Package ‘sf’

January 13, 2026
Version 1.0-24
Title Simple Features for R

Description Support for simple feature access, a standardized way to

encode and analyze spatial vector data. Binds to 'GDAL'
<doi:10.5281/zenodo.5884351> for reading and writing data, to 'GEOS'

<doi:10.5281/zenodo.11396894> for geometrical operations,

and to 'PROJ' <doi:10.5281/zenodo.5884394> for projection

conversions and datum transformations. Uses by default the 's2'

package for geometry operations on geodetic (long/lat degree)
coordinates.

License GPL-2 | MIT + file LICENSE
URL https://r-spatial.github.io/sf/, https://github.com/r-spatial/sf

BugReports https://github.com/r-spatial/sf/issues
Depends methods, R (>=3.3.0)

Imports classInt (>= 0.4-1), DBI (>= 0.8), graphics, grDevices, grid,
magrittr, s2 (>= 1.1.0), stats, tools, units (>= 0.7-0), utils

Suggests blob, nanoarrow, covr, dplyr (>= 1.0.0), ggplot2, knitr,
Iwgeom (>= 0.2-14), maps, mapview, Matrix, microbenchmark,
odbc, pbapply, pillar, pool, raster, rlang, rmarkdown,
RPostgres (>= 1.1.0), RPostgreSQL, RSQLite, sp (>= 1.2-4),
spatstat (>= 2.0-1), spatstat.geom, spatstat.random,
spatstat.linnet, spatstat.utils, stars (>= 0.6-0), terra,
testthat (>= 3.0.0), tibble (>= 1.4.1), tidyr (>= 1.2.0),
tidyselect (>= 1.0.0), tmap (>= 2.0), vctrs, wk (>= 0.9.0)

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.3

Config/testthat/edition 2

Config/needs/coverage XML

https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.11396894
https://doi.org/10.5281/zenodo.5884394
https://r-spatial.github.io/sf/
https://github.com/r-spatial/sf
https://github.com/r-spatial/sf/issues

SystemRequirements GDAL (>=2.0.1), GEOS (>= 3.4.0), PROJ (>=4.8.0),
sqlite3

Collate 'RcppExports.R' 'init.R' 'import-standalone-s3-register.R’
‘crs.R' 'bbox.R' read.R' 'db.R' 'sfc.R' 'sfg.R' 'sf.R’
'bind.R' 'wkb.R' 'wkt.R' 'plot.R' 'geom-measures.R'
'geom-predicates.R' 'geom-transformers.R' 'transform.R’
'proj.R" 'sp.R' 'grid.R' 'arith.R' 'tidyverse.R'
'tidyverse-vctrs.R' 'cast_sfg.R' 'cast_sfc.R' 'graticule.R’

'datasets.R' 'aggregate.R' 'agr.R' 'maps.R' 'join.R' 'sample.R’
'valid.R' 'collection_extract.R' 'jitter.R' 'sgbp.R’

'spatstat.R' 'stars.R' 'crop.R' 'gdal_utils.R' 'nearest.R’
'normalize.R' 'sf-package.R' 'defunct.R' 'z_range.R'
'm_range.R' 'shift_longitude.R' 'make_grid.R' 's2.R" 'terra.R’

'geos-overlayng.R' 'break_antimeridian.R'
NeedsCompilation yes

Author Edzer Pebesma [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8049-7069>),
Roger Bivand [ctb] (ORCID: <https://orcid.org/0000-0003-2392-6140>),
Etienne Racine [ctb],
Michael Sumner [ctb],
Tan Cook [ctb],
Tim Keitt [ctb],
Robin Lovelace [ctb],
Hadley Wickham [ctb],
Jeroen Ooms [ctb] (ORCID: <https://orcid.org/0000-0002-4035-0289>),
Kirill Miiller [ctb],
Thomas Lin Pedersen [ctb],
Dan Baston [ctb],
Dewey Dunnington [ctb] (ORCID: <https://orcid.org/0000-0002-9415-4582>)

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>
Repository CRAN
Date/Publication 2026-01-13 00:50:17 UTC

Contents

dbDataType,PostgreSQLConnection,sf-method
dbWriteTable,PostgreSQLConnection,character,sf-method
db_drivers e
EXIENSION_MADP .+« v v v v v e e v e e e e e e e e e e e e e e e e
gdal_addo e
gdal_utils L e e
geoS_bInary_ops e
geos_binary_pred

Contents

https://orcid.org/0000-0001-8049-7069
https://orcid.org/0000-0003-2392-6140
https://orcid.org/0000-0002-4035-0289
https://orcid.org/0000-0002-9415-4582

Contents

3
GEOS_COMDING v v it e e e e e e e e e e e e e e e e e 19
GEOS_MEASUTES « . v v v v v e v e e e e e e e e e e e e e e e e e e 20
GEOS_QUETY . v v v v e 23
GEOS_UNATY « « v o v v v e e e e e e e e e e e e e e e e e e 24
interpolate_aw L e e e e 30
is_driver_available e 31
IS driver_can e e e, 32
iS_geometry_column e e e e e 32
merge.st . . . 33
NC . v o e e e e e e e e e e e e e 33
ODPS . o e e 34
PlOt . o e e 35
prefix_map e 42
Proj_tools e 42
rawToHex e 44
S 44
S e 45
SEC . e 47
sf_extSoftVersion 49
sfoprojecto e 49
SEDD . 50
] 51
] A 0 54
st_as_binary L. 54
SE_AsS_Grob e e e e e e 56
St_as_St . . . e e e e 56
st_as SFC e 59
SLAS_TEXE . . o o o e e e e e 61
St_bbOX . . . e e e 63
st_break_antimeridian e 65
SLLCASE « v v o e e e e 66
st_cast_sfc_default 69
st_collection_extract e e e e e e e 69
St_coordinates e, 71
SELCIOP . o v v v e e e e e e 72
SELCIS o v e e e e e e e e e e 73
St AFIVEIS o o e 76
SELGEOMELIY . . .« v v it e e e e e e e e e e e e e 77
SE_GEOMELIY_LYPE . . v v v vt e e e e e e e e e e e e e e e e e e 78
st_graticule L. L e 79
SLAS o o e, 80
st is_full e e 81
st_is_longlat e 82
SELJILEEr e e 82
SELJOIN . . o v 83
StLlayers e e e e 85
st_line_project_point e e 86

st_line_sample 87

4 aggregate.st

st_make_grid L L e e e 88
SELM_TANZE . . v v v v e 89
st_nearest_feature e e e 91
St_nearest_pPOINtS e e e e e e 92
st normalize L e e e 94
SEPIECISION v v i e e 95
stread e s 96
Strelate e, 100
st_sample e e 101
st_shift_longitude 104
st_transform L. e e e 105
SLLVIEWPOIT . . . o v v it e e e e e e e e e e e e 108
SELUWIILE . . o v o o o e e e e e e e e e e 109
SELZIM L o o e e e e e e e e e e e e e e 111
SLLZ TANZE .« o v v i e e e e e e e e e e e e e e e e e e e 112
summary.sfc L. 114
tibble e e e e 115
HAYVETSE . . . o o o o e e e e e e e e e e e e 115
transform.sf L. e 121
valid e e e e e 122
VOIS & o o ot e e e e e e e e e e e e e e e 124
Index 125
aggregate.sf aggregate an st object
Description

aggregate an sf object, possibly union-ing geometries

Usage

S3 method for class 'sf'
aggregate(

X,

by,

FUN,

do_union = TRUE,

simplify = TRUE,

join = st_intersects

aggregate.st 5

Arguments
X object of class sf
by either a list of grouping vectors with length equal to nrow(x) (see aggregate), or
an object of class sf or sfc with geometries that are used to generate groupings,
using the binary predicate specified by the argument join
FUN function passed on to aggregate, in case ids was specified and attributes need to
be grouped
arguments passed on to FUN
do_union logical; should grouped geometries be unioned using st_union? See details.
simplify logical; see aggregate
join logical spatial predicate function to use if by is a simple features object or ge-
ometry; see st_join
Details

In case do_union is FALSE, aggregate will simply combine geometries using c.sfg. When poly-
gons sharing a boundary are combined, this leads to geometries that are invalid; see https://
github.com/r-spatial/sf/issues/681.

Value

an sf object with aggregated attributes and geometries; additional grouping variables having the
names of names (ids) or are named Group.i for ids[[i]]; see aggregate.

Note

Does not work using the formula notation involving ~ defined in aggregate.

Examples

ml = cbind(c(@, 0, 1, @), c(o, 1, 1, 0))

m2 = cbind(c(o, 1, 1, @), c(9, 0, 1, 9))

pol = st_sfc(st_polygon(list(m1)), st_polygon(list(m2)))
set.seed(1985)

d = data.frame(matrix(runif(15), ncol = 3))

p = st_as_sf(x = d, coords = 1:2)

plot(pol)

plot(p, add = TRUE)

(p_agl = aggregate(p, pol, mean))

plot(p_agl) # geometry same as pol

works when x overlaps multiple objects in 'by':

p_buff = st_buffer(p, 0.2)

plot(p_buff, add = TRUE)

(p_ag2 = aggregate(p_buff, pol, mean)) # increased mean of second
with non-matching features

m3 = cbind(c(@, 0, -0.1, @), c(9, 0.1, 0.1, @))

pol = st_sfc(st_polygon(list(m3)), st_polygon(list(m1)), st_polygon(list(m2)))
(p_ag3 = aggregate(p, pol, mean))

plot(p_ag3)

https://github.com/r-spatial/sf/issues/681
https://github.com/r-spatial/sf/issues/681

6 as

In case we need to pass an argument to the join function:
(p_ag4 = aggregate(p, pol, mean,
join = function(x, y) st_is_within_distance(x, y, dist = 0.3)))

as Methods to coerce simple features to Spatial* and
SpatialxDataFrame objects

Description

as_Spatial() allows to convert sf and sfc to SpatialxDataFrame and Spatialx for sp com-
patibility. You can also use as(x, "Spatial”) To transform sp objects to sf and sfc with as(x,
”sf‘ll).

Usage
as_Spatial(from, cast = TRUE, IDs = paste@("ID", seq_along(from)))

Arguments
from object of class sf, sfc_POINT, sfc_MULTIPOINT, sfc_LINESTRING, sfc_MULTILINESTRING,
sfc_POLYGON, or sfc_MULTIPOLYGON.
cast logical; if TRUE, st_cast() from before converting, so that e.g. GEOMETRY ob-
jects with a mix of POLYGON and MULTIPOLYGON are cast to MULTIPOLYGON.
IDs character vector with IDs for the Spatialx geometries
Details

Package sp supports three dimensions for POINT and MULTIPOINT (SpatialPointx). Other geome-
tries must be two-dimensional (XY). Dimensions can be dropped using st_zm() with what = "M" or
what = "ZM".

For converting simple features (i.e., sf objects) to their Spatial counterpart, use as(obj, "Spatial”)

Value

geometry-only object deriving from Spatial, of the appropriate class

Examples

nc <- st_read(system.file("shape/nc.shp”, package="sf"))
if (require(sp, quietly = TRUE)) {

convert to SpatialPolygonsDataFrame

spdf <- as_Spatial(nc)

identical to

spdf <- as(nc, "Spatial”)

convert to SpatialPolygons

as(st_geometry(nc), "Spatial”)

back to sf

bind 7

as(spdf, "sf")
3

bind Bind rows (features) of sf objects

Description

Bind rows (features) of sf objects

Bind columns (variables) of sf objects

Usage

S3 method for class 'sf'
rbind(..., deparse.level = 1)

S3 method for class 'sf'
cbind(..., deparse.level = 1, sf_column_name = NULL)

st_bind_cols(...)

Arguments

objects to bind; note that for the rbind and cbind methods, all objects have to be
of class sf; see dotsMethods

deparse.level integer; see rbind

sf_column_name character; specifies active geometry; passed on to st_sf

Details

both rbind and cbind have non-standard method dispatch (see cbind): the rbind or cbind method
for sf objects is only called when all arguments to be binded are of class sf.

If you need to cbind e.g. a data. frame to an sf, use data.frame directly and use st_sf on its result,
or use bind_cols; see examples.

st_bind_cols is deprecated; use cbind instead.

Value

cbind called with multiple sf objects warns about multiple geometry columns present when the
geometry column to use is not specified by using argument sf_column_name; see also st_sf.

8 dbDataType,PostgreSQL Connection,sf-method

Examples

crs = st_crs(3857)
a = st_sf(a=1, geom = st_sfc(st_point(0:1)), crs = crs)
b = st_sf(a=1, geom = st_sfc(st_linestring(matrix(1:4,2))), crs = crs)
c = st_sf(a=4, geom = st_sfc(st_multilinestring(list(matrix(1:4,2)))), crs = crs)
rbind(a,b,c)
rbind(a,b)
rbind(a,b)
rbind(b,c)
cbind(a,b,c) # warns
if (require(dplyr, quietly = TRUE))
dplyr::bind_cols(a,b)
c = st_sf(a=4, geomc = st_sfc(st_multilinestring(list(matrix(1:4,2)))), crs = crs)
cbind(a,b,c, sf_column_name = "geomc")
df = data.frame(x=3)
st_sf(data.frame(c, df))
if (require(dplyr, quietly = TRUE))
dplyr::bind_cols(c, df)

dbDataType,PostgreSQLConnection, sf-method
Determine database type for R vector

Description

Determine database type for R vector

Determine database type for R vector

Usage

S4 method for signature 'PostgreSQLConnection,sf’
dbDataType(dbObj, obj)

S4 method for signature 'DBIObject,sf"
dbDataType(dbObj, obj)

Arguments

dbObj DBIObject driver or connection.

obj Object to convert

dbWriteTable,PostgreSQLConnection,character,st-method 9

dbWriteTable,PostgreSQLConnection,character, sf-method
Write st object to Database

Description

Write sf object to Database
Write sf object to Database

Usage

S4 method for signature 'PostgreSQLConnection,character,sf"
dbWriteTable(
conn,
name,
value,
row.names = FALSE,
overwrite = FALSE,
append = FALSE,
field.types = NULL,
binary = TRUE
)

S4 method for signature 'DBIObject,character,sf’
dbWriteTable(

conn,

name,

value,

row.names = FALSE,

overwrite = FALSE,

append = FALSE,

field.types = NULL,

binary = TRUE

)
Arguments
conn DBIObject
name character vector of names (table names, fields, keywords).
value a data.frame.
placeholder for future use.
row.names Add a row. name column, or a vector of length nrow(obj) containing row.names;

default FALSE

10

overwrite
append
field.types

extension_map

Will try to drop table before writing; default FALSE.
Append rows to existing table; default FALSE.

default NULL. Allows to override type conversion from R to PostgreSQL. See
dbDataType () for details.

binary Send geometries serialized as Well-Known Binary (WKB); if FALSE, uses Well-
Known Text (WKT). Defaults to TRUE (WKB).
db_drivers Drivers for which update should be TRUE by default
Description

Drivers for which update should be TRUE by default

Usage

db_drivers

Format

An object of class character of length 12.

extension_map

Map extension to driver

Description

Map extension to driver

Usage

extension_map

Format

An object of class 1ist of length 26.

gdal_addo 11

gdal_addo Add or remove overviews to/from a raster image

Description

add or remove overviews to/from a raster image

Usage

gdal_addo(
file,
overviews = c(2, 4, 8, 16),
method = "NEAREST",
layers = integer(@),
options = character(0),
config_options = character(9@),
clean = FALSE,
read_only = FALSE

)
Arguments
file character; file name
overviews integer; overview levels
method character; method to create overview; one of: nearest, average, rms, gauss, cu-
bic, cubicspline, lanczos, average_mp, average_magphase, mode
layers integer; layers to create overviews for (default: all)
options character; dataset opening options

config_options named character vector with GDAL config options, like c(optionl=valuel,
option2=value?)

clean logical; if TRUE only remove overviews, do not add
read_only logical; if TRUE, add overviews to another file with extension .ovr added to file
Value

TRUE, invisibly, on success

See Also

gdal_utils for access to other gdal utilities that have a C API

12 gdal_utils

gdal_utils Native interface to gdal utils

Description

Native interface to gdal utils

Usage

gdal_utils(

util = "info",

source,

destination,

options = character(0),

quiet = !'(util %in% c("info", "gdalinfo”, "ogrinfo", "vectorinfo”, "mdiminfo")) ||
("-multi” %in% options),

processing = character(9),

colorfilename = character(9),

config_options = character(0),

read_only = FALSE

Arguments

util character; one of info, warp, rasterize, translate, vectortranslate (for
ogr2ogr), buildvrt, demprocessing, nearblack, grid, mdiminfo and mdimtranslate
(the last two requiring GDAL 3.1), ogrinfo (requiring GDAL 3.7), footprint
(requiring GDAL 3.8)

source character; name of input layer(s); for warp, buidvrt or mdimtranslate this can
be more than one

destination character; name of output layer
options character; options for the utility
quiet logical; if TRUE, suppress printing the output for info and mdiminfo, and sup-

press printing progress
processing character; processing options for demprocessing
colorfilename character; name of color file for demprocessing (mandatory if processing="color-relief")

config_options named character vector with GDAL config options, like c(optionl=valuel,
option2=value2)

read_only logical; only for ogrinfo: if TRUE, source is opened in read-only mode

Value

info returns a character vector with the raster metadata; all other utils return (invisibly) a logical
indicating success (i.e., TRUE); in case of failure, an error is raised.

geos_binary_ops 13

See Also

gdal_addo for adding overlays to a raster file; st_layers to query geometry type(s) and crs from
layers in a (vector) data source

Examples

if (compareVersion(sf_extSoftVersion()["GDAL"], "2.1.0") == 1) {
info utils can be used to list information about a raster

dataset. More info: https://gdal.org/programs/gdalinfo.html
in_file <- system.file("tif/geomatrix.tif”, package = "sf")
gdal_utils("info”, in_file, options = c("-mm", "-proj4"))

vectortranslate utils can be used to convert simple features data between
file formats. More info: https://gdal.org/programs/ogr2ogr.html
in_file <- system.file("shape/storms_xyz.shp"”, package="sf")
out_file <- paste@(tempfile(), ".gpkg")
gdal_utils(
util = "vectortranslate”,
source = in_file,
destination = out_file, # output format must be specified for GDAL < 2.3
options = c("-f", "GPKG")

)
The parameters can be specified as c(”"name”) or c("name”, "value"). The
vectortranslate utils can perform also various operations during the
conversion process. For example, we can reproject the features during the
translation.
gdal_utils(

util = "vectortranslate”,

source = in_file,
destination = out_file,
options = c(
"-f", "GPKG", # output file format for GDAL < 2.3
"-s_srs”", "EPSG:4326", # input file SRS
"-t_srs", "EPSG:2264", # output file SRS
"-overwrite”
)
)
st_read(out_file)
The parameter s_srs had to be specified because, in this case, the in_file
has no associated SRS.
st_read(in_file)
3

geos_binary_ops Geometric operations on pairs of simple feature geometry sets

Description

Perform geometric set operations with simple feature geometry collections

14 geos_binary_ops
Usage
st_intersection(x, y, ...)

S3 method for class 'sfc'
st_intersection(x, y, ...)

S3 method for class 'sf'
st_intersection(x, y, ...)

st_difference(x, y, ...)

S3 method for class 'sfc'
st_difference(x, y, ...)

st_sym_difference(x, vy, ...)

st_snap(x, y, tolerance)

Arguments
X object of class sf, sfc or sfg
y object of class sf, sfc or sfg
arguments passed on to s2_options
tolerance tolerance values used for st_snap; numeric value or object of class units; may
have tolerance values for each feature in x
Details

When using GEOS and not using s2, a spatial index is built on argument x; see https://r-spatial.
org/r/2017/06/22/spatial-index.html. The reference for the STR tree algorithm is: Leuteneg-
ger, Scott T., Mario A. Lopez, and Jeffrey Edgington. "STR: A simple and efficient algorithm for
R-tree packing." Data Engineering, 1997. Proceedings. 13th international conference on. IEEE,
1997. For the pdf, search Google Scholar.

When called with missing y, the sfc method for st_intersection returns all non-empty intersec-
tions of the geometries of x; an attribute idx contains a list-column with the indexes of contributing
geometries.

when called with a missing y, the sf method for st_intersection returns an sf object with at-
tributes taken from the contributing feature with lowest index; two fields are added: n.overlaps
with the number of overlapping features in x, and a list-column origins with indexes of all over-
lapping features.

When st_difference is called with a single argument, overlapping areas are erased from geome-
tries that are indexed at greater numbers in the argument to x; geometries that are empty or contained
fully inside geometries with higher priority are removed entirely. The st_difference.sfc method
with a single argument returns an object with an "idx" attribute with the original index for returned
geometries.

https://r-spatial.org/r/2017/06/22/spatial-index.html
https://r-spatial.org/r/2017/06/22/spatial-index.html

geos_binary_ops 15

st_snap snaps the vertices and segments of a geometry to another geometry’s vertices. If y con-
tains more than one geometry, its geometries are merged into a collection before snapping to that
collection.

(from the GEOS docs:) "A snap distance tolerance is used to control where snapping is performed.
Snapping one geometry to another can improve robustness for overlay operations by eliminating
nearly-coincident edges (which cause problems during noding and intersection calculation). Too
much snapping can result in invalid topology being created, so the number and location of snapped
vertices is decided using heuristics to determine when it is safe to snap. This can result in some
potential snaps being omitted, however."

Value

The intersection, difference or symmetric difference between two sets of geometries. The returned
object has the same class as that of the first argument (x) with the non-empty geometries resulting
from applying the operation to all geometry pairs in x and y. In case x is of class sf, the matching
attributes of the original object(s) are added. The sfc geometry list-column returned carries an
attribute idx, which is an n-by-2 matrix with every row the index of the corresponding entries of x
and y, respectively.

Note

To find whether pairs of simple feature geometries intersect, use the function st_intersects in-
stead of st_intersection.

When using GEOS and not using s2 polygons contain their boundary. When using s2 this is deter-
mined by the model defaults of s2_options, which can be overridden via the ... argument, e.g. model
= "closed" to force DE-9IM compliant behaviour of polygons (and reproduce GEOS results).

See Also

st_union for the union of simple features collections; intersect and setdiff for the base R set opera-
tions.

Examples

set.seed(131)
library(sf)
= rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))
st_polygon(list(m))
n = 100
1 = vector("list", n)
for (i in 1:n)
1[[i]] = p + 10 * runif(2)
s = st_sfc(l)
plot(s, col = sf.colors(categorical = TRUE, alpha
title("overlapping squares”)
d = st_difference(s) # sequential differences: s1, s2-s1, s3-s2-s1,
plot(d, col = sf.colors(categorical = TRUE, alpha = .5))
title("non-overlapping differences")
i = st_intersection(s) # all intersections
plot(i, col = sf.colors(categorical = TRUE, alpha = .5))

T 3
n o1

-5))

16 geos_binary_pred

title("non-overlapping intersections”)
summary (lengths(st_overlaps(s, s))) # includes self-counts!
summary (lengths(st_overlaps(d, d)))
summary (lengths(st_overlaps(i, i)))
sf = st_sf(s)
i = st_intersection(sf) # all intersections
plot(i["n.overlaps”])
summary (i$n.overlaps - lengths(i$origins))
A helper function that erases all of y from x:
st_erase = function(x, y) st_difference(x, st_union(st_combine(y)))
poly = st_polygon(list(cbind(c(@, @, 1, 1, @), c(@, 1, 1, @, @))))
lines = st_multilinestring(list(
cbind(c(@, 1), c(1, 1.05)),
cbind(c(@, 1), c(o, -.05)),
cbind(c(1, .95, 1), c(1.05, .5, -.05))
))
snapped = st_snap(poly, lines, tolerance=.1)
plot(snapped, col='red")
plot(poly, border='green', add=TRUE)
plot(lines, lwd=2, col='blue', add=TRUE)

geos_binary_pred Geometric binary predicates on pairs of simple feature geometry sets

Description

Geometric binary predicates on pairs of simple feature geometry sets

Usage
st_intersects(x, y, sparse = TRUE, ...)
st_disjoint(x, y = x, sparse = TRUE, prepared = TRUE, ...)
st_touches(x, y, sparse = TRUE, prepared = TRUE, ...)
st_crosses(x, y, sparse = TRUE, prepared = TRUE, ...)
st_within(x, y, sparse = TRUE, prepared = TRUE, ...)
st_contains(x, y, sparse = TRUE, prepared = TRUE, ..., model = "open")
st_contains_properly(x, y, sparse = TRUE, prepared = TRUE, ...)
st_overlaps(x, y, sparse = TRUE, prepared = TRUE, ...)
st_equals(

X,

Y

geos_binary_pred

17

sparse = TRUE,
prepared = FALSE,

D

retain_unique

= FALSE,

remove_self = FALSE

)

st_covers(x, y, sparse = TRUE, prepared = TRUE, ..., model = "closed")

st_covered_by(x, y = x, sparse = TRUE, prepared = TRUE, ..., model = "closed")

st_equals_exact(x, y, par, sparse = TRUE, prepared = FALSE, ...)

st_is_within_distance(x, y = x, dist, sparse = TRUE, ..., remove_self = FALSE)

Arguments

X

y
sparse

prepared

object of class sf, sfc or sfg
object of class sf, sfc or sfg; if missing, x is used

logical; should a sparse index list be returned (TRUE) or a dense logical matrix?
See below.

Arguments passed on to s2: :s2_options

snap Use s2_snap_identity(), s2_snap_distance(), s2_snap_level(), or
s2_snap_precision() to specify how or if coordinate rounding should oc-
cur.

snap_radius As opposed to the snap function, which specifies the maximum
distance a vertex should move, the snap radius (in radians) sets the min-
imum distance between vertices of the output that don’t cause vertices to
move more than the distance specified by the snap function. This can be
used to simplify the result of a boolean operation. Use -1 to specify that
any minimum distance is acceptable.

duplicate_edges Use TRUE to keep duplicate edges (e.g., duplicate points).

edge_type One of ’directed’ (default) or *undirected’.

validate Use TRUE to validate the result from the builder.

polyline_type One of ’path’ (default) or walk’. If ’walk’, polylines that
backtrack are preserved.

polyline_sibling_pairs One of ’discard’ (default) or "keep’.

simplify_edge_chains Use TRUE to remove vertices that are within snap_radius
of the original vertex.

split_crossing_edges Use TRUE to split crossing polyline edges when creat-
ing geometries.

idempotent Use FALSE to apply snap even if snapping is not necessary to sat-
isfy vertex constraints.

dimensions A combination of ’point’, ’polyline’, and/or ’polygon’ that can
used to constrain the output of s2_rebuild() or a boolean operation.

logical; prepare geometry for x, before looping over y? See Details.

18 geos_binary_pred

"non

model character; polygon/polyline model; one of "open", "semi-open" or "closed"; see
Details.

retain_unique logical; if TRUE (and y is missing) return only indexes of points larger than the
current index; this can be used to select unique geometries, see examples. This
argument can be used for all geometry predicates; see also distinct.sf to find
records where geometries AND attributes are distinct.

remove_self logical; if TRUE (and y is missing) return only indexes of geometries different
from the current index; this can be used to omit self-intersections; see examples.
This argument can be used for all geometry predicates

par numeric; parameter used for "equals_exact" (margin);

dist distance threshold; geometry indexes with distances smaller or equal to this
value are returned; numeric value or units value having distance units.

Details

If prepared is TRUE, and x contains POINT geometries and y contains polygons, then the polygon
geometries are prepared, rather than the points.

For most predicates, a spatial index is built on argument x; see https://r-spatial.org/r/
2017/06/22/spatial-index.html. Specifically, st_intersects, st_disjoint, st_touches
st_crosses, st_within, st_contains, st_contains_properly, st_overlaps, st_equals, st_covers
and st_covered_by all build spatial indexes for more efficient geometry calculations. st_relate,
st_equals_exact, and do not; st_is_within_distance uses a spatial index for geographic coor-
dinates when sf_use_s2() is true.

If y is missing, st_predicate(x, x) is effectively called, and a square matrix is returned with
diagonal elements st_predicate(x[i], x[i]).

Sparse geometry binary predicate (sgbp) lists have the following attributes: region.id with the
row.names of x (if any, else 1:n), ncol with the number of features in y, and predicate with the
name of the predicate used.

for model, see https://github.com/r-spatial/s2/issues/32

st_contains_properly(A,B) is true if A intersects B’s interior, but not its edges or exterior; A
contains A, but A does not properly contain A.

See also st_relate and https://en.wikipedia.org/wiki/DE-9IM for a more detailed description
of the underlying algorithms.

st_equals_exact returns true for two geometries of the same type and their vertices corresponding
by index are equal up to a specified tolerance.

Value

If sparse=FALSE, st_predicate (with predicate e.g. "intersects") returns a dense logical matrix
with element i, j equal to TRUE when predicate(x[i], y[j1) (e.g., when geometry of feature
i and j intersect); if sparse=TRUE, an object of class sgbp is returned, which is a sparse list rep-
resentation of the same matrix, with list element i an integer vector with all indices j for which
predicate(x[i],y[j]) is TRUE (and hence a zero-length integer vector if none of them is TRUE).
From the dense matrix, one can find out if one or more elements intersect by apply(mat, 1, any),
and from the sparse list by lengths(1lst) > 0, see examples below.

https://r-spatial.org/r/2017/06/22/spatial-index.html
https://r-spatial.org/r/2017/06/22/spatial-index.html
https://en.wikipedia.org/wiki/DE-9IM

geos_combine 19

Note

For intersection on pairs of simple feature geometries, use the function st_intersection instead
of st_intersects.

Examples

pts = st_sfc(st_point(c(.5,.5)), st_point(c(1.5, 1.5)), st_point(c(2.5, 2.5)))
pol = st_polygon(list(rbind(c(0,0), c(2,0), c(2,2), c(0,2), c(0,0))))

(1st = st_intersects(pts, pol))

(mat = st_intersects(pts, pol, sparse = FALSE))

which points fall inside a polygon?

apply(mat, 1, any)

lengths(lst) > @

which points fall inside the first polygon?

st_intersects(pol, pts)[[1]1]

remove duplicate geometries:

pl = st_point(0:1)

p2 = st_point(2:1)

p = st_sf(a = letters[1:8], geom = st_sfc(pl, pl, p2, pl, pl, p2, p2, pl))
st_equals(p)

st_equals(p, remove_self = TRUE)

(u = st_equals(p, retain_unique = TRUE))

retain the records with unique geometries:

pL-unlist(u),]

geos_combine Combine or union feature geometries

Description

Combine several feature geometries into one, without unioning or resolving internal boundaries

Usage

st_combine(x)

st_union(x, y, ..., by_feature = FALSE, is_coverage = FALSE)
Arguments
X object of class sf, sfc or sfg
y object of class sf, sfc or sfg (optional)
e ignored
by_feature logical; if TRUE, union each feature if y is missing or else each pair of features;

if FALSE return a single feature that is the geometric union of the set of features
in x if y is missing, or else the unions of each of the elements of the Cartesian
product of both sets

is_coverage logical; if TRUE, use an optimized algorithm for features that form a polygonal
coverage (have no overlaps)

20 geos_measures

Details

st_combine combines geometries without resolving borders, using c.sfg (analogous to c for ordi-
nary vectors).

If st_union is called with a single argument, x, (with y missing) and by_feature is FALSE all ge-
ometries are unioned together and an sfg or single-geometry sfc object is returned. If by_feature
is TRUE each feature geometry is unioned individually. This can for instance be used to resolve
internal boundaries after polygons were combined using st_combine. If y is provided, all elements
of x and y are unioned, pairwise if by_feature is TRUE, or else as the Cartesian product of both
sets.

Unioning a set of overlapping polygons has the effect of merging the areas (i.e. the same effect as
iteratively unioning all individual polygons together). Unioning a set of LineStrings has the effect
of fully noding and dissolving the input linework. In this context "fully noded" means that there
will be a node or endpoint in the output for every endpoint or line segment crossing in the input.
"Dissolved" means that any duplicate (e.g. coincident) line segments or portions of line segments
will be reduced to a single line segment in the output. Unioning a set of Points has the effect of
merging all identical points (producing a set with no duplicates).

Value

st_combine returns a single, combined geometry, with no resolved boundaries; returned geometries
may well be invalid.

If y is missing, st_union(x) returns a single geometry with resolved boundaries, else the geome-
tries for all unioned pairs of x[i] and y[j].

See Also

st_intersection, st_difference, st_sym_difference

Examples

nc = st_read(system.file("shape/nc.shp”, package="sf"))
st_combine(nc)
plot(st_union(nc))

geos_measures Compute geometric measurements

Description

Compute Euclidean or great circle distance between pairs of geometries; compute, the area or the
length of a set of geometries.

geos_measures 21

Usage

st_area(x, ...)

S3 method for class 'sfc'
st_area(x, ...)

st_length(x, ...)
st_perimeter(x, ...)

st_distance(
X,

’

dist_fun,
by_element = FALSE,
which = ifelse(isTRUE(st_is_longlat(x)), "Great Circle”, "Euclidean"),

par = 0,
tolerance = 0@
)
Arguments

X object of class sf, sfc or sfg
passed on to s2_distance, s2_distance_matrix, or s2_perimeter

y object of class sf, sfc or sfg, defaults to x

dist_fun deprecated

by_element logical; if TRUE, return a vector with distance between the first elements of x and
y, the second, etc; an error is raised if x and y are not the same length. If FALSE,
return the dense matrix with all pairwise distances.

which character; for Cartesian coordinates only: one of Euclidean, Hausdorff or
Frechet; for geodetic coordinates, great circle distances are computed; see de-
tails

par for which equal to Hausdor ff or Frechet, optionally use a value between 0 and
1 to densify the geometry

tolerance ignored if st_is_longlat(x) is FALSE; otherwise, if set to a positive value, the
first distance smaller than tolerance will be returned, and true distance may be
smaller; this may speed up computation. In meters, or a units object convertible
to meters.

Details

great circle distance calculations use by default spherical distances (s2_distance or s2_distance_matrix);
if sf_use_s2() is FALSE, ellipsoidal distances are computed using st_geod_distance which uses
function geod_inverse from GeographicLib (part of PROJ); see Karney, Charles FF, 2013, Algo-
rithms for geodesics, Journal of Geodesy 87(1), 43-55

22 geos_measures

Value

If the coordinate reference system of x was set, these functions return values with unit of measure-
ment; see set_units.

st_area returns the area of each feature geometry, computed in the coordinate reference system
used. In case x has geodetic coordinates (unprojected), then if sf_use_s2() is FALSE st_geod_area
is used for area calculation, if it is TRUE then s2_area is used: the former assumes an ellipsoidal
shape, the latter a spherical shape of the Earth. In case of projected data, areas are computed in flat
space. The argument . . . can be used to specify radius to s2_area, to modify the Earth radius.

st_length returns the length of a LINESTRING or MULTILINESTRING geometry, using the coordinate
reference system. POINT, MULTIPOINT, POLYGON or MULTIPOLYGON geometries return zero.

If by_element is FALSE st_distance returns a dense numeric matrix of dimension length(x) by
length(y); otherwise it returns a numeric vector the same length as x and y with an error raised if
the lengths of x and y are unequal. Distances involving empty geometries are NA.

See Also

st_dimension, st_cast to convert geometry types

Examples
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))))
b1 = bo + 2
b2 = b0 + c(-0.2, 2)

x = st_sfc(b@, b1, b2)

st_area(x)

line = st_sfc(st_linestring(rbind(c(30,30), c(40,40))), crs = 4326)
st_length(line)

outer = matrix(c(0,90,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE)
holel matrix(c(1,1,1,2,2,2,2,1,1,1),ncol=2, byrow=TRUE)
hole2 = matrix(c(5,5,5,6,6,6,6,5,5,5),ncol=2, byrow=TRUE)

poly = st_polygon(list(outer, holel, hole2))
mpoly = st_multipolygon(list(

list(outer, holel, hole2),

list(outer + 12, holel + 12)

))

st_length(st_sfc(poly, mpoly))

st_perimeter(poly)

st_perimeter(mpoly)

p = st_sfc(st_point(c(0,0)), st_point(c(@,1)), st_point(c(9,2)))
st_distance(p, p)

st_distance(p, p, by_element = TRUE)

geos_query 23

geos_query Dimension, simplicity, validity or is_empty queries on simple feature
geometries

Description

Dimension, simplicity, validity or is_empty queries on simple feature geometries

Usage

st_dimension(x, NA_if_empty = TRUE)
st_is_simple(x)

st_is_empty(x)

Arguments

X object of class sf, sfc or sfg

NA_if_empty logical; if TRUE, return NA for empty geometries

Value

st_dimension returns a numeric vector with 0 for points, 1 for lines, 2 for surfaces, and, if NA_if_empty
is TRUE, NA for empty geometries.

st_is_simple returns a logical vector, indicating for each geometry whether it is simple (e.g., not
self-intersecting)

st_is_empty returns for each geometry whether it is empty

Examples

x = st_sfc(

st_point(0:1),

st_linestring(rbind(c(0,0),c(1,1))),
st_polygon(list(rbind(c(@,9),c(1,0),c(0,1),c(0,0)))),
st_multipoint(),

st_linestring(),

st_geometrycollection())

st_dimension(x)

st_dimension(x, FALSE)

1s = st_linestring(rbind(c(@,0), c(1,1), c(1,0), c(9,1)))
st_is_simple(st_sfc(ls, st_point(c(0,0))))

ls = st_linestring(rbind(c(@,0), c(1,1), c(1,0), c(0,1)))
st_is_empty(st_sfc(ls, st_point(), st_linestring()))

24 geos_unary

geos_unary Geometric unary operations on simple feature geometry sets

Description

Geometric unary operations on simple feature geometries. These are all generics, with methods for
sfg, sfc and sf objects, returning an object of the same class. All operations work on a per-feature
basis, ignoring all other features.

Usage

st_buffer(
X,
dist,
nQuadSegs = 30,
endCapStyle = "ROUND",
joinStyle = "ROUND",
mitreLimit = 1,
singleSide = FALSE,

)
st_boundary(x)
st_convex_hull(x)
st_concave_hull(x, ratio, ..., allow_holes)
st_simplify(x, preserveTopology, dTolerance = 0)
st_triangulate(x, dTolerance = @, bOnlyEdges = FALSE)
st_triangulate_constrained(x)
st_inscribed_circle(x, dTolerance, ...)
st_minimum_rotated_rectangle(x, ...)
st_minimum_bounding_circle(x, ...)
st_voronoi(

X,

envelope,

dTolerance = 0,

bOnlyEdges = FALSE,
point_order = FALSE

geos_unary

25

st_polygonize(x)

st_line_merge(x, ..., directed = FALSE)

st_centroid(x,

., of_largest_polygon = FALSE)

st_point_on_surface(x)

st_reverse(x)

st_node(x)

st_segmentize(x, dfMaxLength, ...)

st_exterior_ring(x, ...)

Arguments

X object of class sfg, sfc or sf

dist numeric or object of class units; buffer distance(s) for all, or for each of the
elements in x. In case x has geodetic coordinates (lon/lat) and sf_use_s2()
is TRUE, a numeric dist is taken as distance in meters and a units object in
dist is converted to meters. In case x has geodetic coordinates (lon/lat) and
sf_use_s2() is FALSE, a numeric dist is taken as degrees, and a units object
in dist is converted to arc_degree (and warnings are issued). In case x does
not have geodetic coordinates (projected) then numeric dist is assumed to have
the units of the coordinates, and a units dist is converted to those if st_crs(x)
is not NA.

nQuadSegs integer; number of segments per quadrant (fourth of a circle), for all or per-
feature; see details

endCapStyle character; style of line ends, one of ’'ROUND’, "FLAT’, ’'SQUARE’; see details

joinStyle character; style of line joins, one of 'ROUND’, "MITRE’, " BEVEL’; see details

mitreLimit numeric; limit of extension for a join if joinStyle "MITRE’ is used (default
1.0, minimum 0.0); see details

singleSide logical; if TRUE, single-sided buffers are returned for linear geometries, in which
case negative dist values give buffers on the right-hand side, positive on the
left; see details
in st_buffer passed on to s2::s2_buffer_cells(), otherwise ignored

ratio numeric; fraction convex: 1 returns the convex hulls, 0 maximally concave hulls

allow_holes

logical; if TRUE, the resulting concave hull may have holes

preserveTopology

logical; carry out topology preserving simplification? May be specified for each,
or for all feature geometries. Note that topology is preserved only for single fea-
ture geometries, not for sets of them. If not specified (i.e. the default), then

26

geos_unary

it is internally set equal to FALSE when the input data is specified with pro-
jected coordinates or sf_use_s2() returns FALSE. Ignored in all the other cases
(with a warning when set equal to FALSE) since the function implicitly calls
s2::s2_simplify which always preserve topological relationships (per single
feature).

dTolerance numeric; tolerance parameter, specified for all or for each feature geometry. If
you run st_simplify, the input data is specified with long-lat coordinates and
sf_use_s2() returns TRUE, then the value of dTolerance must be specified in

meters.
bOnlyEdges logical; if TRUE, return lines, else return polygons
envelope object of class sfc or sfg containing a POLYGON with the envelope for a voronoi

diagram; this only takes effect when it is larger than the default envelope, chosen
when envelope is an empty polygon

point_order logical; preserve point order if TRUE and GEOS version >= 3.12; overrides
bOnlyEdges
directed logical; if TRUE, lines with opposite directions will not be merged

of _largest_polygon
logical; for st_centroid: if TRUE, return centroid of the largest (sub)polygon
of a MULTIPOLYGON rather than of the whole MULTIPOLYGON

dfMaxLength maximum length of a line segment. If x has geographical coordinates (long/lat),
dfMaxLength is either a numeric expressed in meter, or an object of class units
with length units rad or degree; segmentation in the long/lat case takes place
along the great circle, using st_geod_segmentize.

Details

st_buffer computes a buffer around this geometry/each geometry. Depending on the spatial co-
ordinate system, a different engine (GEOS or S2) can be used, which have different function ar-
guments. The nQuadSegs, endCapsStyle, joinStyle, mitreLimit and singleSide parameters
only work if the GEOS engine is used (i.e. projected coordinates or when sf_use_s2() is set to
FALSE). See postgis.net/docs/ST_Buffer.html for details. The max_cells and min_level param-
eters (s2::s2_buffer_cells()) work with the S2 engine (i.e. geographic coordinates) and can
be used to change the buffer shape (e.g. smoothing). The S2 engine returns a polygon around a
number of S2 cells that contain the buffer, and hence will always have an area larger than the true
buffer, depending on max_cells, and will be non-smooth when sufficiently zoomed in. The GEOS
engine will return line segments between points on the circle, and so will always be smaller than
the true buffer, and be smooth, depending on the number of segments nQuadSegs. A negative dist
value for geodetic coordinates using S2 does not give a proper (geodetic) buffer.

st_boundary returns the boundary of a geometry
st_convex_hull creates the convex hull of a set of points
st_concave_hull creates the concave hull of a geometry
st_simplify simplifies lines by removing vertices.

st_triangulate triangulates set of points (not constrained). st_triangulate requires GEOS
version 3.4 or above

https://postgis.net/docs/ST_Buffer.html

geos_unary 27

st_triangulate_constrained returns the constrained delaunay triangulation of polygons; re-
quires GEOS version 3.10 or above

st_inscribed_circle returns the maximum inscribed circle for polygon geometries. For st_inscribed_circle,
if nQuadSegs is 0 a 2-point LINESTRING is returned with the center point and a boundary point of
every circle, otherwise a circle (buffer) is returned where nQuadSegs controls the number of points
per quadrant to approximate the circle. st_inscribed_circle requires GEOS version 3.9 or above

st_minimum_rotated_rectangle returns the minimum rotated rectangular POLY GON which en-
closes the input geometry. The rectangle has width equal to the minimum diameter, and a longer
length. If the convex hill of the input is degenerate (a line or point) a linestring or point is returned.

st_minimum_bounding_circle returns a geometry which represents the "minimum bounding cir-
cle", the smallest circle that contains the input.

st_voronoi creates voronoi tessellation. st_voronoi requires GEOS version 3.5 or above

st_polygonize creates a polygon from lines that form a closed ring. In case of st_polygonize,
x must be an object of class LINESTRING or MULTILINESTRING, or an sfc geometry list-column
object containing these

st_line_merge merges lines. In case of st_line_merge, x must be an object of class MULTILINESTRING,
or an sfc geometry list-column object containing these

st_centroid gives the centroid of a geometry
st_point_on_surface returns a point guaranteed to be on the (multi)surface.
st_reverse reverses the nodes in a line

st_node adds nodes to linear geometries at intersections without a node, and only works on indi-
vidual linear geometries

st_segmentize adds points to straight lines

st_exterior_ring returns the exterior rings of polygons, removing all holes.

Value

an object of the same class of x, with manipulated geometry.

See Also

chull for a more efficient algorithm for calculating the convex hull

Examples

st_buffer, style options (taken from rgeos gBuffer)

11 = st_as_sfc("LINESTRING(® 0,1 5,4 5,5 2,8 2,9 4,4 6.5)")

op = par(mfrow=c(2,3))

plot(st_buffer(1l1, dist = 1, endCapStyle="ROUND"), reset = FALSE, main = "endCapStyle: ROUND")
plot(1l1,col="blue',add=TRUE)

plot(st_buffer(l1, dist =1, endCapStyle="FLAT"), reset = FALSE, main = "endCapStyle: FLAT")
plot(11,col="blue',add=TRUE)

plot(st_buffer(1l1, dist = 1, endCapStyle="SQUARE"), reset = FALSE, main = "endCapStyle: SQUARE")
plot(11,col="blue',add=TRUE)

plot(st_buffer(1l1, dist = 1, nQuadSegs=1), reset = FALSE, main = "nQuadSegs: 1")
plot(1l1,col="blue',add=TRUE)

28

geos_unary

plot(st_buffer(l1, dist = 1, nQuadSegs=2), reset = FALSE, main = "nQuadSegs: 2")
plot(11,col="blue',add=TRUE)

plot(st_buffer(1l1, dist = 1, nQuadSegs= 5), reset = FALSE, main = "nQuadSegs: 5")
plot(11,col="blue',add=TRUE)

par(op)

12 = st_as_sfc("LINESTRING(@ 0,1 5,3 2)")
op = par(mfrow = c(2, 3))
plot(st_buffer(1l2, dist = 1, joinStyle="ROUND"), reset = FALSE, main = "joinStyle: ROUND")
plot(12, col = 'blue', add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="MITRE"), reset = FALSE, main = "joinStyle: MITRE")
plot(1l2, col= 'blue', add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="BEVEL"), reset = FALSE, main = "joinStyle: BEVEL")
plot(1l2, col= 'blue', add=TRUE)
plot(st_buffer(1l2, dist = 1, joinStyle="MITRE"” , mitreLimit=0.5), reset = FALSE,

main = "mitreLimit: 0.5")
plot(l2, col = 'blue', add = TRUE)
plot(st_buffer(1l2, dist = 1, joinStyle="MITRE",mitreLimit=1), reset = FALSE,

main = "mitreLimit: 1")
plot(l2, col = 'blue', add = TRUE)
plot(st_buffer(1l2, dist = 1, joinStyle="MITRE",mitreLimit=3), reset = FALSE,

main = "mitreLimit: 3")
plot(l2, col = 'blue', add
par(op)

TRUE)

compare approximation errors depending on S2 or GEOS backend:

geographic coordinates, uses S2:

x = st_buffer(st_as_sf(data.frame(lon=0,1at=0), coords=c("lon”,"lat"),crs='0GC:CRS84"'),
units::as_units(1,"km"))

y = units::set_units(st_area(x), "km*2")

error: postive, default maxcells = 1000

(units::drop_units(y)-pi)/pi

x = st_buffer(st_as_sf(data.frame(lon=0,lat=0), coords=c("lon"”,"lat"),crs='0GC:CRS84"'),
units::as_units(1,"km"), max_cells=1e5)

y = units::set_units(st_area(x), "km*2")

error: positive but smaller:

(units::drop_units(y)-pi)/pi

no CRS set: assumes Cartesian (projected) coordinates

x = st_buffer(st_as_sf(data.frame(lon=0,1at=0), coords=c("lon”,"lat")), 1)

y = st_area(x)

error: negative, nQuadSegs default at 30

((y)-pi)/pi

x = st_buffer(st_as_sf(data.frame(lon=0,lat=0), coords=c(”lon","lat")), 1, nQuadSegs = 100)
y = st_area(x)

error: negative but smaller:

((y)-pi)/pi

nc = st_read(system.file("shape/nc.shp”, package="sf"))

nc_g = st_geometry(nc)

plot(st_convex_hull(nc_g))

plot(nc_g, border = grey(.5), add = TRUE)

pt = st_combine(st_sfc(st_point(c(0,80)), st_point(c(120,80)), st_point(c(240,80))))

geos_unary

st_convex_hull(pt) # R2

st_convex_hull(st_set_crs(pt, 'OGC:CRS84')) # S2
set.seed(131)

if (compareVersion(sf_extSoftVersion()[["GEOS"]1], "3.11.0") > -1) {
pts = cbind(runif(100), runif(100))

m = st_multipoint(pts)

co = sf:::st_concave_hull(m, 0.3)

coh = sf:::st_concave_hull(m, 0.3, allow_holes = TRUE)
plot(co, col = 'grey')

plot(coh, add = TRUE, border = 'red')

plot(m, add = TRUE)

3

st_simplify examples:

op = par(mfrow = c(2, 3), mar
plot(nc_g[1])
plot(st_simplify(nc_g[1], dTolerance = 1e3)) # 1000m
plot(st_simplify(nc_g[1], dTolerance = 5e3)) # 5000m

nc_g_planar = st_transform(nc_g, 2264) # planar coordinates, US foot
plot(nc_g_planar[1])

plot(st_simplify(nc_g_planar[1], dTolerance = 1e3)) # 1000 foot
plot(st_simplify(nc_g_planar[1], dTolerance = 5e3)) # 5000 foot
par(op)

rep(0, 4))

if (compareVersion(sf_extSoftVersion()[["GE0S"]1], "3.10.0") > -1) {
pts = rbind(c(0,0), c(1,0), c(1,1), c(.5,.5), c(0,1), c(0,0))
po = st_polygon(list(pts))
co = st_triangulate_constrained(po)
tr = st_triangulate(po)
plot(po, col = NA, border = 'grey', lwd = 15)
plot(tr, border = 'green', col = NA, lwd = 5, add = TRUE)
plot(co, border = 'red', col = 'NA', add = TRUE)
3
if (compareVersion(sf_extSoftVersion()[["GE0S"]1], "3.9.0") > -1) {
nc_t = st_transform(nc, 'EPSG:2264')
x = st_inscribed_circle(st_geometry(nc_t))
plot(st_geometry(nc_t), asp = 1, col = grey(.9))
plot(x, add = TRUE, col = '#ff9999")
3
set.seed(1)
x = st_multipoint(matrix(runif(10),,2))
box = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(9,0))))
if (compareVersion(sf_extSoftVersion()[["GE0S"]1], "3.5.0") > -1) {
v = st_sfc(st_voronoi(x, st_sfc(box)))
plot(v, col = @, border = 1, axes = TRUE)

plot(box, add = TRUE, co @, border = 1) # a larger box is returned, as documented
plot(x, add = TRUE, col = 'red', cex=2, pch=16)

plot(st_intersection(st_cast(v), box)) # clip to smaller box

plot(x, add = TRUE, col = 'red', cex=2, pch=16)

matching Voronoi polygons to data points:

https://github.com/r-spatial/sf/issues/1030

generate 50 random unif points:

n =100

30 interpolate_aw

pts = st_as_sf(data.frame(matrix(runif(n), , 2), id = 1:(n/2)), coords = c("X1", "X2"))
compute Voronoi polygons:
pols = st_collection_extract(st_voronoi(do.call(c, st_geometry(pts))))
match them to points:
pts_pol = st_intersects(pts, pols)
pts$pols = pols[unlist(pts_pol)] # re-order
if (isTRUE(try(compareVersion(sf_extSoftVersion()["GEOS"], "3.12.0") > -1,
silent = TRUE))) {
pols_po = st_collection_extract(st_voronoi(do.call(c, st_geometry(pts)),
point_order = TRUE)) # GEOS >= 3.12 can preserve order of inputs
pts_pol_po = st_intersects(pts, pols_po)
print(all(unlist(pts_pol_po) == 1:(n/2)))
}
plot(pts[”id"], pch = 16) # ID is color
plot(st_set_geometry(pts, "pols”)["id"], xlim = c(@,1), ylim = c(@,1), reset = FALSE)
plot(st_geometry(pts), add = TRUE)
layout(matrix(1)) # reset plot layout
3
mls = st_multilinestring(list(matrix(c(9,0,0,1,1,1,0,0),,2,byrow=TRUE)))
st_polygonize(st_sfc(mls))
mls = st_multilinestring(list(rbind(c(0,0), c(1,1)), rbind(c(2,0), c(1,1))))
st_line_merge(st_sfc(mls))
plot(nc_g, axes = TRUE)
plot(st_centroid(nc_g), add = TRUE, pch = 3, col = 'red")
mp = st_combine(st_buffer(st_sfc(lapply(1:3, function(x) st_point(c(x,x)))), 0.2 *x 1:3))
plot(mp)
plot(st_centroid(mp), add = TRUE, col = 'red') # centroid of combined geometry
plot(st_centroid(mp, of_largest_polygon = TRUE), add = TRUE, col = 'blue', pch = 3)
plot(nc_g, axes = TRUE)
plot(st_point_on_surface(nc_g), add = TRUE, pch = 3, col = 'red')
if (compareVersion(sf_extSoftVersion()[["GE0S"1], "3.7.0") > -1) {
st_reverse(st_linestring(rbind(c(1,1), c(2,2), c(3,3))))
3
(1 = st_linestring(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0))))
st_polygonize(st_node(l))
st_node(st_multilinestring(list(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0)))))
sf = st_sf(a=1, geom=st_sfc(st_linestring(rbind(c(@,0),c(1,1)))), crs = 4326)
if (require(lwgeom, quietly = TRUE)) {
seg = st_segmentize(sf, units::set_units(100, km))
seg = st_segmentize(sf, units::set_units(0.01, rad))
nrow(seg$geom[[1]1])
3

interpolate_aw Areal-weighted interpolation of polygon data

Description

Areal-weighted interpolation of polygon data

is_driver_available 31

Usage

st_interpolate_aw(x, to, extensive, ...)

S3 method for class 'sf'

st_interpolate_aw(x, to, extensive, ..., keep_NA = FALSE, na.rm = FALSE)
Arguments

X object of class sf, for which we want to aggregate attributes

to object of class sf or sfc, with the target geometries

extensive logical; if TRUE, the attribute variables are assumed to be spatially extensive

(like population) and the sum is preserved, otherwise, spatially intensive (like
population density) and the mean is preserved.

ignored
keep_NA logical; if TRUE, return all features in to, if FALSE return only those with non-NA
values (but with row.names the index corresponding to the feature in to)
na.rm logical; if TRUE remove features with NA attributes from x before interpolating
Details

if extensive is TRUE and na. rmis set to TRUE, geometries with NA are effectively treated as having
zero attribute values.

Examples

nc = st_read(system.file("shape/nc.shp”, package="sf"))

g = st_make_grid(nc, n = c(10, 5))

al = st_interpolate_aw(nc["BIR74"], g, extensive = FALSE)

sum(al1$BIR74) / sum(nc$BIR74) # not close to one: property is assumed spatially intensive
a2 = st_interpolate_aw(nc["BIR74"], g, extensive = TRUE)

verify mass preservation (pycnophylactic) property:

sum(a2$BIR74) / sum(nc$BIR74)

al$intensive = al1$BIR74

al$extensive = a2$BIR74

plot(allc("intensive”, "extensive")], key.pos = 4)

is_driver_available Check if driver is available

Description

Search through the driver table if driver is listed

Usage

is_driver_available(drv, drivers = st_drivers())

32 is_geometry_column

Arguments
drv character. Name of driver
drivers data.frame. Table containing driver names and support. Default is from st_drivers
is_driver_can Check if a driver can perform an action
Description

Search through the driver table to match a driver name with an action (e.g. "write") and check if
the action is supported.

Usage
is_driver_can(drv, drivers = st_drivers(), operation = "write")
Arguments
drv character. Name of driver
drivers data.frame. Table containing driver names and support. Default is from st_drivers
operation character. What action to check
is_geometry_column Check if the columns could be of a coercable type for sf
Description

Check if the columns could be of a coercable type for sf

Usage

is_geometry_column(con, x, classes = "")
Arguments

con database connection

X inherits data.frame

classes classes inherited

merge.sf 33

merge.sf merge method for sf and data.frame object

Description

merge method for sf and data.frame object

Usage
S3 method for class 'sf'
merge(x, y, ...)

Arguments

object of class sf
y object of class data. frame
arguments passed on to merge.data. frame

Examples

a = data.frame(a = 1:3, b = 5:7)

st_geometry(a) = st_sfc(st_point(c(0,0)), st_point(c(1,1)), st_point(c(2,2)))
b = data.frame(x = c("a", "b", "c"), b = c(2,5,6))

merge(a, b)

merge(a, b, all = TRUE)

nc North Carolina SIDS data

Description

Sudden Infant Death Syndrome (SIDS) sample data for North Carolina counties, two time periods
(1974-78 and 1979-84). The details of the columns can be found in a spdep package vignette.
Please note that, though this is basically the same as nc.sids dataset in spData package, nc only
contains a subset of variables. The differences are also discussed on the vignette.

Format

A sf object

See Also
https://r-spatial.github.io/spdep/articles/sids.html

Examples

nc <- st_read(system.file("shape/nc.shp”, package="sf"))

https://r-spatial.github.io/spdep/articles/sids.html
https://r-spatial.github.io/spdep/articles/sids.html

34 Ops

Ops Arithmetic operators for simple feature geometries

Description

Arithmetic operators for simple feature geometries

Usage

S3 method for class 'sfg'
Ops(el, e2)

S3 method for class 'sfc'

Ops(el, e2)
Arguments
el object of class sfg or sfc
e2 numeric, or object of class sfg; in case e1 is of class sfc also an object of class
sfc is allowed
Details

in case e2 is numeric, +, -, ¥, /, %% and %/% add, subtract, multiply, divide, modulo, or integer-
divide by e2. In case e2 is an n X n matrix, * matrix-multiplies and / multiplies by its inverse. If e2 is
an sfg object, |, /, & and %/% result in the geometric union, difference, intersection and symmetric
difference respectively, and == and ! = return geometric (in)equality, using st_equals. If e2 is an sfg
or sfc object, for operations + and - it has to have POINT geometries.

If el is of class sfc, and e2 is a length 2 numeric, then it is considered a two-dimensional point
(and if needed repeated as such) only for operations + and -, in other cases the individual numbers
are repeated; see commented examples.

It has been reported (https://github.com/r-spatial/sf/issues/2067) that certain ATLAS versions result
in invalid polygons, where the final point in a ring is no longer equal to the first point. In that case,
setting the precisions with st_set_precision may help.

Value

object of class sfg

Examples

st_point(c(1,2,3)) + 4
st_point(c(1,2,3)) * 3 + 4

m = matrix(0Q, 2, 2)

diag(m) = c(1, 3)

affine:

st_point(c(1,2)) * m + c(2,5)

plot 35

world in 0-360 range:

if (require(maps, quietly = TRUE)) {

w = st_as_sf(map('world', plot = FALSE, fill = TRUE))

w2 = (st_geometry(w) + c(360,90)) %% c(360) - c(0,90)

w3 = st_wrap_dateline(st_set_crs(w2 - c(180,0), 4326)) + c(180,0)

plot(st_set_crs(w3, 4326), axes = TRUE)

}

(mp <- st_point(c(1,2)) + st_point(c(3,4))) # MULTIPOINT (1 2, 3 4)

mp - st_point(c(3,4)) # POINT (1 2)

opar = par(mfrow = c(2,2), mar = c(@, @, 1, 0))

a = st_buffer(st_point(c(0,0)), 2)

b =a+ c(2, 0)

p = function(m) { plot(c(a,b)); plot(eval(parse(text=m)), col=grey(.9), add = TRUE); title(m) }
o = lapply(c('a | b', 'a/ b', 'a&b', 'a%/%b"), p)

par(opar)

sfc = st_sfc(st_point(@:1), st_point(2:3))

sfc + ¢(2,3) # added to EACH geometry

sfc * c(2,3) # first geometry multiplied by 2, second by 3

nc = st_transform(st_read(system.file("gpkg/nc.gpkg", package="sf")), 32119) # nc state plane, m
b = st_buffer(st_centroid(st_union(nc)), units::set_units(50, km)) # shoot a hole in nc:
plot(st_geometry(nc) / b, col = grey(.9))

plot plot sf object

Description

plot one or more attributes of an sf object on a map Plot sf object

Usage
S3 method for class 'sf'
plot(
X,
Y,
main,
pal = NULL,
nbreaks = 10,

breaks = "pretty"”,

max.plot = getOption(”"sf_max.plot”, default = 9),
key.pos = get_key_pos(x, ...),

key.length = 0.618,

key.width = kw_dflt(x, key.pos),

reset = TRUE,

logz = FALSE,

extent = x,

xlim = st_bbox(extent)[c(1, 3)1,

ylim = st_bbox(extent)[c(2, 4)],

36

compact = FALSE
)

get_key_pos(x, ...)

S3 method for class 'sfc_POINT'
plot(

Y,

add = FALSE
)

S3 method for class 'sfc_MULTIPOINT'
plot(
X!
Y,
pch =
cex =
col
bg = 0,
lwd =1,
1ty
type = "p”,
add = FALSE
)

o n
—_ a a

1
-

S3 method for class 'sfc_LINESTRING'
plot(x, vy, ..., 1ty =1, lwd =1, col = 1, pch

1, type = "1", add

S3 method for class 'sfc_CIRCULARSTRING'
plot(x, y, ...)

S3 method for class 'sfc_MULTILINESTRING'
plot(x, y, ..., 1ty =1, lwd =1, col = 1, pch

1, type = "1", add

S3 method for class 'sfc_POLYGON'
plot(

X)

Y,

FALSE)

FALSE)

plot

plot

L

1ty =1,

lwd = 1,

col = NA,

cex =1,

pch = NA,

border = 1,

add = FALSE,

rule = "evenodd”,

xpd = par("xpd")
)
S3 method for class 'sfc_MULTIPOLYGON'
plot(

X,

Y,

1ty =1,

lwd = 1,

col = NA,

border = 1,

add = FALSE,

rule = "evenodd”,

xpd = par("xpd")
)
S3 method for class 'sfc_GEOMETRYCOLLECTION'
plot(

X,

Y,

pch = 1,

cex =1,

bg = o,

1ty =1,

lwd =1,

col =1,

border = 1,

add = FALSE
)
S3 method for class 'sfc_GEOMETRY'
plot(

X,

Y,

pch = 1,

cex

1]
—

37

38 plot

bg = 0,

1ty = 1,

lwd =1,

col = ifelse(st_dimension(x) == 2, NA, 1),
border = 1,

add = FALSE

)

S3 method for class 'sfg'
plot(x, ...)

plot_sf(
X,
xlim = NULL,
ylim = NULL,
asp = NA,
axes = FALSE,
bgc = par("bg"),

L

Xaxs,
yaxs,

lab,

setParUsrBB = FALSE,
bgMap = NULL,

expandBB = c(@0, 0, 0, 0),
graticule = NA_crs_,

col_graticule = "grey"”,
border,
extent = x

)
sf.colors(n = 10, cutoff.tails = c(0.35, 0.2), alpha = 1, categorical = FALSE)

S3 method for class 'sf'
text(x, labels = row.names(x), ...)

S3 method for class 'sfc'
text(x, labels = seq_along(x), ..., of_largest_polygon = FALSE)

S3 method for class 'sf'
points(x, ...)

S3 method for class 'sfc'
points(x, ..., of_largest_polygon = FALSE)
Arguments

X object of class sf

main

pal

nbreaks

breaks

max.plot

key.pos

key.length
key.width

reset

logz

extent
x1lim
ylim
compact
pch

cex

col

bg
lwd
1ty
type
add

39

ignored
further specifications, see plot_sf and plot and details.
title for plot (NULL to remove)

palette function, similar to rainbow, or palette values; if omitted, sf.colors is
used

number of colors breaks (ignored for factor or character variables)

either a numeric vector with the actual breaks, or a name of a method accepted
by the style argument of classIntervals

integer; lower boundary to maximum number of attributes to plot; the default
value (9) can be overridden by setting the global option sf_max.plot, e.g.
options(sf_max.plot=2)

numeric; side to plot a color key: 1 bottom, 2 left, 3 top, 4 right; set to NULL to
omit key completely, O to only not plot the key, or -1 to select automatically. If
multiple columns are plotted in a single function call by default no key is plotted
and every submap is stretched individually; if a key is requested (and col is
missing) all maps are colored according to a single key. Auto select depends on
plot size, map aspect, and, if set, parameter asp. If it has lenght 2, the second
value, ranging from O to 1, determines where the key is placed in the available
space (default: 0.5, center).

amount of space reserved for the key along its axis, length of the scale bar

amount of space reserved for the key (incl. labels), thickness/width of the scale
bar

logical; if FALSE, keep the plot in a mode that allows adding further map ele-
ments; if TRUE restore original mode after plotting sf objects with attributes; see
details.

logical; if TRUE, use log10-scale for the attribute variable. In that case, breaks
and at need to be given as logl0-values; see examples.

object with an st_bbox method to define plot extent; defaults to x
see plot.window

see plot.window

logical; compact sub-plots over plotting space?

plotting symbol

symbol size

color for plotting features; if length(col) does not equal 1 or nrow(x), a warn-
ing is emitted that colors will be recycled. Specifying col suppresses plotting
the legend key.

symbol background color

line width

line type

plot type: ’p’ for points, ’1’ for lines, ’b’ for both

logical; add to current plot? Note that when using add=TRUE, you may have to
set reset=FALSE in the first plot command.

40

plot

border color of polygon border(s); using NA hides them

rule see polypath; for winding, exterior ring direction should be opposite that of the
holes; with evenodd, plotting is robust against misspecified ring directions

xpd see par; sets polygon clipping strategy; only implemented for POLYGON and
MULTIPOLYGON

asp see below, and see par

axes logical; should axes be plotted? (default FALSE)

bgc background color

Xaxs see par

yaxs see par

lab see par

setParUsrBB default FALSE; set the par “usr” bounding box; see below
bgMap object of class ggmap, or returned by function RgoogleMaps: : GetMap

expandBB numeric; fractional values to expand the bounding box with, in each direction
(bottom, left, top, right)

graticule logical, or object of class crs (e.g., st_crs('0GC:CRS84 ") for a WGS84 gratic-
ule), or object created by st_graticule or object returned by st_graticule

col_graticule color to used for the graticule (if present)
n integer; number of colors

cutoff.tails numeric, in [0, 0.5] start and end values

alpha numeric, in [0, 1], transparency
categorical logical; do we want colors for a categorical variable? (see details)
labels character, text to draw (one per row of input)

of_largest_polygon
logical, passed on to st_centroid

Details

plot.sf maximally plots max.plot maps with colors following from attribute columns, one map
per attribute. It uses sf.colors for default colors. For more control over placement of individual
maps, set parameter mfrow with par prior to plotting, and plot single maps one by one; note that this
only works in combination with setting parameters key.pos=NULL (no legend) and reset=FALSE.

plot.sfc plots the geometry, additional parameters can be passed on to control color, lines or
symbols.

When setting reset to FALSE, the original device parameters are lost, and the device must be reset
using dev.off () in order to reset it.

parameter at can be set to specify where labels are placed along the key; see examples.
parameter mar can be set in . . . to override default margins.

The features are plotted in the order as they apppear in the sf object. See examples for when a
different plotting order is wanted.

plot 41

plot_sf sets up the plotting area, axes, graticule, or webmap background; it is called by all plot
methods before anything is drawn.

The argument setParUsrBB may be used to pass the logical value TRUE to functions within plot. Spatial.
When set to TRUE, par(“usr”) will be overwritten with c(x1im, ylim), which defaults to the bound-

ing box of the spatial object. This is only needed in the particular context of graphic output to

a specified device with given width and height, to be matched to the spatial object, when using
par(“xaxs”) and par(“yaxs”) in addition to par(mar=c(0,0,0,0)).

The default aspect for map plots is 1; if however data are not projected (coordinates are long/lat),
the aspect is by default set to 1/cos(My * pi/180) with My the y coordinate of the middle of the map
(the mean of ylim, which defaults to the y range of bounding box). This implies an Equirectangular
projection.

non-categorical colors from sf.colors were taken from bpy.colors, with modified cutoff.tails
defaults If categorical is TRUE, default colors are from https://colorbrewer2.org/ (if n < 9,
Set2, else Set3).

text.sf adds text to an existing base graphic. Text is placed at the centroid of each feature in
x. Provide POINT features for further control of placement. points.sf adds point symbols to an
existing base graphic. If points of text are not shown correctly, try setting argument reset to FALSE
in the plot () call.

Examples

nc = st_read(system.file("gpkg/nc.gpkg", package="sf"), quiet = TRUE)

plot single attribute, auto-legend:

plot(nc["SID74"])

plot multiple:

plot(nc[c("SID74", "SID79")1]) # better use ggplot2::geom_sf to facet and get a single legend!
adding to a plot of an sf object only works when using reset=FALSE in the first plot:
plot(nc["SID74"], reset = FALSE)

plot(st_centroid(st_geometry(nc)), add = TRUE)

logl@ z-scale:

plot(nc["SID74"], logz = TRUE, breaks = c¢(9,.5,1,1.5,2), at = ¢(9,.5,1,1.5,2))

and we need to reset the plotting device after that, e.g. by

layout (1)

when plotting only geometries, the reset=FALSE is not needed:

plot(st_geometry(nc))

plot(st_geometry(nc)[1], col = 'red', add = TRUE)

add a custom legend to an arbitray plot:

layout(matrix(1:2, ncol = 2), widths = c(1, 1lcm(2)))

plot(1)

.image_scale(1:10, col = sf.colors(9), key.length = 1cm(8), key.pos = 4, at = 1:10)

manipulate plotting order, plot largest polygons first:

p = st_polygon(list(rbind(c(@,0), c(1,0), c(1,1), c(0,1), c(0,0))))

x = st_sf(a=1:4, st_sfc(p, p*2, p*x 3, p*4)) #plot(x, col=2:5) only shows the largest polygon!
plot(x[order(st_area(x), decreasing = TRUE),], col = 2:5) # plot largest polygons first

sf.colors(10)
text(nc, labels = substring(nc$NAME,1,1))

https://en.wikipedia.org/wiki/Equirectangular_projection
https://en.wikipedia.org/wiki/Equirectangular_projection
https://colorbrewer2.org/

42

proj_tools

prefix_map Map prefix to driver

Description

Map prefix to driver

Usage

prefix_map

Format

An object of class 1ist of length 10.

proj_tools Manage PROJ settings

Description

Query or manage PROJ search path and network settings

Usage

sf_proj_search_paths(paths = character(@), with_proj = NA)

sf_proj_network(enable = FALSE, url = character(@))

sf_proj_pipelines(
source_crs,
target_crs,
authority = character(0),
AOI = numeric(9@),
Use = "NONE",
grid_availability = "USED",
desired_accuracy = -1,
strict_containment = FALSE,
axis_order_authority_compliant = st_axis_order()

proj_tools 43

Arguments
paths the search path to be set; omit if paths need to be queried
with_proj logical; if NA set for both GDAL and PROJ, otherwise set either for PROJ (TRUE)
or GDAL (FALSE)
enable logical; set this to enable (TRUE) or disable (FALSE) the proj network search
facility
url character; use this to specify and override the default proj network CDN

source_crs, target_crs
object of class crs or character

authority character; constrain output pipelines to those of authority

AOI length four numeric; desired area of interest for the resulting coordinate trans-
formations (west, south, east, north, in degrees). For an area of interest crossing
the anti-meridian, west will be greater than east.

Use one of "NONE", "BOTH", "INTERSECTION", "SMALLEST", indicating how
AOQOT’s of source_crs and target_crs are being used

grid_availability
character; one of "USED" (Grid availability is only used for sorting results. Op-
erations where some grids are missing will be sorted last), "DISCARD" (Com-
pletely discard an operation if a required grid is missing) , "IGNORED" (Ignore
grid availability at all. Results will be presented as if all grids were available.),
or "AVAILABLE" (Results will be presented as if grids known to PROJ (that
is registered in the grid_alternatives table of its database) were available. Used
typically when networking is enabled.)

desired_accuracy
numeric; only return pipelines with at least this accuracy

strict_containment
logical; default FALSE; permit partial matching of the area of interest; if TRUE
strictly contain the area of interest. The area of interest is either as given in AOI,
or as implied by the source/target coordinate reference systems

axis_order_authority_compliant
logical; if FALSE always choose ‘x’ or longitude for the first axis; if TRUE, fol-
low the axis orders given by the coordinate reference systems when constructing
the for the first axis; if FALSE, follow the axis orders given by

Value

sf_proj_search_paths() returns the search path (possibly after setting it)

sf_proj_network when called without arguments returns a logical indicating whether network
search of datum grids is enabled, when called with arguments it returns a character vector with the
URL of the CDN used (or specified with url).

sf_proj_pipelines() returns a table with candidate coordinate transformation pipelines along
with their accuracy; NA accuracy indicates ballpark accuracy.

44 s2

rawToHex Convert raw vector(s) into hexadecimal character string(s)

Description

Convert raw vector(s) into hexadecimal character string(s)

Usage

rawToHex (x)

Arguments

X raw vector, or list with raw vectors

s2 functions for spherical geometry, using s2 package

Description

functions for spherical geometry, using the s2 package based on the google s2geometry.io library

Usage

sf_use_s2(use_s2)
st_as_s2(x, ...)

S3 method for class 'sf'
st_as_s2(x, ...)

S3 method for class 'sfc'

st_as_s2(
X’
oriented = getOption("s2_oriented”, FALSE) || isTRUE(attr(x, "oriented”)),
rebuild = FALSE

)
Arguments
use_s2 logical; if TRUE, use the s2 spherical geometry package for geographical coordi-
nate operations
X object of class sf, sfc or sfg

passed on

sf 45

oriented logical; if FALSE, polygons that cover more than half of the globe are inverted;
if TRUE, no reversal takes place and it is assumed that the inside of the polygon
is to the left of the polygon’s path.

rebuild logical; call s2_rebuild on the geometry (think of this as a st_make_valid on
the sphere)

Details

st_as_s2 converts an sf POLYGON object into a form readable by s2.

Value

sf_use_s2 returns the value of this variable before (re)setting it, invisibly if use_s2 is not missing.

Examples

m = rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))
mi rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,0), c(-1,-1))
md = m[5:1,]

mp = st_multipolygon(list(

list(m, 0.8 * m@, 0.01 * m1 + 0.9),

list(0.7* m, 0.6*m@),

1list(0.5 * mo),

list(m+2),

list(m+4, (.9*m@)+4)

)

sf = st_sfc(mp, mp, crs = 'EPSG:4326")

s2 = st_as_s2(sf)

sf Create sf object

Description

Create sf, which extends data.frame-like objects with a simple feature list column. To convert a data
frame object to sf, use st_as_sf()

Usage

st_sf(
agr = NA_agr_,
row.names,
stringsAsFactors = sf_stringsAsFactors(),
crs,
precision,
sf_column_name = NULL,
check_ring_dir = FALSE,

46 sf

sfc_last = TRUE

S3 method for class 'sf'
x[i, j, ..., drop = FALSE, op = st_intersects]

S3 method for class 'sf'
print(x, ..., n = getOption("sf_max_print”, default = 10))

Arguments

column elements to be binded into an sf object or a single 1ist or data.frame
with such columns; at least one of these columns shall be a geometry list-column
of class sfc or be a list-column that can be converted into an sfc by st_as_sfc.

agr character vector; see details below.
row.names row.names for the created sf object
stringsAsFactors
logical; see st_read
crs coordinate reference system, something suitable as input to st_crs
precision numeric; see st_as_binary

sf_column_name character; name of the active list-column with simple feature geometries; in case
there is more than one and sf_column_name is NULL, the first one is taken.

check_ring_dir see st_read

sfc_last logical; if TRUE, sfc columns are always put last, otherwise column order is left
unmodified.

X object of class sf

i record selection, see [.data.frame, or a sf object to work with the op argument

3j variable selection, see [.data.frame

drop logical, default FALSE; if TRUE drop the geometry column and return a data. frame,
else make the geometry sticky and return a sf object.

op function; geometrical binary predicate function to apply when i is a simple
feature object

n maximum number of features to print; can be set globally by options(sf_max_print=...

Details

agr, attribute-geometry-relationship, specifies for each non-geometry attribute column how it re-
lates to the geometry, and can have one of following values: "constant", "aggregate”, "identity".
"constant” is used for attributes that are constant throughout the geometry (e.g. land use), "aggre-
gate" where the attribute is an aggregate value over the geometry (e.g. population density or popu-
lation count), "identity" when the attributes uniquely identifies the geometry of particular "thing",
such as a building ID or a city name. The default value, NA_agr_, implies we don’t know.

When a single value is provided to agr, it is cascaded across all input columns; otherwise, a named
vector like c(featurel="'constant', ...) will set agr value to 'constant' for the input column
named featurel. See demo(nc) for a worked example of this.

sfc 47

When confronted with a data.frame-like object, st_sf will try to find a geometry column of class
sfc, and otherwise try to convert list-columns when available into a geometry column, using
st_as_sfc.

[.sf will return a data. frame or vector if the geometry column (of class sfc) is dropped (drop=TRUE),
an sfc object if only the geometry column is selected, and otherwise return an sf object; see also
[.data.frame; for [.sf ... arguments are passed to op.

Examples

g = st_sfc(st_point(1:2))

st_sf(a=3,g)

st_sf(g, a=3)

st_sf(a=3, st_sfc(st_point(1:2))) # better to name it!

create empty structure with preallocated empty geometries:

nrows <- 10

geometry = st_sfc(lapply(1:nrows, function(x) st_geometrycollection()))
df <- st_sf(id = 1:nrows, geometry = geometry)

g = st_sfc(st_point(1:2), st_point(3:4))

s = st_sf(a=3:4, g)

s[1,1]
class(s[1,1)
s[,1]
class(s[,1])
s[,2]

class(sl[,21)

g = st_sf(a=2:3, g)

pol = st_sfc(st_polygon(list(cbind(c(9,3,3,0,0),c(0,0,3,3,0)))))
h = st_sf(r = 5, pol)

glh,]

hlg,]

sfc Create simple feature geometry list column

Description

Create simple feature geometry list column, set class, and add coordinate reference system and pre-
cision. For data.frame alternatives see st_sf (). To convert a foreign object to sfc, see st_as_sfc()

Usage

st_sfc(
crs = NA_crs_,
precision = 0,
check_ring_dir = FALSE,
dim,
recompute_bbox = FALSE,
oriented = NA

48 sfc

)

S3 method for class 'sfc'

x[i, j, ..., op = st_intersects]
Arguments

zero or more simple feature geometries (objects of class sfg), or a single list of
such objects; NULL values will get replaced by empty geometries.

crs coordinate reference system: integer with the EPSG code, or character with
proj4string
precision numeric; see st_as_binary

check_ring_dir see st_read

dim character; if this function is called without valid geometries, this argument may
carry the right dimension to set empty geometries

recompute_bbox logical; use TRUE to force recomputation of the bounding box

oriented logical; if TRUE, the ring is oriented such that left of the edges is inside the
polygon; this is needed for convering polygons larger than half the globe to s2

X object of class sfc

i record selection. Might also be an sfc/sf object to work with the op argument

b ignored if op is specified

op function, geometrical binary predicate function to apply when i is a sf/sfc
object. Additional arguments can be specified using . . ., see examples.

Details

A simple feature geometry list-column is a list of class c("stc_TYPE", "sfc") which most often
contains objects of identical type; in case of a mix of types or an empty set, TYPE is set to the
superclass GEOMETRY.

if x has a dim attribute (i.e. is an array or matrix) then op cannot be used.

Value

an object of class sfc, which is a classed list-column with simple feature geometries.

Examples

ptl = st_point(c(0,1))

pt2 = st_point(c(1,1))

(sfc = st_sfc(ptl, pt2))

sfc[sfc[1], op = st_is_within_distance, dist = 0.5]
d = st_sf(data.frame(a=1:2, geom=sfc))

sf_extSoftVersion 49

sf_extSoftVersion Provide the external dependencies versions of the libraries linked to sf

Description

Provide the external dependencies versions of the libraries linked to sf

Usage

sf_extSoftVersion()

sf_project directly transform a set of coordinates

Description

directly transform a set of coordinates

Usage
sf_add_proj_units()
sf_project(

from = character(0),
to = character(0),

pts,
keep = FALSE,
warn = TRUE,
authority_compliant = st_axis_order()
)
Arguments
from character description of source CRS, or object of class crs, or pipeline describ-
ing a transformation
to character description of target CRS, or object of class crs
pts two-, three- or four-column numeric matrix, or object that can be coerced into a
matrix; columns 3 and 4 contain z and t values.
keep logical value controlling the handling of unprojectable points. If keep is TRUE,
then such points will yield Inf or -Inf in the return value; otherwise an error is
reported and nothing is returned.
warn logical; if TRUE, warn when non-finite values are generated

authority_compliant
logical; TRUE means handle axis order authority compliant (e.g. EPSG:4326
implying x=lat, y=lon), FALSE means use visualisation order (i.e. always x=lon,
y=lat)

50 sgbp

Details
sf_add_proj_units loads the PROJ units 1ink, us_in, ind_yd, ind_ft, and ind_ch into the
udunits database, and returns TRUE invisibly on success.

Value
two-column numeric matrix with transformed/converted coordinates, returning invalid values as
Inf

Examples

sf_add_proj_units()

sgbhp Methods for dealing with sparse geometry binary predicate lists

Description

Methods for dealing with sparse geometry binary predicate lists

Usage

S3 method for class 'sgbp'
print(x, ..., n =10, max_nb = 10)

S3 method for class 'sgbp'
t(x)

S3 method for class 'sgbp'
as.matrix(x, ...)

S3 method for class 'sgbp'
dim(x)

S3 method for class 'sgbp'
Ops(el, e2)

S3 method for class 'sghp'

as.data.frame(x, ...)
Arguments
X object of class sgbp
ignored
n integer; maximum number of items to print
max_nb integer; maximum number of neighbours to print for each item
el object of class sgbp

e2 object of class sgbp

st 51

Details

sgbp are sparse matrices, stored as a list with integer vectors holding the ordered TRUE indices of
each row. This means that for a dense, m x n matrix Q and a list L, if Q[i, jJ is TRUE then j is an
element of LL[1]]. Reversed: when k is the value of LL[i]][j], then Q[i,k] is TRUE.

== compares only the dimension and index values, not the attributes of two sgbp object; use
identical to check for equality of everything.

st Create simple feature from a numeric vector, matrix or list

Description

Create simple feature from a numeric vector, matrix or list

Usage

st_point(x = c(NA_real_, NA_real_), dim = "XYZ")

st_multipoint(x = matrix(numeric(@), 0, 2), dim = "XYZ")

st_linestring(x = matrix(numeric(@), @, 2), dim = "XYZ")
st_polygon(x = list(), dim = if (length(x)) "XYZ" else "XY")
st_multilinestring(x = list(), dim = if (length(x)) "XYZ" else "XY")
st_multipolygon(x = list(), dim = if (length(x)) "XYZ" else "XY")
st_geometrycollection(x = list(), dims = "XY")

S3 method for class 'sfg'
print(x, ..., width = @)

S3 method for class 'sfg'
head(x, n = 10L, ...)

S3 method for class 'sfg'
format(x, ..., width = 30)

S3 method for class 'sfg'
c(..., recursive = FALSE, flatten = TRUE)

S3 method for class 'sfg'
as.matrix(x, ...)

52 st

Arguments

X for st_point, numeric vector (or one-row-matrix) of length 2, 3 or 4; for st_linestring
and st_multipoint, numeric matrix with points in rows; for st_polygon and
st_multilinestring, list with numeric matrices with points in rows; for st_multipolygon,
list of lists with numeric matrices; for st_geometrycollection list with (non-
geometrycollection) simple feature geometry (sfg) objects; see examples below

dim character, indicating dimensions: "XY", "XYZ", "XYM", or "XYZM"; only
really needed for three-dimensional points (which can be either XYZ or XYM)
or empty geometries; see details

dims character; specify dimensionality in case of an empty (NULL) geometrycollec-
tion, in which case x is the empty 1list().

objects to be pasted together into a single simple feature

width integer; number of characters to be printed (max 30; 0 means print everything)
n integer; number of elements to be selected

recursive logical; ignored

flatten logical; if TRUE, try to simplify results; if FALSE, return geometrycollection con-

taining all objects

Details

"XYZ" refers to coordinates where the third dimension represents altitude, "XYM" refers to three-
dimensional coordinates where the third dimension refers to something else ("M" for measure);
checking of the sanity of x may be only partial.

When flatten=TRUE, this method may merge points into a multipoint structure, and may not pre-
serve order, and hence cannot be reverted. When given fish, it returns fish soup.

Value

object of the same nature as x, but with appropriate class attribute set

as.matrix returns the set of points that form a geometry as a single matrix, where each point is a
row; use unlist(x, recursive = FALSE) to get sets of matrices.

Examples

(p1 = st_point(c(1,2)))
class(p1)

st_bbox(p1)

(p2 = st_point(c(1,2,3)))
class(p2)

(p3 = st_point(c(1,2,3), "XYM"))
pts = matrix(1:10, , 2)

(mp1 = st_multipoint(pts))

pts = matrix(1:15, , 3)

(mp2 = st_multipoint(pts))

(mp3 = st_multipoint(pts, "XYM"))
pts = matrix(1:20, , 4)

(mp4 = st_multipoint(pts))

St

53

pts = matrix(1:10, , 2)

(1s1 = st_linestring(pts))

pts = matrix(1:15, , 3)

(1s2 = st_linestring(pts))

(1s3 = st_linestring(pts, "XYM"))

pts = matrix(1:20, , 4)

(1s4 = st_linestring(pts))

outer = matrix(c(0,0,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE)

holel = matrix(c(1,1,1,2,2,2,2,1,1,1),ncol=2, byrow=TRUE)

hole2 = matrix(c(5,5,5,6,6,6,6,5,5,5),ncol=2, byrow=TRUE)

pts = list(outer, holel, hole2)

(ml1 = st_multilinestring(pts))

pts3 = lapply(pts, function(x) cbind(x, 0))

(ml2 = st_multilinestring(pts3))

(ml3 = st_multilinestring(pts3, "XYM"))

pts4 = lapply(pts3, function(x) cbind(x, @))

(ml4 = st_multilinestring(pts4))

outer = matrix(c(0,90,10,0,10,10,0,10,0,0),ncol=2, byrow=TRUE)

holel = matrix(c(1,1,1,2,2,2,2,1,1,1),ncol=2, byrow=TRUE)

hole2 = matrix(c(5,5,5,6,6,6,6,5,5,5),ncol=2, byrow=TRUE)

pts = list(outer, holel, hole2)

(pl1 = st_polygon(pts))

pts3 = lapply(pts, function(x) cbind(x, 0))

(pl2 = st_polygon(pts3))

(pl3 = st_polygon(pts3, "XYM"))

pts4 = lapply(pts3, function(x) cbind(x, @))

(pl4 = st_polygon(pts4))

poll = list(outer, holel, hole2)

pol2 = list(outer + 12, holel + 12)

pol3 = list(outer + 24)

mp = list(poll,pol2,pol3)

(mp1 = st_multipolygon(mp))

pts3 = lapply(mp, function(x) lapply(x, function(y) cbind(y, 0)))

(mp2 = st_multipolygon(pts3))

(mp3 = st_multipolygon(pts3, "XYM"))

pts4 = lapply(mp2, function(x) lapply(x, function(y) cbind(y, 0)))

(mp4 = st_multipolygon(pts4))

(gc = st_geometrycollection(list(pl, 1ls1, pll, mpl)))

st_geometrycollection() # empty geometry

c(st_point(1:2), st_point(5:6))

c(st_point(1:2), st_multipoint(matrix(5:8,2)))

c(st_multipoint(matrix(1:4,2)), st_multipoint(matrix(5:8,2)))

c(st_linestring(matrix(1:6,3)), st_linestring(matrix(11:16,3)))

c(st_multilinestring(list(matrix(1:6,3))), st_multilinestring(list(matrix(11:16,3))))

pl = list(rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0)))

c(st_polygon(pl), st_polygon(pl))

c(st_polygon(pl), st_multipolygon(list(pl)))

c(st_linestring(matrix(1:6,3)), st_point(1:2))

c(st_geometrycollection(list(st_point(1:2), st_linestring(matrix(1:6,3)))),
st_geometrycollection(list(st_multilinestring(list(matrix(11:16,3))))))

c(st_geometrycollection(list(st_point(1:2), st_linestring(matrix(1:6,3)))),
st_multilinestring(list(matrix(11:16,3))), st_point(5:6),
st_geometrycollection(list(st_point(10:11))))

54 st_as_binary

st_agr get or set relation_to_geometry attribute of an sf object

Description

get or set relation_to_geometry attribute of an sf object

Usage

NA_agr_
st_agr(x, ...)
st_agr(x) <- value

st_set_agr(x, value)

Arguments
X object of class sf
ignored
value character, or factor with appropriate levels; if named, names should correspond
to the non-geometry list-column columns of x
Format

An object of class factor of length 1.

Details

NA_agr_ is the agr object with a missing value.

st_as_binary Convert sfc object to an WKB object

Description

Convert sfc object to an WKB object

st_as_binary 55
Usage
st_as_binary(x, ...)

S3 method for class 'sfc'
st_as_binary(

X,
EWKB = FALSE,
endian = .Platform$endian,

pureR = FALSE,
precision = attr(x, "precision"),
hex = FALSE

)

S3 method for class 'sfg'
st_as_binary(

X,
endian = .Platform$endian,
EWKB = FALSE,
pureR = FALSE,
hex = FALSE,
srid = @
)
Arguments
X object to convert
ignored
EWKB logical; use EWKB (PostGIS), or (default) ISO-WKB?
endian character; either "big" or "little"; default: use that of platform
pureR logical; use pure R solution, or C++7?
precision numeric; if zero, do not modify; to reduce precision: negative values convert to
float (4-byte real); positive values convert to round(x*precision)/precision. See
details.
hex logical; return as (unclassed) hexadecimal encoded character vector?
srid integer; override srid (can be used when the srid is unavailable locally).
Details

st_as_binary is called on sfc objects on their way to the GDAL or GEOS libraries, and hence does
rounding (if requested) on the fly before e.g. computing spatial predicates like st_intersects. The
examples show a round-trip of an sfc to and from binary.

For the precision model used, see also https://locationtech.github.io/jts/javadoc/org/
locationtech/jts/geom/PrecisionModel.html. There, it is written that: “... to specify 3 deci-
mal places of precision, use a scale factor of 1000. To specify -3 decimal places of precision (i.e.

https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/PrecisionModel.html
https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/PrecisionModel.html

56 st_as_sf

rounding to the nearest 1000), use a scale factor of 0.001.”. Note that ALL coordinates, so also Z
or M values (if present) are affected.

Examples

examples of setting precision:

st_point(c(1/3, 1/6)) %>% st_sfc(precision = 1000) %>% st_as_binary %>% st_as_sfc
st_point(c(1/3, 1/6)) %>% st_sfc(precision = 100) %>% st_as_binary %>% st_as_sfc
st_point(1e6 * c(1/3, 1/6)) %>% st_sfc(precision = 0.01) %>% st_as_binary %>% st_as_sfc
st_point(1e6 * c(1/3, 1/6)) %>% st_sfc(precision = 0.001) %>% st_as_binary %>% st_as_sfc

st_as_grob Convert sf* object to a grob

Description

Convert sf* object to an grid graphics object (grob)

Usage
st_as_grob(x, ...)
Arguments
X object to be converted into an object class grob
passed on to the xxxGrob function, e.g. gp = gpar(col = 'red")
st_as_sf Convert foreign object to an sf object
Description

Convert foreign object to an sf object

Usage

st_as_sf(x, ...)

S3 method for class 'data.frame'
st_as_sf/(

X,

agr = NA_agr_,

coords,

wkt,

dim = "XYz",

st_as_sf 57

remove = TRUE,
na.fail = TRUE,
sf_column_name = NULL

)

S3 method for class 'sf'
st_as_sf(x, ...)

S3 method for class 'sfc'
st_as_sf(x, ...)

S3 method for class 'Spatial'
st_as_sf(x, ...)

S3 method for class 'map'
st_as_sf(x, ..., fill = TRUE, group = TRUE)

S3 method for class 'ppp'
st_as_sf(x, ...)

S3 method for class 'psp'
st_as_sf(x, ...)

S3 method for class 'lpp'
st_as_sf(x, ...)

S3 method for class 's2_geography'

st_as_sf(x, ..., crs = st_crs(4326))
Arguments
X object to be converted into an object class sf

passed on to st_sf, might included named arguments crs or precision

agr character vector; see details section of st_sf

coords in case of point data: names or numbers of the numeric columns holding coor-
dinates

wkt name or number of the character column that holds WKT encoded geometries

dim specify what 3- or 4-dimensional points reflect: passed on to st_point (only when
argument coords is given)

remove logical; when coords or wkt is given, remove these columns from data.frame?

na.fail logical; if TRUE, raise an error if coordinates contain missing values

sf_column_name character; name of the active list-column with simple feature geometries; in case
there is more than one and sf_column_name is NULL, the first one is taken.

fill logical; the value for fill that was used in the call to map.
group logical; if TRUE, group id labels from map by their prefix before :

crs coordinate reference system to be assigned; object of class crs

58 st_as_sf

Details

setting argument wkt annihilates the use of argument coords. If x contains a column called "geom-
etry", coords will result in overwriting of this column by the sfc geometry list-column. Setting wkt
will replace this column with the geometry list-column, unless remove is FALSE.

If coords has length 4, and dim is not XYZM, the four columns are taken as the xmin, ymin, xmax,
ymax corner coordinates of a rectangle, and polygons are returned.

Examples

ptl = st_point(c(0,1))

pt2 = st_point(c(1,1))

st_sfc(ptl, pt2)

d = data.frame(a = 1:2)

d$geom = st_sfc(ptl, pt2)

df = st_as_sf(d)

d$geom = c("POINT(@ @)", "POINT(® 1)")
df = st_as_sf(d, wkt = "geom")

d$geom2 = st_sfc(ptl, pt2)

st_as_sf(d) # should warn

if (require(sp, quietly = TRUE)) {
data(meuse, package = "sp")

meuse_sf = st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant”)
meuse_sf[1:3,]

summary (meuse_sf)

3

if (require(sp, quietly = TRUE)) {
x = rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))
x1 =0.1 xx +0.1
X2 =0.1 x x + 0.4
x3 =0.1 * x +0.7

y =x + 3
yl =x1 + 3
y3 = x3 +3
= matrix(c(3, @), 5, 2, byrow = TRUE)
z=x+m
zl = x1 +m
z2 = x2 +m

z3 =x3 +m

p1 = Polygons(list(Polygon(x[5:1,1), Polygon(x2), Polygon(x3),
Polygon(y[5:1,]), Polygon(y1l), Polygon(x1), Polygon(y3)), "ID1")

p2 = Polygons(list(Polygon(z[5:1,]1), Polygon(z2), Polygon(z3), Polygon(z1)),
"1D2")

r = SpatialPolygons(list(p1,p2))

a = suppressWarnings(st_as_sf(r))

summary (a)

demo(meuse, ask = FALSE, echo = FALSE)

summary (st_as_sf(meuse))

summary (st_as_sf(meuse.grid))

summary (st_as_sf(meuse.area))

summary (st_as_sf(meuse.riv))

summary (st_as_sf(as(meuse.riv, "SpatiallLines")))

st_as_sfc

pol.grd = as(meuse.grid, "SpatialPolygonsDataFrame")
summary(st_as_sf(pol.grd))
summary(st_as_sf(as(pol.grd, "SpatiallLinesDataFrame")))
3
if (require(spatstat.geom)) {
g = st_as_sf(gorillas)
select only the points:
glst_is(g, "POINT"),]
3
if (require(spatstat.linnet)) {
data(chicago)
plot(st_as_sf(chicago)["label”])
plot(st_as_sf(chicago)[-1,"1label"])
3

st_as_sfc Convert foreign geometry object to an sfc object

Description

Convert foreign geometry object to an sfc object

Usage

S3 method for class 'pg_geometry'
st_as_sfc(

X,

EWKB = TRUE,

spatialite = FALSE,

pureR = FALSE,

crs = NA_crs_

S3 method for class 'list'
st_as_sfc(x, ..., crs = NA_crs_)

S3 method for class 'blob'
st_as_sfc(x, ...)

S3 method for class 'bbox'
st_as_sfc(x, ...)

S3 method for class 'WKB'
st_as_sfc(

X’

EWKB = FALSE,

FALSE)

FALSE)

60

spatialite = FALSE,

pureR = FALSE,

crs = NA_crs_
)
S3 method for class 'raw'
st_as_sfc(x, ...)
S3 method for class 'character'
st_as_sfc(x, crs = NA_integer_, ..., GeoJSON = FALSE)
S3 method for class 'factor'
st_as_sfc(x, ...)
st_as_sfc(x, ...)
S3 method for class 'SpatialPoints'
st_as_sfc(x, ., precision = 0)
S3 method for class 'SpatialPixels'
st_as_sfc(x, ., precision = 0)
S3 method for class 'SpatialMultiPoints'
st_as_sfc(x, ., precision = 0)
S3 method for class 'Spatiallines'
st_as_sfc(x, ., precision = 0, forceMulti
S3 method for class 'SpatialPolygons'
st_as_sfc(x, ., precision = @, forceMulti
S3 method for class 'map'
st_as_sfc(x, ...)
S3 method for class 's2_geography'
st_as_sfc(

X,

crs = st_crs(4326),

endian = match(.Platform$endian, c("big”, "little")) - 1L
)

Arguments
X object to convert
further arguments

EWKB

st_as_sfc

logical; if TRUE, parse as EWKB (extended WKB; PostGIS: ST_AsEWKB),
otherwise as ISO WKB (PostGIS: ST_AsBinary)

st_as_text 61

spatialite logical; if TRUE, WKB is assumed to be in the spatialite dialect, see https://
www.gaia-gis.it/gaia-sins/BLOB-Geometry.html; this is only supported
in native endian-ness (i.e., files written on system with the same endian-ness as
that on which it is being read).

pureR logical; if TRUE, use only R code, if FALSE, use compiled (C++) code; use TRUE
when the endian-ness of the binary differs from the host machine (.Platform$endian).

crs coordinate reference system to be assigned; object of class crs

GeoJSON logical; if TRUE, try to read geometries from GeoJSON text strings geometry,
see st_crs()

precision precision value; see st_as_binary

forceMulti logical; if TRUE, force coercion into MULTIPOLYGON or MULTILINE objects, else
autodetect

endian integer; O or 1: defaults to the endian of the native machine

Details

When converting from WKB, the object x is either a character vector such as typically obtained from
PostGIS (either with leading "0x" or without), or a list with raw vectors representing the features in
binary (raw) form.

If x is a character vector, it should be a vector containing well-known-text, or Postgis EWKT or
GeoJSON representations of a single geometry for each vector element.

If x is a factor, it is converted to character.

Examples

wkb = structure(list("01010000204071000000000000801A064100000000AC5C1441"), class = "WKB")
st_as_sfc(wkb, EWKB = TRUE)

wkb = structure(list("0x01010000204071000000000000801A064100000000AC5C1441"), class = "WKB")
st_as_sfc(wkb, EWKB = TRUE)

st_as_sfc(st_as_binary(st_sfc(st_point(@:1)))[[11]1, crs = 4326)
st_as_sfc("SRID=3978;LINESTRING(1663106 -105415,1664320 -104617)")

st_as_text Return Well-known Text representation of simple feature geometry or
coordinate reference system

Description

Return Well-known Text representation of simple feature geometry or coordinate reference system

https://www.gaia-gis.it/gaia-sins/BLOB-Geometry.html
https://www.gaia-gis.it/gaia-sins/BLOB-Geometry.html
https://www.ogc.org/standards/wkt-crs/

62 st_as_text

Usage
S3 method for class 'crs'
st_as_text(x, ..., projjson = FALSE, pretty = FALSE)
st_as_text(x, ...)

S3 method for class 'sfg'
st_as_text(x, ...)

S3 method for class 'sfc'

st_as_text(x, ..., EWKT = FALSE)
Arguments
X object of class sfg, sfcorcrs

modifiers; in particular digits can be passed to control the number of digits
used

projjson logical; if TRUE, return projjson form (requires GDAL 3.1 and PROJ 6.2), else
return well-known-text form

pretty logical; if TRUE, print human-readable well-known-text representation of a co-
ordinate reference system

EWKT logical; if TRUE, print SRID=xxx; before the WKT string if epsg is available

Details

The returned WKT representation of simple feature geometry conforms to the simple features access
specification and extensions (known as EWKT, supported by PostGIS and other simple features
implementations for addition of a SRID to a WKT string).

Note

To improve conversion performance, the Iwgeom package can be used (it must be installed be-
forehand) and set the Sys.setenv("LWGEOM_WKT"” = "true") environment variable. This will also
result in faster printing of complex geometries. Note that the representation as WKT is different
from the sf package and may cause reproducibility problems. An alternative solution is to use the
lwgeom: :st_astext() or wk: :as_wkt() functions.

Examples

st_as_text(st_point(1:2))
st_as_text(st_sfc(st_point(c(-90,40)), crs = 4326), EWKT = TRUE)

https://www.ogc.org/standards/sfa/

st_bbox

st_bbox Return bounding of a simple feature or simple feature set

Description

Return bounding of a simple feature or simple feature set

Usage

S3 method for class 'bbox'
is.na(x)

st_bbox(obj, ...)

S3 method for class 'POINT'
st_bbox(obj, ...)

S3 method for class 'MULTIPOINT'
st_bbox(obj, ...)

S3 method for class 'LINESTRING'
st_bbox(obj, ...)

S3 method for class 'POLYGON'
st_bbox(obj, ...)

S3 method for class 'MULTILINESTRING'
st_bbox(obj, ...)

S3 method for class '"MULTIPOLYGON'
st_bbox(obj, ...)

S3 method for class 'GEOMETRYCOLLECTION'
st_bbox(obj, ...)

S3 method for class 'MULTISURFACE'
st_bbox(obj, ...)

S3 method for class 'MULTICURVE'
st_bbox(obj, ...)

S3 method for class 'CURVEPOLYGON'
st_bbox(obj, ...)

S3 method for class 'COMPOUNDCURVE'
st_bbox(obj, ...)

64

S3 method for class 'POLYHEDRALSURFACE'
st_bbox(obj, ...)
S3 method for class 'TIN'
st_bbox(obj, ...)
S3 method for class 'TRIANGLE'
st_bbox(obj, ...)
S3 method for class 'CIRCULARSTRING'
st_bbox(obj, ...)
S3 method for class 'sfc'
st_bbox(obj, ...)
S3 method for class 'sf'
st_bbox(obj, ...)
S3 method for class 'Spatial’
st_bbox(obj, ...)
S3 method for class 'Raster’
st_bbox(obj, ...)
S3 method for class 'Extent'
st_bbox(obj, ., ¢crs = NA_crs_)
S3 method for class 'numeric'
st_bbox(obj, ., crs = NA_crs_)
NA_bbox_
FULL_bbox_
S3 method for class 'bbox'
format(x, ...)
Arguments
X object of class bbox
obj object to compute the bounding box from
for format.bbox, passed on to format to format individual numbers
crs object of class crs, or argument to st_crs, specifying the CRS of this bounding
box.
Format

An object of class bbox of length 4.

st_break_antimeridian 65

An object of class bbox of length 4.

Details

NA_bbox_ represents the missing value for a bbox object

NA_bbox_ represents the missing value for a bbox object

Value

a numeric vector of length four, with xmin, ymin, xmax and ymax values; if obj is of class sf, sfc,
Spatial or Raster, the object returned has a class bbox, an attribute crs and a method to print the
bbox and an st_crs method to retrieve the coordinate reference system corresponding to obj (and
hence the bounding box). st_as_sfc has a methods for bbox objects to generate a polygon around
the four bounding box points.

Examples

a = st_sf(a = 1:2, geom = st_sfc(st_point(0:1), st_point(1:2)), crs = 4326)
st_bbox(a)

st_as_sfc(st_bbox(a))

st_bbox(c(xmin = 16.1, xmax = 16.6, ymax = 48.6, ymin = 47.9), crs = st_crs(4326))

st_break_antimeridian Break antimeridian for plotting not centred on Greenwich

Description

Longitudes can be broken at the antimeridian of a target central longitude to permit plotting of
(usually world) line or polygon objects centred on the chosen central longitude. The method may
only be used with non-projected, geographical coordinates and linestring or polygon objects. s2 is
turned off internally to permit the use of a rectangular bounding box. If the input geometries go
outside [-180@, 18@] degrees longitude, the protruding geometries will also be split using the same
tol= values; in this case empty geometries will be dropped first.

Usage
st_break_antimeridian(x, lon_0 = @, tol = 1e-04, ...)
S3 method for class 'sf'
st_break_antimeridian(x, lon_0 = @, tol = 1e-04, ...)
S3 method for class 'sfc'
st_break_antimeridian(x, lon_0 = @, tol = 1e-04, ...)

66

Arguments
X object of class sf or sfc
lon_0 target central longitude (degrees)
tol half of break width (degrees, default 0.0001)
ignored here
Examples

if (require("maps”, quietly=TRUE)) {
opar = par(mfrow=c(3, 2))
wld = st_as_sf(map(fill=FALSE, interior=FALSE, plot=FALSE), fill=FALSE)
for (lon_@ in c(-170, -90, -10, 10, 90, 170)) {
br = st_break_antimeridian(wld, lon_@ = lon_0)
tr = st_transform(br, paste@("+proj=natearth +lon_0=", lon_0))
plot(st_geometry(tr), main=lon_0)
}
par(opar)
3

St_cast

st_cast Cast geometry to another type: either simplify, or cast explicitly

Description

Cast geometry to another type: either simplify, or cast explicitly

Usage
S3 method for class '"MULTIPOLYGON'
st_cast(x, to, ...)

S3 method for class 'MULTILINESTRING'
st_cast(x, to, ...)

S3 method for class 'MULTIPOINT'
st_cast(x, to, ...)

S3 method for class 'POLYGON'
st_cast(x, to, ...)

S3 method for class 'LINESTRING'
st_cast(x, to, ...)

S3 method for class 'POINT'
st_cast(x, to, ...)

st_cast 67

S3 method for class 'GEOMETRYCOLLECTION'
st_cast(x, to, ...)

S3 method for class 'CIRCULARSTRING'
st_cast(x, to, ...)

S3 method for class 'MULTISURFACE'
st_cast(x, to, ...)

S3 method for class 'COMPOUNDCURVE'
st_cast(x, to, ...)

S3 method for class 'MULTICURVE'
st_cast(x, to, ...)

S3 method for class 'CURVE'
st_cast(x, to, ...)

st_cast(x, to, ...)

S3 method for class 'sfc'
st_cast(x, to, ..., ids = seqg_along(x), group_or_split = TRUE)

S3 method for class 'sf'
st_cast(x, to, ..., warn = TRUE, do_split = TRUE)

S3 method for class 'sfc_CIRCULARSTRING'

st_cast(x, to, ...)
Arguments

X object of class sfg, sfc or sf

to character; target type, if missing, simplification is tried; when x is of type sfg
(i.e., a single geometry) then to needs to be specified.
ignored

ids integer vector, denoting how geometries should be grouped (default: no group-
ing)

group_or_split logical; if TRUE, group or split geometries; if FALSE, carry out a 1-1 per-
geometry conversion.

warn logical; if TRUE, warn if attributes are assigned to sub-geometries
do_split logical; if TRUE, allow splitting of geometries in sub-geometries
Details

When converting a GEOMETRYCOLLECTION to COMPOUNDCURVE, MULTISURFACE or
CURVEPOLYGON, the user is responsible for the validity of the resulting object: no checks are
being carried out by the software.

68

St_cast

When converting mixed, GEOMETRY sets, it may help to first convert to the MULTI-type, see
examples

the st_cast method for sf objects can only split geometries, e.g. cast MULTIPOINT into multiple
POINT features. In case of splitting, attributes are repeated and a warning is issued when non-
constant attributes are assigned to sub-geometries. To merge feature geometries and attribute values,
use aggregate or summarise.

Value

object of class to if successful, or unmodified object if unsuccessful. If information gets lost while
type casting, a warning is raised.

In case to is missing, st_cast.sfc will coerce combinations of "POINT" and "MULTIPOINT",
"LINESTRING" and "MULTILINESTRING", "POLYGON" and "MULTIPOLYGON" into their
"MULTIL..." form, or in case all geometries are "GEOMETRYCOLLECTION" will return a list of
all the contents of the "GEOMETRYCOLLECTION" objects, or else do nothing. In case to is
specified, if to is "GEOMETRY", geometries are not converted, else, st_cast will try to coerce all
elements into to; ids may be specified to group e.g. "POINT" objects into a "MULTIPOINT", if
not specified no grouping takes place. If e.g. a "sfc_ MULTIPOINT" is cast to a "sfc_POINT", the
objects are split, so no information gets lost, unless group_or_split is FALSE.

Examples

example(st_read)

nc = st_read(system.file("shape/nc.shp”, package="sf"))

mpl <- st_geometry(nc)[[4]]

#st_cast(x) ## error 'argument "to"” is missing, with no default'

cast_all <- function(xg) {

lapply (c("MULTIPOLYGON", "MULTILINESTRING"”, "MULTIPOINT"”, "POLYGON", "LINESTRING", "POINT"),

function(x) st_cast(xg, x))

3

st_sfc(cast_all(mpl))

no closing coordinates should remain for multipoint

any(duplicated(unclass(st_cast(mpl, "MULTIPOINT")))) ## should be FALSE

number of duplicated coordinates in the linestrings should equal the number of polygon rings

(... in this case, won't always be true)

sum(duplicated(do.call(rbind, unclass(st_cast(mpl, "MULTILINESTRING"))))
) == sum(unlist(lapply(mpl, length))) ## should be TRUE

pl <- structure(c(o, 1, 3
p2 <- structure(c(1, 1, 2,
st_polygon(list(p1, p2))
mls <- st_cast(st_geometry(nc)[[4]], "MULTILINESTRING")
st_sfc(cast_all(mls))

mpt <- st_cast(st_geometry(nc)[[4]], "MULTIPOINT")

st_sfc(cast_all(mpt))

pl <- st_cast(st_geometry(nc)[[4]]1, "POLYGON")

st_sfc(cast_all(pl))

1s <- st_cast(st_geometry(nc)[[4]1], "LINESTRING")

st_sfc(cast_all(ls))

pt <- st_cast(st_geometry(nc)[[4]], "POINT")

st_sfc(cast_all(pt)) ## Error: cannot create MULTIPOLYGON from POINT

,2,1,0,0, 0, 2,4, 4, 0, .Dim = c(6L, 2L))
1,1, 2, 2, 1), .Dim = c(4L, 2L))

’ ’

st_cast_sfc_default 69

st_sfc(lapply(c("POINT", "MULTIPOINT"), function(x) st_cast(pt, x)))

s = st_multipoint(rbind(c(1,0)))

st_cast(s, "POINT")

https://github.com/r-spatial/sf/issues/1930:

pt1 <- st_point(c(0,1))

pt23 <- st_multipoint(matrix(c(1,2,3,4), ncol = 2, byrow = TRUE))

d <- st_sf(geom = st_sfc(ptl, pt23))

st_cast(d, "POINT") # will not convert the entire MULTIPOINT, and warns
st_cast(d, "MULTIPOINT") %>% st_cast("POINT")

st_cast_sfc_default Coerce geometry to MULTI* geometry

Description

Mixes of POINTS and MULTIPOINTS, LINESTRING and MULTILINESTRING, POLYGON
and MULTIPOLYGON are returned as MULTIPOINTS, MULTILINESTRING and MULTIPOLY-
GONS respectively

Usage

st_cast_sfc_default(x)

Arguments

X list of geometries or simple features

Details

Geometries that are already MULTT* are left unchanged. Features that can’t be cast to a single
MULTI* geometry are return as a GEOMETRYCOLLECTION

st_collection_extract Given an object with geometries of type GEOMETRY or
GEOMETRYCOLLECTION, return an object conmsisting only of ele-
ments of the specified type.

Description

Similar to ST_CollectionExtract in PostGIS. If there are no sub-geometries of the specified type, an
empty geometry is returned.

70 st_collection_extract

Usage
st_collection_extract(
X’
type = c("POLYGON", "POINT", "LINESTRING"),
warn = FALSE

)

S3 method for class 'sfg'
st_collection_extract(

X)
type = c("POLYGON", "POINT", "LINESTRING"),
warn = FALSE

)

S3 method for class 'sfc'
st_collection_extract(

X)
type = c("POLYGON", "POINT", "LINESTRING"),
warn = FALSE

)

S3 method for class 'sf'
st_collection_extract(

X ’
type = c("POLYGON", "POINT”, "LINESTRING"),
warn = FALSE
)
Arguments
X an object of class sf, sfc or sfg that has mixed geometry (GEOMETRY or GEOMETRYCOLLECTION).
type character; one of "POLYGON", "POINT", "LINESTRING"
warn logical; if TRUE, warn if attributes are assigned to sub-geometries when casting
(see st_cast)
Value

An object having the same class as x, with geometries consisting only of elements of the specified
type. For sfg objects, an sfg object is returned if there is only one geometry of the specified type,
otherwise the geometries are combined into an sfc object of the relevant type. If any subgeometries
in the input are MULTI, then all of the subgeometries in the output will be MULTL

Examples
pt <- st_point(c(1, @))
1ls <- st_linestring(matrix(c(4, 3, @, @), ncol = 2))
polyl <- st_polygon(list(matrix(c(5.5, 7, 7, 6, 5.5, @, @, -0.5, -0.5, @), ncol = 2)))
poly2 <- st_polygon(list(matrix(c(6.6, 8, 8, 7, 6.6, 1, 1, 1.5, 1.5, 1), ncol = 2)))

st_coordinates

multipoly <- st_multipolygon(list(polyl, poly2))

i <- st_geometrycollection(list(pt, 1ls, polyl, poly2))
j <- st_geometrycollection(list(pt, ls, polyl, poly2, multipoly))

st_collection_extract(i, "POLYGON")
st_collection_extract(i, "POINT")
st_collection_extract(i, "LINESTRING")

A GEOMETRYCOLLECTION
aa <- rbind(st_sf(a=1, geom = st_sfc(i)),
st_sf(a=2, geom = st_sfc(j)))

With sf objects
st_collection_extract(aa, "POLYGON")
st_collection_extract(aa, "LINESTRING")
st_collection_extract(aa, "POINT")

With sfc objects
st_collection_extract(st_geometry(aa), "POLYGON")
st_collection_extract(st_geometry(aa), "LINESTRING")
st_collection_extract(st_geometry(aa), "POINT")

A GEOMETRY of single types

bb <- rbind(

st_sf(a = 1, geom = st_sfc(pt)),
st_sf(a = 2, geom = st_sfc(ls)),
st_sf(a = 3, geom = st_sfc(polyl)),
st_sf(a = 4, geom = st_sfc(multipoly))
)

st_collection_extract(bb, "POLYGON")

A GEOMETRY of mixed single types and GEOMETRYCOLLECTIONS
cc <- rbind(aa, bb)

st_collection_extract(cc, "POLYGON")

st_coordinates retrieve coordinates in matrix form

Description

retrieve coordinates in matrix form

Usage

st_coordinates(x, ...)

72 st_crop

Arguments
X object of class sf, sfc or sfg
ignored
Value

matrix with coordinates (X, Y, possibly Z and/or M) in rows, possibly followed by integer indicators
L1,...,L3 that point out to which structure the coordinate belongs; for POINT this is absent (each
coordinate is a feature), for LINESTRING L1 refers to the feature, for MULTILINESTRING L1 refers
to the part and L2 to the simple feature, for POLYGON L1 refers to the main ring or holes and L2 to
the simple feature, for MULTIPOLYGON L1 refers to the main ring or holes, L2 to the ring id in the
MULTIPOLYGON, and L3 to the simple feature.

For POLYGONS, L1 can be used to identify exterior rings and inner holes. The exterior ring is when L1
is equal to 1. Interior rings are identified when L1 is greater than 1. L2 can be used to differentiate
between the feature. Whereas for MULTIPOLYGON, L3 refers to the MULTIPOLYGON feature and L2
refers to the component POLYGON.

st_crop crop an sf object to a specific rectangle

Description

crop an sf object to a specific rectangle
Usage
st_crop(x, vy, ...)

S3 method for class 'sfc'
st_crop(x, y, ..., xmin, ymin, xmax, ymax)

S3 method for class 'sf'

st_crop(x, vy, ...)
Arguments

X object of class sf or sfc

y numeric vector with named elements xmin, ymin, xmax and ymax, or object of
class bbox, or object for which there is an st_bbox method to convert it to a bbox
object
ignored

xmin minimum X extent of cropping area

ymin minimum y extent of cropping area

xmax maximum X extent of cropping area

ymax maximum y extent of cropping area

st_crs

Details

73

setting arguments xmin, ymin, xmax and ymax implies that argument y gets ignored.

Examples

box = c(xmin = @, ymin = @, xmax = 1, ymax
pol = st_sfc(st_buffer(st_point(c(.5,

pol_sf = st_sf(a=1, geom=pol)
plot(st_crop(pol, box))

plot(st_crop(pol_sf, st_bbox(box)))
alternative:
plot(st_crop(pol, xmin = @, ymin = @, xmax

= 1)

st_crs

Retrieve coordinate reference system from object

Description

Retrieve coordinate reference system from sf or sfc object

Set or replace retrieve coordinate reference system from object

Usage

st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

S3 method
st_crs(x,

st_crs(x) <-

for class 'sf'

.2

for class 'numeric'

)

for class 'character'

.2

for class 'sfc'

., parameters = FALSE)

for class 'bbox'

.2

for class 'CRS'

.2

for class 'crs

.)

value

74 st_crs

S3 replacement method for class 'sf'
st_crs(x) <- value

S3 replacement method for class 'sfc

st_crs(x) <- value
st_set_crs(x, value)
NA_crs_

S3 method for class 'crs'
is.na(x)

S3 method for class 'crs'
x$name

S3 method for class 'crs'
format(x, ...)

st_axis_order(authority_compliant = logical(@))

Arguments

X numeric, character, or object of class sf or sfc
ignored

parameters logical; FALSE by default; only for the st_crs.sfc() method: if TRUE re-
turn a classed list of coordinate reference system parameters, with named el-
ements SemiMajor, InvFlattening, units_gdal, IsVertical, WktPretty,
Wkt, Name, proj4string, epsg, yx, ProjJson, WKT1_ESRI, srid (in author-
ity:code form), axes (a data.frame with columns name and orientation), gcs_crs
with the WKT of the base geographic coordinate system, ud_unit. The list has
class crs_parameters.

value one of (i) character: a string accepted by GDAL, (ii) integer, a valid EPSG value
(numeric), or (iii) an object of class crs.

name element name
authority_compliant

logical; specify whether axis order should be handled compliant to the authority;
if omitted, the current value is printed.

Format

An object of class crs of length 2.

Details

The *crs functions create, get, set or replace the crs attribute of a simple feature geometry list-
column. This attribute is of class crs, and is a list consisting of input (user input, e.g. "EPSG:4326"

st_crs 75

or "WGS84" or a proj4string), and wkt, an automatically generated wkt2 representation of the crs.
If x is identical to the wkt2 representation, and the CRS has a name, this name is used for the input
field.

Comparison of two objects of class crs uses the GDAL function OGRSpatialReference: : IsSame.

In case a coordinate reference system is replaced, no transformation takes place and a warning is
raised to stress this.

NA_crs_ is the crs object with missing values for input and wkt.

the $ method for crs objects retrieves named elements using the GDAL interface; named elements
include SemiMajor, SemiMinor, InvFlattening, IsGeographic, units_gdal, IsVertical, WktPretty,
Wkt, Name, proj4string, epsg, yx, ud_unit, and axes (this may be subject to changes in future
GDAL versions).

Note that not all valid CRS have a corresponding proj4string.
ud_unit returns a valid units object or NULL if units are missing.

format.crs returns NA if the crs is missing valued, or else the name of a crs if it is different from
"unknown", or else the user input if it was set, or else its "proj4string” representation;

st_axis_order can be used to get and set the axis order: TRUE indicates axes order according to
the authority (e.g. EPSG:4326 defining coordinates to be latitude,longitude pairs), FALSE indicates
the usual GIS (display) order (longitude,latitude). This can be useful when data are read, or have
to be written, with coordinates in authority compliant order. The return value is the current state of
this (FALSE, by default).

Value

If x is numeric, return crs object for EPSG:x; if x is character, return crs object for x; if x is of
class sf or sfc, return its crs object.

Object of class crs, which is a list with elements input (length-1 character) and wkt (length-1
character). Elements may be NA valued; if all elements are NA the CRS is missing valued, and
coordinates are assumed to relate to an arbitrary Cartesian coordinate system.

st_axis_order returns the (logical) current value if called without argument, or (invisibly) the
previous value if it is being set.

Examples

sfc = st_sfc(st_point(c(0,0)), st_point(c(1,1)))
sf = st_sf(a = 1:2, geom = sfc)

st_crs(sf) = 4326

st_geometry(sf)

sfc = st_sfc(st_point(c(@,0)), st_point(c(1,1)))
st_crs(sfc) = 4326

sfc

sfc = st_sfc(st_point(c(@,0)), st_point(c(1,1)))
sfc %>% st_set_crs(4326) %>% st_transform(3857)
st_crs("EPSG:3857")$input

st_crs(3857)$projastring

pt = st_sfc(st_point(c(@, 60)), crs = 4326)

st_axis_order() only has effect in GDAL >= 2.5.0:
st_axis_order() # query default: FALSE means interpret pt as (longitude latitude)

76 st_drivers

st_transform(pt, 3857)[[1]]

old_value = FALSE

if (compareVersion(sf_extSoftVersion()["GDAL"], "2.5.0") >= @)
(old_value = st_axis_order(TRUE))

now interpret pt as (latitude longitude), as EPSG:4326 prescribes:

st_axis_order() # query current value

st_transform(pt, 3857)[[1]]

st_axis_order(old_value) # set back to old value

st_drivers Get GDAL drivers

Description

Get a list of the available GDAL drivers

Usage
st_drivers(what = "vector”, regex)
Arguments
what character: "vector” or "raster”, anything else will return all drivers.
regex character; regular expression to filter the name and long_name fields on
Details

The drivers available will depend on the installation of GDAL/OGR, and can vary; the st_drivers()
function shows all the drivers that are readable, and which may be written. The field vsi refers to the
driver’s capability to read/create datasets through the VSI*L API. See GDAL website for additional
details on driver support

Value

A data. frame with driver metadata.

Examples

The following driver lists depend on the GDAL setup and platform used:
st_drivers()
st_drivers("raster”, "GeoT")

https://gdal.org/en/latest/drivers/vector/index.html
https://gdal.org/en/latest/drivers/vector/index.html

st_geometry 77

st_geometry Get, set, replace or rename geometry from an sf object

Description

Get, set, replace or rename geometry from an sf object

Usage
S3 method for class 'sfc'
st_geometry(obj, ...)
st_geometry(obj, ...)

S3 method for class 'sf'
st_geometry(obj, ...)

S3 method for class 'sfc'
st_geometry(obj, ...)

S3 method for class 'sfg'
st_geometry(obj, ...)

st_geometry(x) <- value
st_set_geometry(x, value)
st_drop_geometry(x, ...)

S3 method for class 'sf'
st_drop_geometry(x, ...)

Default S3 method:

st_drop_geometry(x, ...)
Arguments
obj object of class sf or sfc
ignored
X object of class data.frame or sf
value object of class sfc, or character to set, replace, or rename the geometry of x
Details

when applied to a data.frame and when value is an object of class sfc, st_set_geometry and
st_geometry<- will first check for the existence of an attribute sf_column and overwrite that, or

78 st_geometry_type

else look for list-columns of class sfc and overwrite the first of that, or else write the geometry list-
column to a column named geometry. In case value is character and x is of class sf, the "active"
geometry column is set to x[[valuel].

the replacement function applied to sf objects will overwrite the geometry list-column, if value is
NULL, it will remove it and coerce x to a data.frame.

if x is of class sf, st_drop_geometry drops the geometry of its argument, and reclasses it accord-
ingly; otherwise it returns x unmodified.

Value

st_geometry returns an object of class sfc, a list-column with geometries

st_geometry returns an object of class sfc. Assigning geometry to a data.frame creates an sf
object, assigning it to an sf object replaces the geometry list-column.

Examples

df = data.frame(a = 1:2)

sfc = st_sfc(st_point(c(3,4)), st_point(c(10,11)))
st_geometry(sfc)

st_geometry(df) <- sfc

class(df)

st_geometry(df)

st_geometry(df) <- sfc # replaces

st_geometry(df) <- NULL # remove geometry, coerce to data.frame
sf <- st_set_geometry(df, sfc) # set geometry, return sf
st_set_geometry(sf, NULL) # remove geometry, coerce to data.frame

st_geometry_type Return geometry type of an object

Description

Return geometry type of an object, as a factor

Usage

st_geometry_type(x, by_geometry = TRUE)

Arguments
X object of class sf or sfc
by_geometry logical; if TRUE, return geometry type of each geometry, else return geometry
type of the set
Value

a factor with the geometry type of each simple feature geometry in x, or that of the whole set

st_graticule 79

st_graticule Compute graticules and their parameters

Description

Compute graticules and their parameters

Usage

st_graticule(
x = c(-180, -90, 180, 90),
crs = st_crs(x),
datum = st_crs(”0GC:CRS84"),

’

lon = NULL,

lat = NULL,
ndiscr = 100,
margin = 0.001
)
Arguments
X object of class sf, sfc or sfg or numeric vector with bounding box given as
(minx, miny, maxx, maxy).
crs object of class crs, with the display coordinate reference system
datum either an object of class crs with the coordinate reference system for the gratic-
ules, or NULL in which case a grid in the coordinate system of x is drawn, or NA,
in which case an empty sf object is returned. If missing and x has a crs with a
datum, the geographic coordinate system (datum) of x is taken.
ignored
lon numeric; values in degrees East for the meridians, associated with datum
lat numeric; values in degrees North for the parallels, associated with datum
ndiscr integer; number of points to discretize a parallel or meridian
margin numeric; small number to trim a longlat bounding box that touches or crosses
+/-180 long or +/-90 latitude.
Value

an object of class sf with additional attributes describing the type (E: meridian, N: parallel) degree
value, label, start and end coordinates and angle; see example.

Use of graticules

st_is

In cartographic visualization, the use of graticules is not advised, unless the graphical output will be
used for measurement or navigation, or the direction of North is important for the interpretation of
the content, or the content is intended to display distortions and artifacts created by projection. Un-
necessary use of graticules only adds visual clutter but little relevant information. Use of coastlines,
administrative boundaries or place names permits most viewers of the output to orient themselves

better than a graticule.

Examples

library(sf)
if (require(maps, quietly = TRUE)) {

usa = st_as_sf(map('usa', plot = FALSE, fill = TRUE))
laea = st_crs("+proj=laea +lat_0=30 +lon_0=-95") # Lambert equal area
usa <- st_transform(usa, laea)

bb = st_bbox(usa)
bbox = st_linestring(rbind(c(bb[1],bb[2]),c(bb[3],bb[2]),
c(bb[3]1,bb[41),c(bb[1],bb[41),c(bb[1],bb[21)))

g = st_graticule(usa)

plot(usa, xlim = 1.2 x c(-2450853.4, 2186391.9), reset = FALSE)
plot(g[1], add = TRUE, col = 'grey')

plot(bbox, add = TRUE)

points(gx_start, gy_start, col = 'red')

points(gx_end, gy_end, col = 'blue')

invisible(lapply(seq_len(nrow(g)), function(i) {
if (g$typel[i] == "N" && g$x_start[i] - min(g$x_start) < 1000)

text(g$x_startl[i], g$y_start[i], labels = parse(text = g$degree_labell[i]),

srt = g$angle_start[i], pos = 2, cex = .7)
if (g$typel[i] == "E" && g$y_start[i] - min(g$y_start) < 1000)

text(g$x_startl[i], g$y_start[i], labels = parse(text = g$degree_label[i]),

srt = g$angle_start[i] - 90, pos = 1, cex = .7)

if (g$typeli]l == "N" 8&& g$x_end[i] - max(g$x_end) > -1000)
text(g$x_end[i], g$y_end[i], labels = parse(text = g$degree_labelli]),
srt = g$angle_end[i], pos = 4, cex = .7)

if (g$typelil == "E" 8&& g$y_end[i] - max(g$y_end) > -1000)
text(g$x_end[i], g$y_end[i], labels = parse(text = g$degree_labelli]),
srt = g$angle_end[i] - 90, pos = 3, cex = .7)

b))
plot(usa, graticule = st_crs(4326), axes = TRUE, lon = seq(-60,-130,by=-10))
3
st_is test equality between the geometry type and a class or set of classes

st_is_full 81

Description

test equality between the geometry type and a class or set of classes

Usage

st_is(x, type)

Arguments

X object of class sf, sfc or sfg

type character; class, or set of classes, to test against
Examples

st_is(st_point(@:1), "POINT")

sfc = st_sfc(st_point(0:1), st_linestring(matrix(1:6,,2)))
st_is(sfc, "POINT")

st_is(sfc, "POLYGON")

st_is(sfc, "LINESTRING")

st_is(st_sf(a = 1:2, sfc), "LINESTRING")

st_is(sfc, c("POINT”, "LINESTRING"))

st_is_full predicate whether a geometry is equal to a POLYGON FULL

Description

predicate whether a geometry is equal to a POLYGON FULL

Usage
st_is_full(x, ...)

S3 method for class 'sfg'
st_is_full(x, ..., is_longlat = NULL)

S3 method for class 'sfc'
st_is_full(x, ...)

S3 method for class 'sf'
st_is_full(x, ...)

S3 method for class 'bbox'
st_is_full(x, ...)

82 st_jitter

Arguments
X object of class sfg, sfc or sf
ignored, except when it contains a crs argument to inform unspecified is_longlat
is_longlat logical; output of st_is_longlat of the parent sfc object
Value

logical, indicating whether geometries are POLYGON FULL (a spherical polygon covering the
entire sphere)

st_is_longlat Assert whether simple feature coordinates are longlat degrees

Description

Assert whether simple feature coordinates are longlat degrees

Usage

st_is_longlat(x)

Arguments
X object of class sf or sfc, or otherwise an object of a class that has an st_crs
method returning a crs object
Value

TRUE if x has geographic coordinates, FALSE if it has projected coordinates, or NAif is.na(st_crs(x)).

st_jitter Jitter geometries

Description

jitter geometries

Usage

st_jitter(x, amount, factor = 0.002)

st_join 83

Arguments
X object of class sf or sfc
amount numeric; amount of jittering applied; if missing, the amount is set to factor * the
bounding box diagonal; units of coordinates.
factor numeric; fractional amount of jittering to be applied
Details

jitters coordinates with an amount such that runif (1, -amount, amount) is added to the coordi-
nates. x- and y-coordinates are jittered independently but all coordinates of a single geometry are
jittered with the same amount, meaning that the geometry shape does not change. For longlat data,
a latitude correction is made such that jittering in East and North directions are identical in distance
in the center of the bounding box of x.

Examples

nc = st_read(system.file("gpkg/nc.gpkg", package="sf"))

pts = st_centroid(st_geometry(nc))

plot(pts)

plot(st_jitter(pts, .05), add = TRUE, col = 'red')

plot(st_geometry(nc))

plot(st_jitter(st_geometry(nc), factor = .01), add = TRUE, col = '#ff8888")

st_join spatial join, spatial filter

Description

spatial join, spatial filter

Usage

st_join(x, y, join, ...)

S3 method for class 'sf'
st_join(

X,

Y,

join = st_intersects,

L

suffix = c(".x", ".y"),

left = TRUE,
largest = FALSE

st_filter(x, vy, ...)

84 st_join

S3 method for class 'sf'

st_filter(x, y, ..., .predicate = st_intersects)
Arguments
X object of class sf
y object of class sf
join geometry predicate function with the same profile as st_intersects; see details

for st_join: arguments passed on to the join function or to st_intersection
when largest is TRUE; for st_filter arguments passed on to the .predicate
function, e.g. prepared, or a pattern for st_relate

suffix length 2 character vector; see merge
left logical; if TRUE return the left join, otherwise an inner join; see details. see also
left_join
largest logical; if TRUE, return x features augmented with the fields of y that have the
largest overlap with each of the features of x; see https://github.com/r-spatial/sf/issues/578
.predicate geometry predicate function with the same profile as st_intersects; see details
Details

alternative values for argument join are:

* st_contains_properly,

e st_contains,

* st_covered_by,

* st_covers,

* st_crosses,

* st_disjoint,

* st_equals_exact,

* st_equals,

e st_is_within_distance,

* st_nearest_feature,

* st_overlaps,

e st_touches,

e st_within,

* st_relate (which will require pattern to be set),

* or any user-defined function of the same profile as the above
A left join returns all records of the x object with y fields for non-matched records filled with NA
values; an inner join returns only records that spatially match.

To replicate the results of st_within(x, y) you will need touse st_join(x, y, join="st_within”,
left = FALSE).

st_layers 85

Value

an object of class sf, joined based on geometry

Examples

a = st_sf(a = 1:3,
geom = st_sfc(st_point(c(1,1)), st_point(c(2,2)), st_point(c(3,3))))
b = st_sf(a = 11:14,
geom = st_sfc(st_point(c(10,10)), st_point(c(2,2)), st_point(c(2,2)), st_point(c(3,3))))
st_join(a, b)
st_join(a, b, left = FALSE)
two ways to aggregate y's attribute values outcome over x's geometries:
st_join(a, b) %>% aggregate(list(.$a.x), mean)
if (require(dplyr, quietly = TRUE)) {
st_join(a, b) %>% group_by(a.x) %>% summarise(mean(a.y))
3
example of largest = TRUE:
nc <- st_transform(st_read(system.file("shape/nc.shp”, package="sf")), 2264)
gr = st_sf(
label = apply(expand.grid(1:10, LETTERS[10:1]1)[,2:1]1, 1, paste@, collapse = " "),
geom = st_make_grid(st_as_sfc(st_bbox(nc))))
gr$col = sf.colors(10, categorical = TRUE, alpha = .3)
cut, to check, NA's work out:
gr = grl-(1:30),1]
nc_j <- st_join(nc, gr, largest = TRUE)
the two datasets:
opar = par(mfrow = c(2,1), mar = rep(0,4))
plot(st_geometry(nc_j))
plot(st_geometry(gr), add = TRUE, col = gr$col)
text(st_coordinates(st_centroid(gr)), labels = gr$label)
the joined dataset:
plot(st_geometry(nc_j), border = 'black', col = nc_j$col)
text(st_coordinates(st_centroid(nc_j)), labels = nc_j$label, cex = .8)
plot(st_geometry(gr), border = 'green', add = TRUE)
par(opar)
st_filter keeps the geometries in x where .predicate(x,y) returns any match in y for x
st_filter(a, b)
for an anti-join, use the union of y
st_filter(a, st_union(b), .predicate = st_disjoint)

st_layers Return properties of layers in a datasource

Description

Return properties of layers in a datasource

Usage

st_layers(dsn, options = character(@), do_count = FALSE)

86

Arguments

dsn

options

do_count

Value

st_line_project_point

data source name (interpretation varies by driver - for some drivers, dsn is a file
name, but may also be a folder, or contain the name and access credentials of a
database)

character; driver dependent dataset open options, multiple options supported.

logical; if TRUE, count the features by reading them, even if their count is not
reported by the driver

list object of class sf_layers with elements

name name of the layer

geomtype list with for each layer the geometry types

features number of features (if reported; see do_count)

fields number of fields

crs list with for each layer the crs object

st_line_project_point Project point on linestring, interpolate along a linestring

Description

Project point on linestring, interpolate along a linestring

Usage

st_line_project(line, point, normalized = FALSE)

st_line_interpolate(line, dist, normalized = FALSE)

Arguments
line
point
normalized

dist

Details

object of class sfc with LINESTRING geometry
object of class sfc with POINT geometry
logical; if TRUE, use or return distance normalised to 0-1

numeric or units, vector with distance value(s), in units of the coordinates

arguments line, point and dist are recycled to common length when needed

st_line_sample 87

Value

st_line_project returns the distance(s) of point(s) along line(s), when projected on the line(s)

st_line_interpolate returns the point(s) at dist(s), when measured along (interpolated on) the
line(s)

Examples

st_line_project(st_as_sfc("LINESTRING (@ @, 10 10)"), st_as_sfc(c("POINT (@ ©)", "POINT (55)")))
st_line_project(st_as_sfc("LINESTRING (@ @, 10 10)"), st_as_sfc("POINT (5 5)"), TRUE)
st_line_interpolate(st_as_sfc(”"LINESTRING (@ @, 1 1)"), 1)
st_line_interpolate(st_as_sfc(”"LINESTRING (@ @, 1 1)"), 1, TRUE)

https://github.com/r-spatial/sf/issues/2542; use for geographic coordinates:

11 <- st_as_sfc("LINESTRING (10.1 50.1, 10.2 50.2)", crs = 'OGC:CRS84"')

dists = units::set_units(seq(@, sqrt(2)/10, length.out = 5), degrees)

st_line_interpolate(l1, dists)

st_line_sample Sample points on a linear geometry

Description

Sample points on a linear geometry

Usage

st_line_sample(x, n, density, type = "regular”, sample = NULL)

Arguments
X object of class sf, sfc or sfg
n integer; number of points to choose per geometry; if missing, n will be computed
as round(density * st_length(geom)).
density numeric; density (points per distance unit) of the sampling, possibly a vector of
length equal to the number of features (otherwise recycled); density may be of
class units.
type character; indicate the sampling type, either "regular” or "random"
sample numeric; a vector of numbers between 0 and 1 indicating the points to sample -
if defined sample overrules n, density and type.
Examples

1s = st_sfc(st_linestring(rbind(c(9,0),c(0,1))),
st_linestring(rbind(c(0,0),c(10,0))))
st_line_sample(ls, density = 1)

1s = st_sfc(st_linestring(rbind(c(9,0),c(0,1))),
st_linestring(rbind(c(0,0),c(.1,0))), crs = 4326)
try(st_line_sample(ls, density = 1/1000)) # error

88 st_make_grid

st_line_sample(st_transform(ls, 3857), n = 5) # five points for each line
st_line_sample(st_transform(ls, 3857), n = c(1, 3)) # one and three points
st_line_sample(st_transform(ls, 3857), density = 1/1000) # one per km
st_line_sample(st_transform(ls, 3857), density = c(1/1000, 1/10000)) # one per km, one per 10 km
st_line_sample(st_transform(ls, 3857), density = units::set_units(1, 1/km)) # one per km

five equidistant points including start and end:

st_line_sample(st_transform(ls, 3857), sample = c(@, 0.25, 0.5, 0.75, 1))

st_make_grid Create a regular tesselation over the bounding box of an sf or sfc ob-
ject

Description

Create a square or hexagonal grid covering the bounding box of the geometry of an sf or sfc object

Usage

st_make_grid(
X,
cellsize = c(diff(st_bbox(x)[c(1, 3)1), diff(st_bbox(x)[c(2, 4)1))/n,
offset = st_bbox(x)[c("xmin", "ymin")1],
n = c(19, 19),
crs = if (missing(x)) NA_crs_ else st_crs(x),
what = "polygons”,
square = TRUE,
flat_topped = FALSE

)
Arguments

X object of class sf or sfc

cellsize numeric of length 1 or 2 with target cellsize: for square or rectangular cells the
width and height, for hexagonal cells the distance between opposite edges (edge
length is cellsize/sqrt(3)). A length units object can be passed, or an area unit
object with area size of the square or hexagonal cell.

offset numeric of length 2; lower left corner coordinates (x, y) of the grid

n integer of length 1 or 2, number of grid cells in x and y direction (columns, rows)

crs object of class crs; coordinate reference system of the target grid in case argu-
ment x is missing, if x is not missing, its crs is inherited.

what character; one of: "polygons”, "corners”, or "centers”

square logical; if FALSE, create hexagonal grid

flat_topped logical; if TRUE generate flat topped hexagons, else generate pointy topped

st_m_range 89

Value

Object of class sfc (simple feature geometry list column) with, depending on what and square,
square or hexagonal polygons, corner points of these polygons, or center points of these polygons.

Examples

plot(st_make_grid(what = "centers"”), axes = TRUE)
plot(st_make_grid(what = "corners”), add = TRUE, col = 'green', pch=3)
sfc = st_sfc(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,0)))))
plot(st_make_grid(sfc, cellsize = .1, square = FALSE))

plot(sfc, add = TRUE)

non-default offset:

plot(st_make_grid(sfc, cellsize = .1, square = FALSE, offset = c(@, .05 / (sqrt(3)/2))))
plot(sfc, add = TRUE)

nc = st_read(system.file("shape/nc.shp”, package="sf"))

g = st_make_grid(nc)

plot(g)

plot(st_geometry(nc), add = TRUE)

glnc] selects cells that intersect with nc:

plot(glncl, col = '#ff000088', add = TRUE)

st_m_range Return 'm’ range of a simple feature or simple feature set

Description

Return m’ range of a simple feature or simple feature set

Usage
S3 method for class 'm_range'
is.na(x)
st_m_range(obj, ...)

S3 method for class 'POINT'
st_m_range(obj, ...)

S3 method for class 'MULTIPOINT'
st_m_range(obj, ...)

S3 method for class 'LINESTRING'
st_m_range(obj, ...)

S3 method for class 'POLYGON'
st_m_range(obj, ...)

S3 method for class 'MULTILINESTRING'

90

NA_m_range_
Arguments
X object of class m_range
obj object to compute the m range from

st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

S3 method for
st_m_range(obj,

L)

class

class

class

class

class

class

class

class

class

class

class

class

)

class

"MULTIPOLYGON'

'GEOMETRYCOLLECTION'

"MULTISURFACE'

"MULTICURVE'

'CURVEPOLYGON'

' COMPOUNDCURVE'

'POLYHEDRALSURFACE'

'"TIN'

"TRIANGLE'

"CIRCULARSTRING'

sfc

vs,f:l

"numeric'

., crs = NA_crs_)

ignored

st_m_range

st_nearest_feature 91

crs object of class crs, or argument to st_crs, specifying the CRS of this bounding
box.
Format

An object of class m_range of length 2.

Details

NA_m_range_ represents the missing value for a m_range object

Value

a numeric vector of length two, with mmin and mmax values; if obj is of class sf or sfc the object if
obj is of class sf or sfc the object returned has a class m_range

Examples

a = st_sf(a = 1:2, geom = st_sfc(st_point(0:3), st_point(1:4)), crs = 4326)
st_m_range(a)
st_m_range(c(mmin = 16.1, mmax = 16.6), crs = st_crs(4326))

st_nearest_feature get index of nearest feature

Description

get index of nearest feature

Usage

st_nearest_feature(
X,
’

check_crs = TRUE,
longlat = isTRUE(st_is_longlat(x))

)
Arguments
X object of class sfg, sfc or sf
y object of class sfg, sfc or sf; if missing, features in x will be compared to all
remaining features in x.
ignored
check_crs logical; should x and y be checked for CRS equality?

longlat logical; does x have ellipsoidal coordinates?

92 st_nearest_points

Value

for each feature (geometry) in x the index of the nearest feature (geometry) in set y, or in the
remaining set of x if y is missing; empty geometries result in NA indexes

See Also

st_nearest_points for finding the nearest points for pairs of feature geometries

Examples

1s1 = st_linestring(rbind(c(0,0), c(1,0)))
1s2 = st_linestring(rbind(c(0,0.1), c(1,0.1)))
1s3 = st_linestring(rbind(c(0,1), c(1,1)))

(1 = st_sfc(lsl, 1s2, 1s3))

pl = st_point(c(@.1, -0.1))
p2 = st_point(c(@.1, 0.11))
p3 = st_point(c(@.1, 0.09))
p4 = st_point(c(0.1, 0.9))

(p = st_sfc(pl, p2, p3, p4))
try(st_nearest_feature(p, 1))
try(st_nearest_points(p, l[st_nearest_feature(p,1)], pairwise = TRUE))

r = sqrt(2)/10

b1 = st_buffer(st_point(c(.1,.1)), r)

b2 = st_buffer(st_point(c(.9,.9)), r)

b3 = st_buffer(st_point(c(.9,.1)), r)

circles = st_sfc(b1, b2, b3)

plot(circles, col = NA, border = 2:4)

pts = st_sfc(st_point(c(.3,.1)), st_point(c(.6,.2)), st_point(c(.6,.6)), st_point(c(.4,.8)))

plot(pts, add = TRUE, col = 1)

draw points to nearest circle:

nearest = try(st_nearest_feature(pts, circles))

if (inherits(nearest, "try-error”)) # GEOS 3.6.1 not available
nearest = c(1, 3, 2, 2)

ls = st_nearest_points(pts, circles[nearest], pairwise = TRUE)

plot(ls, col = 5:8, add = TRUE)

compute distance between pairs of nearest features:

st_distance(pts, circles[nearest], by_element = TRUE)

st_nearest_points get nearest points between pairs of geometries

Description

get nearest points between pairs of geometries

st_nearest_points 93
Usage
st_nearest_points(x, y, ...)

S3 method for class 'sfc'
st_nearest_points(x, y, ..., pairwise = FALSE)

S3 method for class 'sfg'
st_nearest_points(x, y, ...)

S3 method for class 'sf'

st_nearest_points(x, y, ...)
Arguments
X object of class sfg, sfc or sf
y object of class sfg, sfc or sf
ignored
pairwise logical; if FALSE (default) return nearest points between all pairs, if TRUE, return

nearest points between subsequent pairs.

Details

in case x lies inside y, when using S2, the end points are on polygon boundaries, when using GEOS
the end point are identical to x.

Value

an sfc object with all two-point LINESTRING geometries of point pairs from the first to the second
geometry, of length x * y, with y cycling fastest. See examples for ideas how to convert these to
POINT geometries.

See Also

st_nearest_feature for finding the nearest feature

Examples

r =sqrt(2)/10
pt1 = st_point(c(.1,.1))
pt2 = st_point(c(.9,.9))

pt3 = st_point(c(.9,.1))
b1 = st_buffer(ptl, r)
b2 = st_buffer(pt2, r)

b3 = st_buffer(pt3, r)

(1s@ = st_nearest_points(bl, b2)) # sfg

(1s = st_nearest_points(st_sfc(b1), st_sfc(b2, b3))) # sfc

plot(b1, xlim = c(-.2,1.2), ylim = c(-.2,1.2), col = NA, border = 'green')
plot(st_sfc(b2, b3), add = TRUE, col = NA, border = 'blue')

plot(ls, add = TRUE, col = 'red')

94 st_normalize

nc = st_read(system.file("gpkg/nc.gpkg"”, package="sf"))
plot(st_geometry(nc))

1s = st_nearest_points(nc[1,], nc)

plot(ls, col = 'red', add = TRUE)

pts = st_cast(ls, "POINT") # gives all start & end points
starting, "from” points, corresponding to x:
plot(pts[seq(1, 200, 2)], add = TRUE, col = 'blue')

ending, "to" points, corresponding to y:
plot(pts[seq(2, 200, 2)], add = TRUE, col = 'green')

st_normalize Normalize simple features

Description

st_normalize transforms the coordinates in the input feature to fall between 0 and 1. By default
the current domain is set to the bounding box of the input, but other domains can be used as well

Usage
st_normalize(x, domain = st_bbox(x), ...)
Arguments
X object of class sf, sfc or sfg
domain The domain x should be normalized from as a length 4 vector of the form
c(xmin, ymin, xmax, ymax). Defaults to the bounding box of x
ignored
Examples

pl = st_point(c(7,52))
st_normalize(pl, domain = c(@, @, 10, 100))

p2 = st_point(c(-30,20))

sfc = st_sfc(pl, p2, crs = 4326)
sfc

sfc_norm <- st_normalize(sfc)
st_bbox(sfc_norm)

st_precision 95

st_precision Get precision

Description

Get precision

Set precision

Usage
st_precision(x)
st_set_precision(x, precision)

st_precision(x) <- value

Arguments
X object of class sfc or sf
precision numeric, or object of class units with distance units (but see details); see
st_as_binary for how to do this.
value precision value
Details

If precision is a units object, the object on which we set precision must have a coordinate refer-
ence system with compatible distance units.

Setting a precision has no direct effect on coordinates of geometries, but merely set an attribute
tag to an sfc object. The effect takes place in st_as_binary or, more precise, in the C++ func-
tion CPL_write_wkb, where simple feature geometries are being serialized to well-known-binary
(WKB). This happens always when routines are called in GEOS library (geometrical operations or
predicates), for writing geometries using st_write or write_sf, st_make_valid in package 1wgeom;
also aggregate and summarise by default union geometries, which calls a GEOS library function.
Routines in these libraries receive rounded coordinates, and possibly return results based on them.
st_as_binary contains an example of a roundtrip of sfc geometries through WKB, in order to see
the rounding happening to R data.

The reason to support precision is that geometrical operations in GEOS or liblwgeom may work
better at reduced precision. For writing data from R to external resources it is harder to think of a
good reason to limiting precision.

See Also

st_as_binary for an explanation of what setting precision does, and the examples therein.

96 st_read

Examples

x <= st_sfc(st_point(c(pi, pi)))
st_precision(x)

st_precision(x) <- 0.01
st_precision(x)

st_read Read simple features or layers from file or database

Description

Read simple features from file or database, or retrieve layer names and their geometry type(s)

Read PostGIS table directly through DBI and RPostgreSQL interface, converting Well-Know Bi-
nary geometries to sfc

Usage

st_read(dsn, layer, ...)

S3 method for class 'character'
st_read(
dsn,
layer,
query = NA,
options = NULL,
quiet = FALSE,
geometry_column = 1L,
type = 0,
promote_to_multi = TRUE,
stringsAsFactors = sf_stringsAsFactors(),
int64_as_string = FALSE,
check_ring_dir = FALSE,
fid_column_name = character(0),
drivers = character(0),
wkt_filter = character(90),
optional = FALSE,
use_stream = default_st_read_use_stream()

)
read_sf (..., quiet = TRUE, stringsAsFactors = FALSE, as_tibble = TRUE)

S3 method for class 'DBIObject'’
st_read(

dsn = NULL,

layer = NULL,

st_read 97

query = NULL,
EWKB = TRUE,
quiet = TRUE,

as_tibble = FALSE,
geometry_column = NULL,

Arguments

dsn data source name (interpretation varies by driver - for some drivers, dsn is a file
name, but may also be a folder, or contain the name and access credentials of
a database); in case of GeoJSON, dsn may be the character string holding the
geojson data. It can also be an open database connection.

layer layer name (varies by driver, may be a file name without extension); in case
layer is missing, st_read will read the first layer of dsn, give a warning and
(unless quiet = TRUE) print a message when there are multiple layers, or give
an error if there are no layers in dsn. If dsn is a database connection, then layer
can be a table name or a database identifier (see Id). It is also possible to omit
layer and rather use the query argument.

parameter(s) passed on to st_as_sf
query SQL query to select records; see details

options character; driver dependent dataset open options, multiple options supported.
For possible values, see the "Open options" section of the GDAL documen-
tation of the corresponding driver, and https://github.com/r-spatial/sf/
issues/1157 for an example.

quiet logical; suppress info on name, driver, size and spatial reference, or signaling no
or multiple layers

geometry_column
integer or character; in case of multiple geometry fields, which one to take?

type integer; ISO number of desired simple feature type; see details. If left zero, and
promote_to_multi is TRUE, in case of mixed feature geometry types, conver-
sion to the highest numeric type value found will be attempted. A vector with
different values for each geometry column can be given.

promote_to_multi
logical; in case of a mix of Point and MultiPoint, or of LineString and Multi-
LineString, or of Polygon and MultiPolygon, convert all to the Multi variety;
defaults to TRUE

stringsAsFactors
logical; logical: should character vectors be converted to factors? Default for
read_sf or R version >= 4.1.0 is FALSE, for st_read and R version < 4.1.0
equal to default.stringsAsFactors()

int64_as_string
logical; if TRUE, Int64 attributes are returned as string; if FALSE, they are returned
as double and a warning is given when precision is lost (i.e., values are larger
than 2/53).

https://github.com/r-spatial/sf/issues/1157
https://github.com/r-spatial/sf/issues/1157

98 st_read

check_ring_dir logical; if TRUE, polygon ring directions are checked and if necessary corrected
(when seen from above: exterior ring counter clockwise, holes clockwise)
fid_column_name
character; name of column to write feature IDs to; defaults to not doing this

drivers character; limited set of driver short names to be tried (default: try all)
wkt_filter character; WKT representation of a spatial filter (may be used as bounding box,
selecting overlapping geometries); see examples

optional logical; passed to as.data.frame; always TRUE when as_tibble is TRUE
use_stream Use TRUE to use the experimental columnar interface introduced in GDAL 3.6.
as_tibble logical; should the returned table be of class tibble or data.frame?
EWKB logical; is the WKB of type EWKB? if missing, defaults to TRUE

Details

for geometry_column, see also https://gdal.org/en/latest/development/rfc/rfc4l_multiple_
geometry_fields.html

for values for type see https://en.wikipedia.org/wiki/Well-known_text_representation_
of _geometry#Well-known_binary, but note that not every target value may lead to successful
conversion. The typical conversion from POLYGON (3) to MULTIPOLYGON (6) should work;
the other way around (type=3), secondary rings from MULTIPOLYGONS may be dropped without
warnings. promote_to_multi is handled on a per-geometry column basis; type may be specified
for each geometry column.

Note that stray files in data source directories (such as *.dbf) may lead to spurious errors that
accompanying * . shp are missing.

In case of problems reading shapefiles from USB drives on OSX, please see https://github.
com/r-spatial/sf/issues/252. Reading shapefiles (or other data sources) directly from zip files
can be done by prepending the path with /vsizip/. This is part of the GDAL Virtual File Systems
interface that also supports .gz, curl, and other operations, including chaining; see https://gdal.
org/en/latest/user/virtual_file_systems.html for a complete description and examples.

For query with a character dsn the query text is handed to ’ExecuteSQL’ on the GDAL/OGR
data set and will result in the creation of a new layer (and layer is ignored). See ’OGRSQL’
https://gdal.org/en/latest/user/ogr_sql_dialect.html for details. Please note that the
’FID’ special field is driver-dependent, and may be either 0-based (e.g. ESRI Shapefile), 1-based
(e.g. Maplnfo) or arbitrary (e.g. OSM). Other features of OGRSQL are also likely to be driver
dependent. The available layer names may be obtained with st_layers. Care will be required to
properly escape the use of some layer names.

read_sf and write_sf are aliases for st_read and st_write, respectively, with some modified
default arguments. read_sf and write_sf are quiet by default: they do not print information about
the data source. read_sf returns an sf-tibble rather than an sf-data.frame. write_sf delete layers
by default: it overwrites existing files without asking or warning.

if table is not given but query is, the spatial reference system (crs) of the table queried is only
available in case it has been stored into each geometry record (e.g., by PostGIS, when using EWKB)

The function will automatically find the geometry type columns for drivers that support it. For the
other drivers, it will try to cast all the character columns, which can be slow for very wide tables.

https://gdal.org/en/latest/development/rfc/rfc41_multiple_geometry_fields.html
https://gdal.org/en/latest/development/rfc/rfc41_multiple_geometry_fields.html
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Well-known_binary
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Well-known_binary
https://github.com/r-spatial/sf/issues/252
https://github.com/r-spatial/sf/issues/252
https://gdal.org/en/latest/user/virtual_file_systems.html
https://gdal.org/en/latest/user/virtual_file_systems.html
https://gdal.org/en/latest/user/ogr_sql_dialect.html

st_read 99

Value

object of class sf when a layer was successfully read; in case argument layer is missing and data
source dsn does not contain a single layer, an object of class sf_layers is returned with the layer
names, each with their geometry type(s). Note that the number of layers may also be zero.

Note

The use of system. file in examples make sure that examples run regardless where R is installed:
typical users will not use system.file but give the file name directly, either with full path or
relative to the current working directory (see getwd). "Shapefiles" consist of several files with the
same basename that reside in the same directory, only one of them having extension . shp.

See Also

st_layers, st_drivers

Examples

nc = st_read(system.file("shape/nc.shp”, package="sf"))
summary(nc) # note that AREA was computed using Euclidian area on lon/lat degrees

only three fields by select clause
only two features by where clause
nc_sgl = st_read(system.file("shape/nc.shp”, package="sf"),
query = "SELECT NAME, SID74, FIPS FROM \"nc\" WHERE BIR74 > 20000")

Not run:
library(sp)
example(meuse, ask = FALSE, echo = FALSE)
try(st_write(st_as_sf(meuse), "PG:dbname=postgis”, "meuse”,
layer_options = "OVERWRITE=true"))
try(st_meuse <- st_read("PG:dbname=postgis”, "meuse"))

if (exists("st_meuse"))
summary (st_meuse)

End(Not run)

Not run:
note that we need special escaping of layer within single quotes (nc.gpkg)
and that geom needs to be included in the select, otherwise we don't detect it
layer <- st_layers(system.file("gpkg/nc.gpkg", package = "sf"))$name[1]
nc_gpkg_sql = st_read(system.file("gpkg/nc.gpkg", package = "sf"),
query = sprintf ("SELECT NAME, SID74, FIPS, geom FROM \"%s\" WHERE BIR74 > 20000", layer))

End(Not run)

spatial filter, as wkt:

wkt = st_as_text(st_geometry(nc[1,]1))

filter by (bbox overlaps of) first feature geometry:

st_read(system.file("gpkg/nc.gpkg"”, package="sf"), wkt_filter = wkt)

read geojson from string:

geojson_txt <- paste("{\"type\":\"MultiPoint\",\"coordinates\":",
"[[3.2,4]1,[3,4.6]1,[3.8,4.41,[3.5,3.8]1,[3.4,3.61,[3.9,4.511}")

100 st_relate

x = st_read(geojson_txt)

X

Not run:

library(RPostgreSQL)

try(conn <- dbConnect(PostgreSQL(), dbname = "postgis"))
if (exists("conn") && !inherits(conn, "try-error")) {

x = st_read(conn, "meuse", query = "select * from meuse limit 3;")
x = st_read(conn, table = "public.meuse")

print(st_crs(x)) # SRID resolved by the database, not by GDAL!
dbDisconnect(conn)

}

End(Not run)

st_relate Compute DE9-IM relation between pairs of geometries, or match it to
a given pattern

Description

Compute DE9-IM relation between pairs of geometries, or match it to a given pattern

Usage

st_relate(x, y, pattern = NA_character_, sparse = !is.na(pattern))
Arguments

X object of class sf, sfc or sfg

y object of class sf, sfc or sfg

pattern character; define the pattern to match to, see details.

sparse logical; should a sparse matrix be returned (TRUE) or a dense matrix?
Value

In case patternis not given, st_relate returns a dense character matrix; element [i, j] has nine

characters, referring to the DE9-IM relationship between x[i] and y[j], encoded as Ixly,IxBy,IxEy,BxIly,BxBy,BxEy,Exly,E
where I refers to interior, B to boundary, and E to exterior, and e.g. Bxly the dimensionality of the

intersection of the the boundary of x[i] and the interior of y[j1, which is one of: 0, 1, 2, or F; digits

denoting dimensionality of intersection, F denoting no intersection. When pattern is given, a dense

logical matrix or sparse index list returned with matches to the given pattern; see st_intersects for a

description of the returned matrix or list. See also https://en.wikipedia.org/wiki/DE-9IM for

further explanation.

https://en.wikipedia.org/wiki/DE-9IM

st_sample 101

Examples

pl = st_point(c(0,0))

p2 = st_point(c(2,2))

poll = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0)))) - 0.5
pol2 = poll + 1

pol3 = poll + 2

st_relate(st_sfc(p1, p2), st_sfc(poll, pol2, pol3))

sfc = st_sfc(st_point(c(@,0)), st_point(c(3,3)))

grd = st_make_grid(sfc, n = c(3,3))

st_intersects(grd)

st_relate(grd, pattern = "xx*x1x*%xx") # sides, not corners, internals
st_relate(grd, pattern = "**xxx@xxx*") # only corners touch
st_rook = function(a, b = a) st_relate(a, b, pattern = "Fx*x1xx*x")

st_rook(grd)
queen neighbours, see \url{https://github.com/r-spatial/sf/issues/234#issuecomment-300511129}

st_queen <- function(a, b = a) st_relate(a, b, pattern = "Fx*xTx*xxx")
st_sample sample points on or in (sets of) spatial features
Description

Sample points on or in (sets of) spatial features. By default, returns a pre-specified number of
points that is equal to size (if type = "random” and exact = TRUE) or an approximation of size
otherwise. spatstat methods are interfaced and do not use the size argument, see examples.

Usage
st_sample(x, size, ...)

S3 method for class 'sf'
st_sample(x, size, ...)

S3 method for class 'sfc'

st_sample(
X,
size,
type = "random”,
exact = TRUE,

warn_if_not_integer = TRUE,
by_polygon = FALSE,
progress = FALSE,

force = FALSE

S3 method for class 'sfg'
st_sample(x, size, ...)

102

st_sample

S3 method for class 'bbox'

st_sample(
X7
size,

L

great_circles = FALSE,

segments = units::set_units(2, "degree"”, mode = "standard")
)
Arguments

X object of class sf or sfc

size sample size(s) requested; either total size, or a numeric vector with sample sizes
for each feature geometry. When sampling polygons, the returned sampling size
may differ from the requested size, as the bounding box is sampled, and sampled
points intersecting the polygon are returned.
passed on to sample for multipoint sampling, or to spatstat functions for
spatstat sampling types (see details)

type character; indicates the spatial sampling type; one of random, hexagonal (tri-
angular really), regular, Fibonacci, or one of the spatstat methods such as
Thomas for calling spatstat.random: : rThomas (see Details).

exact logical; should the length of output be exactly

warn_if_not_integer

by_polygon

progress

force

great_circles

segments

Details

logical; if FALSE then no warning is emitted if size is not an integer

logical; for MULTIPOLYGON geometries, should the effort be split by POLYGON?
See https://github.com/r-spatial/sf/issues/1480 the same as specified by size?
TRUE by default. Only applies to polygons, and when type = "random”.

logical; if TRUE show progress bar (only if size is a vector).

logical; if TRUE continue when the sampled bounding box area is more than le4
times the area of interest, else (default) stop with an error. If this error is not
justified, try setting oriented=TRUE, see details.

logical; if TRUE, great circle arcs are used to connect the bounding box vertices,
if FALSE parallels (graticules)

units, or numeric (degrees); segment sizes for segmenting a bounding box poly-
gon if great_circles is FALSE

The function is vectorised: it samples size points across all geometries in the object if size is a
single number, or the specified number of points in each feature if size is a vector of integers equal
in length to the geometry of x.

if x has dimension 2 (polygons) and geographical coordinates (long/lat), uniform random sampling
on the sphere is applied, see e.g. https://mathworld.wolfram.com/SpherePointPicking.html.

For regular or hexagonal sampling of polygons, the resulting size is only an approximation.

https://mathworld.wolfram.com/SpherePointPicking.html

st_sample 103

As parameter called of fset can be passed to control ("fix") regular or hexagonal sampling: for
polygons a length 2 numeric vector (by default: a random point from st_bbox(x)); for lines use a
number like runif (1).

Fibonacci sampling see: Alvaro Gonzalez, 2010. Measurement of Areas on a Sphere Using Fi-
bonacci and Latitude-Longitude Lattices. Mathematical Geosciences 42(1), p. 49-64

For regular sampling on the sphere, see also geosphere: :regularCoordinates.

Sampling methods from package spatstat are interfaced (see examples), and need their own pa-
rameters to be set. For instance, to use spatstat.random: :rThomas(), set type = "Thomas".

For sampling polygons one can specify oriented=TRUE to make sure that polygons larger than half
the globe are not reverted, e.g. when specifying a polygon from a bounding box of a global dataset.
The st_sample method for bbox does this by default.

Value

an sfc object containing the sampled POINT geometries

Examples

nc = st_read(system.file("shape/nc.shp”, package="sf"))
p1 st_sample(nc[1:3, 1, 6)
p2 = st_sample(nc[1:3, 1, 1:3)
plot(st_geometry(nc)[1:3])
plot(pl, add = TRUE)
plot(p2, add = TRUE, pch = 2)
x = st_sfc(st_polygon(list(rbind(c(@,0),c(90,0),c(90,90),c(0,90),c(0,0)))), crs = st_crs(4326))
plot(x, axes = TRUE, graticule = TRUE)
if (compareVersion(sf_extSoftVersion()["proj.4"1, "4.9.0") >= 0)
plot(p <- st_sample(x, 1000), add = TRUE)
if (require(lwgeom, quietly = TRUE)) { # for st_segmentize()
x2 = st_transform(st_segmentize(x, 1e4), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
g = st_transform(st_graticule(), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
plot(x2, graticule = g)
if (compareVersion(sf_extSoftVersion()["proj.4"1, "4.9.0") >= @) {
p2 = st_transform(p, st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
plot(p2, add = TRUE)
}
3
x = st_sfc(st_polygon(list(rbind(c(@,0),c(90,0),c(90,10),c(0,90),c(0,0))))) # NOT long/lat:
plot(x)
p_exact = st_sample(x, 1000, exact = TRUE)
p_not_exact = st_sample(x, 1000, exact = FALSE)
length(p_exact); length(p_not_exact)
plot(st_sample(x, 1000), add = TRUE)
x = st_sfc(st_polygon(list(rbind(c(-180,-90),c(180,-90),c(180,90),c(-180,90),c(-180,-90)))),
crs=st_crs(4326))
FIXME:
#if (compareVersion(sf_extSoftVersion()["proj.4"]1, "4.9.0") >= 0) {
p = st_sample(x, 1000)
st_sample(p, 3)
#

104 st_shift_longitude

hexagonal:

sfc = st_sfc(st_polygon(list(rbind(c(@,0), c(1,0), c(1,1), c(0,0)))))

plot(sfc)

h = st_sample(sfc, 100, type = "hexagonal”)

h1 = st_sample(sfc, 100, type = "hexagonal")

plot(h, add = TRUE)

plot(hl, col = 'red', add = TRUE)

c(length(h), length(hl)) # approximate!

pt = st_multipoint(matrix(1:20,,2))

1s = st_sfc(st_linestring(rbind(c(9,0),c(0,1))),
st_linestring(rbind(c(0,0),c(.1,0))),
st_linestring(rbind(c(@,1),c(.1,1))),
st_linestring(rbind(c(2,2),c(2,2.00001))))

st_sample(ls, 80)

plot(st_sample(ls, 80))

spatstat example:

if (require(spatstat.random)) {
x <- sf::st_sfc(sf::st_polygon(list(rbind(c(@, @), c(10, @), c(10, 10), c(0, 0)))))
for spatstat.random::rThomas(), set type = "Thomas”:
pts <- st_sample(x, kappa = 1, mu = 10, scale = 0.1, type = "Thomas")

3

bbox = st_bbox(

c(xmin = @, xmax = 40, ymax = 70, ymin = 60),

crs = st_crs('0GC:CRS84")

)

set.seed(13531)

s1 = st_sample(bbox, 400)

st_bbox(s1) # within bbox

s2 = st_sample(bbox, 400, great_circles = TRUE)

st_bbox(s2) # outside bbox

st_shift_longitude Shift or re-center geographical coordinates for a Pacific view

Description

All longitudes < 0 are added to 360, to avoid for instance parts of Alaska being represented on
the far left and right of a plot because they have values straddling 180 degrees. In general, using
a projected coordinate reference system is to be preferred, but this method permits a geographical
coordinate reference system to be used. This is the sf equivalent of recenter in the sp package and
ST_ShiftLongitude in PostGIS.

Usage
st_shift_longitude(x)

S3 method for class 'sfc'
st_shift_longitude(x, ...)

S3 method for class 'sf'
st_shift_longitude(x, ...)

st_transform 105

Arguments
X object of class sf or sfc
ignored
Examples
sfc

ptl = st_point(c(-170, 50))
pt2 = st_point(c(170, 50))
(sfc = st_sfc(ptl, pt2))
sfc = st_set_crs(sfc, 4326)
st_shift_longitude(sfc)

sf
d = st_as_sf(data.frame(id = 1:2, geometry = sfc))
st_shift_longitude(d)

st_transform Transform or convert coordinates of simple feature

Description

Transform or convert coordinates of simple feature

Usage

st_can_transform(src, dst)
st_transform(x, crs, ...)

S3 method for class 'sfc'
st_transform(
X,
crs = st_crs(x),
aoi = numeric(Q),
pipeline = character(9),
reverse = FALSE,
desired_accuracy = -1,
allow_ballpark = TRUE,
partial = TRUE,
check = FALSE

S3 method for class 'sf'
st_transform(x, crs = st_crs(x), ...)

106 st_transform

S3 method for class 'sfg'
st_transform(x, crs = st_crs(x), ...)

S3 method for class 'bbox'
st_transform(x, crs, ..., densify = 21)

st_wrap_dateline(x, options, quiet)

S3 method for class 'sfc'

st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)
S3 method for class 'sf'
st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)

S3 method for class 'sfg'
st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)

sf_proj_info(type = "proj", path)

Arguments

src source Crs

dst destination crs

X object of class sf, sfc or sfg

crs target coordinate reference system: object of class crs, or input string for st_crs
ignored

aoi area of interest, in degrees: WestLongitude, SouthLatitude, EastLongitude, North-
Latitude

pipeline character; coordinate operation pipeline, for overriding the default operation

reverse boolean; has only an effect when pipeline is defined: if TRUE, the inverse

operation of the pipeline is applied

desired_accuracy
numeric; Only coordinate operations that offer an accuracy of at least the one
specified will be considered; a negative value disables this feature (requires

GDAL >=3.3)
allow_ballpark logical; are ballpark (low accuracy) transformations allowed? (requires GDAL
>=3.3)
partial logical; allow for partial projection, if not all points of a geometry can be pro-
jected (corresponds to setting environment variable OGR_ENABLE_PARTIAL_REPROJECTION
to TRUE)
check logical; if TRUE, perform a sanity check on resulting polygons
densify integer, number of points for discretizing lines between bounding box corner
points; see Details
options character; should have "WRAPDATELINE=YES" to function; another parame-

ter that is used is "DATELINEOFFSET=10" (where 10 is the default value)

st_transform 107

quiet logical; print options after they have been parsed?
type character; one of have_datum_files, proj, ellps, datum, units, path, or
prime_meridians; see Details.
path character; PROJ search path to be set
Details

st_can_transform returns a boolean indicating whether coordinates with CRS src can be trans-
formed into CRS dst

Transforms coordinates of object to new projection. Features that cannot be transformed are re-
turned as empty geometries. Transforms using the pipeline= argument may fail if there is ambi-
guity in the axis order of the specified coordinate reference system; if you need the traditional GIS
order, use "0OGC:CRS84", not "EPSG:4326". Extra care is needed with the ESRI Shapefile format,
because WKT1 does not store axis order unambiguously.

The st_transform method for sfg objects assumes that the CRS of the object is available as an
attribute of that name.

the method for bbox objects densifies lines for geographic coordinates along Cartesian lines, not
great circle arcs

For a discussion of using options, see https://github.com/r-spatial/sf/issues/280 and
https://github.com/r-spatial/sf/issues/1983

sf_proj_info lists the available projections, ellipses, datums, units, or data search path of the PROJ
library when type is equal to proj, ellps, datum, units or path; when type equals have_datum_files
a boolean is returned indicating whether datum files are installed and accessible (checking for
conus). path returns the PROJ_INFO. searchpath field directly, as a single string with path sepa-
raters (: or ;).

for PROJ >= 6, sf_proj_info does not provide option type = "datums”. PROJ < 6 does not
provide the option type = "prime_meridians”.

for PROJ >= 7.1.0, the "units" query of sf_proj_info returns the to_meter variable as numeric,
previous versions return a character vector containing a numeric expression.

See Also

st_transform_proj, part of package lwgeom.
sf_project projects a matrix of coordinates, bypassing GDAL altogether

st_break_antimeridian

Examples

pl st_point(c(7,52))

p2 = st_point(c(-30,20))

sfc = st_sfc(pl, p2, crs = 4326)

sfc

st_transform(sfc, 3857)

st_transform(st_sf(a=2:1, geom=sfc), "EPSG:3857")

if (compareVersion(sf_extSoftVersion()["GDAL"], "3.0.0") >= 0) {
st_transform(sfc, pipeline =

https://github.com/r-spatial/sf/issues/280
https://github.com/r-spatial/sf/issues/1983

108 st_viewport

"+proj=pipeline +step +proj=axisswap +order=2,1") # reverse axes
st_transform(sfc, pipeline =
"+proj=pipeline +step +proj=axisswap +order=2,1", reverse = TRUE) # also reverse axes
}
nc = st_read(system.file("shape/nc.shp”, package="sf"))
st_area(nc[1,]) # area from long/lat
st_area(st_transform(nc[1,], 32119)) # NC state plane, m
st_area(st_transform(nc[1,], 2264)) # NC state plane, US foot
library(units)
set_units(st_area(st_transform(nc[1,], 2264)), m"2)
st_transform(structure(pl, proj4string = "EPSG:4326"), "EPSG:3857")
st_wrap_dateline(st_sfc(st_linestring(rbind(c(-179,0),c(179,0))), crs = 4326))
sf_proj_info("datum”)

st_viewport Create viewport from sf, sfc or sfg object

Description

Create viewport from sf, sfc or sfg object

Usage

st_viewport(x, ..., bbox = st_bbox(x), asp)
Arguments

X object of class sf, sfc or sfg object

parameters passed on to viewport

bbox the bounding box used for aspect ratio

asp numeric; target aspect ratio (y/x), see Details
Details

parameters width, height, xscale and yscale are set such that aspect ratio is honoured and plot
size is maximized in the current viewport; others can be passed as . . .

If asp is missing, it is taken as 1, except when isTRUE(st_is_longlat(x)), in which case it is set
to 1.0 /cos(y), with y the middle of the latitude bounding box.

Value

The output of the call to viewport

st_write 109

Examples

library(grid)

nc = st_read(system.file("shape/nc.shp”, package="sf"))

grid.newpage()

pushViewport(viewport(width = .8, height = 0.8))

pushViewport(st_viewport(nc))

invisible(lapply(st_geometry(nc), function(x) grid.draw(st_as_grob(x, gp = gpar(fill = 'red')))))

st_write Write simple features object to file or database

Description

Write simple features object to file or database

Usage

st_write(obj, dsn, layer, ...)

S3 method for class 'sfc'
st_write(obj, dsn, layer, ...)

S3 method for class 'sf'
st_write(
obj,
dsn,
layer = NULL,
driver = guess_driver_can_write(dsn),
dataset_options = NULL,
layer_options = NULL,
quiet = FALSE,
factorsAsCharacter = TRUE,
append = NA,
delete_dsn = FALSE,
delete_layer = !is.na(append) && !append,
fid_column_name = NULL,
config_options = character(@)

)

S3 method for class 'data.frame’

st_write(obj, dsn, layer = NULL, ...)

write_sf(..., quiet = TRUE, append = FALSE, delete_layer = !append)
st_delete(

dsn,

110

st_write

layer = character(0),
driver = guess_driver_can_write(dsn),

quiet = FALSE

)

Arguments

obj

dsn

layer

driver

dataset_options

layer_options

object of class sf or sfc

data source name. Interpretation varies by driver: can be a filename, a folder, a
database name, or a Database Connection (we officially test support for RPostgres
connections).

layer name. Varies by driver, may be a file name without extension; for database
connection, it is the name of the table. If layer is missing, the basename of dsn
is taken.

other arguments passed to dbWriteTable when dsn is a Database Connection

character; name of driver to be used; if missing and dsn is not a Database Con-
nection, a driver name is guessed from dsn; st_drivers() returns the drivers
that are available with their properties; links to full driver documentation are
found at https://gdal.org/en/latest/drivers/vector/index.html

character; driver dependent dataset creation options; multiple options supported.

character; driver dependent layer creation options; multiple options supported.

::Postgres()

quiet logical; suppress info on name, driver, size and spatial reference
factorsAsCharacter
logical; convert factor levels to character strings (TRUE, default), otherwise into
numbers when factorsAsCharacter is FALSE. For database connections, factorsAsCharacter
is always TRUE.
append logical; should we append to an existing layer, or replace it? if TRUE append, if
FALSE replace. The default for st_write is NA which raises an error if the layer
exists. The default for write_sf is FALSE, which overwrites any existing data.
See also next two arguments for more control on overwrite behavior.
delete_dsn logical; delete data source dsn before attempting to write?

delete_layer

fid_column_name

logical; delete layer layer before attempting to write? The default for st_write
is FALSE which raises an error if the layer exists. The default for write_sf is
TRUE.

character, name of column with feature IDs; if specified, this column is no longer
written as feature attribute.

config_options character, named vector with GDAL config options

Details

Columns (variables) of a class not supported are dropped with a warning.

When updating an existing layer, records are appended to it if the updating object has the right
variable names and types. If names don’t match an error is raised. If types don’t match, behaviour
is undefined: GDAL may raise warnings or errors or fail silently.

https://gdal.org/en/latest/drivers/vector/index.html

st zm 111

When deleting layers or data sources is not successful, no error is emitted. delete_dsn and
delete_layer should be handled with care; the former may erase complete directories or databases.

st_delete() deletes layer(s) in a data source, or a data source if layers are omitted; it returns TRUE
on success, FALSE on failure, invisibly.

Value

obj, invisibly

See Also
st_drivers, dbWriteTable

Examples

nc = st_read(system.file("shape/nc.shp”, package="sf"))

st_write(nc, paste@(tempdir(), "/", "nc.shp"))

st_write(nc, paste@(tempdir(), "/", "nc.shp"), delete_layer = TRUE) # overwrites

if (require(sp, quietly = TRUE)) {

data(meuse, package = "sp") # loads data.frame from sp

meuse_sf = st_as_sf(meuse, coords = c("x", "y"), crs = 28992)

writes X and Y as columns:

st_write(meuse_sf, paste@(tempdir(), "/", "meuse.csv"), layer_options = "GEOMETRY=AS_XY")

st_write(meuse_sf, paste@(tempdir(), "/", "meuse.csv"), layer_options = "GEOMETRY=AS_WKT",
delete_dsn=TRUE) # overwrites

Not run:

library(sp)

example(meuse, ask = FALSE, echo = FALSE)
try(st_write(st_as_sf(meuse), "PG:dbname=postgis”, "meuse_sf",

layer_options = c("OVERWRITE=yes", "LAUNDER=true")))
demo(nc, ask = FALSE)
try(st_write(nc, "PG:dbname=postgis”, "sids", layer_options = "OVERWRITE=true"))

End(Not run)
3

st_zm Drop or add Z and/or M dimensions from feature geometries

Description

Drop Z and/or M dimensions from feature geometries, resetting classes appropriately

Usage

st_zm(x, ..., drop = TRUE, what = "ZM")

112

Arguments
X object of class sfg, sfc or sf
ignored
drop logical; drop, or (FALSE) add?
what character which dimensions to drop or add
Details

st_z_range

Only combinations drop=TRUE, what = "ZM", and drop=FALSE, what="Z" are supported so far. In
the latter case, x should have XY geometry, and zero values are added for the Z dimension.

Examples

st_zm(st_linestring(matrix(1:32,8)))

x = st_sfc(st_linestring(matrix(1:32,8)), st_linestring(matrix(1:8,2)))

st_zm(x)

a = st_sf(a = 1:2, geom=x)

st_zm(a)

st_z_range

Return 'z’ range of a simple feature or simple feature set

Description

Return ’z’ range of a simple feature or simple feature set

Usage

S3 method for
is.na(x)

st_z_range(obj,

S3 method for
st_z_range(obj,

S3 method for
st_z_range(obj,

S3 method for
st_z_range(obj,

S3 method for
st_z_range(obj,

S3 method for

class

class

class

class

class

class

'z_range'

"POINT'

"MULTIPOINT'

"LINESTRING'

"POLYGON'

"MULTILINESTRING'

st_z_range 113

st_z_range(obj, ...)

S3 method for class '"MULTIPOLYGON'
st_z_range(obj, ...)

S3 method for class 'GEOMETRYCOLLECTION'
st_z_range(obj, ...)

S3 method for class 'MULTISURFACE'
st_z_range(obj, ...)

S3 method for class 'MULTICURVE'
st_z_range(obj, ...)

S3 method for class 'CURVEPOLYGON'
st_z_range(obj, ...)

S3 method for class 'COMPOUNDCURVE'
st_z_range(obj, ...)

S3 method for class 'POLYHEDRALSURFACE'
st_z_range(obj, ...)

S3 method for class 'TIN'
st_z_range(obj, ...)

S3 method for class 'TRIANGLE'
st_z_range(obj, ...)

S3 method for class 'CIRCULARSTRING'
st_z_range(obj, ...)

S3 method for class 'sfc'
st_z_range(obj, ...)

S3 method for class 'sf'
st_z_range(obj, ...)

S3 method for class 'numeric'

st_z_range(obj, ..., crs = NA_crs_)
NA_z_range_
Arguments
X object of class z_range
obj object to compute the z range from

ignored

114 summary.sfc

crs object of class crs, or argument to st_crs, specifying the CRS of this bounding
box.

Format

An object of class z_range of length 2.

Details

NA_z_range_ represents the missing value for a z_range object

Value

a numeric vector of length two, with zmin and zmax values; if obj is of class sf or sfc the object
returned has a class z_range

Examples

a = st_sf(a = 1:2, geom = st_sfc(st_point(0:2), st_point(1:3)), crs = 4326)
st_z_range(a)
st_z_range(c(zmin = 16.1, zmax = 16.6), crs = st_crs(4326))

summary.sfc Summarize simple feature column

Description

Summarize simple feature column

Usage
S3 method for class 'sfc'
summary(object, ..., maxsum = 7L, maxp4s = 10L)
Arguments
object object of class sfc
ignored
maxsum maximum number of classes to summarize the simple feature column to

maxp4s maximum number of characters to print from the PROJ string

tibble 115

tibble Summarize simple feature type for tibble

Description

Summarize simple feature type / item for tibble

Usage

type_sum.sfc(x, ...)
obj_sum.sfc(x)

pillar_shaft.sfc(x, ...)

Arguments
X object of class sfc
ignored
Details
see type_sum
tidyverse Tidyverse methods for sf objects

Description

Tidyverse methods for sf objects. Geometries are sticky, use as.data.frame to let dplyr’s own
methods drop them. Use these methods after loading the tidyverse package with the generic (or
after loading package tidyverse).

Usage
filter.sf(.data, ..., .dots)
arrange.sf(.data, ..., .dots)
group_by.sf(.data, ..., add = FALSE)
ungroup.sf(x, ...)

rowwise.sf(x, ...)

116 tidyverse

mutate.sf(.data, ..., .dots)
transmute.sf(.data, ..., .dots)
select.sf(.data, ...)
rename.sf(.data, ...)
rename_with.sf(.data, .fn, .cols, ...)
slice.sf(.data, ..., .dots)
summarise.sf(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE)
distinct.sf(.data, ..., .keep_all = FALSE, exact = FALSE, par = 0)
gather.sf(
data,
key,
value,
ha.rm = FALSE,

convert = FALSE,
factor_key = FALSE

)

pivot_longer.sf(
data,
cols,
names_to = "name”,

names_prefix = NULL,

names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique”,
values_to = "value”,
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,

)

pivot_wider.sf(
data,
id_cols = NULL,
id_expand = FALSE,

tidyverse 117

names_from = name,

nn

names_prefix = ,
names_sep = "_",
names_glue = NULL,

names_sort = FALSE,

names_vary = "fastest"”,
names_expand = FALSE,
names_repair = "check_unique”,

values_from = value,
values_fill = NULL,
values_fn = NULL,
unused_fn = NULL

)
spread.sf(
data,
key,
value,
fill = NA,
convert = FALSE,
drop = TRUE,
sep = NULL
)

sample_n.sf(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame())

sample_frac.sf(
tbl,
size = 1,
replace = FALSE,
weight = NULL,
.env = parent.frame()

)
group_split.sf(.tbl, ..., .keep = TRUE)
nest.sf(.data, ...)

separate.sf(
data,
col,
into,
sep = "[*[:alnum:]]+",
remove = TRUE,
convert = FALSE,
extra = "warn",
fill = "warn",

118 tidyverse

)

separate_rows.sf(data, ..., sep = "[*[:alnum:]]+", convert = FALSE)
unite.sf(data, col, ..., sep = "_", remove = TRUE)

unnest.sf(data, ..., .preserve = NULL)

drop_na.sf(x, ...)

inner_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
left_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
right_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
full_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
semi_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

n n

(X", "y"y, D)

anti_join.sf(x, y, by = NULL, copy = FALSE, suffix

Arguments

.data data object of class sf
other arguments

.dots see corresponding function in package dplyr

add see corresponding function in dplyr

X,y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

.fn, .cols see original docs

do_union logical; in case summary does not create a geometry column, should geome-
tries be created by unioning using st_union, or simply by combining using
st_combine? Using st_union resolves internal boundaries, but in case of union-
ing points, this will likely change the order of the points; see Details.

is_coverage logical; if do_union is TRUE, use an optimized algorithm for features that form
a polygonal coverage (have no overlaps)

.keep_all see corresponding function in dplyr

exact logical; if TRUE use st_equals_exact for geometry comparisons

par numeric; passed on to st_equals_exact

data see original function docs

key see original function docs

value see original function docs

na.rm see original function docs

tidyverse

convert
factor_key

cols

119

see separate_rows
see original function docs

see original function docs

names_to, names_pattern, names_ptypes, names_transform

see tidyr::pivot_longer()

names_prefix, names_sep, names_repair

see original function docs.

values_to, values_drop_na, values_ptypes, values_transform

See tidyr::pivot_longer()

id_cols, id_expand, names_from, names_sort, names_glue, names_vary,

names_expand

see tidyr: :pivot_wider()

values_from, values_fill, values_fn, unused_fn

fill
drop
sep
tbl
size
replace
weight
.env
.tbl
.keep
col
into
remove
extra

.preserve

by

see tidyr::pivot_wider()
see original function docs
see original function docs
see separate_rows

see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see original function docs
see separate

see separate

see separate

see separate

see unnest

A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a==b, c ==d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.

120 tidyverse

For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" ="y_a", "x_b" ="y_b").

To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Details

select keeps the geometry regardless whether it is selected or not; to deselect it, first pipe through
as.data. frame to let dplyr’s own select drop it.

In case one or more of the arguments (expressions) in the summarise call creates a geometry list-
column, the first of these will be the (active) geometry of the returned object. If this is not the case,
a geometry column is created, depending on the value of do_union.

In case do_union is FALSE, summarise will simply combine geometries using c.sfg. When poly-
gons sharing a boundary are combined, this leads to geometries that are invalid; see for instance
https://github.com/r-spatial/sf/issues/681.

distinct gives distinct records for which all attributes and geometries are distinct; st_equals is
used to find out which geometries are distinct.

nest assumes that a simple feature geometry list-column was among the columns that were nested.

Value

an object of class sf

Examples

if (require(dplyr, quietly = TRUE)) {

nc = read_sf(system.file("shape/nc.shp”, package="sf"))

nc %>% filter (AREA > .1) %>% plot()

plot 10 smallest counties in grey:

st_geometry(nc) %>% plot()

nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area”)

nc2 <- nc %>% mutate(areal® = AREA/10)

nc %>% slice(1:2)

3
plot 10 smallest counties in grey:

if (require(dplyr, quietly = TRUE)) {

st_geometry(nc) %>% plot()

nc %>% select(AREA) %>% arrange(AREA) %>% slice(1:10) %>% plot(add
title("the ten counties with smallest area”)

}

if (require(dplyr, quietly = TRUE)) {

nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))

TRUE, col = 'grey')

https://github.com/r-spatial/sf/issues/681

transform.sf 121

nc %>% group_by(area_cl) %>% class()

3

if (require(dplyr, quietly = TRUE)) {

nc2 <- nc %>% mutate(areal® = AREA/10)

3

if (require(dplyr, quietly = TRUE)) {

nc %>% transmute(AREA = AREA/10) %>% class()

3

if (require(dplyr, quietly = TRUE)) {

nc %>% select(SID74, SID79) %>% names()

nc %>% select(SID74, SID79) %>% class()

3

if (require(dplyr, quietly = TRUE)) {

nc2 <- nc %>% rename(area = AREA)

3

if (require(dplyr, quietly = TRUE)) {

nc %>% slice(1:2)

3

if (require(dplyr, quietly = TRUE)) {

nc$area_cl = cut(nc$AREA, c(o, .1, .12, .15, .25))

nc.g <- nc %>% group_by(area_cl)

nc.g %>% summarise(mean(AREA))

nc.g %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))

nc %>% as.data.frame %>% summarise(mean(AREA))

3

if (require(dplyr, quietly = TRUE)) {

nclc(1:100, 1:10), 1 %>% distinct() %>% nrow()

3

if (require(tidyr, quietly = TRUE) && require(dplyr, quietly = TRUE) && "geometry” %in% names(nc)) {
nc %>% select(SID74, SID79) %>% gather("VAR", "SID", -geometry) %>% summary()

3

if (require(tidyr, quietly = TRUE) && require(dplyr, quietly = TRUE) && "geometry” %in% names(nc)) {
nc$row = 1:100 # needed for spread to work

nc %>% select(SID74, SID79, geometry, row) %>%
gather("VAR", "SID", -geometry, -row) %>%

spread(VAR, SID) %>% head()

3

if (require(tidyr, quietly = TRUE) && require(dplyr, quietly
storms.sf = st_as_sf(storms, coords = c("long”, "lat"), crs
X <- storms.sf %>% group_by(name, year) %>% nest

trs = lapply(x$data, function(tr) st_cast(st_combine(tr), "LINESTRING")[[111) %>%

st_sfc(crs = 4326)

trs.sf = st_sf(x[,1:2], trs)

plot(trs.sf["year"”], axes = TRUE)
3

TRUE)) {
4326)

transform.sf transform method for sf objects

122 valid

Description

Can be used to create or modify attribute variables; for transforming geometries see st_transform,
and all other functions starting with st_.

Usage
S3 method for class 'sf'
transform(~ _data~, ...)
Arguments
_data object of class sf

Further arguments of the form new_variable = expression

Examples

a = data.frame(x1 = 1:3, x2 = 5:7)

st_geometry(a) = st_sfc(st_point(c(0,0)), st_point(c(1,1)), st_point(c(2,2)))
transform(a, x1_sq = x1%2)

transform(a, x1_x2 = x1%x2)

valid Check validity or make an invalid geometry valid

Description

Checks whether a geometry is valid, or makes an invalid geometry valid
Usage
st_is_valid(x, ...)

S3 method for class 'sfc'
st_is_valid(x, ..., NA_on_exception = TRUE, reason = FALSE)

S3 method for class 'sf'
st_is_valid(x, ...)

S3 method for class 'sfg'
st_is_valid(x, ...)

st_make_valid(x, ...)

S3 method for class 'sfg'
st_make_valid(x, ...)

S3 method for class 'sfc'

valid 123

st_make_valid(
X’

D

oriented = FALSE,

s2_options = s2::s2_options(snap = s2::s2_snap_precision(1e+0d7), ...),
geos_method = "valid_structure”,
geos_keep_collapsed = TRUE
)
Arguments
X object of class sfg, sfc or sf

e passed on to s2_options
NA_on_exception
logical; if TRUE, for polygons that would otherwise raise a GEOS error (ex-
ception, e.g. for a POLYGON having more than zero but less than 4 points,
or a LINESTRING having one point) return an NA rather than raising an error,
and suppress warning messages (e.g. about self-intersection); if FALSE, regular
GEQOS errors and warnings will be emitted.

reason logical; if TRUE, return a character with, for each geometry, the reason for inva-
lidity, NA on exception, or "Valid Geometry" otherwise.

oriented logical; only relevant if st_is_longlat(x) is TRUE; see s2

s2_options only relevant if st_is_longlat(x) is TRUE; options for s2_rebuild, see s2_options
and Details.

geos_method character; either "valid_linework" (Original method, combines all rings into

a set of noded lines and then extracts valid polygons from that linework) or
"valid_structure" (Structured method, first makes all rings valid then merges
shells and subtracts holes from shells to generate valid result. Assumes that
holes and shells are correctly categorized.) (requires GEOS >=3.10.1)
geos_keep_collapsed

logical; When this parameter is not set to FALSE, the "valid_structure" method
will keep any component that has collapsed into a lower dimensionality. For
example, a ring collapsing to a line, or a line collapsing to a point (requires
GEOS >=3.10.1)

Details

For projected geometries, st_make_valid uses the lwgeom_makevalid method also used by the
PostGIS command ST_makevalid if the GEOS version linked to is smaller than 3.8.0, and otherwise
the version shipped in GEOS; for geometries having ellipsoidal coordinates s2::s2_rebuild is
being used.

if s2_options is not specified and x has a non-zero precision set, then this precision value will be
used as the value in s2_snap_precision, passed on to s2_options, rather than the 1e7 default.
Value

st_is_valid returns a logical vector indicating for each geometries of x whether it is valid. st_make_valid
returns an object with a topologically valid geometry.

124 vetrs

Object of the same class as x

Examples

p1 = st_as_sfc("POLYGON((® @, @ 10, 10 @, 10 10, @ 0))")

st_is_valid(p1)

st_is_valid(st_sfc(st_point(@:1), p1[[1]]1), reason = TRUE)

library(sf)

x = st_sfc(st_polygon(list(rbind(c(0,0),c(0.5,0),c(0.5,0.5),c(0.5,0),c(1,0),c(1,1),c(0,1),c(0,0)))))
suppressWarnings(st_is_valid(x))

y = st_make_valid(x)

st_is_valid(y)

y %>% st_cast()

vctrs vetrs methods for sf objects

Description

vetrs methods for sf objects
Usage
vec_ptype2.sfc(x, vy, ...)

Default S3 method:
vec_ptype2.sfc(x, vy, ..., x_arg = "x", y_arg = "y")

S3 method for class 'sfc'
vec_ptype2.sfc(x, vy, ...)

vec_cast.sfc(x, to, ...)

S3 method for class 'sfc'
vec_cast.sfc(x, to, ...)

Default S3 method:

vec_cast.sfc(x, to, ...)
Arguments
X,y Vector types.

These dots are for future extensions and must be empty.
x_arg,y_arg Argument names for x and y.

to Type to cast to. If NULL, x will be returned as is.

Index

x datasets cross_join(), 120
db_drivers, 10 crs(as), 6
extension_map, 10 CRS-method (as), 6
prefix_map, 42
st_agr, 54 data.frame, 7
st_bbox, 63 db_drivers, 10
st_crs, 73 dbDataType,DBIObject, sf-method
st_m_range, 89 (dbDataType,PostgreSQLConnection, sf-method),
st_z_range, 112 8
?join_by, 119 dbDataType,PostgreSQLConnection, sf-method,
[.data.frame, 46, 47 8
[.sf (sf), 45 dbWriteTable, 110, 111
[.sfc (sfc), 47 dbWriteTable,DBIObject,character,sf-method
$.crs(st_crs), 73 (dbWriteTable,PostgreSQLConnection,character,sf-me
9
aggregate, 5, 68, 95 dbWriteTable,PostgreSQLConnection,character,sf-method,
aggregate (aggregate.sf), 4 9
aggregate.sf, 4 dim.sgbp (sgbp), 50
anti_join.sf (tidyverse), 115 distinct.sf, I8
arrange.sf (tidyverse), 115 distinct.sf (tidyverse), 115
as, 6 dotsMethods, 7
as.data.frame, 98, 115 drop_na.sf (tidyverse), 115
as.data.frame.sgbp (sgbp), 50
as.matrix.sfg(st), 51 extension_map, 10
as.matrix.sgbp (sgbp), 50
as_Spatial (as), 6 filter.sf (tidyverse), 115
as_Spatial(), 6 format, 64
format.bbox (st_bbox), 63
bind, 7 format.crs (st_crs), 73
bind_cols, 7 format.sfg (st), 51
bpy.colors, 41 FULL_bbox_ (st_bbox), 63
full_join.sf (tidyverse), 115
c, 20
c.sfg, 5, 20, 120 gather.sf (tidyverse), 115
c.sfg(st), 51 gdal_addo, 11, 13
cbind, 7 gdal _utils, 11,12
cbind.sf (bind), 7 geos_binary_ops, 13
chull, 27 geos_binary_pred, 16
classIntervals, 39 geos_combine, 19
coerce (as), 6 geos_measures, 20

125

126

geos_query, 23

geos_unary, 24

get_key_pos (plot), 35
getwd, 99

group_by.sf (tidyverse), 115
group_split.sf (tidyverse), 115

head.sfg (st), 51

Id, 97

inner_join.sf (tidyverse), 115
interpolate_aw, 30
intersect, 15

is.na.bbox (st_bbox), 63
is.na.crs(st_crs), 73
is.na.m_range (st_m_range), 89
is.na.z_range (st_z_range), 112
is_driver_available, 31
is_driver_can, 32
is_geometry_column, 32

join_by(), 119

left_join, 84
left_join.sf (tidyverse), 115
lwgeom: :st_astext(), 62

map, 57

merge, 84

merge.sf, 33

mutate.sf (tidyverse), 115

NA_agr_ (st_agr), 54

NA_bbox_ (st_bbox), 63
NA_crs_ (st_crs), 73
NA_m_range_ (st_m_range), 89
NA_z_range_ (st_z_range), 112
nc, 33

nest.sf (tidyverse), 115

obj_sum.sfc (tibble), 115
Ops, 34
Ops.sgbp (sgbp), 50

par, 40

pillar_shaft.sfc (tibble), 115
pivot_longer.sf (tidyverse), 115
pivot_wider.sf (tidyverse), 115
plot, 35, 39

plot.window, 39

plot_sf, 39

plot_sf (plot), 35
points.sf (plot), 35
points.sfc (plot), 35
polypath, 40
prefix_map, 42
print.sf (sf), 45
print.sfg(st), 51
print.sgbp (sgbp), 50
proj_tools, 42

rainbow, 39

rawToHex, 44

rbind, 7

rbind.sf (bind), 7

read_sf (st_read), 96
recenter, 104
rename. sf (tidyverse), 115
rename_with.sf (tidyverse), 115
right_join.sf (tidyverse), 115
rowwise.sf (tidyverse), 115
RPostgres: :Postgres(), 110

s2,44, 123
s2::s2_buffer_cells(), 25, 26
s2::s2_options, 17
s2_area, 22

s2_distance, 2/
s2_distance_matrix, 21
s2_options, 14, 15, 123
s2_perimeter, 21
s2_rebuild, 45, 123
s2_rebuild(), 17

sample, 102

sample_frac.sf (tidyverse), 115
sample_n.sf (tidyverse), 115
select.sf (tidyverse), 115
semi_join.sf (tidyverse), 115
separate, 119

separate.sf (tidyverse), 115
separate_rows, /119

separate_rows.sf (tidyverse), 115

set_units, 22
setdiff, 15

sf, 5,45,74,78, 82,88, 99, 118, 120

sf-method (as), 6
sf.colors (plot), 35

INDEX

sf_add_proj_units (sf_project), 49

sf_extSoftVersion, 49

INDEX 127

sf_proj_info (st_transform), 105 st_contains, 84

sf_proj_network (proj_tools), 42 st_contains (geos_binary_pred), 16
sf_proj_pipelines (proj_tools), 42 st_contains_properly, 84
sf_proj_search_paths (proj_tools), 42 st_contains_properly

sf_project, 49, 107 (geos_binary_pred), 16
sf_use_s2(s2),44 st_convex_hull (geos_unary), 24

sfc, 47,58, 74, 78, 82, 88, 93 st_coordinates, 71

sfc-method (as), 6 st_covered_by, 84
sfc_GEOMETRYCOLLECTION (sfc), 47 st_covered_by (geos_binary_pred), 16
sfc_LINESTRING (sfc), 47 st_covers, 84

sTc_MULTILINESTRING (sfc), 47 st_covers (geos_binary_pred), 16
sfc_MULTIPOINT (sfc), 47 st_crop, 72

sfc_MULTIPOLYGON (sfc), 47 st_crosses, 84

sfc_POINT (sfc), 47 st_crosses (geos_binary_pred), 16
sfc_POLYGON (sfc), 47 st_crs, 46, 64,73, 82,91, 106, 114
sgbp, 18, 50 st_crs(), 61

slice.sf (tidyverse), 115 st_crs<-(st_crs), 73

Spatial (as), 6 st_delete (st_write), 109
Spatial-method (as), 6 st_difference, 20

spread.sf (tidyverse), 115 st_difference (geos_binary_ops), 13
st, 51 st_dimension, 22

st_agr, 54 st_dimension (geos_query), 23
st_agr<- (st_agr), 54 st_disjoint, 84

st_area (geos_measures), 20 st_disjoint (geos_binary_pred), 16
st_as_binary, 46, 48, 54, 61, 95 st_distance (geos_measures), 20
st_as_grob, 56 st_drivers, 32,76, 99, 111
st_as_s2(s2),44 st_drop_geometry (st_geometry), 77
st_as_sf, 56, 97 st_equals, 34, 84, 120

st_as_sf(), 45 st_equals (geos_binary_pred), 16
st_as_sfc, 46, 47,59, 65 st_equals_exact, 84, 118
st_as_sfc(), 47 st_equals_exact (geos_binary_pred), 16
st_as_text, 61 st_exterior_ring (geos_unary), 24
st_axis_order (st_crs), 73 st_filter (st_join), 83

st_bbox, 63, 72 st_geod_area, 22

st_bind_cols (bind), 7 st_geod_distance, 2/

st_boundary (geos_unary), 24 st_geod_segmentize, 26
st_break_antimeridian, 65, 107 st_geometry, 77

st_buffer (geos_unary), 24 st_geometry<- (st_geometry), 77
st_can_transform (st_transform), 105 st_geometry_type, 78

st_cast, 22, 66, 70 st_geometrycollection (st), 51
st_cast(), 6 st_graticule, 40, 79
st_cast_sfc_default, 69 st_inscribed_circle (geos_unary), 24
st_centroid, 40 st_interpolate_aw (interpolate_aw), 30
st_centroid (geos_unary), 24 st_intersection, 19, 20
st_collection_extract, 69 st_intersection (geos_binary_ops), 13
st_combine, 718 st_intersects, 15, 55, 84, 100
st_combine (geos_combine), 19 st_intersects (geos_binary_pred), 16

st_concave_hull (geos_unary), 24 st_is, 80

128

st_is_empty (geos_query), 23
st_is_full, 81
st_is_longlat, 82, 82
st_is_simple (geos_query), 23
st_is_valid(valid), 122
st_is_within_distance, 84
st_is_within_distance
(geos_binary_pred), 16
st_jitter, 82
st_join, 5, 83
st_layers, 13, 85, 98, 99
st_length (geos_measures), 20
st_line_interpolate
(st_line_project_point), 86
st_line_merge (geos_unary), 24
st_line_project
(st_line_project_point), 86
st_line_project_point, 86
st_line_sample, 87
st_linestring (st), 51
st_m_range, 89
st_make_grid, 88
st_make_valid (valid), 122
st_minimum_bounding_circle
(geos_unary), 24
st_minimum_rotated_rectangle
(geos_unary), 24
st_multilinestring (st), 51
st_multipoint (st), 51
st_multipolygon (st), 51
st_nearest_feature, 84, 91, 93
st_nearest_points, 92, 92
st_node (geos_unary), 24
st_normalize, 94
st_overlaps, 84
st_overlaps (geos_binary_pred), 16
st_perimeter (geos_measures), 20
st_point, 57
st_point (st), 51
st_point_on_surface (geos_unary), 24
st_polygon (st), 51
st_polygonize (geos_unary), 24
st_precision, 95
st_precision<- (st_precision), 95
st_read, 46, 48, 96
st_relate, 18, 84, 100
st_reverse (geos_unary), 24
st_sample, 101

INDEX

st_segmentize (geos_unary), 24
st_set_agr (st_agr), 54
st_set_crs(st_crs), 73
st_set_geometry (st_geometry), 77
st_set_precision, 34
st_set_precision (st_precision), 95
st_sf, 7,57

st_sf (sf), 45

st_sf(),47

st_sfc (sfc), 47
st_shift_longitude, 104
st_simplify (geos_unary), 24
st_snap (geos_binary_ops), 13
st_sym_difference, 20

st_sym_difference (geos_binary_ops), 13

st_touches, 84

st_touches (geos_binary_pred), 16

st_transform, 105, 122

st_transform_proj, 107

st_triangulate (geos_unary), 24

st_triangulate_constrained
(geos_unary), 24

st_union, 5,15, 118

st_union (geos_combine), 19

st_viewport, 108

st_voronoi (geos_unary), 24

st_within, 84

st_within (geos_binary_pred), 16

st_wrap_dateline (st_transform), 105

st_write, 95, 109

st_z_range, 112

st_zm, 111

st_zm(), 6

summarise, 68, 95

summarise (tidyverse), 115

summary.sfc, 114

t.sgbp (sgbp), 50

text.sf (plot), 35

text.sfc (plot), 35

tibble, 115
tidyr::pivot_longer(), 119
tidyr::pivot_wider(), 119
tidyverse, 115
transform.sf, 121
transmute.sf (tidyverse), 115
type_sum, /15

type_sum.sfc (tibble), 115

INDEX

ungroup.sf (tidyverse), 115
unite.sf (tidyverse), 115
units, 75

unnest, /79

unnest.sf (tidyverse), 115

valid, 122

vctrs, 124

vec_cast.sfc (vctrs), 124
vec_ptype2.sfc (vctrs), 124
viewport, 108

wk::as_wkt(), 62
write_sf, 95
write_sf (st_write), 109

129

	aggregate.sf
	as
	bind
	dbDataType,PostgreSQLConnection,sf-method
	dbWriteTable,PostgreSQLConnection,character,sf-method
	db_drivers
	extension_map
	gdal_addo
	gdal_utils
	geos_binary_ops
	geos_binary_pred
	geos_combine
	geos_measures
	geos_query
	geos_unary
	interpolate_aw
	is_driver_available
	is_driver_can
	is_geometry_column
	merge.sf
	nc
	Ops
	plot
	prefix_map
	proj_tools
	rawToHex
	s2
	sf
	sfc
	sf_extSoftVersion
	sf_project
	sgbp
	st
	st_agr
	st_as_binary
	st_as_grob
	st_as_sf
	st_as_sfc
	st_as_text
	st_bbox
	st_break_antimeridian
	st_cast
	st_cast_sfc_default
	st_collection_extract
	st_coordinates
	st_crop
	st_crs
	st_drivers
	st_geometry
	st_geometry_type
	st_graticule
	st_is
	st_is_full
	st_is_longlat
	st_jitter
	st_join
	st_layers
	st_line_project_point
	st_line_sample
	st_make_grid
	st_m_range
	st_nearest_feature
	st_nearest_points
	st_normalize
	st_precision
	st_read
	st_relate
	st_sample
	st_shift_longitude
	st_transform
	st_viewport
	st_write
	st_zm
	st_z_range
	summary.sfc
	tibble
	tidyverse
	transform.sf
	valid
	vctrs
	Index

