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Abstract

As any real-life data, data modeled by linear mixed-effects models often contain out-
liers or other contamination. Even little contamination can drive the classic estimates far
away from what they would be without the contamination. At the same time, datasets
that require mixed-effects modeling are often complex and large. This makes it difficult to
spot contamination. Robust estimation methods aim to solve both problems: to provide
estimates where contamination has only little influence and to detect and flag contami-
nation.

We introduce an R package, robustlmm, to robustly fit linear mixed-effects models
using the Robust Scoring Equations estimator. The package’s functions and methods are
designed to closely equal those offered by lme4, the R package that implements classic
linear mixed-effects model estimation in R. The robust estimation method in robustlmm
is based on the random effects contamination model and the central contamination model.
Contamination can be detected at all levels of the data. The estimation method does not
make any assumption on the data’s grouping structure except that the model parame-
ters are estimable. robustlmm supports hierarchical and non-hierarchical (e.g., crossed)
grouping structures. The robustness of the estimates and their asymptotic efficiency is
fully controlled through the function interface. Individual parts (e.g., fixed effects and
variance components) can be tuned independently.

In this tutorial, we show how to fit robust linear mixed-effects models using robustlmm,
how to assess the model fit, how to detect outliers, and how to compare different fits. If you
use the software, please cite this article as published in the Journal of Statistic Software
(Koller 2016).

Keywords: robust statistics, mixed-effects model, hierarchical model, ANOVA, R, crossed,
random effect.

1. Introduction

Linear mixed-effects models are powerful tools to model data with multiple levels of random
variation, sometimes called variance components. Data with multiple levels of random vari-
ation may have contamination or outliers on any of these levels. To detect and deal with
contamination, we developed a method that fits linear mixed-effects models robustly, using
the Robust Scoring Equations estimator (Koller and Stahel 2015; Koller 2013). We have
implemented the methods in the R-package robustlmm (Koller 2015) that we introduce here.

The variability introduced at the random effects level generally affects multiple observations
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simultaneously. In a one-way anova dataset, for example, a group level random effect influ-
ences the observed value of all the observations that belong to the corresponding group. If this
group level random effect were an outlier with respect to the other group levels, this would
lead to a whole group of outliers on the level of observations (see, e.g., plate g in Figure 1).
When using classic estimation methods, even one such outlier might inflate the between-group
variability estimate and distort the results (see example discussed in Section 4). In such a case
it would be natural to assume that the group’s random effect (or mean) is an outlier rather
than all observations are outliers in the same direction. This concept of allowing potential
contamination on different sources of variability leads to the “random effects contamination
model”. With this model, we make the assumption of long-tailed or “gross error” distribu-
tions for the random effects as well and not just for the random errors. The effect of the
contamination is then propagated via the design matrices to the actual observations.

Levels of random variability can be hierarchical or crossed, or both, depending on the grouping
structure in the data. This implies that the effect of a single outlier on the random effects
level is not always as straight forward as in the above mentioned one-way anova example. The
effect may be different for each observation as the result of an outlier for a single observation
is combined with all the other random effects that affect this observation. This complex
relationship between the source of contamination and what is effectively realized in the data
can make it very hard or even impossible to spot contamination. This is where robust methods
step in and help clear the picture.

Basing the robust estimator on the “random effects contamination model” allows not only
multiple sources of contamination, it also avoids unnecessary assumptions about the data’s
grouping structure. The only assumption on the grouping structure, that is also required
for classic estimation, is that the model parameters are estimable. Other contamination
models usually assume that contamination is introduced and dealt with at the lowest level
only — the level of the observations. In mixed-effects models, observations generally correlate
with one another, and robust methods must respect these correlations. These dependencies
between observations require other contamination models to make strict assumptions about
the grouping structure. The random effects contamination model assumes that contamination
occurs directly at the source of random variability, before the grouping structure is introduced,
thus circumventing the complexity introduced by the data structure and avoids unnecessary
assumptions.

Classic estimation of linear mixed-effects models is mainly provided by two functions in
R (Table 1). The function 1me in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar,
and R Core Team 2016) supports a variety of random effects and error level covariance struc-
tures. It is designed for hierarchical data structures, so incorporating crossed random effects
is not straightforward. The function lmer from the lme4 package (Bates, Méchler, Bolker,
and Walker 2015) is not limited in that respect: it supports arbitrary grouping structures and
efficiently deals with large data by making heavy use of memory-saving sparse representations
of matrices. Special random effects and error level covariance structures like, e.g., compound
symmetry or AR(1) correlation models, are, however, not yet supported. Linear quantile
mixed effects estimation is implemented in the 1gmm function from the lgqmm package (Geraci
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R package  Function  Approach Details / Assumptions

nlme lme classic optimized for mnested hierarchical
structures; allows special random ef-
fects covariance structures

Ime4 lmer classic no assumptions on grouping struc-
ture; correlated and uncorrelated ran-
dom effects within levels

lgmm 1lqmm quantile-based allows median-type estimates; one
grouping level with or without corre-
lation between random effects

heavy heavyLme t distributions one grouping level; correlated random
effects
— lmeRob reformulation as multi- balanced nested hierarchical struc-
variate problem, then tures; uncorrelated random effects
MDM-estimation within levels
rlme rlme rank based unbalanced nested hierarchical struc-

tures (2 or 3 levels); random inter-
cepts only; does not support balanced

data
robustlmm rlmer huberization of likeli- no assumptions on grouping struc-
hood and DAS-Scale ture; correlated and uncorrelated ran-
estimation dom effects within levels

Table 1: Overview of classic and robust estimation methods available in R. See also the CRAN
Task View on robust statistical methods (Méchler 2016).

2014). This is not a robust method per se, but allows for median-based estimation. The
function supports only one grouping level but allows the correlation structure of the random
effects to be specified.

For robust estimation of linear mixed-effects models, there exists a variety of specialized
implementations in R, all using different approaches to the robustness problem. Most of them
are available on the Comprehensive R Archive Network (CRAN) as R packages. Except the
method presented in this paper, all other methods are applicable only for certain grouping
structures, see Table 1 for an overview. The function heavyLme in the heavy package (Osorio
2016) implements mixed-effects models using t distributions. However, it allows for a single
grouping factor only, which limits the method to two-level data. As both, the residual errors
and the random effects are modeled with a t distribution, the method can capture outliers on
both the subject and the observational level. The degrees of freedom for the two t distributions
are fixed to be the same. Hence, it is not possible to have a differing treatment of outliers on
the two levels. Multiple random effects are fitted with a correlation parameter, uncorrelated
random effects are not supported. The function 1meRob implements the method by Copt and
Victoria-Feser (2006). It is not available on CRAN but from the authors upon request. They
reformulate the mixed-effects problem as multivariate problem and apply multivariate MM-
estimation. This approach requires the grouping structure to be nested and the data to be
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balanced. Observations are down-weighted at the highest group level, so the high breakdown
point of 50% applies to the number of groups that can be contaminated, not to the number of
observations. The implementation only supports uncorrelated random effects within levels.
The function rlme in the rlme R package implements nested hierarchical mixed-effects models
using a rank-based approach (Bilgic, Susmann, and McKean 2014). The function supports
only simple random intercepts, and solutions might not be unique.

This article is a tutorial for robustlmm, an implementation of the Robust Scoring Equations
estimator to fit mixed-effects models for the statistical computing environment R (R Core
Team 2016). The R package robustlmm is available on CRAN at https://cran.r-project.
org/package=robustlmm under the GPL-v2 license.

In the next section we provide background on robustlmm’s underlying estimating equations
and algorithms. In Section 3, we describe how robustlmm is implemented. In Section 4, we
work an example and demonstrate how to do a full statistical analysis. Pointers to further
information are given in Section 5. Details, tables of tuning parameters and formulas are
contained in the Appendix.

2. Background

2.1. Model equations and assumptions

We work with the general linear mixed-effects model in matrix form and, following Bates
(2010), with spherical random effects. The spherical random effects are obtained from the
regular random effects by a transformation such that they have a covariance matrix that equals
a scaled identity matrix. This transformation enables variance components to be estimated
as exactly zero. The model equations are:

y = XB+ ZUy(0)b* + U.e*

b~ N(0.0°L,) & ~N(0,0°L) b Ler, .
where y is the response vector of length n, B is the fixed effects vector of length p with
design matrix X, and b* is the spherical random effects vector of length g with design matrix
Z. The relation between the regular and the spherical random effects is b = Uy(0)b*. The
lower triangular matrix Uy(@) is parameterized by the vector 8. The covariance matrix of
the random effects is V4(0) = Uy(0)U,(8)". The matrix U, is assumed to be a diagonal
matrix of known weights.

As mentioned in the introduction, we do not assume anything about the structure of the data
(i.e., the design matrices X and Z), though we do make the usual assumption which the
model parameters are estimable. We do assume the covariance matrix of the random effects
V(0) to be block-diagonal. This assumption excludes problems that cannot be written in
block-diagonal form, like geostatistical problems with spatial dependence encoded in V(0)
(see the georob package (Papritz 2016) for robust methods to deal with this special case).
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To reduce the complexity of the algorithms, our implementation makes additional assumptions
about the covariance matrices of the random effects and the residual errors that are not
required by the theory per se. Blocks of V3(0) of size 2 x 2 and larger are assumed to
be unstructured, i.e., unconstrained covariance matrices (other structures such as compound
symmetry are not supported). In the remainder of the text, we will call blocks of size 1 x 1
diagonal and larger blocks unstructured. Finally, the residual error covariance matrix is
assumed to be a diagonal matrix with only one unknown scaling parameter.

2.2. Robustness approach

Robustness is achieved by robustification of the scoring equations. The scoring equations are
the derivatives of the log-likelihood. To fit the model (1), either the log-likelihood can be
maximized, or the roots of the scoring equations can be found. Robust estimating equations
are derived from the scoring equations by replacing the residuals and predicted spherical
random effects with bounded functions. These bounded functions ensure that a single term
(error or random effect) only has bounded influence on the estimating equations. To get robust
and efficient estimating equations of o and 6, we apply the Design Adaptive Scale approach
by Koller and Stahel (2011). The robust estimating equations are provided in Appendix B. A
detailed derivation and evaluation of the robust method is given in Koller (2013) and Koller
and Stahel (2015).

The robustified estimating equations no longer correspond to any likelihood or pseudo-likelihood.
Thus, information criteria like AIC and tests based on the log-likelihood statistic are unavail-
able for the robust method we present here.

2.3. Weighting functions, robustness weights and tuning

Tuning (adjusting robustness properties of the resulting estimates) is done by adjusting pa-
rameters that control the form of the bounded functions in the robust estimating equations.
In M-estimation terminology, these bounded functions are called ¥-functions. They are the
derivatives of a p-function (see Maronna, Martin, and Yohai (2006) for exact definitions).
The Huber function, a function that is quadratic around zero and linear for values outside
+k, is a p-function (the corresponding ¢-function is shown in Figure 3). The parameter k is
called the tuning parameter. Larger values yield more efficient, but less robust estimates (for
k = oo one recovers the REML-estimates), whereas smaller values yield more robust but less
efficient estimates. A popular choice is to fix the asymptotic efficiency at 95% of the classic
estimates (k = 1.345 for the Huber function).

Replacing terms by bounded functions thereof down-weights terms with a large absolute
value. In the robustness literature, these weights are called robustness weights. Observations
or random effects with low robustness weights are classified as outliers by the robust method.
For a given -function, the robustness weights are defined as

R e @
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where we replace the . in w, and ¥ by e or b to specify the terms to which the functions are
applied (e for errors/residuals; b for random effects). To gain robustness for all estimates,
estimating equations for covariance parameters have to be treated differently from fixed and
random effects, although the weighting functions for similar terms are related. We therefore
distinguish the weighting functions used for estimating o and @ with a superscript (@) in
equations. (In robustlmm, the functions are objects of class psi_func. The arguments are
called rho.e, rho.b, rho.sigma.e and rho.sigma.b.)

The robustness weights defined in (2) yield robust estimates of the fixed effects and predicted
values for the random effects for all p-functions with a bounded derivative, and also for convex
p-functions like the Huber function. For estimates of scaling factors (o and 6 for diagonal-only
blocks of V4(0)), the requirements to get robust estimates are more strict. These are not
robust when convex p-functions are used. To get robust estimates for scaling factors, we need
to use p-functions so that w(?)(v)v? is bounded for v — 4co. When convex p-functions are
used to estimate the fixed and random effects, a natural choice for a p-function to estimate
the scaling factors is the one that corresponds to the squared robustness weights, i.e.,

w(v) = w(v)?. (3)

Note the similarity to Huber’s Proposal 2. (The function psi2propII can be used to transform
a p-function to the corresponding p-function that yields squared robustness weights.)

Squared robustness weights are not required for block-diagonal parts of V(). Instead of
M-scale type estimating equations, the unstructured blocks require methods similar to mul-
tivariate M-estimators for estimating covariance matrices. Multivariate M-estimators, as in-
troduced by Stahel (1987), use a derived set of ¥-functions that also yield bounded influence
estimates for convex p-functions. (This derivation is handled internally in robustlmm.)

The use of different p-functions in the estimating equations for o and @ ensures the resulting
estimates to be robust, but lowers the efficiency of the estimates & and 6. This might be
acceptable for problems in which the scale parameter o is considered a nuisance parameter,
but in mixed-effects modeling one is usually interested in estimating the variance components
and does not regard them as nuisance terms. If desired, the efficiency of the estimates of o
and @ can be increased by increasing the tuning parameters of wé“) and 1/1150). Tables of tuning
parameters for popular -functions are provided in the Appendix.

2.4. Estimation algorithms

The models are fit with a nested iterative reweighting algorithm. If there are no initial
estimates, then the classic estimates are used as initial estimates. The outer loop is updating
0 until it converges. For each new value of 5, we update B and b" and then &. This algorithm
converges to a local solution of the estimating equations. For convex p-functions and squared
robustness weights, the solution can be expected to be unique aside from pathological, easily
discarded solutions. A detailed description of the algorithm is given in Appendix C.
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3. Implementation

The robustlmm package is built upon the lme4 package, more specifically the 1lmer function.
The structure of the objects and the methods are implemented to be as similar as possible
to the ones of Ime4 with robustness specific extensions where needed. The object returned
by rlmer is of class rlmerMod. Even though this class is close to the corresponding class
lmerMod returned by lmer, rlmerMod does not extend lmerMod. This is for two reasons.
First, methods for classic estimates are in general not applicable to robust estimates without
changes. Second, class inheritance would require a lot of maintenance when the corresponding
code in lme4 is changed. While computational methods of the Ime4 package are implemented
in C4++, the robustlmm package is implemented in pure R.

The main function of the package is rlmer, its name hinting at the fact that it is a robust
version of the lmer function. Besides additional arguments to control the robustness of
the fit, the usage of rlmer is identical to lmer. Most of the functions available for objects
returned by lmer are also available for objects returned by rlmer, e.g., predict or getME.
The getME function is a universal accessor function for quantities derived from the fitted
object (see help("getME")). The function anova requires the log-likelihood statistic and
is therefore unavailable. The simulation functions simulate and bootMer have not yet been
implemented. The functions to create diagnostic plots, dotplot, plot and qgmath for objects
returned by ranef, as well as dotplot and plot for objects returned by coef, are available
and identical to the those from lme4. In addition to the mentioned plot methods, we have
added a plot method plot.rlmerMod for objects returned by rlmer and lmer. It creates a
Tukey-Anscombe plot, a QQ-plot of the residuals and the random effects as well as scatterplots
of the random effects.

4. Usage

4.1. The Penicillin data

We illustrate the use of the robustlmm package on a dataset originally published by Davies
and Goldsmith (1972) and later used by Bates (2010). Davies and Goldsmith (1972) describe

it as data coming from an investigation to. ..

...assess the variability between samples of penicillin by the B. subtilis method. In
this test method a bulk-inoculated nutrient agar medium is poured into a Petri dish
of approximately 90 mm. diameter, known as a plate. When the medium has set, six
small hollow cylinders or pots (about 4 mm. in diameter) are cemented onto the surface
at equally spaced intervals. A few drops of the penicillin solutions to be compared are
placed in the respective cylinders, and the whole plate is placed in an incubator for a
given time. Penicillin diffuses from the pots into the agar, and this produces a clear
circular zone of inhibition of growth of the organisms, which can be readily measured.
The diameter of the zone is related in a known way to the concentration of penicillin in
the solution.

The description implies that it is a balanced two-way anova dataset with two types of random
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effects: sample with six levels and plate with 24 levels. The random effects are completely
crossed. The dataset is distributed as the Penicillin dataset in lmed4.

To emphasize the effect of the robust method, we modified the dataset slightly (as we did in
Koller and Stahel (2015)). We scaled down the first plate’s observation values, and we moved
one observation in plate f down to the lowest original observation. The modified dataset is
shown in Figure 1.
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Figure 1: Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates
to assess penicillin concentration. The lines join the observations of the same sample. The
plates have been reordered by their diameter values. The observations marked by x have
been modified to introduce some contamination.

4.2. Fitting the model and assessing the model fit

We start by loading the R package and the modified Penicillin dataset.

R> require("robustlmm")

R> warning("Current dir: ", system.file("", package = "robustlmm"), " has contents: ",
+ paste(list.files(system.file("", package = "robustlmm")), collapse = ", "))
R> warning("doc dir: ", system.file("doc", package = "robustlmm"), " has contents: ",
+ paste(list.files(system.file("doc", package = "robustlmm")), collapse = ", "))

R> filename <- system.file("doc/Penicillin.R", package = "robustlmm", mustWork = TRUE)
R> warning("Filename: ", filename)
R> source(filename)

The contaminated dataset is now available in the data.frame PenicillinC. The dataset con-
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sists of four columns: the response diameter; two factors plate and sample that describe the
origin of the observations and contaminated, which indicates whether or not an observation
has been modified.

R> str(PenicillinC)

'data.frame': 144 obs. of 4 variables:

$ diameter : num 27 23 26 23 ...

$ plate : Factor w/ 24 levels "g","s","x","u",..: 18 18 18 18 ...
$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 234 ...

$ contaminated: Factor w/ 2 levels '"changed","original": 2 2 2 2 ...

We fit the model using the function rlmer. The name of the function suggests that it is a
robust variant of a popular function to fit classic mixed-effects models in R: the function 1mer
of the R package Ime4. The specification of models is the same for both functions. In a single
formula, we specify the fixed and random terms of the model. Fixed terms are added in the
usual R formula notation, and random terms are specified in parentheses. Random effects
are defined in conjunction with a grouping factor. The grouping factor is separated from the
random effect by a pipe symbol “|”. We now fit the classic and robust models:

R> fm <- Imer(diameter ~ (1|plate) + (1|sample), PenicillinC)
R> rfm <- rlmer(diameter ~ (1/plate) + (1|sample), PenicillinC)

As usual, we get information about the fit using the summary function:
R> summary(rfm)

Robust linear mixed model fit by DAStau
Formula: diameter ~ (1 | plate) + (1 | sample)
Data: PenicillinC

Scaled residuals:
Min 1Q Median 3Q Max
-4.8253 -0.6206 0.0811 0.5807 3.2244

Random effects:

Groups  Name Variance Std.Dev.

plate (Intercept) 0.9209 0.9596

sample  (Intercept) 4.4921 2.1195

Residual 0.3282 0.5729
Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:
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Estimate Std. Error t value
(Intercept) 22.9970 0.9112 25.24

Robustness weights for the residuals:
124 weights are ~= 1. The remaining 20 ones are summarized as
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.279 0.693 0.861 0.787 0.911 0.996

Robustness weights for the random effects:
25 weights are ~= 1. The remaining 5 ones are
1 2 3 24 30
0.226 0.919 0.994 0.869 0.915

Rho functions used for fitting:

Residuals:

eff: smoothed Huber (k = 1.345, s = 10)

sig: smoothed Huber, Proposal 2 (k = 1.345, s = 10)
Random Effects, variance component 1 (plate):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal 2 (k = 1.345, s = 10)
Random Effects, variance component 2 (sample):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal 2 (k = 1.345, s = 10)

The output is close to the output from lmer. The first part of the summary provides informa-
tion about the model fit; the estimates of V,(0) and o; followed by the estimated fixed effects
and derived statistics and (if applicable) the correlation of the fixed effects. The second part
gives information about the robustness weights and a list of the p-functions employed.

As we can read off the summary, the default p-function is the smoothed Huber p-function,
which is a smoothed variant of the regular Huber function (the exact definition is given in the
Appendix). The functions for estimating o and 0 are suffixed by “Proposal 2”7, indicating that
squared robustness weights, with a high robustness but a low efficiency, are used by default
(diagonal blocks only, for unstructured blocks the regular p-function is used by default).

The summary also tells us that the lowest robustness weights for both the observations and
the groups are about 0.2. We can get a full named list of the robustness weights by using
the calls getME(rfm, "w_e") and getME(rfm, "w_b") for the observations and the groups,
respectively.

With the call plot(rfm), we can create simple residual analysis plots including normal QQ-
plots of the predicted random effects. The resulting plots are shown in Figure 2. The darker
color indicates observations with a low robustness weight w.. From the plot as well as from
the summary shown above, we can see that the observations that were changed have been
detected by the method, i.e., they have received a low robustness weight. There are also
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other observations that were assigned a rather low robustness weight and we would do good
to investigate them.

Fitted Values vs. Residuals Normal Q-Q vs. Residuals
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Figure 2: Residual analysis plots for robust fit rfm. The coloring of the points gives informa-
tion about the corresponding robustness weights.

4.3. Tuning the fit

As already mentioned in Section 2.3, the estimates of ¢ and 6 have a low efficiency if the
same tuning parameters are used as for estimating the fixed and random effects. To get a
higher efficiency, we have to increase the tuning parameter of pé") and pl()o). Tables of tuning
parameters are provided in the Appendix. We can change the default tuning parameter of
objects of class psi_func with the function chgDefaults. The smoothed Huber function
is a convex p-function. Hence, we need to use squared robustness weights to get robust
estimates of the residual error scale and the variance components (see Section 2.3). We can
convert any p-function to the corresponding one with squared robustness weights using the
function psi2propII. The latter function also allows the tuning parameters to be changed

11
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simultaneously, so that a second call to chgDefaults can be saved. We use the update
function to fit a model with a higher efficiency for the estimates of o and 6:

R> rfm2 <- update(rfm, rho.sigma.e = psiZproplI(smoothPsi, k = 2.28),
+ rho.sigma.b = psi2propII(smoothPsi, k = 2.28))

Note that the update function both uses the call information from the given object rfm, and,
if applicable, also uses estimates from the object as initial values for the fitting procedure.

To specify different p-functions for different random effects, the arguments rho.b and rho.sigma.b
accept as input a list of p-functions. The order in the list of the random effects must be the
same as the order listed in the output of summary. To fit only the element of 8 that corre-
sponds to the “sample” random effect with higher efficiency, we use

R> rsb <- list(psi2propII(smoothPsi), psiZ2propII(smoothPsi, k = 2.28))
R> rfm3 <- update(rfm2, rho.sigma.b = rsb)

Note the missing second argument k when generating the first element of the list rsb. In that
case, the default tuning parameter £ = 1.345 is used.

To compare the estimates of the various fits we did so far, we can use the function compare. We
set the argument show.rho.functions to FALSE to avoid a lengthy display of the p-functions
here. To enhance the comparison, we also fit the model to the original, uncontaminated data
with the classic, non-robust, method.

R> fmUncontam <- update(fm, data = Penicillin)
R> compare (fmUncontam, fm, rfm, rfm2, rfm3, show.rho.functions = FALSE)

fmUncontam fm rfm rfm2 rfm3
Coef
(Intercept) 23 (0.809) 22.8 (0.85) 23 (0.911) 23 (0.848) 23 (0.849)
VarComp
(Intercept) | plate 0.847 1.409 0.960 0.939 0.961
(Intercept) | sample 1.932 1.955 2.119 1.967 1.967
sigma 0.55 0.609 0.573 0.566 0.566
REML 331 377

The resulting table gives the estimates and standard errors in parentheses. The REML row gives
the restricted maximum likelihood statistic. As mentioned earlier, this statistic is unavailable
for robust fits. The output of the compare function can also be passed to xtable from the
xtable package (Dahl 2016) to create BTEX or HTML-tables.
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How to choose tuning parameters

When choosing tuning parameters for rlmer, one has to balance robustness and efficiency. In
the examples discussed above, this means that by setting the tuning parameters too high, the
estimates might break down and the resulting estimates are misleading. On the other hand,
it is not good practice to set the tuning parameters very low as this will produce inefficient,
i.e., imprecise, estimates. An approach as outlined above, fitting the model with low as well
as with high efficiency, is better. In general, parameters that are not considered nuisance
parameters should be estimated with high efficiency if possible.

When comparing fits with low to fits with high efficiency and robust to classic fits, one
should first compare the parameter estimates (keeping in mind their precision or confidence
intervals). If there are any relevant differences, then a study of the robustness weights should
give insight as to which observations cause the difference. It is important not to just remove
and, thus, ignore outliers. Whenever possible, the reason why an outlier is far from the bulk
of observations should be determined. Outliers that are not merely due to recording errors
usually carry information that can help to improve the model.

Applying this method to the example shown above, we can see that the one contaminated
plate clearly inflates the classic, non-robust estimates for the standard deviation of the “plate”
random effect. The robust method can detect this contamination and reduce its effect, leading
to an estimate that is only slightly inflated. The comparison of the robust fits with lower and
higher efficiency shows that the contamination is not strong enough to cause a breakdown of
the fit with higher efficiency but lower robustness. Also, the higher efficiency for the estimate
of the standard deviation of the “sample” random effect leads to a better estimate that is
closer to the classic fits. Finally, the robust estimates of the standard deviation of the random
errors are closer to the original classic fit of the uncontaminated data.

4.4. Controlling the fitting procedure

To diagnose problems with the fitting procedure, use the argument verbose. The argument
takes values from 1 to 5, and gives more verbose output for higher values. If the method is
not converging, increasing the maximum number of allowed iterations (argument max.it) or
the tolerance (rel.tol) below which convergence is declared can help to achieve convergence.

To specify starting values for the fitting procedure, use the init argument. The init argu-
ment expects a list with four items: fixef, the fixed effects, u, the spherical random effects,
sigma, the error scale o, and theta, the vector @ parameterizing the random effects covariance
matrix V3(0).

To shorten fitting times at the beginning of an analysis, use the argument method = "DASvar".
This method is faster as it uses simple direct approximations instead of numerical integrals to
compute the scale and covariance parameters using the Design Adaptive Scale approach (see
Koller and Stahel (2011) and Appendix B). The DASvar method yields approximate results
only. For covariance matrices of the random effects V3(6) with unstructured blocks of size
three and larger, the method DASvar is the only method currently available.

13
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5. Further information

Detailed information on the properties of the robust method and validation using simulation
studies can be found in compact form in Koller and Stahel (2015) and more detailed in Koller
(2013). Bates (2010) is a general introduction to mixed modeling using the R package lme4
(Bates et al. 2015). Because lme4 and robustlmm are similar, this is also a good starting
point for using robustlmm.

We avoided the topic of robust testing for linear mixed-effects models in this tutorial. The
usual caveats of testing in mixed models apply for the methods presented here. Bootstrap
presents itself as a simple (but data structure dependent) way to get p values. One has to
be careful, though, since the ordinary bootstrap quantiles are not robust (Salibidn-Barrera,
Van Aelst, and Willems 2008; Singh 1998).

Development of robustlmm is hosted on GitHub at https://github. com/kollerma/robustlmm.
Any issues with the package can also be reported there.
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A. The smoothed Huber function and tables of tuning constants

The smoothed Huber v-function is defined as

where ¢ = k— s+ and d = c— ss%l. We recommend using a value of s = 10. The asymptotic
properties of the regular Huber function and the smoothed Huber function are almost identical
when this value is used. We can therefore safely use the same tuning parameter k for both
-functions. The two -functions are compared in Figure 3. Tuning constants for this and

X

Y(x, k,s) = {

x| < ¢

sign(ac)(k—(m%)s) otherwise ’

the 1qq 9-function (Koller and Stahel 2011) are shown in Tables 2 to 5.

1.0 1

W(x)

0.5+

0.0+

-\

Figure 3: Comparison of the Huber and the smoothed Huber ¥-function for £ = 1.345 and

s = 10.

Table 2: Tuning parameters k for scale estimates such that they reach the same asymptotic

Ww-function

Huber ---- Smoothed

Efficiency k for ik for 6 Kk for 6, Prop. 11

0.80 0.53 1.49
0.85 0.73 1.69
0.90 0.98 1.94
0.95 1.345 2.28

efficiency as the location estimate. For the Huber i-function.
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Dimension s
2 3 4 5 6 7
b, 5.66 6.41 714 7.87 858 9.28
b 5.15 555 591 6.25 6.55 6.84
b, 1.5 1.63 1.73 181 187 1.9

Table 3: Tuning parameters for the optimal B-estimator to yield 95% efficiency, non-diagonal
case. For the Huber -function.

Efficiency cc for 1 cc for &

0.80 (0.946, 0.631) (1.414, 0.942)
0.85 (1.058, 0.705) (1.57, 1.05)
0.90 (1.214, 0.809) (1.79, 1.19)
0.95 (1.474, 0.982) (2.19, 1.46)

Table 4: Tuning parameters for lqq 1-function for the location and scale estimates such that
they reach the given asymptotic efficiency. The third parameter is always taken to be 1.5.

Dimension s

2 3 1 5 6

cc, (6.44,429) (7.23,4.82) (3.01,5.34) (8.77,5.85) (9.52, 6.35)
ce;  (5.95,3.97) (6.41,4.27) (6.82,4.55) (7.2,48)  (7.55,5.03)
ce,  (1.63,1.09) (1.77,1.18) (1.88,1.26) (1.9, 1.32) (2.08, 1.39)

Table 5: Tuning parameters for the lqq weight function to yield 95% efficiency, non-diagonal
case. The third parameter is always taken to be 1.5.



Manuel Koller University of Bern

B. Robust estimating equations

This Appendix summarises the more extensive derivation of the robust estimating equations
found in Koller (2013).

B.1. Fixed and random effects

Let k(j) be a function that maps random effect j to the corresponding block k, then the
squared Mahalanobis distances of the estimated random effects are

d= (d(b*,;(j)/a))jzlmq, where d(b}) = b} b], .

We may then define the robustness weight for the jth random effect as wy(d;). We use
standard (location and linear regression) robustness weights:

w(Va) VA ifd#£0,

wi(d) = { Y0)  ifd=0.

It is convenient to represent the robustness weights as (diagonal) weighting matrix,

Wy (d) = Diag(wb<dk(j))>j=1,...,q .

The robust estimating equations are then

XU "y (e%)o) =0,

Uy Z"U; T (o) — AW (d)b" /o =0, (5)

where Ay = Diag(Ae/\p ;) =1,..,¢ is a diagonal matrix with elements depending on the block
size Sk(4)» )\e = Eo[wé(é‘*)] and )\b,j = A(Sk(j)>,

A(s) = EO[ 0

b, <wb(b”b*>b7)] . BT~ N0, L)

B.2. Scale

We apply the Design Adaptive Scale approach following Koller and Stahel (2011). We get

n 5 e 2
2721'10(0)( EiA> < giA> — &9 =0, (6)
=\ Tei0 Tei0 ¢

where the superscript -(?) is used to distinguish the weighting functions used for the scale and

covariance parameters from the ones used for the fixed effects. Just as in the linear regression
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case, we define 7. ; as the value that zeroes the expectation of the i-th summand in (6). The

=k =k 2 =k
E [w£0)< 5¢4/\> ( €?A> B /iga)wéa)< 51:A>] =0, (7)
TeiO ) \ Tei0 Te,i0

where the distribution of the residuals is approximated using a linear expansion of E and b"

around their true values (Koller 2013, Appendix C), and /ﬁ?éo) is

expectation is

k) = E, [wg")(s)sﬂ /EO {wéa)(e)} .

The weighting functions used for the scale estimates are the squared robustness weights used to
estimate the fixed and random effects, wga)(x) = (wé”)(x) /x)?, wgg)(O) = wé")’ (0), for convex
p-functions. For redescending p-functions, it is unnecessary to use the squared robustness
weights. Using the same weights as for the fixed and random effects still gives robust estimates
(assuming ¢ (z)z is bounded). When the squared weights are used, a different set of tuning
parameters must be used to estimate the scale and covariance parameters. Tables of tuning
parameters can be found in Appendix A.

B.3. Covariance parameters

For the covariance parameters, we have to treat the diagonal and the block-diagonal case of
U, separately.

Diagonal case

In the case of diagonal Uy(0), estimating 0 is essentially a scale estimation problem on b It
can be robustified just like the estimating equation for &, see Equation 6. For a model with
only one random effects term, the robust estimating equations are

with 73, ; such that

and normalizing constant

k) = Eo [uy (6)b%2] [ [wf7(07)] -

Generalization to multiple random effects terms is straightforward. We get one such equation

for each of the random effects terms.
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Block-diagonal case

For block-diagonal Uy(6) we have to take care of the block structure. The normalizing
constant Ti ; must be replaced by a matrix Tj ; defined for each block k. Analogous to the

estimator for the covariance matrix and location problem, we must use two different weight
functions: one for the size of the matrix wl(,T) and another one for the shape wl(f'). For details,
we refer to Stahel (1987) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986, Chapter 5).

(9)

As in the cited references, we introduce a third weight function wj ’ to simplify notation. For

block types with dimension s > 1, let

wl(f)(d) = (dwén)(d) — (d — sméﬂ)wé‘r)<d — SIiéT))>/S ,

where Iil()T) is defined such that

E[(u - sml(:))wt(f)(u — SﬁlgT)>:| =0 foru~ x2

Remark. The optimal B-robust estimator derived in Stahel (1987) is given by w,(f)(d) = min(1/b,,1/d)

and wl()")(d) = min(1/b,,1/d). Other weight functions may be chosen, as long as ¥(d) = dw(d) is a

-function. For wl(f) and wé") given above, this would be the Huber v-function. For low dimensions

1(77) = wé"). In higher dimensions, the efficiency loss for the estimated size is

negligible. Hence, a smaller tuning parameter may be chosen for wé").

s, one may choose w
For s = 2 and Huber or

(o) ()

smoothed Huber 1)-functions (see Appendix A), the squared tuning parameter of p¢ ’ for w, 'may be

used to get approximately the same efficiency for 0 as for 5. Tables of tuning parameters for higher
dimensions for the Huber and the lqq ¥-functions can be found in Appendix A.

Before we can state the robust estimating equation for the block-diagonal case, we need one
more definition. Let

-1 8Ub(9) )

Qo) = Ui(o) "

The robust estimating equation in the block-diagonal case can then be defined as follows. For
l=1,...,7,

K
12 o\ \ ok T S

ol (d(58;/5) ) B Quul8)6, /5

& )

~ui?(d(T,18;/5) ) (T Quu(®)) | =0,

where Q&k(a) is the s x s submatrix of Q,(8) which acts on block k and be/ % is the inverse
of any square root of the s x s matrix Tj, ;. As in the diagonal case, we define the matrix Tj j,
such that each summand has expectation zero. For [ =1,...,r,
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Bl (d(T;, 751 /7) ) b1 Quil®)8; /0"
(41,178, /) ) (T Quu(®)) | = 0.

Remarks. The symmetric matrix T, 5, is fully defined for unstructured covariance matrices only, where
r = s(s+1)/2. For other covariance matrix structures we can replace Tj 5, by the variance of the linear
approximation of b*.

Since in the classic case, the linear approximations for b and & are exact, the estimating equation (9)
reduces to the REML estimating equations. A similar argument is valid for the estimating equation
(6) for 6.

C. Estimation algorithm

The algorithm for finding the simultaneous roots of the estimating equations (5), (6) and (8)
(and/or (9)) can be split into four general steps. They are:

1. Compute initial estimates.
2. For given 0, 7, find B and b" that solve (5).

3. Keeping the intermediate solutions B and b° fixed, find & such that (6) is fulfilled.

~

4. Check the estimating equations for 6, (8) and/or (9), for convergence. If they are not
fulfilled, update 0 in some way and go back to step 2.

The algorithms for the four steps can be chosen independently from each other. We discuss
the four steps below.

When this algorithm stops, it has found a simultaneous solution of all the estimating equa-
tions, except in the block-diagonal case where some, but not all, components corresponding to
a block might lie on the border of the parameter space. For those parameters, the estimating
equations won’t be satisfied. To avoid incorrect solutions, it is crucial that the estimates for
ﬁ and b* are updated for each new candidate of 6 and that the initial estimate for @ is large
enough. Otherwise, the algorithm might wrongly set all components of 8 corresponding to
one block to zero or close to zero.

This is illustrated for a simple one-way anova in Figure 4. The expected sum of squares
vanishes for @ = 0 in the classic case. In the robust case, the expectation does not vanish,
but there is a solution close to zero. This is an artifact of the linear approximation used to
compute the expectation. As long as convex p-functions are used, the classic estimates are
generally a good choice of initial estimates. Zero components of the initial 6 should be set to
one at the start of the algorithm.

C.1. Step 1: Initial estimates
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1.0

0.5

value

-0.5

Sum of Squares realized — expected — difference

Figure 4: Sum of Squares of the spherical random effects for a balanced one-way anova.
The smoothed Huber function was used for both p. and pp. The estimating equations (8)
are solved at the points where the two curves cross. The solutions are highlighted by black
dashed lines, 6 is the correct solution, 67 the wrong one.

The methods described here work for convex p-functions as well as for redescender p-functions.
If redescender p-functions are used, the algorithm as defined here converges to a local solution.
It is up to the initial estimator to provide starting values that ensure the algorithm converges
to the right local solution, whatever the right solution is. In case of MM-estimates for the
fixed effects model, the initial S-estimate makes sure that the final estimate has the desired
high breakdown point. The same would certainly also be desirable in case of mixed-effects
models. However, to the best of our knowledge, there exists currently no such estimator. The
S-estimators by Copt and Victoria-Feser (2006) and Chervoneva and Vishnyakov (2011) do
not seem suitable, since they are based on a different contamination model and are not as
general as the method proposed here.

If convex p-functions are used, this difficulty does not exist. Apart from the artificial solution
0 close to zero (see Figure 4) which is easily distinguishable from the true solution, we
conjecture that the solutions are unique as they are for the Proposal 2 case in the location-
scale problem (Koller 2013). We therefore consider it safe to use the classic solutions as initial
estimates when convex p-functions are used.

Redescender p-functions have the advantage that they can assign a weight of zero to some
observations or random effects levels. This makes it possible that such observations have no
influence on the estimates. When convex p-functions are used, an observation practically
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always has an influence on the estimates, since a weight of zero is only reached in the limit,
when the residual or the random effect level approaches plus or minus infinity. If one is
interested in eliminating the influence of observations, then one might consider the following.
First, compute the fit using a convex p-function. Then use the results as starting value
for fitting using a redescender p-function in a second step. In the absence of good initial
estimators for redescender p-functions, this approach might be used to get at least some of
the desirable properties of redescender p-functions.

C.2. Step 2: Fixed and random effects
For given 0 and o, the estimation of the fixed and random effects can be done using iteratively
reweighted least squares.

Let W, be defined analogously to W, i.e.,

W. = Diag(we(e} /0))i=1,..n ,

where

we(e®) =

( )jet ifer #£0,
PL(0) ife*=0.

Then insert these weights into (5) and expand €* to get the following linear system of equa-

tions,

XU TWU X X'U;"W,U; ' zU, B
U/ Zz'U;"W,U;'X U/Z"U "W, U 'ZU, + AW, || b
| XU "Wy

U Z'U; "W,y

By alternating between computing B and b" for a given set of weights and updating the
weights for a given set of estimates, we get a simple and efficient algorithm for computing the
fixed and random effects.

We start the algorithm with either a predefined set of weights or set all the weights to one.
When the relative change of the estimates is small enough, the algorithm can stop.

C.3. Step 3: Variance parameter

Equation 6 can be written as
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This suggests a simple two-step algorithm, namely alternating between computing & using
the above formula and updating the weights given . This algorithm is quick and reliable,
especially if the overall algorithm has almost converged and & only changes little between
iterations of 6.

A similar procedure can also be derived for the computation of 7. ;. Solving (7) for 7. ; yields

% N\ 2 %
sl () @] ol ( )]
’ Te,i0 o Te,i0

which again suggests to use the same two-step procedure as lined out above. The values

Te,i have to be recomputed for every new value of @, preferably using the values of the last
candidate @ as starting values.

C.4. Step 4: Covariance parameters

In the following, we will assume that we have only one block type. The algorithms men-
tioned below can be easily generalized to multiple block types. One iteration then consists of
computing the updates for every block type separately before applying all of them together.

In case of diagonal Uy(0), 0 may be computed using the analogue of the algorithm for Step 3.
This has proven to be much more efficient and robust compared to using a generic root solving
procedure.

The same is true in the non-diagonal case. Nevertheless, if we assume a special covariance
structure, the only options are generic root solving procedures such as Newton-Raphson. The
Newton-Raphson algorithm, however, can be quite unstable and often does not converge for
problems with many parameters.

In the case of unstructured covariance matrices, there exists a better algorithm of EM-type.
Let the function L(A) return the lower triangular Cholesky factor of A, and L™ return the
inverse of the factor. Then, for unstructured covariance matrices and in terms of the first
block Uy 1 of Uy, the update is

~[it ~lit—1] 1 K ()pepsT (&
0 () =0 (0 Lu( S aisn ) (Laltme) . o
k=1 k=1

where the superscript in square brackets denotes the iteration. The right-hand side is com-

Alit—1 P . .
puted using B[It ], the value from the last iteration, and wé'z is the corresponding k-th
robustness weight.

Remark. To see that (10) is indeed a sensible update, we have to first rewrite the r scalar valued
estimating equations into one matrix valued estimating equation. We may write (8) as

[tr((zﬁg?,gﬂzaf /5%~ 0\ T4 ) Quu(®)] =0 fori=1,.r.

NE

1

=~
Il

When assuming an unstructured covariance matrix for the random effects, Q, ; has only one non-zero
value and does not depend on k. (For other block types, @, vanishes, thus decoupling the problem
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for different block types.) Since r = s(s+ 1)/2, we may thus write the estimating equation as

K T

~ A*A* A2~
S [wé”,z 52 (6)Tbk} =0.
k=1

The dependence of the robustness weights on 0 will be neglected from now on, thereby reducing the
problem to solving a system of linear equations. In terms of the actual random effects, the estimating
equation in iteration [it] reads

K .
[1t 1] ~lit—1] ( )
E bkkabl 0 (7 bknk =0.

k=1

As long as the algorithm has not converged, the estimating equation is not fulfilled for 5[1 7 but

~Jit
there exists a 0[1 ], such that it is. For

Uss (5m> _u,, (a[it1]> AUl

where AU{EM is a lower triangular matrix, we have after multiplying the equation by AU gt] from the
left and by AUIEit]T from the right,

K

e~k T . .
> [@gnbib. — a2 e A, auft | <o,
k=1

By splitting the left-hand side into two sums, moving the second sum to the right-hand side, and
replacing both sides by the corresponding lower-triangular Cholesky factor, we get an equation that

can be solved for AU l[)it] and thus an expression for Uy, ; (5[“}> , which is exactly update (10) mentioned

above.

The resulting algorithm, considering steps 2 to 4 together, is then of EM-type. It converges
fairly quickly, except when the solution is zero, i.e., some variance components are dropped.
An illustration of the problem and potential improvements to the algorithm can be found in
Demidenko (2004, Section 2.12).
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