
Package ‘rerddap’
January 15, 2026

Title General Purpose Client for 'ERDDAP™' Servers

Description General purpose R client for 'ERDDAP™' servers. Includes
functions to search for 'datasets', get summary information on
'datasets', and fetch 'datasets', in either 'csv' or 'netCDF' format.
'ERDDAP™' information:
<https://upwell.pfeg.noaa.gov/erddap/information.html>.

Version 1.2.2

Date 2026-01-07

License MIT + file LICENSE

URL https://docs.ropensci.org/rerddap/,

https://github.com/ropensci/rerddap

BugReports https://github.com/ropensci/rerddap/issues

LazyData true

Depends R (>= 4.00)

Encoding UTF-8

Language en-US

Imports crul (>= 0.7.4), dplyr (>= 0.5.0), data.table (>= 1.12.0),
digest, hoardr (>= 0.5.2), jsonlite (>= 1.6), lubridate,
methods, nanoparquet, ncdf4 (>= 1.16), tibble, utils, xml2 (>=
1.2.0)

Suggests knitr, plotly, rmarkdown

RoxygenNote 7.3.3

VignetteBuilder knitr

X-schema.org-applicationCategory Climate

X-schema.org-keywords earth, science, climate, precipitation,
temperature, storm, buoy, NOAA

X-schema.org-isPartOf https://ropensci.org

Config/testthat/edition 3

NeedsCompilation no

1

https://upwell.pfeg.noaa.gov/erddap/information.html
https://docs.ropensci.org/rerddap/
https://github.com/ropensci/rerddap
https://github.com/ropensci/rerddap/issues

2 browse

Author Scott Chamberlain [aut],
Ben Tupper [ctb],
Salvador Jesús Fernández Bejarano [ctb],
Roy Mendelssohn [cre, ctb]

Maintainer Roy Mendelssohn <roy.mendelssohn@noaa.gov>

Repository CRAN

Date/Publication 2026-01-15 16:00:02 UTC

Contents
browse . 2
cache_delete . 3
cache_details . 4
cache_list . 5
cache_setup . 6
colors . 7
convert_time . 7
convert_units . 8
disk . 9
ed_search . 9
ed_search_adv . 11
eurl . 13
fipscounty . 13
global_search . 14
griddap . 15
info . 19
institutions . 21
ioos_categories . 22
keywords . 22
key_words . 22
longnames . 23
servers . 23
standardnames . 24
tabledap . 24
variablenames . 28
version . 28

Index 30

browse Browse a dataset webpage.

Description

Browse a dataset webpage.

cache_delete 3

Usage

browse(x, url = eurl(), ...)

Arguments

x datasetid or an object associated with a datasetid such info(), griddap() or
tabledap()

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

... Further args passed on to utils::browseURL (must be a named parameter)

Value

if in interactive mode, opens a URL in your default browser; if not, then prints the URL in the
console

Author(s)

Ben Tupper <btupper@bigelow.org>

Examples

Not run:
if (interactive()) {
browse by dataset_id
browse('erdATastnhday')

browse info class
my_info <- info('erdATastnhday')
browse(my_info)

browse tabledap class
my_tabledap <- tabledap('erdCalCOFIlrvsiz', fields=c('latitude','longitude','larvae_size',

'itis_tsn'), 'time>=2011-10-25', 'time<=2011-10-31')
browse(my_tabledap)
}
End(Not run)

cache_delete Delete cached files

Description

Delete cached files

4 cache_details

Usage

cache_delete(x, force = FALSE)

cache_delete_all(force = FALSE)

Arguments

x File names

force (logical) Should files be force deleted? Default: FALSE

See Also

Other cache: cache_details(), cache_list(), cache_setup()

Examples

Not run:
delete files by name in cache
cache_delete('9911750294a039b8b517c8bf288978ea.csv')
cache_delete(c('9911750294a039b8b517c8bf288978ea.csv',
'b26825b6737da13d6a52c28c8dfe690f.csv'))

You can delete from the output of griddap or tabledap fxns
tabledap
(table_res <- tabledap('erdCinpKfmBT'))
cache_delete(table_res)

griddap
(out <- info('erdQMekm14day'))
(grid_res <- griddap(out,
time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23),
longitude = c(88, 90)

))
cache_delete(grid_res)

End(Not run)

cache_details Get details of cached files

Description

Get details of cached files

Usage

cache_details(x)

cache_list 5

Arguments

x File names

Details

Can be used to list details for all files, both .nc and .csv types, or details for just individual files of
class tabledap, griddap_nc, and griddap_csv

See Also

Other cache: cache_delete(), cache_list(), cache_setup()

Examples

Not run:
List details for all cached files
cache_details()

End(Not run)

cache_list List cached files

Description

List cached files

Usage

cache_list()

See Also

Other cache: cache_delete(), cache_details(), cache_setup()

Examples

Not run:
list files in cache
cache_list()

List info for files
download some data first
tabledap('erdCinpKfmBT')
griddap('erdVHNchlamday',
time = c('2015-04-01','2015-04-10'),
latitude = c(18, 21),
longitude = c(-120, -119)

)

6 cache_setup

(x <- cache_list())
cache_details(x$nc[1])
cache_details(x$csv[1])
cache_details()

delete files by name in cache
cache_delete(x$nc[1])
cache_delete(x$nc[2:3])

End(Not run)

cache_setup Setup cache path

Description

Setup cache path

Usage

cache_setup(full_path = NULL, temp_dir = FALSE)

cache_info()

Arguments

full_path (character) the full path to use for storing cached files.

temp_dir (logical) if TRUE use a randomly assigned tempdir (and full_path is ignored),
if FALSE, you can use full_path.

Details

On opening, by default a temporary directory is created for caching files. To have files cached
elsewhere, give the full path of where to cache files. Adding temp_dir = TRUE will again use a
temporary dirctory for cacheing.

Value

the full cache path, a directory (character)

See Also

Other cache: cache_delete(), cache_details(), cache_list()

colors 7

Examples

Not run:
default path
cache_setup()

you can define your own path
cache_setup(path = "foobar")

set a tempdir - better for programming with to avoid prompt
cache_setup(temp_dir = TRUE)

cache info
cache_info()

End(Not run)

colors cmocean colors The cmocean color palette by Kristen Thyng as imple-
mented in the R package "oce"

Description

str(colors) List of 13 $ viridis $ cdom $ chlorophyll $ density $ freesurface $ oxygen $ par $ phase
$ salinity $ temperature $ turbidity $ velocity $ vorticity

Usage

colors

Format

An object of class list of length 13.

convert_time Convert a UDUNITS compatible time to ISO time

Description

Convert a UDUNITS compatible time to ISO time

8 convert_units

Usage

convert_time(
n = NULL,
isoTime = NULL,
units = "seconds since 1970-01-01T00:00:00Z",
url = eurl(),
method = "local",
...

)

Arguments

n numeric; A unix time number.

isoTime character; A string time representation.

units character; Units to return. Default: "seconds since 1970-01-01T00:00:00Z"

url Base URL of the ERDDAP™ server. See eurl() for more information

method (character) One of local or web. Local simply uses as.POSIXct(), while web
method uses the ERDDAP™ time conversion service /erddap/convert/time.txt

... Curl options passed on to crul::verb-GET

Details

When method = "web" time zone is GMT/UTC

Examples

Not run:
local conversions
convert_time(n = 473472000)
convert_time(isoTime = "1985-01-02T00:00:00Z")

using an ERDDAP™ web service
convert_time(n = 473472000, method = "web")
convert_time(isoTime = "1985-01-02T00:00:00Z", method = "web")

End(Not run)

convert_units Convert a CF Standard Name to/from a GCMD Science Keyword

Description

Convert a CF Standard Name to/from a GCMD Science Keyword

Usage

convert_units(udunits = NULL, ucum = NULL, url = eurl(), ...)

disk 9

Arguments

udunits character; A UDUNITS character string https://www.unidata.ucar.edu/software/udunits/

ucum character; A UCUM character string https://ucum.org/ucum.html

url Base URL of the ERDDAP server. See eurl() for more information

... Curl options passed on to crul::verb-GET

Examples

Not run:
convert_units(udunits = "degree_C meter-1")
convert_units(ucum = "Cel.m-1")

End(Not run)

disk Options for saving ERDDAP datasets.

Description

Options for saving ERDDAP datasets.

Usage

disk(path = NULL, overwrite = TRUE)

memory()

Arguments

path Path to store files in. A directory, not a file. Default: the root cache path, see
cache_setup

overwrite (logical) Overwrite an existing file of the same name? Default: TRUE

ed_search Search for ERDDAP™ tabledep or griddap datasets

Description

Search for ERDDAP™ tabledep or griddap datasets

10 ed_search

Usage

ed_search(
query,
page = NULL,
page_size = NULL,
which = "griddap",
url = eurl(),
...

)

ed_datasets(which = "tabledap", url = eurl())

Arguments

query (character) Search terms

page (integer) Page number

page_size (integer) Results per page

which (character) One of tabledep or griddap.

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

... Curl options passed on to crul::verb-GET (must be named parameters)

References

https://upwell.pfeg.noaa.gov/erddap/index.html

Examples

Not run:
(out <- ed_search(query='temperature'))
out$alldata[[1]]
(out <- ed_search(query='size'))
out$info

List datasets
ed_datasets('table')
ed_datasets('grid')

use a different ERDDAP™ server
Marine Institute (Ireland)
ed_search("temperature", url = "http://erddap.marine.ie/erddap/")

End(Not run)

ed_search_adv 11

ed_search_adv Advanced search for ERDDAP™ tabledep or griddap datasets

Description

Advanced search for ERDDAP™ tabledep or griddap datasets

Usage

ed_search_adv(
query = NULL,
page = 1,
page_size = 1000,
protocol = NULL,
cdm_data_type = NULL,
institution = NULL,
ioos_category = NULL,
keywords = NULL,
long_name = NULL,
standard_name = NULL,
variableName = NULL,
maxLat = NULL,
minLon = NULL,
maxLon = NULL,
minLat = NULL,
minTime = NULL,
maxTime = NULL,
url = eurl(),
...

)

Arguments

query (character) Search terms

page (integer) Page number. Default: 1

page_size (integer) Results per page: Default: 1000

protocol (character) One of any (default), tabledep or griddap

cdm_data_type (character) One of grid, other, point, profile, timeseries, timeseriesprofile, tra-
jectory, trajectoryprofile

institution (character) An institution. See the dataset institutions

ioos_category (character) An ioos category See the dataset ioos_categories

keywords (character) A keywords. See the dataset keywords

long_name (character) A long name. See the dataset longnames

standard_name (character) A standar dname. See the dataset standardnames

12 ed_search_adv

variableName (character) A variable name. See the dataset variablenames

minLon, maxLon (numeric) Minimum and maximum longitude. Some datasets have longitude
values within -180 to 180, others use 0 to 360. If you specify min and max
Longitude within -180 to 180 (or 0 to 360), ERDDAP™ will only find datasets
that match the values you specify. Consider doing one search: longitude -180 to
360, or two searches: longitude -180 to 180, and 0 to 360.

minLat, maxLat (numeric) Minimum and maximum latitude, between -90 and 90

minTime, maxTime
(numeric/character) Minimum and maximum time. Time string with the for-
mat "yyyy-MM-ddTHH:mm:ssZ, (e.g., 2009-01-21T23:00:00Z). If you specify
something, you must include at least yyyy-MM-dd; you can omit Z, :ss, :mm,
:HH, and T. Always use UTC (GMT/Zulu) time. Or specify the number of sec-
onds since 1970-01-01T00:00:00Z.

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

... Curl options passed on to crul::verb-GET (must be named parameters)

References

https://upwell.pfeg.noaa.gov/erddap/index.html

Examples

Not run:
ed_search_adv(query = 'temperature')
ed_search_adv(query = 'temperature', protocol = "griddap")
ed_search_adv(query = 'temperature', protocol = "tabledap")
ed_search_adv(maxLat = 63, minLon = -107, maxLon = -87, minLat = 50,

protocol = "griddap")
ed_search_adv(maxLat = 63, minLon = -107, maxLon = -87, minLat = 50,

protocol = "tabledap")
ed_search_adv(minTime = "2010-01-01T00:00:00Z",

maxTime="2010-02-01T00:00:00Z")
(out <- ed_search_adv(maxLat = 63, minLon = -107, maxLon = -87, minLat = 50,

minTime = "2010-01-01T00:00:00Z",
maxTime="2010-02-01T00:00:00Z"))

out$alldata[[1]]
ed_search_adv(variableName = 'upwelling')
ed_search_adv(query = 'upwelling', protocol = "tabledap")

use a different URL
ed_search_adv(query = 'temperature', url = servers()$url[6])

End(Not run)

eurl 13

eurl Default ERDDAP server URL

Description

Default ERDDAP server URL

Usage

eurl()

Details

default url is https://upwell.pfeg.noaa.gov/erddap/

You can set a default using an environment variable so you don’t have to pass anything to the URL
parameter in your function calls.

In your .Renviron file or similar set a URL for the environment variable RERDDAP_DEFAULT_URL,
like RERDDAP_DEFAULT_URL=https://upwell.pfeg.noaa.gov/erddap/

It’s important that you include a trailing slash in your URL

Examples

eurl()
Sys.setenv(RERDDAP_DEFAULT_URL = "https://google.com")
Sys.getenv("RERDDAP_DEFAULT_URL")
eurl()
Sys.unsetenv("RERDDAP_DEFAULT_URL")
eurl()

fipscounty Convert a FIPS County Code to/from a County Name

Description

Convert a FIPS County Code to/from a County Name

Usage

fipscounty(county = NULL, code = NULL, url = eurl(), ...)

Arguments

county character; A county name.
code numeric; A FIPS code.
url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/

- See eurl() for more information
... Curl options passed on to crul::verb-GET

14 global_search

Examples

Not run:
fipscounty(code = "06053")
fipscounty(county = "CA, Monterey")
fipscounty(county = "OR, Multnomah")

End(Not run)

global_search global_search

Description

Search for ERDDAP™ tabledap or griddap datasets from a list of ERDDAP™ servers based on
search terms.

Usage

global_search(query, server_list, which_service)

Arguments

query (character) Search terms

server_list (list of character) List of ERDDAP™ servers to search

which_service (character) One of tabledep or griddap.

Details

Uses the ’reddap’ function ed_search() to search over the list of servers

Value

If successful a dataframe wih columns:

• title - the dataset title

• dataset_id - the datasetid on that ERDDAP™ server

• url - base url of dataset ERDDAP™ server

if urls are valid, no match is found, will return no match found else returns error message

See Also

HttpClient

griddap 15

Examples

get list of servers know by
https://irishmarineinstitute.github.io/awesome-erddap
e_servers <- servers()$url
select a couple to search
e_servers <- e_servers[c(1, 40)]
to meet CRAN time limits will only search 1 place
e_servers <- "https://coastwatch.pfeg.noaa.gov/erddap/"
test_query <- 'C-HARM v1 2-Day Forecast'
query_results <- global_search(test_query, e_servers, "griddap")

griddap Get ERDDAP(TM) gridded data

Description

Get ERDDAP(TM) gridded data

Usage

griddap(
datasetx,
...,
fields = "all",
stride = 1,
fmt = "nc",
url = eurl(),
store = disk(),
read = TRUE,
callopts = list()

)

Arguments

datasetx Anything coercable to an object of class info. So the output of a call to info, or
a datasetid, which will internally be passed through info

... Dimension arguments. See examples. Can be any 1 or more of the dimensions
for the particular dataset - and the dimensions vary by dataset. For each dimen-
sion, pass in a vector of length two, with min and max value desired. at least 1
required.

fields (character) Fields to return, in a character vector.

stride (integer) How many values to get. 1 = get every value, 2 = get every other value,
etc. Default: 1 (i.e., get every value)

fmt (character) One of csv or nc (for netcdf). Default: nc

url A URL for an ERDDAP server. Default: https://upwell.pfeg.noaa.gov/erddap/ -
See eurl() for more information

16 griddap

store One of disk (default) or memory. You can pass options to disk. Beware: if you
choose fmt="nc", we force store=disk() because nc files have to be written
to disk.

read (logical) Read data into memory or not. Does not apply when store parameter
is set to memory (which reads data into memory). For large csv, or especially
netcdf files, you may want to set this to FALSE, which simply returns a summary
of the dataset - and you can read in data piecemeal later. Default: TRUE

callopts Curl options passed on to verb-GET

Details

Details:

If you run into an error like "HTTP Status 500 - There was a (temporary?) problem. Wait a minute,
then try again.". it’s likely they are hitting up against a size limit, and they should reduce the amount
of data they are requesting either via space, time, or variables. Pass in config = verbose() to the
request, and paste the URL into your browser to see if the output is garbled to examine if there’s a
problem with servers or this package

Value

An object of class griddap_csv if csv chosen or griddap_nc if nc file format chosen.

• griddap_csv: a data.frame created from the downloaded csv data

• griddap_nc: a list, with slots "summary" and "data". "summary" is the unclassed output
from ncdf4::nc_open, from which you can do any netcdf operations you like. "data" is a
data.frame created from the netcdf data. the data.frame may be empty if there were problems
parsing the netcdf data

Both have the attributes: datasetid (the dataset id), path (the path on file for the csv or nc file), url
(the url requested to the ERDDAP server)

If read=FALSE, the data.frame for griddap_csv and the data.frame in the "data" slot is empty for
griddap_nc

Dimensions and Variables

ERDDAP grid dap data has this concept of dimenions vs. variables. Dimensions are things like
time, latitude, longitude, altitude, and depth. Whereas variables are the measured variables, e.g.,
temperature, salinity, air.

You can’t separately adjust values for dimensions for different variables. So, here’s how it’s gonna
work:

Pass in lower and upper limits you want for each dimension as a vector (e.g., c(1,2)), or leave to
defaults (i.e., don’t pass anything to a dimension). Then pick which variables you want returned via
the fields parameter. If you don’t pass in options to the fields parameter, you get all variables
back.

To get the dimensions and variables, along with other metadata for a dataset, run info, and each
will be shown, with their min and max values, and some other metadata.

griddap 17

Where does the data go?

You can choose where data is stored. Be careful though. You can easily get a single file of hundreds
of MB’s (upper limit: 2 GB) in size with a single request. To the store parameter, pass memory if
you want to store the data in memory (saved as a data.frame), or pass disk if you want to store on
disk in a file. Note that memory and disk are not character strings, but function calls. memory does
not accept any inputs, while disk does. Possibly will add other options, like “sql” for storing in a
SQL database.

Non-lat/lon grid data

Some gridded datasets have latitude/longitude components, but some do not. When nc format
gridded datasets have latitude and longitude we "melt" them into a data.frame for easy downstream
consumption. When nc format gridded datasets do not have latitude and longitude components, we
do not read in the data, throw a warning saying so. You can readin the nc file yourself with the
file path. CSV format is not affected by this issue as CSV data is easily turned into a data.frame
regardless of whether latitude/longitude data are present.

References

https://upwell.pfeg.noaa.gov/erddap/rest.html

Examples

Not run:
single variable dataset
You can pass in the outpu of a call to info
(out <- info('erdVHNchlamday'))
Or, pass in a dataset id
(res <- griddap('erdVHNchlamday',
time = c('2015-04-01','2015-04-10'),
latitude = c(18, 21),
longitude = c(-120, -119)

))

multi-variable dataset
(out <- info('erdQMekm14day'))
(res <- griddap(out,
time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23),
longitude = c(88, 90)

))
(res <- griddap(out, time = c('2015-12-28','2016-01-01'),

latitude = c(24, 23), longitude = c(88, 90), fields = 'mod_current'))
(res <- griddap(out, time = c('2015-12-28','2016-01-01'),

latitude = c(24, 23), longitude = c(88, 90), fields = 'mod_current',
stride = c(1,2,1,2)))

(res <- griddap(out, time = c('2015-12-28','2016-01-01'),
latitude = c(24, 23), longitude = c(88, 90),
fields = c('mod_current','u_current')))

18 griddap

Write to memory (within R), or to disk
(out <- info('erdQSwindmday'))
disk, by default (to prevent bogging down system w/ large datasets)
you can also pass in path and overwrite options to disk()
(res <- griddap(out,
time = c('2006-07-11','2006-07-20'),
longitude = c(166, 170),
store = disk()

))
the 2nd call is much faster as it's mostly just the time of reading in
the table from disk
system.time(griddap(out,
time = c('2006-07-11','2006-07-15'),
longitude = c(10, 15),
store = disk()

))
system.time(griddap(out,
time = c('2006-07-11','2006-07-15'),
longitude = c(10, 15),
store = disk()

))

memory - you have to choose fmt="csv" if you use memory
(res <- griddap("erdMBchla1day",
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126),
fmt = "csv", store = memory()

))

Use ncdf4 package to parse data
info("erdMBchla1day")
(res <- griddap("erdMBchla1day",
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126)
))

Get data in csv format
by default, we get netcdf format data
(res <- griddap('erdMBchla1day',
time = c('2015-01-01','2015-01-03'),
latitude = c(14, 15),
longitude = c(125, 126),
fmt = "csv"
))

Use a different ERDDAP server url
NOAA IOOS PacIOOS
url = "https://cwcgom.aoml.noaa.gov/erddap/"
out <- info("miamiacidification", url = url)
(res <- griddap(out,
time = c('2019-11-01','2019-11-03'),

info 19

latitude = c(15, 16),
longitude = c(-90, -88)

))
pass directly into griddap() - if you pass a datasetid string directly
you must pass in the url or you'll be querying the default ERDDAP url,
which isn't the one you want if you're not using the default ERDDAP url
griddap("miamiacidification", url = url,
time = c('2019-11-01','2019-11-03'),
latitude = c(15, 16),
longitude = c(-90, -88)

)

Using 'last'
with time
griddap('erdVHNchlamday',
time = c('last-5','last'),
latitude = c(18, 21),
longitude = c(-120, -119)

)
with latitude
griddap('erdVHNchlamday',

time = c('2015-04-01','2015-04-10'),
latitude = c('last', 'last'),
longitude = c(-120, -119)

)
with longitude
griddap('erdVHNchlamday',

time = c('2015-04-01','2015-04-10'),
latitude = c(18, 21),
longitude = c('last', 'last')

)

datasets without lat/lon grid and with fmt=nc
FIXME: this dataset is gone
(x <- info('glos_tds_5912_ca66_3f41'))
res <- griddap(x,
time = c('2018-04-01','2018-04-10'),
ny = c(1, 2),
nx = c(3, 5)
)
data.frame is empty
res$data
read in from the nc file path
ncdf4::nc_open(res$summary$filename)

End(Not run)

info Get information on an ERDDAP(TM) dataset.

20 info

Description

Get information on an ERDDAP(TM) dataset.

Usage

info(datasetid, url = eurl(), ...)

as.info(x, url)

Arguments

datasetid Dataset id

url A URL for an ERDDAP(TM) server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

... Further args passed on to crul::verb-GET (must be a named parameter)

x A datasetid or the output of info

Value

Prints a summary of the data on return, but you can index to various information.

The data is a list of length two with:

• variables - Data.frame of variables and their types

• alldata - List of data variables and their full attributes

Where alldata element has many data.frame’s, one for each variable, with metadata for that vari-
able. E.g., for griddap dataset noaa_pfeg_696e_ec99_6fa6, alldata has:

• NC_GLOBAL

• time

• latitude

• longitude

• sss

References

https://upwell.pfeg.noaa.gov/erddap/index.html

Examples

Not run:
grid dap datasets
info('erdATastnhday')

(out <- ed_search(query='temperature'))
info(out$info$dataset_id[5])
info(out$info$dataset_id[15])
info(out$info$dataset_id[25])

institutions 21

info(out$info$dataset_id[150])
info(out$info$dataset_id[400])
info(out$info$dataset_id[678])

out <- info(datasetid='erdMBchla1day')
See brief overview of the variables and range of possible values, if given
out$variables
all information on longitude
out$alldata$longitude
all information on chlorophyll
out$alldata$chlorophyll

table dap datasets
(out <- ed_search(query='temperature', which = "table"))
info(out$info$dataset_id[1])
info(out$info$dataset_id[2])
info(out$info$dataset_id[3])
info(out$info$dataset_id[4])

info('erdCinpKfmBT')
out <- info('erdCinpKfmBT')
See brief overview of the variables and range of possible values, if given
out$variables
all information on longitude
out$alldata$longitude
all information on Haliotis_corrugata_Mean_Density
out$alldata$Haliotis_corrugata_Mean_Density

use a different ERDDAP(TM) server
Marine Institute (Ireland)
info("IMI_CONN_2D", url = "http://erddap.marine.ie/erddap/")

End(Not run)

institutions institutions

Description

institutions

Format

A character vector

22 key_words

ioos_categories ioos_categories

Description

ioos_categories

Format

A character vector

keywords keywords

Description

keywords

Format

A character vector

key_words Convert a CF Standard Name to/from a GCMD Science Keyword

Description

Convert a CF Standard Name to/from a GCMD Science Keyword

Usage

key_words(cf = NULL, gcmd = NULL, url = eurl(), ...)

Arguments

cf character; A cf standard name http://cfconventions.org/Data/cf-standard-names/27/build/cf-
standard-name-table.html

gcmd character; A GCMD science keyword http://gcmd.gsfc.nasa.gov/learn/keyword_list.html

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/.
See eurl() for more information

... Curl options passed on to crul::verb-GET

longnames 23

Examples

Not run:
key_words(cf = "air_pressure")
cat(key_words(cf = "air_pressure"))

a different ERDDAP™ server
key_words(cf = "air_pressure", url = servers()$url[6])

End(Not run)

longnames longnames

Description

longnames

Format

A character vector

servers ERDDAP™ server URLS and other info

Description

ERDDAP™ server URLS and other info

Usage

servers(...)

Arguments

... curl options passed on to crul::verb-GET

Value

data.frame with 3 columns:

• name (character): ERDDAP™ name

• url (character): ERDDAP™ url

• public (logical): whether it’s public or not

24 tabledap

Examples

Not run:
servers()

End(Not run)

standardnames standardnames

Description

standardnames

Format

A character vector

tabledap Get ERDDAP™ tabledap data.

Description

Get ERDDAP™ tabledap data.

Usage

tabledap(
x,
...,
fields = NULL,
distinct = FALSE,
orderby = NULL,
orderbymax = NULL,
orderbymin = NULL,
orderbyminmax = NULL,
units = NULL,
fmt = "csv",
url = eurl(),
store = disk(),
callopts = list()

)

tabledap 25

Arguments

x Anything coercable to an object of class info. So the output of a call to info(),
or a datasetid, which will internally be passed through info()

... Any number of key-value pairs in quotes as query constraints. See Details &
examples

fields Columns to return, as a character vector

distinct If TRUE ERDDAP™ will sort all of the rows in the results table (starting with
the first requested variable, then using the second requested variable if the first
variable has a tie, ...), then remove all non-unique rows of data. In many situa-
tions, ERDDAP™ can return distinct values quickly and efficiently. But in some
cases, ERDDAP™ must look through all rows of the source dataset.

orderby If used, ERDDAP™ will sort all of the rows in the results table (starting with
the first variable, then using the second variable if the first variable has a tie, ...).
Normally, the rows of data in the response table are in the order they arrived
from the data source. orderBy allows you to request that the results table be
sorted in a specific way. For example, use orderby=c("stationID,time") to
get the results sorted by stationID, then time. The orderby variables MUST be
included in the list of requested variables in the fields parameter.

orderbymax Give a vector of one or more fields, that must be included in the fields parameter
as well. Gives back data given constraints. ERDDAP™ will sort all of the rows
in the results table (starting with the first variable, then using the second variable
if the first variable has a tie, ...) and then just keeps the rows where the value of
the last sort variable is highest (for each combination of other values).

orderbymin Same as orderbymax parameter, except returns minimum value.

orderbyminmax Same as orderbymax parameter, except returns two rows for every combination
of the n-1 variables: one row with the minimum value, and one row with the
maximum value.

units One of ’udunits’ (units will be described via the UDUNITS standard (e.g.,degrees_C))
or ’ucum’ (units will be described via the UCUM standard (e.g., Cel)).

fmt whether download should be as ’.csv’ (default) or ’.parquet’

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

store One of disk (default) or memory. You can pass options to disk

callopts Curl options passed on to crul::verb-GET (must be named parameters)

Details

For key-value pair query constraints, the valid operators are =, != (not equals), =~ (a regular ex-
pression test), <, <=, >, and >= . For regular expressions you need to add a regular expression. For
others, nothing more is needed. Construct the entry like 'time>=2001-07-07' with the parameter
on the left, value on the right, and the operator in the middle, all within a set of quotes. Since
ERDDAP accepts values other than =, we can’t simply do time = '2001-07-07' as we normally
would.

26 tabledap

Server-side functionality: Some tasks are done server side. You don’t have to worry about what that
means. They are provided via parameters in this function. See distinct, orderby, orderbymax,
orderbymin, orderbyminmax, and units.

Data is cached based on all parameters you use to get a dataset, including base url, query parameters.
If you make the same exact call in the same or a different R session, as long you don’t clear the
cache, the function only reads data from disk, and does not have to request the data from the web
again.

If you run into an error like "HTTP Status 500 - There was a (temporary?) problem. Wait a minute,
then try again.". it’s likely they are hitting up against a size limit, and they should reduce the amount
of data they are requesting either via space, time, or variables. Pass in config = verbose() to the
request, and paste the URL into your browser to see if the output is garbled to examine if there’s a
problem with servers or this package

Value

An object of class tabledap. This class is a thin wrapper around a data.frame, so the data you
get back is a data.frame with metadata attached as attributes (datasetid, path (path where the csv is
stored on your machine), url (url for the request))

References

https://upwell.pfeg.noaa.gov/erddap/index.html

Examples

Not run:
Just passing the datasetid without fields gives all columns back
tabledap('erdCinpKfmBT')

Pass time constraints
tabledap('erdCinpKfmBT', 'time>=2006-08-24')

Pass in fields (i.e., columns to retrieve) & time constraints
tabledap('erdCinpKfmBT',

fields = c('longitude', 'latitude', 'Aplysia_californica_Mean_Density'),
'time>=2006-08-24'

)

Get info on a datasetid, then get data given information learned
info('erdCalCOFIlrvsiz')$variables
tabledap('erdCalCOFIlrvsiz', fields=c('latitude','longitude','larvae_size',

'itis_tsn'), 'time>=2011-10-25', 'time<=2011-10-31')

An example workflow
Search for data
(out <- ed_search(query='fish', which = 'table'))
Using a datasetid, search for information on a datasetid
id <- out$alldata[[1]]$dataset_id
vars <- info(id)$variables
Get data from the dataset
vars$variable_name[1:3]

tabledap 27

tabledap(id, fields = vars$variable_name[1:3])

Time constraint
Limit by time with date only
(info <- info('erdCinpKfmBT'))
tabledap(info, fields = c(

'latitude','longitude','Haliotis_fulgens_Mean_Density'),
'time>=2001-07-14')

Use distinct parameter - compare to distinct = FALSE
tabledap('sg114_3',

fields=c('longitude','latitude','trajectory'),
'time>=2008-12-05', distinct = TRUE)

Use units parameter
In this example, values are the same, but sometimes they can be different
given the units value passed
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', units='udunits')
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', units='ucum')

Use orderby parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', orderby='temperature')
Use orderbymax parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', orderbymax='temperature')
Use orderbymin parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', orderbymin='temperature')
Use orderbyminmax parameter
tabledap('erdCinpKfmT', fields=c('longitude','latitude','time','temperature'),

'time>=2007-09-19', 'time<=2007-09-21', orderbyminmax='temperature')
Use orderbymin parameter with multiple values
tabledap('erdCinpKfmT',

fields=c('longitude','latitude','time','depth','temperature'),
'time>=2007-06-10', 'time<=2007-09-21',
orderbymax=c('depth','temperature')

)

Integrate with taxize
out <- tabledap('erdCalCOFIlrvcntHBtoHI',

fields = c('latitude','longitude','scientific_name','itis_tsn'),
'time>=2007-06-10', 'time<=2007-09-21'

)
tsns <- unique(out$itis_tsn[1:100])
library("taxize")
classif <- classification(tsns, db = "itis")
head(rbind(classif)); tail(rbind(classif))

Write to memory (within R), or to disk
(out <- info('erdCinpKfmBT'))

28 version

disk, by default (to prevent bogging down system w/ large datasets)
the 2nd call is much faster as it's mostly just the time of reading
in the table from disk
system.time(tabledap('erdCinpKfmBT', store = disk()))
system.time(tabledap('erdCinpKfmBT', store = disk()))
memory
tabledap('erdCinpKfmBT', store = memory())

use a different ERDDAP™ server
NOAA IOOS NERACOOS
url <- "http://www.neracoos.org/erddap/"
tabledap("E01_optics_hist", url = url)

End(Not run)

variablenames variablenames

Description

variablenames

Format

A character vector

version Get ERDDAP™ version

Description

Get ERDDAP™ version

Usage

version(url = eurl(), ...)

Arguments

url A URL for an ERDDAP™ server. Default: https://upwell.pfeg.noaa.gov/erddap/
- See eurl() for more information

... Curl options passed on to crul::verb-GET

version 29

Examples

Not run:
version()
ss <- servers()
version(ss$url[2])
version(ss$url[3])

End(Not run)

Index

∗ cache
cache_delete, 3
cache_details, 4
cache_list, 5
cache_setup, 6

∗ datasets
colors, 7
institutions, 21
ioos_categories, 22
keywords, 22
longnames, 23
standardnames, 24
variablenames, 28

as.info (info), 19
as.POSIXct(), 8

browse, 2

cache_delete, 3, 5, 6
cache_delete_all (cache_delete), 3
cache_details, 4, 4, 5, 6
cache_info (cache_setup), 6
cache_list, 4, 5, 5, 6
cache_setup, 4, 5, 6, 9
colors, 7
convert_time, 7
convert_units, 8
crul::verb-GET, 8–10, 12, 13, 20, 22, 23, 25,

28

disk, 9, 16, 17

ed_datasets (ed_search), 9
ed_search, 9
ed_search_adv, 11
eurl, 13
eurl(), 3, 8–10, 12, 13, 15, 20, 22, 25, 28

fipscounty, 13

global_search, 14
griddap, 15
griddap(), 3

HttpClient, 14

info, 15, 16, 19
info(), 3, 25
institutions, 21
ioos_categories, 22

key_words, 22
keywords, 22

longnames, 23

memory, 16, 17
memory (disk), 9

servers, 23
standardnames, 24

tabledap, 24
tabledap(), 3

variablenames, 28
version, 28

30

	browse
	cache_delete
	cache_details
	cache_list
	cache_setup
	colors
	convert_time
	convert_units
	disk
	ed_search
	ed_search_adv
	eurl
	fipscounty
	global_search
	griddap
	info
	institutions
	ioos_categories
	keywords
	key_words
	longnames
	servers
	standardnames
	tabledap
	variablenames
	version
	Index

