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https://github.com/emmt/Algorithms/tree/master/bobyqa


2 bobyqa_rosen_test2

bobyqa_rosen_test1 Example 0a: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_test1()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
## => optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

## corresponding C++ implementation:
bobyqa_rosen_test1()

bobyqa_rosen_test2 Example 0b: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa. Allows for
user input.

Usage

bobyqa_rosen_test2(start, lower, upper)

Arguments

start Starting values of the algorithm.

lower Lower bounds of the parameters.

upper Upper bounds of the parameters.
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Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
## => optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

## corresponding C++ implementation:
bobyqa_rosen_test2(c(1,2),c(0,0),c(4,4))

bobyqa_rosen_x1 Example 1a: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_x1()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
## => optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

## corresponding C++ implementation:
bobyqa_rosen_x1()



4 bobyqa_rosen_x1e

bobyqa_rosen_x1e Example 1b: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_x1e()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
# check the error exits
# too many iterations
x1e <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4), control = list(maxfun=50))
str(x1e)

## corresponding C++ implementation:
bobyqa_rosen_x1e()
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