Package ‘rangr’

January 23, 2026
Type Package

Title Mechanistic Simulation of Species Range Dynamics
Version 1.0.9

Description Integrates population dynamics and dispersal into a
mechanistic virtual species simulator. The package can be used to
study the effects of environmental change on population growth and
range shifts. It allows for simple and straightforward definition of
population dynamics (including positive density dependence), extensive
possibilities for defining dispersal kernels, and the ability to
generate virtual ecologist data. Learn more about the rangr' at
<https://docs.ropensci.org/rangr/>. This work was supported by
the National Science Centre, Poland, grant no. 2018/29/B/NZ8/00066 and
the Poznan Supercomputing and Networking Centre (grant no. pl0090-01).

License MIT + file LICENSE

URL https://github.com/ropensci/rangr,
https://docs.ropensci.org/rangr/,

https://doi.org/10.1111/2041-210X.14475

BugReports https://github.com/ropensci/rangr/issues
Depends R (>=3.5.0)

Imports assertthat, graphics, grDevices, methods, parallel, pbapply,
stats, terra, utils, zoo

Suggests bookdown, knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

https://docs.ropensci.org/rangr/
https://github.com/ropensci/rangr
https://docs.ropensci.org/rangr/
https://doi.org/10.1111/2041-210X.14475
https://github.com/ropensci/rangr/issues

Author Katarzyna Markowska [aut, cre],
Lechostaw Kuczynski [aut],
Tad Dallas [rev],
Joanne Potts [rev]

Maintainer Katarzyna Markowska <katarzyna.markowska@amu.edu.pl>
Repository CRAN
Date/Publication 2026-01-23 09:40:02 UTC

Contents

disp . . . e
gEet_ObServations e e e e e
growth e
nitialise e e
K obigtif
K _big lon_lattif
K_get_interpolation L
K small.tif e
K_small_changing.tif
K_small_changing_lon_lat.tif
K small lon lat.tif
nl_bigtif
nl_big lon_lat.tif
nl_small.tif
nl_small lon lat.tif
observations_points
plotsim_results
print.sim_data
print.sim_results L.
print.summary.sim_data oo
print.summary.sim_results
SIM . o . v e
subset.sim_results L. e e
summary.sim_data
summary.sim_results Lo
TO_TASt . . . o e e e e e e e e e e e e
to_rast.sim_results e
update.sim_data oL

Index

Contents

disp

disp Simulating Dispersal

Description

This function simulates dispersal for each grid cell by calculating the number of individuals dis-
persing out of the cell and the number of individuals dispersing into the cell.

Usage

disp(

N_t,

id,

id_matrix,
data_table,
kernel,
dens_dep,

dlist,
id_within,
within_mask,
border,

planar,
dist_resolution,
max_dist,
dist_bin,
ncells_in_circle,
cl = NULL

Arguments

N_t integer matrix representing population numbers at a single time step; NA indi-

cates cells outside the study area
id SpatRaster object (of the same size as N_t) with cell identifiers

id_matrix id in matrix format

data_table matrix that contains information about all cells in current time points

kernel function defining dispersal kernel

dens_dep character vector of length 1 specifying if the probability of settling in a target

grid cell is (case-sensitive, default "K2N"):

* "none" - fully random,
» "K" - proportional to the carrying capacity of a target cell,

* "K2N" - density-dependent, i.e. proportional to the ratio of carrying capac-
ity of a target cell to the number of individuals already present in a target

cell

dlist list with identifiers of target cells at a specified distance from a focal cell

4 disp

id_within integer vector with identifiers of cells inside the study area
within_mask logical matrix that specifies boundaries of the study area
border character vector of length 1 defining how to deal with borders (case-sensitive,

default "absorbing"):
* "reprising" - cells outside the study area are not allowed as targets for dis-
persal
* "absorbing" - individuals that disperse outside the study area are removed
from the population
planar logical vector of length 1; TRUE if input maps are planar rasters, FALSE if input
maps are lon/lat rasters
dist_resolution
integer vector of length 1; dimension of one side of one cell of id; in case of an
irregular grid or lon/lat raster it is calculated during initialisation

max_dist distance (in the same units as used in the raster id) specifying the maximum
range at which identifiers of target dispersal cells are determined in advance
(see initialise)

dist_bin numeric vector of length 1 with value >= 0; in case of an irregular grid or lon/lat
raster it is calculated during initialisation

ncells_in_circle
numeric vector; number of cells on each distance

cl if simulation is done in parallel, the name of a cluster object created by makeCluster

Details
The function is used by sim internally and is not intended to be called by the user. The parameters
for this function are passed from a sim_data object created by initialise.

Dispersal distance is expressed in original spatial units of the SpatRaster provided to the sim
function (n1_map and K_map). However, it is internally converted to units of the simulation (i.e.
the size of a single cell) by calculating round(distance/resolution). If the selected dispersal
distance is smaller than resolution/2, the individual does not disperse effectively and remains
in the same cell. The dispersal rate (proportion of dispersing individuals) can be estimated from
the dispersal kernel probability function by calculating the probability that the dispersal distance is
greater than resolution/2.

Value

The function returns a list that contains two matrices:
em - emigration matrix with the number of individuals that dispersed from each cell

im - immigration matrix with the number of individuals that dispersed to each cell

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif", package = "rangr"))

get_observations 5

K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
n1_map = nl_small,
K_map = K_small,

r = log(2),
rate = 1 / 1e3
)
disp

disp_output <- disp(
N_t = sim_data$ni_map,
id = unwrap(sim_data$id),
id_matrix = as.matrix(unwrap(sim_data$id), wide = TRUE),
data_table = sim_data$data_table,
kernel = sim_data$kernel,
dens_dep = sim_data$dens_dep,
dlist = sim_data$dlist,
id_within = sim_data$id_within,
within_mask = sim_data$within_mask,
border = sim_data$border,
planar = sim_data$planar,
dist_resolution = sim_data$dist_resolution,
max_dist = sim_data$max_dist,
dist_bin = sim_data$dist_bin,
ncells_in_circle = sim_data$ncells_in_circle

)

immigration and emigration matrices
names (disp_output)

get_observations Observation Process

Description

This function simulates an observation process. It accepts the sim_results object, which is gener-
ated by the sim function, and applies the virtual ecologist approach on the N_map component of the
object. The function returns a data. frame with the *observed’ abundances.

Usage

get_observations(
sim_data,
sim_results,
type = ¢("random_one_layer"”, "random_all_layers"”, "from_data”, "monitoring_based"),
obs_error = c("rlnorm”, "rbinom"),
obs_error_param = NULL,

6 get_observations

Arguments

sim_data sim_data object from initialise containing simulation parameters
sim_results sim_results object; returned by sim function
type character vector of length 1; describes the sampling type (case-sensitive):

* "random_one_layer" - random selection of cells for which abundances are
sampled; the same set of selected cells is used across all time steps.

* "random_all_layers" - random selection of cells for which abundances are
sampled; a new set of cells is selected for each time step.

¢ "from_data" - user-defined selection of cells for which abundances are sam-
pled; the user is required to provide a data. frame containing three columns:
"x","y" and "time_step".

* "monitoring_based" - user-defined selection of cells for which abundances
are sampled; the user is required to provide a matrix object with two columns:
"x" and "y"; the abundance from given cell is sampled by different virtual
observers in different time steps; a geometric distribution (rgeom) is em-
ployed to define whether a survey will be conducted by the same observer

for several years or not conducted at all.

obs_error character vector of length 1; type of the distribution that defines the observa-
tion process: "rlnorm" (the log normal distribution) or "rbinom" (the binomial
distribution)

obs_error_param
numeric vector of length 1; standard deviation (on a log scale) of the ran-
dom noise in observation process generated from the log-normal distribution
(rlnorm) or probability of detection (success) when the binomial distribution
("rbinom") is used.

other necessary internal parameters:

* prop
numeric vector of length 1; proportion of cells to be sampled (default prop
=0.1); used when type = "random_one_layer"” or "random_all_layers”,

* points
data. frame or matrix with 3 numeric columns named "x", "y", and "time_step"
containing coordinates and time steps from which observations should be
obtained; used when type = "from_data”,

* cells_coords
data.frame or matrix with 2 columns named "x" and "y"; survey plots
coordinates; used when type = "monitoring_based”

* prob
numeric vector of length 1; a parameter defining the shape of rgeom distri-
bution; defines whether an observation will be made by the same observer
for several years, and whether it will not be made at all (default prob =
0.3); used when type = "monitoring_based"

get_observations 7

* progress_bar
logical vector of length 1; determines if a progress bar for observation pro-
cess should be displayed (default progress_bar = FALSE); used when type
= "monitoring_based"

Value

data. frame object with geographic coordinates, time steps, estimated abundance, observation error
(if obs_error_param is provided), and observer identifiers (if type = "monitoring_based”). If
type = "from_data”, returned object is sorted in the same order as the input points.

Examples

library(terra)
n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

prepare data

sim_data <- initialise(
nl_map = n1_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3

)

sim_1 <- sim(obj = sim_data, time = 110, burn = 10)

1. random_one_layer
samplel <- get_observations(

sim_data,

sim_1,

type = "random_one_layer",
prop = 0.1

)

2. random_all_layers
sample2 <- get_observations(

sim_data,

sim_1,

type = "random_all_layers”,
prop = 0.15

)

3. from_data
sample3 <- get_observations(
sim_data,
sim_1,
type = "from_data”,
points = observations_points

8 growth

4. monitoring_based

define observations sites

all_points <- xyFromCell(unwrap(sim_data$id), cells(unwrap(sim_data$K_map)))
sample_idx <- sample(1:nrow(all_points), size = 20)

sample_points <- all_points[sample_idx,]

sample4 <- get_observations(

sim_data,

sim_1,

type = "monitoring_based”,
cells_coords = sample_points,
prob = 0.3,

progress_bar = TRUE

5. noise "rlnorm”

sample5 <- get_observations(sim_data,
sim_1,
type = "random_one_layer”,
obs_error = "rlnorm”,
obs_error_param = log(1.2)

6. noise "rbinom”
sample6 <- get_observations(sim_data,

sim_1,
type = "random_one_layer"”,
obs_error = "rbinom”,
obs_error_param = 0.8
)
growth Population Growth Functions
Description

Population growth functions are used during simulation conducted by the sim function. The user
is required to specify the name of a growth function while initialising the sim_data object using
initialise.

Usage
exponential(x, r, ...)

ricker(x, r, K, A = NA)

gompertz(x, r, K, A = NA)

growth 9

Arguments
X number of individuals
r intrinsic population growth rate
not used, added for compatibility reasons
carrying capacity
A coefficient of Allee effect (A <= 0: weak, A > 0: strong, NA: none)
Details

x can be a vector, matrix, SpatRaster or any other R object for which basic arithmetic operations
produce valid results. These functions are intended to be used in the sim function, where x is a
matrix of the same dimensions as the SpatRaster object specified in n1_map parameter.

Value

Object of the same dimensions as x that contains expected number of individuals in the next time
step.

References

Boukal, D. S., & Berec, L. (2002). Single-species models of the Allee effect: extinction boundaries,
sex ratios and mate encounters. Journal of Theoretical Biology, 218(3), 375-394. doi:10.1006/
jtbi.2002.3084

Gompertz, B. (1825) On the Nature of the Function Expressive of the Law of Human Mortality, and
on a New Mode of Determining the Value of Life Contigencies. Philosophical Transactions of the
Royal Society of London, 115, 513-583. doi:10.1098/rstl.1825.0026

Ricker, W.E. (1954) Stock and Recruitment. Journal of the Fisheries Research Board of Canada,
11, 559-623. doi:10.1139/f54039

Hostetler, J.A. and Chandler, R.B. (2015), Improved state-space models for inference about spatial
and temporal variation in abundance from count data. Ecology, 96: 1713-1723. doi:10.1890/14-
1487.1

Courchamp, F., L. Berec and J. Gascoigne. 2008. Allee Effects in Ecology and Conservation.
Oxford University Press, New York. 256 pp. ISBN 978-0-19-857030-1

Examples
X <-1:10
exponential(x, r = 0.4)
ricker(x, r = 2, K = 5)
ricker(x, r =2, K =5, A =-5)
gompertz(x, r = 1.2, K = 5)
gompertz(x, r = 1.2, K =5, A =05)

https://doi.org/10.1006/jtbi.2002.3084
https://doi.org/10.1006/jtbi.2002.3084
https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1139/f54-039
https://doi.org/10.1890/14-1487.1
https://doi.org/10.1890/14-1487.1

10

initialise

initialise

Prepare Data Required To Perform A Simulation

Description

This function generates a sim_data object containing all the necessary information required to run
a simulation by the sim function. The input maps (n1_map and K_map) can be in the Cartesian or
longitude/latitude coordinate system.

Usage

initialise(
nl_map,

K_map,

K_sd = 0,

r’
r_sd

=0,
growth =
A = NA,
dens_dep = c("K2N", "K", "none"),
border = c("reprising”, "absorbing"),
kernel_fun = "rexp”,

"gompertz",

max_dist = NA,
calculate_dist = TRUE,
dlist = NULL,
progress_bar = TRUE,
quiet = FALSE

SpatRaster object with one layer; population numbers in every grid cell at the
SpatRaster object with one layer; carrying capacity map (if K is constant across

numeric vector of length 1 with value >= @ (default 0); this parameter can be
used if additional environmental stochasticity is required; if K_sd > @, random
numbers are generated from a log-normal distribution with the mean K_map and

numeric vector of length 1 with value >= @ (default 9); if additional demo-
graphic stochasticity is required, r_sd > @ is the standard deviation for a normal

Arguments
n1_map
first time step
K_map
time) or maps (if K is time-varying)
K_sd
standard deviation K_sd
r numeric vector of length 1; intrinsic population growth rate
r_sd
distribution around r (defined for each time step)
growth

character vector of length 1; the name of a population growth function, either
defined in growth or provided by the user (case-sensitive, default "gompertz")

initialise 11

A numeric vector of length 1; strength of the Allee effect (see the growth function)

dens_dep character vector of length 1 specifying if the probability of settling in a target
grid cell is (case-sensitive, default "K2N"):
* "none" - fully random,
» "K" - proportional to the carrying capacity of a target cell,

» "K2N" - density-dependent, i.e. proportional to the ratio of carrying capac-
ity of a target cell to the number of individuals already present in a target
cell

border character vector of length 1 defining how to deal with borders (case-sensitive,
default "absorbing”):
* "reprising" - cells outside the study area are not allowed as targets for dis-
persal
* "absorbing" - individuals that disperse outside the study area are removed
from the population
kernel_fun character vector of length 1; name of a random number generation function
defining a dispersal kernel (case-sensitive, default "rexp")

any parameters required by kernel_fun

max_dist numeric vector of length 1; maximum distance of dispersal to pre-calculate tar-
get cells

calculate_dist logical vector of length 1; determines if target cells will be precalculated

dlist list; target cells at a specified distance calculated for every cell within the study
area

progress_bar logical vector of length 1; determines if progress bar for calculating distances
should be displayed

quiet logical vector of length 1; determines if messages should be displayed

Details

The most time-consuming part of computations performed by the sim function is the simulation of
dispersal. To speed it up, a list containing indexes of target cells at a specified distance from a focal
cell is calculated in advance and stored in a d1ist slot. The max_dist parameter sets the maximum
distance at which this pre-calculation is performed. If max_dist is NULL, it is set to 0.99 quantile
from the kernel_fun. All distance calculations are always based on metres if the input maps are
latitude/longitude. For planar input maps, distances are calculated in map units, which are typically
metres, but check the crs() if in doubt.

If the input maps are in the Cartesian coordinate system and the grid cells are squares, then the
distances between cells are calculated using the distance function from the terra package. These
distances are later divided by the resolution of the input maps.

For input maps with grid cells in shapes other than squares (e.g. with rectangular cells or longi-
tude/latitude coordinate system), the distance resolution is calculated by finding the shortest dis-
tance between each "queen" type neighbor. All distances calculated by the distance function are
further divided by this distance resolution. To avoid discontinuities in the distances at which the
target cells are located, an additional parameter dist_bin is calculated as half of the maximum
distance between each "queen" type neighbour. It is used to expand the distances at which target
cells are located from a single number to a range.

12 initialise

NA in the input maps represents cells outside the study area.

The K_get_interpolation function can be used to prepare K_map that changes over time. This
may be useful, when simulating environmental change or exploring the effects of ecological distur-
bances.

Value

Object of class sim_data which inherits from 1ist. This object contains all necessary information
to perform a simulation using sim function.

References

Hijmans R (2024). terra: Spatial Data Analysis. R package version 1.7-81, https://rspatial.
github.io/terra/, https://rspatial.org/

Solymos P, Zawadzki Z (2023). pbapply: Adding Progress Bar to *apply’ Functions. R package
version 1.7-2, https://CRAN.R-project.org/package=pbapply.

See Also

update

Examples

input maps
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))
K_small_changing <- rast(system.file("input_maps/K_small_changing.tif",

package = "rangr"))
n1_small_lon_lat <- rast(system.file("input_maps/n1_small_lon_lat.tif"”, package = "rangr"))
K_small_lon_lat <- rast(system.file("input_maps/K_small_lon_lat.tif", package = "rangr"))

basic example
sim_data_1 <- initialise(
n1_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3
)

example with changing environment
K_interpolated <- K_get_interpolation(
K_small_changing,
K_time_points = c(1, 25, 50)
)

sim_data_2 <- initialise(
nl_map = nl_small,
K_map = K_interpolated,

https://rspatial.github.io/terra/
https://rspatial.github.io/terra/
https://rspatial.org/
https://CRAN.R-project.org/package=pbapply

K_big.tif 13

r = log(2),
rate = 1 / 1e3
)

example with lon/lat rasters
sim_data_3 <- initialise(
n1_map = nl1_small_lon_lat,
K_map = K_small_lon_lat,
r = log(2),
rate = 1 / 1e3
)

example without progress bar and messages
sim_data_4 <- initialise(

nl_map = nl_small, K_map = K_small, K_sd = 0.1, r = log(5),

r_sd = 4, growth = "ricker”, rate =1 / 200,

max_dist = 5000, dens_dep = "K2N", progress_bar = FALSE, quiet = TRUE
)

K_big.tif Example Of Carrying Capacity Map (Big)

Description

SpatRaster object that can be used as a carrying capacity map to initialise data necessary to
perform a simulation with the sim function. This map is compatible with n1_big.tif.

Format

SpatRaster object with 100 rows and 100 columns containing integer values 0-25 and NA’s indi-
cating unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

system.file("input_maps/K_big.tif", package = "rangr")

14 K_get_interpolation

K_big_lon_lat.tif Example Of Carrying Capacity Map (Big)

Description

SpatRaster object representing a carrying capacity map projected to WGS 84 (CRS84) from the
original raster K_big. This map can be used as a carrying capacity map to initialise data neces-
sary to perform a simulation with the sim function. It is compatible with the n1_big_lon_lat.tif
raster.

Format

SpatRaster object with 74 rows and 125 columns containing integer values 0-25 and NA’s indicat-
ing unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

system.file("input_maps/K_big_lon_lat.tif"”, package = "rangr")

K_get_interpolation Prepare Time-Varying Carrying Capacity Maps

Description

This function linearly interpolates values in a series of carrying capacity maps.

Usage

K_get_interpolation(K_map, K_time_points = NULL, time = NULL)

Arguments

K_map SpatRaster object with carrying capacity maps for each K_time_points
K_time_points integer vector; time for each layer in K_map, should contain unique values

time integer vector of length 1; number of total time steps required (this is defined
when evoking the function sim).

K_small.tif 15

Details

To simulate dynamic environmental scenarios (e.g. climate change, land use change, ecological
disturbance, etc.) one needs to provide time-varying carrying capacity maps.

EitherK_time_points or the time parameter is needed to perform interpolation. If the interpolation
should be calculated between two carrying capacity maps, there is no need to pass the time points,
because 1 will be set as the starting time point and time will be used as the ending point. On
the other hand, in the absence of the time argument, the maximum element of K_time_points is
considered to be the ending point for the interpolation.

Value

SpatRaster object with number of layers equal to time.

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/n1_small.tif"”, package = "rangr"))
K_small_changing <- rast(system.file("input_maps/K_small_changing.tif",
package = "rangr"))

K_interpolated_01 <- K_get_interpolation(
K_small_changing,
K_time_points = c(1, 10, 15)

)

K_two_layers <- subset(
K_small_changing,
c(1, 2)

)

K_interpolated_02 <- K_get_interpolation(
K_two_layers,

time = 15
)
K_small.tif Example Of Carrying Capacity Map (Small)
Description

SpatRaster object that can be used a carrying capacity map to initialise data necessary to
perform a simulation with the sim function. This map is compatible with n1_small. tif.

16 K_small_changing.tif

Format

SpatRaster object with 15 rows and 10 columns containing integer values 0-100 and NA’s indicat-
ing unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

system.file("input_maps/K_small.tif", package = "rangr")

K_small_changing.tif Example Of Changing Carrying Capacity Maps (Small)

Description

SpatRaster object that can be used as carrying capacity maps to initialise data necessary to
perform a simulation with the sim function. To utilise these maps in initialise the user first must
use K_get_interpolation to generate a map for every time step of the simulation. These maps are
compatible with n1_small. tif. Each subsequent map contains a virtual environment with greater
carrying capacity than the previous one.

Format

SpatRaster object with 3 layers, each has 15 rows and 10 columns containing integer values 0-170
and NA’s that indicates unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

system.file("input_maps/K_small_changing.tif"”, package = "rangr")

K_small_changing_lon_lat.tif 17

K_small_changing_lon_lat.tif
Example Of Changing Carrying Capacity Maps (Small)

Description

SpatRaster object representing changing carrying capacity maps projected to WGS 84 (CRS84)
from the original raster K_small_changing. These maps can be used as carrying capacity maps to
initialise data necessary to perform a simulation with the sim function. To utilise these maps in
initialise the user must first use K_get_interpolation to generate a map for every time step
of the simulation. These maps are compatible with the n1_small_lon_lat.tif raster.

Format

SpatRaster object with 3 layers, each having 12 rows and 14 columns containing integer values
0-170 and NA’s indicating unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

system.file("input_maps/K_small_changing_lon_lat.tif", package = "rangr")

K_small_lon_lat.tif Example Of Carrying Capacity Map (Small)

Description

SpatRaster object that represents a carrying capacity map projected to WGS 84 (CRS84) from the
original raster K_small. This map can be used as a carrying capacity map to initialise data nec-
essary to perform a simulation with the sim function. It is compatible with the n1_small_lon_lat.tif
raster.

Format

SpatRaster object with 12 rows and 14 columns containing integer values 0-100 and NA’s indicat-
ing unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

18 nl_big_lon_lat.tif

Examples

system.file("input_maps/K_small_lon_lat.tif", package = "rangr")

nl_big.tif Example Of Abundance Map At First Time Step Of The Simulation
(Big)

Description
SpatRaster object that can be used a as simulation starting point to initialise data necessary to
perform a simulation with the sim function. This map is compatible with K_big. tif map.
Format
SpatRaster object with 100 rows and 100 columns containing integer values 0-50 and NA’s that
indicates unsuitable areas.
Source

Data generated in-house to serve as an example.

Examples

system.file("input_maps/n1_big.tif", package = "rangr")

n1_big_lon_lat.tif Example Of Abundance Map At First Time Step Of The Simulation
(Big)

Description

SpatRaster object representing an abundance map at the first time step of the simulation projected
to WGS 84 (CRS84) from the original raster n1_big. This map can be used as a simulation starting
point to initialise data necessary to perform a simulation with the sim function. It is compatible
with the K_big_lon_lat.tif map.

Format
SpatRaster object with 74 rows and 125 columns containing integer values 0-50 and NA’s indicat-
ing unsuitable areas.

Source

Data generated in-house to serve as an example.

nl_small.tif 19

Examples

system.file("input_maps/n1_big_lon_lat.tif", package = "rangr")

n1_small.tif Example Of Abundance Map At First Time Step Of The Simulation
(Small)

Description

SpatRaster object that can be used a as simulation starting point to initialise data necessary
to perform a simulation with the sim function. This map is compatible with K_small.tif and
K_small_changing.tif maps.

Format

SpatRaster object with 15 rows and 10 columns containing integer values 0-10 and NA’s indicating
unsuitable areas.

Source

Data generated in-house to serve as an example.

Examples

system.file("input_maps/ni1_small.tif", package = "rangr")

nl_small_lon_lat.tif Example Of Abundance Map At First Time Step Of The Simulation
(Small)

Description

SpatRaster object representing an abundance map at the first time step of the simulation projected
to WGS 84 (CRS84) from the original raster n1_small. This map can be used as a simulation
starting point to initialise data necessary to perform a simulation with the sim function. It is
compatible with the K_small_lon_lat.tif and K_small_changing_lon_lat.tif maps.

Format

SpatRaster object with 12 rows and 14 columns containing integer values 0-10 and NA’s indicating
unsuitable areas.

20 plot.sim_results

Source

Data generated in-house to serve as an example.

Examples

system.file("input_maps/n1_small_lon_lat.tif"”, package = "rangr")

observations_points Example Of Observation Points List

Description

A data.frame containing a sample input data to the function get_observations when type
argument is set to "from_file". This data is compatible with n1_small.tif, K_small.tif and
K_small_changing.tif maps.

Usage

observations_points

Format

A data frame with 1500 rows and 3 variables:

X X coordinate
y y coordinate

time_step time_step at which the abundances should be observed

Source

Data generated in-house to serve as an example

plot.sim_results Plot sim_results Object

Description

Plots abundances obtained during simulation.

Usage

S3 method for class 'sim_results'
plot(x, template = NULL, time_points = NULL, range, type, ...)

print.sim_data

21

Arguments
X sim_results object; returned by sim
template SpatRaster object; can be used as a template to create returned object

time_points

numeric vector; specifies points in time from which plots will be generated

range numeric vector of length 2; range of values to be used for the legend (if type =
"continuous"), which by default is calculated from the N_map slot of sim_result
object
type character vector of length 1; type of map: "continuous" (default), "classes" or
"interval" (case-sensitive)
further arguments passed to terra: :plot
Value

SpatRaster object with as many layers as the length of time_points parameter

Examples

library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,
K_map = K_small,

r = log(2),
rate = 1 / 1e3
)
sim_res <- sim(sim_data, time = 10)
plot(sim_res)
plot(sim_res, template = nl_small, time_points = c(1, 10))

plot specific area

plot(sim_res, xlim = c(4, 10), ylim = c(@, 10))

plot(sim_res, ext = c(4, 10, 0, 10))

plot(sim_res, template = nl_small, ext = c(274000, 280000, 610000, 620000))

print.sim_data Print sim_data Object

Description

Print sim_data Object

22 print.sim_results

Usage
S3 method for class 'sim_data’
print(x, ...)
Arguments
X sim_data object; returned by the initialise function
further arguments passed to or from other methods; currently none specified
Value

sim_data object is invisibly returned (the x param)

Examples
library(terra)
n1_small <- rast(system.file("input_maps/n1_small.tif"”, package = "rangr"))

K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3

)
print(sim_data)

print.sim_results Print sim_results Object

Description

Print sim_results Object

Usage
S3 method for class 'sim_results'
print(x, ...)
Arguments
X sim_results object; returned by the sim function
further arguments passed to or from other methods; none specified
Value

sim_results object is invisibly returned (the x param)

print.summary.sim_data

Examples

library(terra)

n1_small <- rast(system.file("input_maps/n1_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3
)
sim_res <- sim(obj = sim_data, time = 20, burn = 5)
print(sim_res)

23

print.summary.sim_data
Print summary.sim_data Object

Description

Print summary.sim_data Object

Usage
S3 method for class 'summary.sim_data’
print(x, ...)

Arguments

X summary.sim_data object; returned by summary.sim_data function

further arguments passed to or from other methods; currently none specified

Value

None

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,

24 print.summary.sim_results

K_map = K_small,

r = log(2),

rate = 1 / 1e3
)
summary_sim_data <- summary(sim_data)
print(summary_sim_data)

print.summary.sim_results
Print summary.sim_results Object

Description

Print summary.sim_results Object

Usage

S3 method for class 'summary.sim_results'
print(x, ...)

Arguments

X summary.sim_results object; returned by summary.sim_results function

further arguments passed to or from other methods; currently none specified

Value

None

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/n1_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(

nl_map = nl_small,

K_map = K_small,

r = log(2),

rate = 1 / 1e3
)
sim_results <- sim(sim_data, time = 10)
summary_sim_results <- summary(sim_results)
print(summary_sim_results)

25

sim
sim Mechanistic Metapopulation Simulator
Description
This function simulates population growth and dispersal providing a given environmental scenario.
All parameters for the simulation must be set in advance using initialise.
Usage
sim(
obj,
time,
burn = 0,
return_mu = FALSE,
cl = NULL,
progress_bar = TRUE,
quiet = FALSE
)
Arguments
obj sim_data object created by initialise containing all simulation parameters
and necessary data
time positive integer vector of length 1; number of time steps simulated
burn positive integer vector of length 1; the number of burn-in time steps that are
discarded from the output
return_mu logical vector of length 1; if TRUE demographic process return expected values;
if FALSE the rpois function should be used
cl an optional cluster object created by makeCluster needed for parallel calcula-
tions
progress_bar logical vector of length 1 determines if progress bar for simulation should be
displayed
quiet logical vector of length 1; determines if warnings should be displayed
Details

This is the main s

imulation module. It takes the sim_data object prepared by initialise and

runs simulation for a given number of time steps. The initial (specified by the burn parameter) time
steps are skipped and discarded from the output. Computations can be done in parallel if the name
of a cluster created by makeCluster is provided.

Generally, at each time step, simulation consists of two phases: local dynamics and dispersal.

Local dynamics (which connects habitat patches in time) is defined by the function growth. This
parameter is specified while creating the obj using initialise, but can be later modified by using
the update function. Population growth can be either exponential or density-dependent, and the

26 sim

regulation is implemented by the use of Gompertz or Ricker models (with a possibility of providing
any other, user defined function). For every cell, the expected population density during the next
time step is calculated from the corresponding number of individuals currently present in this cell,
and the actual number of individuals is set by drawing a random number from the Poisson distribu-
tion using this expected value. This procedure introduces a realistic randomness, however additional
levels of random variability can be incorporated by providing parameters of both demographic and
environmental stochasticity while specifying the sim_data object using the initialise function
(parameters r_sd and K_sd, respectively).

To simulate dispersal (which connects habitat patches in space), for each individual in a given cell,
a dispersal distance is randomly drawn from the dispersal kernel density function. Then, each
individual is translocated to a randomly chosen cell at this distance apart from the current location.
For more details, see the disp function.

Value

This function returns an object of class sim_results which is a list containing the following com-
ponents:

* extinction - TRUE if population is extinct or FALSE otherwise

e simulated_time - number of simulated time steps without the burn-in ones

* N_map - 3-dimensional array representing spatio-temporal variability in population numbers.
The first two dimensions correspond to the spatial aspect of the output and the third dimension
represents time.

In case of a total extinction, a simulation is stopped before reaching the specified number of time
steps. If the population died out before reaching the burn threshold, then nothing can be returned
and an error occurs.

References
Solymos P, Zawadzki Z (2023). pbapply: Adding Progress Bar to **apply’ Functions. R package
version 1.7-2, https://CRAN.R-project.org/package=pbapply.

See Also

get_observations
Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
n1_map = nl_small,
K_map = K_small,
r = log(2),

https://CRAN.R-project.org/package=pbapply

subset.sim_results

rate = 1 / 1e3
)

simulation
sim_1 <- sim(obj = sim_data, time = 20)

simulation with burned time steps
sim_2 <- sim(obj = sim_data, time = 20, burn = 10)

example with parallelization
library(parallel)
cl <- makeCluster(2)

parallelized simulation
sim_3 <- sim(obj = sim_data, time = 20, cl = cl)
stopCluster(cl)

visualisation
plot(
sim_1,
time_points = 20,
template = sim_data$K_map
)

plot(
sim_1,
time_points = c(1, 5, 10, 20),
template = sim_data$K_map

)

plot(

sim_1,

template = sim_data$K_map
)

27

subset.sim_results

Subset of Given Time Points from sim_results Object

Description

This function creates a subset of given time points from the sim_results object.

Usage

S3 method for class 'sim_results'

subset(x, from

NULL, time_points = NULL, ...)

28 summary.sim_data

Arguments
X sim_results object; returned by the sim function
from numeric vector of length 1; indicates the starting time point from which all time
point should be kept
time_points numeric vector; indicates all time points to keep
further arguments to be passed to or from other methods
Details

Either fromor time_points argument has to be specified. Time point passed by the from argument
will be set as a cutoff point and all abundances for previous time points will be discarded.

Value

sim_results object with only selected time_points present in the N_map slot

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
n = ni_small,
r = log(2),
K_map = K_small,
max_dist = 1000,
rate = 1 / 1e3

sim_results <- sim(sim_data, time = 10)
summary (sim_results)

sim_results_cropped <- subset(sim_results, time_points = c(1:2))
summary (sim_results_cropped)

summary.sim_data Summary Of sim_data Object

Description

Summary Of sim_data Object

summary.sim_results

Usage
S3 method for class 'sim_data’
summary (object, ...)
Arguments
object sim_data object; returned by initialise function

further arguments passed to or from other methods; currently none specified

Value

summary.sim_data object

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,
K_map = K_small,
r = log(2),
rate =1 / 1e3

)

summary (sim_data)

summary.sim_results Summary Of sim_results Object

Description

Summary Of sim_results Object

Usage
S3 method for class 'sim_results'
summary (object, ...)
Arguments
object sim_results object; returned by sim function

further arguments passed to or from other methods; none specified

30 to_rast

Value

summary.sim_results object

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/n1_small.tif", package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(
nl_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3

)

simulation
sim_results <- sim(sim_data, time = 10)
summary (sim_results)

to_rast Generic conversion to SpatRaster

Description

A generic method to convert simulation result objects into SpatRaster format.

Usage
to_rast(obj, ...)
Arguments
obj An object to convert.
Additional arguments passed to methods.
Value

A SpatRaster or a list of such objects.

See Also

to_rast.sim_results()

to_rast.sim_results 31

Examples

Not run:
to_rast(sim_results_object)

End(Not run)

to_rast.sim_results Convert sim_results To SpatRaster

Description

Converts selected subset of abundance matrices from sim_results into SpatRaster object. Layers
are specified by time_points, which can be one or multiple points in time.

Usage
S3 method for class 'sim_results'
to_rast(obj, time_points = obj$simulated_time, template = NULL, ...)
Arguments
obj sim_results object created by sim
time_points numeric vector of length 1 or more; specifies points in time from which SpatRaster

will be created - as default the last year of simulation; if length(time_points)
> @ SpatRaster will be returned with layers for each element of time_points

template SpatRaster object; can be used as a template to create returned object

Currently unused.

Value

SpatRaster based on sim_results object with layers corresponding to time_points.

References

Hijmans R (2024). terra: Spatial Data Analysis. R package version 1.7-81, https://rspatial.
github.io/terra/, https://rspatial.org/

Examples

data preparation
library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data <- initialise(

https://rspatial.github.io/terra/
https://rspatial.github.io/terra/
https://rspatial.org/

32 update.sim_data
n1_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3
)
simulation
sim_1 <- sim(obj = sim_data, time = 100)
raster construction
my_rast <- to_rast(
sim_1,
time_points = c(1, 10, 20, 100),
template = sim_data$K_map
)
visualization
plot(my_rast, range = range(sim_1$N_map, na.rm = TRUE))
update.sim_data Update sim_data Object
Description
This function updates a sim_data object.
Usage
S3 method for class 'sim_data'
update(object, ..., evaluate = TRUE)
Arguments
object sim_data object; returned by initialise function
further arguments passed to or from other methods; currently none specified
evaluate logical vector of length 1; if TRUE evaluates the new call, otherwise returns the
call
Value

If evaluate = TRUE then the updated sim_data object, otherwise the updated call.

update.sim_data

Examples

data preparation

library(terra)

n1_small <- rast(system.file("input_maps/ni_small.tif"”, package = "rangr"))
K_small <- rast(system.file("input_maps/K_small.tif"”, package = "rangr"))

sim_data_1 <- initialise(
nl_map = nl_small,
K_map = K_small,
r = log(2),
rate = 1 / 1e3

)

summary(sim_data_1)

sim_data_2 <- update(sim_data_1, max_dist = 3000)
summary (sim_data_2)

33

Index

+ datasets
observations_points, 20

crs(), 11

disp, 3, 26
distance, 11

exponential (growth), 8

get_observations, 5, 20, 26
gompertz (growth), 8
growth, 8, 10, 11,25

initialisation, 4
initialise, 4,6, 8, 10, 13-19, 22, 25, 26, 29,
32

K_big.tif, 13, 18
K_big_lon_lat.tif, 14
K_get_interpolation, 12, 14, 16, 17
K_small.tif, 15, 19, 20
K_small_changing.tif, 16, 19, 20
K_small_changing_lon_lat.tif, 17
K_small_lon_lat.tif, 17

makeCluster, 4, 25

nl_big.tif, 13,18
n1_big_lon_lat.tif, 18
nl_small.tif, 15, 16,19, 20
n1_small_lon_lat.tif, 19

observations_points, 20

plot.sim_results, 20
print.sim_data, 21
print.sim_results, 22
print.summary.sim_data, 23
print.summary.sim_results, 24

rbinom, 6

34

rgeom, 6
ricker (growth), 8
rlnorm, 6
rpois, 25

sim, 4-6, 8-19, 21, 22, 25, 28, 29, 31
SpatRaster, 3, 4, 9, 10, 13-19, 21, 30, 31
subset.sim_results, 27
summary.sim_data, 23, 28
summary.sim_results, 24, 29

terra: :plot, 2/
to_rast, 30
to_rast.sim_results, 31
to_rast.sim_results(), 30

update, 12, 25
update.sim_data, 32

	disp
	get_observations
	growth
	initialise
	K_big.tif
	K_big_lon_lat.tif
	K_get_interpolation
	K_small.tif
	K_small_changing.tif
	K_small_changing_lon_lat.tif
	K_small_lon_lat.tif
	n1_big.tif
	n1_big_lon_lat.tif
	n1_small.tif
	n1_small_lon_lat.tif
	observations_points
	plot.sim_results
	print.sim_data
	print.sim_results
	print.summary.sim_data
	print.summary.sim_results
	sim
	subset.sim_results
	summary.sim_data
	summary.sim_results
	to_rast
	to_rast.sim_results
	update.sim_data
	Index

