Package ‘sae.projection’

February 4, 2026
Type Package
Title Small Area Estimation Using Model-Assisted Projection Method
Version 0.1.5

Description Combines information from two independent surveys using a model-assisted projec-
tion method. Designed for survey sampling scenarios where a large sample collects only auxil-
iary information (Survey 1) and a smaller sample provides data on both variables of inter-
est and auxiliary variables (Survey 2). Implements a working model to generate synthetic val-
ues of the variable of interest by fitting the model to Survey 2 data and predicting values for Sur-
vey 1 based on its auxiliary variables (Kim & Rao, 2012) <doi:10.1093/biomet/asr063>.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

URL https://github.com/Alfrzlp/sae.projection

BugReports https://github.com/Alfrzlp/sae.projection/issues

Imports survey, cli, doParallel, dplyr, methods, parsnip, recipes,
rlang, rsample, stats, tune, workflows, yardstick, bonsai,
ranger, randomForest, themis, lightgbm, caret

RoxygenNote 7.3.2

Depends R (>=4.3.0), tidymodels
NeedsCompilation no

Repository CRAN

Date/Publication 2026-02-04 08:20:09 UTC
VignetteBuilder knitr

Suggests knitr, rmarkdown, quarto, testthat (>= 3.0.0)
Config/testthat/edition 3

Language en-US

Author Ridson Al Farizal P [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-0617-0214>),
Azka Ubaidillah [aut] (ORCID: <https://orcid.org/0000-0002-3597-0459>),
Silvi Ajeng Larasati [aut],
Amelia Rahayu [aut]

https://doi.org/10.1093/biomet/asr063
https://github.com/Alfrzlp/sae.projection
https://github.com/Alfrzlp/sae.projection/issues
https://orcid.org/0000-0003-0617-0214
https://orcid.org/0000-0002-3597-0459

2 df_svy22

Maintainer Ridson Al Farizal P <ridsonalfarizall5@gmail.com>

Contents
df_svy22 . e 2
df_svy23 e 3
df_SVY_A e e e 3
df_svy_B . e 4
Ma_Projection v v v v et e e e e e e e e e e e e e 5
projection_randomforest Lo 9

Index 12

df_svy22 df_svy22
Description

A dataset from a survey conducted at the province level in Indonesia in 2022.

Usage

df_svy22

Format

A data frame with 74.070 rows and 11 variables.

PSU Primary Sampling Unit

WEIGHT Weight from survey

PROV province code

REGENCY regency/municipality code

STRATA Strata

income Income

neet Not in education employment or training status
sex sex (1: male, 2: female)

age age

disability disability status (0: False, 1: True)

edu last completed education

df_svy23

df_svy23 df _svy23

Description

A dataset from a survey conducted at the province level in Indonesia in 2023.

Usage

df_svy23

Format

A data frame with 66.245 rows and 11 variables.

PSU Primary Sampling Unit

WEIGHT Weight from survey

PROV province code

REGENCY regency/municipality code

STRATA Strata

income Income

neet Not in education employment or training status
sex sex (1: male, 2: female)

age age

disability disability status (0: False, 1: True)

edu last completed education

df_svy_A df _svy_A

Description

A simulation dataset from a small sample survey, presented only at provincial level (Domain 1).

Usage

df_svy_A

Format

A data frame with 2000 rows and 20 variables with 40 domains.

province Province code

id_ind Unique identifier for each respondent

num Sample number

weight Weight from survey

x1
x2
x3
x4
x5
X6
x7
x8
x9

Predictor variables X1
Predictor variables X2
Predictor variables X3
Predictor variables X4
Predictor variables X5
Predictor variables X6
Predictor variables X7
Predictor variables X8

Predictor variables X9

x10 Predictor variables X10
x11 Predictor variables X11

x12 Predictor variables X12
x13 Predictor variables X13
x14 Predictor variables X14
x15 Predictor variables X15

Y Target variable (1: Yes, 0: No)

df_svy_B

df_svy_B

df _svy_B

Descrip

tion

A simulation dataset from a large sample survey, presented at the regency level (Domain 2).

Usage

df_

svy_B

ma_projection

Format

A data frame with 8000 rows and 20 variables with 40 domains.

province Province code

regency Regency code

id_ind Unique identifier for each respondent

num Sample number

weight Weight from survey

x1
x2
x3
x4
x5
x6
x7
x8
x9

Predictor variables X1
Predictor variables X2
Predictor variables X3
Predictor variables X4
Predictor variables X5
Predictor variables X6
Predictor variables X7
Predictor variables X8

Predictor variables X9

x10 Predictor variables X10
x11 Predictor variables X11
x12 Predictor variables X12
x13 Predictor variables X13
x14 Predictor variables X14
x15 Predictor variables X15

ma_projection

Model-Assisted Projection Estimator

Description

The function addresses the problem of combining information from two or more independent sur-
veys, a common challenge in survey sampling. It focuses on cases where:

* Survey 1: A large sample collects only auxiliary information.

e Survey 2: A much smaller sample collects both the variables of interest and the auxiliary

variables.

The function implements a model-assisted projection estimation method based on a working model.
The working models that can be used include several machine learning models that can be seen in

the

details section

6 ma_projection

Usage

ma_projection(
formula,
cluster_ids,
weight,
strata = NULL,
domain,
summary_function = "mean”,
working_model,
data_model,
data_proj,
model_metric,
cv_folds = 3,
tuning_grid = 10,
parallel_over = "resamples”,
seed = 1,
return_yhat = FALSE,

)
Arguments
formula A model formula. All variables used must exist in both data_model and data_proj.
cluster_ids Column name (character) or formula specifying cluster identifiers from highest
to lowest level. Use ~@ or ~1 if there are no clusters.
weight Column name in data_proj representing the survey weights.
strata Column name for stratification; use NULL if no strata are used.
domain Character vector specifying domain variable names in both datasets.

summary_function
A function to compute domain-level estimates (default: "mean”, "total"”, "variance").

working_model A parsnip model object specifying the working model (see @details).

data_model Data frame (small sample) containing both target and auxiliary variables.
data_proj Data frame (large sample) containing only auxiliary variables.

model_metric A yardstick: :metric_set() function, or NULL to use default metrics.
cv_folds Number of folds for k-fold cross-validation.

tuning_grid Either a data frame with tuning parameters or a positive integer specifying the

number of grid search candidates.

parallel_over Specifies parallelization mode: "resamples”, "everything"”, or NULL. If "re-
samples", then tuning will be performed in parallel over resamples alone. Within
each resample, the preprocessor (i.e. recipe or formula) is processed once, and
is then reused across all models that need to be fit. If "everything", then tuning
will be performed in parallel at two levels. An outer parallel loop will iterate
over resamples. Additionally, an inner parallel loop will iterate over all unique
combinations of preprocessor and model tuning parameters for that specific re-
sample. This will result in the preprocessor being re-processed multiple times,
but can be faster if that processing is extremely fast.

ma_projection 7

seed Integer seed for reproducibility.
return_yhat Logical; if TRUE, returns predicted y values for data_model.

Additional arguments passed to svydesign.

Details

The following working models are supported via the parsnip interface:

* linear_reg() — Linear regression

* logistic_reg() — Logistic regression

e linear_reg(engine = "stan") — Bayesian linear regression

* logistic_reg(engine = "stan") — Bayesian logistic regression
* poisson_reg() — Poisson regression

e decision_tree() — Decision tree

* nearest_neighbor () — k-Nearest Neighbors (k-NN)

* naive_bayes() — Naive Bayes classifier

* mlp() — Multi-layer perceptron (neural network)

* svm_linear() — Support vector machine with linear kernel

e svm_poly() — Support vector machine with polynomial kernel

* svm_rbf () — Support vector machine with radial basis function (RBF) kernel
* bag_tree() — Bagged decision tree

* bart() — Bayesian Additive Regression Trees (BART)

* rand_forest(engine = "ranger"”) — Random forest (via ranger)

* rand_forest(engine = "aorsf") — Accelerated oblique random forest (AORF; Jaeger et al.
2022, 2024)

* boost_tree(engine = "lightgbm") — Gradient boosting (LightGBM)
* boost_tree(engine = "xgboost") — Gradient boosting (XGBoost)

For a complete list of supported models and engines, see Tidy Modeling With R.

Value

A list containing:

* model — The fitted working model object.
* prediction — A vector of predictions from the working model.
e df_result — A data frame with:

— domain — Domain identifier.

— ypr — Projection estimator results for each domain.

— var_ypr — Estimated variance of the projection estimator.

— rse_ypr — Relative standard error (in \

https://www.tmwr.org/pre-proc-table

8 ma_projection

References

1. Kim, J. K., & Rao, J. N. (2012). Combining data from two independent surveys: a model-
assisted approach. Biometrika, 99(1), 85-100.

Examples

Not run:
library(sae.projection)
library(dplyr)
library(bonsai)

df_svy22_income <- df_svy22 %>% filter(!is.na(income))
df_svy23_income <- df_svy23 %>% filter(!is.na(income))

Linear regression
Im_proj <- ma_projection(
income ~ age + sex + edu + disability,
cluster_ids = "PSU", weight = "WEIGHT", strata = "STRATA",
domain = c("PROV", "REGENCY"),
working_model = linear_reg(),
data_model = df_svy22_income,
data_proj = df_svy23_income,
nest = TRUE
)

df_svy22_neet <- df_svy22 %>%
filter(between(age, 15, 24))

df_svy23_neet <- df_svy23 %>%
filter(between(age, 15, 24))

LightGBM regression with hyperparameter tunning

show_engines("boost_tree")

lgbm_model <- boost_tree(
mtry = tune(), trees = tune(), min_n = tune(),
tree_depth = tune(), learn_rate = tune(),
engine = "lightgbm”

)

lgbm_proj <- ma_projection(
formula = neet ~ sex + edu + disability,
cluster_ids = "PSU",
weight = "WEIGHT”,
strata = "STRATA",
domain = c("PROV", "REGENCY"),
working_model = lgbm_model,
data_model = df_svy22_neet,
data_proj = df_svy23_neet,
cv_folds = 3,
tuning_grid = 5,
nest = TRUE

projection_randomforest 9

End(Not run)

projection_randomforest
Projection Estimator with Random Forest Algorithm

Description

Kim and Rao (2012), the synthetic data obtained through the model-assisted projection method
can provide a useful tool for efficient domain estimation when the size of the sample in survey B is
much larger than the size of sample in survey A.

The function projects estimated values from a small survey (survey A) onto an independent large
survey (survey B) using the random forest classification algorithm. The two surveys are statistically
independent, but the projection relies on shared auxiliary variables. The process includes data
preprocessing, feature selection, model training, and domain-specific estimation based on survey
design principles "two stages one phase". The function automatically selects standard estimation or
bias-corrected estimation based on the parameter bias_correction.

bias_correction = TRUE can only be used if there is psu, ssu, strata on the data_model. If it
doesn’t, then it will automatically be bias_correction = FALSE

Usage

projection_randomforest(
data_model,
target_column,
predictor_cols,
data_proj,
domaini,
domain2,
psu,
ssu = NULL,
strata = NULL,
weights,
split_ratio = 0.8,
feature_selection = TRUE,
bias_correction = FALSE

Arguments

data_model The training dataset, consisting of auxiliary variables and the target variable.
target_column The name of the target column in the data_model.
predictor_cols A vector of predictor column names.

data_proj The data for projection (prediction), which needs to be projected using the
trained model. It must contain the same auxiliary variables as the data_model

10 projection_randomforest

domaini Domain variables for survey estimation (e.g., "province")

domain2 Domain variables for survey estimation (e.g., "regency")

psu Primary sampling units, representing the structure of the sampling frame.

ssu Secondary sampling units, representing the structure of the sampling frame (de-
fault is NULL).

strata Stratification variable, ensuring that specific subgroups are represented (default
is NULL).

weights Weights used for the direct estimation from data_model and indirect estimation

from data_proj.

split_ratio Proportion of data used for training (default is 0.8, meaning 80 percent for train-
ing and 20 percent for validation).

feature_selection
Selection of predictor variables (default is TRUE)

bias_correction
Logical; if TRUE, then bias correction is applied, if FALSE, then bias correction
is not applied. Default is FALSE.

Value

A list containing the following elements:

¢ model The trained Random Forest model.

* importance Feature importance showing which features contributed most to the model’s pre-
dictions.

* train_accuracy Accuracy of the model on the training set.
* validation_accuracy Accuracy of the model on the validation set.

* validation_performance Confusion matrix for the validation set, showing performance
metrics like accuracy, precision, recall, etc.

* data_proj The projection data with predicted values.
if bias_correction = FALSE:
* Domain1 Estimations for Domain 1, including estimated values, variance, and relative standard
error (RSE).
* Domain2 Estimations for Domain 2, including estimated values, variance, and relative standard
error (RSE).
if bias_correction = TRUE:
* Direct Direct estimations for Domain 1, including estimated values, variance, and relative
standard error (RSE).

* Domain1_corrected_bias Bias-corrected estimations for Domain 1, including estimated val-
ues, variance, and relative standard error (RSE).

* Domain2_corrected_bias Bias-corrected estimations for Domain 2, including estimated val-
ues, variance, and relative standard error (RSE).

projection_randomforest 11

References

1. Kim, J. K., & Rao, J. N. (2012). Combining data from two independent surveys: a model-
assisted approach. Biometrika, 99(1), 85-100.

Examples

library(survey)
library(caret)
library(dplyr)

data_A <- df_svy_A
data_B <- df_svy_B

Get predictor variables from data_model
x_predictors <- data_A %>% select(5:19) %>% names()

Run projection_randomforest with bias correction
rf_proj_corrected <- projection_randomforest(
data_model = data_A,
target_column = "Y",
predictor_cols = x_predictors,
data_proj = data_B,
domainl = "province”,
domain2 = "regency",
psu = "num”,
ssu = NULL,
strata = NULL,
weights = "weight”,
feature_selection = TRUE,
bias_correction = TRUE)

rf_proj_corrected$Direct
rf_proj_corrected$Domaini_corrected_bias
rf_proj_corrected$Domain2_corrected_bias

Index

+ datasets
df_svy22,2
df_svy23,3
df_svy_A, 3
df_svy_B, 4

df_svy22,2
df_svy23,3
df_svy_A, 3
df_svy_B, 4
ma_projection, 5

projection_randomforest, 9

svydesign, 7

12

	df_svy22
	df_svy23
	df_svy_A
	df_svy_B
	ma_projection
	projection_randomforest
	Index

