidentiality and integrity (via authentication tag) for
the embedded data used during callback verification. If you omit this argument,
a random value is generated via random_urlsafe(128). This key is distinct
from the OAuth client_secret and may be used with public clients.

OAuthClient 15

Type: character string (>= 32 bytes when encoded) or raw vector (>= 32 bytes).
Raw keys enable direct use of high-entropy secrets from external stores. Both
forms are normalized internally by cryptographic helpers.

Multi-process deployments: if your app runs with multiple R workers or behind
a non-sticky load balancer, you must configure a shared state_store and the
same state_key across all workers. Otherwise callbacks that land on a different
worker will be unable to decrypt/validate the state envelope and authentication
will fail. In such environments, do not rely on the random per-process default:
provide an explicit, high-entropy key (for example via a secret store or environ-
ment variable). Prefer values with substantial entropy (e.g., 64—128 base64url
characters or a raw 32+ byte key). Avoid human-memorable passphrases. See
also vignette("usage"”, package = "shinyOAuth").
scope_validation

Controls how scope discrepancies are handled when the authorization server
grants fewer scopes than requested. RFC 6749 Section 3.3 permits servers to
issue tokens with reduced scope.

* "strict” (default): Throws an error if any requested scope is missing from
the granted scopes.

* "warn”: Emits a warning but continues authentication if scopes are miss-
ing.
* "none": Skips scope validation entirely.

introspect If TRUE, the login flow will call the provider’s token introspection endpoint
(RFC 7662) to validate the access token. The login is not considered com-
plete unless introspection succeeds and returns active = TRUE; otherwise the
login fails and authenticated remains FALSE. Default is FALSE. Requires
the provider to have an introspection_url configured.

introspect_elements
Optional character vector of additional requirements to enforce on the introspec-
tion response when introspect = TRUE. Supported values:

* "sub"”: require the introspected sub to match the session subject (from ID
token sub when available, else from userinfo sub).

e "client_id": require the introspected client_id to match your OAuth
client id.

* "scope": validate introspected scope against requested scopes (respects
the client’s scope_validation mode). Default is character(@). (Note
that not all providers may return each of these fields in introspection re-
sponses.)

Examples

if (
Example requires configured GitHub OAuth 2.0 app
(go to https://github.com/settings/developers to create one):
nzchar(Sys.getenv("GITHUB_OAUTH_CLIENT_ID")) &&
nzchar (Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET")) &&
interactive()

) {

16

library(shiny)
library(shinyOAuth)

Define client

client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"

)

Choose which app you want to run

app_to_run <- NULL

while (!isTRUE(app_to_run %in% c(1:4))) {

app_to_run <- readline(
prompt = pasted(
"Which example app do you want to run?\n",
" 1: Auto-redirect login\n",
" 2: Manual login button\n",

3: Fetch additional resource with access token\n”,
" 4: No app (all will be defined but none run)\n",
"Enter 1, 2, 3, or 4... "

)

)

n

}

if (app_to_run %in% c(1:3)) {
cli::cli_alert_info(paste@(

"Will run example app {app_to_run} on {.url http://127.0.0.1:8100}\n",
"Open this URL in a regular browser (viewers in RStudio/Positron/etc.

"cannot perform necessary redirects)”
)
}

Example app with auto-redirect (1) --------------—----——---——--—-

ui_1 <- fluidPage(
use_shinyOAuth(),
uiOutput("login")
)

server_1 <- function(input, output, session) {
Auto-redirect (default):
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = TRUE
)

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(

OAuthClient

n

’

OAuthClient
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
D
}
app_1 <- shinyApp(ui_1, server_1)
if (app_to_run == "1") {
runApp (
app_1,
port = 8100,
launch.browser = FALSE
)
}

Example app with manual login button (2) -------------------————------—————-

ui_2 <- fluidPage(
use_shinyOAuth(),
actionButton("login_btn", "Login"),
uiOutput(”login")

)

server_2 <- function(input, output, session) {
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = FALSE

)

observeEvent(input$login_btn, {
auth$request_login()
»

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
»
}

app_2 <- shinyApp(ui_2, server_2)

if (app_to_run == "2") {
runApp (

17

18 OAuthClient

app_2,
port = 8100,
launch.browser = FALSE

)
3

Example app requesting additional resource with access token (3) -----------

Below app shows the authenticated username + their GitHub repositories,
fetched via GitHub API using the access token obtained during login

ui_3 <- fluidPage(
use_shinyOAuth(),
uiOutput("ui”

)

server_3 <- function(input, output, session) {
auth <- oauth_module_server(
"auth",
client,
auto_redirect = TRUE

)
repositories <- reactiveVal(NULL)

observe ({
req(auth$authenticated)

Example additional API request using the access token

(e.g., fetch user repositories from GitHub)

req <- client_bearer_req(auth$token, "https://api.github.com/user/repos")
resp <- httr2::req_perform(req)

if (httr2::resp_is_error(resp)) {
repositories(NULL)
} else {
repos_data <- httr2::resp_body_json(resp, simplifyVector = TRUE)
repositories(repos_data)
}
»

Render username + their repositories
output$ui <- renderUI({
if (isTRUE(auth$authenticated)) {
user_info <- auth$token@userinfo
repos <- repositories()

return(taglList(
tags$p(paste(”"You are logged in as:"”, user_info$login)),
tags$h4("Your repositories:"),
if (!'is.null(repos)) {
tags$ul(
Map(

OAuthProvider 19

function(url, name) {
tags$li(tags$a(href = url, target = "_blank”, name))
3
repos$html_url,
repos$full_name

)
)
} else {
tags$p(”Loading repositories...")
}
D)
}
return(tags$p(”You are not logged in."))
»
}
app_3 <- shinyApp(ui_3, server_3)
if (app_to_run == "3") {
runApp (
app_3,
port = 8100,
launch.browser = FALSE
)
}
3
OAuthProvider OAuthProvider S7 class
Description

S7 class representing an OAuth 2.0 provider configuration. Includes endpoints, OIDC settings, and
various security options which govern the OAuth and OIDC flows.

This is a low-level constructor intended for advanced use. Most users should prefer the helper
constructors oauth_provider() for generic OAuth 2.0 providers or oauth_provider_oidc() /
oauth_provider_oidc_discover() for OpenID Connect providers. Those helpers enable secure
defaults based on the presence of an issuer and available endpoints.

Usage

OAuthProvider(
name = character(9),
auth_url = character(9),
token_url = character(9),
userinfo_url = NA_character_,
introspection_url = NA_character_,
revocation_url = NA_character_,
issuer = NA_character_,

20

use_nonce =

OAuthProvider

FALSE,

use_pkce = TRUE,

pkce_method = "S256",
userinfo_required = FALSE,
userinfo_id_selector = function(userinfo) userinfo$sub,
userinfo_id_token_match = FALSE,
id_token_required = FALSE,
id_token_validation = FALSE,
extra_auth_params = list(),
extra_token_params = list(),
extra_token_headers = character(0),
token_auth_style = "header”,

jwks_cache = cachem: :cache_mem(max_age = 3600),
jwks_pins = character(0),
jwks_pin_mode = "any",

jwks_host_issuer_match = FALSE,

jwks_host_allow_only = NA_character_,

allowed_algs = c("RS256", "RS384", "RS512", "PS256", "PS384", "PS512", "ES256",
"ES384", "ES512", "EdDSA"),

allowed_token_types = "Bearer”,

leeway = getOption("shinyOAuth.leeway”, 30)

)

Arguments

name

auth_url
token_url

userinfo_url

Provider name (e.g., "github", "google"). Cosmetic only; used in logging and
audit events

Authorization endpoint URL
Token endpoint URL
User info endpoint URL (optional)

introspection_url

revocation_url

issuer

use_nonce

use_pkce

Token introspection endpoint URL (optional; RFC 7662)
Token revocation endpoint URL (optional; RFC 7009)

OIDC issuer URL (optional; required for ID token validation). This is the base
URL that identifies the OpenID Provider (OP). It is used during ID token val-
idation to verify the iss claim in the ID token matches the expected issuer.
It is also used to fetch the provider’s JSON Web Key Set (JWKS) for verify-
ing ID token signatures (typically via the OIDC discovery document located at
/.well-known/openid-configuration relative to the issuer URL)

Whether to use OIDC nonce. This adds a nonce parameter to the authorization
request and validates the nonce claim in the ID token. This is recommended for
OIDC flows to mitigate replay attacks

Whether to use PKCE. This adds a code_challenge parameter to the authoriza-
tion request and requires a code_verifier when exchanging the authorization
code for tokens. This is prevents authorization code interception attacks

OAuthProvider 21

pkce_method PKCE code challenge method ("S256" or "plain"). "S256" is recommended.
"plain" should only be used for non-compliant providers that do not support
"S256"

userinfo_required
Whether to fetch userinfo after token exchange. User information will be stored
in the userinfo field of the returned OAuthToken object. This requires a valid

userinfo_url to be set. If fetching the userinfo fails, the token exchange will
fail.

For the low-level constructor oauth_provider (), when not explicitly supplied,
this is inferred from the presence of a non-empty userinfo_url: ifauserinfo_url
is provided, userinfo_required defaults to TRUE, otherwise it defaults to FALSE.
This avoids unexpected validation errors when userinfo_url is omitted (since
it is optional).

userinfo_id_selector
A function that extracts the user ID from the userinfo response.#’ Should take a
single argument (the userinfo list) and return the user ID as a string.

This is used when userinfo_id_token_match is TRUE. Optional otherwise;
when not supplied, some features (like subject matching) will be unavailable.
Helper constructors like oauth_provider () and oauth_provider_oidc() pro-
vide a default selector that extracts the sub field.

userinfo_id_token_match
Whether to verify that the user ID ("sub") from the ID token matches the user ID
extracted from the userinfo response. This requires both userinfo_required
and id_token_validation to be TRUE (and thus a valid userinfo_url and
issuer to be set, plus potentially setting the client’s scope to include "openid",
so that an ID token is returned). Furthermore, the provider’s userinfo_id_selector
must be configured to extract the user ID from the userinfo response. This check
helps ensure the integrity of the user information by confirming that both sources
agree on the user’s identity.

For oauth_provider (), when not explicitly supplied, this is inferred as TRUE
only if both userinfo_required and id_token_validation are TRUE; other-
wise it defaults to FALSE.

id_token_required
Whether to require an ID token to be returned during token exchange. If no ID
token is returned, the token exchange will fail. This requires the provider to be
a valid OpenID Connect provider and may require setting the client’s scope to
include "openid".
Note: At the S7 class level, this defaults to FALSE so that pure OAuth 2.0
providers can be configured without OIDC. Helper constructors like oauth_provider()
and oauth_provider_oidc() will enable this when an issuer is supplied or
OIDC is explicitly requested.

id_token_validation
Whether to perform ID token validation after token exchange. This requires the
provider to be a valid OpenID Connect provider with a configured issuer and
the token response to include an ID token (may require setting the client’s scope
to include "openid").
Note: At the S7 class level, this defaults to FALSE. Helper constructors like

22

OAuthProvider

oauth_provider() and oauth_provider_oidc() turn this on when an issuer
is provided or when OIDC is used.

extra_auth_params

Extra parameters for authorization URL

extra_token_params

Extra parameters for token exchange

extra_token_headers

Extra headers for token exchange requests (named character vector)

token_auth_style

jwks_cache

jwks_pins

jwks_pin_mode

How to authenticate when exchanging tokens. One of:

¢ "header": HTTP Basic (client_secret_basic)
* "body": Form body (client_secret_post)

* "client_secret_jwt": JWT client assertion signed with HMAC using client_secret

(RFC 7523)

* "private_key_jwt": JWT client assertion signed with an asymmetric key
(RFC 7523)

JWKS cache backend. If not provided, a cachem: : cache_mem(max_age = 3600)
(1 hour) cache will be created. May be any cachem-compatible backend, in-
cluding cachem: : cache_disk() for a filesystem cache shared across workers,
or a custom implementation created via custom_cache() (e.g., database/Redis
backed).

TTL guidance: Choose max_age in line with your identity platform’s JWKS
rotation and cache-control cadence. A range of 15 minutes to 2 hours is typi-
cally sensible; the default is 1 hour. Shorter TTLs adopt new keys faster at the
cost of more JWKS traffic; longer TTLs reduce traffic but may delay new keys
slightly. Signature verification will automatically perform a one-time JWKS
refresh when a new kid appears in an ID token.

Cache keys are internal, hashed by issuer and pinning configuration. Cache
values are lists with elements jwks and fetched_at (numeric epoch seconds)

Optional character vector of RFC 7638 JWK thumbprints (base64url) to pin
against. If non-empty, fetched JWKS must contain keys whose thumbprints
match these values depending on jwks_pin_mode. Use to reduce key substitu-
tion risks by pre-authorizing expected keys

Pinning policy when jwks_pins is provided. Either "any" (default; at least one
key in JWKS must match) or "all" (every RSA/EC/OKP public key in JWKS
must match one of the configured pins)

jwks_host_issuer_match

When TRUE, enforce that the discovery jwks_uri host matches the issuer host
(or a subdomain). Defaults to FALSE at the class level, but helper constructors

for OIDC (e.g., oauth_provider_oidc() and oauth_provider_oidc_discover())

enable this by default for safer config. The generic helper oauth_provider ()
will also automatically set this to TRUE when an issuer is provided and either
id_token_validation or id_token_required is TRUE (OIDC-like configu-
ration). Set explicitly to FALSE to opt out. For providers that legitimately pub-

lish JWKS on a different host (e.g., Google), prefer setting jwks_host_allow_only

to the exact hostname rather than disabling this check

OAuthProvider 23

jwks_host_allow_only
Optional explicit hostname that the jwks_uri must match. When provided, jwks_uri
host must equal this value (exact match). You can pass either just the host
(e.g., "www.googleapis.com") or a full URL; only the host component will be
used. If you need to include a port or an IPv6 literal, pass a full URL (e.g.,
https://[::1]:8443) — the port is ignored and only the hostname part is used
for matching. Takes precedence over jwks_host_issuer_match

allowed_algs Optional vector of allowed JWT algorithms for ID tokens. Use to restrict ac-
ceptable alg values on a per-provider basis. Supported asymmetric algorithms
include RS256, RS384, RS512, PS256, PS384, PS512, ES256, ES384, ES512,
and EdDSA (Ed25519/Ed448 via OKP). Symmetric HMAC algorithms HS256,
HS384, HS512 are also supported but require that you supply a client_secret
and explicitly enable HMAC verification via the option options(shinyOAuth.allow_hs
= TRUE). Defaults to c("RS256", "RS384","RS512", "PS256", "PS384","PS512",
"ES256","ES384","ES512","EADSA"), which intentionally excludes HS*. Only
include HS# if you are certain the client_secret is stored strictly server-side
and is never shipped to, or derivable by, the browser or other untrusted environ-
ments. Prefer rotating secrets regularly when enabling this.

allowed_token_types

Character vector of acceptable OAuth token types returned by the token end-
point (case-insensitive). When non-empty, the token response MUST include
token_type and it must be one of the allowed values; otherwise the flow fails
fast with a shinyOAuth_token_error. When empty, no check is performed and
token_type may be omitted by the provider. The oauth_provider() helper
defaults to c("Bearer”) for all providers because the package only supports
Bearer tokens (i.e., client_bearer_req() sends Authorization: Bearer).
This ensures that if a provider returns a non-Bearer token type (e.g., DPoP,
MAC), the flow fails fast rather than misusing the token. Set allowed_token_types
= character () explicitly to opt out of enforcement.

leeway Clock skew leeway (seconds) applied to ID token exp/iat/nbf checks and state
payload issued_at future check. Default 30. Can be globally overridden via
option shinyOAuth.leeway

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token"”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

24 OAuthToken

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)

GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?oauth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)

Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

OAuthToken OAuthToken S7 class

OAuthToken 25

Description

S7 class representing OAuth tokens and (optionally) user information.

Usage

OAuthToken(
access_token = character(0),
refresh_token = NA_character_,
id_token = NA_character_,
expires_at = Inf,
userinfo = list()

Arguments

access_token Access token

refresh_token Refresh token (if provided by the provider)

id_token ID token (if provided by the provider; OpenID Connect)

expires_at Numeric timestamp (seconds since epoch) when the access token expires. Inf
for non-expiring tokens

userinfo List containing user information fetched from the provider’s userinfo endpoint
(if fetched)

Examples

Please note: ~“get_userinfo(), “introspect_token()", and “refresh_token()"

are typically not called by users of this package directly, but are called

internally by ~oauth_module_server()~. These functions are exported

nonetheless for advanced use cases. Most users will not need to

call these functions directly

Example requires a real token from a completed OAuth flow
(code is therefore not run; would error with placeholder values below)
Not run:
Define client
client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"
)

Have a valid OAuthToken object; fake example below
(typically provided by ~oauth_module_server()™ or ~handle_callback()™)
token <- handle_callback(client, "<code>", "<payload>", "<browser_token>")

Get userinfo
user_info <- get_userinfo(client, token)

26

Introspect token (if supported by provider)
introspection <- introspect_token(client, token)

Refresh token

new_token <- refresh_token(client, token, introspect = TRUE)

End(Not run)

oauth_client

oauth_client Create generic OAuthClient

Description

Create generic OAuthClient

Usage

oauth_client(
provider,
client_id = Sys.getenv("OAUTH_CLIENT_ID"),

client_secret = Sys.getenv("OAUTH_CLIENT_SECRET"),

redirect_uri,

scopes = character(0),

state_store = cachem: :cache_mem(max_age = 300),
state_payload_max_age = 300,

state_entropy = 64,

state_key = random_urlsafe(128),
client_private_key = NULL,
client_private_key_kid = NULL,
client_assertion_alg = NULL,
client_assertion_audience = NULL,
scope_validation = c("strict"”, "warn”, "none"),
introspect = FALSE,

introspect_elements = character(0)

)

Arguments
provider OAuthProvider object
client_id OAuth client ID

client_secret OAuth client secret.
Validation rules:

* Required (non-empty) when the provider authenticates the client with HTTP

Basic auth at the token endpoint (token_auth_style = "header”, also known

as client_secret_basic).

oauth_client

redirect_uri
scopes

state_store

27

 Optional for public PKCE-only clients when the provider is configured with
use_pkce = TRUE and uses form-body client authentication at the token
endpoint (token_auth_style = "body", also known as client_secret_post).
In this case, the secret is omitted from token requests.

Note: If your provider issues HS256 ID tokens and id_token_validation is
enabled, a non-empty client_secret is required for signature validation.

Redirect URI registered with provider
Vector of scopes to request

State storage backend. Defaults to cachem: : cache_mem(max_age = 300). Al-
ternative backends could include cachem: :cache_disk() or a custom imple-
mentation (which you can create with custom_cache(). The backend must
implement cachem-like methods $get(key, missing), $set(key, value),
and $remove(key); $info() is optional.

Trade-offs: cache_mem is in-memory and thus scoped to a single R process
(good default for a single Shiny process). cache_disk persists to disk and can
be shared across multiple R processes (useful for multi-process deployments
or when Shiny workers aren’t sticky). A custom_cache () backend could use a
database or external store (e.g., Redis, Memcached). See also vignette("usage”,
package = "shinyOAuth").

The client automatically generates, persists (in state_store), and validates the
OAuth state parameter (and OIDC nonce when applicable) during the autho-
rization code flow

state_payload_max_age

state_entropy

state_key

Positive number of seconds. Maximum allowed age for the decrypted state pay-
load’s issued_at timestamp during callback validation.

This value is an independent freshness backstop against replay attacks on the
encrypted state payload. It is intentionally decoupled from state_store TTL
(which controls how long the single-use state entry can exist in the server-side
cache, and also drives browser cookie max-age in oauth_module_server()).

Default is 300 seconds.

Integer. The length (in characters) of the randomly generated state parameter.
Higher values provide more entropy and better security against CSRF attacks.
Must be between 22 and 128 (to align with validate_state()’s default min-
imum which targets ~128 bits for base64url-like strings). Default is 64, which
provides approximately 384 bits of entropy

Optional per-client secret used as the state sealing key for AES-GCM AEAD
(authenticated encryption) of the state payload that travels via the state query
parameter. This provides confidentiality and integrity (via authentication tag) for
the embedded data used during callback verification. If you omit this argument,
a random value is generated via random_urlsafe(128). This key is distinct
from the OAuth client_secret and may be used with public clients.

Type: character string (>= 32 bytes when encoded) or raw vector (>= 32 bytes).
Raw keys enable direct use of high-entropy secrets from external stores. Both
forms are normalized internally by cryptographic helpers.

Multi-process deployments: if your app runs with multiple R workers or behind
a non-sticky load balancer, you must configure a shared state_store and the

28

oauth_client

same state_key across all workers. Otherwise callbacks that land on a different
worker will be unable to decrypt/validate the state envelope and authentication
will fail. In such environments, do not rely on the random per-process default:
provide an explicit, high-entropy key (for example via a secret store or environ-
ment variable). Prefer values with substantial entropy (e.g., 64—128 base64url
characters or a raw 32+ byte key). Avoid human-memorable passphrases. See
also vignette("usage”, package = "shinyOAuth").
client_private_key
Optional private key for private_key_jwt client authentication at the token
endpoint. Can be an openssl::key or a PEM string containing a private key.
Required when the provider’s token_auth_style = 'private_key_jwt'. Ig-
nored for other auth styles.
client_private_key_kid
Optional key identifier (kid) to include in the JWT header for private_key_jwt
assertions. Useful when the authorization server uses kid to select the correct
verification key.
client_assertion_alg
Optional JWT signing algorithm to use for client assertions. When omitted, de-
faults to HS256 for client_secret_jwt. For private_key_jwt, a compatible
default is selected based on the private key type/curve (e.g., RS256 for RSA,
ES256/ES384/ES512 for EC P-256/384/521, or EdDSA for Ed25519/Ed448). If
an explicit value is provided but incompatible with the key, validation fails
early with a configuration error. Supported values are HS256, HS384, HS512 for
client_secret_jwt and asymmetric algorithms supported by jose: : jwt_encode_sig
(e.g., RS256, PS256, ES256, EADSA) for private keys.
client_assertion_audience
Optional override for the aud claim used when building JWT client assertions
(client_secret_jwt / private_key_jwt). By default, shinyOAuth uses the
exact token endpoint request URL. Some identity providers require a different
audience value; set this to the exact value your IdP expects.
scope_validation
Controls how scope discrepancies are handled when the authorization server
grants fewer scopes than requested. RFC 6749 Section 3.3 permits servers to
issue tokens with reduced scope.
e "strict” (default): Throws an error if any requested scope is missing from
the granted scopes.
* "warn”: Emits a warning but continues authentication if scopes are miss-
ing.
* "none": Skips scope validation entirely.
introspect If TRUE, the login flow will call the provider’s token introspection endpoint
(RFC 7662) to validate the access token. The login is not considered com-
plete unless introspection succeeds and returns active = TRUE; otherwise the
login fails and authenticated remains FALSE. Default is FALSE. Requires
the provider to have an introspection_url configured.
introspect_elements
Optional character vector of additional requirements to enforce on the introspec-
tion response when introspect = TRUE. Supported values:

oauth_client 29

e "sub"”: require the introspected sub to match the session subject (from ID
token sub when available, else from userinfo sub).

e "client_id": require the introspected client_id to match your OAuth
client id.

e "scope”: validate introspected scope against requested scopes (respects
the client’s scope_validation mode). Default is character(@). (Note
that not all providers may return each of these fields in introspection re-
sponses.)

Value

OAuthClient object

Examples

if (
Example requires configured GitHub OAuth 2.0 app
(go to https://github.com/settings/developers to create one):
nzchar(Sys.getenv("GITHUB_OAUTH_CLIENT_ID")) &&
nzchar(Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET")) &&
interactive()
) {
library(shiny)
library(shinyOAuth)

Define client

client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"

)

Choose which app you want to run
app_to_run <- NULL
while (!isTRUE(app_to_run %in% c(1:4))) {
app_to_run <- readline(
prompt = pasted(

"Which example app do you want to run?\n",

" 1: Auto-redirect login\n",

" 2: Manual login button\n”,
3: Fetch additional resource with access token\n”,
" 4: No app (all will be defined but none run)\n",
"Enter 1, 2, 3, or 4... "

n

if (app_to_run %in% c(1:3)) {
cli::cli_alert_info(pasted(
"Will run example app {app_to_run} on {.url http://127.0.0.1:8100}\n",

n

"Open this URL in a regular browser (viewers in RStudio/Positron/etc. ",

30

oauth_client

"cannot perform necessary redirects)”
)
}

Example app with auto-redirect (1) --------------—---——---——---———-

ui_1 <- fluidPage(
use_shinyOAuth(),
uiOutput("login")
)

server_1 <- function(input, output, session) {
Auto-redirect (default):
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = TRUE
)

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
»
}

app_1 <- shinyApp(ui_1, server_1)
if (app_to_run == "1") {
runApp (
app_1,
port = 8100,
launch.browser = FALSE

Example app with manual login button (2) ------------------—---———-———--———-

ui_2 <- fluidPage(
use_shinyOAuth(),
actionButton("login_btn"”, "Login"),
uiOutput(”login™)

)

server_2 <- function(input, output, session) {
auth <- oauth_module_server(
"auth",
client,

oauth_client

auto_redirect = FALSE
)

observeEvent (input$login_btn, {
auth$request_login()
»

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
»
3

app_2 <- shinyApp(ui_2, server_2)
if (app_to_run == "2") {
runApp (
app_2,
port = 8100,
launch.browser = FALSE

Example app requesting additional resource with access token (3) -----------

Below app shows the authenticated username + their GitHub repositories,
fetched via GitHub API using the access token obtained during login

ui_3 <- fluidPage(
use_shinyOAuth(),
uiOutput("ui”)

)

server_3 <- function(input, output, session) {
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = TRUE
)

repositories <- reactiveVal(NULL)

observe ({
req(auth$authenticated)

Example additional API request using the access token
(e.g., fetch user repositories from GitHub)

31

32

oauth_module_server

req <- client_bearer_req(auth$token, "https://api.github.com/user/repos")
resp <- httr2::req_perform(req)

if (httr2::resp_is_error(resp)) {
repositories(NULL)
} else {
repos_data <- httr2::resp_body_json(resp, simplifyVector = TRUE)
repositories(repos_data)
}
D

Render username + their repositories
output$ui <- renderUI({
if (isTRUE(auth$authenticated)) {
user_info <- auth$token@userinfo
repos <- repositories()

return(taglList(
tags$p(paste(”You are logged in as:", user_info$login)),
tags$h4("Your repositories:"),
if (!'is.null(repos)) {

tags$ul(
Map (
function(url, name) {
tags$li(tags$a(href = url, target = "_blank”, name))
1,

repos$html_url,
repos$full_name

)
)
} else {
tags$p(”Loading repositories...")
3
))
}
return(tags$p(”You are not logged in."))
»
}
app_3 <- shinyApp(ui_3, server_3)
if (app_to_run == "3") {
runApp (
app_3,
port = 8100,
launch.browser = FALSE
)
}

oauth_module_server OAuth 2.0 & OIDC authentication module for Shiny applications

oauth_module_server 33

Description

This function implements a Shiny module server that manages OAuth 2.0/OIDC authentication for
Shiny applications. It handles the OAuth 2.0/OIDC flow, including redirecting users to the au-
thorization endpoint, securely processing the callback, exchanging authorization codes for tokens,
verifying tokens, and managing token refresh. It also provides options for automatic or manual
login flows, session expiry, and proactive token refresh.

Note: when using this module, you must include shinyOAuth: :use_shinyOAuth() in your Ul
definition to load the necessary JavaScript dependencies.

Usage

oauth_module_server(
id,
client,
auto_redirect = TRUE,
async = FALSE,
indefinite_session = FALSE,
reauth_after_seconds = NULL,
refresh_proactively = FALSE,
refresh_lead_seconds = 60,
refresh_check_interval = 10000,
revoke_on_session_end = FALSE,
tab_title_cleaning = TRUE,
tab_title_replacement = NULL,
browser_cookie_path = NULL,

browser_cookie_samesite = c("Strict”, "Lax", "None")
)
Arguments
id Shiny module id
client OAuthClient object

auto_redirect If TRUE (default), unauthenticated sessions will immediately initiate the OAuth
flow by redirecting the browser to the authorization endpoint. If FALSE, the
module will not auto-redirect; instead, the returned object exposes helpers for
triggering login manually (use: $request_login())

async If TRUE, performs token exchange and refresh in the background using the
promises package (future_promise), and updates values when the promise re-
solves. Requires the promises::promises package and a suitable backend to be
configured with future: :plan(). If FALSE (default), token exchange and re-
fresh are performed synchronously (which may block the Shiny event loop; it is
thus strongly recommended to set async = TRUE in production apps)

indefinite_session
If TRUE, the module will not automatically clear the token due to access-token
expiry or the reauth_after_seconds window, and it will not trigger automatic
reauthentication when a token expires or a refresh fails. This effectively makes
sessions "indefinite" from the module’s perspective once a user has logged in.

34

oauth_module_server

Note that your API calls may still fail once the provider considers the token ex-
pired; this option only affects the module’s automatic clearing/redirect behavior

reauth_after_seconds
Optional maximum session age in seconds. If set, the module will remove the
token (and thus set authenticated to FALSE) after this many seconds have
elapsed since authentication started. By default this is NULL (no forced re-
authentication). If a value is provided, the timer is reset after each successful
refresh so the knob is opt-in and counts rolling session age

refresh_proactively
If TRUE, will automatically refresh tokens before they expire (if refresh token is
available). The refresh is scheduled adaptively so that it executes approximately
at expires_at - refresh_lead_seconds rather than on a coarse polling loop

refresh_lead_seconds
Number of seconds before expiry to attempt proactive refresh (default: 60)

refresh_check_interval
Fallback check interval in milliseconds for expiry/refresh (default: 10000 ms).
When expiry is known, the module uses adaptive scheduling to wake up ex-
actly when needed; this interval is used as a safety net or when expiry is un-
known/infinite

revoke_on_session_end
If TRUE, automatically revokes provider tokens when the Shiny session ends
(e.g., browser tab closed, session timeout). This is a best-effort operation. Re-
vocation runs asynchronously only when the module is configured with async =

TRUE (otherwise it runs synchronously). Requires the provider to have a revocation_url

configured. Default is FALSE. Note that session-end revocation may not always
succeed (e.g., network issues, provider unavailable), so combine with appropri-
ate token lifetimes on the provider side.

tab_title_cleaning
If TRUE (default), removes any query string suffix from the browser tab title
after the OAuth callback, so titles like "localhost:8100?code=...&state=..." be-
come "localhost:8100"

tab_title_replacement
Optional character string to explicitly set the browser tab title after the OAuth
callback. If provided, it takes precedence over tab_title_cleaning

browser_cookie_path
Optional cookie Path to scope the browser token cookie. By default (NULL),
the path is fixed to "/" for reliable clearing across route changes. Provide an
explicit path (e.g., "/app") to narrow the cookie’s scope to a sub-route. Note:
when the path is "/" and the page is served over HTTPS, the cookie name uses
the __Host- prefix (Secure, Path=/) for additional hardening; when the path is
not "/", a regular cookie name is used.

For apps deployed under nested routes or where the OAuth callback may land
on a different route than the initial page, keeping the default (root path) ensures
the browser token cookie is available and clearable across app routes. If you
deliberately scope the cookie to a sub-path, make sure all relevant routes share
that prefix.

oauth_module_server 35

browser_cookie_samesite

SameSite value for the browser-token cookie. One of "Strict", "Lax", or "None".
Defaults to "Strict" for maximum protection against cross-site request forgery.
Use "Lax" only when your deployment requires the cookie to accompany top-
level cross-site navigations (for example, because of reverse-proxy flows), and
document the associated risk. If set to "None", the cookie will be marked
SameSite=None; Secure in the browser, and authentication will error on non-
HTTPS origins because browsers reject SameSite=None cookies without the
Secure attribute

Details

* Blocking vs. async behavior: when async = FALSE (the default), network operations like to-
ken exchange and refresh are performed on the main R thread. Transient errors are retried
by the package’s internal req_with_retry() helper, which currently uses Sys.sleep() for
backoff. In Shiny, Sys.sleep() blocks the event loop for the entire worker process, po-
tentially freezing UI updates for all sessions on that worker during slow provider responses
or retry backoff. To keep the UI responsive: set async = TRUE so network calls run in a
background future via the promises package (configure a multisession/multicore backend), or
reduce/block retries (see vignette("usage”, package = "shinyOAuth")).

* Browser requirements: the module relies on the browser’s Web Crypto API to generate a
secure, per-session browser token used for state double-submit protection. Specifically, the
login flow requires window.crypto.getRandomValues to be available. If it is not present
(for example, in some very old or highly locked-down browsers), the module will be unable
to proceed with authentication. In that case a client-side error is emitted and surfaced to the
server as shinyOAuth_cookie_error containing the message "webcrypto_unavailable”.
Use a modern browser (or enable Web Crypto) to resolve this.

* Browser cookie lifetime: the opaque browser token cookie lifetime mirrors the client’s state_store
TTL. Internally, the module reads client@state_store$info() $max_age and uses that value
for the cookie’s Max-Age/Expires. When the cache does not expose a finite max_age, a con-
servative default of 5 minutes (300 seconds) is used to align with the built-in cachem: : cache_mem(max_age
=300) default. Separately, the state payload issued_at freshness window is controlled by
the client’s state_payload_max_age (default 300 seconds).

Value

A reactive Values object with token, error, error_description, and authenticated, plus addi-
tional fields used by the module.

The returned reactiveValues contains the following fields:

* authenticated: logical TRUE when there is no error and a token is present and valid (match-
ing the verifications enabled in the client provider); FALSE otherwise.

* token: OAuthToken object, or NULL if not yet authenticated. This contains the access token,
refresh token (if any), ID token (if any), and userinfo (if fetched). See OAuthToken for details.
Note that since OAuthToken is a S7 object, you access its fields with @, e.g., token@userinfo.

 error: error code string when the OAuth flow fails. Be careful with exposing this directly to
users, as it may contain sensitive information which could aid an attacker.

oauth_module_server

e error_description: human-readable error detail when available. Be extra careful with ex-
posing this directly to users, as it may contain even more sensitive information which could
aid an attacker.

* browser_token: internal opaque browser cookie value; used for state double-submit protec-
tion; NULL if not yet set

* pending_callback: internal list(code, state); used to defer token exchange until browser_token
is available; NULL otherwise.

* pending_error: internal list(error, error_description, state); used to defer error-response state
consumption until browser_token is available; NULL otherwise.

* pending_login: internal logical; TRUE when a login was requested but must wait for browser_token
to be set, FALSE otherwise.

* auto_redirected: internal logical; TRUE once the module has initiated an automatic redirect
in this session to avoid duplicate redirects.

* reauth_triggered: internal logical; TRUE once a reauthentication attempt has been initiated
(after expiry or failed refresh), to avoid loops.

* auth_started_at: internal numeric timestamp (as from Sys.time()) when authentication
started; NA if not yet authenticated. Used to enforce reauth_after_seconds if set.

* token_stale: logical; TRUE when the token was kept despite a refresh failure because
indefinite_session = TRUE, or when the access token is past its expiry but indefinite_session
= TRUE prevents automatic clearing. This lets Uls warn users or disable actions that require a
fresh token. It resets to FALSE on successful login, refresh, or logout.

* last_login_async_used: internal logical; TRUE if the last login attempt used async = TRUE,
FALSE if it was synchronous. This is only used for testing and diagnostics.

* refresh_in_progress: internal logical; TRUE while a token refresh is currently in flight
(async or sync). Used to prevent concurrent refresh attempts when proactive refresh logic
wakes up multiple times.

It also contains the following helper functions, mainly useful when auto_redirect = FALSE and
you want to implement a manual login flow (e.g., with your own button):

* request_login(): initiates login by redirecting to the authorization endpoint, with cookie-
ensure semantics: if browser_token is missing, the module sets the cookie and defers the
redirect until browser_token is present, then redirects. This is the main entry point for login
when auto_redirect = FALSE and you want to trigger login from your own UI

* logout(): clears the current token setting authenticated to FALSE, and clears the browser
token cookie. You might call this when the user clicks a "logout" button

e build_auth_url(): internal; builds and returns the authorization URL, also storing the
relevant state in the client’s state_store (for validation during callback). Note that this
requires browser_token to be present, so it will throw an error if called too early (ver-
ify with has_browser_token() first). Typically you would not call this directly, but use
request_login() instead, which calls it internally.

* set_browser_token(): internal; injects JS to set the browser token cookie if missing. Nor-
mally called automatically on first load, but you can call it manually if needed. If a token is al-
ready present, it will return immediately without changing it (call clear_browser_token() if
you want to force a reset). Typically you would not call this directly, but use request_login()
instead, which calls it internally if needed.

oauth_module_server 37

e clear_browser_token(): internal; injects JS to clear the browser token cookie and clears
browser_token. You might call this to reset the cookie if you suspect it’s stale or compro-
mised. Typically you would not call this directly.

* has_browser_token(): internal; returns TRUE if browser_token is present (non-NULL,
non-empty), FALSE otherwise. Typically you would not call this directly

See Also
use_shinyOAuth()

Examples

if (
Example requires configured GitHub OAuth 2.0 app
(go to https://github.com/settings/developers to create one):
nzchar(Sys.getenv("GITHUB_OAUTH_CLIENT_ID")) &&
nzchar(Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET")) &&
interactive()
) A
library(shiny)
library(shinyOAuth)

Define client

client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"

)

Choose which app you want to run
app_to_run <- NULL
while (!isTRUE(app_to_run %in% c(1:4))) {
app_to_run <- readline(
prompt = pasted(

"Which example app do you want to run?\n",

" 1: Auto-redirect login\n",

" 2: Manual login button\n”,
3: Fetch additional resource with access token\n”,
" 4: No app (all will be defined but none run)\n",
"Enter 1, 2, 3, or 4... "

”n

if (app_to_run %in% c(1:3)) {
cli::cli_alert_info(paste@(
"Will run example app {app_to_run} on {.url http://127.0.0.1:8100}\n",
"Open this URL in a regular browser (viewers in RStudio/Positron/etc. ",
"cannot perform necessary redirects)”

)
3

38 oauth_module_server

Example app with auto-redirect (1) --------------—---——---——---———-

ui_1 <- fluidPage(
use_shinyOAuth(),
uiOutput(”login™)
)

server_1 <- function(input, output, session) {
Auto-redirect (default):
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = TRUE

)

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
»
3

app_1 <- shinyApp(ui_1, server_1)
if (app_to_run == "1") {
runApp (
app_1,
port = 8100,
launch.browser = FALSE

Example app with manual login button (2) -----------------——---———-————-———-

ui_2 <- fluidPage(
use_shinyOAuth(),
actionButton("login_btn"”, "Login"),
uiOutput(”login")

)

server_2 <- function(input, output, session) {
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = FALSE

oauth_module_server

observeEvent (input$login_btn, {
auth$request_login()
»

output$login <- renderUI({
if (auth$authenticated) {
user_info <- auth$token@userinfo
taglist(
tags$p(”"You are logged in!"),
tags$pre(paste(capture.output(str(user_info)), collapse = "\n"))
)
} else {
tags$p(”You are not logged in.")
}
»
3

app_2 <- shinyApp(ui_2, server_2)
if (app_to_run == "2") {
runApp (
app_2,
port = 8100,
launch.browser = FALSE

Example app requesting additional resource with access token (3) ----—-------

Below app shows the authenticated username + their GitHub repositories,
fetched via GitHub API using the access token obtained during login

ui_3 <- fluidPage(
use_shinyOAuth(),
uiOutput("ui”)

)

server_3 <- function(input, output, session) {
auth <- oauth_module_server(
"auth”,
client,
auto_redirect = TRUE
)

repositories <- reactiveVal(NULL)

observe({
req(auth$authenticated)

Example additional API request using the access token

(e.g., fetch user repositories from GitHub)

req <- client_bearer_req(auth$token, "https://api.github.com/user/repos”)
resp <- httr2::req_perform(req)

39

40

if (httr2::resp_is_error(resp)) {
repositories(NULL)
} else {

repos_data <- httr2::resp_body_json(resp, simplifyVector = TRUE)

repositories(repos_data)
}
D

Render username + their repositories
output$ui <- renderUI({
if (isTRUE(auth$authenticated)) {
user_info <- auth$token@userinfo
repos <- repositories()

return(taglList(
tags$p(paste(”"You are logged in as:"”, user_info$login)),
tags$h4("Your repositories:"),
if (!'is.null(repos)) {

tags$ul(
Map(
function(url, name) {
tags$li(tags$a(href = url, target = "_blank”, name))
b

repos$html_url,
repos$full_name

)
)
} else {
tags$p(”Loading repositories...")
3
)
}
return(tags$p(”You are not logged in."))
»
}
app_3 <- shinyApp(ui_3, server_3)
if (app_to_run == "3") {
runApp (
app_3,
port = 8100,
launch.browser = FALSE
)
}
3

oauth_provider

oauth_provider Create generic OAuthProvider

oauth_provider 41

Description

Helper function to create an OAuthProvider object. This function provides sensible defaults and
infers some settings based on the provided parameters.

Usage

oauth_provider(

name,

auth_url,

token_url,

userinfo_url = NA_character_,

introspection_url = NA_character_,

revocation_url = NA_character_,

issuer = NA_character_,

use_nonce = NULL,

use_pkce = TRUE,

pkce_method = "S256",

userinfo_required = NULL,

userinfo_id_token_match = NULL,

userinfo_id_selector = function(userinfo) userinfo$sub,

id_token_required = NULL,

id_token_validation = NULL,

extra_auth_params = list(),

extra_token_params = list(),

extra_token_headers = character(),

token_auth_style = "header”,

jwks_cache = NULL,

jwks_pins = character(),

jwks_pin_mode = "any",

jwks_host_issuer_match = NULL,

jwks_host_allow_only = NULL,

allowed_algs = c("RS256", "RS384", "RS512", "PS256", "PS384", "PS512", "ES256",
"ES384", "ES512", "EdDSA"),

allowed_token_types = c("Bearer”),

leeway = getOption("shinyOAuth.leeway”, 30)

)
Arguments
name Provider name (e.g., "github", "google"). Cosmetic only; used in logging and
audit events
auth_url Authorization endpoint URL
token_url Token endpoint URL

userinfo_url User info endpoint URL (optional)
introspection_url
Token introspection endpoint URL (optional; RFC 7662)

revocation_url Token revocation endpoint URL (optional; RFC 7009)

oauth_provider

issuer OIDC issuer URL (optional; required for ID token validation). This is the base
URL that identifies the OpenID Provider (OP). It is used during ID token val-
idation to verify the iss claim in the ID token matches the expected issuer.
It is also used to fetch the provider’s JSON Web Key Set (JWKS) for verify-
ing ID token signatures (typically via the OIDC discovery document located at
/ .well-known/openid-configuration relative to the issuer URL)

use_nonce Whether to use OIDC nonce. This adds a nonce parameter to the authorization
request and validates the nonce claim in the ID token. This is recommended for
OIDC flows to mitigate replay attacks

use_pkce Whether to use PKCE. This adds a code_challenge parameter to the authoriza-
tion request and requires a code_verifier when exchanging the authorization
code for tokens. This is prevents authorization code interception attacks

pkce_method PKCE code challenge method ("S256" or "plain"). "S256" is recommended.
"plain" should only be used for non-compliant providers that do not support
"S256"

userinfo_required
Whether to fetch userinfo after token exchange. User information will be stored
in the userinfo field of the returned OAuthToken object. This requires a valid
userinfo_url to be set. If fetching the userinfo fails, the token exchange will
fail.

For the low-level constructor oauth_provider (), when not explicitly supplied,
this is inferred from the presence of a non-empty userinfo_url: ifauserinfo_url
is provided, userinfo_required defaults to TRUE, otherwise it defaults to FALSE.
This avoids unexpected validation errors when userinfo_url is omitted (since
it is optional).

userinfo_id_token_match
Whether to verify that the user ID ("sub") from the ID token matches the user ID
extracted from the userinfo response. This requires both userinfo_required
and id_token_validation to be TRUE (and thus a valid userinfo_url and
issuer to be set, plus potentially setting the client’s scope to include "openid",
so that an ID token is returned). Furthermore, the provider’s userinfo_id_selector
must be configured to extract the user ID from the userinfo response. This check
helps ensure the integrity of the user information by confirming that both sources
agree on the user’s identity.

For oauth_provider(), when not explicitly supplied, this is inferred as TRUE
only if both userinfo_required and id_token_validation are TRUE; other-
wise it defaults to FALSE.

userinfo_id_selector
A function that extracts the user ID from the userinfo response.#’ Should take a
single argument (the userinfo list) and return the user ID as a string.

This is used when userinfo_id_token_match is TRUE. Optional otherwise;
when not supplied, some features (like subject matching) will be unavailable.
Helper constructors like oauth_provider () and oauth_provider_oidc() pro-
vide a default selector that extracts the sub field.

id_token_required
Whether to require an ID token to be returned during token exchange. If no ID
token is returned, the token exchange will fail. This requires the provider to be

oauth_provider

43

a valid OpenID Connect provider and may require setting the client’s scope to
include "openid".
Note: At the S7 class level, this defaults to FALSE so that pure OAuth 2.0

providers can be configured without OIDC. Helper constructors like oauth_provider()

and oauth_provider_oidc() will enable this when an issuer is supplied or
OIDC is explicitly requested.

id_token_validation

Whether to perform ID token validation after token exchange. This requires the
provider to be a valid OpenID Connect provider with a configured issuer and
the token response to include an ID token (may require setting the client’s scope
to include "openid").

Note: At the S7 class level, this defaults to FALSE. Helper constructors like
oauth_provider() and oauth_provider_oidc() turn this on when an issuer
is provided or when OIDC is used.

extra_auth_params

Extra parameters for authorization URL

extra_token_params

Extra parameters for token exchange

extra_token_headers

Extra headers for token exchange requests (named character vector)

token_auth_style

jwks_cache

jwks_pins

How to authenticate when exchanging tokens. One of:

¢ "header": HTTP Basic (client_secret_basic)
* "body": Form body (client_secret_post)

* "client_secret_jwt": JWT client assertion signed with HMAC using client_secret

(RFC 7523)

* "private_key_jwt": JWT client assertion signed with an asymmetric key
(RFC 7523)

JWKS cache backend. If not provided, a cachem: : cache_mem(max_age = 3600)
(1 hour) cache will be created. May be any cachem-compatible backend, in-
cluding cachem: : cache_disk() for a filesystem cache shared across workers,
or a custom implementation created via custom_cache() (e.g., database/Redis
backed).

TTL guidance: Choose max_age in line with your identity platform’s JWKS
rotation and cache-control cadence. A range of 15 minutes to 2 hours is typi-
cally sensible; the default is 1 hour. Shorter TTLs adopt new keys faster at the
cost of more JWKS traffic; longer TTLs reduce traffic but may delay new keys
slightly. Signature verification will automatically perform a one-time JWKS
refresh when a new kid appears in an ID token.

Cache keys are internal, hashed by issuer and pinning configuration. Cache
values are lists with elements jwks and fetched_at (numeric epoch seconds)

Optional character vector of RFC 7638 JWK thumbprints (base64url) to pin
against. If non-empty, fetched JIWKS must contain keys whose thumbprints
match these values depending on jwks_pin_mode. Use to reduce key substitu-
tion risks by pre-authorizing expected keys

oauth_provider

jwks_pin_mode Pinning policy when jwks_pins is provided. Either "any" (default; at least one
key in JWKS must match) or "all" (every RSA/EC/OKP public key in JWKS
must match one of the configured pins)

jwks_host_issuer_match
When TRUE, enforce that the discovery jwks_uri host matches the issuer host
(or a subdomain). Defaults to FALSE at the class level, but helper constructors
for OIDC (e.g., oauth_provider_oidc() and oauth_provider_oidc_discover())
enable this by default for safer config. The generic helper oauth_provider()
will also automatically set this to TRUE when an issuer is provided and either
id_token_validation or id_token_required is TRUE (OIDC-like configu-
ration). Set explicitly to FALSE to opt out. For providers that legitimately pub-
lish JWKS on a different host (e.g., Google), prefer setting jwks_host_allow_only
to the exact hostname rather than disabling this check

jwks_host_allow_only
Optional explicit hostname that the jwks_uri must match. When provided, jwks_uri
host must equal this value (exact match). You can pass either just the host
(e.g., "www.googleapis.com") or a full URL; only the host component will be
used. If you need to include a port or an IPv6 literal, pass a full URL (e.g.,
https://[::1]1:8443) — the port is ignored and only the hostname part is used
for matching. Takes precedence over jwks_host_issuer_match

allowed_algs Optional vector of allowed JWT algorithms for ID tokens. Use to restrict ac-
ceptable alg values on a per-provider basis. Supported asymmetric algorithms
include RS256, RS384, RS512, PS256, PS384, PS512, ES256, ES384, ES512,
and EdDSA (Ed25519/Ed448 via OKP). Symmetric HMAC algorithms HS256,
HS384, HS512 are also supported but require that you supply a client_secret
and explicitly enable HMAC verification via the option options(shinyOAuth.allow_hs
= TRUE). Defaults to c("RS256", "RS384","RS512", "PS256", "PS384","PS512",
"ES256","ES384","ES512","EADSA"), which intentionally excludes HS*. Only
include HS# if you are certain the client_secret is stored strictly server-side
and is never shipped to, or derivable by, the browser or other untrusted environ-
ments. Prefer rotating secrets regularly when enabling this.

allowed_token_types

Character vector of acceptable OAuth token types returned by the token end-
point (case-insensitive). When non-empty, the token response MUST include
token_type and it must be one of the allowed values; otherwise the flow fails
fast with a shinyOAuth_token_error. When empty, no check is performed and
token_type may be omitted by the provider. The oauth_provider() helper
defaults to c("Bearer”) for all providers because the package only supports
Bearer tokens (i.e., client_bearer_req() sends Authorization: Bearer).
This ensures that if a provider returns a non-Bearer token type (e.g., DPoP,
MAC), the flow fails fast rather than misusing the token. Set allowed_token_types
= character () explicitly to opt out of enforcement.

leeway Clock skew leeway (seconds) applied to ID token exp/iat/nbf checks and state
payload issued_at future check. Default 30. Can be globally overridden via
option shinyOAuth. leeway

oauth_provider

Value

OAuthProvider object

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token",
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC”,

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)

GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)

Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm”)

45

46 oauth_provider_authQ

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_auth@ Create an AuthO OAuthProvider (via OIDC discovery)

Description

Create an AuthO OAuthProvider (via OIDC discovery)

Usage
oauth_provider_auth@(domain, name = "auth®"”, audience = NULL)
Arguments
domain Your AuthO domain, e.g., "your-domain.authO.com"
name Optional provider name (default "auth0")
audience Optional audience to request in auth flows
Value

OAuthProvider object configured for the specified AuthO domain

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token",
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

oauth_provider_authQ 47

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth@ domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

48

End(Not run)

oauth_provider_github

oauth_provider_github Create a GitHub OAuthProvider

Description

Pre-configured OAuth 2.0 provider for GitHub.

Usage

oauth_provider_github(name = "github")

Arguments

name Optional provider name (default "github")

Details

You can register a new GitHub OAuth 2.0 app in your 'Developer Settings’.

Value

OAuthProvider object for use with a GitHub OAuth 2.0 app

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token"”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC”,

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)

https://github.com/settings/apps

oauth_provider_google 49

GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm”)

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_google Create a Google OAuthProvider

Description

Pre-configured OAuthProvider for Google.

Usage

oauth_provider_google(name = "google")

50 oauth_provider_google

Arguments

name Optional provider name (default "google")

Details

You can register a new Google OAuth 2.0 app in the Google Cloud Console. Configure the client
ID & secret in your OAuthClient.

Value

OAuthProvider object for use with a Google OAuth 2.0 app

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token"”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC”,

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery

https://console.cloud.google.com/apis/credentials

oauth_provider_keycloak 51

(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm”)

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_keycloak
Create a Keycloak OAuthProvider (via OIDC discovery)

Description

Create a Keycloak OAuthProvider (via OIDC discovery)

Usage
oauth_provider_keycloak(
base_url,
realm,
name = paste@("keycloak-", realm),
token_auth_style = "body"”
)
Arguments
base_url Base URL of the Keycloak server, e.g., "http://localhost:8080"
realm Keycloak realm name, e.g., "myrealm"

name Optional provider name. Defaults to paste@('keycloak-', realm)

52 oauth_provider_keycloak

token_auth_style
Optional override for token endpoint authentication method. One of "header"
(client_secret_basic), "body" (client_secret_post), "private_key_jwt", or "client_secret_jwt".
Defaults to "body" for Keycloak, which works for both confidential clients and
public PKCE clients (secretless). If you pass NULL, discovery will infer the
method from the provider’s token_endpoint_auth_methods_supported meta-
data.

Value

OAuthProvider object configured for the specified Keycloak realm

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token"”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC”,

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery

oauth_provider_microsoft 53

(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm”)

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_microsoft
Create a Microsoft (Entra ID) OAuthProvider

Description

Pre-configured OAuthProvider for Microsoft Entra ID (formerly Azure AD) using the v2.0 end-
points. Accepts a tenant identifier and configures the authorization, token, and userinfo endpoints
directly (no discovery).

Usage
oauth_provider_microsoft(
name = "microsoft”,
tenant = c(”"common”, "organizations”, "consumers"),
id_token_validation = NULL
)
Arguments
name Optional friendly name for the provider. Defaults to "microsoft"
tenant Tenant identifier ("common", "organizations", "consumers", or directory GUID).

Defaults to "common"

54 oauth_provider_microsoft

id_token_validation
Optional override (logical). If NULL (default), it’s enabled automatically when
tenant looks like a GUID, otherwise disabled

Details

The tenant can be one of the special values "common", "organizations", or "consumers”, or a
specific directory (tenant) ID GUID (e.g., "00000000-0000-0000-0000-000000000000").

When tenant is a specific GUID, the provider will enable strict ID token validation (issuer match).
When using the multi-tenant aliases ("common", "organizations", "consumers"), the exact issuer
depends on the account that signs in and therefore ID token validation is disabled by default to avoid
false negatives. You can override this via id_token_validation if you know the environment
guarantees a fixed issuer.

Note: ID token validation requires a stable issuer. For multi-tenant aliases, this provider sets issuer
= NA and therefore also disables use_nonce by default (nonce validation relies on validating the ID
token).

Microsoft issues RS256 ID tokens; allowed_algs is restricted accordingly. The userinfo endpoint
is provided by Microsoft Graph (https://graph.microsoft.com/oidc/userinfo).

When configuring your OAuthClient, if you do not have the option to register an app or simply
wish to test during development, you may be able to use the default Azure CLI public app, with
client_id’9391afd1-7129-4938-9e4d-633c688f93c0’ (uses redirect_uri "http://localhost:8100’).

Value

OAuthProvider object configured for Microsoft identity platform

Examples

if (
Example requires configured Microsoft Entra ID (Azure AD) tenant:
nzchar(Sys.getenv("MS_TENANT")) && interactive() && requireNamespace("later")
) A
library(shiny)
library(shinyOAuth)

Configure provider and client (Microsoft Entra ID with your tenant
client <- oauth_client(
provider = oauth_provider_microsoft(
Provide your own tenant ID here (set as environment variable MS_TENANT)
tenant = Sys.getenv(”"MS_TENANT")
),
Default Azure CLI app ID (public client; activated in many tenants):
client_id = "04b07795-8ddb-461a-bbee-02f9e1bf7b46",
redirect_uri = "http://localhost:8100",
scopes = c("openid”, "profile”, "email")

)

UI
ui <- fluidPage(
use_shinyOAuth(),

oauth_provider_microsoft

h3("0OAuth demo (Microsoft Entra ID)"),
uiOutput(”oauth_error"),

tagsshr(),

h4("Auth object (summary)"),
verbatimTextOutput("auth_print"),
tagsshr(),

h4("User info"),
verbatimTextOutput("user_info")

Server
server <- function(input, output, session) {
auth <- oauth_module_server(”auth”, client)

output$auth_print <- renderText({
authenticated <- auth$authenticated
tok <- auth$token
err <- auth$error

pasted(
"Authenticated?”,
if (isTRUE(authenticated)) " YES"” else " NO",
"\n",
"Has token? ",
if (!is.null(tok)) "YES"” else "NO",
"\n",
"Has error? ",
if (!is.null(err)) "YES" else "NO",
"\n\n",
"Token (str):\n",
paste(capture.output(str(tok)), collapse = "\n")

)

»

output$user_info <- renderPrint({
req(auth$token)
auth$token@userinfo

»

output$oauth_error <- renderUI({
if (!is.null(auth$error)) {
msg <- auth$error
if (!is.null(auth$error_description)) {
msg <- paste@(msg, ": ", auth$error_description)
3
div(class = "alert alert-danger”, role = "alert”, msg)
}
»

Need to open app in 'localhost:8100' to match with redirect_uri
of the public Azure CLI app (above). Browser must use 'localhost'
too to properly set the browser cookie. But Shiny only redirects to

56 oauth_provider_oidc

'127.0.0.1' & blocks process once it runs. So we disable browser
launch by Shiny & then use 'later::later()' to open the browser
ourselves a short moment after the app starts
later::later(

function() {

utils::browseURL("http://localhost:8100")
h
delay = 0.25

)

Run app
runApp(shinyApp(ui, server), port = 8100, launch.browser = FALSE)

oauth_provider_oidc Create a generic OpenlD Connect (OIDC) OAuthProvider

Description

Preconfigured OAuthProvider for OpenID Connect (OIDC) compliant providers.

Usage

oauth_provider_oidc(
name,
base_url,
auth_path = "/authorize”,
token_path = "/token",
userinfo_path = "/userinfo”,
introspection_path = "/introspect”,
use_nonce = TRUE,
id_token_validation = TRUE,
jwks_host_issuer_match = TRUE,
allowed_token_types = c("Bearer”),

)
Arguments
name Friendly name for the provider
base_url Base URL for OIDC endpoints
auth_path Authorization endpoint path (default: "/authorize")
token_path Token endpoint path (default: "/token")

userinfo_path User info endpoint path (default: "/userinfo")
introspection_path
Token introspection endpoint path (default: "/introspect")

oauth_provider_oidc 57

use_nonce Logical, whether to use OIDC nonce. Defaults to TRUE

id_token_validation
Logical, whether to validate ID tokens automatically for this provider. Defaults
to TRUE

jwks_host_issuer_match
When TRUE (default), enforce that the JWKS host discovered from the provider
matches the issuer host (or a subdomain). For providers that serve JWKS from a
different host (e.g., Google), set jwks_host_allow_only to the exact hostname
instead of disabling this. Disabling (FALSE) is not recommended unless you also
pin JWKS via jwks_host_allow_only or jwks_pins

allowed_token_types
Character vector of allowed token types for access tokens issued by this provider.
Defaults to *Bearer’

Additional arguments passed to oauth_provider()

Value

OAuthProvider object

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)

GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

58 oauth_provider_oidc_discover

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth@ domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com”)

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_oidc_discover
Discover and create an OpenlD Connect (OIDC) OAuthProvider

Description

Uses the OpenlD Connect discovery document at /.well-known/openid-configuration to auto-
configure an OAuthProvider. When present, introspection_endpoint is wired into the resulting
provider for RFC 7662 support.

Usage

oauth_provider_oidc_discover(
issuer,
name = NULL,
use_pkce = TRUE,

oauth_provider_oidc_discover 59

use_nonce

TRUE,

id_token_validation = TRUE,

token_auth_style = NULL,

allowed_algs = c(”"RS256", "RS384", "RS512", "PS256", "PS384", "PS512", "ES256",
"ES384", "ES512", "EdDSA"),

allowed_token_types = c("Bearer”),

jwks_host_issuer_match = TRUE,

issuer_match = c("url”, "host”, "none"),
)
Arguments

issuer The OIDC issuer base URL (including scheme), e.g., "https://login.example.com"

name Optional friendly provider name. Defaults to the issuer hostname

use_pkce Logical, whether to use PKCE for this provider. Defaults to TRUE. If the discov-
ery document indicates token_endpoint_auth_methods_supported includes
"none", PKCE is required unless use_pkce is explicitly set to FALSE (not rec-
ommended)

use_nonce Logical, whether to use OIDC nonce. Defaults to TRUE

id_token_validation

Logical, whether to validate ID tokens automatically for this provider. Defaults
to TRUE

token_auth_style

allowed_algs

Authentication style for token requests: "header" (client_secret_basic) or "body"
(client_secret_post). If NULL (default), it is inferred conservatively from dis-
covery. When PKCE is enabled and the provider advertises support for public
clients via none, a secretless flow is preferred (modeled as "body" without cre-
dentials). Otherwise, the helper prefers "header” (client_secret_basic) when
available, then "body"” (client_secret_post). JWT-based methods are not auto-
selected unless explicitly requested

Character vector of allowed ID token signing algorithms. Defaults to a broad
set of common algorithms, including RSA (RS*), RSA-PSS (PS*), ECDSA
(ES*), and EADSA. If the discovery document advertises supported algorithms,
the intersection of advertised and caller-provided algorithms is used to avoid
runtime mismatches. If there’s no overlap, discovery fails with a configuration
error (no fallback)

allowed_token_types

Character vector of allowed token types for access tokens issued by this provider.
Defaults to *Bearer’

jwks_host_issuer_match

When TRUE (default), enforce that the JWKS host discovered from the provider
matches the issuer host (or a subdomain). For providers that serve JWKS from
a different host, set jwks_host_allow_only to the exact hostname instead of
disabling this. Disabling (FALSE) is not recommended unless you also pin JWKS
via jwks_host_allow_only or jwks_pins

60 oauth_provider_oidc_discover

issuer_match Character scalar controlling how strictly to validate the discovery document’s
issuer against the input issuer.

e "url” (default): require the full issuer URL to match after trailing-slash
normalization (recommended).

* "host": compare only scheme + host (explicit opt-out; not recommended).
* "none”: do not validate issuer consistency.

Prefer "url” and tighten hosts via options(shinyOAuth.allowed_hosts) when
feasible.

Additional fields passed to oauth_provider()

Details

* ID token algorithms: by default this helper accepts common asymmetric algorithms RSA
(RS*), RSA-PSS (PS*), ECDSA (ES*), and EdDSA. When the provider advertises its sup-
ported ID token signing algorithms via id_token_signing_alg_values_supported, the
helper uses the intersection with the caller-provided allowed_algs. If there is no overlap,
discovery fails with a configuration error. There is no automatic fallback to the discovery-
advertised set.

* Token endpoint authentication methods: supports client_secret_basic (header), client_secret_post
(body), public clients using none (with PKCE), as well as JWT-based methods private_key_jwt
and client_secret_jwt per RFC 7523.

Important: discovery metadata lists methods supported across the provider, not per-client pro-
visioning. This helper does not automatically select JWT-based methods just because they
are advertised. By default it prefers client_secret_basic (header) when available, other-
wise client_secret_post (body), and only uses public none for PKCE clients. If a provider
advertises only JWT methods, you must explicitly set token_auth_style and configure the
corresponding credentials on your OAuthClient (a private key for private_key_jwt, or a
sufficiently strong client_secret for client_secret_jwt).

* Host policy: by default, discovered endpoints must be absolute URLs whose host matches the
issuer host exactly. Subdomains are NOT implicitly allowed. If you want to allow subdomains,
add a leading-dot or glob in options(shinyOAuth.allowed_hosts), e.g., .example.com or
*.example. com. If a global whitelist is supplied via options(shinyOAuth.allowed_hosts),
discovery will restrict endpoints to that whitelist. Scheme policy (https/http for loopback) is
delegated to is_ok_host (), so you may allow non-HTTPS hosts with options(shinyOAuth.allowed_non_https_ho
(see ?is_ok_host).

Value

OAuthProvider object configured from discovery

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token",
Optional URL for fetching user info:

oauth_provider_oidc_discover 61

userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth@ domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta
(requires configured Okta domain; example below is therefore not run)

62 oauth_provider_okta

Not run:
oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_okta Create an Okta OAuthProvider (via OIDC discovery)

Description

Create an Okta OAuthProvider (via OIDC discovery)

Usage

oauth_provider_okta(domain, auth_server = "default”, name = "okta")
Arguments

domain Your Okta domain, e.g., "dev-123456.okta.com"

auth_server Authorization server ID (default "default")

name Optional provider name (default "okta")
Value

OAuthProvider object configured for the specified Okta domain

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token",
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(

oauth_provider_slack 63

issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth@ domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_slack Create a Slack OAuthProvider (via OIDC discovery)

Description

Create a Slack OAuthProvider (via OIDC discovery)

64 oauth_provider_slack

Usage

oauth_provider_slack(name = "slack")
Arguments

name Optional provider name (default "slack")
Value

OAuthProvider object configured for Slack

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

oauth_provider_spotify 65

slack_provider <- oauth_provider_slack()

Keycloak

(requires configured Keycloak realm; example below is therefore not run)

Not run:

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth@ domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com”)

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

oauth_provider_spotify
Create a Spotify OAuthProvider

Description

Pre-configured OAuth 2.0 provider for Spotify. Uses /v1/me as "userinfo". No ID token (not OIDC).

Usage

oauth_provider_spotify(name = "spotify"”)

Arguments
name Optional provider name (default "spotify")

Details
Spotify requires scopes to be included in the authorization request. Set requested scopes on the
client with cauth_client(..., scopes=...).

Value

OAuthProvider object for use with a Spotify OAuth 2.0 app

66 oauth_provider._spotify

See Also

For an example application which using Spotify OAuth 2.0 login to display the user’s listening data,
see vignette("example-spotify").

Examples

Configure generic OAuth 2.0 provider (no 0IDC)
generic_provider <- oauth_provider(
name = "example”,
auth_url = "https://example.com/oauth/authorize”,
token_url = "https://example.com/oauth/token"”,
Optional URL for fetching user info:
userinfo_url = "https://example.com/oauth/userinfo”

)

Configure generic OIDC provider manually
(This defaults to using nonce & ID token validation)
generic_oidc_provider <- oauth_provider_oidc(

name = "My 0IDC",

base_url = "https://my-issuer.example.com”

)

Configure a OIDC provider via OIDC discovery
(requires network access)

Using Auth@ sample issuer as an example
oidc_discovery_provider <- oauth_provider_oidc_discover(
issuer = "https://samples.auth@.com”

)
GitHub preconfigured provider
github_provider <- oauth_provider_github()

Google preconfigured provider
google_provider <- oauth_provider_google()

Microsoft preconfigured provider
See ~?0auth_provider_microsoft™ for example using a custom tenant ID

Spotify preconfigured provider
spotify_provider <- oauth_provider_spotify()

Slack via OIDC discovery
(requires network access)

slack_provider <- oauth_provider_slack()
Keycloak

(requires configured Keycloak realm; example below is therefore not run)
Not run:

prepare_call 67

oauth_provider_keycloak(base_url = "http://localhost:8080", realm = "myrealm")

End(Not run)

Autho

(requires configured Auth® domain; example below is therefore not run)
Not run:

oauth_provider_auth@(domain = "your-tenant.auth@.com")

End(Not run)

Okta

(requires configured Okta domain; example below is therefore not run)
Not run:

oauth_provider_okta(domain = "dev-123456.0kta.com")

End(Not run)

prepare_call Prepare a OAuth 2.0 authorization call and build an authorization
URL

Description

This function prepares an OAuth 2.0 authorization call by generating necessary state, PKCE, and
nonce values, storing them securely, and constructing the authorization URL to redirect the user to.
The state and accompanying values are stored in the client’s state store for later verification during
the callback phase of the OAuth 2.0 flow.

Usage

prepare_call(oauth_client, browser_token)

Arguments

oauth_client An OAuthClient object representing the OAuth client configuration.

browser_token A string token (e.g., from a browser cookie) to identify the user/session.

Value

A string containing the constructed authorization URL. This URL should be used to redirect the
user to the OAuth provider’s authorization endpoint.

Examples

Please note: “prepare_call()” & “handle_callback()™ are typically
not called by users of this package directly, but are called

internally by ~oauth_module_server()". These functions are exported
nonetheless for advanced use cases. Most users will not need to

68

refresh_token

call these functions directly

Below code shows generic usage of “prepare_call()™ and “handle_callback()"
(code is not run because it would require user interaction)
Not run:
Define client
client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"

Get authorization URL and and store state in client's state store
“<browser_token>" is a token that identifies the browser session
and would typically be stored in a browser cookie

(Coauth_module_server()™ handles this typically)
authorization_url <- prepare_call(client, "<browser_token>")

Redirect user to authorization URL; retrieve code & payload from query;
read also “<browser_token>" from browser cookie

(Coauth_module_server()" handles this typically)

code <- "..."

payload <-
browser_token <-

n n

" n

Handle callback, exchanging code for token and validating state
(Coauth_module_server()” handles this typically)
token <- handle_callback(client, code, payload, browser_token)

End(Not run)

refresh_token Refresh an OAuth 2.0 token

Description

Refreshes an OAuth session by obtaining a fresh access token using the refresh token. When con-
figured, also re-fetches userinfo and validates any new ID token returned by the provider.

Per OIDC Core Section 12.2, providers may omit the ID token from refresh responses. When
omitted, the original ID token from the initial login is preserved.

If the provider does return a new ID token during refresh, refresh_token() requires that an origi-
nal ID token from the initial login is available so it can enforce subject continuity (OIDC 12.2: sub
MUST match). If no original ID token is available, refresh fails with an error.

When id_token_validation = TRUE, any refresh-returned ID token is also fully validated (signa-
ture and claims) in addition to the OIDC 12.2 sub continuity check.

When userinfo_required = TRUE, userinfo is re-fetched using the fresh access token. If both a
new ID token and fresh userinfo are present and userinfo_id_token_match = TRUE, their subjects
are verified to match.

refresh_token 69

Usage

refresh_token(
oauth_client,
token,
async = FALSE,
introspect = FALSE,
shiny_session = NULL

Arguments

oauth_client OAuthClient object
token OAuthToken object containing the refresh token

async Logical, default FALSE. If TRUE and the promises package is available, the re-
fresh is performed off the main R session using promises: : future_promise()
and this function returns a promise that resolves to an updated OAuthToken. If
promises is not available, falls back to synchronous behavior

introspect Logical, default FALSE. After a successful refresh, if the provider exposes an
introspection endpoint, perform a best-effort introspection of the new access
token for audit/diagnostics. The result is not stored on the token object.

shiny_session Optional pre-captured Shiny session context (from capture_shiny_session_context())
to include in audit events. Used when calling from async workers that lack ac-
cess to the reactive domain.

Value

An updated OAuthToken object with refreshed credentials.
What changes:

* access_token: Always updated to the fresh token
* expires_at: Computed from expires_in when provided; otherwise Inf
* refresh_token: Updated if the provider rotates it; otherwise preserved

e id_token: Updated only if the provider returns one (and it validates); otherwise the original
from login is preserved

e userinfo: Refreshed if userinfo_required = TRUE; otherwise preserved

Validation failures cause errors: If the provider returns a new ID token that fails validation (wrong
issuer, audience, expired, or subject mismatch with original), or if userinfo subject doesn’t match
the new ID token, the refresh fails with an error. In oauth_module_server (), this clears the session
and sets authenticated = FALSE.

Examples

Please note: “get_userinfo()™, “introspect_token()~, and “refresh_token()"
are typically not called by users of this package directly, but are called
internally by ~oauth_module_server()". These functions are exported

nonetheless for advanced use cases. Most users will not need to

70 revoke_token

call these functions directly

Example requires a real token from a completed OAuth flow
(code is therefore not run; would error with placeholder values below)
Not run:
Define client
client <- oauth_client(
provider = oauth_provider_github(),
client_id = Sys.getenv("GITHUB_OAUTH_CLIENT_ID"),
client_secret = Sys.getenv("GITHUB_OAUTH_CLIENT_SECRET"),
redirect_uri = "http://127.0.0.1:8100"
)

Have a valid OAuthToken object; fake example below
(typically provided by “oauth_module_server()™ or ~handle_callback()™)

token <- handle_callback(client, "<code>", "<payload>", "<browser_token>")

Get userinfo
user_info <- get_userinfo(client, token)

Introspect token (if supported by provider)
introspection <- introspect_token(client, token)

Refresh token
new_token <- refresh_token(client, token, introspect = TRUE)

End(Not run)

revoke_token Revoke an OAuth 2.0 token

Description

Attempts to revoke an access or refresh token using RFC 7009 when the provider exposes a revoca-
tion endpoint.

Authentication mirrors the provider’s token_auth_style (same as token exchange and introspec-
tion).

Best-effort semantics:
» If the provider does not expose a revocation endpoint, returns supported = FALSE, revoked =
NA, and status = "revocation_unsupported”.

* If the selected token value is missing, returns supported = TRUE, revoked = NA, and status
= "missing_token".

* If the endpoint returns a 2xx, returns supported = TRUE, revoked = TRUE, and status = "ok".

* If the endpoint returns an HTTP error, returns supported = TRUE, revoked = NA, and status
= "http_<code>".

use_shinyOAuth 71

Usage

revoke_token(
oauth_client,
oauth_token,
which = c("refresh”, "access"”),
async = FALSE,
shiny_session = NULL

Arguments

oauth_client OAuthClient object

oauth_token OAuthToken object containing tokens to revoke
which Which token to revoke: "refresh" (default) or "access"
async Logical, default FALSE. If TRUE and promises is available, run in background

and return a promise resolving to the result list

shiny_session Optional pre-captured Shiny session context (from capture_shiny_session_context())

to include in audit events. Used when calling from async workers that lack ac-
cess to the reactive domain.

Value

A list with fields: supported, revoked, status

use_shinyOAuth Add JavaScript dependency to the Ul of a Shiny app

Description

Adds the package’s client-side JavaScript helpers as an htmlDependency to your Shiny UI. This
enables features such as redirection and setting the browser cookie token.

Without adding this to the Ul of your app, the oauth_module_server () will not function.

Usage

use_shinyOAuth(inject_referrer_meta = TRUE)

Arguments

inject_referrer_meta
If TRUE (default), injects a<meta name="referrer"” content="no-referrer">
tag into the document head. This reduces the risk of leaking OAuth callback
query parameters (like code and state) via the Referer header to third-party
subresources during the initial callback page load.

72 use_shinyOAuth

Details
Place this near the top-level of your Ul (e.g., inside fluidPage() or taglList()), similar to how
you would use shinyjs: :useShinyjs().

Value
A tagList containing a singleton dependency tag that ensures the JS file inst/www/shinyOAuth. js
is loaded

See Also

oauth_module_server()

Examples

ui <- shiny::fluidPage(
use_shinyOAuth(),
...

)

Index

cachem: :cache_disk(), 4, 22, 43
cachem: :cache_mem(), 4
client_bearer_req, 2
client_bearer_req(), 23,44
custom_cache, 4
custom_cache(), 14, 22, 27,43

error_on_softened, 5
future::plan(), 33
get_userinfo, 6

handle_callback, 7
httr2::reqg_perform(), 3
httr2::request(), 2

introspect_token, 9
is_ok_host, 11

oauth_client, 26
oauth_client(), 12
oauth_module_server, 32
oauth_module_server(), 4, 14,27, 72
oauth_provider, 40
oauth_provider(), 19, 21-23, 42-44, 57, 60
oauth_provider_autho, 46
oauth_provider_github, 48
oauth_provider_google, 49
oauth_provider_keycloak, 51
oauth_provider_microsoft, 53
oauth_provider_oidc, 56
oauth_provider_oidc(), 19, 21, 22, 4244
oauth_provider_oidc_discover, 58
oauth_provider_oidc_discover(), 19, 22,
44
oauth_provider_okta, 62
oauth_provider_slack, 63
oauth_provider_spotify, 65
OAuthClient, 6, 8, 10, 12, 26, 29, 33, 50, 54,
60, 67,69, 71

73

OAuthProvider, 6, 13, 19, 26, 40, 41, 45, 46,
48-54, 56-58, 60, 62—-65
OAuthToken, 2, 3, 6, 8, 10, 24, 35, 69, 71

prepare_call, 67
promises::promises, 33

refresh_token, 68
revoke_token, 70

use_shinyOAuth, 71
use_shinyOAuth(), 37

	client_bearer_req
	custom_cache
	error_on_softened
	get_userinfo
	handle_callback
	introspect_token
	is_ok_host
	OAuthClient
	OAuthProvider
	OAuthToken
	oauth_client
	oauth_module_server
	oauth_provider
	oauth_provider_auth0
	oauth_provider_github
	oauth_provider_google
	oauth_provider_keycloak
	oauth_provider_microsoft
	oauth_provider_oidc
	oauth_provider_oidc_discover
	oauth_provider_okta
	oauth_provider_slack
	oauth_provider_spotify
	prepare_call
	refresh_token
	revoke_token
	use_shinyOAuth
	Index

