

Package ‘recluster’

January 26, 2026

Type Package

Title Ordination Methods for the Analysis of Beta-Diversity Indices

Version 3.5

Date 2026-01-25

Depends R (>= 4.0.0)

Imports alphahull, ape, sf, sp, vegan, grDevices, graphics, stats, utils, phytools, phangorn, picante, cluster, plotrix

Suggests betapart

Maintainer Leonardo Dapporto <leondap@gmail.com>

Description The analysis of different aspects of biodiversity requires specific algorithms. For example, in regionalisation analyses, the high frequency of ties and zero values in dissimilarity matrices produced by Beta-diversity turnover produces hierarchical cluster dendrograms whose topology and bootstrap supports are affected by the order of rows in the original matrix. Moreover, visualisation of biogeographical regionalisation can be facilitated by a combination of hierarchical clustering and multi-dimensional scaling. The recluster package provides robust techniques to visualise and analyse patterns of biodiversity and to improve occurrence data for cryptic taxa.

License GPL (>= 2.0)

LazyLoad yes

URL <https://github.com/leondap/recluster>

NeedsCompilation no

Encoding UTF-8

LazyData true

Author Leonardo Dapporto [aut, cre],
Matteo Ramazzotti [aut],
Simone Fattorini [aut],
Roger Vila [aut],
Gerard Talavera [aut],
Roger H.L. Dennis [aut]

Repository CRAN

Date/Publication 2026-01-26 10:20:02 UTC

Contents

biodecrypt	2
biodecrypt.cross	5
biodecrypt.optimise	7
biodecrypt.plot	9
biodecrypt.view	10
biodecrypt.wrap	10
dataisl	12
datamod	13
multiboot	13
recluster	14
recluster.boot	16
recluster.col	18
recluster.cons	19
recluster.dist	21
recluster.expl	22
recluster.expl.diss	23
recluster.fst	24
recluster.fst.pair	25
recluster.group.col	27
recluster.hist	28
recluster.identify.nodes	28
recluster.line	30
recluster.multi	31
recluster.node.strength	32
recluster.plot	33
recluster.plot.col	34
recluster.plot.matrix	36
recluster.plot.pie	36
recluster.plot.sites.col	38
recluster.procrustes	40
recluster.region	41
recluster.rotate	44
recluster.test.dist	45
treebut	46
treemod	47
Index	48

Description

biodecrypt uses the ahull function from the alphahull package to construct concave hulls with taxon-specific concavity (alpha) values. This function can also exclude marine or terrestrial areas from the analysis based on a SpatialPolygonsDataFrame representing the area of interest.

The main inputs are: i) a matrix of longitude and latitude coordinates (decimal degrees, WGS84) for all occurrence records; ii) a vector indicating the species membership of each record, in the same order as the matrix (values 1, 2, ..., n for known species and 0 for records to be assigned).

Using spatial coordinates, the set of identified records, and the corresponding alpha values, biodecrypt computes a concave hull for each species based on known occurrences. The function then attempts to assign unknown records to their most likely species by comparing hull location, geometry, and the spatial position of occurrence data (see details).

Usage

```
biodecrypt(mat, id, alpha = NULL, ratio = 2.5, buffer = 90000, polygon=NULL,
checkdist = T, minimum = 7, plot=F, map = NULL, xlim = NULL, ylim = NULL, main = NULL)
```

Arguments

mat	A matrix for longitude and latitude (in decimal degrees) for all records.
id	A vector indicating species membership of each record (in the same order of mat). Identified records are indicated with 1,2..n, unidentified records with 0.
alpha	A vector indicating an initial alpha value for each species. If NULL, the default value of 8 for all species is used.
ratio	The minimum ratio between the distance from the second distant hull compared to the closest hull to allow attribution. Default 2.5 times.
buffer	A distance buffer from hulls (metres).
polygon	A SpatialPolygonsDataFrame with area of interests (ground or sea). Typically obtained from Natural Earth (https://www.naturalearthdata.com/). If NULL no removal is applied
checkdist	Logical, if TRUE cases attributed to a given species based on relative distance from hulls but closer to an identified record of another species are not attributed.
minimum	The minimum number of specimens required to build alpha hulls. If the number of identified specimens is lower, convex hulls are calculated to improve procedure stability.
map	A map to be plotted during the procedure to show the separation progress.
plot	Flag to FALSE is plotting the result is not required
xlim	Longitude boudaries for the map.
ylim	latitude boudaries for the map.
main	The name to be plotted on the graph

Details

Once species-specific hulls are constructed using the distribution of known records, each unidentified record may fall into one of the following situations: (i) inside more than one hull, (ii) inside a single hull, or (iii) outside all hulls.

Unidentified records falling inside more than one hull cannot be unambiguously assigned to a species. In this case, no attribution is performed, and only a priori identified records belonging to hull intersection areas are retained as identified in the final output.

Unidentified records falling inside a single hull are attributed to that species only if their minimum distance to any other hull is greater than a user-defined buffer value. Records falling within the buffer distance of another hull are not attributed.

Unidentified records falling outside all hulls are attributed to the nearest hull if both of the following conditions are met: (i) the distance to the second-nearest hull is greater than the buffer value, and (ii) the ratio between the distance to the second-nearest hull and the distance to the nearest hull exceeds a user-defined threshold.

As described above, record attribution is primarily based on distances to species hulls. However, *biodecrypt* also provides an optional check to verify whether records attributed to a species based on hull distances are actually closer to an identified record of another species. Such cases may occasionally occur; when this option is enabled (default), these records are not attributed to any species.

In general, alpha values lower than 5 tend to produce small and fragmented hulls with low predictive power. Additionally, depending on the spatial configuration of occurrence data, low alpha values may result in no hull being generated. In such cases, *biodecrypt* automatically increases alpha to the minimum value for which a hull can be constructed. The final alpha values used are stored in the `alphased` vector.

Value

<code>type</code>	"sep" an argument to be passed to <code>biodecrypt.plot</code> .
<code>areas</code>	The areas of hulls for all the species (in km squares).
<code>intersections</code>	The areas of intersections among hulls for each pair of species.
<code>sympatry</code>	The fraction of the overlap area compared to the total area of the two hulls.
<code>NUR</code>	The percentage of Non-attributed Unidentified Records (NUR).
<code>table</code>	The result table with Longitude and Latitude for each occurrence datum, its id after the <i>biodecrypt</i> procedure (<code>id2</code> , the result of the procedure) and its initial id (<code>id</code>).
<code>hulls</code>	The hulls in sf format.
<code>hullspl</code>	The hulls in alphahull format.
<code>alphased</code>	The values of alpha used for each species (see details).

Author(s)

Leonardo Dapporto

References

Platania L. et al. Assigning occurrence data to cryptic taxa improves climatic niche assessments: biodecrypt, a new tool tested on European butterflies. Glocal Ecology and Biogeography (2020)

Examples

```

n1<-7
n2<-7
mat<-rbind(cbind(rnorm(n = n1, mean = 1, sd = 2),rnorm(n = n1, mean = 40, sd = 2)),
            cbind(rnorm(n = n2, mean = 7, sd = 2),rnorm(n = n2, mean = 45, sd = 2)))

id<-c(rep(1,n1),rep(2,n2))
id[sample(c(1:(n1+n2)))[1:round((n1+n2)/4,0)]]<-0

# Make the separation with custom parameters
attribution<-biodecrypt(mat,id, alpha=c(10,10))

#plot the results
plot(mat,type="n")
biodecrypt.plot(attribution)

#Group plots into pies
biodecrypt.plot(attribution, square=2, minsize=0.5)

# Make the separation with custom parameters
# With a lower fraction values the first hull (alpha equal to 1) can become more
# concave. Excluded dots works as a punctiform sub-hull in the attribution.
attribution<-biodecrypt(mat,id, alpha=c(1,5), buffer=20, ratio=2, minimum=5)

#plot the results
plot(mat,type="n")
biodecrypt.plot(attribution)

```

biodecrypt.cross

Perform a cross validation analysis to test the attribution of biodecrypt on attributed records

Description

The function biodecrypt.cross wraps the biodecrypt function to carry out cross-validation of known cases thus verifying the robustness of the attribution of unknown cases. This function requires the same input of biodecrypt (coordinates and vector with attribution together with values of distance ratio, buffer and alpha). Moreover this function requires a "runs" value defining the number of different runs, thus the fraction of test records included in each run. In each run, randomly selected group of test records (actually identified to a given species) are regarded as unidentified (0 value) and the biodecrypt function is carried out to attribute them. The analysis is repeated as often as

defined in runs (a runs value of 10 will perform a ten-fold cross-validation based on the initial selection of ten randomly distributed subsets).

Usage

```
biodecrypt.cross(mat, id, alpha=NULL, ratio=2.5, buffer=90, checkdist=T, minimum=7,
polygon=NULL, map=NULL, xlim=NULL, ylim=NULL, main=NULL, runs=10, test=T)
```

Arguments

mat	A matrix for longitude and latitude (in decimal degrees) for all records.
id	A vector indicating species membership of each record (in the same order of mat). Identified records are indicated with 1,2..n, unidentified records with 0.
alpha	A vector indicating an initial alpha value for each species. If NULL, the default value of 8 for all species is used.
ratio	The minimum ratio between the distance from the second distant hull compared to the closest hull to allow attribution. Default 2.5 times.
buffer	A distance buffer from hulls(in km).
polygon	A SpatialPolygonsDataFrame with area of interests (ground or sea). Typically obtained from Natural Earth (https://www.naturalearthdata.com/). If NULL no removal is applied
checkdist	Logical, if TRUE cases attributed to a given species based on relative distance from hulls but closer to an identified record of another species are not attributed.
minimum	The minimum number of specimens required to build alpha hulls. If the number of identified specimens is lower, convex hulls are calculated to improve procedure stability.
map	A map to be plotted during the procedure to show the separation progress.
xlim	Longitude boudaries for the map.
ylim	latitude boudaries for the map.
main	The name to be plotted on the graph
runs	The number of runs among which the cases are randomly assigned as non-attributed records
test	A logical, if TRUE, a biodecrypt analysis is also carried out to compute NUR.

Details

The procedure attributes the subsets of identified records to the test group (unknown cases) as evenly as possible among runs both in terms of total number of test records and records belonging to the same original species. If the number of runs equates the number of records, then each identified record is individually attributed in a jackknife procedure. Subsequently, the attribution vector obtained is provided and compared with the original membership and two values are provided: the percentages of identified cases attributed to a wrong species (Mis-Identified Records, MIR) and the percentage of known cases not attributed to any species (Non-attributed Identified Records, NIR). The function also has an option to calculate the percentage of Non-attributed Unidentified Records (NUR) representing the fraction of unknown records that could not be attributed to a species after a typical biodecrypt analysis using the parameters provided by the user and the complete set of records.

Value

type	"cross" an argument to be passed to biodecrypt.plot.
NUR	The percentage of Non-attributed Unidentified Records.
areas	The hull areas for all the species (in km squares).
intersections	The areas of intersections among hulls for each pair of species.
sympatry	The fraction of the overlap area compared to the total area of the two hulls.
table	The result table of the test (if test=TRUE) with Longitude and Latitude for each occurrence datum, its id after the biodecrypt procedure (id2) and its initial id (id).
cross	The result table with the original attribution (original), the attribution obtained after cross validation (predicted) and the classification as MIR or NIR. Longitude and Latitude are also provided.
MIR	The percentage of Mis-Identified Records.
NIR	The percentage of Non-Identified Records.

Author(s)

Leonardo Dapporto

References

Platania L. et al. Assigning occurrence data to cryptic taxa improves climatic niche assessments: biodecrypt, a new tool tested on European butterflies. Glocal Ecology and Biogeography (2020).

Examples

```
## Create an example for a dataset

mat<-rbind(cbind(rnorm(n = 20, mean = 1, sd = 4),rnorm(n = 20, mean = 40, sd = 3)),
            cbind(rnorm(n = 20, mean = 7, sd = 5),rnorm(n = 20, mean = 45, sd = 2)))

id<-c(rep(1,20),rep(2,20))
id[sample(c(1:40))[1:10]]<-0

cross<-biodecrypt.cross(mat,id)
plot(mat,type="n")
biodecrypt.plot(cross)
```

biodecrypt.optimise	<i>Comparing the values obtained by biodecrypt.wrap, it optimises the combination of alpha, buffer and ratio values to be used with biodecrypt function.</i>
---------------------	--

Description

The function `biodecrypt.optimise` analyses the output of `biodecrypt.wrap`. By default, a combination of $MIR^2+NIR+NUR$ is used as a penalty value for the different combinations of the parameters (providing a higher importance to MIR). The exponents can be changed by the user. Since the method showing the lowest penalty in cross-validation might not necessarily be the optimal value for the final analysis, all the combinations showing a penalty value not higher than a certain threshold compared with the analysis showing the lowest penalty should be considered as similarly good. We provided a value of 10 as a default, representing a variation of about 3 for each addendum of the penalty. The optimal parameters can then be calculated as mean values of distance ratio, alpha and buffer among those used in these cross-validation analyses, weighted by 1/penalty in order to provide an increasing contribution to the solutions showing the lowest penalty values.

Usage

```
biodecrypt.optimise(tab,coef=c(2,1,1), penalty=10)
```

Arguments

<code>tab</code>	A matrix obtained with <code>biodecrypt.wrap</code> .
<code>coef</code>	The three exponents to be applied to MIR , NIR and NUR , respectively, to calculate the penalties.
<code>penalty</code>	The penalty threshold for inclusion in the calculation.

Value

<code>ratio</code>	The optimized ratio value.
<code>buffer</code>	The optimized buffer value.
<code>alpha</code>	The optimized alpha value.
<code>MIR</code>	The weighted average MIR among selected combinations.
<code>NIR</code>	The weighted average NIR among selected combinations.
<code>NUR</code>	The weighted average NUR among selected combinations.

Author(s)

Leonardo Dapporto

References

Platania L. et al. Assigning occurrence data to cryptic taxa improves climatic niche assessments: `biodecrypt`, a new tool tested on European butterflies. *Glocal Ecology and Biogeography* (2020).

Examples

```
#See the example provided in biodecrypt.wrap
```

biodecrypt.plot	<i>Plotting biodecrypt and biodecrypt.cross results.</i>
-----------------	--

Description

The function plots the results of biodecrypt and biodecrypt.cross analyses. It provides plot with circles with different colours to identify different kinds of records. Records known a priori can be distinguished in the plot from records attributed by biodecrypt as likely belonging to a given species or as NUR (or MIR and NIR in biodecrypt.cross).

Usage

```
biodecrypt.plot(x,minsize=0.3,pchid=1,cexid=0.1,square=0.001,col=c("red","darkgreen",
"blue","purple"), attributed = NULL, hull=T, NUR="black", fading=50, ... )
```

Arguments

x	An object obtained by biodecrypt or biodecrypt.cross
minsize	The size of the dots to be plotted.
pchid	The pch of the points marking known cases in case when attributed="points".
cexid	The size of the points marking known cases in case when attributed="points".
square	The size of square grid to which occurrence are collapsed and organized in pies. If the value is lower than data resolution then records are not grouped in pies.
col	The colours to be attributed to species: 1...n.
attributed	The method to plot known records. Using attributed="fade" will make the attributed dots paler than known cases based on fading (see below). Using attributed="points" will plot a black dot to distinguish known cases.
hull	If TRUE the hulls are plotted.
NUR	The colour for NUR records after biodecrypt.
fading	The degree of fading for the colours of records attributed by biodecrypt if attributed="fading" (100 makes the points white).
...	other parameters of the default plot

Details

The function adds dots to a previous plot (usually a map). The records with a priori known attribution (1...n in id) are marked with a point inside the dots (attributed="points") or by fading the colour of the dots for the records that have been attributed by biodecrypt (attributed="fading"). In the results of biodecrypt.cross, MIR are represented as black dots and NIR as white dots. For biodecrypt black default colour for NUR can be changed.

Value

a plot

Author(s)

Leonardo Dapporto

References

Platania L. et al. Assigning occurrence data to cryptic taxa improves climatic niche assessments: biodecrypt, a new tool tested on European butterflies. *Glocal Ecology and Biogeography* (2020).

Examples

#See examples in biodecrypt and biodecrypt.cross

biodecrypt.view	<i>A function to view the hulls and manually adjust alpha values before applying biodecrypt</i>
-----------------	---

Description

biodecrypt.view is no longer supported. Please use biodecrypt followed by biodecrypt.plot to achieve the same result.

biodecrypt.wrap	<i>Wraps the biodecrypt.cross analysis to compare the performance of biodecrypt among different parameters.</i>
-----------------	---

Description

The function biodecrypt.wrap wraps the biodecrypt.cross analysis by using all possible combinations of a series of distance ratio, alpha and buffer values to compare their resulting MIR, NIR and NUR.

Usage

```
biodecrypt.wrap(mat,id,alpha=c(1,5,10,15),alphamat=NULL,ratio=c(2,3,4,5),
buffer=c(0,40,80,120,160), checkdist=T, polygon=NULL, minimum=7,
map=NULL,xlim=NULL,ylim=NULL,main=NULL,save=T,name="res_cross.txt",runs=10)
```

Arguments

mat	A matrix for longitude and latitude (in decimal degrees) for all records.
id	A vector indicating species membership of each record (in the same order of mat). Identified records are indicated with 1,2..n, unidentified records with 0.
alpha	A vector indicating the initial alpha values. It will be the same for all species
alphamat	A matrix indicating different alpha values for different species (optional).

ratio	The values of ratio.
buffer	The values of buffer.
checkdist	Logical, if TRUE cases attributed to a given species based on relative distance from hulls but closer to an identified record of another species are not attributed.
polygon	A SpatialPolygonsDataFrame with area of interests (ground or sea). Typically obtained from Natural Earth (https://www.naturalearthdata.com/). If NULL no removal is applied
minimum	The minimum number of specimens required to build alpha hulls. If the number of identified specimens is lower, convex hulls are calculated to improve procedure stability.
map	A map to be plotted during the procedure to show the separation progress.
xlim	Longitude boudaries for the map.
ylim	latitude boudaries for the map.
main	The name to be plotted on the graph
save	Logical, if TRUE a result table is saved after each biodecrypt.cross run
name	The name of the saved file
runs	The number of runs among which the cases are randomly assigned as non-attributed records

Details

The resulting table can be passed to biodecrypt.optimise to compute the best combination of alpha, buffer and ratio.

Value

table	The result table indicating for each cross validation test the MIR, NIR and NUR values together with the used ratio, buffer and alpha values.
-------	---

Author(s)

Leonardo Dapporto

References

Platania L. et al. Assigning occurrence data to cryptic taxa improves climatic niche assessments: biodecrypt, a new tool tested on European butterflies. *Glocal Ecology and Biogeography* (2020).

Examples

```
# Create an example for a dataset
mat<-rbind(cbind(rnorm(n = 20, mean = 1, sd = 4),
rnorm(n = 20, mean = 40, sd = 3)),
cbind(rnorm(n = 20, mean = 7, sd = 5),
rnorm(n = 20, mean = 45, sd = 2)))

id<-c(rep(1,20),rep(2,20))
```

```

id[sample(c(1:40))[1:10]]<-0

## Not run: wrap_data_fast<-biodecrypt.wrap(mat,id, alpha=c(1,4), ratio=2,
buffer=20, runs=2)
## End(Not run)
## Not run: parameters<-biodecrypt.optimise(wrap_data_fast$table,penalty=10)

#Make the example with default 10 runs and more values
## Not run: wrap_data<-biodecrypt.wrap(mat,id, alpha=c(1,4), ratio=c(2,4),
buffer=c(20,50))
## End(Not run)
## Not run: parameters<-biodecrypt.optimise(wrap_data$table)

#inspect the optimised parameters
## Not run: parameters

#Use different alpha for the two species
#alpha for first

## Not run: alpha1<-c(1,3)

#alpha for second
## Not run: alpha2<-c(1,5)

## Not run: alphamat<-cbind(alpha1,alpha2)

## Not run: wrap_data<-biodecrypt.wrap(mat,id, alphamat=alphamat,
ratio=c(2,4), buffer=c(20,50))
## End(Not run)

## Not run: parameters<-biodecrypt.optimise(wrap_data$table, penalty=20)

#inspect the optimised parameters

## Not run: parameters

```

dataisl

*West Mediterranean island butterflies provided with the package
recluster*

Description

This dataset represents occurrence data of butterfly species in 30 West-Mediterranean islands

Usage

```
data(dataisl)
```

Details

A data frame with 30 observations (islands) on 123 binary variables (species).

Author(s)

Leonardo Dapporto and Roger Vila

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

datamod

Virtual island faunas provided with the package recluster

Description

This dataset represents a series of virtual faunas in different sites

Usage

```
data(datamod)
```

Details

A data frame with 9 observations (sites) on 31 binary variables (species).

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

multiboot

A multiboot result obtained with the dataisl dataset.

Description

This dataset represents an output for a multiscale bootstrap composed of 30 scales (x1-x30).

Usage

```
data(dataisl)
```

Details

A data frame with 29 nodes (rows) and 30 different scales of bootstrap(columns). NAs values represent collapsed nodes

Author(s)

Leonardo Dapporto

Source

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

recluster

Ordination methods for biodiversity patterns.

Description

The analysis of different aspects of biodiversity requires specific algorithms. For example, in regionalisation analyses, the high frequency of ties and zero values in dissimilarity matrices produced by Beta-diversity turnover produces hierarchical cluster dendrograms whose topology and bootstrap supports are affected by the order of rows in the original matrix. Moreover, visualisation of biogeographical regionalisation can be facilitated by a combination of hierarchical clustering and multi-dimensional scaling. The recluster package provides robust techniques to visualise and analyse pattern of biodiversity and to improve occurrence data for cryptic taxa.

Details

Package:	recluster
Type:	Package
Version:	3.0
Date:	2020-05-09
License:	GPL (>= 2.0)

Author(s)

Leonardo Dapporto, Matteo Ramazzotti, Simone Fattorini, Roger Vila, Gerard Talavera, Roger H.L. Dennis Maintainer: Leonardo Dapporto <leondap@gmail.com>

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

Dapporto, L., Fattorini, S., Voda, R., Dinca, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." *J Biogeogr* (2014), 41: 1639-1650.

Dapporto L., Voda R., Dinca V., Vila R. "Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly *Maniola jurtina*" Methods Ecol Evol (2014), 5, 834-843.

Platania L., Menchetti M. Dinca V., Corbella C., Kay-Lavelle I., Vila R., Wiemers M., Schweiger O., Dapporto L. "Assigning occurrence data to cryptic taxa improves climatic niche assessments: biodecrypt, a new tool tested on European butterflies". Glocal Ecology and Biogeography (2020).

<https://github.com/leondap/recluster>

Examples

```
#load model data provided with the package
## Not run:
data(datamod)

#explore zero and tied values in the data set
simpdiss<- recluster.dist(datamod)
recluster.hist(simpdiss)

#create and view unbiased consensus tree (100
constree_full<-recluster.cons(datamod, tr=10, p=1)
plot(constree_full$cons,direction="downwards")

#compute and view node strength
recluster.node.strength(datamod, tr=10)

#create and view unbiased consensus tree (50
constree_half<-recluster.cons(datamod, tr=10, p=0.5)
plot(constree_half$cons, direction="downwards")

#the latter is the correct tree
tree<-constree_half$cons

#perform and view bootstrap on nodes
boot<-recluster.boot(tree, datamod, tr=10, p=0.5, boot=50)
recluster.plot(tree,boot)

#perform and view multiscale bootstrap on nodes
multiboot<- recluster.multi(tree, datamod, tr=10, boot=50, levels=2, step=1)
recluster.plot(tree,multiboot,low=1,high=2, direction="downwards")

#project and plot a bi-dimensional plot in the RGB colour space
sordiss<- recluster.dist(datamod,dist="sorensen")
points<-cmdscale(sordiss)
col<-recluster.col(points)
recluster.plot.col(col)

#inspect explained diversity for different cuts of a tree
tree<-recluster.cons(datamod, dist="sorensen",tr=10, p=0.5)
expl_div<-recluster.expl.diss(tree$cons,sordiss)
expl_div

#Select cut #4 and group data in RGB space
```

```

ncol<-recluster.group.col(col,expl_div$matrix[,4])

#Plot mean values for clusters
recluster.plot.col(ncol$aggr)

#Plot mean colours for sites in the geographic space
lat<-c(2,2,2,1,3,1,1,3,3)
long<-c(1,5,3,3,3,1,5,1,5)
recluster.plot.sites.col(long, lat, ncol$all, text=TRUE)

#Use recluster.region procedure on island butterflies
data(dataisl)
simpson<-recluster.dist(dataisl)
turn_cl<-recluster.region(simpson, tr=10, rettree=TRUE)
turn_cl

#Select solution with three cluster and plot the tree.
plot(turn_cl$tree[[2]])
turn_cl$grouping

#Perform a procrustes with uneven sample size
#Create and plot a target matrix
ex1 <-rbind(c(1,5),c(5,5),c(3,4),c(3,6))
plot(ex1,col=c(1:4),pch=19,xlim=c(0,6),ylim=c(0,6),cex=2)
#Create and plot a matrix to be rotated. Only the points 1-4 are shared
ex2<-rbind(c(3,1),c(3,3),c(2.5,2),c(3.5,2),c(3,4))
plot(ex2,col=c(1:5),pch=19,xlim=c(0,6),ylim=c(0,6),cex=2)

#Perform the procrustes on points 1-4
#Apply the transformation to point 5 of ex2 and plot the matrices
procr1<-recluster.procrustes(ex1,ex2,num=4)
plot(procr1$X,col=c(1:4),pch=19,xlim=c(-4,4),ylim=c(-4,4),cex=2)
plot(procr1$Yrot,col=c(1:5),pch=19,xlim=c(-4,4),ylim=c(-4,4),cex=2)

# Create an example for biodecrypt
mat<-rbind(cbind(rnorm(n = 20, mean = 1, sd = 4),rnorm(n = 20, mean = 40, sd = 3)),
cbind(rnorm(n = 20, mean = 7, sd = 5),rnorm(n = 20, mean = 45, sd = 2)))

id<-c(rep(1,20),rep(2,20))
id[sample(c(1:40))[1:10]]<-0

# Perform biodecrypt with default parameters
# alpha gets high to include 95
attribution<-biodecrypt(mat,id, clipToCoast="no")
#plot the results
plot(mat,type="n")
biodecrypt.plot(attribution)

## End(Not run)

```

Description

Given an initial tree and a data matrix, this function computes bootstrap for nodes. Each tree used for bootstrap is constructed by re-sampling the row order several times and by applying a consensus rule as done by recluster.cons. The number of sampled columns (species) can be varied.

Usage

```
recluster.boot(tree, mat, phylo = NULL, tr = 100, p = 0.5,
  dist = "simpson", method = "average", boot = 1000, level = 1)
```

Arguments

tree	A reference phylo tree for sites presumably constructed with recluster.cons function.
mat	The matrix used to construct the tree.
phylo	An ultrametric and rooted tree for species phylogeny having the same labels of the mat columns. Only required for phylogenetic beta-diversity indices.
tr	The number of trees to be included in the consensus.
p	A numeric value between 0.5 and 1 giving the proportion for a clade to be represented in the consensus tree.
dist	A beta-diversity index (the Simpson index by default) included in recluster.dist or any custom binary dissimilarity to be specified according to the syntax of designdist function of the vegan package.
method	Any clustering method allowed by hclust.
boot	The number of trees used for bootstrap computation.
level	The ratio between the number of species to be included in the analysis and the original number of species in the mat matrix.

Details

Computation can be time consuming due to the high number of trees required for analysis. It is suggested to assess the degree of row bias by recluster.hist and recluster.node.strength to optimize the number of required consensus trees before starting the analysis.

Value

A vector indicating the percentage of bootstrap trees replicating each original node.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

Examples

```
data(datamod)
tree<-recluster.cons(datamod,tr=10)
boot<-recluster.boot(tree$cons,tr=5,boot=50,datamod)
recluster.plot(tree$cons,boot,direction="downwards")
```

recluster.col

Projecting a two dimensional plot in RGB space

Description

This function projects a two dimensional matrix into a RGB space with red, green, yellow and blue at its four corners. RGB combination for each case corresponding to its position in this space is provided together with new coordinates.

Usage

```
recluster.col(mat,st=TRUE,rot=TRUE)
```

Arguments

mat	A matrix containing two dimensional coordinates for cases.
st	Logical, if TRUE then values in axes are standardized between 0 and 1, if FALSE then original values are maintained.
rot	Logical, if TRUE then the axis with highest variance is oriented on the x-axis.

Value

A matrix with the first two columns representing the coordinates and the third, fourth and fifth representing the red, green and blue components, respectively.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Kreft H., Jetz, W. "A framework for delineating biogeographic regions based on species distributions" *J Biogeogr* (2010),37: 2029-2053.

Dapporto, L., Fattorini, S., Voda, R., Dinca, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." *J Biogeogr* (2014), 41: 1639-1650.

Examples

```
data(datamod)
sordiss<- recluster.dist(datamod,dist="sorensen")
points<-cmdscale(sordiss)
col<-recluster.col(points)
col
```

recluster.cons

Consensus tree from row-order permutations of a dissimilarity matrix

Description

This function builds a set of hierarchical clustering trees by repeatedly permuting the row order of the input dissimilarity matrix (or of the community matrix used to compute it). A majority-rule consensus tree is then computed from these trees. The aim is to obtain a topology that is robust to artefacts caused by ties and zero values, and therefore insensitive to the original row order.

Usage

```
recluster.cons(mat, phylo = NULL, tr = 100, p = 0.5,
dist = "simpson", method = "average",
blenghts = TRUE, select = FALSE)
```

Arguments

mat	A community-by-site matrix (rows = sites/areas, columns = species) or a dist object. Row names are required.
phylo	An ultrametric rooted phylogeny with tip labels matching <code>colnames(mat)</code> . Only required to compute phylogenetic beta-diversity in recluster.dist .
tr	Number of permutations/trees used to compute the consensus.
p	A numeric value between 0.5 and 1 giving the minimum proportion of trees in which a clade must occur to be represented in the consensus tree (as in consensus).
dist	A beta-diversity index supported by recluster.dist (default: Simpson turnover) or a custom binary dissimilarity specified using designdist syntax. Ignored when <code>mat</code> is a <code>dist</code> object.
method	Any clustering method allowed by hclust (e.g. "average", "complete", "ward.D2").
blenghts	Logical. If TRUE, branch lengths are estimated by non-negative least squares using nnls.tree (and the consensus is first assigned Grafen branch lengths).
select	Logical. If TRUE, residual sum of squares (RSS) from nnls.tree is computed for each permuted tree and only trees with RSS below the median are retained for the consensus.

Details

If `mat` is not a `dist` object, dissimilarities are computed by `recluster.dist` (optionally using `phylo` for phylogenetic indices). For each permutation, a hierarchical clustering is computed from the permuted dissimilarity matrix and converted to a `phylo` object with `as.phylo`.

When `select = TRUE`, trees are optionally filtered based on their least-squares fit to the distance matrix (via `nnls.tree`), which may reduce polytomies in the consensus by discarding poorly fitting topologies.

Value

A list with components:

`cons` The consensus tree (an object of class `phylo`; forced to be fully dichotomous via `multi2di`).

`trees` The list of permuted trees used to compute the consensus.

`RSS` If `select = TRUE`, a list (or vector) of RSS values for each tree; otherwise `NULL`.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. (2013). `recluster`: an unbiased clustering procedure for beta-diversity turnover. *Ecography*, 36, 1070–1075.

Examples

```
data(datamod, treemod)

tree <- recluster.cons(datamod, tr = 10)
plot(tree$cons, direction = "downwards")

# Calculate any dissimilarity matrix with another package
#An example with betapart

data(dataisl)
if (requireNamespace("betapart", quietly = TRUE)) {

  dsim <- betapart::beta.pair(dataisl)$beta.sim
  tree <- recluster.cons(dsim, tr = 10, method = "average")
  plot(tree$cons, direction = "downwards")

}
```

recluster.dist	<i>Compute a dissimilarity matrix using a battery of beta-diversity indices</i>
----------------	---

Description

This function computes dissimilarity matrices based on the two most popular partitions of faunistic and phylogenetic beta-diversity. In particular Jaccard = beta3 + richness (Carvalho et al. 2012), Jaccard = Jturnover + Jnestedness (Baselga, 2012) and Sorensen = Simpson + nestedness (Baselga 2010) for faunistic indexes and Unifrac = Unifrac_turn + Unifrac_PD and PhyloSor = PhyloSor_turn + Phylosor_PD (Leprieur et al. 2012). Any other binary index can be included in brackets by using the syntax of designdist function of the vegan package.

Usage

```
recluster.dist(mat, phylo=NULL, dist="simpson")
```

Arguments

mat	A matrix containing sites (rows) and species (columns).
phylo	An ultrametric and rooted phylogenetic tree for species having the same labels as in mat columns. Only required for phylogenetic beta-diversity indexes.
dist	One among the 14 beta-diversity indexes "simpson" "sorensen" "nestedness" "beta3" "richness" "jaccard" "jturnover" "jnestedness" "phylosor" "phylosort" "phylosorpd" "unifrac" "unifract" "unifracpd". Any custom binary dissimilarity can also be specified according to the syntax of designdist function of the vegan package.

Details

Syntax for binary indices in vegdist: J, number of common species; A and B, number of species exclusive of the first and of the second site.

Value

An object of class dist (see vegan:designdist for further details)

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Baselga A. "Partitioning the turnover and nestedness components of beta diversity." Global Ecol Biogeogr (2010), 19: 134-143.

Carvalho J. C., Cardoso P., Gomes P. "Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns." *Global Ecol Biogeogr* (2012), 21: 760-771.

Leprieur F., Albouy C., De Bortoli J., Cowman P.F., Bellwood D.R., Mouillot D. "Quantifying Phylogenetic Beta Diversity: Distinguishing between 'True' Turnover of Lineages and Phylogenetic Diversity Gradients." *Plos One* (2012), 7

reclusterexpl	<i>Computes the dissimilarity contained in a distance matrix which is explained by a clustering solution.</i>
---------------	---

Description

This function computes the fraction of the distances contained in a dissimilarity matrix which is explained by a clustering solution of the elements. The value is obtained by computing the sum of all the dissimilarity values among elements belonging to different clusters and divided by the sum of all the cells of the original dissimilarity matrix.

Usage

```
reclusterexpl(dist, clust)
```

Arguments

dist	A dissimilarity matrix
clust	A clustering solution for the cases contained in the dissimilarity matrix.

Value

A number ranging between 0 and 1 indicating the fraction of explained dissimilarity.

Author(s)

Leonardo Dapporto

References

Holt, B.G. et al "An Update of Wallace's Zoogeographic Regions of the World." *Science*, 339:74-78.

Examples

```
data(datamod)
sor_tree<- recluster.cons(datamod, dist="sorensen")
sor_diss <- recluster.dist (datamod, dist="sorensen")
expl_diss <- recluster.expl.diss (sor_tree$cons,sor_diss)
expl_diss
```

recluster.expl.diss	<i>Cuts a phylogenetic tree and provides cluster membership of areas for custom of all possible clustering solutions and their explained dissimilarity.</i>
---------------------	---

Description

This function cuts a phylogenetic tree at all its nodes, and provides membership for each element in the series of resulting clusters and computes the fraction of dissimilarity explained by each solution.

Usage

```
recluster.expl.diss(tree, dist, maxcl=NULL, mincl=NULL, maxnode=NULL, expld=TRUE)
```

Arguments

tree	A phylo tree
dist	A dissimilarity matrix.
maxcl	A custom number indicating the solution with the minimum number of clusters. If NULL the minimum number of clusters is returned.
mincl	A custom number indicated the solution with the maximum number of clusters. If NULL the maximum number of clusters is returned
maxnode	A custom number indicated the most external node for the cut. If NULL all the nodes will be cut
expld	A logical. If TRUE then the matrix for explained dissimilarity is computed.

Details

When polytomic nodes are involved in a cut the number of clusters at that cut could increase more than one unit. It is also possible that at the first cut more than two cluster are identified, it is thus possible to obtain a first solution showing a higher number of clusters than the minimum number included in mincl. Holt et al. (2013) identified levels of explained dissimilarity to be used as a reliable threshold to assess a tree cut. When cases are highly numerous maxnode can be set in order to avoid a very long computation keeping in mind that a cut at node 6 can produce solutions with >6 clusters

Value

matrix	A matrix indicating cluster membership of each site in each cut of the tree.
expld	A vector indicating the explained dissimilarity for each cut.
nclust	A vector indicating the number of clusters resulting from each cut.

Author(s)

Leonardo Dapporto

References

Dapporto L., Ciolfi G., Dennis R.L.H., Fox R., Shreeve, T.G. "A new procedure for extrapolating turnover regionalization at mid?small spatial scales, tested on British butterflies." Methods in Ecology and Evolution (2015), 6:1287-1297.

Examples

```
data(datamod)
sor_tree<- recluster.cons(datamod, dist="sorensen")
sor_diss <- recluster.dist (datamod, dist="sorensen")
expl_diss <- recluster.expl.diss (sor_tree$cons,sor_diss)
expl_diss
```

recluster.fst	<i>Compute some indexes of genetic differentiation</i>
---------------	--

Description

This function computes some indexes of genetic differentiation based on a distance matrix and on a vector for populations.

Usage

```
recluster.fst(dist, vect, setzero=F, setnazero=F)
```

Arguments

dist	A distance matrix.
vect	A vector indicating population membership. Cases must be in the same order of the distance matrix.
setzero	A logical indicating if negative values should be set to zero
setnazero	A logical indicating if NA values should be set to zero

Details

There has been a large debate around FST like indexes. Two main indexes are calculated by this function: the absolute differentiation (Dst) and the standardized differentiation (Gst) (Nei, 1987). Dst is calculated as: $Dst = Ht - Hs$ where Ht represents the average distances among all the specimens in the sample, and Hs is the average of the intra-area (or intra-sub-area) distances. Thus, Dst represents the average genetic differentiation among areas in p-distance units. Gst is a standardized index defined as: $Gst = Dst/Ht$ representing the fraction of the total genetic differentiation encompassed by the differentiation among areas (Nei, 1987). This index ranges from negative values to 1 (complete differentiation). Negative values in Gst and Dst (intra-area differentiation higher than inter-area differentiation) can have different subtle meanings, but are most often generated as bias due to relatively small sample sizes; usually they are set to zero (Meirmans & Hedrick, 2011) and we applied this solution. In the species showing no mutations in the sample, Gst returns a NA

value (while Dst equals to zero). These cases can be also set to zero. The use of Dst and Gst has been debated as a measure of population diversification for extremely variable markers (as micro-satellites) as it tends to underestimate differentiation among populations and to strongly depend on intra-population variability (Jost, 2008; Whitlock, 2011). D and G-st indices are less affected by high values of Hs

Value

Ht	The average distances among all the specimens in the sample.
lengthHt	The number of distances among all the specimens in the sample.
Hs	The average distances among the specimens of the same populations.
lengthHs	The number of distances among the specimens of the same populations.
Dst	The Dst value.
Gst	The Gst value.
D	The D value.
G1st	The G'st value.

Author(s)

Leonardo Dapporto

References

Jost L. "GST and its relatives do not measure differentiation." Mol Ecol (2008), 17:4015-4026.

Meirmans P. G., Hedrick P. W. "Assessing population structure: FST and related measures: Invited Technical Review." Mol Ecol Res (2011), 11: 5-18.

Nei M. Molecular evolutionary genetics (1987), Columbia University Press.

Whitlock M.C. "G'ST and D do not replace FST." Mol Ecol (2011), 20: 1083-1091.

Examples

```
datavirtual<-data.frame(replicate(10,sample(0:1,30,rep=TRUE)))
dist<-recluster.dist(datavirtual)
population<-c(rep(1,20),rep(2,20),rep(3,20))
recluster.fst(dist,population)
```

recluster.fst.pair *Compute pairwise indexes of genetic differentiation among populations*

Description

This function computes pairwise indexes of genetic differentiation among populations based on a distance matrix and on a vector for populations.

Usage

```
recluster.fst.pair(dist, vect, setzero=F, setnzero=F)
```

Arguments

<code>dist</code>	A distance matrix.
<code>vect</code>	A vector indicating population membership. Cases must be in the same order of the distance matrix.
<code>setzero</code>	A logical indicating if negative values should be set to zero
<code>setnzero</code>	A logical indicating if NA values should be set to zero

Details

The formulas used for pairwise calculations between i and j populations are $D_{stij} = H_{tij} - H_{sij}$
 $G_{stij} = D_{stij}/H_t$ $D_{tij} = (D_{stij}/(1-H_{sij}))^2$ $G'_{stij} = G_{stij}/((1-H_{sij})/(1+H_{sij}))$ see also `recluster.fst` for a discussion of indexes

Value

<code>Dstm</code>	The D_{st} distance matrix.
<code>Gstm</code>	The G_{st} distance matrix.
<code>Dm</code>	The D distance matrix.
<code>G1stm</code>	The G'_{st} distance matrix.

Author(s)

Leonardo Dapporto

References

Jost L. "GST and its relatives do not measure differentiation." *Mol Ecol* (2008), 17:4015-4026.

Meirmans P. G., Hedrick P. W. "Assessing population structure: FST and related measures: Invited Technical Review." *Mol Ecol Res* (2011), 11: 5-18.

Nei M. *Molecular evolutionary genetics* (1987), Columbia University Press.

Whitlock M.C. "G'ST and D do not replace FST." *Mol Ecol* (2011), 20: 1083-1091.

Examples

```
datavirtual<-data.frame(replicate(20,sample(0:1,60,rep=TRUE)))
dist<-recluster.dist(datavirtual)
population<-c(rep(1,20),rep(2,20),rep(3,20))
recluster.fst.pair(dist,population)
```

recluster.group.col *Computes mean coordinate values and RGB colours.*

Description

This function computes barycenters and their RGB colours for cases belonging to the same group from an original RGB colour matrix obtained by recluster.col.

Usage

```
recluster.group.col(mat, member)
```

Arguments

mat	An inherited matrix from recluster.col containing the original RGB colour space.
member	A vector indicating group membership for each case.

Value

aggr	A matrix in the recluster.col format with mean values for coordinates and RGB colours for groups.
all	A matrix in the recluster.col format reporting mean RGB colours of the group of each original case.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Kreft H., Jetz, W. "A framework for delineating biogeographic regions based on species distributions" J Biogeogr (2010),37: 2029-2053.
 Dapporto, L., Fattorini, S., Voda, R., Dinca, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." J Biogeogr (2014), 41: 1639-1650.

Examples

```
data(datamod)
sordiss<- recluster.dist(datamod,dist="sorensen")
points<-cmdscale(sordiss)
col<-recluster.col(points)
group<-c(1,2,3,3,3,1,2,1,2)
ncol<-recluster.group.col(col,group)
recluster.plot.col(ncol$aggr)
```

recluster.hist*Histogram of dissimilarity with tied and zero values*

Description

This function creates a histogram with the values of a dissimilarity matrix where the number of cells with zero value are explicitly showed in the first bar. Moreover, it provides the percentage of cells having equal values in the matrix.

Usage

```
recluster.hist(x)
```

Arguments

x	A dissimilarity matrix.
---	-------------------------

Value

An histogram with supplementary information. The first bar only shows the zero values.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" Ecography (2013), 36:1070-1075.

Examples

```
data(datamod)
simpdiss<- recluster.dist(datamod)
recluster.hist(simpdiss)
```

recluster.identify.nodes*Evaluating solutions in multiscale bootstrap*

Description

This function helps to understand different behaviours of node supports in multiscale bootstrap by i) plotting trends of support values in different bootstrap scales, ii) identifying the bootstrap scale with highest diversification between two groups of nodes and iii) identifying nodes into two classes according to the best bootstrap level identified in (ii) and plotting their mean support values.

Usage

```
recluster.identify.nodes(mat, low=TRUE)
```

Arguments

mat	A matrix containing nodes (rows) and bootstrap levels (columns) as obtained by recluster.multi.
low	A logical value indicating if lower scales should be favoured in the selection.

Details

This function recognizes nodes showing different trends of support in multiscale bootstrap. In the analysis of turnover in biogeography some nodes may show a substantial increase in support in a multiscale bootstrap. Areas connected by these nodes may host a few species responsible for turnover, but the biogeographic pattern with respect is clear. Other nodes may show a slow (or no) increase in support. In this case, the links among areas can be considered as uncertain. Partitioning Around Medoids is used to identify two classes of nodes at each level, then the bootstrap scale showing the best diversification in two classes is identified by silhouette scores weighted by differences in mean values between classes. If "low" is set to TRUE the function favours low scales.

Value

A plot with bootstrap supports and their means (diamonds) for the best combination of two groups of nodes (black and red).

scale	The best bootstrap scale to identify two groups of nodes.
nodes	A vector containing classification for nodes in the best bootstrap scale.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" Ecography (2013), 36:1070-1075.

Examples

```
data(multiboot)
recluster.identify.nodes(multiboot)
```

recluster.line	<i>Identifies a line in a configuration and computes its intercept and angular coefficient</i>
----------------	--

Description

This function identifies a line in a configuration based on different criteria and produces its slope and intercept values. It can be used together with recluster.rotate to rotate a configuration based on a custom line.

Usage

```
recluster.line(mat, type="maxd", X1=NULL, X2=NULL)
```

Arguments

mat	The bidimensional configuration.
type	The type of line to be computed: "maxd" is the line connecting the most distant points, "regression" is the regression line between X and Y values, "points" is the line connecting two custom points of the configuration (X1 and X2).
X1	The row number in mat of the first custom point.
X2	The row number in mat of the second custom point.

Value

m	The slope of the line.
q	The intercept of the line.

Author(s)

Leonardo Dapporto

References

Dapporto L., Voda R., Dinca V., Vila R. "Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly *Maniola jurtina*" Methods Ecol Evol (2014), 5, 834-843.

Examples

```
data(dataisl)
#Compute bidimensional representation for islands
pcoa<-cmdscale(recluster.dist(dataisl))
#Compute the line
lin<-recluster.line(pcoa)
```

recluster.multi*Multiscale bootstrap based on a consensus tree*

Description

Given an initial tree and a data matrix, this function computes bootstrap for nodes as done by recluster.boot. Different levels of bootstrap can be computed by varying the proportions of species sampled from the original matrix.

Usage

```
recluster.multi(tree, mat, phylo = NULL, tr = 100, p = 0.5,
dist = "simpson", method = "average", boot = 1000, levels = 2, step = 1)
```

Arguments

tree	A reference phylo tree for sites presumably constructed with recluster.cons function.
mat	The matrix used to construct the tree.
phylo	An ultrametric and rooted phylo tree for species having the same labels as in mat columns. Only required for phylogenetic beta-diversity indexes.
tr	The number of trees to be included in the consensus.
p	A numeric value between 0.5 and 1 giving the proportion for a clade to be represented in the consensus tree.
dist	One among the twelve beta-diversity indexes "simpson" "sorensen" "nestedness" "beta3" "richness" "jaccard" "phylosor" "phylosort" "phylosorpd" "unifrac" "unifract" "unifractpd". Any custom binary dissimilarity can also be specified according to the syntax of designdist function of the vegan package.
method	Any clustering method allowed by hclust.
boot	The number of trees used for bootstrap computation.
levels	The number of levels to be used in multiscale bootstrap.
step	The increase in ratio between the first level (x1) and the next ones.

Details

Computation can be time consuming. It is suggested to assess the degree of row bias by recluster.hist and recluster.node.strength to optimize the number of consensus trees before starting the analysis.

Value

A matrix indicating the percentage of bootstrap trees replicating each node for each level.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

Examples

```
data(datamod)
tree<-recluster.cons(datamod,tr=10)
multiboot<-recluster.multi(tree$cons,tr=10,boot=50,datamod,levels=2,step=1)
recluster.plot(tree$cons,multiboot,1,2,direction="downwards")
```

recluster.node.strength

Evaluating order row bias in a cluster

Description

This function helps to understand the magnitude of row bias by computing a first tree with the original order of areas. Then it creates a default series of six trees by recluster.cons with increasing consensus rule from 50

Usage

```
recluster.node.strength(mat, phylo = NULL, dist = "simpson",
nodelab.cex=0.8, tr = 100, levels=6, method = "average", ...)
```

Arguments

mat	A matrix containing sites (rows) and species (columns).
phylo	An ultrametric and rooted phylogenetic tree for species having the same labels as in mat columns. Only required for phylogenetic beta-diversity indexes.
tr	The number of trees to be used for the consensus.
dist	A beta-diversity index (the Simpson index by default) included in recluster.dist or any custom binary dissimilarity to be specified according to the syntax of designdist function of the vegan package.
nodelab.cex	the cex() parameter for controlling the size of the labels on the nodes (see ?nodelabels).
levels	The number of levels of different consensus threshold to be used.
method	Any clustering method allowed by hclust.
...	Arguments to be passed to plot.phylo methods, see the ape package manual and ?plot.phylo.

Details

It has to be noted that values obtained by this function are not bootstrap supports for nodes but a crude indication of the magnitude of the row bias. Nodes with low value in this analysis can have strong bootstrap support and vice versa. This preliminary analysis can avoid that the use of a strict consensus (100

Value

A cluster with percentages of recurrence over different consensus runs for each node.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" Ecography (2013), 36:1070-1075.

Examples

```
data(datamod)
recluster.node.strength(datamod, tr=10)
```

recluster.plot *A plotter for recluster bootstrapped objects*

Description

This function produces plots for recluster trees and assignes single or pairs of support values belonging to single or multiscale analyses.

Usage

```
recluster.plot(tree, data, low = 1, high = 0, id=NULL,
nodelab.cex=0.8, direction="downwards",...)
```

Arguments

tree	A phylo tree presumably constructed with recluster.cons function.
data	A matrix belonging to recluster.multi.
id	A vector used to mark node supports (low and high) with different colours. Such classificarion is presumably made by recluster.identify.nodes.
low	The low scale level for which bootstrap values should be indicated in the tree.
high	The high scale level for which bootstrap values should be indicated in the tree.

nodelab.cex	the cex() parameter for controlling the size of the labels on the nodes (see ?nodelabels).
direction	the direction parameter for controlling the orientation of the plot, see the ape package manual and ?plot.phylo. This parameters also controls the display of the labels on nodes.
...	Arguments to be passed to plot.phylo methods, see the ape package manual and ?plot.phylo.

Details

This function allows to print on a tree, one or two labels for bootstrap values and optimize their layout. This is done with the nodelabels ape function, by specifying the adj parameters in the appropriate way.

Value

A plot representing the tree with pairs of bootstrap values, below (usually x1 BP above) and high, above.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" Ecography (2013), 36:1070-1075.

Examples

```
data(datamod)
tree<-recluster.cons(datamod, tr=10)
boot<-recluster.boot(tree$cons,datamod, tr=10, boot=50)
recluster.plot(tree$cons,boot,direction="downwards")
```

recluster.plot.col *Plotting data in RGB space*

Description

This function plots a matrix obtained by recluster.col in the RGB space.

Usage

```
recluster.plot.col(mat,cext=0.3,cex=1,cex.axis=0.7,cex.lab=0.8,pch=16,text=TRUE,
add=F,xlim=NULL,ylim=NULL,ylab="Axis 2",xlab="Axis 1",...)
```

Arguments

mat	A matrix inherited by recluster.col.
cext	Dimension for labels of row names.
cex	Dimension of dots.
cex.axis	Dimension of axis labels.
cex.lab	Dimension of labels.
text	A logical indicating if row names should be plotted.
pch	The shape of the dots (See par()).
add	A logical indicating if the plot should be added to a precedent graph.
xlim	The limit values for x-axis, if NULL the values in the original matrix is used.
ylim	The limit values for y-axis, if NULL the values in the original matrix is used.
ylab	The label of the y-axis
xlab	The label of the x-axis
...	See par() for other graphical parameters

Value

A colour plot.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Kreft H., Jetz, W. 2010. "A framework for delineating biogeographic regions based on species distributions" *J Biogeogr* (2010),37: 2029-2053.

Dapporto, L., Fattorini, S., Voda, R., Dinca, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." *J Biogeogr* (2014), 41: 1639-1650.

Examples

```
data(datamod)
sordiss<- recluster.dist(datamod,dist="sorensen")
points<-cmdscale(sordiss)
col<-recluster.col(points)
recluster.plot.col(col)
```

`recluster.plot.matrix` *Plot the values of the cells of a matrix in grey scale*

Description

This function plots the values of the cells of a matrix in grey scale.

Usage

```
recluster.plot.matrix(mat)
```

Arguments

`mat` A dissimilarity matrix.

Value

A plot of cell values.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto, L., Fattorini, S., Voda, R., Dinca, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." *J Biogeogr* (2014), 41: 1639-1650.

Examples

```
data(datamod)
simpdiss<- recluster.dist(datamod)
recluster.plot.matrix(simpdiss)
```

`recluster.plot.pie` *Plotting pies with RGB colours on a custom coordinate space*

Description

This function groups cases based on a space grid in a user defined set of coordinates (usually longitude and latitude) and plot them in pies using RGB colours. The function can either use an output from `recluster.col` function or compute colours based on any distance matrix where the cases are in the same order as in the latitude and longitude data.

Usage

```
recluster.plot.pie(long, lat, mat=NULL, distance=NULL, loc=NULL, areas=NULL, square=2,
                  map=NULL, add=FALSE, minsize=NULL, proportional=T, xlim=NULL, ylim=NULL,
                  main=NULL, xlab=NULL, ylab=NULL, ...)
```

Arguments

long	A vector indicating longitude for cases.
lat	A vector indicating latitude for cases.
mat	A matrix inherited by recluster.col.
distance	A dissimilarity matrix for cases.
loc	A list of localities to group cases, if available.
square	The grid to be used to divide cases into groups (2 degrees latitude and longitude by default).
areas	An additional vector to divide groups (e.g. islands versus continents).
map	A map to be plotted.
add	A logical. If TRUE then the points are added to an existing graph.
minsize	Dimension for the dimension of a single-case pie.
proportional	A logical. If TRUE then the point area is proportional to the number of cases.
xlim	Limits of the plot in the x-axis.
ylim	Limits of the plot in the y-axis.
main	The title of the graph.
xlab	The label of x-axis
ylab	The label of y-axis
...	See par() for other graphical parameters

Value

A colour plot.

Author(s)

Leonardo Dapporto

References

Hernandez Roldan J.L., Dapporto L., Dinca V, Vicente J.C., Hornett E.A., Sichova J., Lukhtanov V.L., Talavera G. & Vila, R. Integrative analyses unveil speciation linked to host plant shift in *Spialia* butterflies. *Molecular Ecology* (2016) 25: 4267-4284.

Examples

```

# create a virtual dataset and a corresponding distance matrix
lat<-runif(50,min=20,max=40)
long<-runif(50,min=20,max=40)
datavirtual<-data.frame(replicate(20,sample(0:1,50,rep=TRUE)))
dist<-recluster.dist(datavirtual)

# Make a plot using a custom distance
recluster.plot.pie(long,lat,distance=dist,xlab="Longitude",ylab="Latitude")

# Make a plot using a recluster.col matrix
colours<-recluster.col(cmdscale(dist))
recluster.plot.pie(long,lat,mat=colours,xlab="Longitude",ylab="Latitude")

# Make points of equal size
recluster.plot.pie(long,lat,mat=colours,xlab="Longitude", proportional=FALSE,
ylab="Latitude")

# Reduce the grid
recluster.plot.pie(long,lat,distance=dist,square=1, xlab="Longitude",ylab="Latitude")

# Reduce the size of the plots
recluster.plot.pie(long,lat,distance=dist,xlab="Longitude",ylab="Latitude", minsize=0.5)
# Use a custom colour matrix
pcoa<-cmdscale(dist)
colour<-recluster.col(pcoa)
recluster.plot.col(colour)
recluster.plot.pie(long,lat,mat=colour,xlab="Longitude",ylab="Latitude")

# Include an additional factor for separating dots in groups(e.g. two continents)
continent<-rep(1,50)
continent[which(long>25)]<-2
recluster.plot.pie(long,lat,distance=dist,xlab="Longitude",ylab="Latitude",
areas=continent)

```

recluster.plot.sites.col

Plotting RGB dots on a custom coordinate space

Description

This function plots the RGB dots belonging to a matrix obtained by recluster.col on a user defined set of coordinates (usually longitude and latitude) for original sites.

Usage

```
recluster.plot.sites.col (long, lat, mat, cext = 0.3, cex = 1, cex.axis = 0.7,
cex.lab = 0.8, text = FALSE, pch=21, add = FALSE,...)
```

Arguments

long	A vector indicating longitude for cases.
lat	A vector indicating latitude for cases.
mat	A matrix inherited by recluster.col.
text	A logical indicating if row names should be plotted.
cext	Dimension for row names.
cex	Dimension of dots.
cex.axis	Dimension of axis labels.
cex.lab	Dimension of labels.
add	A logical. If TRUE then the points are added to an existing graph.
pch	The symbol to use when plotting points
...	See par() for other graphical parameters

Value

A colour plot.

Author(s)

Leonardo Dapporto and Matteo Ramazzotti

References

Dapporto, L., Fattorini, S., Vod?, R., Dinc?, V., Vila, R. "Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity." J Biogeogr (2014), 41: 1639-1650.

Examples

```
data(datamod)
sordiss<- recluster.dist(datamod, dist="sorensen")
lat<-c(2,2,2,1,3,1,1,3,3)
long<-c(1,5,3,3,3,1,5,1,5)
points<-cmdscale(sordiss)
col<-recluster.col(points)
recluster.plot.sites.col(long, lat, col, text=TRUE)
```

recluster.procrustes *Computes a procrustes analysis between two matrices even if only a subset of cases are shared.*

Description

This function computes a procrustes analysis (as done by the vegan procrustes function) but it also allows including a subset of cases shared between the two matrices and some unshared cases. The shared cases must be listed first and in the same order in the two matrices. Moreover, the number of shared cases must be indicated. The function applies a procrustes analysis by scaling, mirroring and rotating the second matrix to minimizing its dissimilarity from the first on the basis of shared cases. Then, the same transformation is applied to the unshared cases of the second matrix. Finally, it allows including the matrices of coordinates for variables as obtained, for example, by PCA.

Usage

```
recluster.procrustes(X, Y, Yv=FALSE, num=nrow(X), scale = TRUE, ...)
```

Arguments

X	Target matrix.
Y	Matrix to be rotated.
Yv	Matrix of variables for the matrix to be rotated.
num	number of shared cases between the target matrix and the matrix to be rotated (by default all).
scale	number of shared cases between the target matrix and the matrix to be rotated (by default all).
...	See procrustes() for other parameters

Details

recluster.procrustes uses the vegan function procrustes to rotate a configuration (Y) to maximum similarity with another target matrix configuration (X) on the basis of a series of shared objects (rows). These objects must be in the same order in the two X and Y matrices. In case of additional cases (rows) in both the X and Y matrices, the same transformation is applied to the case of the Y matrices which are not shared with X. Moreover, the same transformation can be applied to an additional Yv matrix likely representing the coordinates of variables as obtained for example by PCA or other ordination methods. The function returns an object of the class "procrustes" as implemented in vegan.

Value

Yrot	Rotated matrix Y.
X	Target matrix.
Yvrot	Rotated matrix of variables Yv.

ss	Sum of squared differences between X and Yrot on the basis of shared objects.
rotation	Orthogonal rotation matrix on the basis of shared objects.
translation	Translation of the origin on the basis of shared objects.
scale	Scaling factor on the basis of shared objects.
xmean	The centroid of the target on the basis of shared objects.

Author(s)

Leonardo Dapporto

References

Dapporto L., Voda R., Dinca V., Vila R. "Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly *Maniola jurtina*" Methods Ecol Evol (2014), 5, 834-843.

Examples

```
#Create and plot a target matrix
ex1 <- rbind(c(1,5),c(5,5),c(3,4),c(3,6))
plot(ex1,col=c(1:4),pch=19,xlim=c(0,6),ylim=c(0,6),cex=2)
#Create and plot a matrix to be rotated. Only the points 1-4 are shared
ex2<-rbind(c(3,1),c(3,3),c(2.5,2),c(3.5,2),c(3,4))
plot(ex2,col=c(1:5),pch=19,xlim=c(0,6),ylim=c(0,6),cex=2)

#Perform the procrustes and plot the matrices
procr1<-recluster.procrustes(ex1,ex2,num=4)
plot(procr1$X,col=c(1:4),pch=19,xlim=c(-4,4),ylim=c(-4,4),cex=2)
plot(procr1$Yrot,col=c(1:5),pch=19,xlim=c(-4,4),ylim=c(-4,4),cex=2)
```

recluster.region *Consensus-based regionalisation from repeated row-order resampling*

Description

This function implements a consensus approach to regionalisation that is robust to ties and zero values in dissimilarity matrices, a common issue with turnover-based beta-diversity at small or intermediate spatial scales.

The input can be either (i) a community-by-site matrix (areas/sites in rows, species in columns), or (ii) any `dist` object. When a community matrix is provided, dissimilarities are computed using `recluster.dist` (optionally including a phylogeny for phylogenetic beta-diversity).

The core idea is to repeatedly permute the row order of the input, perform clustering on each permuted dissimilarity matrix, and then summarise, for each requested number of clusters k , how often pairs of areas are assigned to different clusters. This yields, for each k , a consensus dissimilarity matrix among areas, which is then clustered to obtain final regionalisation solutions. Each solution is evaluated using mean silhouette width and explained dissimilarity.

Usage

```
recluster.region(mat, tr = 50, dist = "simpson", method = "ward.D2",
  members = NULL, phylo = NULL, mincl = 2, maxcl = 10,
  rettree = FALSE, retmat = FALSE, retmemb = FALSE)
```

Arguments

mat	A community-by-site matrix (rows = areas/sites, columns = species; typically presence/absence) or a dist object.
tr	Number of random permutations (re-orderings) used to build the consensus.
dist	A beta-diversity index supported by recluster.dist (or a custom index via designdist syntax). Not used when mat is a dist object.
method	Clustering method. Supported values are: "pam" Partitioning Around Medoids via pam . "diana" Divisive hierarchical clustering via diana . Any hclust method Agglomerative hierarchical clustering (e.g. "ward.D2", "average", "complete").
members	Optional vector of cluster sizes passed to hclust . Ignored when method = "pam" or method = "diana".
phylo	An ultrametric rooted phylogenetic tree (with tip labels matching <code>colnames(mat)</code>) used to compute phylogenetic beta-diversity in recluster.dist .
mincl	Minimum number of clusters k to evaluate.
maxcl	Maximum number of clusters k to evaluate.
rettree	Logical. If TRUE, returns the final clustering objects for each k .
retmat	Logical. If TRUE, returns the consensus dissimilarity matrices used for the final clustering step.
retmemb	Logical. If TRUE, returns the raw membership array from all permutations.

Details

For each permutation, a clustering is built on the permuted dissimilarity matrix and cut into k clusters for $k = \text{mincl}, \dots, \text{maxcl}$. For each k , the resulting membership assignments across permutations are converted into a consensus dissimilarity among areas (based on how frequently pairs of areas fall into different clusters). A final clustering is then applied to the consensus dissimilarity matrix to obtain a single regionalisation for each k .

Two diagnostics are provided:

- **Mean silhouette width** (range -1 to 1), computed on the original dissimilarity matrix for the final grouping.
- **Explained dissimilarity** (sensu Holt et al. 2013), computed by [recluster.expl](#) / [recluster.expl.diss](#) (note that it tends to increase as k increases).

Value

A list with components:

grouping A matrix of cluster memberships (rows = areas/sites; columns correspond to $k = \text{mincl}, \dots, \text{maxcl}$).

solutions A matrix with columns k , silh (mean silhouette width), and ex.diss (explained dissimilarity).

tree Optional. A list of clustering objects for each k when $\text{rettree} = \text{TRUE}$.

matrices Optional. A 3D array of consensus dissimilarity matrices (one per k) when $\text{retmat} = \text{TRUE}$.

memb Optional. A 3D array of raw memberships from all permutations (areas \times permutations $\times k$) when $\text{retmemb} = \text{TRUE}$.

Author(s)

Leonardo Dapporto

References

Dapporto L. et al. (2015). A new procedure for extrapolating turnover regionalization at mid-small spatial scales, tested on British butterflies. *Methods in Ecology and Evolution*, 6, 1287–1297.

Examples

```
data(datais1)

# Example using a precomputed dissimilarity matrix:
set.seed(1)
simpson <- recluster.dist(datais1)

#Alternatively with betapart
if (requireNamespace("betapart", quietly = TRUE)) {
  dsim <- betapart::beta.pair(datais1)$beta.sim
}

turn_cl <- recluster.region(simpson, tr = 10, mincl = 2, maxcl = 4, rettree = TRUE)

# Plot the tree for k = 3 (i.e., the 2nd column if mincl=2):
plot(turn_cl$tree[[2]])

# Inspect cluster membership solutions:
turn_cl$grouping
```

recluster.rotate	<i>Rotates a bidimensional configuration according to a line</i>
------------------	--

Description

This function rotates the points of a configuration to a new configuration where a line identified by its intercept and its angular coefficient is rotated to become horizontal. The function can also flip or centre a configuration

Usage

```
recluster.rotate(table, m=FALSE, q=FALSE, flip="none", centre=TRUE)
```

Arguments

table	The bidimensional configuration.
m	The line slope.
q	The line intercept
flip	The kind of flip, no flip, "none"; "hor", flip horizontally; "ver", flip vertically; "both", flip vertically and horizontally.
centre	A logical. If TRUE the configuration, after transformation is centered to the mean X and Y values.

Value

table2	The transformed bidimensional configuration.
--------	--

Author(s)

Leonardo Dapporto

References

Dapporto L., Voda R., Dinca V., Vila R. "Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly *Maniola jurtina*" Methods Ecol Evol (2014), 5, 834-843.

Examples

```
data(dataisl)
#Compute bidimensional representation for islands
pcoa<-cmdscale(recluster.dist(dataisl))
plot (pcoa)
#Compute the line
lin<-recluster.line(pcoa)
transf<-recluster.rotate(pcoa,m=lin$m,q=lin$q)
plot(transf)
```

<code>recluster.test.dist</code>	<i>Test variation lost by a bidimensional configuration when the coordinates of the elements are reduced to the configuration of the barycentres of a given series of groups.</i>
----------------------------------	---

Description

This function evaluates the amount of variation maintained by a bidimensional configuration after the elements are reduced to the barycentres according to a grouping variable. If elements of different groups are randomly scattered in the configuration, almost all barycentres are expected to attain a rather central position with respect to the original elements, which would result in a small mean distance between barycentres. Conversely, if the elements of different groups are strictly clustered in the representation, the distances among barycentres are expected to be similar to the distances among original elements.

Usage

```
recluster.test.dist(mat1,mat2,member,perm=1000,elev=2)
```

Arguments

<code>mat1</code>	The bidimensional configuration before computing barycentres for groups.
<code>mat2</code>	The bidimensional configuration after computing barycentres for groups.
<code>member</code>	A vector indicating group membership for each element.
<code>perm</code>	The number of permutations.
<code>elev</code>	The power of distances (by default 2:squared distances).

Details

The function produces a ratio between the mean squared pairwise distance for all elements and the mean squared pairwise distance for barycentres. This ratio is calculated for the overall configuration and for the two axes separately. The function also provides a test for the significance of the variation preserved by barycentres by creating a custom number of matrices (1000 by default) by randomly sampling the original vector defining groups. Then it computes the frequency of mean squared distance ratios in random configurations higher than the observed ratio.

Value

<code>ratio</code>	The ratio between mean distances among original elements and barycentres over the overall configuration.
<code>ratioX</code>	The ratio between mean distances among original elements and barycentres on the X axis.
<code>ratioY</code>	The ratio between mean distances among original elements and barycentres on the Y axis.
<code>test</code>	The permutation test for variation maintained over the overall configuration.
<code>testX</code>	The permutation test for variation maintained along the X axis.
<code>testY</code>	The permutation test for variation maintained along the Y axis.

Author(s)

Leonardo Dapporto

References

Dapporto L., Voda R., Dinca V., Vila R. "Comparing population patterns for genetic and morphological markers with uneven sample sizes. An example for the butterfly *Maniola jurtina*" *Methods Ecol Evol* (2014), 5, 834-843.

Examples

```
data(dataisl)
#Define groups of islands
memb<-c(2,3,5,7,5,3,1,1,2,5,1,3,1,1,5,2,2,1,2,4,1,3,1,5,2,1,7,6,1,1,1)
#Compute bidimensional representation for elements
pcoa<-cmdscale(recluster.dist(dataisl))
bar<-aggregate(pcoa~memb,FUN="mean")[,2:3]
# test if the variation has been significantly lost
recluster.test.dist(pcoa,bar,memb,perm=100)
```

treebut

Phylogenetic tree for the butterfly species included in dataisl dataset

Description

This phylogenetic tree has been created based on known phylogeny of butterflies at family and subfamily level and on COI sequences at genus and species level. Branch lenghts have been calculated by Graphen method

Usage

```
data(treemod)
```

Details

A phylogenetic tree of butterfly species occurring on Western Mediterranean islands.

Author(s)

Gerard Talavera and Roger Vila

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

treemod

Hypothetical phylogenetic tree for the virtual island faunas provided with the package recluster

Description

This phylogenetic tree has been created from the datamod dataset representing a series of virtual faunas in different sites

Usage

```
data(treemod)
```

Details

A phylogenetic tree of 31 species taken from 9 sites.

Author(s)

Gerard Talavera

References

Dapporto L., Ramazzotti M., Fattorini S., Talavera G., Vila R., Dennis R. "recluster: an unbiased clustering procedure for beta-diversity turnover" *Ecography* (2013), 36:1070-1075.

Index

* **array**
 recluster.dist, 21

* **bootstrap**
 recluster.identify.nodes, 28

* **cluster**
 recluster.boot, 17
 recluster.cons, 19
 recluster.expl, 22
 recluster.expl.diss, 23
 recluster.group.col, 27
 recluster.multi, 31
 recluster.node.strength, 32
 recluster.procrustes, 40
 recluster.region, 41
 recluster.test.dist, 45

* **configurations**
 recluster.line, 30
 recluster.rotate, 44

* **datasets**
 dataisl, 12
 datamod, 13
 multiboot, 13
 treebut, 46
 treemod, 47

* **differentiation**
 recluster.fst, 24
 recluster.fst.pair, 25

* **dissimilarity**
 recluster.hist, 28
 recluster.plot.matrix, 36

* **hplot**
 recluster.plot, 33

* **package**
 recluster, 14

* **plot**
 recluster.col, 18
 recluster.plot.col, 34
 recluster.plot.pie, 36
 recluster.plot.sites.col, 38

* **record attribution**
 biodecrypt, 2
 biodecrypt.cross, 5
 biodecrypt.optimise, 7
 biodecrypt.plot, 9
 biodecrypt.wrap, 10

 as.phylo, 20

 biodecrypt, 2
 biodecrypt.cross, 5
 biodecrypt.optimise, 7
 biodecrypt.plot, 9
 biodecrypt.view, 10
 biodecrypt.wrap, 10

 consensus, 19

 dataisl, 12
 datamod, 13
 designdist, 19, 42
 diana, 42
 dist, 19, 41, 42

 hclust, 19, 42

 multi2di, 20
 multiboot, 13

 nnls.tree, 19, 20

 pam, 42

 reCluster(recluster), 14
 recluster, 14
 recluster.boot, 16
 recluster.col, 18
 recluster.cons, 19
 recluster.dist, 19, 20, 21, 41, 42
 recluster.expl, 22, 42
 recluster.expl.diss, 23, 42

recluster.fst, 24
recluster.fst.pair, 25
recluster.group.col, 27
recluster.hist, 28
recluster.identify.nodes, 28
recluster.line, 30
recluster.multi, 31
recluster.node.strength, 32
recluster.plot, 33
recluster.plot.col, 34
recluster.plot.matrix, 36
recluster.plot.pie, 36
recluster.plot.sites.col, 38
recluster.procrustes, 40
recluster.region, 41
recluster.rotate, 44
recluster.test.dist, 45

treebut, 46
treemod, 47