
Package ‘rnn’
January 13, 2026

Title Recurrent Neural Network

Version 1.9.1

Description Implementation of a Recurrent Neural Network architectures in native R, includ-
ing Long Short-Term Memory (Hochreiter and Schmidhu-
ber, <doi:10.1162/neco.1997.9.8.1735>), Gated Recurrent Unit (Chung et al.) and vanilla RNN.

Depends R (>= 3.2.2)

License GPL-3

RoxygenNote 7.3.3

Encoding UTF-8

URL https://bastiaanquast.com/rnn/, https://github.com/bquast/rnn

BugReports https://github.com/bquast/rnn/issues

Imports attention, sigmoid (>= 1.4.0)

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Bastiaan Quast [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2951-3577>)

Maintainer Bastiaan Quast <bquast@gmail.com>

Repository CRAN

Date/Publication 2026-01-13 06:10:17 UTC

Contents
backprop_gru . 2
backprop_lstm . 3
backprop_r . 3
backprop_rnn . 4
bin2int . 4
clean_lstm . 5
clean_r . 5

1

https://doi.org/10.1162/neco.1997.9.8.1735
https://bastiaanquast.com/rnn/
https://github.com/bquast/rnn
https://github.com/bquast/rnn/issues
https://orcid.org/0000-0002-2951-3577

2 backprop_gru

clean_rnn . 6
epoch_annealing . 6
epoch_print . 7
init_gru . 7
init_lstm . 8
init_r . 8
init_rnn . 9
int2bin . 9
loss_L1 . 10
predictr . 10
predict_gru . 11
predict_lstm . 12
predict_rnn . 13
rnn . 13
trainr . 14
update_adagrad . 16
update_r . 16
update_sgd . 17

Index 18

backprop_gru backprop_gru

Description

backpropagate the error in a model object of type gru

Usage

backprop_gru(model, a, c, j, ...)

Arguments

model the output model object

a the input of this learning batch

c the output of this learning batch

j the indexes of the sample in the current batch

... argument to be passed to method

Value

the updated model

backprop_lstm 3

backprop_lstm backprop_lstm

Description

backpropagate the error in a model object of type rlstm

Usage

backprop_lstm(model, a, c, j, ...)

Arguments

model the output model object
a the input of this learning batch
c the output of this learning batch
j the indexes of the sample in the current batch
... argument to be passed to method

Value

the updated model

backprop_r backprop_r

Description

backpropagate the error in a model object

Usage

backprop_r(model, a, c, j, ...)

Arguments

model the output model object
a the input of this learning batch
c the output of this learning batch
j the indexes of the sample in the current batch
... argument to be passed to method

Value

the updated model

4 bin2int

backprop_rnn backprop_rnn

Description

backpropagate the error in a model object of type rnn

Usage

backprop_rnn(model, a, c, j, ...)

Arguments

model the output model object
a the input of this learning batch
c the output of this learning batch
j the indexes of the sample in the current batch
... argument to be passed to method

Value

the updated model

bin2int Binary to Integer

Description

Binary to Integer

Usage

bin2int(binary)

b2i(binary)

Arguments

binary input binary

Value

integer representation

Functions

• b2i(): individual Binary to Integer

clean_lstm 5

clean_lstm clean_lstm

Description

clean the model for lighter output

Usage

clean_lstm(model)

Arguments

model the output model object

Value

the updated model

clean_r init_r

Description

Initialize the weight parameters

Usage

clean_r(model)

Arguments

model the output model object

Value

the updated model

6 epoch_annealing

clean_rnn clean_rnn

Description

clean the model for lighter output

Usage

clean_rnn(model)

Arguments

model the output model object

Value

the updated model

epoch_annealing epoch annealing

Description

Apply the learning rate decay to the learning rate, called in epoch_model_function

Usage

epoch_annealing(model)

Arguments

model the output model object

Value

the updated model

epoch_print 7

epoch_print epoch printing for trainr

Description

Print the error adn learning rate at each epoch of the trainr learning, called in epoch_function

Usage

epoch_print(model)

Arguments

model the output model object

Value

nothing

init_gru init_gru

Description

Initialize the weight parameter for a gru

Usage

init_gru(model)

Arguments

model the output model object

Value

the updated model

8 init_r

init_lstm init_lstm

Description

Initialize the weight parameter for a lstm

Usage

init_lstm(model)

Arguments

model the output model object

Value

the updated model

init_r init_r

Description

Initialize the weight parameters

Usage

init_r(model)

Arguments

model the output model object

Value

the updated model

init_rnn 9

init_rnn init_rnn

Description

Initialize the weight parameter for a rnn

Usage

init_rnn(model)

Arguments

model the output model object

Value

the updated model

int2bin Integer to Binary

Description

Integer to Binary

Usage

int2bin(integer, length = 8)

i2b(integer, length = 8)

Arguments

integer input integer

length binary representation length

Value

binary representation

Functions

• i2b(): individual Integer to Binary

10 predictr

loss_L1 L1 loss

Description

Apply the learning rate to the weight update, vocabulary to verify !!

Usage

loss_L1(model)

Arguments

model the output model object

Value

the updated model

predictr Recurrent Neural Network

Description

predict the output of a RNN model

Usage

predictr(model, X, hidden = FALSE, real_output = T, ...)

Arguments

model output of the trainr function

X array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1
or more, if a matrix, will be coerce to array)

hidden should the function output the hidden units states

real_output option used when the function in called inside trainr, do not drop factor for 2
dimension array output and other actions. Let it to TRUE, the default, to let the
function take care of the data.

... arguments to pass on to sigmoid function

Value

array or matrix of predicted values

predict_gru 11

Examples

Not run:
create training numbers
X1 = sample(0:127, 10000, replace=TRUE)
X2 = sample(0:127, 10000, replace=TRUE)

create training response numbers
Y <- X1 + X2

convert to binary
X1 <- int2bin(X1)
X2 <- int2bin(X2)
Y <- int2bin(Y)

Create 3d array: dim 1: samples; dim 2: time; dim 3: variables.
X <- array(c(X1,X2), dim=c(dim(X1),2))

train the model
model <- trainr(Y=Y[,dim(Y)[2]:1],

X=X[,dim(X)[2]:1,],
learningrate = 1,
hidden_dim = 16)

create test inputs
A1 = int2bin(sample(0:127, 7000, replace=TRUE))
A2 = int2bin(sample(0:127, 7000, replace=TRUE))

create 3d array: dim 1: samples; dim 2: time; dim 3: variables
A <- array(c(A1,A2), dim=c(dim(A1),2))

predict
B <- predictr(model,

A[,dim(A)[2]:1,])
B = B[,dim(B)[2]:1]
convert back to integers
A1 <- bin2int(A1)
A2 <- bin2int(A2)
B <- bin2int(B)

inspect the differences
table(B-(A1+A2))

plot the difference
hist(B-(A1+A2))

End(Not run)

predict_gru gru prediction function

12 predict_lstm

Description

predict the output of a gru model

Usage

predict_gru(model, X, hidden = FALSE, real_output = T, ...)

Arguments

model output of the trainr function

X array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1
or more, if a matrix, will be coerce to array)

hidden should the function output the hidden units states

real_output option used when the function in called inside trainr, do not drop factor for 2
dimension array output

... arguments to pass on to sigmoid function

Value

array or matrix of predicted values

predict_lstm gru prediction function

Description

predict the output of a lstm model

Usage

predict_lstm(model, X, hidden = FALSE, real_output = T, ...)

Arguments

model output of the trainr function

X array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1
or more, if a matrix, will be coerce to array)

hidden should the function output the hidden units states

real_output option used when the function in called inside trainr, do not drop factor for 2
dimension array output

... arguments to pass on to sigmoid function

Value

array or matrix of predicted values

predict_rnn 13

predict_rnn Recurrent Neural Network

Description

predict the output of a RNN model

Usage

predict_rnn(model, X, hidden = FALSE, real_output = T, ...)

Arguments

model output of the trainr function

X array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1
or more, if a matrix, will be coerce to array)

hidden should the function output the hidden units states

real_output option used when the function in called inside trainr, do not drop factor for 2
dimension array output

... arguments to pass on to sigmoid function

Value

array or matrix of predicted values

rnn Recurrent Neural Network

Description

A Recurrent Neural Network in native R, transforms numbers to binaries before adding bit by bit,
teaching itself how to carry.

Author(s)

Bastiaan Quast <bquast@gmail.com>

See Also

trainr for training a model and predictr for using a model to make predictions.

14 trainr

trainr Recurrent Neural Network

Description

Trains a Recurrent Neural Network.

Usage

trainr(
Y,
X,
model = NULL,
learningrate,
learningrate_decay = 1,
momentum = 0,
hidden_dim = c(10),
network_type = "rnn",
numepochs = 1,
sigmoid = c("logistic", "Gompertz", "tanh"),
use_bias = F,
batch_size = 1,
seq_to_seq_unsync = F,
update_rule = "sgd",
epoch_function = c(epoch_print, epoch_annealing),
loss_function = loss_L1,
...

)

Arguments

Y array of output values, dim 1: samples (must be equal to dim 1 of X), dim 2:
time (must be equal to dim 2 of X), dim 3: variables (could be 1 or more, if a
matrix, will be coerce to array)

X array of input values, dim 1: samples, dim 2: time, dim 3: variables (could be 1
or more, if a matrix, will be coerce to array)

model a model trained before, used for retraining purpose.

learningrate learning rate to be applied for weight iteration
learningrate_decay

coefficient to apply to the learning rate at each epoch, via the epoch_annealing
function

momentum coefficient of the last weight iteration to keep for faster learning

hidden_dim dimension(s) of hidden layer(s)

network_type type of network, could be rnn, gru or lstm. gru and lstm are experimentale.

trainr 15

numepochs number of iteration, i.e. number of time the whole dataset is presented to the
network

sigmoid method to be passed to the sigmoid function

use_bias should the network use bias

batch_size batch size: number of samples used at each weight iteration, only 1 supported
for the moment

seq_to_seq_unsync

if TRUE, the network will be trained to backpropagate only the second half of
the output error. If many to one is the target, just make Y have a time dim of 1.
The X and Y data are modify at first to fit a classic learning, error are set to 0
during back propagation, input for the second part is also set to 0.

update_rule rule to update the weight, "sgd", the default, is stochastic gradient descent, other
available options are "adagrad" (experimentale, do not learn yet)

epoch_function vector of functions to applied at each epoch loop. Use it to intereact with the
objects inside the list model or to print and plot at each epoch. Should return the
model.

loss_function loss function, applied in each sample loop, vocabulary to verify.

... Arguments to be passed to methods, to be used in user defined functions

Value

a model to be used by the predictr function

Examples

Not run:
create training numbers
X1 = sample(0:127, 10000, replace=TRUE)
X2 = sample(0:127, 10000, replace=TRUE)

create training response numbers
Y <- X1 + X2

convert to binary
X1 <- int2bin(X1, length=8)
X2 <- int2bin(X2, length=8)
Y <- int2bin(Y, length=8)

create 3d array: dim 1: samples; dim 2: time; dim 3: variables
X <- array(c(X1,X2), dim=c(dim(X1),2))

train the model
model <- trainr(Y=Y,

X=X,
learningrate = 1,
hidden_dim = 16)

End(Not run)

16 update_r

update_adagrad update_adagrad

Description

Apply the update with adagrad, not working yet

Usage

update_adagrad(model)

Arguments

model the output model object

Value

the updated model

update_r update_r

Description

Apply the update

Usage

update_r(model)

Arguments

model the output model object

Value

the updated model

update_sgd 17

update_sgd update_sgd

Description

Apply the update with stochastic gradient descent

Usage

update_sgd(model)

Arguments

model the output model object

Value

the updated model

Index

b2i (bin2int), 4
backprop_gru, 2
backprop_lstm, 3
backprop_r, 3
backprop_rnn, 4
bin2int, 4

clean_lstm, 5
clean_r, 5
clean_rnn, 6

epoch_annealing, 6
epoch_print, 7

i2b (int2bin), 9
init_gru, 7
init_lstm, 8
init_r, 8
init_rnn, 9
int2bin, 9

loss_L1, 10

predict_gru, 11
predict_lstm, 12
predict_rnn, 13
predictr, 10, 13

rnn, 13

trainr, 13, 14

update_adagrad, 16
update_r, 16
update_sgd, 17

18

	backprop_gru
	backprop_lstm
	backprop_r
	backprop_rnn
	bin2int
	clean_lstm
	clean_r
	clean_rnn
	epoch_annealing
	epoch_print
	init_gru
	init_lstm
	init_r
	init_rnn
	int2bin
	loss_L1
	predictr
	predict_gru
	predict_lstm
	predict_rnn
	rnn
	trainr
	update_adagrad
	update_r
	update_sgd
	Index

