
Package ‘rminqa’
January 12, 2026

Type Package

Title Derivative-Free Optimization in R using C++

Version 0.3.1

Date 2026-01-11

Description Perform derivative-free optimization algorithms in R using C++.
A wrapper interface is provided to call C function of the 'bobyqa' implementation
(See <https://github.com/emmt/Algorithms/tree/master/bobyqa>).

License GPL (>= 2)

Encoding UTF-8

Imports Rcpp (>= 1.0.7)

LinkingTo Rcpp (>= 1.0.7)

Depends R (>= 3.5.0)

RoxygenNote 7.3.2

Suggests minqa

NeedsCompilation yes

Author Sam Watson [aut, cre],
Yi Pan [aut],
Éric Thiébaut [aut],
Mike Powell [aut]

Maintainer Sam Watson <S.I.Watson@bham.ac.uk>

Repository CRAN

Date/Publication 2026-01-12 06:10:21 UTC

Contents
bobyqa_rosen_test1 . 2
bobyqa_rosen_test2 . 2
bobyqa_rosen_x1 . 3
bobyqa_rosen_x1e . 4

Index 5

1

https://github.com/emmt/Algorithms/tree/master/bobyqa

2 bobyqa_rosen_test2

bobyqa_rosen_test1 Example 0a: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_test1()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
=> optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

corresponding C++ implementation:
bobyqa_rosen_test1()

bobyqa_rosen_test2 Example 0b: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa. Allows for
user input.

Usage

bobyqa_rosen_test2(start, lower, upper)

Arguments

start Starting values of the algorithm.

lower Lower bounds of the parameters.

upper Upper bounds of the parameters.

bobyqa_rosen_x1 3

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
=> optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

corresponding C++ implementation:
bobyqa_rosen_test2(c(1,2),c(0,0),c(4,4))

bobyqa_rosen_x1 Example 1a: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_x1()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
(x1 <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4)))
=> optimum at c(1, 1) with fval = 0
str(x1) # see that the error code and msg are returned

corresponding C++ implementation:
bobyqa_rosen_x1()

4 bobyqa_rosen_x1e

bobyqa_rosen_x1e Example 1b: Minimize Rosenbrock function using bobyqa

Description

Minimize Rosenbrock function using bobyqa and expect a normal exit from bobyqa.

Usage

bobyqa_rosen_x1e()

Value

No return value, called for side effects.

Examples

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
check the error exits
too many iterations
x1e <- minqa::bobyqa(c(1, 2), fr, lower = c(0, 0), upper = c(4, 4), control = list(maxfun=50))
str(x1e)

corresponding C++ implementation:
bobyqa_rosen_x1e()

Index

bobyqa_rosen_test1, 2
bobyqa_rosen_test2, 2
bobyqa_rosen_x1, 3
bobyqa_rosen_x1e, 4

5

	bobyqa_rosen_test1
	bobyqa_rosen_test2
	bobyqa_rosen_x1
	bobyqa_rosen_x1e
	Index

