Package ‘sarp.snowprofile’

January 14, 2026

Version 1.4.1

Date 2026-01-12

Title Snow Profile Analysis for Snowpack and Avalanche Research

Description Analysis and plotting tools for snow profile data produced from manual snowpack
observations and physical snowpack models. The functions in this package support snowpack
and avalanche research by reading various formats of data (including CAAML, SMET,
generic csv, and outputs from the snow cover model SNOWPACK), manipulate the data, and
produce graphics such as stratigraphy and time series profiles. Package developed by
the Simon Fraser University Avalanche Research Program <http:
//www.avalancheresearch.ca>.
Graphics apply visualization concepts from Horton, Nowak, and Haegeli (2020,
<doi:10.5194/nhess-20-1557-2020>).

URL http://www.avalancheresearch.ca

License CC BY-SA 4.0

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Language en-CA

Imports data.table, methods, xml2,

Depends R (>=4.2)

Suggests knitr, rmarkdown, stringr, sarp.snowprofile.alignment

VignetteBuilder knitr

NeedsCompilation no

Author Pascal Haegeli [aut, cre],
Simon Horton [aut],
Florian Herla [aut],
SFU Avalanche Research Program [fnd]

Maintainer Pascal Haegeli <pascal_haegeli@sfu.ca>
Repository CRAN
Date/Publication 2026-01-14 08:00:02 UTC

http://www.avalancheresearch.ca
http://www.avalancheresearch.ca
https://doi.org/10.5194/nhess-20-1557-2020
http://www.avalancheresearch.ca

2 Contents

Contents
assignDatetags 3
char2numAspect e 5
char2numHHI oo 6
COdES_PrO . . . o v v v e e e e 7
computeRTA e 7
computeSLABrho 9
computeSLABrhogs e 9
computeTSA e 10
deriveBDate L 11
deriveDatetag L 12
export.snowprofileCsv Lo 14
findPWL L 15
format_snowprofileLayers 19
getColoursDensity 20
getColoursGrainSize L e 21
getColoursGrainType L 22
getColoursHardness L 23
getColoursLWC oL 24
getColoursPercentage L 25
getColoursSnowTemp L 26
getColoursStability 27
grainDict 28
guessDatetagsSimpleo 28
hasUnobservedBasalLayer 29
importRDefaultPackages 30
insertUnobservedBasalLayer 30
is.snowprofile L. e 31
is.snowprofilelnstabilitySigns 31
is.snowprofileLayers L. oL 32
is.snowprofileSeto Lo 32
is.snowprofileTests L 33
new_snowprofile 33
numberOfPWLsPerVerticalLevel 35
plot.snowprofile L e e 36
plot.snowprofileSet 38
print.snowprofile L. 42
rbind.snowprofile Lo L 43
rbind.snowprofileSet L 44
readSmet L 45
reformat_snowprofile oL 46
scanProfileDates 47
sd_sample_uncorrected L. e 48
setColoursGrainType e 48
simplifyGtypes e 50
snowprofile L. 51

snowprofileCaaml 53

assignDatetags 3

SnowprofileCsv e e e e e 54
snowprofileCsv_advanced 56
snowprofilelnstabilitySigns 57
snowprofileLayers e 59
snowprofilePrfo L 63
snowprofilePro 64
snowprofileSet 66
snowprofileSno L. 66
snowprofileTests L 67
SPEroup e e e 69
SPmalformatted L 69
SPpairs e e e e 70
SPtimeline 70
SPtimeline_3hourly L 71
summary.snowprofile 72
summary.snowprofileSet 73
SWISSCOAE 74
validate_snowprofile 74
validate_snowprofileLayers 75
writePro L 76
writeSmet e e 77
[.snowprofileSet 78

Index 79

assignDatetags Assign layers in simulated snow profiles to precomputed datetags
Description

This routine assigns each layer of simulated snow profiles to precomputed datetags. Conceptually,
each datetag represents a date when the surface layers get buried by new snow. To assign layers

to datetags, the routine chooses the closest datetag that is older than the layer formation date. This
routine needs precomputed datetags, which are currently computed based on precipitation patterns
by functions in other packages. Once layers are assigned to datetags, layers from different locations
or times can easily be grouped by their datetags.

Usage

assignDatetags(

X,

potentialDatetags,

vdate = NULL,

adjust_bdates = FALSE,

computeBDate = TRUE,

checkMonotonicity = ifelse(computeBDate, TRUE, FALSE),

4 assignDatetags

S3 method for class 'snowprofileSet'
assignDatetags(
X,
potentialDatetags,
vdate = NULL,
adjust_bdates = FALSE,
computeBDate = TRUE,
checkMonotonicity = ifelse(computeBDate, TRUE, FALSE),

)

S3 method for class 'snowprofile'
assignDatetags(
X,
potentialDatetags,
vdate = NULL,
adjust_bdates = FALSE,
computeBDate = TRUE,
checkMonotonicity = ifelse(computeBDate, TRUE, FALSE),

)

S3 method for class 'snowprofilelLayers'
assignDatetags(

X,

potentialDatetags,

vdate,

adjust_bdates = FALSE,

computeBDate = TRUE,

checkMonotonicity = ifelse(computeBDate, TRUE, FALSE),

)
Arguments

X a snowprofileSet, snowprofile or snowprofileLayers object

potentialDatetags
a character or Date array of all potential datetags of the season. This array is cur-
rently provided by sarp.2021.herla.snowprofilevalidation: :derivePotentialDatetags()
only.

vdate date when the profile and layer information is valid (i.e., profile$date)

adjust_bdates boolean switch to compute bdates that are more similar to human interpretation.
Deprecated and not recommeneded, see Details.

computeBDate compute burial dates (bdates) from layer deposition dates?

checkMonotonicity
check ascending order of layers. This acts as a check for whether multiple layers
objects are stacked, which is not allowed.

char2numAspect 5

passed on to subsequent methods

Details

As a side effect and to issue warnings when layers might not be assigned to meaningful datetags, the
routine also computes the exact burial dates (bdates) of layers, which is the ddate of the overlying
layer. For snowpack simulations with thin layer resolution, this approach yields very similar ddates
and bdates for most layers, since most layers form and instantly get buried by another layer of the
same storm. Before implementing the aforementioned approach of pre-computing datetags based
on weather patterns, this routine attempted to make bdates more similar to human interpretation
by adjusting bdates, so that (similar) layers with the same ddate (i.e., same storm) inherit the
same bdate (similar means: identical gtype & hardness). This feature is still available by setting
adjust_bdates to TRUE, which is not recommended, though.
Value

The input object will be returned with the columns datetag and bdate added to the profile layers

Methods (by class)

* assignDatetags(snowprofileSet): for snowprofileSets
* assignDatetags(snowprofile): for snowprofiles

e assignDatetags(snowprofilelayers): for snowprofileLayers

Author(s)
fherla

See Also

deriveBDate, guessDatetagsSimple

Examples

TODO: create a meaningful example!

char2numAspect Conversion of character Aspects to numeric Aspects

Description
Convert character aspects (of snow profile locations) to numeric values. For example, Aspect "N"
(north) becomes 0 degrees azimuth.

Usage

char2numAspect (charAspect)

6 char2numHHI

Arguments
charAspect Character string of aspect location, i.e., one of
° C(”N” , IINEH s HNNEH s IIENEII , IIEII , HESEH , ”SEH , HSSEH , ”SII R IISSWII , IISWII ,
IIWSWH R IIWH , ”WNWH , ”NWH)
Value

Float value of numeric aspect location, North = 0 degree, S = 180 degree

Author(s)
fherla

Examples

char2numAspect ("W")
char2numAspect ("WNW")

char2numAspect(c(”"N"”, NA, "NA", "NE"))

char2numHHI Conversion of Hand Hardness Index (HHI)

Description

Convert character hand hardness index (HHI) of snow layers to numeric values. For example, hand
hardness Fist becomes 1, Ice becomes 6.

Usage
char2numHHI (charHHI)
Arguments
charHHI Character string of hand hardness level, i.e., one of
* Fist ’F’, 4 Fingers 4F’, 1 Finger *1F’, Pencil "P’, Knife "K’, or Ice 'T’
* intermediate values allowed, e.g. 'F+’, ’1F-’, "F-4F’
Value

Float value of numeric hand hardness level between 1 and 6.

Author(s)
fherla

codes_pro 7

Examples

char2numHHI('F+")
char2numHHI('F-")
char2numHHI('F-4F")

not meaningful:
this_throws_error <- TRUE
if (!this_throws_error) {
char2numHHI('F-P")

}

codes_pro PRO field code lookup

Description

Named list of SNOWPACK PRO field codes used by snowprofilePro and writePro.

Usage

codes_pro

Format

An object of class 1ist of length 20.

Value

A named list of character codes.

computeRTA Compute Relative Threshold Sum approach (RTA)

Description

The function can compute the RTA index for layers and for interfaces. The calculation follows the
example in Monti (2013), referenced below. The six individual relative lemons are computed as
follows. To compute the RTA index for layers, the layer properties are combined with the interface
properties of the weakest interface below or above the layer. To compute the RTA index for inter-
faces, the interface properties are combined with the weakest layer properties below or above the
interface. The six properties considered in the index are

* grain size, hardness, grain type (layer properties)
* difference of grain sizes and hardness (at the interface)

* depth (at the top interface of the layer)

8 computeRTA

Instead of implementing a static threshold for the depth weighting, the depth is scaled with a weibull
function that is corrected for potential crusts and their stabilizing effects (Monti and Mitterer, per-
sonal communication).

Note that due to the crust correction, the results from this function will only be correct if applied
to profiles that have not yet been resampled (such as by functions from sarp.snowprofile.alignment:
resampleSP, resampleSPpairs, dtw, averageSP).

The RTA index ranges between [@, 1], with the weakest layer/interface euqal to 1. Values > 0.8
indicate layers/interfaces with a poor structural stability.

Usage

computeRTA(x, target = c("interface”, "layer"))

S3 method for class 'snowprofileSet'
computeRTA(x, target = c("interface”, "layer"))

S3 method for class 'snowprofile'
computeRTA(x, target = c("interface”, "layer"))

Arguments
X a snowprofile or snowprofileSet. Profile layer properties must be known for all
layers (i.e., no NAs in gtype, hardness, gsize allowed!)
target Do you want to compute the index for the layers or for the layer interfaces?
defaults to both.
Value

The input object will be returned with the new layer properties rta/rta_interface describing the
RTA index added to the profile layers.
Methods (by class)

* computeRTA(snowprofileSet): for snowprofileSets

* computeRTA(snowprofile): for snowprofiles

Author(s)
fherla

References

Monti, F., & Schweizer, J. (2013). A relative difference approach to detect potential weak layers
within a snow profile. Proceedings of the 2013 International Snow Science Workshop, Grenoble,
France, 339-343. Retrieved from https://arc.lib.montana.edu/snow-science/item.php?id=1861

See Also

computeTSA

computeSLABrho 9

Examples

apply function to snowprofileSet
profileset <- computeRTA(SPgroup)

apply function to snowprofile and plot output

sp <- computeRTA(SPpairs$B_modeled1)

plot(sp, TempProfile = FALSE, main = "RTA")

lines(sp$layers$rtax5, sp$layers$height - 0.5*sp$layers$thickness, type = "b", x1im = c(@, 5))
lines(sp$layers$rta_interface*5, sp$layers$height, type = "b", xlim = c(@, 5), col = "red")
abline(h = sp$layers$height, 1ty = "dotted”, col = "grey")

abline(v = 0.8%5, 1ty = "dashed")

computeSLABrho Compute mean density of slab

Description

For each layer, compute the average density of all layers above, i.e. <rho>_slab.

Usage

computeSLABrho(profile)

Arguments

profile snowprofile object

Value

snowprofile object with added layers column $slab_rho. Note that topmost layer is always NA.

Author(s)
fherla

computeSLABrhogs Compute ’density over grain size’ averaged over slab

Description

For each layer, compute the average density over grain size of all layers above, i.e. <rho/gs>_slab.
This variable has been found to characterize the cohesion of slabs: new snow slabs tend to consist of
low density & large grains, and more cohesive slabs of older snow tend to consist of higher density
& smaller grains (Mayer et al, 2022 in review).

10 computeTSA

Usage

computeSLABrhogs(profile, implementation = c("pub”, "literal”)[11)

Arguments

profile snowprofile object

implementation "pub” for <rho/gs>_slab, "literal” for 'mean density of slab over mean
grain size of slab’ <rho>_slab / <gs>_slab.

Value

snowprofile object with added layers column $slab_rhogs. Note that topmost layer is always NA.

Author(s)
fherla
computeTSA Compute Threshold Sum Approach (TSA, lemons, yellow flags, 'Ni-
eten’)
Description

This routine computes the traditional lemons (German "Nieten’) based on absolute thresholds. Since
the thresholds are defined in Monti (2014) with different thresholds for manual versus observed
profiles, this routine switches between the appropriate thresholds based on the $type field of the
input profile. While manual and whiteboard profiles get one set of thresholds, modeled, vstation,
and aggregate type profiles get another set.

Usage
computeTSA(x, target = c("interface”, "layer"))

S3 method for class 'snowprofileSet'
computeTSA(x, target = c("interface”, "layer"))

S3 method for class 'snowprofile'’
computeTSA(x, target = c("interface”, "layer"))

Arguments
X a snowprofile or snowprofileSet
target Do you want to compute the index for the layers or for the layer interfaces?

defaults to both.

deriveBDate 11

Value

New layer properties tsa/tsa_interface describing the threshold sums are added to the profile
layers. The TSA sums up to 6 indicators, whereas >= 5 indicators indicate structurally unstable
layers/interfaces.

Methods (by class)

* computeTSA(snowprofileSet): for snowprofileSets

* computeTSA(snowprofile): for snowprofiles

Author(s)
fherla

References

Schweizer, J., & Jamieson, J. B. (2007). A threshold sum approach to stability evaluation of manual
snow profiles. Cold Regions Science and Technology, 47(1-2), 50-59. https://doi.org/10.1016/j.coldregions.2006.08.011

Monti, F., Schweizer, J., & Fierz, C. (2014). Hardness estimation and weak layer detection in simu-
lated snow stratigraphy. Cold Regions Science and Technology, 103, 82-90. https://doi.org/10.1016/j.coldregions.2014.03.00

See Also
computeRTA

Examples

apply function to snowprofileSet
profileset <- computeTSA(SPgroup)

apply function to snowprofile and plot output
sp <- computeTSA(SPpairs$B_modeled1)
plot(sp, TempProfile = FALSE, main = "TSA")
lines(sp$layers$tsa/6+%5,
sp$layers$height - @.5*sp$layers$thickness, type = "b"”, xlim = c(@, 5))
lines(sp$layers$tsa_interface/6%5, sp$layers$height, type = "b", xlim = c(@, 5), col = "red")
abline(h = sp$layers$height, 1ty = "dotted”, col = "grey")
abline(v = 5/6%5, 1ty = "dashed")

deriveBDate Derive burial dates from deposition dates in simulated profiles

Description

This routine derives burial dates (bdate) from deposition dates (ddate). Optionally, burial dates can
be adjusted to align more closely with human interpretation (see Details in guessDatetagsSimple).

12 deriveDatetag
Usage
deriveBDate(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofileSet'
deriveBDate(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofile'

deriveBDate(x, adjust_bdates = TRUE, checkMonotonicity = FALSE, ...)

S3 method for class 'snowprofilelLayers'

deriveBDate(x, adjust_bdates = TRUE, checkMonotonicity = TRUE, ...)
Arguments

X a snowprofileSet, snowprofile or snowprofileLayers object

adjust_bdates boolean switch to compute bdates similar to human interpretation.

e passed on to subsequent methods

checkMonotonicity
check ascending order of layers. This acts as a check for whether multiple layers
objects are stacked, which is not allowed.

Value

The input object will be returned with the column bdate added to the profile layers

Methods (by class)

e deriveBDate(snowprofileSet): for snowprofileSets
* deriveBDate(snowprofile): for snowprofiles

* deriveBDate(snowprofilelLayers): for snowprofileLayers

Author(s)
fherla

deriveDatetag Derive datetag from deposition dates in simulated profiles

Description

This routine is deprecated; use guessDatetagsSimple, deriveBDate, and/or assignDatetags instead.
This routine derives the datetags of simulated snow profile layers from deposition dates. Datetags
usually are deposition dates for crust layers, and burial dates for other weak layers (e.g., SH, FC). If
no datetags can be derived, a datetag column of NAs will nevertheless be added to the snowprofile
layers. The routine also adds a bdate column for burial dates that are calculated along the way.

deriveDatetag

Usage

13

deriveDatetag(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofileSet'
deriveDatetag(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofile'
deriveDatetag(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofilelLayers'

deriveDatetag(x, adjust_bdates = TRUE, checkMonotonicity = TRUE, ...)
Arguments
X a snowprofileSet, snowprofile or snowprofileLayers object

adjust_bdates

checkMonotonici

Details

boolean switch to compute bdates similar to human interpretation. see Details.

passed on to subsequent methods

ty

check ascending order of layers. This acts as a check for whether multiple layers
objects are stacked, which is not allowed.

bdates are computed by taking the ddate of the overlying layer. For snowpack simulations with
thin layer resolution, this approach yields very similar ddates and bdates for most layers, since
most layers form and instantly get buried by another layer of the same storm. To make bdates
more similar to human interpretation, bdates can be adjusted, so that (similar) layers with the same
ddate (i.e., same storm) inherit the same bdate (similar means: identical gtype & hardness).

Value

The input object will be returned with the columns datetag and bdate added to the profile layers

Methods (by class)

* deriveDatetag(snowprofileSet): for snowprofileSets

* deriveDatetag(snowprofile): for snowprofiles

* deriveDatetag(snowprofilelLayers): for snowprofileLayers

Note

Deprecated; use guessDatetagsSimple and/or assignDatetags instead.

Author(s)
fherla

14

export.snowprofileCsv

export.snowprofileCsv Export or write a snowprofile object to a CSV table

Description

Export or write a snowprofile object to a CSV table

Usage
export.snowprofileCsv(
profile,
filename = stop(”filename must be provided"),
sep = n , n ,
export.all = "Layers"”,
variables = NA
)
Arguments
profile snowprofile object
filename character string, e.g. ’path/to/file.csv’
sep csv column separator as character string
export.all one of TRUE, FALSE, 'Layers': export all variables of the snowprofile object to
the csv table?
If 'Layers', then all layer variables of the snowprofile will be exported.
variables A tag-value list of the format, e.g. height = "height_top’, to specify column
names of specific variables, to customize column order, and/or to include spe-
cific profile meta data if export.all == 'Layers' (e.g. easily include the meta
data station_id). Note that the tags of the tag-value list need to correspond to
elements of the snowprofile object.
Details

Note that existing files with the specified filename will be overwritten without warning!

Value

Writes csv file to disk, no return value in R

Author(s)
fherla

See Also

snowprofileCsv

findPWL 15

Examples

export an entire snowprofile object:

export.snowprofileCsv(SPpairs$A_manual, filename = file.path(tempdir(), 'file.csv'),
export.all = TRUE)

export only the layer properties of a snowprofile object,

and change the column order with few column names:

All layer variables will be exported, but the three ones provided in 'variables'

will be the first three columns of the csv table, and their column names will be changed
accordingly.

export.snowprofileCsv(SPpairs$A_manual, filename = file.path(tempdir(), 'file.csv'),
export.all = 'Layers',
variables = list(height = 'height_top', hardness = 'hardness',
gtype = 'gt1'))

export all layer properties of a snowprofile object plus the station ID:

export.snowprofileCsv(SPpairs$A_manual, filename = file.path(tempdir(), 'file.csv'),
export.all = 'Layers', variables = list(station_id = 'station_id'))

check the content of the exported csv file:
csv_content <- read.csv(file.path(tempdir(), 'file.csv'))
head(csv_content)

or re-import the csv file as snowprofile object:
csv_snowprofile <- snowprofileCsv(file.path(tempdir(), 'file.csv'))
print(csv_snowprofile)

findPWL Find layers of interest (e.g. PWLs) in snowprofile(Layers)

Description

Find one or more layers of interest, such as persistent weak layers (PWL) in a snowprofile or
snowprofileLayers object based on combinations of grain type, datetag, grain size, and stability
indices (TSA/ RTA/ critical crack length/ p_unstable) of the layer. The routine can also be used for
searching for crusts (or any other grain types).

Usage

findPWL(
X,
pwl_gtype = c("SH", "DH"),
pwl_date = NA,

16 findPWL

date_variable = c("ddate”, "datetag")[1],

date_range = c(-5, 0),

date_range_earlier = as.difftime(date_range[1], units = "days"),

date_range_later = as.difftime(date_range[2], units = "days"),

bdate_range = c(-1, 1),

bdate_range_earlier = as.difftime(bdate_range[1], units = "days"),

bdate_range_later = as.difftime(bdate_range[2], units = "days"),

threshold_gtype = pwl_gtype,

threshold_gsize = NA,

threshold_TSA = NA,

threshold_RTA = NA,

threshold_SK38 = NA,

threshold_RC = NA,
N

threshold_PU = NA
)
labelPWL(x, ...)
Arguments
X snowprofile or snowprofileLayers object
pwl_gtype a vector of grain types of interest
pwl_date a date of interest given as character CYYYY-MM-DD’) or as POSIXct; set to

NA to ignore dates. If given as POSIXct, time comparison between layer dates
and pwl_date will consider the times of day (i.e., hours, etc). Otherwise only
consider year/month/days.

date_variable Which layer dates do you want to consider? deposition and burial dates (ddate),
or pre-computed datetags (datetag, see assignDatetags for more information)?

date_range a numeric array of length 2 that defines a date search window around pwl_date.
This date range is applied to ddates (deposition dates), or if these are not avail-
able to datetags.

date_range_earlier
a difftime object of date_range[1] (must be negative).

date_range_later
a difftime object of date_range[2] (must be positive).

bdate_range a numeric array of length 2 that defines a date search window around pwl_date.
This date range is applied to bdates (burial dates)

bdate_range_earlier
a difftime object of bdate_range[1] (must be negative).

bdate_range_later
a difftime object of bdate_range[2] (must be positive).

threshold_gtype
specific grain types that are only deemed a PWL if they pass one or multiple
thresholds (see next parameters)

threshold_gsize
a threshold grain size in order to deem threshold_gtype a PWL; set to NA to
ignore grain sizes.

findPWL

threshold_TSA

threshold_RTA

threshold_SK38

threshold_RC

threshold_PU

Details

17

a threshold TSA value (see computeTSA) in order to deem threshold_gtype a
PWL; set to NA to ignore TSA.

a threshold RTA value (see computeRTA) in order to deem threshold_gtype a
PWL; set to NA to ignore RTA.

a threshold SK38 in order to deem threshold_gtype a PWL; set to NA to ignore
this threshold.

a threshold critical crack length in order to deem threshold_gtype a PWL; set
to NA to ignore this threshold.

a threshold value for p_unstable in order to deem threshold_gtype a PWL; set
to NA to ignore this threshold.

passed on to findPWL

In case date considerations are included in your search, either one of the date window conditions
needs to be satisfied to return a given layer:

e ddate or datetag within date_range, or

¢ bdate within bdate_range

If the input object contains deposition dates (ddate, mostly in simulated profiles), but no bdates,
they are computed via deriveBDate; otherwise the date window is applied to the datetag (mostly
for manual profiles).

If you apply thresholds to your search, only layers are returned that satisfy at least one of the
provided thresholds.

The 1abelPWL wrapper function is primarily used by sarp.snowprofile.alignment: :averageSP.

Value

findPWL: An index vector of PWLs that match the desired requirements

labelPWL: The input object with an extra boolean column appended to the layer object, called
$layerOfinterest.

Functions

e findPWL(): Find layers of interest (e.g., PWLs) in snowprofile or snowprofilelayers

e labelPWL(): Label layers of interest (e.g., weak layers) in snowprofile

Author(s)

fherla

18 findPWL

Examples

get index vector:
findPWL (SPpairs$A_modeled)

get layers subset:
SPpairsA_manuallayers[findPWL(SPpairs$A_manual),]
SPpairsA_manuallayers[findPWL(SPpairs$A_manual, threshold_gsize = 2.2,
threshold_gtype = c("FC", "FCxr")), 1

all (SH, DH), and (FC, FCxr) >= 1 mm grain size:
SPpairs$A_modeled$layers[findPWL(SPpairs$A_modeled, pwl_gtype = c("SH", "DH", "FC", "FCxr"),

threshold_gsize = 1, threshold_gtype = c("FC", "FCxr")), 1]
use TSA threshold:
SPpairs$A_modeled <- computeTSA(SPpairs$A_modeled)
SPpairs$A_modeled$layers[findPWL (SPpairs$A_modeled, pwl_gtype = c("SH", "DH", "FC", "FCxr"),

threshold_TSA = 4, threshold_gtype = c("FC", "FCxr")), 1]

searching for a specific pwl_date:
let's construct one layer and an array of pwl_dates
tl <- snowprofileLayers(height = 1, gtype = "SH",
ddate = as.POSIXct("2020-12-15"),
bdate = as.POSIXct("2020-12-20"))
pwl_dates <- paste@("2020-12-", seq(14, 22))
which pwl_date will 'find' that layer?
sapply(pwl_dates, function(dt) length(findPWL(tl, pwl_date = dt)) > @)
same example, but with bdate being NA:
tl <- snowprofilelLayers(height = 1, gtype = "SH",
ddate = as.POSIXct("2020-12-15"),
bdate = as.POSIXct(NA), dropNAs = FALSE)
sapply(pwl_dates, function(dt) length(findPWL(tl, pwl_date = dt)) > @)

pwl_date example with proper profile:

potentialDatetags <- sort(unique(as.Date(SPpairs$A_modeled$layers$ddate)))

sp <- suppressWarnings(assignDatetags(SPpairs$A_modeled, potentialDatetags))

sp$layers

pwl_dates <- paste@("2019-02-", seq(18, 26))

names(pwl_dates) <- pwl_dates

which pwl_date will 'find' the two layers with (b)date labels?

list(pwl_date = lapply(pwl_dates, function(dt) {
sp$layers[findPWL(sp, pwl_gtype = c("SH", "FC"), pwl_date

c("height”, "gtype", "ddate”, "bdate")]

dt),

m

same example as above, but including TSA threshold:
sp <- computeTSA(sp)
the SH layer has TSA 5, the FC layer has TSA 4:
list(pwl_date = lapply(pwl_dates, function(dt) {
sp$layers[findPWL(sp, pwl_gtype = c("SH", "FC"), pwl_date = dt, threshold_TSA = 5),
c("height”, "gtype", "ddate”, "bdate")]
1))

--> no more FC layer in output since its TSA value is below the threshold!

can also be used to search for crusts:

format_snowprofileLayers 19

SPpairsA_manuallayers[findPWL(SPpairs$A_manual, pwl_gtype = "MFcr"), 1]

format_snowprofilelLayers
Format snowprofileLayers

Description

Calculate missing data.frame columns based on the given ones, if possible.

Usage
format_snowprofilelLayers(
obj,
target = "all"”,
hs = NA,

maxObservedDepth = NA,
validate = TRUE,
dropNAs = TRUE

)
Arguments
obj snowprofileLayers object
target string, indicating which fields are auto-filled (all’, ’height’, *depth’, "thickness’,
’none’)
hs total snow height (cm) if not deductible from given fields
maxObservedDepth
the observed depth of the profile from the snow surface downwards. Will only
be used, if no height or thickness exist in obj, or if hs is not given.
validate Validate obj with validate_snowprofileLayers?
dropNAs Do you want to drop all columns consisting of NAs only?
Value

copy of obj with auto-filled columns

20 getColoursDensity

getColoursDensity Gets colours for plotting snow density values

Description

Gets colours for plotting snow density values in snowprofiles. Colours are consistent with niViz at
https://niviz.org

Usage

getColoursDensity(Values, Resolution = 101, Verbose = FALSE)

Arguments

Values Density values (kg/m3)

Resolution Resolution of colour scale. Default is 100.

Verbose Switch for writing out value and html colour tuplets for debugging.
Value

Array with HTML colour codes

Author(s)

phaegeli

See Also

getColoursGrainSize, getColoursGrainType, getColoursHardness, getColoursLWC, getColoursS-
nowTemp

Examples

Density <- seq(@,700, by=10)
plot(x = rep(1,length(Density)), y = Density, col = getColoursDensity(Density), pch =19, cex = 3)

getColoursGrainSize 21

getColoursGrainSize Gets colours for plotting grain size values

Description

Gets colours for plotting grain size values in snowprofiles. Colours are consistent with niViz at
https://niviz.org

Usage

getColoursGrainSize(Values, Resolution = 101, Verbose = FALSE)

Arguments

Values Liquid water content values

Resolution Resolution of colour scale. Default is 100.

Verbose Switch for writing out value and html colour tuplets for debugging.
Value

Array with HTML colour codes

Author(s)

phaegeli

See Also

getColoursDensity, getColoursGrainType, getColoursHardness, getColoursLWC, getColoursSnowTemp

Examples

GrainSize <- seq(0@,6, by=0.1)
plot(x = rep(1,length(GrainSize)), y = GrainSize,
col = getColoursGrainSize(GrainSize), pch = 19, cex = 3)

22 getColoursGrainType

getColoursGrainType Gets colours for plotting snow grain types

Description

Grain colours are defined in the grainDict data.frame and the definitions can be changed with

setColoursGrainType
Usage
getColoursGrainType(Grains, grainDict. = grainDict)
Arguments
Grains grain type (character or list of characters)
grainDict. lookup table to use. Note, the easiest and best way to do this is via setColoursGrainType.

This input variable here is only a hack to change the grainDict explicitly when
calling plot.snowprofile via Col, and beforehand computing Col = Col <-

sapply(Profile$layers$gtype, function(x) getColoursGrainType(x, grainDict

= setColoursGrainType('sarp-reduced'))); This is only necessary in spe-
cific environments (e.g. a shiny app)
Value

Array with HTML colour codes

Author(s)

phaegeli, shorton, therla

See Also

setColoursGrainType, getColoursDensity, getColoursGrainSize, getColoursHardness, getColoursLWC,
getColoursSnowTemp

Examples

Grains <- c('PP', 'DF', 'RG', 'FC', 'FCxr', 'DH', 'SH', 'MF', 'MFcr', 'IF')
Colours <- getColoursGrainType(Grains)
Colours

plot(1:1length(Grains), col = Colours, pch = 20, cex = 3)
text(1:1length(Grains), 1:length(Grains), Grains, pos = 1)

getColoursHardness 23

getColoursHardness Gets colours for plotting snow hardness values

Description

Gets colours for plotting snow hardness values in snowprofiles.

Usage

getColoursHardness(Values, Resolution = 101, Verbose = FALSE)

Arguments

Values Hardness values

Resolution Resolution of colour scale. Default is 100.

Verbose Switch for writing out value and html colour tuplets for debugging.
Value

Array with HTML colour codes

Author(s)

phaegeli

See Also

getColoursDensity, getColoursGrainSize, getColoursGrainType, getColoursLWC, getColoursSnowTemp

Examples

Hardness <- c(1:5)
plot(x = rep(1,length(Hardness)), y = Hardness,
col = getColoursHardness(Hardness), pch = 19,cex = 3)

24 getColoursLWC

getColoursLWC Gets colours for plotting LWC values

Description

Gets colours for plotting LWC values in snowprofiles. Colours are consistent with niViz at https://niviz.org

Usage

getColoursLWC(Values, Resolution = 101, Verbose = FALSE)

Arguments

Values Liquid water content values

Resolution Resolution of colour scale. Default is 100.

Verbose Switch for writing out value and html colour tuplets for debugging.
Value

Array with HTML colour codes

Author(s)

phaegeli

See Also

getColoursDensity, getColoursGrainSize, getColoursGrainType, getColoursHardness, getColoursS-
nowTemp

Examples

LWC <- seq(@,6, by = 0.1)
plot(x = rep(1,length(LWC)), y = LWC, col = getColoursLWC(LWC), pch = 19, cex = 3)

getColoursPercentage 25

getColoursPercentage Gets colours for plotting the snow layer property ’percentage’

Description

Gets colours for plotting the snow layer property ’percentage’, as used for example for distributions
from 0-1.

Usage
getColoursPercentage(
Values,
Resolution = 101,
Min = 0,
Max = 1,
ClrRamp = c("Blues”, "Greys", "Greys_transparent”)[1]
)
Arguments
Values of the ’percentage’ variable
Resolution Resolution of colour scale. Default is 100.
Min Minimum values of the percentage (for colouring)
Max Maximum —=—
ClrRamp Three different colourmaps can be chosen from: "Blues", "Greys", "Greys_transparent”
Value

Array with HTML colour codes

Author(s)
fherla

See Also

getColoursGrainSize, getColoursGrainType, getColoursHardness, getColoursLWC, getColoursS-
nowTemp, getColoursStability

Examples

prct <- seq(@, 1, by=0.1)
plot(x = rep(1,length(prct)), y = prct,
col = getColoursPercentage(prct), pch = 19, cex = 3)

plot(x = rep(1,length(prct)), y = prct,
col = getColoursPercentage(prct, ClrRamp = "Greys”), pch = 19, cex = 3)

26 getColoursSnowTemp

getColoursSnowTemp Gets colours for plotting snow temperature values

Description

Gets colours for plotting snow temperature values in snowprofiles. Colours are consistent with
niViz at https://niviz.org

Usage

getColoursSnowTemp(Values, Resolution = 101, Verbose = FALSE)

Arguments

Values Snow temperature values

Resolution Resolution of colour scale. Default is 100.

Verbose Switch for writing out value and html colour tuplets for debugging.
Value

Array with HTML colour codes

Author(s)

phaegeli

See Also

getColoursDensity, getColoursGrainSize, getColoursGrainType, getColoursHardness, getColoursLWC

Examples

SnowTemp <- c(-25:0)
plot(x = rep(1,length(SnowTemp)), y = SnowTemp,
col = getColoursSnowTemp(SnowTemp), pch = 19,cex = 3)

getColoursStability 27

getColoursStability Gets colours for plotting snow stability indices

Description

Gets colours for plotting snow stability indices in snowprofiles.

Usage

getColoursStability(
Values,
StabilityIndexThreshold = 0.77,
StabilityIndexRange = c(@, 1),
invers = FALSE,
Resolution = 100

Arguments

Values Stability index values

StabilityIndexThreshold
A scalar threshold that defines the transition from medium to poor stability. The
color scheme will be adjusted so that this threshold becomes apparent from the
colours.

StabilityIndexRange
The range the index spans, e.g. for TSA [@, 6], for RTA and p_unstable [0, 11,
for critical crack length [0, 3], etc..

invers Indices like TSA/ RTA/ p_unstable increase the poorer layer stability gets. For
indices with revers behaviour (e.g.,, critical crack length) switch this flag to
TRUE.
Resolution Resolution of colour scale. Default is 100.
Value

Array with HTML colour codes

Author(s)
fherla

See Also

getColoursGrainSize, getColoursGrainType, getColoursHardness, getColoursLWC, getColoursS-
nowTemp, getColoursPercentage

28 guessDatetagsSimple

Examples

p_unstable <- seq(@, 1, by=0.1)
plot(x = rep(1,length(p_unstable)), y = p_unstable,
col = getColoursStability(p_unstable), pch = 19, cex = 3)

critical_crack_length <- c(seq(@.2, 0.8, by=0.1), 1.5, 2.5)
plot(x = rep(1,length(critical_crack_length)), y = critical_crack_length, pch =19, cex = 3,
col = getColoursStability(critical_crack_length, StabilityIndexThreshold = 0.4,
StabilityIndexRange = c(@, 3), invers = TRUE))

grainDict A data.frame storing the grain type colours

Description

The colours can be changed by calling the function setColoursGrainType, see examples below.

Usage

grainDict

Format

A data.frame

Examples

print(grainDict)

change colours for subsequent plots:
grainDict <- setColoursGrainType('sarp-reduced')

guessDatetagsSimple Guess datetags from deposition dates in simulated profiles

Description

This routine provides a simple heuristic for assigning datetags to layers. Datetags usually are de-
position dates for crust layers, and burial dates for other weak layers (e.g., SH, FC). If no datetags
can be derived, a datetag column of NAs will be added. Burial dates (bdate) are computed via
deriveBDate.

hasUnobservedBasalLayer 29
Usage
guessDatetagsSimple(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofileSet'
guessDatetagsSimple(x, adjust_bdates = TRUE, ...)

S3 method for class 'snowprofile'
guessDatetagsSimple(x, adjust_bdates = TRUE, checkMonotonicity = FALSE, ...)

S3 method for class 'snowprofilelLayers'

guessDatetagsSimple(x, adjust_bdates = TRUE, checkMonotonicity = TRUE, ...)
Arguments
X a snowprofileSet, snowprofile or snowprofileLayers object

adjust_bdates boolean switch to compute bdates similar to human interpretation. see Details.

e passed on to subsequent methods

checkMonotonicity
check ascending order of layers. This acts as a check for whether multiple layers
objects are stacked, which is not allowed.

Value

The input object will be returned with the columns datetag and bdate added to the profile layers

Methods (by class)

* guessDatetagsSimple(snowprofileSet): for snowprofileSets
* guessDatetagsSimple(snowprofile): for snowprofiles

* guessDatetagsSimple(snowprofilelayers): for snowprofileLayers

Author(s)
fherla

hasUnobservedBasallLayer
Check whether a profile is observed down to ground or not

Description

Check whether a profile is observed down to ground or not

Usage

hasUnobservedBasallLayer (x)

30 insertUnobservedBasalLayer

Arguments

X a snowprofile, or snowprofileLayers object
Value

boolean TRUE/FALSE

importRDefaultPackages
Import R_DEFAULT_PACKAGES

Description

Import R_DEFAULT_PACKAGES

Usage
importRDefaultPackages ()

insertUnobservedBasallLayer
Insert a special layer at the bottom to indicate a snow profile that’s
unobserved from a specific point down to the ground internal function,
not exported. used in snowprofileLayers

Description

Insert a special layer at the bottom to indicate a snow profile that’s unobserved from a specific point
down to the ground internal function, not exported. used in snowprofileLayers

Usage
insertUnobservedBasallLayer (object, basal_offset, setBasalThicknessNA = FALSE)

Arguments

object snowprofileLayers object

basal_offset a positive numeric scalar indicating the thickness of the basal unobserved layer(s)

setBasalThicknessNA
boolean TRUE/FALSE indicating whether the thickness of the inserted layer
should be basal_offset or NA. Setting the thickness to NA corresponds to set-
ting a flag that the depth of the profile (i.e., the unobserved basal layers) is
unknown. This often happens in manual profiles which only observe the upper-
most meter (or so) of the snowpack

is.snowprofile

Value

same object with basal layer inserted as individual row in the data.frame

Author(s)
fherla

is.snowprofile Check class snowprofile

Description

Check if object is of class snowprofile

Usage

is.snowprofile(x)

Arguments

X object to test

Value

boolean

is.snowprofilelnstabilitySigns
Check class snowprofilelnstabilitySigns

Description

Check if object is of class snowprofileInstabilitySigns

Usage

is.snowprofilelInstabilitySigns(x)

Arguments

X object to test

Value

boolean

32

is.snowprofileSet

is.snowprofilelayers Check class snowprofileLayers

Description

Check if object is of class snowprofileLayers

Usage

is.snowprofilelLayers(x)

Arguments

X object to test

Value

boolean

is.snowprofileSet Check class snowprofileSet

Description

Check if object is of class snowprofileSet

Usage

is.snowprofileSet(x)

Arguments

X object to test

Value

boolean

is.snowprofileTests 33

is.snowprofileTests Check class snowprofileTests

Description

Check if object is of class snowprofileTests

Usage

is.snowprofileTests(x)

Arguments

X object to test

Value

boolean

new_snowprofile Low-level constructor function for a snowprofile object

Description

Low-cost, efficient constructor function to be used by users who know what they’re doing. If that’s
not you, use the high-level constructor snowprofile.

Usage

new_snowprofile(
station = character(),
station_id = character(),
datetime = as.POSIXct(NA),
latlon = as.double(c(NA, NA)),
elev = double(),
angle = double(),
aspect = double(),
hs = double(),
maxObservedDepth = double(),
type = character(),
band = character(),
zone = character(),
comment = character(),
hn24 = double(),
hn72 = double(),
ski_pen = double(),

34

layers =

new_snowprofile

snowprofilelLayers(),

tests = snowprofileTests(),
instabilitySigns = snowprofilelnstabilitySigns()

)
Arguments

station character string

station_id character string

datetime date and time as class POSIXct in most meaningful timezone (timezone can be
converted very easily: e.g. print(profile$datetime, tz = "EST").

latlon 2-element vector latitude (first), longitude (second)

elev profile elevation (m)

angle slope angle (degree)

aspect slope aspect (degree)

hs total snow height (cm); if not provided, the field will be derived from the profile
layers.

maxObservedDepth
equivalent to hs for full profiles that go down to the ground. for test profiles that
only observe the upper part of the snowpack this value refers to the maximum
depth of the profile observation.

type character string, must be either 'manual’, *'modeled’, ’vstation’, aggregate’, or
’whiteboard’

band character string describing elevation band as ALP, TL, BTL (alpine, treeline,
below treeline)

zone character string describing the zone or region of the profile location (e.g., BURN-
ABY_MTN)

comment character string with any text comments

hn24 height of new snow within 24 h

hn72 height of new snow within 72 h

ski_pen skier penetration depth (m)

layers snowprofileLayers object

tests snowprofileTests object

instabilitySigns
snowprofilelnstabilitySigns object

Value

snowprofile object

numberOfPWLsPer VerticallLevel 35

numberOfPWLsPerVerticallevel
Count number of PWLs per vertical level

Description

This is a wrapper function to bin several weak layers (or crusts) into vertical levels. The layers to
be binned can be controlled with a provided index vector for full customization.

Usage

numberOfPWLsPerVerticallLevel(x, pwl_idx, depth_breaks = c(0@, 30, 80, 150, Inf))

Arguments
X snowprofile or snowprofileLayers object
pwl_idx an index vector that corresponds to the layers of interest. Tip: this can also be a

call to findPWL, see examples.

depth_breaks a vector of break points referring to absolute depth values. Inf is a placeholder
for max depth.

Value

This function returns a table object

Author(s)

fherla

Examples

SH_idx <- findPWL(SPpairs$C_day1, pwl_gtype = "SH")
numberOfPWLsPerVerticallLevel (SPpairs$C_day1, SH_idx)

numberOfPWLsPerVerticallevel (SPpairs$C_day2, findPWL(SPpairs$C_day2))

36

plot.snowprofile

plot.snowprofile Plot hardness profile

Description

Plot hardness profile

Usage

S3 method for class 'snowprofile'’
plot(

Arguments
X snowprofile object
TempProfile
independent from the snow layers.
x1limTemp
to the range of temperature values)
Col
lookup table)
TopDown

X,

TempProfile = TRUE,
xlimTemp = NULL,

Col = "auto”,

TopDown = "auto",

axes = TRUE,

xlab = "",
emphasizelayers = FALSE,
emphasis = "95",
failureLayers = FALSE,
failureLayers.cex = 1,
failureLayers.col = "red",
nYTicks = 4,

ymax = max(c(x$maxObservedDepth, x$hs), na.rm

ytick.las = 1,

alignWithBottomUpPlot = FALSE,
highlightUnobservedBasallLayers = TRUE,
label.datetags = FALSE,

draw unscaled temperature profile (default = TRUE)? Temperature data needs

to be included in the snowprofile object either under x$layers$temperature,
or in a separate x$temperatureProfile data.frame providing a vertical grid

=FALSE)

the x limits in degrees Celsius for the temperature profile (if left empty it scales
vector of colours corresponding to the grain types in the profile (defaults to a

Option to plot by depth instead of height with zero depth on top of plot (default

plot.snowprofile 37

axes Should axes be printed?
x1lab x-axis label, defaults to an empty string
emphasizelayers

index OR character vector (grain types) of layers to be emphasized (i.e. all other
layers become slightly transparent)
emphasis 2 digit quoted number between '01'-'99"' to control the degree of emphasis;
the higher the stronger
failureLayers height vector of failure layers that will be indicated with an arrow
failurelLayers.cex
factor to shrink or enlarge the arrow
failureLayers.col
color of arrow, can also be a vector of same length as failureLayers to color
different arrows differently

nYTicks number of tick marks at yaxis
ymax the maximum ylim value
ytick.las orientation of y-axis labels

alignWithBottomUpPlot
useful when aligning the yaxis grids of bottom up profileSet plots and top down
hardness plots.

highlightUnobservedBasallLayers
draw sine wave at lowest observed layer to highlight unobserved layers below

label.datetags label the datetags of the snowprofile layers? (Won’t produce a pretty plot, but
give you some more information for analysis)

other parameters to barplot

See Also

plot.snowprofileSet

Examples

plot(SPpairs$A_manual)
plot(SPpairs$A_manual, Col = 'black')
plot(SPpairs$A_manual, emphasizelayers = c(5, 11),
failurelLayers = SPpairsA_manuallayers$height[5], failurelLayers.cex = 1.5)
plot(SPpairs$A_manual, emphasizelLayers = 'SH')
plot(SPpairs$A_manual, TopDown = TRUE)
plot(SPpairs$A_modeled, TempProfile = TRUE, xlimTemp = c(-30,10))

highlight unobserved basal layers:
plot(snowprofile(layers = snowprofilelLayers(depth = c(40, 25, 0),
hardness = c(2, 3, 1),
gtype = c('FC', NA, 'PP"),
hs = 70,
maxObservedDepth = 50)), TopDown = TRUE, ymax = 80)

38 plot.snowprofileSet

plot.snowprofileSet Plot a single layer property in multiple profiles side-by-side

Description

A flexible function to plot multiple snowprofiles either in a timeseries or various types of groups.

Usage

S3 method for class 'snowprofileSet'

plot(
X,
SortMethod = c("time"”, "time_daily"”, "unsorted”, "hs", "elev”, "presorted”),
ColParam = c("gtype", "hardness”, "density"”, "temp"”, "gsize", "ssi"”, "p_unstable”,

"crit_cut_length”, "rta", "percentage”, "lwc"),

TopDown = FALSE,
DateStart = NA,
DateEnd = NA,
Timeseries_labels = c("weekly"”, "monthly”, "daily"”, "daily HH:MM", NA),
ylim = NULL,

OutlinelLyrs = FALSE,
emphasizelayers = NULL,
colAlpha = NA,
colEmphasis = NA,
OutlineProfile = NULL,
HorizGrid = TRUE,
VerticalGrid = TRUE,
yaxis = TRUE,
main = NA,
ylab = NA,
xlab = NA,

box = TRUE,
xticklabels =
xtick.las = 2,
ytick.las = 1,
yPadding = 10,
xPadding = 0.5,
hardnessResidual = 1,
hardnessScale = 1,
xOffset = -0.5,
xScale = 1,

k = NULL,

offset = as.Date(NA),
add = FALSE,

tz = "UTC",

FALSE,

plot.snowprofileSet

Arguments

X

SortMethod

ColParam

TopDown

DateStart

DateEnd

39

An object of class snowprofileSet

How to arrange profiles along the x-axis. Options include timeseries (default =
’time’, or 'time_daily’), in existing order of Profiles list Cunsorted’), sorted by
HS (’hs’), or elevation ("elev’)

What parameter to show with colour. So far the following types are available:
"gtype", "hardness", "density", "temp", "
"rta", "percentage”, "lwc".

non_non non

gsize", "ssi", "p_unstable", "crit_cut_length",

Option to plot by depth instead of height with zero depth on top of plot (default
= FALSE)

Start date for timeseries plots (SortMethod = 'time"). If not provided, the func-
tion takes the date range from Profiles (default = NA).

End date for timeseries plots (SortMethod = 'time"). If not provided, the func-
tion takes the date range from Profiles (default = NA).

Timeseries_labels

ylim
Outlinelyrs

emphasizelayers

colAlpha

colEmphasis

OutlineProfile

HorizGrid
VerticalGrid

yaxis

main

ylab

xlab

box
xticklabels

Label Saturdays "weekly", "monthly", "daily", "daily HH:MM", or NA
Vertical range of plot
Switch for outlining layers (default = FALSE)

emphasize layers with different transparency than others, or a different color
altogether? then set this argument to TRUE if you want to emphasize all labeled
layers of interest (aka weak layers), or provide a named list with arguments
to a function call to findPWL to define which layers to emphasize. Set either
colAlpha or colEmphasis to make the emphasis apparent.

the transparency setting for all layers (except the ones to be emphasized if you
want to emphasize any). This can be useful for example if you want to over-
plot the grain type sequences with another variable, e.g. a percentage from a
distribution.

the color of the layers to be emphasized (only if you want a different color than
defined by ColParam)

vector of profile indices that will be outlined to highlight them
Draw horizontal grid at layer heights (default = TRUE)
Draw vertical grid at xticks (default = TRUE)

draw a y-axis? (either FALSE, TRUE draws yaxis left, "right"” draws yaxis on
the right plot side) Note that in case of "right” you need to adjust par(mar =
...), disable ylab and manually draw an xlab with mtext.

Main title

y-axis label; disable ylab by providing an empty string (i.e., ylab =)
x-axis label; disable xlab by providing an empty string (i.e., xlab =)
Draw a box around the plot (default = TRUE)

non

Label the profiles with their "names", "originallndices" (prior to sorting), "dates",
"datetimes", or a custom character array

40 plot.snowprofileSet

xtick.las Orientation of labels if xticklabels is specified.

ytick.las Orientation of y-axis labels

yPadding Padding between ylim and limits of data, default = 10. Note that R will still put
padding by default. If you want to prohibit that entirely, specify xaxs ='i", or
yaxs ="i'.

xPadding Padding between xlim and limits of data, default = 0.5. Note that R will still put

padding by default. If you want to prohibit that entirely, specify xaxs = 'i', or

yaxs = 'i'. For xPadding, you can provide either a scalar, or a length 2 numeric
for left and right hand side, respectively.

hardnessResidual
Value within [@, 1] to control the minimum horizontal space of each layer that
will be colored irrespective of the layer’s hardness. A value of 1 corresponds to
no hardness being shown.

hardnessScale A scaling factor that exaggerates the hardness profile to subsequent cells on the
x-axis. Useful for time series of sparse profile observations. Note that this scal-
ing factor is unused when hardnessScale = 1 and that it gets more influential
the smaller hardnessScale gets. Also note, that a hardnessScale > 1 can lead
to profiles overlapping.

xOf fset offsets the profile location on the x-axis

xScale stretches the horizontal space of each profile. This should ideally be 1, but if
you have a 3-hourly profile resolution and want the plot to display without data
gaps, you can set this to 3. Warning: Please note, that this may lead to unnoticed
profile overlap if not calibrated properly!

k a sorting vector if SortMethod = "presorted”.

offset Provide a Date or POSIXct offset if you want to offset the vertical snow height/depth
axis so that the offset date aligns with snow depth/height 0.

add add the plot to an existing plot, or create new plot?

tz timezone of your snowprofileSet (for DateStart and DateEnd filtering)

Additional parameters passed to plot()

Details

The routine allows you to plot coloured sequences only, or to include hardness profile information
as well. See parameter hardnessResidual and the examples for more details. To change the font
size of labels etc, use par () with the parameters cex.lab, cex.axis, etc.

Author(s)

shorton, therla, phaegeli

See Also

plot.snowprofile, SPgroup

plot.snowprofileSet

Examples

Standard profile timeline (e.g. https://niviz.org)
plot(SPtimeline) # hourly timeseries
plot(SPtimeline, SortMethod = "time_daily"”) # daily timeseries

Change time series date(time) labels:
plot(SPtimeline, Timeseries_labels = "daily", xtick.las = 1)
plot(SPtimeline, Timeseries_labels = "daily 00:00", xtick.las = 1)
plot(SPtimeline,
xticklabels = c("one"”, "two",
"seven”, "", "nine",
Timeseries_labels = NA, xtick.las = 1)

nn nn nn

"three", , , s
o veleven”),

Deal with data gaps originating from discontinuous timeseries
hourly timeseries, representing raw data
plot(SPtimeline_3hourly,
xOffset = @, Timeseries_labels = "daily")
hourly timeseries, stretched to fill missing hours for a continuous plot
plot(SPtimeline_3hourly, xScale = 3,
xOffset = @, Timeseries_labels = "daily")

Group of profiles with same timestamp

plot(SPgroup, SortMethod = 'unsorted') # sorted in same order as list
plot(SPgroup, SortMethod 'hs') # sorted by snow height

plot(SPgroup, SortMethod = 'elev') # sorted by elevation

Colour layers by other properties
plot(SPtimeline, ColParam = 'density')

Align layers by depth instead of height
plot(SPtimeline, TopDown = TRUE)

Timelines with specific date ranges
plot(SPtimeline, DateEnd = '2017-12-17")
plot(SPtimeline, DateStart = '2017-12-15"', DateEnd = '2017-12-17")
plot(SPtimeline, DateStart = "2017-12-16 19:00",
Timeseries_labels = "daily 00:00", xtick.las = 1)

Show hardness profile, too:
plot(SPtimeline, hardnessResidual = @.1, hardnessScale = 10)

Additional examples of plot dimensions and labelling
Label the indices of the profiles in the list:
plot(SPgroup, SortMethod = 'elev', xticklabels = "originallndices")
... and with minimized axis limits and their station ID names:
plot(SPgroup, SortMethod = 'elev',
xticklabels = sapply(SPgroup, function(x) x$station_id),
yPadding = @, xPadding = @, xaxs = 'i', yaxs = 'i')
sorted by depth, and without box:
plot(SPgroup, SortMethod = 'hs', TopDown = TRUE, box = FALSE)

Apply a date offset to investigate which layers formed around that day of interest:

41

42

print.snowprofile

pwl_exists <- sapply(SPgroup, function(sp)
{length(findPWL(sp, pwl_date = "2019-01-21", pwl_gtype = c("SH", "DH"),
date_range_earlier = as.difftime(2, unit = "days"))) > 0})
k <- order(pwl_exists, decreasing = TRUE)
plot(SPgroup, SortMethod = 'presorted', k = k, xticklabels = "originallndices"”,
offset = as.Date(”2019-01-21"), xlab = "<-- Jan 21 PWL exists | does not exist -->")
abline(v = max(which(pwl_exists[k]))+0.5, 1ty = "dashed")

Emphasize specific layers

(i) all labeled layers of interest:

SPgroup <- snowprofileSet(lapply(SPgroup, labelPWL)) # label layers with default settings

plot(SPgroup, SortMethod = "hs", emphasizeLayers = TRUE, colAlpha = 0.3)

(ii) specific individual layers:

plot(SPgroup, SortMethod = "hs",
emphasizelayers = list(pwl_gtype = c(”"SH", "DH"), pwl_date = "2019-01-21"),
colAlpha = 0.3, colEmphasis = "black")

print.snowprofile Print snowprofile object

Description

Print snowprofile object

Usage

S3 method for class 'snowprofile'
print(x, pretty = TRUE, nLayers = NA, ...)

Arguments

X snowprofile object
pretty pretty print the object (data.frame-like instead of list-like)
nLayers only print the first few layers (cf., head)

passed to print.default

Value

object gets printed to console

Examples

pretty print
SPpairs$A_manual

or alternatively:
print(SPpairs$A_manual)

rbind.snowprofile 43

reduce number of layers printed:
print(SPpairs$A_manual, nLayers = 6)

print profile non-pretty (i.e., like the data is stored):
print(SPpairs$A_manual, pretty = FALSE)

rbind.snowprofile Convert snowprofile into data.frame with columns for metadata

Description

Convert snowprofile object into data.frame with a row for each layer and additional columns with

metadata
Usage
S3 method for class 'snowprofile'
rbind(..., deparse.level = 1)
Arguments

Object of class snowprofile

deparse.level Argument for generic rbind method

Details

Metadata columns are calculated with summary.snowprofile

Value

data.frame

Author(s)

shorton

See Also

summary.snowprofile, rbind.snowprofileSet

Examples

Profile <- SPgroup[[1]]
ProfileTable <- rbind(Profile)
head(ProfileTable)

44 rbind.snowprofileSet

rbind.snowprofileSet Concatenate snowprofileSet into a large data.frame with a row for
each layer

Description

A wrapper to apply rbind.snowprofile to each profile in a snowprofileSet then concatenate

Usage
S3 method for class 'snowprofileSet'
rbind(..., deparse.level = 1)
Arguments

Object of class snowprofileSet

deparse.level Argument for generic rbind method

Details
Returns a large data.frame with a row for each layer and additional columns with metadata (calcu-
lated with summary.snowprofile)

Value

data.frame

Author(s)

shorton

See Also

summary.snowprofile, rbind.snowprofile

Examples

Create rbind table
ProfileTable <- rbind(SPgroup)
head(ProfileTable)

Filter by layer properties

SHlayers <- subset(ProfileTable, gtype == 'SH')
summary (SHlayers)

plot(elev ~ gsize, SHlayers)

readSmet 45

readSmet Parse a SMET file

Description

Read contents of a SMET file https://models.slf.ch/docserver/meteoio/SMET_specifications.pdf

Usage

readSmet(Filename, HeaderOnly = FALSE)

Arguments

Filename Path to a smet file

HeaderOnly Read only Header information and return as Data.Frame?
Value

List containing metadata and data

Author(s)

shorton

See Also

writeSmet, snowprofileSno, snowprofilePrf, snowprofilePro

Examples

Path to example smet

Filename <- system.file('extdata', 'example.smet', package = 'sarp.snowprofile')
Wx = readSmet(Filename)

str(Wx)

Header <- readSmet(Filename, HeaderOnly = TRUE)
Header

46 reformat_snowprofile

reformat_snowprofile Reformat a malformatted snowprofile object

Description

Reformat a malformatted snowprofile object. A malformatted object may use field names that
deviate from our suggested field names (e.g., grain_type instead of gtype), or it may use data
types that are different than what we suggest to use (e.g., ddate as type Date instead of POSIXct).
Basically, if your snowprofile object fails the test of validate_snowprofile due to the above reason
this function should fix it.

Usage

reformat_snowprofile(profile, currentFields = NULL, targetFields = NULL)

Arguments

profile snowprofile object

currentFields array of character strings specifying the current field names that you want to
change

targetFields array of same size than currentFields specifying the new field names

Examples

check the malformatted profile:

this_throws_error <- TRUE

if (!this_throws_error) {
validate_snowprofile(SPmalformatted[[1]])

3

i.e., we see that elev and ddate are of wrong data type,

and a warning that grain_type is an unknown layer property.

reformat field types, but not the field name:
betterProfile <- reformat_snowprofile(SPmalformatted[[1]])
i.e., no error is raised anymore, but only the grain_type warning

so let's reformat also the field names:
optimalProfile <- reformat_snowprofile(SPmalformatted[[1]], "grain_type"”, "gtype")

reformat a list of profiles with the same configuration:
SPmalformatted_reformatted <- lapply(SPmalformatted, reformat_snowprofile,
currentFields = "grain_type", targetFields = "gtype")

the malformatted profile set finally is correctly formatted:
lapply(SPmalformatted_reformatted, validate_snowprofile)

scanProfileDates

47

scanProfileDates Read profile dates from prf/pro file

Description

Before reading entire SNOWPACK output it can be helpful to scan the profile timestamps first

Usage

scanProfileDates(Filename, tz = "UTC")
Arguments

Filename filename

tz time zone (default = "UTC’)
Value

vector of as.POSIXct timestamps

Author(s)

shorton

See Also

snowprofilePrf, snowprofilePro

Examples

Path to example prf file
Filename <- system.file('extdata', 'example.prf', package = 'sarp.snowprofile')

Scan dates in file
Dates <- scanProfileDates(Filename)
print(Dates)

48 setColoursGrainType

sd_sample_uncorrected fast uncorrected sample standard deviation
https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods

Description

fast uncorrected sample standard deviation https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods

Usage

sd_sample_uncorrected(x, xbar = mean(x), na.rm = FALSE)

Arguments

X a numeric vector

xbar arithmetic mean of x

na.rm remove any NAs before computation of standard deviation?
Value

uncorrected sample standard deviation (i.e., a numeric scalar)

Author(s)

fherla

setColoursGrainType Set colour scale for grain types

Description

Currently, you can choose between ’iacs’, ’iacs2’, ’sarp’, or ’sarp-reduced’.

Usage

setColoursGrainType(ScaleName)

setColoursGrainType 49

Arguments

ScaleName Name of graintype colour scale

* iacs: scale defined by the International Classification of Seasonal Snow
on the Ground

* iacs2: scale defined by the International Classification of Seasonal Snow
on the Ground with a dark red colour for MFcr layers so that MF and MFcr
layers can be better distinguished.

* sarp: hazard adjusted colours for grain types based on Horton et al. (2020)

* sarp-reduced: hazard adjusted colours for groups of grain types based on
Horton et al. (2020)

Value

data.frame containing the new colour values stored in grainDict

References

Horton, S., Nowak, S., and Haegeli, P.: Enhancing the operational value of snowpack models with
visualization design principles, Nat. Hazards Earth Syst. Sci., 20, 1557-1572, doi:10.5194/nhess-
2015572020, 2020.

See Also

grainDict, getColoursGrainType

Examples

Current/default grain type colours
grainDict
plot(SPpairs$A_manual, main = 'Snow profile with default colours')

Change to IACS colours

grainDict <- setColoursGrainType('IACS')

grainDict

plot(SPpairs$A_manual, main = 'Snow profile with IACS colours')

Change to IACS colours with adjusted MFcr (darkred)

grainDict <- setColoursGrainType('IACS2')

grainDict

plot(SPpairs$A_manual, main = 'Snow profile with IACS colours and adjusted darkred MFcr')

Change to SARP colours

grainDict <- setColoursGrainType('SARP'")

grainDict

plot(SPpairs$A_manual, main = 'Snow profile with SARP colours')

Change to reduced SARP colours

grainDict <- setColoursGrainType('SARP-reduced')

grainDict

plot(SPpairs$A_manual, main = 'Snow profile with a reduced set of SARP colours')

https://doi.org/10.5194/nhess-20-1557-2020
https://doi.org/10.5194/nhess-20-1557-2020

50 simplityGtypes

simplifyGtypes Simplify detailed grain types to parent classes

Description

The TACS records grain types in major and minor classes, e.g. precipitation particles PP can be
subclassified into stellar dendrites PPsd. Some of these subclasses are not supported in this R
package and so this function simplifies the unsupported gran type subclasses into their supported
main classes. If a given grain type cannot be simplified, a NA value is returned for it.

Usage

simplifyGtypes(gtypes, supported_gtypes = grainDict$gtype)

Arguments

gtypes an array of character grain types following IACS standards

supported_gtypes
an array of supported grain types that will determine the simplification

Value

the modified input array

Author(s)

fherla

Examples

create an array of gtypes
gtypes <- c('FCxr', 'RGxf', 'PPsd', 'PP', 'IFrc', "KKfx")

sinplify gtypes to supported_gtypes:
simplifyGtypes(gtypes)

snowprofile 51

snowprofile High-level constructor for a snowprofile object

Description

Conveniently create a snowprofile object. Calls low-level constructor (only available internally:
new_snowprofile), asserts correctness through a snowprofile validator function (validate_snowprofile)
and yields meaningful error messages. Use low-level constructor if you generate many (!) profiles.

Usage

snowprofile(
station = as.character(NA),
station_id = as.character(NA),
datetime = as.POSIXct(NA),
latlon = as.double(c(NA, NA)),
elev = as.double(NA),
angle = as.double(NA),
aspect = as.double(NA),
hs = as.double(NA),
maxObservedDepth = as.double(NA),
type = "manual”,
band = as.character(NA),
zone = as.character(NA),
comment = as.character(NA),
hn24 = as.double(NA),
hn72 = as.double(NA),
ski_pen = as.double(NA),
layers = snowprofilelayers(dropNAs = FALSE, validate = FALSE),
tests = snowprofileTests(dropNAs = FALSE),
instabilitySigns = snowprofilelnstabilitySigns(dropNAs = FALSE),
validate = TRUE,
dropNAs = TRUE

)
Arguments
station character string
station_id character string
datetime date and time as class POSIXct in most meaningful timezone (timezone can be
converted very easily: e.g. print(profile$datetime, tz = "EST").
latlon 2-element vector latitude (first), longitude (second)
elev profile elevation (m)
angle slope angle (degree)

aspect slope aspect (degree)

52

snowprofile

hs total snow height (cm); if not provided, the field will be derived from the profile
layers.

maxObservedDepth
equivalent to hs for full profiles that go down to the ground. for test profiles that
only observe the upper part of the snowpack this value refers to the maximum
depth of the profile observation.

type character string, must be either 'manual’, *'modeled’, ’vstation’, aggregate’, or
"whiteboard’

band character string describing elevation band as ALP, TL, BTL (alpine, treeline,
below treeline)

zone character string describing the zone or region of the profile location (e.g., BURN-
ABY_MTN)

comment character string with any text comments

hn24 height of new snow within 24 h

hn72 height of new snow within 72 h

ski_pen skier penetration depth (m)

layers snowprofileLayers object

tests snowprofileTests object

instabilitySigns
snowprofilelnstabilitySigns object

validate Validate the object with validate_snowprofile?

dropNAs Do you want to drop non-mandatory snowprofile and snowprofilelLayers
fields that are NA only?

Value

snowprofile object

Author(s)

shorton, ftherla

See Also

summary.snowprofile, plot.snowprofile, snowprofileLayers, snowprofileTests, snowprofileInstabili-

tySigns, SPpairs

Examples

Empty snowprofile:

snowprofile()

Test profile:

testProfile <- snowprofile(station = 'SARPstation', station_id = 'SARP0Q7',

datetime = as.POSIXct('2019/04/01 10:00:00', tz = 'Etc/GMT+7'),
latlon = c(49.277223, -122.915084), aspect = 180,

snowprofileCaaml 53

layers = snowprofilelayers(height = c(10, 25, 50),
hardness = c(3, 2, 1),
gtype = c('FC', NA, 'PP")))
summary (testProfile)
plot(testProfile)

snowprofileCaaml Read a Caaml file into a snowprofile object

Description

Note, that this function only provides a starting point for loading caaml files into R. Currently, caaml
files exported from niviz.org, or snowpilot.org should be compatible with this routine. However, this
routine only extracts some metadata and some of the most important layer characteristics. While a
temperature profile (that is independent from the layers) is extracted, no other variables that can be
written into a caaml file are currently being read (such as stability test results, etc).

Usage

snowprofileCaaml(
caamlFile,
sourceType = NA,
readStabilityTests = TRUE,
validate = TRUE

)
Arguments
caamlFile "path/to/file.caaml’
sourceType choose manual’, 'modeled’, ’vstation’, ’aggregate’ or ’whiteboard’; while this

routine has some functionality built in to detect sourceTypes under certain cir-
cumstances, it needs to be provided in most cases.

readStabilityTests
boolean (this is still beta version and can throw errors sometimes)

validate Should the resulting snowprofile object be validated by validate_snowprofile?

Details

* There is still a bug related to non-numeric aspects (e.g., E instead of 90).

* The snowprofileCsv function provides a lot more flexibility to read in data, if you can choose
the format of your underlying data. Don’t hesitate to reach out though if your caaml files
throw errors and you need help! If you extend this routine, please also reach out and let us
know, so we can update this package with your code extensions.

Value

snowprofile object

54 snowprofileCsv

Author(s)
fherla

Examples

load example caaml file that ships with package:
caamlFile <- system.file('extdata', 'example.caaml', package = 'sarp.snowprofile')

read caaml file:
profile <- snowprofileCaaml(caamlFile, sourceType = 'vstation')

other file with slighlty different xml namespace, structure, etc (including stability test):

caamlFile2 <- system.file('extdata', 'example2.caaml', package = 'sarp.snowprofile')
profile2 <- snowprofileCaaml(caamlFile2, sourceType = 'manual')
snowprofileCsv Read csv file into a snowprofile object
Description

Read csv file into a snowprofile object

Usage
snowprofileCsv(
path,
header = TRUE,
sep = II’H’

use.swisscode = FALSE,
height = "height”,
gtype = "gtype”,
hardness = "hardness”,

L

crust.val = 2,

tz = "UTC”
)
Arguments
path "path/to/file.csv’
header is there a header line in the csv file to explain the column names? If not, specify
a character vector of column names in the correct order.
sep csv column separator as string

use.swisscode boolean; are grain types given as (numeric) swisscode (TRUE) or as character
strings (FALSE)? If TRUE, grain types can be given as three-digit code (gt1lgt2lgt3),
or as one-digit code specifying the primary grain type if another column is pro-
vided that specifies crusts. See Details and Examples for more information.

snowprofileCsv 55

height character string referring to the csv column of the top layer interfaces
gtype character string referring to the csv column of the grain types
hardness character string referring to the csv column of the layer hardnesses

provide name-value pairs of additional csv columns (in the form gsize = 'csv-GrainSize-ColName'),
e.g.
* profile specific info: station, station_id, datetime, latlon, elev, angle,
aspect, type (see snowprofile)
* layer specific info: deposition date, grain size, ssi, ... (see snowprofileLay-

ers)
crust.val If a column ’crust’ is provided, what value of ’crust’ defines MFcr? Mostly,
either 2 (default) or 1. See Details.
tz time zone (default = "UTC”)

Details

The minimum information required to construct a valid snowprofile object is height, gtype and
hardness. Currently, substituting height with a depth vector is not supported.

If profile specific information is provided in the csv table, it can only be included into the snowpro-
file object through the exact field names (see above). However, layer specific information can be
named arbitrarily (except for the three required fields).

Regarding swisscode: The SNOWPACK documentation specifies that MFcr are encoded as (gt1Igt2Igt3)
= (7IxI2), i.e. gtl ==7 and gt3 == 2. This is also how this routine handles the grain type encoding
per default. However, some csv tables might be provided using swisscode encoding and providing
gtl, gt2, and gt3 as individual one-digit columns. In those cases, gt3 could be defined as a boolean

(O or 1), where gtl == 7 and gt3 == 1 represent crusts, instead of the aforementioned standard def-
inition of gtl == 7 and gt3 == 2. To handle these cases, crust.val can be set to 1, instead of its
default crust.val = 2.

Value

snowprofile object

Author(s)
fherla

See Also

snowprofileCsv_advanced

Examples

imagine a csv table with a very straightforward format,

similar to the following data.frame:

(DF <- data.frame(height = c(50, 80, 100), gtype = c('FC', 'RG', 'PP'), hardness = c(1, 3, 2)))
write DF to a temporary file:

write.csv(DF, file = file.path(tempdir(), 'file.csv'))

56 snowprofileCsv_advanced

read this file very easily by
profile <- snowprofileCsv(file.path(tempdir(), 'file.csv'))
profile

imagine a csv table that requires a bit more customization,

similar to the following data.frame:

(DF <- data.frame(ID = rep(1234, times = 3), layer_top = c(10.5, 15, 55.0), gt1 =c(5, 7, 2),
gs = c(5.0, 1.5, 1.0), crust = c(@, 1, @), hardness = c('F', 'P', "4F+"')))

write.csv(DF, file = file.path(tempdir(), 'file.csv'))

profile <- snowprofileCsv(file.path(tempdir(), 'file.csv'), height = 'layer_top', gtype = 'gt1"',
use.swisscode = TRUE, gsize = 'gs', crust.val = 1)

profile

Note that the csv column 'crust', which specifies whether a MF layer is actually

a MFcr layer, is already named correctly (i.e., 'crust'). If it were named 'freeze-crust',

we would need to add to the function call: “crust = 'freeze-crust'".

Also note, that we need to provide “crust.val =17, since we're not using the standard definition

of swisscode MFcr encoding (see Details).

let's assume you want to read the csv file an customize some names, e.g. GrainSIZE:

profile <- snowprofileCsv(file.path(tempdir(), 'file.csv'), height = 'layer_top', gtype = 'gt1',
use.swisscode = TRUE, GrainSIZE = 'gs')

profile

Note that generally in a snowprofile object layer properties can be custom named,
meta information, e.g. station_id, can not! I.e. you need to use the prescribed names.

snowprofileCsv_advanced
Read routine for advanced csv tables containing various snowprofile
information

Description

This routine reads blocks of snowprofile metadata, layers, tests, and stability signs. Columns con-
tain different variables, rows different observations. While metadata only contains one row, layers,
tests, and signs consist of potentially multiple rows. Within each block of information, mind the
correct alignment of rows. Missing values (i.e., NA) need to be left blank or called NA. See the
examples below including the example file shipped with the package.

Usage

snowprofileCsv_advanced(
csvFile,
meta = c("uid”, "hs"”, "maxObservedDepth”, "comment"),

snowprofilelnstabilitySigns 57

layers = c("depth”, "height"”, "gtype", "hardness”, "datetag"”, "gsize", "gtype_sec”,
"layer_comment”),

tests = c("test”, "result”, "fract_char”, "score”, "test_depth”, "test_comment"),

instabilitySigns = c("instabilitySign_type"”, "instabilitySign_present”,
"instabilitySign_comment"),

n o n

sep = -, ,
elev.units = "ft",
tz = "UTC”
)
Arguments
csvFile "path/to/file.csv’
meta column names of block metadata
layers column names of block snowprofileLayers
tests column names of block snowprofileTests
instabilitySigns
column names of block snowprofilelnstabilitySigns
sep csv column separator
elev.units if set to "ft", the routine will convert to "m". Set to "m" (or anything else) if it
should be unchanged
tz time zone (default = "UTC”)
Author(s)
fherla
Examples

load example csv file that ships with package:
csvFile <- system.file('extdata', 'example_adv.csv', package = 'sarp.snowprofile')

profile <- snowprofileCsv_advanced(csvFile, meta = c("uid”, "hs"”, "maxObservedDepth”, "comment”,
"datetime”, "zone", "station",

"station_id", "aspect”, "elev”, "angle"))

plot(profile)

snowprofileInstabilitySigns
Constructor for a snowprofilelnstabilitySigns object

58 snowprofilelnstabilitySigns

Description

Create a snowprofilelnstabilitySigns object. Instability signs can for example be whumpfs, crack-
ing, natural avalanches, skier accidental release, ski cutting, etc. For more information, see Cana-
dian Avalanche Association. (2016). Observation Guidelines and Recording Standards for Weather,
Snowpack, and Avalanches. Revelstoke, BC, Canada.

Usage

snowprofileInstabilitySigns(
signsFrame = data.frame(type = as.character(NA), present = as.character(NA), comment =
as.character(NA)),
dropNAs = TRUE
)

Arguments

signsFrame a data.frame listing snowpack stability signs. Rows correspond to individual ob-
servations of instability signs and columns describe at least the fields c("type",
"present”).
* type: Sc, Sa, Na, whumpf, crack, ...

* present: Was the instability sign present (TRUE), not present (FALSE), or
unknown (NA), for example

— natural avalanches occurred (i.e., Na TRUE), did not occur (i.e., Na
FALSE), no observations were carried out (i.e., Na NA)

— skiing the slope led to an avalanche (i.e., Sa TRUE)
— ski cutting did not release avalanche (i.e., Sc FALSE)
— etc

dropNAs Should empty, non-mandatory columns be dropped from the final snowprofile-
InstabilitySigns object?
Details

Note: This class might be a temporary solution to digitize instability signs observed in proximity to
snowprofiles. The information contained here, might be ported to a more general field observations
class that is both independent from snowprofile objects and that is more in line with existing field
observation standards.

Value

snowprofilelnstabilitySigns object

Author(s)
fherla

See Also

snowprofile, snowprofileLayers, snowprofileTests

snowprofileLayers 59

Examples

create a data.frame with instability sign observations
(signsFrame <- data.frame(type = c("Na", "whumpf”, "cracking”, "Sa"),
present = c(FALSE, TRUE, FALSE, FALSE)))

create snowprofilelnstabilitySigns object
instabilitySigns <- snowprofilelnstabilitySigns(signsFrame)

create snowprofile object containing instability signs and check resulting object:
snowprofile(instabilitySigns = instabilitySigns)

snowprofilelayers Constructor for a snowprofileLayers object

Description

Helper function to conveniently create a snowprofileLayers object, i.e. data.frame with mandatory
column fields height (or depth) that provides vertical position of layers. Layers need to be ordered
in a sequential manner, and the routine will rearrange the layers so that the last row of the resulting
dataframe corresponds to the snow surface. If the vertical location of the layers is given by depth,
make sure to provide hs if it’s known. Otherwise, provide the field maxObservedDepth or layer
thicknesses. Providing only depth will issue a warning and set the corresponding lowest layer thick-
ness to NA. The resulting dataframe will contain all three fields height, depth, and thickness,
which will be auto-filled if not provided (see format_snowprofileLayers). If the columns that de-
scribe layer properties are not of equal lengths, their values will be recycled (default data.frame
mechanism). Instead of individual layer characteristics, a data.frame can be provided, which will
be converted into a snowprofileLayers class. The constructor asserts correctness of the layers object
by a call to validate_snowprofileLayers.

Usage

snowprofilelayers(
height = as.double(NA),
temperature = as.double(NA),
density = as.double(NA),
lwc = as.double(NA),
gsize = as.double(NA),
gsize_max = as.double(NA),
gsize_avg = as.double(NA),
gtype = as.factor(NA),
gtype_sec = as.factor(NA),
hardness = as.double(NA),
ddate = as.POSIXct(NA),
bdate = as.POSIXct(NA),
datetag = as.Date(NA),
ssi = as.double(NA),

60 snowprofileLayers

sphericity = as.double(NA),
v_strain_rate = as.double(NA),
crit_cut_length = as.double(NA),
tsa = as.double(NA),
tsa_interface = as.double(NA),
rta = as.double(NA),
rta_interface = as.double(NA),
layerOfInterest = as.logical(NA),
comment = as.character(NA),

hs = as.double(NA),
maxObservedDepth = as.double(NA),
layerFrame = NA,

validate = TRUE,

dropNAs = TRUE

)
Arguments

height height vector (cm) referring to the top layer interface. Instead of height, depth
can also be given and should be accompanied by an array specifying the thickness
of the layers, or alternatively, the total snow depth hs and/or the maximum ob-
served depth maxObservedDepth should be provided. Note, that also the depth
refers to the top layer interface. See examples!

temperature snow temperature (deg C)

density layer density (kg/m3)

lwc liquid water content (%)

gsize grain size (mm)

gsize_max maximum grain size (mm)

gsize_avg average grain size (mm)

gtype grain type (character or factor)

gtype_sec secondary grain type (character or factor)

hardness numeric hand hardness (use char2numHHI to convert from character hardness)

ddate deposition date of layer (POSIXct format). WARNING: if you provide character
format, the time zone of your computer system will be assumed.

bdate burial date of layer (POSIXct format). WARNING: if you provide character
format, the time zone of your computer system will be assumed.

datetag of layer (i.e., usually corresponds to ddate for "MFcr’, and to bdate for all other
grain types.)

ssi snow stability index (numeric)

sphericity between 0 and 1

v_strain_rate viscous deformation rate (s"-1)
crit_cut_length
critical crack length (m)

snowprofileLayers

tsa

tsa_interface

rta

rta_interface

layerOfInterest

61

threshold sum approach for structural instability (also called lemons); valid for
the layer, i.e., the weakest interface adjacent to the layer. see computeTSA.

same as tsa, but valid for top interface of corresponding layer

relative threshold sum approach (following Monti et al 2013, ISSW paper); valid
for the layer, i.e., the weakest interface adjacent to the layer. see computeRTA.

same as rta, but valid for top interface of corresponding layer

a boolean column to label specific layers of interest, e.g. weak layers. see
labelPWL.

comment character string
columns to include in the layers object. Note, that they need to correspond
to the according height/depth array. e.g. hardness (can use character hard-
ness or numeric hardness via char2numHHI), ddate (class POSIX), bdate (class
Date) gtype (character or factor), density, temperature, gsize, lwc, gsize_max,
gtype_sec, ssi, depth, thickness

hs total snow height (cm), if not deductible from height vector. Particularly im-
portant when only a depth grid is provided!

maxObservedDepth
the observed depth of the profile from the snow surface downwards. Will only
be used, if no height, thickness, or hs is given.

layerFrame a data.frame that’s converted to a snowprofileLayers class if no other layer char-
acteristics are provided

validate Validate obj with validate_snowprofileLayers?

dropNAs Do you want to drop all columns consisting of NAs only?

Value

snowprofileLayers object as data.frame with strings as factors

Author(s)

shorton, fherla

See Also

snowprofile

Examples

Empty layers object:
snowprofilelLayers()

simple layers example that recycles the hardness 1F+: with warning issued!
Try what happens if you provide ddate as character array without a timezone.
snowprofilelayers(height = c(10, 25, 50),

hardness = char2numHHI('1F+"),

snowprofileLayers

gtype = c('FC', NA, 'PP"),
ddate = as.POSIXct(c(NA, NA, "2020-02-15 10:45:00"),
tz = "Etc/GMT+7"))

create snowprofilelayers object from data.frame
and feed it into a snowprofile object:
df <- data.frame(height = c(10, 25, 50),
hardness = c(2, 3, 1),
gtype = c('FC', NA, 'PP"),
stringsAsFactors = TRUE)

spL <- snowprofilelLayers(layerFrame = df)
(sp <- snowprofile(layers = spL))

#i#### Create top-down recorded snowprofilelLayers #it##
check out how the fields 'hs' and 'maxObservedDepth' are auto-filled in the
resulting snowprofile object!
1.) Specify depth and hs:
In that case the routine will assume that the deepest layer extends down to the ground
(sp1 <- snowprofile(layers = snowprofilelLayers(depth = c(40, 25, @),
hardness = c(2, 3, 1),
gtype = c('FC', NA, 'PP'),
hs = 50)))
note that sp and spl are the same profiles:
all(sapply(names(sp$layers), function(cols) {sp$layers[cols] == sp1$layers[cols]}), na.rm = TRUE)

2.) Specify depth, hs and thickness or maxObservedDepth:
This will include a basal layer of NAs to fill the unobserved space down to the ground.
(sp2 <- snowprofile(layers = snowprofilelLayers(depth = c(40, 25, 0),

hardness = c(2, 3, 1),

gtype = c('FC', NA, 'PP'),

hs = 70,

maxObservedDepth = 50)))

3.) Specify depth and maxObservedDepth:
This will include a basal layer of NAs which is 1 cm thick to flag the unknown basal layers.
(sp3 <- snowprofile(layers = snowprofilelLayers(depth = c(40, 25, 0),

hardness = c(2, 3, 1),

gtype = c('FC', NA, 'PP"),

gsize = c(2, NA, NA),

maxObservedDepth = 50)))

4.) Specify depth and thickness:
This is equivalent to the example spL3 above!
This will include a basal layer of NAs which is 1 cm thick to flag the unknown basal layers.
(sp4 <- snowprofile(layers = snowprofilelLayers(depth = c(40, 25, 0),
thickness = c(10, 15, 25),
hardness = c(2, 3, 1),
gtype = c('FC', NA, 'PP'))))

5.) Specify only depth: issues warning!
(sp5 <- snowprofile(layers = snowprofilelLayers(depth = c(40, 25, 0),

snowprofilePrf 63

hardness = c(2, 3, 1),
gtype = c('FC', NA, 'PP'))))

plot all 5 top.down-recorded profiles:

set <- snowprofileSet(list(spl, sp2, sp3, sp4, sp5))

plot(set, SortMethod = "unsorted”, xticklabels = "originallndices"”,
hardnessResidual = 0.1, hardnessScale = 1.5, TopDown = TRUE,
main = "TopDown Plot")

plot(set, SortMethod = "unsorted”, xticklabels = "originallndices”,
hardnessResidual = @.1, hardnessScale = 1.5, TopDown = FALSE,
main = "BottomUp Plot")

snowprofilePrf Construct snowprofile object from PRF file

Description

Read .prf files from SNOWPACK model output

Usage

snowprofilePrf(Filename, ProfileDate = NA, tz = "UTC")

Arguments
Filename path to prf file
ProfileDate read a single profile from file (default = NA will read all profiles)
tz time zone (default = "UTC”)

Details

Several SNOWPACK model output formats exist see SNOWPACK documentation
Definitions of PRF files are provided at https://snowpack.slf.ch/doc-release/html/prf_format.html

PREF files typically contain profiles from the same station at multiple time steps. If a specific
ProfileDate is provided a single snowprofile object is returned (search available dates with scanProfileDates),
otherwise all profiles are read and a list of snowprofile objects is returned.

Value

a single snowprofile object of list of multiple snowprofile objects

Author(s)

shorton

https://snowpack.slf.ch/doc-release/html/snowpackio.html
https://snowpack.slf.ch/doc-release/html/prf_format.html

64 snowprofilePro

See Also

snowprofilePro, scanProfileDates, snowprofileSno

Examples

Path to example prf file
Filename <- system.file('extdata', 'example.prf', package = 'sarp.snowprofile')

Scan dates in file
Dates <- scanProfileDates(Filename)
print(Dates)

Read a single profile by date and plot

ProfileDate <- Dates[3]

Profile <- snowprofilePrf(Filename, ProfileDate = ProfileDate)
plot(Profile)

Read entire time series and plot
Profiles <- snowprofilePrf(Filename)

plot(Profiles, main = 'Timeseries read from example.prf')
snowprofilePro Construct snowprofile object from PRO file
Description

Read .pro files from SNOWPACK model output

Usage

snowprofilePro(
Filename,
ProfileDate = NA,
tz = "UTC",
remove_soil = TRUE,
consider_SH_surface = TRUE,
suppressWarnings = FALSE

)
Arguments
Filename path to pro file
ProfileDate read specific profiles from file either by individual date or a vector of dates
(default = NA will read all profiles)
tz time zone (default = "UTC’)

remove_soil if soil layers are present in PRO file, remove them from snowprofile objects?

snowprofilePro 65

consider_SH_surface
boolean switch to read the special PRO field 0514-SH at surface (this will pro-
duce NA for many unknown layer properties except gsize, density, hardness,

gtype, height)
suppressWarnings
boolean switch

Details

Several SNOWPACK model output formats exist see SNOWPACK documentation

Definitions of PRO files are provided at https://snowpack.slf.ch/doc-release/html/pro_format.html
and an example file is available at niViz

PRO files typically contain profiles from the same station at multiple time steps. If a specific
ProfileDate is provided a single snowprofile object is returned (search available dates with scanProfileDates),
otherwise all profiles are read and a list of snowprofile objects is returned.

Value

a single snowprofile object or a snowprofileSet (list of multiple snowprofile objects) depending on
whether multiple or single dates are being read. If several ProfileDates are being given, but only
one of the dates contains snow, a snowprofileSet of length 1 is returned.

Author(s)

shorton, dmauracher

See Also

snowprofilePrf, scanProfileDates, snowprofileSno

Examples

Path to example pro file
Filename <- system.file('extdata', 'example.pro', package = 'sarp.snowprofile')

Download example pro file from niViz
#Filename <- tempfile(fileext = '.pro')
#download.file('https://niviz.org/resources/example.pro', Filename)

Scan dates in file
Dates <- scanProfileDates(Filename)
print(Dates)

Read a single profile by date and plot

ProfileDate <- Dates[3]

Profile <- snowprofilePro(Filename, ProfileDate = ProfileDate)
plot(Profile)

Read entire time series and plot
Profiles <- snowprofilePro(Filename)

https://snowpack.slf.ch/doc-release/html/snowpackio.html
https://snowpack.slf.ch/doc-release/html/pro_format.html
https://run.niviz.org/?file=resources%2Fexample.pro

66

plot(Profiles, main = 'Timeseries read from example.pro')

Read several specific dates and plot

specificDates <- Dates[2:3]

Profiles <- snowprofilePro(Filename, ProfileDate = specificDates)
plot(Profiles)

snowprofileSno

snowprofileSet Constructor for class snowprofileSet

Description

Constructor for class snowprofileSet

Usage

snowprofileSet(x = list())

Arguments

X list of snowprofile objects

Value

a snowprofileSet

See Also

snowprofile, summary.snowprofileSet

snowprofileSno Construct snowprofile object from SNO file

Description

Read .sno files from SNOWPACK model input/output

Usage

snowprofileSno(Filename)

Arguments

Filename path to sno file

snowprofileTests 67

Details

Several SNOWPACK model output formats exist see SNOWPACK documentation
Definitions of SNO files are provided at https://snowpack.slf.ch/doc-release/html/smet.html

Value

a snowprofile object

Author(s)

shorton

See Also

snowprofilePro, snowprofilePrf, snowprofileCsv

Examples

Path to example prf file
Filename <- system.file('extdata', 'example.sno', package = 'sarp.snowprofile')

Read snowprofile object
Profile <- snowprofileSno(Filename)

Note: plot.snowprofile won't work because sno files don't have harndess

Plot a temperautre profile
plot(snowprofileSet(list(Profile)), ColParam = 'temp')

snowprofileTests Constructor for a snowprofileTests object

Description

Create a snowprofileTests object.

Usage

snowprofileTests(
testsFrame = data.frame(type = as.character(NA), result = as.character(NA), score =
as.double(NA), fract_char = as.character(NA), depth = as.double(NA), comment =
as.character(NA)),
dropNAs = TRUE

)

https://snowpack.slf.ch/doc-release/html/snowpackio.html
https://snowpack.slf.ch/doc-release/html/smet.html

68 snowprofileTests

Arguments

testsFrame a data.frame listing snowpack stability tests. Rows correspond to individual tests
and columns describe at least the fields c("type”, "result”, "fract_char”,
"score"”, "depth").

* Test type and result yield the standard ’data code’ for reporting snowpack
tests according to the OGRS (see Details). Following type and result com-
binations are allowed:

— STV, STE, STM, STH, STN, and mixed forms STE-M, STM-H

- CTV, CTE, CTM, CTH, CTN, and mixed forms CTE-M, CTM-H
DTV, DTE, DTM, DTH, DTN, and mixed forms DTE-M, DTM-H
ECTPYV, ECTP, ECTN, ECTX

— RB, PST, DT tests are currently not supported.

* score: numeric, number of taps (for CT, ECT)

* fract_char corresponds to the fracture character, e.g., SP, SC, PC, RP,
BRK, ...

* depth: vertical location of corresponding snowpack layer (from surface)
* potential test comment column

dropNAs Should empty, non-mandatory columns be dropped from the final snowpro-
fileTests object?
Details

For more information, see Canadian Avalanche Association. (2016). Observation Guidelines and
Recording Standards for Weather, Snowpack, and Avalanches (OGRS). Revelstoke, BC, Canada.

Value

snowprofileTests object

Author(s)
fherla

See Also

snowprofile, snowprofileLayers, snowprofileInstabilitySigns

Examples

create a data.frame with test observations
(testsFrame <- data.frame(type = c("CT", "ST", "ECT"),
result = c("E-M", "M", "P"),
score = c(10, NA, 12),
fract_char = c("SP", NA, NA),
depth = c(40, 40, 40),
comment = c("some comment on first test”, "", "")))

create snowprofileTests object

SPgroup 69

tests <- snowprofileTests(testsFrame)

create snowprofile object containing test results and check resulting object:
snowprofile(tests = tests)

SPgroup Example group of snowprofiles from a mountain drainage

Description

A list of 12 snowprofile objects.

Usage

SPgroup

Format

A list with 12 entries, that are of class snowprofile

See Also

SPpairs, SPtimeline, plot.snowprofileSet

Examples

plot(SPgroup, SortMethod = 'unsorted', xticklabels = "originallndices")
plot(SPgroup, SortMethod = 'hs', xticklabels = "originallndices")

SPmalformatted Malformatted example profiles

Description
A list with two entries, each containing a snowprofile object. Both are malformatted, check out the
examples in validate_snowprofile and reformat_snowprofile to learn how to fix it.

Usage

SPmalformatted

Format

A list with several entries, that are of class snowprofile

70 SPtimeline

See Also

validate_snowprofile, reformat_snowprofile, SPpairs, SPgroup, SPtimeline

SPpairs Fairs of example snowprofiles

Description

A list with several entries, each containing a snowprofile object. Pairs of similar profiles are grouped
by their names.

Usage

SPpairs

Format

A list with several entries, that are of class snowprofile

See Also

SPgroup, SPtimeline

Examples

Each name refers to one snowprofile:
names (SPpairs)

opar <- par(no.readonly = TRUE)

par(mfrow = c(1, 2))

plot(SPpairs$A_manual, main = 'SPpairs$A_manual')
plot(SPpairs$A_modeled, main = 'SPpairs$A_modeled')
par(opar)

SPtimeline Timeseries of snowprofiles #’

Description

Timeseries of snowprofiles #

Usage

SPtimeline

SPtimeline_3hourly 71

Format

A list with several entries, that are of class snowprofile

See Also

SPgroup, SPpairs

Examples

summary (SPtimeline)
plot(SPtimeline)

SPtimeline_3hourly Timeseries of snowprofiles in 3 hour resolution #’

Description

Timeseries of snowprofiles in 3 hour resolution #’

Usage

SPtimeline_3hourly

Format

A list with several entries, that are of class snowprofile

See Also

SPtimeline

Examples

summary (SPtimeline_3hourly)
plot(SPtimeline_3hourly)

72 summary.snowprofile

summary . snowprofile Summary of a single snowprofile

Description

Summary of a single snowprofile

Usage
S3 method for class 'snowprofile'
summary (object, fast = FALSE, ...)
Arguments
object snowprofile object
fast boolean switch for twice as fast computation. downside: keep only length-1

meta data, i.e., discard latlon, or nlayers..

additional arguments for generic method

Details

Creates a one row data.frame where each column contains metadata.

Metadata is determines as elements of the snowprofile object list that are length = 1. An exception
is made for latlon where separate columns for lat and lon are produces.

A derived value nLayers is derived by counting the number of rows in $layers.

Value

data.frame

Author(s)

shorton

See Also

summary.snowprofileSet

Examples

Profile <- SPgroup[[1]]
names(Profile)

summary (Profile)
lapply(SPgroup, summary)

summary.snowprofileSet 73

summary . snowprofileSet
Summarize multiple snowprofiles

Description

Wrapper for summary.snowprofile, which only returns metadata for a single snowprofile object.
summary.snowprofileSet provides metadata for multiple snowprofiles, which is useful for subset-

ting.
Usage
S3 method for class 'snowprofileSet'
summary(object, fast = TRUE, ...)
Arguments
object list of snowprofile objects
fast boolean switch to speed up computations, see summary.snowprofile

additional arguments for generic method

Value

data.frame

Author(s)

shorton

See Also

summary.snowprofile, rbind.snowprofileSet

Examples

Extract metadata for a group of profiles
Metadata <- summary(SPgroup)
head(Metadata)

Subsetting profiles with Metadata

Alpine <- SPgroup[Metadata$elev > 2000]

summary (Alpine)

Shallow <- SPgroup[Metadata$hs < 150]

summary (Shallow)

Week2 <- SPtimeline[summary(SPtimeline)$date > '2017-12-15"']

time comparison of fast--slow implementation

74 validate_snowprofile

expect 20 sec runtime

rbenchmark: :benchmark(fast = {Metadata <- summary(SPgroup, fast = TRUE)},
slow = {Metadata <- summary(SPgroup, fast = FALSE)},
replications = 10%*3)
swisscode Numerical, Swiss Grain Type Code
Description

A character array of grain types that can be translated into a numerical code by their indices.

Usage

swisscode

Format

A character array

Examples

print(swisscode)

see numerical code for each grain type:
rbind(swisscode, seq(length(swisscode)))

validate_snowprofile Validate correctness of snowprofile object

Description

Validator function that checks if snowprofile standards are being met and raises an error if manda-
tory fields are missing or data types are incorrect. The function raises a warning when unknown
field names are encountered.

Usage

validate_snowprofile(object, silent = FALSE)

Arguments

object a snowprofile object to be validated

silent remain silent upon error (i.e., don’t raise error, but only print it)

validate_snowprofileLayers 75

Value

Per default an error is raised when discovered, if silent = TRUE the error is only printed and the
error message returned (Note: a warning is never returned but only printed!). If the function is
applied to multiple objects, the function returns NULL for each object if no error is encountered (see
examples below).

See Also

reformat_snowprofile

Examples

Validate individual snowprofile and raise an error
in case of a malformatted profile:

(1) no error
validate_snowprofile(SPgroup[[1]]1)

(2) malformatted profile --> error
this_throws_error <- TRUE

if (!'this_throws_error) {
validate_snowprofile(SPmalformatted[[1]1])
3

Validate a list of snowprofiles and raise an error
when the first error is encountered:
(i.e., stop subsequent execution)

(1) no error
lapply(SPgroup, validate_snowprofile)

(2) malformatted profile --> error

if (!this_throws_error) {
lapply(SPmalformatted, validate_snowprofile)
3

Validate a list of snowprofiles and continue execution,

so that you get a comprehensive list of errors of all profiles:

if (!'this_throws_error) {

errorlist <- lapply(SPmalformatted, validate_snowprofile, silent = TRUE)
errorlist[sapply(errorlist, function(item) !is.null(item))] # print profiles that caused errors

}

validate_snowprofilelLayers
Validate correctness of snowprofileLayers object

76 writePro

Description

Validator function that checks if class standards are being met and raises an error if not.

Usage

validate_snowprofilelayers(object, silent = FALSE)

Arguments

object to be tested

silent remain silent upon error (i.e., don’t throw error, but only print it)
Value

Per default an error is raised when discovered, if silent = TRUE the error is only printed and the
error message returned.

writePro Write snowprofileSet to a PRO file

Description

Write SNOWPACK PRO files from a snowprofileSet.

Usage

writePro(
profiles,
filename,
meta = NaN,
header_comment = "time of creation and SNOWPACK version unknown"

Arguments
profiles snowprofileSet object to write.

filename output file path ending in . pro.

meta optional profile metadata (defaults to summary(profiles, fast = TRUE) when
omitted).

header_comment character string added to the file header.

Value

Writes a PRO file to disk; returns NULL invisibly.

writeSmet 77

See Also

snowprofilePro

Examples

Path to example pro file
Filename <- system.file('extdata', 'example.pro', package = 'sarp.snowprofile')

Read entire time series and plot
Profiles <- snowprofilePro(Filename)
plot(Profiles, main = 'Timeseries read from example.pro')

Write to file
tmppath = tempfile(pattern = "written_", fileext = ".pro")
writePro(Profiles, tmppath)

Re-read from tempfile

Profiles2 <- snowprofilePro(tmppath)

(testbool <- all(Profiles[[1]]$layers == Profiles2[[1]]$layers))
if (!testbool) stop("error in writePro re-reading!")

writeSmet Write a SMET file

Description

Write data into a SMET file https://models.slf.ch/docserver/meteoio/SMET _specifications.pdf

Usage

writeSmet(smet, filename)

Arguments
smet A data structure that resembles a smet file (i.e., list containing metadata and a
data.frame, see example in readSmet)
filename Filepath to be written
Value

Generates smet file

Author(s)

fherla, shorton

See Also

readSmet, snowprofileSno, snowprofilePrf, snowprofilePro

78 [.snowprofileSet

Examples

First read example smet file provided in package
(Wx = readSmet(system.file('extdata', 'example.smet', package = 'sarp.snowprofile')))

Then write Wx to a new temp file and show the file
writeSmet(Wx, filename = file.path(tempdir(), 'file.smet'))
file.show(file.path(tempdir(), 'file.smet'))

Check whether it can be read back in
(WxNew <- readSmet(file.path(tempdir(), 'file.smet')))

[.snowprofileSet Extract method

Description

Extract method

Usage
S3 method for class 'snowprofileSet'
x[i]

Arguments

X object from which to extract element(s) or in which to replace element(s).

i indices specifying elements to extract or replace

Value

snowprofileSet object

Index

+ datasets
codes_pro, 7

* grainDict
grainDict, 28

* object
SPgroup, 69
SPmalformatted, 69
SPpairs, 70

* snowprofiles
SPtimeline, 70
SPtimeline_3hourly, 71

* snowprofile
SPgroup, 69
SPmalformatted, 69
SPpairs, 70

* swisscode
swisscode, 74

[.snowprofileSet, 78

assignDatetags, 3, 12, 13, 16

char2numAspect, 5
char2numHHI, 6, 60, 61
codes_pro, 7
computeRTA, 7,11,17,61
computeSLABrho, 9
computeSLABrhogs, 9
computeTSA, 8, 10, 17,61

deriveBDate, 5,11, 12, 17, 28
deriveDatetag, 12
difftime, 16

export.snowprofileCsv, 14

findPWL, 15, 17, 35, 39
format_snowprofilelLayers, 19, 59

getColoursDensity, 20, 21-24, 26
getColoursGrainSize, 20, 21, 22-27
getColoursGrainType, 20, 21, 22, 23-27, 49

79

getColoursHardness, 20-22, 23, 24-27
getColoursLWC, 20-23, 24, 25-27
getColoursPercentage, 25, 27
getColoursSnowTemp, 20-25, 26, 27
getColoursStability, 25, 27
grainDict, 28, 49
guessDatetagsSimple, 5, 1/-13, 28

hasUnobservedBasallLayer, 29
head, 42

importRDefaul tPackages, 30
insertUnobservedBasallLayer, 30
is.snowprofile, 31
is.snowprofilelnstabilitySigns, 31
is.snowprofilelayers, 32
is.snowprofileSet, 32
is.snowprofileTests, 33

labelPWL, 61
labelPWL (findPWL), 15

new_snowprofile, 33, 51
numberOfPWLsPerVerticallLevel, 35

plot.snowprofile, 36, 40, 52
plot.snowprofileSet, 37, 38, 69
print.default, 42
print.snowprofile, 42

rbind.snowprofile, 43, 44
rbind.snowprofileSet, 43,44, 73
readSmet, 45, 77
reformat_snowprofile, 46, 69, 70, 75

scanProfileDates, 47, 64, 65

sd_sample_uncorrected, 48

setColoursGrainType, 22, 28, 48

simplifyGtypes, 50

snowprofile, 4, 5, 8-14, 16, 29-31, 33, 35,
36,42, 43,46, 51, 55, 58, 61, 66-71,
74

80

snowprofileCaaml, 53
snowprofileCsv, 14, 53,54, 67
snowprofileCsv_advanced, 55, 56
snowprofilelInstabilitySigns, 31, 34, 52,

57,57, 68
snowprofilelayers, 4, 5, 12, 13, 16, 29, 30,

34, 35,52, 55,57, 58, 59, 68
snowprofilePrf, 45,47, 63, 65,67,77
snowprofilePro, 7,45, 47, 64, 64, 67,77
snowprofileSet, 4, 5, 8, 10-13, 29, 32, 39,

44, 66, 76, 78
snowprofileSno, 45, 64, 65, 66, 77
snowprofileTests, 33, 34, 52, 57, 58, 67
SPgroup, 40, 69, 70, 71
SPmalformatted, 69
SPpairs, 52, 69, 70, 70, 71
SPtimeline, 69, 70, 70, 71
SPtimeline_3hourly, 71
summary.snowprofile, 43, 44, 52,72, 73
summary.snowprofileSet, 66, 72,73
swisscode, 74

validate_snowprofile, 46, 51-53, 69, 70,
74

validate_snowprofilelLayers, 19, 59, 61,
75

writePro, 7,76
writeSmet, 45, 77

INDEX

	assignDatetags
	char2numAspect
	char2numHHI
	codes_pro
	computeRTA
	computeSLABrho
	computeSLABrhogs
	computeTSA
	deriveBDate
	deriveDatetag
	export.snowprofileCsv
	findPWL
	format_snowprofileLayers
	getColoursDensity
	getColoursGrainSize
	getColoursGrainType
	getColoursHardness
	getColoursLWC
	getColoursPercentage
	getColoursSnowTemp
	getColoursStability
	grainDict
	guessDatetagsSimple
	hasUnobservedBasalLayer
	importRDefaultPackages
	insertUnobservedBasalLayer
	is.snowprofile
	is.snowprofileInstabilitySigns
	is.snowprofileLayers
	is.snowprofileSet
	is.snowprofileTests
	new_snowprofile
	numberOfPWLsPerVerticalLevel
	plot.snowprofile
	plot.snowprofileSet
	print.snowprofile
	rbind.snowprofile
	rbind.snowprofileSet
	readSmet
	reformat_snowprofile
	scanProfileDates
	sd_sample_uncorrected
	setColoursGrainType
	simplifyGtypes
	snowprofile
	snowprofileCaaml
	snowprofileCsv
	snowprofileCsv_advanced
	snowprofileInstabilitySigns
	snowprofileLayers
	snowprofilePrf
	snowprofilePro
	snowprofileSet
	snowprofileSno
	snowprofileTests
	SPgroup
	SPmalformatted
	SPpairs
	SPtimeline
	SPtimeline_3hourly
	summary.snowprofile
	summary.snowprofileSet
	swisscode
	validate_snowprofile
	validate_snowprofileLayers
	writePro
	writeSmet
	[.snowprofileSet
	Index

