Package ‘rly’

January 14, 2026
Type Package

Title Tools to Create Formal Language Parser
Version 1.7.8
Date 2026-01-14

Author Marek Jagielski [aut, cre, cph],
David M. Beazley [aut, cph],
Yasutaka Tanaka [ctb],

Henrico Witvliet [ctb]

Maintainer Marek Jagielski <marek. jagielski@gmail.com>
Description R implementation of the common parsing tools 'lex' and 'yacc'.
License MIT + file LICENSE

URL https://github.com/systemincloud/rly

BugReports https://github.com/systemincloud/rly/issues
Suggests testthat, knitr, rmarkdown

Encoding UTF-8

Depends R (>=3.3.0)

Imports R6

RoxygenNote 6.1.1

Collate 'logger.R' 'lex.R' 'yacc.R' 'rly-package.R'
VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-14 17:50:02 UTC

Contents

https://github.com/systemincloud/rly
https://github.com/systemincloud/rly/issues

2 lex
LRParser e e 4
NullLogger e e e e e 4
RlyLogger e 5
VACC © v v o v e e e e e e e e e e e e e e e e e e e 5
YaccProduction e 7

Index 8

lex Build a lexer

Description

Build all of the regular expression rules from definitions in the supplied module

Usage

lex(modu
errorl

Arguments

module
args
debug
debuglog

errorlog

Value

le = NA, args = list(), debug = FALSE, debuglog = NA,
og = NA)

R6 class containing lex rules

list of arguments that should be passed to constructor
on and off debug mode

custom logger for debug messages

custom logger for error messages

Lexer ready to use

Examples

TOKENS =
LITERALS

Lexer <-
public
token
liter
t_NAM
t_NUM
t$v
ret

1
t_ign
t_new
t$

c('NAME', 'NUMBER')

=C(':I,'+',l_"'*ly'/', l(|’l)l)
R6::R6Class("Lexer”,

= list(

s = TOKENS,

als = LITERALS,
E = '[a-zA-Z_][a-zA-Z0-9_1*"',
BER = function(re='\\d+', t) {

alue <- strtoi(t$value)
urn(t)
ore = " \t",

line = function(re="\\n+', t) {
lexer$lineno <- t$lexer$lineno + nchar(t$value)

Lexer 3

return(NULL)

1,

t_error = function(t) {
cat(sprintf("Illegal character '%s'", t$value[1]))
t$lexer$skip(1)
return(t)

3

)
)

lexer <- rly::lex(Lexer)
lexer$input(”5 + 3")
print(lexer$token()$value)
[115
print(lexer$token()$value)
[1] "+
print(lexer$token()$value)
[1]1 3

Lexer Lexing Engine

Description

The following Lexer class implements the lexer runtime. There are only a few public methods and
attributes:

* input() - Store a new string in the lexer
e token() - Get the next token

¢ clone() - Clone the lexer

¢ lineno - Current line number

* lexpos - Current position in the input string

Usage

Lexer

Format

An R6Class generator object

4 NullLogger

LexToken Lex Token

Description

Token class. This class is used to represent the tokens produced

Usage

LexToken

Format

An R6Class generator object

LRParser The LR Parsing engine

Description

The LR Parsing engine

Usage

LRParser

Format

An R6Class generator object

NulllLogger Null logger is used when no output should be generated.

Description

Does nothing.

Usage
NullLogger

Format

A R6Class object

RlyLogger 5

Examples

debuglog <- NulllLogger$new()
debuglog$info('This will not print')

RlyLogger Print log message to file or console.

Description

This object is a stand-in for a logging object created by the logging module. RLY will use this by
default to create things such as the parser.out file. If a user wants more detailed information, they
can create their own logging object and pass it into RLY. ’

Usage

RlyLogger

Format

A R6Class object

Examples

debuglog <- rly::RlylLogger$new("”."”, "file.out")
debuglog$info('This is info message')

file.remove("file.out")

yacc Build a parser

Description

This function is entry point to the library

Usage

yacc(module = NA, args = list(), method = "LALR", debug = FALSE,
start = NA, check_recursion = TRUE, debugfile = "parser.out”,
outputdir = NA, debuglog = NA, errorlog = NA)

6 yacc

Arguments
module R6 class containing rules
args list of arguments that should be passed to constructor
method type of algorithm
debug on and off debug mode
start provide custom start method

check_recursion
should yacc look for recursions in rules

debugfile the name of the custom debug output logs
outputdir the dierectory of custom debug logs
debuglog custom logger for debug messages
errorlog custom logger for error messages

Value

Parser ready to use

Examples

TOKENS = c('NAME', 'NUMBER')
LITERALS = C('=', 147 1=t txt /0, 1(t 1)y

Parser <- R6::R6Class("Parser”,
public = list(

tokens = TOKENS,

literals = LITERALS,

Parsing rules

precedence = list(c('left','+','=-"),
c('left','x","/"),
c('right', "UMINUS")),

dictionary of names

names = new.env(hash=TRUE),

p_statement_assign = function(doc='statement : NAME "=" expression', p) {
self$names[[as.character(p$get(2))]1] <- p$get(4)

3,

p_statement_expr = function(doc='statement : expression', p) {
cat(p$get(2))
cat('\n')

1,

p_expression_binop = function(doc="expression : expression '+' expression

| expression '-' expression

| expression 'x' expression
| expression '/' expression”, p) {

if(p$get(3) == '+') p$set(1, p$get(2) + p$get(4))

else if(p$get(3) == '-') p$set(1, p$get(2) - p$get(4))
else if(p$get(3) == 'x') p$set(1, p$get(2) * p$get(4))
else if(p$get(3) == '/') p$set(1, p$get(2) / p$get(4))

}7

YaccProduction 7

p_expression_uminus = function(doc="expression : '-' expression %prec UMINUS", p) {
p$set(1, -p$get(3))

1,

p_expression_group = function(doc="expression : '(' expression ')'", p) {
p$set (1, p$get(3))

1,

p_expression_number = function(doc='expression : NUMBER', p) {
p$set(1, p$get(2))

1,

p_expression_name = function(doc='expression : NAME', p) {
p$set(1, self$names[[as.character(p$get(2))1]1)

1,

p_error = function(p) {
if(is.null(p)) cat("Syntax error at EOF")
else cat(sprintf(”Syntax error at '%s

3

)
)

"

, p$value))

parser <- rly::yacc(Parser)

YaccProduction Object sent to grammar rule

Description

This class is a wrapper around the objects actually passed to each grammar rule. Index lookup and
assignment actually assign the .value attribute of the underlying YaccSymbol object. The lineno()
method returns the line number of a given item (or O if not defined). The linespan() method returns
a tuple of (startline,endline) representing the range of lines for a symbol. The lexspan() method
returns a tuple (lexpos,endlexpos) representing the range of positional information for a symbol.

Usage

YaccProduction

Format

An R6Class generator object

Index

+ datasets
Lexer, 3
LexToken, 4
NullLogger, 4
RlylLogger, 5
YaccProduction, 7
* data
LRParser, 4

lex, 2
Lexer, 3
LexToken, 4
LRParser, 4

NulllLogger, 4

R6Class, 3-5,7
RlylLogger, 5

yacc, 5
YaccProduction, 7

	lex
	Lexer
	LexToken
	LRParser
	NullLogger
	RlyLogger
	yacc
	YaccProduction
	Index

