
Shazam: Inferring SHM targeting models

Namita Gupta & Julian Q. Zhou

2025-12-26

Contents
Example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Infer targeting model (substitution and mutability) . . . . . . . . . . . . . . . . . . . . . . 2
Visualize targeting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Calculate targeting distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The targeting model is the background likelihood of a particular mutation, based on the surrounding
sequence context as well as the mutation itself. The model is inferred from observed mutations in
the data. The model can then be transformed into a distance function to compare Ig sequences of
a given dataset based on the likelihood of the observed mutations. This is done via the following
steps:

1. Infer a substitution model, which is the likelihood of a base mutating to each other base given
the microsequence context.

2. Infer a mutability model, which is likelihood of a given base being mutated given the microse-
quence context and substitution model.

3. Visualize the mutability model to identify hot and cold spots.
4. Calculate a nucleotide distance matrix based on the underlying SHM models.

Example data

A small example AIRR Rearrangement database is included in the alakazam package. Inferring a
targeting model requires the following fields (columns) to be present in the table:

• sequence_id
• sequence_alignment
• germline_alignment_d_mask
• v_call

# Import required packages
library(shazam)

# Load example data
data(ExampleDb, package="alakazam")

# Subset to IGHG for faster usage demonstration
db <- subset(ExampleDb, c_call == "IGHG")

1



Infer targeting model (substitution and mutability)

The function for inferring substitution rates (createSubstitutionMatrix) counts the number of
mutations from a given base to all others occurring in the center position for all 5-mer motifs in the
dataset. The model argument of createSubstitutionMatrix allows the user to specify whether
to count all mutations, or just silent mutations to infer the model. Column names for the sample
sequence, germline sequence, and V call can also be passed in as parameters if they differ from
Change-O defaults. Additionally, the multipleMutation parameter determines handling of multiple
mutations in a single 5-mer: independent treats each mutation independently and ignore entirely
disregards 5-mers with multiple mutations.

# Create substitution model using silent mutations
sub_model <- createSubstitutionMatrix(db, model="s",

sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
vCallColumn="v_call")

The function for inferring a mutability model (createMutabilityMatrix) counts the number of
mutations in all 5-mer motifs of the dataset, and depends upon the inferred substitution rates.
Similar parameters as those available for inferring the substitution rates are available to adjust this
function.

# Create mutability model using silent mutations
mut_model <- createMutabilityMatrix(db, sub_model, model="s",

sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
vCallColumn="v_call")

createMutabilityMatrix creates an object of class MutabilityModel that contains a named
numeric vector of 1024 normalized mutability. The numbers of silent and replacement mutations
used for estimating the 5-mer mutabilities are recorded in the numMutS and numMutR slots, respectively.
rates. The source slot contains a named vector indicating whether each 5-mer mutability was
inferred or measured. A data.frame with both the mutability values and derivation source.

# Number of silent mutations used for estimating 5-mer mutabilities
mut_model@numMutS
# Number of replacement mutations used for estimating 5-mer mutabilities
mut_model@numMutR
# Mutability and source as a data.frame
head(as.data.frame(mut_model))

The inferred substitution and mutability models returned by the above functions only account for
unambiguous 5-mers. However, there may be cases in which the user may need the likelihood of a
mutation in a 5-mer with ambiguous characters. Each of the above functions has a corresponding
function (extendSubstitutionMatrix and extendMutabilityMatrix) to extend the models to
infer 5-mers with Ns by averaging over all corresponding unambiguous 5-mers.

# Extend models to include ambiguous 5-mers
sub_model <- extendSubstitutionMatrix(sub_model)
mut_model <- extendMutabilityMatrix(mut_model)

These extended substitution and mutability models can be used to create an overall SHM targeting

2



matrix (createTargetingMatrix), which is the combined probability of mutability and substitution.

# Create targeting model matrix from substitution and mutability models
tar_matrix <- createTargetingMatrix(sub_model, mut_model)

All of the above steps can be combined by using the single function createTargetingModel to infer
a TargetingModel object directly from the dataset. Again, the numbers of silent and replacement
mutations used for estimating the 5-mer mutabilities are also recorded in the numMutS and numMutR
slots respectively.

Additionally, it is generally appropriate to consider the mutations within a clone only once. Consensus
sequences for each clone can be generated using the collapseClones function.

# Collapse sequences into clonal consensus
clone_db <- collapseClones(db, cloneColumn="clone_id",

sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
nproc=1)

# Create targeting model in one step using only silent mutations
# Use consensus sequence input and germline columns
model <- createTargetingModel(clone_db, model="s", sequenceColumn="clonal_sequence",

germlineColumn="clonal_germline", vCallColumn="v_call")

Visualize targeting model

The visualization of a dataset’s underlying SHM mutability model can be used to investigate hot
and cold spot motifs. The length of the bars on the plot of mutability rates corresponds to the
likelihood of a given base in the given 5-mer being mutated. The plotting function plotMutability
has an argument style to specify either a hedgehog plot (circular) or barplot display of 5-mer
mutability rates. If the mutability for only specific bases is required, this can be specified via the
nucleotides argument.

# Generate hedgehog plot of mutability model
plotMutability(model, nucleotides="A", style="hedgehog")

3



A

A

CG

T

A
C

G

T

A

C
G

TA
C

G

T

A

C
G

T

Motif WA/TW Neutral

plotMutability(model, nucleotides="C", style="hedgehog")

4



C

A

CG

T

A
C

G

T

A

C
G

TA
C

G

T

A

C
G

T

Motif WRC/GYW SYC/GRS Neutral

# Generate bar plot of mutability model
plotMutability(model, nucleotides="G", style="bar")

G

A C G T A C G T A C G T A C G T

A C G T
0.00e+00

3.98e−04

7.97e−04

1.20e−03

1.59e−03

1.99e−03

2.39e−03

2.79e−03

3.19e−03

3.59e−03

3.98e−03

4.38e−03

4.78e−03

5.18e−03

5.58e−03

5.98e−03

M
ut

ab
ili

ty

Motif WRC/GYW SYC/GRS Neutral

5



plotMutability(model, nucleotides="T", style="bar")

T

A C G T A C G T A C G T A C G T

A C G T
0.00e+00

3.23e−04

6.46e−04

9.69e−04

1.29e−03

1.62e−03

1.94e−03

2.26e−03

2.59e−03

2.91e−03

3.23e−03

3.55e−03

3.88e−03

4.20e−03

4.52e−03

4.85e−03

M
ut

ab
ili

ty

Motif WA/TW Neutral

Calculate targeting distance matrix

In the Change-O pipeline, the hs5f cloning method rely on an inferred targeting model. If users
wish to use a targeting model inferred from their data to assign distance between sequences for
clonal grouping, then the observed SHM targeting rates must be transformed into distances. The
calcTargetingDistance function returns a matrix of distances between each 5-mer and each
corresponding mutation of the center base. This matrix can also be generated and written directly
to a file using the function writeTargetingDistance.

# Calculate distance matrix
dist <- calcTargetingDistance(model)

6


	Example data
	Infer targeting model (substitution and mutability)
	Visualize targeting model
	Calculate targeting distance matrix

