
robustlmm: An R Package for Robust Estimation of

Linear Mixed-Effects Models

Manuel Koller

University of Bern

Abstract

As any real-life data, data modeled by linear mixed-effects models often contain out-
liers or other contamination. Even little contamination can drive the classic estimates far
away from what they would be without the contamination. At the same time, datasets
that require mixed-effects modeling are often complex and large. This makes it difficult to
spot contamination. Robust estimation methods aim to solve both problems: to provide
estimates where contamination has only little influence and to detect and flag contami-
nation.

We introduce an R package, robustlmm, to robustly fit linear mixed-effects models
using the Robust Scoring Equations estimator. The package’s functions and methods are
designed to closely equal those offered by lme4, the R package that implements classic
linear mixed-effects model estimation in R. The robust estimation method in robustlmm

is based on the random effects contamination model and the central contamination model.
Contamination can be detected at all levels of the data. The estimation method does not
make any assumption on the data’s grouping structure except that the model parame-
ters are estimable. robustlmm supports hierarchical and non-hierarchical (e.g., crossed)
grouping structures. The robustness of the estimates and their asymptotic efficiency is
fully controlled through the function interface. Individual parts (e.g., fixed effects and
variance components) can be tuned independently.

In this tutorial, we show how to fit robust linear mixed-effects models using robustlmm,
how to assess the model fit, how to detect outliers, and how to compare different fits. If you
use the software, please cite this article as published in the Journal of Statistic Software
(Koller 2016).

Keywords: robust statistics, mixed-effects model, hierarchical model, ANOVA, R, crossed,
random effect.

1. Introduction

Linear mixed-effects models are powerful tools to model data with multiple levels of random

variation, sometimes called variance components. Data with multiple levels of random vari-

ation may have contamination or outliers on any of these levels. To detect and deal with

contamination, we developed a method that fits linear mixed-effects models robustly, using

the Robust Scoring Equations estimator (Koller and Stahel 2015; Koller 2013). We have

implemented the methods in the R-package robustlmm (Koller 2015) that we introduce here.

The variability introduced at the random effects level generally affects multiple observations

2 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

simultaneously. In a one-way anova dataset, for example, a group level random effect influ-

ences the observed value of all the observations that belong to the corresponding group. If this

group level random effect were an outlier with respect to the other group levels, this would

lead to a whole group of outliers on the level of observations (see, e.g., plate g in Figure 1).

When using classic estimation methods, even one such outlier might inflate the between-group

variability estimate and distort the results (see example discussed in Section 4). In such a case

it would be natural to assume that the group’s random effect (or mean) is an outlier rather

than all observations are outliers in the same direction. This concept of allowing potential

contamination on different sources of variability leads to the “random effects contamination

model”. With this model, we make the assumption of long-tailed or “gross error” distribu-

tions for the random effects as well and not just for the random errors. The effect of the

contamination is then propagated via the design matrices to the actual observations.

Levels of random variability can be hierarchical or crossed, or both, depending on the grouping

structure in the data. This implies that the effect of a single outlier on the random effects

level is not always as straight forward as in the above mentioned one-way anova example. The

effect may be different for each observation as the result of an outlier for a single observation

is combined with all the other random effects that affect this observation. This complex

relationship between the source of contamination and what is effectively realized in the data

can make it very hard or even impossible to spot contamination. This is where robust methods

step in and help clear the picture.

Basing the robust estimator on the “random effects contamination model” allows not only

multiple sources of contamination, it also avoids unnecessary assumptions about the data’s

grouping structure. The only assumption on the grouping structure, that is also required

for classic estimation, is that the model parameters are estimable. Other contamination

models usually assume that contamination is introduced and dealt with at the lowest level

only – the level of the observations. In mixed-effects models, observations generally correlate

with one another, and robust methods must respect these correlations. These dependencies

between observations require other contamination models to make strict assumptions about

the grouping structure. The random effects contamination model assumes that contamination

occurs directly at the source of random variability, before the grouping structure is introduced,

thus circumventing the complexity introduced by the data structure and avoids unnecessary

assumptions.

Classic estimation of linear mixed-effects models is mainly provided by two functions in

R (Table 1). The function lme in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar,

and R Core Team 2016) supports a variety of random effects and error level covariance struc-

tures. It is designed for hierarchical data structures, so incorporating crossed random effects

is not straightforward. The function lmer from the lme4 package (Bates, Mächler, Bolker,

and Walker 2015) is not limited in that respect: it supports arbitrary grouping structures and

efficiently deals with large data by making heavy use of memory-saving sparse representations

of matrices. Special random effects and error level covariance structures like, e.g., compound

symmetry or AR(1) correlation models, are, however, not yet supported. Linear quantile

mixed effects estimation is implemented in the lqmm function from the lqmm package (Geraci

Manuel Koller University of Bern 3

R package Function Approach Details / Assumptions

nlme lme classic optimized for nested hierarchical
structures; allows special random ef-
fects covariance structures

lme4 lmer classic no assumptions on grouping struc-
ture; correlated and uncorrelated ran-
dom effects within levels

lqmm lqmm quantile-based allows median-type estimates; one
grouping level with or without corre-
lation between random effects

heavy heavyLme t distributions one grouping level; correlated random
effects

— lmeRob reformulation as multi-
variate problem, then
MM-estimation

balanced nested hierarchical struc-
tures; uncorrelated random effects
within levels

rlme rlme rank based unbalanced nested hierarchical struc-
tures (2 or 3 levels); random inter-
cepts only; does not support balanced
data

robustlmm rlmer huberization of likeli-
hood and DAS-Scale
estimation

no assumptions on grouping struc-
ture; correlated and uncorrelated ran-
dom effects within levels

Table 1: Overview of classic and robust estimation methods available in R. See also the CRAN
Task View on robust statistical methods (Mächler 2016).

2014). This is not a robust method per se, but allows for median-based estimation. The

function supports only one grouping level but allows the correlation structure of the random

effects to be specified.

For robust estimation of linear mixed-effects models, there exists a variety of specialized

implementations in R, all using different approaches to the robustness problem. Most of them

are available on the Comprehensive R Archive Network (CRAN) as R packages. Except the

method presented in this paper, all other methods are applicable only for certain grouping

structures, see Table 1 for an overview. The function heavyLme in the heavy package (Osorio

2016) implements mixed-effects models using t distributions. However, it allows for a single

grouping factor only, which limits the method to two-level data. As both, the residual errors

and the random effects are modeled with a t distribution, the method can capture outliers on

both the subject and the observational level. The degrees of freedom for the two t distributions

are fixed to be the same. Hence, it is not possible to have a differing treatment of outliers on

the two levels. Multiple random effects are fitted with a correlation parameter, uncorrelated

random effects are not supported. The function lmeRob implements the method by Copt and

Victoria-Feser (2006). It is not available on CRAN but from the authors upon request. They

reformulate the mixed-effects problem as multivariate problem and apply multivariate MM-

estimation. This approach requires the grouping structure to be nested and the data to be

4 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

balanced. Observations are down-weighted at the highest group level, so the high breakdown

point of 50% applies to the number of groups that can be contaminated, not to the number of

observations. The implementation only supports uncorrelated random effects within levels.

The function rlme in the rlme R package implements nested hierarchical mixed-effects models

using a rank-based approach (Bilgic, Susmann, and McKean 2014). The function supports

only simple random intercepts, and solutions might not be unique.

This article is a tutorial for robustlmm, an implementation of the Robust Scoring Equations

estimator to fit mixed-effects models for the statistical computing environment R (R Core

Team 2016). The R package robustlmm is available on CRAN at https://cran.r-project.

org/package=robustlmm under the GPL-v2 license.

In the next section we provide background on robustlmm’s underlying estimating equations

and algorithms. In Section 3, we describe how robustlmm is implemented. In Section 4, we

work an example and demonstrate how to do a full statistical analysis. Pointers to further

information are given in Section 5. Details, tables of tuning parameters and formulas are

contained in the Appendix.

2. Background

2.1. Model equations and assumptions

We work with the general linear mixed-effects model in matrix form and, following Bates

(2010), with spherical random effects. The spherical random effects are obtained from the

regular random effects by a transformation such that they have a covariance matrix that equals

a scaled identity matrix. This transformation enables variance components to be estimated

as exactly zero. The model equations are:

y = Xβ +ZUb(θ)b∗ +Ueε
∗ ,

b∗ ∼ N
(
0, σ2Iq

)
, ε∗ ∼ N

(
0, σ2In

)
, b∗ ⊥ ε∗ ,

(1)

where y is the response vector of length n, β is the fixed effects vector of length p with

design matrix X, and b∗ is the spherical random effects vector of length q with design matrix

Z. The relation between the regular and the spherical random effects is b = Ub(θ)b∗. The

lower triangular matrix Ub(θ) is parameterized by the vector θ. The covariance matrix of

the random effects is V b(θ) = Ub(θ)Ub(θ)⊤. The matrix Ue is assumed to be a diagonal

matrix of known weights.

As mentioned in the introduction, we do not assume anything about the structure of the data

(i.e., the design matrices X and Z), though we do make the usual assumption which the

model parameters are estimable. We do assume the covariance matrix of the random effects

V b(θ) to be block-diagonal. This assumption excludes problems that cannot be written in

block-diagonal form, like geostatistical problems with spatial dependence encoded in V b(θ)

(see the georob package (Papritz 2016) for robust methods to deal with this special case).

https://cran.r-project.org/package=robustlmm
https://cran.r-project.org/package=robustlmm

Manuel Koller University of Bern 5

To reduce the complexity of the algorithms, our implementation makes additional assumptions

about the covariance matrices of the random effects and the residual errors that are not

required by the theory per se. Blocks of V b(θ) of size 2 × 2 and larger are assumed to

be unstructured, i.e., unconstrained covariance matrices (other structures such as compound

symmetry are not supported). In the remainder of the text, we will call blocks of size 1 × 1

diagonal and larger blocks unstructured. Finally, the residual error covariance matrix is

assumed to be a diagonal matrix with only one unknown scaling parameter.

2.2. Robustness approach

Robustness is achieved by robustification of the scoring equations. The scoring equations are

the derivatives of the log-likelihood. To fit the model (1), either the log-likelihood can be

maximized, or the roots of the scoring equations can be found. Robust estimating equations

are derived from the scoring equations by replacing the residuals and predicted spherical

random effects with bounded functions. These bounded functions ensure that a single term

(error or random effect) only has bounded influence on the estimating equations. To get robust

and efficient estimating equations of σ and θ, we apply the Design Adaptive Scale approach

by Koller and Stahel (2011). The robust estimating equations are provided in Appendix B. A

detailed derivation and evaluation of the robust method is given in Koller (2013) and Koller

and Stahel (2015).

The robustified estimating equations no longer correspond to any likelihood or pseudo-likelihood.

Thus, information criteria like AIC and tests based on the log-likelihood statistic are unavail-

able for the robust method we present here.

2.3. Weighting functions, robustness weights and tuning

Tuning (adjusting robustness properties of the resulting estimates) is done by adjusting pa-

rameters that control the form of the bounded functions in the robust estimating equations.

In M-estimation terminology, these bounded functions are called ψ-functions. They are the

derivatives of a ρ-function (see Maronna, Martin, and Yohai (2006) for exact definitions).

The Huber function, a function that is quadratic around zero and linear for values outside

±k, is a ρ-function (the corresponding ψ-function is shown in Figure 3). The parameter k is

called the tuning parameter. Larger values yield more efficient, but less robust estimates (for

k = ∞ one recovers the REML-estimates), whereas smaller values yield more robust but less

efficient estimates. A popular choice is to fix the asymptotic efficiency at 95% of the classic

estimates (k = 1.345 for the Huber function).

Replacing terms by bounded functions thereof down-weights terms with a large absolute

value. In the robustness literature, these weights are called robustness weights. Observations

or random effects with low robustness weights are classified as outliers by the robust method.

For a given ψ-function, the robustness weights are defined as

w.(v) =

{
ψ.(v)/x if x 6= 0 ,
1 if x = 0 .

(2)

6 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

where we replace the . in w. and ψ. by e or b to specify the terms to which the functions are

applied (e for errors/residuals; b for random effects). To gain robustness for all estimates,

estimating equations for covariance parameters have to be treated differently from fixed and

random effects, although the weighting functions for similar terms are related. We therefore

distinguish the weighting functions used for estimating σ and θ with a superscript (σ) in

equations. (In robustlmm, the functions are objects of class psi_func. The arguments are

called rho.e, rho.b, rho.sigma.e and rho.sigma.b.)

The robustness weights defined in (2) yield robust estimates of the fixed effects and predicted

values for the random effects for all ρ-functions with a bounded derivative, and also for convex

ρ-functions like the Huber function. For estimates of scaling factors (σ and θ for diagonal-only

blocks of V b(θ)), the requirements to get robust estimates are more strict. These are not

robust when convex ρ-functions are used. To get robust estimates for scaling factors, we need

to use ρ-functions so that w(σ)
. (v)v2 is bounded for v → ±∞. When convex ρ-functions are

used to estimate the fixed and random effects, a natural choice for a ρ-function to estimate

the scaling factors is the one that corresponds to the squared robustness weights, i.e.,

w(σ)
. (v) = w.(v)2 . (3)

Note the similarity to Huber’s Proposal 2. (The function psi2propII can be used to transform

a ρ-function to the corresponding ρ-function that yields squared robustness weights.)

Squared robustness weights are not required for block-diagonal parts of V b(θ). Instead of

M-scale type estimating equations, the unstructured blocks require methods similar to mul-

tivariate M-estimators for estimating covariance matrices. Multivariate M-estimators, as in-

troduced by Stahel (1987), use a derived set of ψ-functions that also yield bounded influence

estimates for convex ρ-functions. (This derivation is handled internally in robustlmm.)

The use of different ρ-functions in the estimating equations for σ and θ ensures the resulting

estimates to be robust, but lowers the efficiency of the estimates σ̂ and θ̂. This might be

acceptable for problems in which the scale parameter σ is considered a nuisance parameter,

but in mixed-effects modeling one is usually interested in estimating the variance components

and does not regard them as nuisance terms. If desired, the efficiency of the estimates of σ

and θ can be increased by increasing the tuning parameters of ψ
(σ)
e and ψ

(σ)
b . Tables of tuning

parameters for popular ψ-functions are provided in the Appendix.

2.4. Estimation algorithms

The models are fit with a nested iterative reweighting algorithm. If there are no initial

estimates, then the classic estimates are used as initial estimates. The outer loop is updating

θ̂ until it converges. For each new value of θ̂, we update β̂ and b̂* and then σ̂. This algorithm

converges to a local solution of the estimating equations. For convex ρ-functions and squared

robustness weights, the solution can be expected to be unique aside from pathological, easily

discarded solutions. A detailed description of the algorithm is given in Appendix C.

Manuel Koller University of Bern 7

3. Implementation

The robustlmm package is built upon the lme4 package, more specifically the lmer function.

The structure of the objects and the methods are implemented to be as similar as possible

to the ones of lme4 with robustness specific extensions where needed. The object returned

by rlmer is of class rlmerMod. Even though this class is close to the corresponding class

lmerMod returned by lmer, rlmerMod does not extend lmerMod. This is for two reasons.

First, methods for classic estimates are in general not applicable to robust estimates without

changes. Second, class inheritance would require a lot of maintenance when the corresponding

code in lme4 is changed. While computational methods of the lme4 package are implemented

in C++, the robustlmm package is implemented in pure R.

The main function of the package is rlmer, its name hinting at the fact that it is a robust

version of the lmer function. Besides additional arguments to control the robustness of

the fit, the usage of rlmer is identical to lmer. Most of the functions available for objects

returned by lmer are also available for objects returned by rlmer, e.g., predict or getME.

The getME function is a universal accessor function for quantities derived from the fitted

object (see help("getME")). The function anova requires the log-likelihood statistic and

is therefore unavailable. The simulation functions simulate and bootMer have not yet been

implemented. The functions to create diagnostic plots, dotplot, plot and qqmath for objects

returned by ranef, as well as dotplot and plot for objects returned by coef, are available

and identical to the those from lme4. In addition to the mentioned plot methods, we have

added a plot method plot.rlmerMod for objects returned by rlmer and lmer. It creates a

Tukey-Anscombe plot, a QQ-plot of the residuals and the random effects as well as scatterplots

of the random effects.

4. Usage

4.1. The Penicillin data

We illustrate the use of the robustlmm package on a dataset originally published by Davies

and Goldsmith (1972) and later used by Bates (2010). Davies and Goldsmith (1972) describe

it as data coming from an investigation to. . .

. . . assess the variability between samples of penicillin by the B. subtilis method. In
this test method a bulk-inoculated nutrient agar medium is poured into a Petri dish
of approximately 90 mm. diameter, known as a plate. When the medium has set, six
small hollow cylinders or pots (about 4 mm. in diameter) are cemented onto the surface
at equally spaced intervals. A few drops of the penicillin solutions to be compared are
placed in the respective cylinders, and the whole plate is placed in an incubator for a
given time. Penicillin diffuses from the pots into the agar, and this produces a clear
circular zone of inhibition of growth of the organisms, which can be readily measured.
The diameter of the zone is related in a known way to the concentration of penicillin in
the solution.

The description implies that it is a balanced two-way anova dataset with two types of random

8 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

effects: sample with six levels and plate with 24 levels. The random effects are completely

crossed. The dataset is distributed as the Penicillin dataset in lme4.

To emphasize the effect of the robust method, we modified the dataset slightly (as we did in

Koller and Stahel (2015)). We scaled down the first plate’s observation values, and we moved

one observation in plate f down to the lowest original observation. The modified dataset is

shown in Figure 1.

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

15

20

25

g s x u i j w f q r v e p c d l n a b h k o t m

Plate

D
ia

m
e
te

r
g
ro

w
th

 i
n

h
ib

it
io

n
 z

o
n
e
 (

m
m

)

Sample ● ● ● ● ● ●A B C D E F ●changed original

Figure 1: Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates
to assess penicillin concentration. The lines join the observations of the same sample. The
plates have been reordered by their diameter values. The observations marked by × have
been modified to introduce some contamination.

4.2. Fitting the model and assessing the model fit

We start by loading the R package and the modified Penicillin dataset.

R> require("robustlmm")

R> warning("Current dir: ", system.file("", package = "robustlmm"), " has contents: ",

+ paste(list.files(system.file("", package = "robustlmm")), collapse = ", "))

R> warning("doc dir: ", system.file("doc", package = "robustlmm"), " has contents: ",

+ paste(list.files(system.file("doc", package = "robustlmm")), collapse = ", "))

R> filename <- system.file("doc/Penicillin.R", package = "robustlmm", mustWork = TRUE)

R> warning("Filename: ", filename)

R> source(filename)

The contaminated dataset is now available in the data.frame PenicillinC. The dataset con-

Manuel Koller University of Bern 9

sists of four columns: the response diameter; two factors plate and sample that describe the

origin of the observations and contaminated, which indicates whether or not an observation

has been modified.

R> str(PenicillinC)

'data.frame': 144 obs. of 4 variables:

$ diameter : num 27 23 26 23 ...

$ plate : Factor w/ 24 levels "g","s","x","u",..: 18 18 18 18 ...

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 ...

$ contaminated: Factor w/ 2 levels "changed","original": 2 2 2 2 ...

We fit the model using the function rlmer. The name of the function suggests that it is a

robust variant of a popular function to fit classic mixed-effects models in R: the function lmer

of the R package lme4. The specification of models is the same for both functions. In a single

formula, we specify the fixed and random terms of the model. Fixed terms are added in the

usual R formula notation, and random terms are specified in parentheses. Random effects

are defined in conjunction with a grouping factor. The grouping factor is separated from the

random effect by a pipe symbol “|”. We now fit the classic and robust models:

R> fm <- lmer(diameter ~ (1|plate) + (1|sample), PenicillinC)

R> rfm <- rlmer(diameter ~ (1|plate) + (1|sample), PenicillinC)

As usual, we get information about the fit using the summary function:

R> summary(rfm)

Robust linear mixed model fit by DAStau

Formula: diameter ~ (1 | plate) + (1 | sample)

Data: PenicillinC

Scaled residuals:

Min 1Q Median 3Q Max

-4.8253 -0.6206 0.0811 0.5807 3.2244

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.9209 0.9596

sample (Intercept) 4.4921 2.1195

Residual 0.3282 0.5729

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

10 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

Estimate Std. Error t value

(Intercept) 22.9970 0.9112 25.24

Robustness weights for the residuals:

124 weights are ~= 1. The remaining 20 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.279 0.693 0.861 0.787 0.911 0.996

Robustness weights for the random effects:

25 weights are ~= 1. The remaining 5 ones are

1 2 3 24 30

0.226 0.919 0.994 0.869 0.915

Rho functions used for fitting:

Residuals:

eff: smoothed Huber (k = 1.345, s = 10)

sig: smoothed Huber, Proposal 2 (k = 1.345, s = 10)

Random Effects, variance component 1 (plate):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal 2 (k = 1.345, s = 10)

Random Effects, variance component 2 (sample):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal 2 (k = 1.345, s = 10)

The output is close to the output from lmer. The first part of the summary provides informa-

tion about the model fit; the estimates of V b(θ) and σ; followed by the estimated fixed effects

and derived statistics and (if applicable) the correlation of the fixed effects. The second part

gives information about the robustness weights and a list of the ρ-functions employed.

As we can read off the summary, the default ρ-function is the smoothed Huber ρ-function,

which is a smoothed variant of the regular Huber function (the exact definition is given in the

Appendix). The functions for estimating σ and θ are suffixed by “Proposal 2”, indicating that

squared robustness weights, with a high robustness but a low efficiency, are used by default

(diagonal blocks only, for unstructured blocks the regular ρ-function is used by default).

The summary also tells us that the lowest robustness weights for both the observations and

the groups are about 0.2. We can get a full named list of the robustness weights by using

the calls getME(rfm, "w_e") and getME(rfm, "w_b") for the observations and the groups,

respectively.

With the call plot(rfm), we can create simple residual analysis plots including normal QQ-

plots of the predicted random effects. The resulting plots are shown in Figure 2. The darker

color indicates observations with a low robustness weight w.. From the plot as well as from

the summary shown above, we can see that the observations that were changed have been

detected by the method, i.e., they have received a low robustness weight. There are also

Manuel Koller University of Bern 11

other observations that were assigned a rather low robustness weight and we would do good

to investigate them.

−2

−1

0

1

2

16 20 24

fitted

re
s
id

Fitted Values vs. Residuals

−2

−1

0

1

2

−2 −1 0 1 2

theoretical
s
a
m

p
le

Normal Q−Q vs. Residuals

−6

−4

−2

0

2

−2 −1 0 1 2

theoretical

s
a
m

p
le

weights
0.4 0.6 0.8 1.0

Normal Q−Q vs. Random Effects

Figure 2: Residual analysis plots for robust fit rfm. The coloring of the points gives informa-
tion about the corresponding robustness weights.

4.3. Tuning the fit

As already mentioned in Section 2.3, the estimates of σ and θ have a low efficiency if the

same tuning parameters are used as for estimating the fixed and random effects. To get a

higher efficiency, we have to increase the tuning parameter of ρ
(σ)
e and ρ

(σ)
b . Tables of tuning

parameters are provided in the Appendix. We can change the default tuning parameter of

objects of class psi_func with the function chgDefaults. The smoothed Huber function

is a convex ρ-function. Hence, we need to use squared robustness weights to get robust

estimates of the residual error scale and the variance components (see Section 2.3). We can

convert any ρ-function to the corresponding one with squared robustness weights using the

function psi2propII. The latter function also allows the tuning parameters to be changed

12 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

simultaneously, so that a second call to chgDefaults can be saved. We use the update

function to fit a model with a higher efficiency for the estimates of σ and θ:

R> rfm2 <- update(rfm, rho.sigma.e = psi2propII(smoothPsi, k = 2.28),

+ rho.sigma.b = psi2propII(smoothPsi, k = 2.28))

Note that the update function both uses the call information from the given object rfm, and,

if applicable, also uses estimates from the object as initial values for the fitting procedure.

To specify different ρ-functions for different random effects, the arguments rho.b and rho.sigma.b

accept as input a list of ρ-functions. The order in the list of the random effects must be the

same as the order listed in the output of summary. To fit only the element of θ that corre-

sponds to the “sample” random effect with higher efficiency, we use

R> rsb <- list(psi2propII(smoothPsi), psi2propII(smoothPsi, k = 2.28))

R> rfm3 <- update(rfm2, rho.sigma.b = rsb)

Note the missing second argument k when generating the first element of the list rsb. In that

case, the default tuning parameter k = 1.345 is used.

To compare the estimates of the various fits we did so far, we can use the function compare. We

set the argument show.rho.functions to FALSE to avoid a lengthy display of the ρ-functions

here. To enhance the comparison, we also fit the model to the original, uncontaminated data

with the classic, non-robust, method.

R> fmUncontam <- update(fm, data = Penicillin)

R> compare(fmUncontam, fm, rfm, rfm2, rfm3, show.rho.functions = FALSE)

fmUncontam fm rfm rfm2 rfm3

Coef

(Intercept) 23 (0.809) 22.8 (0.85) 23 (0.911) 23 (0.848) 23 (0.849)

VarComp

(Intercept) | plate 0.847 1.409 0.960 0.939 0.961

(Intercept) | sample 1.932 1.955 2.119 1.967 1.967

sigma 0.55 0.609 0.573 0.566 0.566

REML 331 377

The resulting table gives the estimates and standard errors in parentheses. The REML row gives

the restricted maximum likelihood statistic. As mentioned earlier, this statistic is unavailable

for robust fits. The output of the compare function can also be passed to xtable from the

xtable package (Dahl 2016) to create LATEX or HTML-tables.

Manuel Koller University of Bern 13

How to choose tuning parameters

When choosing tuning parameters for rlmer, one has to balance robustness and efficiency. In

the examples discussed above, this means that by setting the tuning parameters too high, the

estimates might break down and the resulting estimates are misleading. On the other hand,

it is not good practice to set the tuning parameters very low as this will produce inefficient,

i.e., imprecise, estimates. An approach as outlined above, fitting the model with low as well

as with high efficiency, is better. In general, parameters that are not considered nuisance

parameters should be estimated with high efficiency if possible.

When comparing fits with low to fits with high efficiency and robust to classic fits, one

should first compare the parameter estimates (keeping in mind their precision or confidence

intervals). If there are any relevant differences, then a study of the robustness weights should

give insight as to which observations cause the difference. It is important not to just remove

and, thus, ignore outliers. Whenever possible, the reason why an outlier is far from the bulk

of observations should be determined. Outliers that are not merely due to recording errors

usually carry information that can help to improve the model.

Applying this method to the example shown above, we can see that the one contaminated

plate clearly inflates the classic, non-robust estimates for the standard deviation of the “plate”

random effect. The robust method can detect this contamination and reduce its effect, leading

to an estimate that is only slightly inflated. The comparison of the robust fits with lower and

higher efficiency shows that the contamination is not strong enough to cause a breakdown of

the fit with higher efficiency but lower robustness. Also, the higher efficiency for the estimate

of the standard deviation of the “sample” random effect leads to a better estimate that is

closer to the classic fits. Finally, the robust estimates of the standard deviation of the random

errors are closer to the original classic fit of the uncontaminated data.

4.4. Controlling the fitting procedure

To diagnose problems with the fitting procedure, use the argument verbose. The argument

takes values from 1 to 5, and gives more verbose output for higher values. If the method is

not converging, increasing the maximum number of allowed iterations (argument max.it) or

the tolerance (rel.tol) below which convergence is declared can help to achieve convergence.

To specify starting values for the fitting procedure, use the init argument. The init argu-

ment expects a list with four items: fixef, the fixed effects, u, the spherical random effects,

sigma, the error scale σ, and theta, the vector θ parameterizing the random effects covariance

matrix V b(θ).

To shorten fitting times at the beginning of an analysis, use the argument method = "DASvar".

This method is faster as it uses simple direct approximations instead of numerical integrals to

compute the scale and covariance parameters using the Design Adaptive Scale approach (see

Koller and Stahel (2011) and Appendix B). The DASvar method yields approximate results

only. For covariance matrices of the random effects V b(θ) with unstructured blocks of size

three and larger, the method DASvar is the only method currently available.

14 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

5. Further information

Detailed information on the properties of the robust method and validation using simulation

studies can be found in compact form in Koller and Stahel (2015) and more detailed in Koller

(2013). Bates (2010) is a general introduction to mixed modeling using the R package lme4

(Bates et al. 2015). Because lme4 and robustlmm are similar, this is also a good starting

point for using robustlmm.

We avoided the topic of robust testing for linear mixed-effects models in this tutorial. The

usual caveats of testing in mixed models apply for the methods presented here. Bootstrap

presents itself as a simple (but data structure dependent) way to get p values. One has to

be careful, though, since the ordinary bootstrap quantiles are not robust (Salibián-Barrera,

Van Aelst, and Willems 2008; Singh 1998).

Development of robustlmm is hosted on GitHub at https://github.com/kollerma/robustlmm.

Any issues with the package can also be reported there.

Acknowledgments

The author would like to thank Kali Tal for providing editorial help with the manuscript.

The author would also like to thank two anonymous reviewers for their helpful comments

and suggestions on how to improve the paper. Finally, the author would like to thank Niels

Hagenbuch for his comments and proof-reading.

https://github.com/kollerma/robustlmm

Manuel Koller University of Bern 15

References

Bates DM (2010). “lme4: Mixed-Effects Modeling with R.” https://lme4.r-forge.

r-project.org/book/.

Bates DM, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models

Using lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bilgic Y, Susmann H, McKean J (2014). rlme: Rank-based Estimation and Prediction in

Random Effects Nested Models. R package version 0.4, URL https://CRAN.R-project.

org/package=rlme.

Chervoneva I, Vishnyakov M (2011). “Constrained S-Estimators for Linear Mixed Effects

Models with Covariance Components.” Statistics in Medicine, 30(14), 1735–1750. doi:

10.1002/sim.4169.

Copt S, Victoria-Feser M (2006). “High-Breakdown Inference for Mixed Linear Mod-

els.” Journal of the American Statistical Association, 101(473), 292–300. doi:10.1198/

016214505000000772.

Dahl DB (2016). xtable: Export Tables to LaTeX or HTML. R package version 1.8-2, URL

https://CRAN.R-project.org/package=xtable.

Davies OL, Goldsmith PL (eds.) (1972). Statistical Methods in Research and Production. 4th

edition. Hafner.

Demidenko E (2004). Mixed Models: Theory and Applications. John Wiley & Sons. doi:

10.1002/0471728438.

Geraci M (2014). “Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile

Regression.” Journal of Statistical Software, 57(13), 1–29. doi:10.18637/jss.v057.i13.

Hampel F, Ronchetti E, Rousseeuw P, Stahel W (1986). Robust Statistics: The Approach

Based on Influence Functions. John Wiley & Sons.

Koller M (2013). “Robust Estimation of Linear Mixed Models.” Diss., ETH Zürich, Nr. 20997,

2013, URL https://doi.org/10.3929/ethz-a-007632241.

Koller M (2015). robustlmm: Robust Linear Mixed Effects Models. R package version 2.1,

URL https://CRAN.R-project.org/package=robustlmm.

Koller M (2016). “robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects

Models.” Journal of Statistical Software, 75(6), 1–24. doi:10.18637/jss.v075.i06.

Koller M, Stahel WA (2011). “Sharpening Wald-Type Inference in Robust Regression for

Small Samples.” Computational Statistics & Data Analysis, 55(8), 2504–2515. doi:10.

1016/j.csda.2011.02.014.

https://lme4.r-forge.r-project.org/book/
https://lme4.r-forge.r-project.org/book/
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=rlme
https://CRAN.R-project.org/package=rlme
https://doi.org/10.1002/sim.4169
https://doi.org/10.1002/sim.4169
https://doi.org/10.1198/016214505000000772
https://doi.org/10.1198/016214505000000772
https://CRAN.R-project.org/package=xtable
https://doi.org/10.1002/0471728438
https://doi.org/10.1002/0471728438
https://doi.org/10.18637/jss.v057.i13
https://doi.org/10.3929/ethz-a-007632241
https://CRAN.R-project.org/package=robustlmm
https://doi.org/10.18637/jss.v075.i06
https://doi.org/10.1016/j.csda.2011.02.014
https://doi.org/10.1016/j.csda.2011.02.014

16 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

Koller M, Stahel WA (2015). “Robust Estimation of General Mixed Effects Models.” To be

submitted.

Mächler M (2016). “CRAN Task View: Robust Statistical Methods.” Version 2016-08-29,

URL https://CRAN.R-project.org/view=Robust.

Maronna RA, Martin RD, Yohai VJ (2006). Robust Statistics, Theory and Methods. John

Wiley & Sons. doi:10.1002/0470010940.

Osorio F (2016). heavy: Package for Outliers Accommodation Using Heavy-Tailed Distribu-

tions. R package version 0.38, URL https://cran.r-project.org/package=heavy.

Papritz A (2016). georob: Robust Geostatistical Analysis of Spatial Data. R package ver-

sion 0.3-1, URL https://CRAN.R-project.org/package=georob.

Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team (2016). nlme: Linear and Non-

linear Mixed Effects Models. R package version 3.1-128, URL https://CRAN.R-project.

org/package=nlme.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Salibián-Barrera M, Van Aelst S, Willems G (2008). “Fast and Robust Bootstrap.” Statistical

Methods & Applications, 17(1), 41–71. doi:10.1007/s10260-007-0048-6.

Singh K (1998). “Breakdown Theory for Bootstrap Quantiles.” The Annals of Statistics,

26(5), 1719–1732. doi:10.1214/aos/1024691354.

Stahel W (1987). “Estimation of a Covariance Matrix with Location: Asymptotic Formulas

and Optimal B-robust Estimators.” Journal of Multivariate Analysis, 22(2), 296–312. doi:

10.1016/0047-259x(87)90092-3.

https://CRAN.R-project.org/view=Robust
https://doi.org/10.1002/0470010940
https://cran.r-project.org/package=heavy
https://CRAN.R-project.org/package=georob
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://www.R-project.org/
https://doi.org/10.1007/s10260-007-0048-6
https://doi.org/10.1214/aos/1024691354
https://doi.org/10.1016/0047-259x(87)90092-3
https://doi.org/10.1016/0047-259x(87)90092-3

Manuel Koller University of Bern 17

A. The smoothed Huber function and tables of tuning constants

The smoothed Huber ψ-function is defined as

ψ(x, k, s) =

{
x |x| ≤ c

sign(x)
(
k − 1

(|x|−d)s

)
otherwise

, (4)

where c = k−s
−s

s+1 and d = c−s
1

s+1 . We recommend using a value of s = 10. The asymptotic

properties of the regular Huber function and the smoothed Huber function are almost identical

when this value is used. We can therefore safely use the same tuning parameter k for both

ψ-functions. The two ψ-functions are compared in Figure 3. Tuning constants for this and

the lqq ψ-function (Koller and Stahel 2011) are shown in Tables 2 to 5.

0.0

0.5

1.0

0 1 2 3

x

ψ
(x

)

ψ−function Huber Smoothed

Figure 3: Comparison of the Huber and the smoothed Huber ψ-function for k = 1.345 and
s = 10.

Efficiency k for µ̂ k for σ̂ k for σ̂, Prop. II
0.80 0.53 0.50 1.49
0.85 0.73 0.71 1.69
0.90 0.98 1.08 1.94
0.95 1.345 1.66 2.28

Table 2: Tuning parameters k for scale estimates such that they reach the same asymptotic
efficiency as the location estimate. For the Huber ψ-function.

18 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

Dimension s
2 3 4 5 6 7

bη 5.66 6.41 7.14 7.87 8.58 9.28
bτ 5.15 5.55 5.91 6.25 6.55 6.84
bµ 1.5 1.63 1.73 1.81 1.87 1.9

Table 3: Tuning parameters for the optimal B-estimator to yield 95% efficiency, non-diagonal
case. For the Huber ψ-function.

Efficiency cc for µ̂ cc for σ̂
0.80 (0.946, 0.631) (1.414, 0.942)
0.85 (1.058, 0.705) (1.57, 1.05)
0.90 (1.214, 0.809) (1.79, 1.19)
0.95 (1.474, 0.982) (2.19, 1.46)

Table 4: Tuning parameters for lqq ψ-function for the location and scale estimates such that
they reach the given asymptotic efficiency. The third parameter is always taken to be 1.5.

Dimension s
2 3 4 5 6

ccη (6.44, 4.29) (7.23, 4.82) (8.01, 5.34) (8.77, 5.85) (9.52, 6.35)
ccτ (5.95, 3.97) (6.41, 4.27) (6.82, 4.55) (7.2, 4.8) (7.55, 5.03)
ccµ (1.63, 1.09) (1.77, 1.18) (1.88, 1.26) (1.99, 1.32) (2.08, 1.39)

Table 5: Tuning parameters for the lqq weight function to yield 95% efficiency, non-diagonal
case. The third parameter is always taken to be 1.5.

Manuel Koller University of Bern 19

B. Robust estimating equations

This Appendix summarises the more extensive derivation of the robust estimating equations

found in Koller (2013).

B.1. Fixed and random effects

Let k(j) be a function that maps random effect j to the corresponding block k, then the

squared Mahalanobis distances of the estimated random effects are

d =
(
d
(
b∗

k(j)/σ
))

j=1,...,q
, where d(b∗

k) = b∗⊤
k b∗

k .

We may then define the robustness weight for the jth random effect as wb(dj). We use

standard (location and linear regression) robustness weights:

wb(d) =

{
ψb

(√
d
)
/
√
d if d 6= 0 ,

ψ′
b(0) if d = 0 .

It is convenient to represent the robustness weights as (diagonal) weighting matrix,

Wb(d) = Diag
(
wb

(
dk(j)

))
j=1,...,q .

The robust estimating equations are then

X⊤U−⊤
e ψe(ε̂*/σ) = 0 ,

U⊤
b Z

⊤U−⊤
e ψe(ε̂*/σ) − ΛbWb

(
d̂
)
b̂*/σ = 0 ,

(5)

where Λb = Diag(λe/λb,j)j=1,...,q is a diagonal matrix with elements depending on the block

size sk(j) , λe = E0[ψ
′
e(ε

∗)] and λb,j = λ̃
(
sk(j)

)
,

λ̃(s) = E0

[
∂

∂b∗
1

(
wb

(
b∗⊤b∗

)
b∗

1

)]
, b∗ ∼ N(0, Is) .

B.2. Scale

We apply the Design Adaptive Scale approach following Koller and Stahel (2011). We get

n∑

i=1

τ2
e,iw

(σ)
e

(
ε̂∗

i

τe,iσ̂

)

(

ε̂∗
i

τe,iσ̂

)2

− κ(σ)
e


 = 0 , (6)

where the superscript ·(σ) is used to distinguish the weighting functions used for the scale and

covariance parameters from the ones used for the fixed effects. Just as in the linear regression

20 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

case, we define τe,i as the value that zeroes the expectation of the i-th summand in (6). The

expectation is

E


w(σ)

e

(
ε̂∗

i

τe,iσ̂

)(
ε̂∗

i

τe,iσ̂

)2

− κ(σ)
e w(σ)

e

(
ε̂∗

i

τe,iσ̂

)
 = 0 , (7)

where the distribution of the residuals is approximated using a linear expansion of β̂ and b̂*

around their true values (Koller 2013, Appendix C), and κ
(σ)
e is

κ(σ)
e = E0

[
w(σ)

e (ε)ε2
]/

E0

[
w(σ)

e (ε)
]
.

The weighting functions used for the scale estimates are the squared robustness weights used to

estimate the fixed and random effects, w
(σ)
e (x) = (ψ

(σ)
e (x)/x)2, w

(σ)
e (0) = ψ

(σ)
e

′(0), for convex

ρ-functions. For redescending ρ-functions, it is unnecessary to use the squared robustness

weights. Using the same weights as for the fixed and random effects still gives robust estimates

(assuming ψ(x)x is bounded). When the squared weights are used, a different set of tuning

parameters must be used to estimate the scale and covariance parameters. Tables of tuning

parameters can be found in Appendix A.

B.3. Covariance parameters

For the covariance parameters, we have to treat the diagonal and the block-diagonal case of

Ub separately.

Diagonal case

In the case of diagonal Ub(θ), estimating θ̂ is essentially a scale estimation problem on b̂*. It

can be robustified just like the estimating equation for σ̂, see Equation 6. For a model with

only one random effects term, the robust estimating equations are

q∑

j=1

τ2
b,jw

(σ)
b

(
b̂∗

j

τb,j σ̂

)

(

b̂∗
j

τb,j σ̂

)2

− κ
(σ)
b


 = 0 , (8)

with τb,j such that

E


w(σ)

b

(
b̂∗

j

τb,j σ̂

)

(

b̂∗
j

τb,j σ̂

)2

− κ
(σ)
b




 = 0 ,

and normalizing constant

κ
(σ)
b = E0

[
w

(σ)
b (b∗)b∗2

]/
E0

[
w

(σ)
b (b∗)

]
.

Generalization to multiple random effects terms is straightforward. We get one such equation

for each of the random effects terms.

Manuel Koller University of Bern 21

Block-diagonal case

For block-diagonal Ub(θ) we have to take care of the block structure. The normalizing

constant τ2
b,j must be replaced by a matrix Tb,k defined for each block k. Analogous to the

estimator for the covariance matrix and location problem, we must use two different weight

functions: one for the size of the matrix w
(τ)
b and another one for the shape w

(η)
b . For details,

we refer to Stahel (1987) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986, Chapter 5).

As in the cited references, we introduce a third weight function w
(δ)
b to simplify notation. For

block types with dimension s > 1, let

w
(δ)
b (d) =

(
dw

(η)
b (d) −

(
d− sκ

(τ)
b

)
w

(τ)
b

(
d− sκ

(τ)
b

))/
s ,

where κ
(τ)
b is defined such that

E

[(
u− sκ

(τ)
b

)
w

(τ)
b

(
u− sκ

(τ)
b

)]
= 0 for u ∼ χ2

s.

Remark. The optimal B-robust estimator derived in Stahel (1987) is given by w
(τ)
b (d) = min(1/bτ , 1/d)

and w
(η)
b (d) = min(1/bη, 1/d). Other weight functions may be chosen, as long as ψ(d) = dw(d) is a

ψ-function. For w
(τ)
b and w

(η)
b given above, this would be the Huber ψ-function. For low dimensions

s, one may choose w
(τ)
b = w

(η)
b . In higher dimensions, the efficiency loss for the estimated size is

negligible. Hence, a smaller tuning parameter may be chosen for w
(η)
b . For s = 2 and Huber or

smoothed Huber ψ-functions (see Appendix A), the squared tuning parameter of ρ
(σ)
e for w

(τ)
b may be

used to get approximately the same efficiency for θ̂ as for σ̂. Tables of tuning parameters for higher
dimensions for the Huber and the lqq ψ-functions can be found in Appendix A.

Before we can state the robust estimating equation for the block-diagonal case, we need one

more definition. Let

Qℓ(θ) = Ub(θ)−1∂Ub(θ)

∂θl
.

The robust estimating equation in the block-diagonal case can then be defined as follows. For

l = 1, . . . , r,

K∑

k=1

[
w

(η)
b

(
d
(
T

−1/2
b,k b̂*

k/σ̂
))
b̂

∗⊤

k Qℓ,k(θ̂)b̂*
k/σ̂

2

−w(δ)
b

(
d
(
T

−1/2
b,k b̂*

k/σ̂
))

tr
(
Tb,kQℓ,k(θ̂)

)]
= 0 ,

(9)

where Qℓ,k(θ̂) is the s× s submatrix of Qℓ(θ̂) which acts on block k and T
−1/2

b,k is the inverse

of any square root of the s× s matrix Tb,k . As in the diagonal case, we define the matrix Tb,k

such that each summand has expectation zero. For l = 1, . . . , r,

22 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

E

[
w

(η)
b

(
d
(
T

−1/2
b,k b̂*

k/σ
))
b̂

∗⊤

k Qℓ,k(θ̂)b̂*
k/σ

2

−w(δ)
b

(
d
(
T

−1/2
b,k b̂*

k/σ
))

tr
(
Tb,kQℓ,k(θ̂)

)]
= 0 .

Remarks. The symmetric matrix Tb,k is fully defined for unstructured covariance matrices only, where
r = s(s+1)/2. For other covariance matrix structures we can replace Tb,k by the variance of the linear
approximation of b∗.

Since in the classic case, the linear approximations for b̂* and ε̂* are exact, the estimating equation (9)
reduces to the REML estimating equations. A similar argument is valid for the estimating equation
(6) for σ̂.

C. Estimation algorithm

The algorithm for finding the simultaneous roots of the estimating equations (5), (6) and (8)

(and/or (9)) can be split into four general steps. They are:

1. Compute initial estimates.

2. For given θ̂, σ̂, find β̂ and b̂* that solve (5).

3. Keeping the intermediate solutions β̂ and b̂* fixed, find σ̂ such that (6) is fulfilled.

4. Check the estimating equations for θ̂, (8) and/or (9), for convergence. If they are not

fulfilled, update θ̂ in some way and go back to step 2.

The algorithms for the four steps can be chosen independently from each other. We discuss

the four steps below.

When this algorithm stops, it has found a simultaneous solution of all the estimating equa-

tions, except in the block-diagonal case where some, but not all, components corresponding to

a block might lie on the border of the parameter space. For those parameters, the estimating

equations won’t be satisfied. To avoid incorrect solutions, it is crucial that the estimates for

β̂ and b̂* are updated for each new candidate of θ̂ and that the initial estimate for θ is large

enough. Otherwise, the algorithm might wrongly set all components of θ corresponding to

one block to zero or close to zero.

This is illustrated for a simple one-way anova in Figure 4. The expected sum of squares

vanishes for θ̂ = 0 in the classic case. In the robust case, the expectation does not vanish,

but there is a solution close to zero. This is an artifact of the linear approximation used to

compute the expectation. As long as convex ρ-functions are used, the classic estimates are

generally a good choice of initial estimates. Zero components of the initial θ̂ should be set to

one at the start of the algorithm.

C.1. Step 1: Initial estimates

Manuel Koller University of Bern 23

-0.5

0.0

0.5

1.0

0 1 2 3θ
†

θ
^

θ

v
a
lu

e

Sum of Squares realized expected difference

Figure 4: Sum of Squares of the spherical random effects for a balanced one-way anova.
The smoothed Huber function was used for both ρe and ρb. The estimating equations (8)
are solved at the points where the two curves cross. The solutions are highlighted by black
dashed lines, θ̂ is the correct solution, θ† the wrong one.

The methods described here work for convex ρ-functions as well as for redescender ρ-functions.

If redescender ρ-functions are used, the algorithm as defined here converges to a local solution.

It is up to the initial estimator to provide starting values that ensure the algorithm converges

to the right local solution, whatever the right solution is. In case of MM-estimates for the

fixed effects model, the initial S-estimate makes sure that the final estimate has the desired

high breakdown point. The same would certainly also be desirable in case of mixed-effects

models. However, to the best of our knowledge, there exists currently no such estimator. The

S-estimators by Copt and Victoria-Feser (2006) and Chervoneva and Vishnyakov (2011) do

not seem suitable, since they are based on a different contamination model and are not as

general as the method proposed here.

If convex ρ-functions are used, this difficulty does not exist. Apart from the artificial solution

θ̂ close to zero (see Figure 4) which is easily distinguishable from the true solution, we

conjecture that the solutions are unique as they are for the Proposal 2 case in the location-

scale problem (Koller 2013). We therefore consider it safe to use the classic solutions as initial

estimates when convex ρ-functions are used.

Redescender ρ-functions have the advantage that they can assign a weight of zero to some

observations or random effects levels. This makes it possible that such observations have no

influence on the estimates. When convex ρ-functions are used, an observation practically

24 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

always has an influence on the estimates, since a weight of zero is only reached in the limit,

when the residual or the random effect level approaches plus or minus infinity. If one is

interested in eliminating the influence of observations, then one might consider the following.

First, compute the fit using a convex ρ-function. Then use the results as starting value

for fitting using a redescender ρ-function in a second step. In the absence of good initial

estimators for redescender ρ-functions, this approach might be used to get at least some of

the desirable properties of redescender ρ-functions.

C.2. Step 2: Fixed and random effects

For given θ and σ, the estimation of the fixed and random effects can be done using iteratively

reweighted least squares.

Let We be defined analogously to Wb , i.e.,

We = Diag(we(ε
∗
i /σ))i=1,...,n ,

where

we(ε
∗) =

{
ψe(ε

∗)/ε∗ if ε∗ 6= 0 ,
ψ′

e(0) if ε∗ = 0 .

Then insert these weights into (5) and expand ε̂* to get the following linear system of equa-

tions,

[
X⊤U−⊤

e WeU
−1
e X X⊤U−⊤

e WeU
−1
e ZUb

U⊤
b Z

⊤U−⊤
e WeU

−1
e X U⊤

b Z
⊤U−⊤

e WeU
−1
e ZUb + ΛbWb

][
β̂

b̂*

]

=

[
X⊤U−⊤

e Wey

U⊤
b Z

⊤U−⊤
e Wey

]
.

By alternating between computing β̂ and b̂* for a given set of weights and updating the

weights for a given set of estimates, we get a simple and efficient algorithm for computing the

fixed and random effects.

We start the algorithm with either a predefined set of weights or set all the weights to one.

When the relative change of the estimates is small enough, the algorithm can stop.

C.3. Step 3: Variance parameter

Equation 6 can be written as

σ̂2 =

∑n
i=1w

(σ)
e

(
ε̂∗

i

τe,iσ̂

)
ε̂∗

i
2

κ
(σ)
e
∑n

i=1 τ
2
e,iw

(σ)
e

(
ε̂∗

i

τe,iσ̂

) .

Manuel Koller University of Bern 25

This suggests a simple two-step algorithm, namely alternating between computing σ̂ using

the above formula and updating the weights given σ̂. This algorithm is quick and reliable,

especially if the overall algorithm has almost converged and σ̂ only changes little between

iterations of θ̂.

A similar procedure can also be derived for the computation of τe,i. Solving (7) for τe,i yields

τ2
e,i = E

[
w(σ)

e

(
ε̂∗

i

τe,iσ̂

)(
ε̂∗

i

σ̂

)2
]/

E

[
κ(σ)

e w(σ)
e

(
ε̂∗

i

τe,iσ̂

)]
,

which again suggests to use the same two-step procedure as lined out above. The values

τe,i have to be recomputed for every new value of θ̂, preferably using the values of the last

candidate θ̂ as starting values.

C.4. Step 4: Covariance parameters

In the following, we will assume that we have only one block type. The algorithms men-

tioned below can be easily generalized to multiple block types. One iteration then consists of

computing the updates for every block type separately before applying all of them together.

In case of diagonal Ub(θ), θ̂ may be computed using the analogue of the algorithm for Step 3.

This has proven to be much more efficient and robust compared to using a generic root solving

procedure.

The same is true in the non-diagonal case. Nevertheless, if we assume a special covariance

structure, the only options are generic root solving procedures such as Newton-Raphson. The

Newton-Raphson algorithm, however, can be quite unstable and often does not converge for

problems with many parameters.

In the case of unstructured covariance matrices, there exists a better algorithm of EM-type.

Let the function L(A) return the lower triangular Cholesky factor of A, and L−1 return the

inverse of the factor. Then, for unstructured covariance matrices and in terms of the first

block Ub,1 of Ub , the update is

Ub,1

(
θ̂

[it]
)

= Ub,1

(
θ̂

[it−1]
)

1

σ
L

(
K∑

k=1

ŵ
(η)
b,k b̂

*
kb̂

∗⊤

k

)
L−1

(
K∑

k=1

ŵ
(δ)
b,kTb,k

)
, (10)

where the superscript in square brackets denotes the iteration. The right-hand side is com-

puted using θ̂
[it−1]

, the value from the last iteration, and ŵ
(.)
b,k is the corresponding k-th

robustness weight.

Remark. To see that (10) is indeed a sensible update, we have to first rewrite the r scalar valued
estimating equations into one matrix valued estimating equation. We may write (8) as

K∑

k=1

[
tr
((
ŵ

(η)
b,k b̂

*
kb̂

∗⊤

k /σ̂2 − ŵ
(δ)
b,kTb,k

)
Qℓ,k(θ̂)

)]
= 0 for l = 1, . . . , r .

When assuming an unstructured covariance matrix for the random effects, Qℓ,k has only one non-zero
value and does not depend on k. (For other block types, Qℓ,k vanishes, thus decoupling the problem

26 robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models

for different block types.) Since r = s(s+ 1)/2, we may thus write the estimating equation as

K∑

k=1

[
ŵ

(η)
b,k b̂

*
kb̂

∗⊤

k − σ̂2ŵ
(δ)
b,kTb,k

]
= 0 .

The dependence of the robustness weights on θ̂ will be neglected from now on, thereby reducing the
problem to solving a system of linear equations. In terms of the actual random effects, the estimating
equation in iteration [it] reads

K∑

k=1

[
ŵ

(η)
b,kU

−1
b,1

(
θ̂

[it−1]
)
b̂kb̂

⊤

k U
−⊤

b,1

(
θ̂

[it−1]
)

− σ̂2ŵ
(δ)
b,kTb,k

]
= 0 .

As long as the algorithm has not converged, the estimating equation is not fulfilled for θ̂
[it−1]

, but

there exists a θ̂
[it]

, such that it is. For

Ub,1

(
θ̂

[it]
)

= Ub,1

(
θ̂

[it−1]
)

∆U
[it]
b ,

where ∆U
[it]
b is a lower triangular matrix, we have after multiplying the equation by ∆U

[it]
b from the

left and by ∆U
[it]⊤
b from the right,

K∑

k=1

[
ŵ

(η)
b,k b̂

*
kb̂

∗⊤

k − σ̂2ŵ
(δ)
b,k∆U

[it]
b Tb,k ∆U

[it]⊤
b

]
= 0 .

By splitting the left-hand side into two sums, moving the second sum to the right-hand side, and
replacing both sides by the corresponding lower-triangular Cholesky factor, we get an equation that

can be solved for ∆U
[it]
b and thus an expression forUb,1

(
θ̂

[it]
)

, which is exactly update (10) mentioned

above.

The resulting algorithm, considering steps 2 to 4 together, is then of EM-type. It converges

fairly quickly, except when the solution is zero, i.e., some variance components are dropped.

An illustration of the problem and potential improvements to the algorithm can be found in

Demidenko (2004, Section 2.12).

Affiliation:

Manuel Koller

Institute for Social and Preventive Medicine

Universität Bern

3012 Bern, Switzerland

E-mail: kollermal@proton.me

URL: https://www.ispm.unibe.ch/

mailto:kollermal@proton.me
https://www.ispm.unibe.ch/

	Introduction
	Background
	Model equations and assumptions
	Robustness approach
	Weighting functions, robustness weights and tuning
	Estimation algorithms

	Implementation
	Usage
	The Penicillin data
	Fitting the model and assessing the model fit
	Tuning the fit
	How to choose tuning parameters

	Controlling the fitting procedure

	Further information
	The smoothed Huber function and tables of tuning constants
	Robust estimating equations
	Fixed and random effects
	Scale
	Covariance parameters
	Diagonal case
	Block-diagonal case

	Estimation algorithm
	Step 1: Initial estimates
	Step 2: Fixed and random effects
	Step 3: Variance parameter
	Step 4: Covariance parameters

