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1 The Problem

Recent decades have seen a surge in interest for evidence-based policy-making.
This is a welcome trend but it sets high demands for the corresponding evidence.
Typical policy questions—how much will the variable of interest increase or
decrease if we change a policy parameter—require estimation of causal effects
that are, unfortunately, hard to identify based on commonly available data. The
reasons are related to sample selection, the fact that these are typically different
people and different economies that face different policy variables. For instance,
workers who sign up for a training program may be more motivated or faster
learners than those who do not enter the program. And if their post-program
outcome differs, this may just reflect the obvious: different people behave in
a different way. Unfortunately, the gold standard for measuring causal effects,
randomized experiments, are sometimes too expensive or completely unfeasible.

An econometric solution to these problems is offered by Heckman (1976).
The paper suggests to rephrase the model in terms of a latent variable, “par-
ticipation tendency”, and assumes all the disturbance terms are drawn from a
common bivariate normal distribution. Although more recent literature shows
that these assumptions are often unrealistic, the model remains popular in many
applications due to it’s simplicity and few additional demands on data. Below,
we describe the model, and thereafter illustrate it’s usage in sampleSelection
package.

2 Treatment Effects with Spherical Disturbances
2.1 The Model

Assume the individual participation and outcome process is described by two la-
tent variables: “participation tendency” y** (s stands for “selection” and asterisk
* means the variable is not directly observed) and “outcome” y°:
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where u and v are disturbance terms, derived from a bivariate normal distribu-
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x® may include exclusion restrictions, variables not in x°, but it is not necessary
as the model is also identified based on the functional form assumptions only.! If
participation is decided based on outcome (for instance, when individuals select
the training only if they expect it to pay off), one may also want that x* to
include all the components of °. However, the general model does not require
it.

Instead of the latent participation tendency we observe the actual y® partici-
pation that occurs if y** > 0: y* = 1(y** > 0), and outcome y°. The parameter
of interest is o that measures how much will y° rise or fall if someone chooses
participation instead of non-participation. Note that this specification assumes
no individual heterogeneity: (B, is constant across individuals.

Individuals participate if y* = 1(y** > 0) =1 i.e. u > —ay — ajx®. Denote
z = ag + ajx?® for notational simplicity, hence the participation condition can
be written as y* = 1(u > —z). For participants

Ely°|z% y° = 1] = Bo + B12° + B2 + E[v|u > —2] (3)
and for non-participants
E[y°|z,y® = 0] = Bo + B1z° + Ev|u < —2]. (4)

We can identify (s in the usual way as E[y?|z;, y; = 1] — E[y?|x;, yi = 0]. How-
ever, as the conditional expectations in (3) and (4) are not 0, OLS estimation
will give biased results.

In econometric classification, it is a switching regression (tobit-5) model
where:

e Everyone has an observable outcome 3°.
e The selection indicator y° enters the outcome equation.
e The variables ° and parameters 3; are equal for both outcome types.

Note that this model cannot be estimated by the ordinary tobit-5 selection
equation: intercept and (o are not identified unless we impose certain cross-
equation restrictions. Neither can you estimate the model by tobit-2 as here
both selections are observed.

2.2 Two-Step Solution

This model can be estimated by a version of Heckman (1976) two-step estimator.
First, the selection process parameters a can be consistently estimated by
standard probit model, and hence we can compute estimated values Z;, the
estimates for the true z;.
Next, from normal density properties we know that

E[vju > —z] = poA(z) and Eplu < —z] = —poA(—2), (5)

1 Although formally identified, the estimates are much less precise if we do not include a
strong exclusion restriction.



and
o8 = Var [v|u > —2] = 0% — p?0?2\(2) — p?0?)\2(2) (6)
o1 = Var [v|u < —z] = 0% + p*0?2A(—2) — p*0?N\*(—2), (7)

where A(-) = ¢(-)/®(-) (commonly referred to as inverse Mill’s ratio), and ¢(+)
and ®(-) are the standard normal density and cumulative distribution functions.
As we have estimates for z, we can also calculate the corresponding estimates
A = ¢(2)/®(2). Hence we can re-write the outcome equation as

Yo = Bo + Brxl + Bay + Bai + s (8)

where
. Az if y*=1
I AV 0
—A(—z) if y*=0.
From (8) and (5) we can see that 83 = po. 7 is a disturbance term that by

construction is independent of A and has variance o3 or 0%, depending on the

participation status. We can estimate p and o from (8) in two ways. First, for
participants, from (6) we have

6% = 02 + 202N (2) + P22 N2 (2) = 0 + B22N(2) + B2A2(2) (10)
and second, for non-participants we get from (7)
6% = 03 — p0%EN(=2) + PPN (—2) = 0F — BREN(—2) + AN (—2) (1)

where upper bar denotes the corresponding sample means. o and o7 can be
estimated from the residuals for non-participants and participants. In either
case the estimator for p is

> |®

p=1 (12)

2.3 Maximum Likelihood Estimation

It is straightforward to use Maximum Likelihood for this model. Denote the
disturbance vectors by u = (u1,uz,...,un) and v = (v1,vs,...,vy). Based on
(1), the likelihood of modeled disturbances can be written as

Pr(u,w) = H Pr(vilu; < —z) Pr(u; < —z;)%

1€non-participants

X H Pr(vi\ui > —Zi) Pr(ui > —Zi)

i€participants

Using well-known normal density properties, we get from (2):
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Pr(u; > —z) = ®(%) (17)



The disturbance terms v; can be written based on observables as v; = y? — By —
B1x¢ — Bays. Accordingly, we can write the model log-likelihood in the model
parameters (ag, a1, 5o, 81, B2, 0, p) and observed data (x,y) as
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The model is very similar in structure to the standard tobit-5 models (Amemiya,
1985; Toomet and Henningsen, 2008). Essentially it is a tobit-5 model where ex-
planatory variables and coefficients are identical for both choices—participation
and non-participation.

_|_

3 treatReg

3.1 Synthetic Data

Technically, treatReg is an amended version of tobit-5 models in the selection
command in the package sampleSelection2 (Toomet and Henningsen, 2008).
It supports both 2-step and maximum likelihood estimation. In the latter case,
2-step method is used for calculating the initial values of parameters (unless
these are supplied by the user). The only difference between treatReg and
selection is the default model type: the former forces to estimate the treatment
effect model, the latter detects the model type based on the arguments. If the
outcome equation includes the selection outcome as an explanatory variable, it
assumes the user want to treatment effect model.

First we provide an example usage using random data. We create highly cor-
related error terms (p = 0.8), and set all the coefficients (except the intercepts)
equal to unity:

R> N <- 2000

R> sigma <- 1

R> rho <- 0.8

R> Sigma <- matrix(c(1, rho*sigma, rho*sigma, sigma~2), 2, 2)

R> # variance-covariance matrix
R> uv <- mvtnorm::rmvnorm(N, mean=c(0,0), sigma=Sigma)
R> # bivariate normal RV

R> u <- uv/[,1]
R> v <- uv[,2]

R> x <- rnorm(N) # normal covariates

R> z <- rnorm(N)

R>ySX <- -1 +x +z +u # unobserved participation tendency
R> yS <- ySX > 0 # observed participation



R>y0 <- x+yS +v
R> dat <- data.frame(y0, yS, x, z)

The code generates two correlated random variables, u and v (using rmvnorm).
It also creates an explanatory variable x and an exclusion restriction z. Finally,
we set the observable treatment indicator y° equal to unity for those whose
y®* > 0, and calculate the outcome y°.

First, we run a naive OLS estimate ignoring the selectivity:

R>m <- 1m(y0 ~ x + yS, data=dat)
R> print (summary (m))

Call:
Im(formula = yO ~ x + yS, data = dat)

Residuals:
Min 1Q Median 3Q Max
-3.5146 -0.6649 0.0365 0.6754 2.6004

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.25460 0.02557 -9.956  <2e-16 **x*
X 0.81027 0.02289 35.39%4 <2e-16 *x*x
ySTRUE 1.92569 0.05129 37.546 <2e-16 ***

Signif. codes: 0 ‘*x*x’ 0.001 ‘*%> 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ > 1

Residual standard error: 0.9332 on 1997 degrees of freedom
Multiple R-squared: 0.7054, Adjusted R-squared: 0.7052
F-statistic: 2391 on 2 and 1997 DF, p-value: < 2.2e-16

Our estimated treatment effect (yS) is close to 2, instead of the correct value 1.
This is because the error terms are highly positively correlated—the participants
are those who have the “best” outcomes anyway. Note that the estimates for
the intercept and x are biased too.

Next we use the correct statistical model with treatReg. We have to specify
two equations: the first one is the selection equation and the second one the
outcome equation. The treatment indicator enters in the latter as an ordinary
control variable:

R> tm <- treatReg(yS ~ x + z, y0 ~ x + yS, data=dat)
R> print (summary (tm))

Tobit treatment model (switching regression model)

Maximum Likelihood estimation

Newton-Raphson maximisation, 3 iterations

Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -3254.356

2000 observations: 1419 non-participants (selection FALSE) and 581
participants (selection TRUE)



8 free parameters (df = 1992)
Probit selection equation:

Estimate Std. Error t value Pr(>|tl)
(Intercept) -1.02120 0.04376 -23.34 <2e-16 **x*
X 1.01973 0.04555 22.39 <2e-16 *xx
z 1.05186 0.04651 22.62 <2e-16 *x*x
Outcome equation:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.01565 0.02943 0.532 0.595
X 0.99599 .02669 38.769 <2e-16 *xx
ySTRUE 0.98779 0.06571 15.033 <2e-16 *xx

Error terms:
Estimate Std. Error t value Pr(>|t|)

sigma 1.00761 0.01888 53.38 <2e-16 **x
rho 0.81050 0.02385 33.98 <2e-16 *xx
Signif. codes: 0 ‘*x*x’> 0.001 ‘*x> 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ ’> 1

o

The estimates are divided into three blocks: the first block describes the selec-
tion equation, the next one the outcome, and the last block describes the error
terms. Note that the selection variable is listed with the corresponding factor
level (here ySTRUE). In this case all the estimates are close to their true values.
This is not surprising as we have specified the model correctly. We also recover
the error term correlation 0.8 rather precisely.

3.2 Labor Market Training Data

However, the real life is almost never that simple. The data in the example
above has two advantages not commonly seen in real data: first, the model is
correctly specified, and second—the treatment effect is extremely strong with
B2 = o, the disturbance variance in the outcome process.

Let us analyze real treatment data from library Ecdat. This is a US training
program data from 1970s. educ measures education (in years), u74 and u75 are
unemployment indicators for 1974 and 1975, ethn is race (“black”, “hispanic”
and “other”) and re78 measures real income in 1978. The logical treat tells if
the individual was treated. First, choose u74 and u75 as exclusion restrictions.
This amounts to assuming that previous unemployment is unrelated to the wage
a few years later, except through eventual training.

R> data(Treatment, package="Ecdat")

R> er <- treatReg(treat~poly(age,2) + educ + u74 + u75 + ethn,
+ log(re78) “treat + poly(age,2) + educ + ethn,
+ data=Treatment)

R> print (summary (er))

Tobit treatment model (switching regression model)
Maximum Likelihood estimation

Newton-Raphson maximisation, 4 iterations

Return code 1: gradient close to zero (gradtol)



Log-Likelihood: -2651.502
2344 observations: 2204 non-participants (selection FALSE) and 140
participants (selection TRUE)

17 free parameters (df = 2327)
Probit selection equation:
Estimate Std. Error t value Pr(>[tl)

(Intercept) -1.94272 0.38051 -5.106 3.57e-07 **x
poly(age, 2)1 -41.64058 7.63374 -5.455 5.42e-08 **x
poly(age, 2)2  2.65968 4.97762 0.534 0.593166

educ -0.13661 0.03207 -4.260 2.13e-05 **x
u74TRUE 0.79452 0.22374  3.551 0.000391 **x*
u75TRUE 2.31494 0.21291 10.873 < 2e-16 **x
ethnblack 1.35300 0.18734  7.222 6.89e-13 **x
ethnhispanic 1.31932 0.29465 4.478 7.91e-06 *x*x

Outcome equation:
Estimate Std. Error t value Pr(>[t])

(Intercept) 8.983926  0.069341 129.561 < 2e-16 **x*

treatTRUE -0.963132 0.075837 -12.700 < 2e-16 **x*

poly(age, 2)1 6.512273 0.797670 8.164 5.25e-16 **x

poly(age, 2)2 -4.428831 0.773235 -5.728 1.15e-08 x*x*x*

educ 0.080227 0.005231 15.338 < 2e-16 **x*

ethnblack -0.256112 0.035865 -7.141 1.23e-12 **x*
0

ethnhispanic -0.007786
Error terms:
Estimate Std. Error t value Pr(>ltl)
sigma 0.69304 0.01014 68.359 < 2e-16 ***
rho 0.17699 0.06502 2.722 0.00654 *x*
Signif. codes: 0 ‘**x’> 0.001 ‘*%> 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

.079273 -0.098 0.922

We see that low education and unemployment are strong predictors for training
participation. We also see that blacks and hispanics are more likely to be trained
that “others”. Surprisingly, the trainings seems to have a strong negative impact
on earnings: the estimate -0.96 means that participants earn less than 40% of
what the non-participants do!

Let’s now acknowledge that previous unemployment may also have direct
causal effect on wage and add the variables u74 and u75 to the outcome equation
too. Now we do not have any exclusion restriction and the identification is solely
based on the functional form assumptions.

R> noer <- treatReg(treat~poly(age,2) + educ + u74 + u75 + ethn,

+ log(re78) “treat + poly(age,2) + educ + u74 + u75 + ethn,
+ data=Treatment)

R> print (summary (noer))

Tobit treatment model (switching regression model)
Maximum Likelihood estimation
Newton-Raphson maximisation, 3 iterations



Return code 1: gradient close to zero (gradtol)

Log-Likelihood: -2613.99
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2344 observations: 2204 non-participants (selection
participants (selection TRUE)

19 free parameters (df =

(Intercept) -1.93285
poly(age, 2)1 -42.90457
poly(age, 2)2  0.95030

educ -0.13664
u74TRUE 0.70914
u75TRUE 2.27799
ethnblack 1.31536

ethnhispanic 1.26579
Outcome equation:

Estimate
(Intercept) 8.996364
treatTRUE -0.508259

poly(age, 2)1 7.026173
poly(age, 2)2 -4.701016

educ 0.080785
u74TRUE -0.580994
u75TRUE -0.030988
ethnblack -0.269380

ethnhispanic -0.004216
Error terms:

Estimate Std. Erro

sigma 0.68058

rho -0.02145 0.0673

2325)
Probit selection equation:
Estimate Std.

O O O O O v NO

Std.
.068110
.106089
. 786638
.761097
.005141
.071644
.083291
.0356322
.077958

O OO OO OO oo

rt

3

Error t value

.38110
.99609
.156903
.03209
.21806
.20967
.18566
.29817

Error

.072
.366
.184
.258
.252
.865
.085
.245

t value

132.
.791
.932
17T
.714
.109
.372
.626
.054

-4

086

value Pr(>|t])
<2e-16

0.00994 68.466

0.319

0.75

Pr(>ltl)
4.25e-07
8.86e-08
0.85387
2.14e-05
0.00116
< 2e-16
1.84e-12
2.27e-05

PrC>ltl)
< 2e-16
1.77e-06
< 2e-16
7.71e-10
< 2e-16
8.14e-16
0.710
3.49e-14
0.957

%k %k

FALSE) and 140

k% Xk
* % %

* %k
* %

k% Xk
k% X%
* %k

k% Xk
k%X
* %Xk
* %k
* %k
%k %k %k

k%%

Signif. codes: O ‘*x*x’> 0.001 ‘*%> 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ ’> 1

Now the estimated treatment effect is substantially smaller in absolute value,
only -0.51, and hence participants earn about 60% of income of non-participants.

We also see that while the error terms in the first model above were slightly
positively correlated, now these are essentially independent. However, as the
selection equation estimates suggest, the participants are drawn from the weak
end of the observable skill distribution. If this is also true for unobservables, we
would expect the correlation to be negative. Seems like this data is too coarse
to correctly determine the bias. The reader is encouraged to experiment with
further variables in the data, such as pre-program incomes.

4 Conclusion

Treatment effect models with spherical disturbances remain popular in applied
research despite the often disputed assumptions. sampleSelection offers an
easy interface to estimate such models.
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