
Package ‘ragnar’
January 23, 2026

Title Retrieval-Augmented Generation (RAG) Workflows

Version 0.3.0

Description Provides tools for implementing Retrieval-Augmented
Generation (RAG) workflows with Large Language Models (LLM). Includes
functions for document processing, text chunking, embedding
generation, storage management, and content retrieval. Supports
various document types and embedding providers ('Ollama', 'OpenAI'),
with 'DuckDB' as the default storage backend. Integrates with the
'ellmer' package to equip chat objects with retrieval capabilities.
Designed to offer both sensible defaults and customization options
with transparent access to intermediate outputs. For a review of
retrieval-augmented generation methods, see Gao et al. (2023)
``Retrieval-Augmented Generation for Large Language Models: A Survey''
<doi:10.48550/arXiv.2312.10997>.

License MIT + file LICENSE

URL https://ragnar.tidyverse.org/, https://github.com/tidyverse/ragnar

BugReports https://github.com/tidyverse/ragnar/issues

Depends R (>= 4.3.0)

Imports blob, cli, commonmark, curl, DBI, mirai (>= 2.5.1), dbplyr,
dplyr, duckdb (>= 1.3.1), glue, httr2, jsonlite, methods,
reticulate (>= 1.42.0), rlang (>= 1.1.0), rvest, S7, stringi,
tidyr, vctrs, withr, xml2

Suggests connectcreds, ellmer (>= 0.3.0), gargle, knitr, lifecycle,
mcptools (>= 0.2.0), pandoc, paws.common, rmarkdown, shiny,
stringr, testthat (>= 3.0.0), tibble, jose, openssl

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, rmarkdown

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

1

https://doi.org/10.48550/arXiv.2312.10997
https://ragnar.tidyverse.org/
https://github.com/tidyverse/ragnar
https://github.com/tidyverse/ragnar/issues


2 chunks_deoverlap

Author Tomasz Kalinowski [aut, cre],
Daniel Falbel [aut],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Tomasz Kalinowski <tomasz@posit.co>

Repository CRAN

Date/Publication 2026-01-23 19:40:08 UTC

Contents
chunks_deoverlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
embed_azure_openai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
embed_bedrock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
embed_databricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
embed_google_gemini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
embed_ollama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
embed_snowflake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MarkdownDocument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MarkdownDocumentChunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
markdown_chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
mcp_serve_store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
ragnar_chunks_view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ragnar_find_links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ragnar_register_tool_retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ragnar_retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ragnar_retrieve_bm25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ragnar_retrieve_vss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ragnar_store_atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ragnar_store_build_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ragnar_store_create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ragnar_store_ingest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ragnar_store_insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ragnar_store_inspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
read_as_markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Index 32

chunks_deoverlap Merge overlapping chunks in retrieved results

Description

Groups and merges overlapping text chunks from the same origin in the retrieval results.

Usage

chunks_deoverlap(store, chunks)

https://ror.org/03wc8by49


embed_azure_openai 3

Arguments

store A RagnarStore object. Must have @version == 2.

chunks A tibble of retrieved chunks, such as the output of ragnar_retrieve().

Details

When multiple retrieved chunks from the same origin have overlapping character ranges, this func-
tion combines them into a single non-overlapping region.

Value

A tibble of de-overlapped chunks.

embed_azure_openai Uses Azure AI Foundry to create embeddings

Description

Uses Azure AI Foundry to create embeddings

Usage

embed_azure_openai(
x,
endpoint = get_envvar("AZURE_OPENAI_ENDPOINT"),
api_key = get_envvar("AZURE_OPENAI_API_KEY"),
api_version = "2023-05-15",
model,
batch_size = 20L,
api_args = list()

)

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

endpoint The Azure AI Foundry endpoint URL. A URI in the form of https://<project>.cognitiveservices.azure.com/.
Defaults to the value of the AZURE_OPENAI_ENDPOINT environment variable.
This URL is appended with /openai/deployments/{model}/embeddings. Where
model is the deployment name of the model.



4 embed_bedrock

api_key resolved using env var OPENAI_API_KEY

api_version The API version to use. Defaults to 2023-05-15.

model The deployment name of the model to use for generating embeddings.

batch_size split x into batches when embedding. Integer, limit of strings to include in a
single request.

api_args A list of additional arguments to pass to the API request body.

Value

If x is a character vector, then a numeric matrix is returned, where nrow = length(x) and ncol = <model-embedding-size>.
If x is a data.frame, then a new embedding matrix "column" is added, containing the matrix de-
scribed in the previous sentence.

A matrix of embeddings with 1 row per input string, or a dataframe with an ’embedding’ column.

embed_bedrock Embed text using a Bedrock model

Description

Embed text using a Bedrock model

Usage

embed_bedrock(x, model, profile = "", api_args = list())

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

model Currently only Cohere.ai and Amazon Titan models are supported. There are no
guardarails for the kind of model that is used, but the model must be available
in the AWS region specified by the profile. You may look for available models
in the Bedrock Model Catalog

profile AWS profile to use. It’s passed to paws.common::locate_credentials to locate
AWS credentials.

api_args Additional arguments to pass to the Bedrock API. Depending on the model, you
might be able to provide different parameters. Check the documentation for the
model you are using in the Bedrock user guide.

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html


embed_databricks 5

Value

If x is missing returns a function that can be called to get embeddings. If x is not missing, a matrix
of embeddings with 1 row per input string, or a dataframe with an ’embedding’ column.

See Also

embed_ollama()

embed_databricks Embed text using a Databricks model

Description

embed_databricks() gets embeddings for text using a model hosted in a Databricks workspace. It
relies on the ellmer package for managing Databricks credentials. See ellmer::chat_databricks
for more on supported modes of authentication.

Usage

embed_databricks(
x,
workspace = databricks_workspace(),
model = "databricks-bge-large-en",
batch_size = 512L

)

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

workspace The URL of a Databricks workspace, e.g. "https://example.cloud.databricks.com".
Will use the value of the environment variable DATABRICKS_HOST, if set.

model The name of a text embedding model.

batch_size split x into batches when embedding. Integer, limit of strings to include in a
single request.



6 embed_google_gemini

embed_google_gemini Embed using Google Vertex API platform

Description

Embed using Google Vertex API platform

Usage

embed_google_gemini(
x,
model = "gemini-embedding-001",
base_url = "https://generativelanguage.googleapis.com/v1beta",
api_key = get_envvar("GEMINI_API_KEY"),
dims = NULL,
task_type = "RETRIEVAL_QUERY",
batch_size = 20L

)

embed_google_vertex(
x,
model,
location,
project_id,
task_type = "RETRIEVAL_QUERY"

)

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

model Character specifying the embedding model. See supported models in Text em-
beddings API

base_url string, url where the service is available.

api_key resolved using env var GEMINI_API_KEY

dims An integer, can be used to truncate the embedding to a specific size.

task_type Used to convey intended downstream application to help the model produce
better embeddings. If left blank, the default used is "RETRIEVAL_QUERY".

• "RETRIEVAL_QUERY"

https://docs.cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api


embed_ollama 7

• "RETRIEVAL_DOCUMENT"

• "SEMANTIC_SIMILARITY"

• "CLASSIFICATION"

• "CLUSTERING"

• "QUESTION_ANSWERING"

• "FACT_VERIFICATION"

• "CODE_RETRIEVAL_QUERY" For more information about task types, see Choose
an embeddings task type.

batch_size split x into batches when embedding. Integer, limit of strings to include in a
single request.

location Location, e.g. us-east1, me-central1, africa-south1 or global.

project_id Project ID.

Functions

• embed_google_gemini(): Use the Gemini API to create embeddings.

Examples

embed_google_gemini("hello world")

## Not run:
embed_google_vertex(
"hello world",
model="gemini-embedding-001",
project = "<your-project-id>",
location = "us-central1"
)

## End(Not run)

embed_ollama Embed Text

Description

Embed Text

Usage

embed_ollama(
x,
base_url = "http://localhost:11434",
model = "embeddinggemma:300m",
batch_size = 10L

)

https://docs.cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/embeddings/task-types


8 embed_ollama

embed_openai(
x,
model = "text-embedding-3-small",
base_url = "https://api.openai.com/v1",
api_key = get_envvar("OPENAI_API_KEY"),
dims = NULL,
user = get_user(),
batch_size = 20L

)

embed_lm_studio(
x,
model,
base_url = "http://localhost:1234/v1",
api_key = "lm-studio",
dims = NULL,
user = get_user(),
batch_size = 20L

)

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

base_url string, url where the service is available.

model string; model name

batch_size split x into batches when embedding. Integer, limit of strings to include in a
single request.

api_key resolved using env var OPENAI_API_KEY

dims An integer, can be used to truncate the embedding to a specific size.

user User name passed via the API.

Value

If x is a character vector, then a numeric matrix is returned, where nrow = length(x) and ncol = <model-embedding-size>.
If x is a data.frame, then a new embedding matrix "column" is added, containing the matrix de-
scribed in the previous sentence.

A matrix of embeddings with 1 row per input string, or a dataframe with an ’embedding’ column.



embed_snowflake 9

Functions

• embed_lm_studio(): Embed Text using LMStudio. Indentical to embed_openai() but with
suitable defaults for LMStudio.

Examples

text <- c("a chunk of text", "another chunk of text", "one more chunk of text")
## Not run:
text |>

embed_ollama() |>
str()

text |>
embed_openai() |>
str()

## End(Not run)

embed_snowflake Generate embeddings using Snowflake

Description

Uses the Cortex API EMBED functions to generate embeddings.

Usage

embed_snowflake(
x,
account = snowflake_account(),
credentials = NULL,
model = "snowflake-arctic-embed-m-v1.5",
api_args = list(),
batch_size = 512L

)

Arguments

x x can be:

• A character vector, in which case a matrix of embeddings is returned.
• A data frame with a column named text, in which case the dataframe is

returned with an additional column named embedding.
• Missing or NULL, in which case a function is returned that can be called to

get embeddings. This is a convenient way to partial in additional arguments
like model, and is the most convenient way to produce a function that can
be passed to the embed argument of ragnar_store_create().

https://docs.snowflake.com/en/release-notes/2025/other/2025-04-14-cortex-offers-embed-rest-api


10 MarkdownDocument

account A Snowflake account identifier, e.g. "testorg-test_account". Defaults to
the value of the SNOWFLAKE_ACCOUNT environment variable.

credentials A list of authentication headers to pass into httr2::req_headers(), a function
that returns them when called, or NULL, the default, to use ambient credentials.

model string; model name

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Combined with the body object generated by ellmer with modifyList().

batch_size split x into batches when embedding. Integer, limit of strings to include in a
single request.

Details

See complete documentation.

Authentication

• a Programmatic Access Token (PAT) defined via the SNOWFLAKE_PAT environment vari-
able.

• A static OAuth token defined via the SNOWFLAKE_TOKEN environment variable.

• Key-pair authentication credentials defined via the SNOWFLAKE_USER and SNOWFLAKE_PRIVATE_KEY
(which can be a PEM-encoded private key or a path to one) environment variables.

• Posit Workbench-managed Snowflake credentials for the corresponding account.

• Viewer-based credentials on Posit Connect. Requires the connectcreds package.

MarkdownDocument Markdown documents

Description

MarkdownDocument represents a complete Markdown document stored as a single character string.
The constructor normalizes text by collapsing lines and ensuring UTF-8 encoding, so downstream
code can rely on a consistent format.

read_as_markdown() is the recommended way to create a MarkdownDocument. The constructor
itself is exported only so advanced users can construct one by other means when needed.

Arguments

text [string] Markdown text.

origin [string] Optional source path or URL. Defaults to the "origin" attribute of
text, if present, otherwise NULL.

Value

An S7 object that inherits from MarkdownDocument, which is a length 1 string of markdown text
with an @origin property.

https://docs.snowflake.com/en/user-guide/admin-account-identifier
https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-rest-api#label-cortex-llm-embed-function


MarkdownDocumentChunks 11

Examples

md <- MarkdownDocument(
"# Title\n\nSome text.",
origin = "example.md"

)
md

MarkdownDocumentChunks

Markdown documents chunks

Description

MarkdownDocumentChunks stores information about candidate chunks in a Markdown document.
It is a tibble with three required columns:

• start, end — integers. These are character positions (1-based, inclusive) in the source
MarkdownDocument, so that substring(md, start, end) yields the chunk text. Ranges can
overlap.

• context — character. A general-purpose field for adding context to a chunk. This col-
umn is combined with text to augment chunk content when generating embeddings with
ragnar_store_insert(), and is also returned by ragnar_retrieve(). Keep in mind that
when chunks are deoverlapped (in ragnar_retrieve() or chunks_deoverlap()), only the
context value from the first chunk is kept. markdown_chunk() by default populates this col-
umn with all the markdown headings that are in-scope at the chunk start position.

Additional columns can be included.

The original document is available via the @document property.

For normal use, chunk a Markdown document with markdown_chunk(); the class constructor itself
is exported only so advanced users can generate or tweak chunks by other means.

Arguments

chunks A data frame containing start, end, and context columns, and optionally other
columns.

document A MarkdownDocument.

Value

An S7 object that inherits from MarkdownDocumentChunks, which is also a tibble.

See Also

MarkdownDocument()



12 markdown_chunk

Examples

doc_text <- "# A\n\nB\n\n## C\n\nD" # can be readLines() output, etc.
doc <- MarkdownDocument(doc_text, origin = "some/where")
chunk_positions <- tibble::tibble(

start = c(1L, 9L),
end = c(8L, 15L),
context = c("", "# A"),
text = substring(doc, start, end)

)
chunks <- MarkdownDocumentChunks(chunk_positions, doc)
identical(chunks@document, doc)

markdown_chunk Chunk a Markdown document

Description

markdown_chunk() splits a single Markdown string into shorter optionally overlapping chunks
while nudging cut points to the nearest sensible boundary (heading, paragraph, sentence, line, word,
or character). It returns a tibble recording the character ranges, headings context, and text for each
chunk.

Usage

markdown_chunk(
md,
target_size = 1600L,
target_overlap = 0.5,
...,
max_snap_dist = target_size * (1 - target_overlap)/3,
segment_by_heading_levels = integer(),
context = TRUE,
text = TRUE

)

Arguments

md A MarkdownDocument, or a length-one character vector containing Markdown.

target_size Integer. Target chunk size in characters. Default: 1600 (≈ 400 tokens, or
1 page of text). Actual chunk size may differ from the target by up to 2 *
max_snap_dist. When set to NULL, NA or Inf and used with segment_by_heading_levels,
chunk size is unbounded and each chunk corresponds to a segment.

target_overlap Numeric in [0, 1). Fraction of desired overlap between successive chunks.
Default: 0.5. Even when 0, some overlap can occur because the last chunk is
anchored to the document end.

... These dots are for future extensions and must be empty.



markdown_chunk 13

max_snap_dist Integer. Furthest distance (in characters) a cut point may move to reach a se-
mantic boundary. Defaults to one third of the stride size between target chunk
starts. Chunks that end up on identical boundaries are merged.

segment_by_heading_levels

Integer vector with possible values 1:6. Headings at these levels are treated
as segment boundaries; chunking is performed independently for each segment.
No chunk will overlap a segment boundary, and any future deoverlapping will
not combine segments. Each segment will have a chunk that starts at the segment
start and a chunk that ends at the segment end (these may be the same chunk or
overlap substantially if the segment is short). Default: disabled.

context Logical. Add a context column containing the Markdown headings in scope at
each chunk start. Default: TRUE.

text Logical. If TRUE, include a text column with the chunk contents. Default: TRUE.

Value

A MarkdownDocumentChunks object, which is a tibble (data.frame) with with columns start end,
and optionally context and text. It also has a @document property, which is the input md document
(potentially normalized and converted to a MarkdownDocument).

See Also

ragnar_chunks_view() to interactively inspect the output of markdown_chunk(). See also MarkdownDocumentChunks()
and MarkdownDocument(), where the input and return value of markdown_chunk() are described
more fully.

Examples

md <- "
# Title

## Section 1

Some text that is long enough to be chunked.

A second paragraph to make the text even longer.

## Section 2

More text here.

### Section 2.1

Some text under a level three heading.

#### Section 2.1.1

Some text under a level four heading.

## Section 3



14 mcp_serve_store

Even more text here.
"

markdown_chunk(md, target_size = 40)
markdown_chunk(md, target_size = 40, target_overlap = 0)
markdown_chunk(md, target_size = NA, segment_by_heading_levels = c(1, 2))
markdown_chunk(md, target_size = 40, max_snap_dist = 100)

mcp_serve_store Serve a Ragnar store over MCP

Description

Launches an MCP server (via mcptools::mcp_server()) that exposes a retrieval tool backed by a
Ragnar store. This lets MCP-enabled clients (e.g., Codex CLI, Claude Code) call into your store to
retrieve relevant excerpts.

Usage

mcp_serve_store(
store,
store_description = "the knowledge store",
...,
name = NULL,
title = NULL,
extra_tools = NULL

)

Arguments

store A RagnarStore object or a file path to a Ragnar DuckDB store. If a character
path is supplied, it is opened with ragnar_store_connect().

store_description

Optional string used in the tool description presented to clients.

... arguments passed on to ragnar_retrieve().

name, title Optional tool function name and title. By default, store@name and store@title
will be used if present. The tool name must be a valid R function name and
should be unique with the tools registered with the ellmer::Chat object. title
is used for user-friendly display.

extra_tools Optional additional tools (list of ellmer::tool() objects) to serve alongside
the retrieval tool.



ragnar_chunks_view 15

Details

To use this function with Codex CLI, add something like this to ~/.codex/config.toml

[mcp_servers.quartohelp]
command = "Rscript"
args = [
"-e",
"ragnar::mcp_serve_store('/path/to/ragnar.store', top_k=10)"

]

You can confirm the agent can search the ragnar store by inspecting the output from the /mcp
command, or by asking it "What tools do you have available?".

Value

This function blocks the current R process by running an MCP server. It is intended for non-
interactive use. Called primarily for side-effects.

ragnar_chunks_view View chunks with the store inspector

Description

Visualize chunks read by ragnar_read() for quick inspection. Helpful for inspecting the results
of chunking and reading while iterating on the ingestion pipeline.

Usage

ragnar_chunks_view(chunks)

Arguments

chunks A data frame containing a few chunks.

ragnar_find_links Find links on a page

Description

Find links on a page

https://developers.openai.com/codex/cli/


16 ragnar_find_links

Usage

ragnar_find_links(
x,
depth = 0L,
children_only = FALSE,
progress = TRUE,
...,
url_filter = identity,
validate = FALSE

)

Arguments

x URL, HTML file path, or XML document. For Markdown, convert to HTML
using commonmark::markdown_html() first.

depth Integer specifying how many levels deep to crawl for links. When depth > 0,
the function will follow child links (links with x as a prefix) and collect links
from those pages as well.

children_only Logical or string. If TRUE, returns only child links (those having x as a prefix).
If FALSE, returns all links found on the page. Note that regardless of this setting,
only child links are followed when depth > 0.

progress Logical, draw a progress bar if depth > 0.

... Currently unused. Must be empty.

url_filter A function that takes a character vector of URL’s and may subset them to return
a smaller list. This can be useful for filtering out URL’s by rules different than
children_only which only checks the prefix.

validate Default is FALSE. If TRUE sends a HEAD request for each link and removes those
that are not accessible. Requests are sent in parallel using httr2::req_perform_parallel().

Value

A character vector of links on the page.

Examples

## Not run:
ragnar_find_links("https://r4ds.hadley.nz/base-R.html")
ragnar_find_links("https://ellmer.tidyverse.org/")
ragnar_find_links(

paste0("https://github.com/Snowflake-Labs/sfquickstarts/",
"tree/master/site/sfguides/src/build_a_custom_model_for_anomaly_detection"),

children_only = "https://github.com/Snowflake-Labs/sfquickstarts",
depth = 1

)

## End(Not run)



ragnar_register_tool_retrieve 17

ragnar_register_tool_retrieve

Register a ’retrieve’ tool with ellmer

Description

Register a ’retrieve’ tool with ellmer

Usage

ragnar_register_tool_retrieve(
chat,
store,
store_description = "the knowledge store",
...,
name = NULL,
title = NULL

)

Arguments

chat a ellmer:::Chat object.
store a string of a store location, or a RagnarStore object.
store_description

Optional string, used for composing the tool description.
... arguments passed on to ragnar_retrieve().
name, title Optional tool function name and title. By default, store@name and store@title

will be used if present. The tool name must be a valid R function name and
should be unique with the tools registered with the ellmer::Chat object. title
is used for user-friendly display.

Value

chat, invisibly.

Examples

system_prompt <- stringr::str_squish("
You are an expert assistant in R programming.
When responding, you first quote relevant material from books or documentation,
provide links to the sources, and then add your own context and interpretation.

")
chat <- ellmer::chat_openai(system_prompt, model = "gpt-4.1")

store <- ragnar_store_connect("r4ds.ragnar.duckdb")
ragnar_register_tool_retrieve(chat, store)
chat$chat("How can I subset a dataframe?")



18 ragnar_retrieve

ragnar_retrieve Retrieve chunks from a RagnarStore

Description

Combines both vss and bm25 search and returns the union of chunks retrieved by both methods.

Usage

ragnar_retrieve(store, text, top_k = 3L, ..., deoverlap = TRUE)

Arguments

store A RagnarStore object returned by ragnar_store_connect() or ragnar_store_create().

text Character. Query string to match.

top_k Integer. Number of nearest entries to find per method.

... Additional arguments passed to the lower-level retrieval functions.

deoverlap Logical. If TRUE (default) and store@version == 2, overlapping chunks are
merged with chunks_deoverlap().

Value

A tibble of retrieved chunks. Each row represents a chunk and always contains a text column.

Note

The results are not re-ranked after identifying the unique values.

See Also

Other ragnar_retrieve: ragnar_retrieve_bm25(), ragnar_retrieve_vss(), ragnar_retrieve_vss_and_bm25()

Examples

## Build a small store with categories
store <- ragnar_store_create(

embed = \(x) ragnar::embed_openai(x, model = "text-embedding-3-small"),
extra_cols = data.frame(category = character()),
version = 1 # store text chunks directly

)

ragnar_store_insert(
store,
data.frame(
category = c(rep("pets", 3), rep("dessert", 3)),
text = c("playful puppy", "sleepy kitten", "curious hamster",

"chocolate cake", "strawberry tart", "vanilla ice cream")
)



ragnar_retrieve_bm25 19

)
ragnar_store_build_index(store)

# Top 3 chunks without filtering
ragnar_retrieve(store, "sweet")

# Combine filter with similarity search
ragnar_retrieve(store, "sweet", filter = category == "dessert")

ragnar_retrieve_bm25 Retrieves chunks using the BM25 score

Description

BM25 refers to Okapi Best Matching 25. See doi:10.1561/1500000019 for more information.

Usage

ragnar_retrieve_bm25(
store,
text,
top_k = 3L,
...,
k = 1.2,
b = 0.75,
conjunctive = FALSE,
filter

)

Arguments

store A RagnarStore object returned by ragnar_store_connect() or ragnar_store_create().

text String, the text to search for.

top_k Integer. Number of nearest entries to find per method.

... Additional arguments passed to the lower-level retrieval functions.

k, b k1 and b parameters in the Okapi BM25 retrieval method.

conjunctive Whether to make the query conjunctive i.e., all terms in the query string must be
present in order for a chunk to be retrieved.

filter Optional. A filter expression evaluated with dplyr::filter().

Value

A tibble ordered by descending BM25 metric_value (higher is more relevant), with a metric_name
column set to "bm25".

https://doi.org/10.1561/1500000019


20 ragnar_retrieve_vss

See Also

Other ragnar_retrieve: ragnar_retrieve(), ragnar_retrieve_vss(), ragnar_retrieve_vss_and_bm25()

ragnar_retrieve_vss Vector Similarity Search Retrieval

Description

Computes a similarity measure between the query and the document embeddings and uses this
similarity to rank and retrieve document chunks.

Usage

ragnar_retrieve_vss(
store,
query,
top_k = 3L,
...,
method = "cosine_distance",
query_vector = store@embed(query),
filter

)

Arguments

store A RagnarStore object returned by ragnar_store_connect() or ragnar_store_create().

query Character. The query string to embed and use for similarity search.

top_k Integer. Maximum number of document chunks to retrieve. Defaults to 3.

... Additional arguments passed to methods.

method Character. Similarity method to use: "cosine_distance", "euclidean_distance",
or "negative_inner_product". Defaults to "cosine_distance".

query_vector Numeric vector. The embedding for query. Defaults to store@embed(query).

filter Optional. A filter expression evaluated with dplyr::filter().

Details

Supported methods:

• cosine_distance – cosine of the angle between two vectors.

• euclidean_distance – L2 distance between vectors.

• negative_inner_product – negative sum of element-wise products.

If filter is supplied, the function first performs the similarity search, then applies the filter in an
outer SQL query. It uses the HNSW index when possible and falls back to a sequential scan for
large result sets or filtered queries.



ragnar_store_atlas 21

Value

A tibble with the top_k retrieved chunks, ordered by metric_value.

Note

The results are not re-ranked after identifying the unique values.

See Also

Other ragnar_retrieve: ragnar_retrieve(), ragnar_retrieve_bm25(), ragnar_retrieve_vss_and_bm25()

Examples

## Build a small store with categories
store <- ragnar_store_create(

embed = \(x) ragnar::embed_openai(x, model = "text-embedding-3-small"),
extra_cols = data.frame(category = character()),
version = 1 # store text chunks directly

)

ragnar_store_insert(
store,
data.frame(
category = c(rep("pets", 3), rep("dessert", 3)),
text = c("playful puppy", "sleepy kitten", "curious hamster",

"chocolate cake", "strawberry tart", "vanilla ice cream")
)

)
ragnar_store_build_index(store)

# Top 3 chunks without filtering
ragnar_retrieve(store, "sweet")

# Combine filter with similarity search
ragnar_retrieve(store, "sweet", filter = category == "dessert")

ragnar_store_atlas Visualize a store using Embedding Atlas

Description

Visualize a store using Embedding Atlas



22 ragnar_store_build_index

Usage

ragnar_store_atlas(
store,
...,
host = "localhost",
port = 3030,
launch.browser = interactive()

)

Arguments

store A RagnarStore object to inspect.

... Passed to shiny::runApp().

host Host to run the Embedding Atlas server on.

port Port to run the Embedding Atlas server on.

launch.browser Whether to launch the browser automatically.

Note

This function requires the embedding-atlas Python package. Make sure you have it installed in
your reticulate Python environment. It also uses arrow to transfer data from the DuckDB store to
Python.

Examples

## Not run:
# Connect or create a store
store <- ragnar_store_connect(':memory:')
# Launch the Embedding Atlas app
ragnar_store_atlas(store)

## End(Not run)

ragnar_store_build_index

Build a Ragnar Store index

Description

A search index must be built before calling ragnar_retrieve(). If additional entries are added to
the store with ragnar_store_insert(), ragnar_store_build_index() must be called again to
rebuild the index.



ragnar_store_create 23

Usage

ragnar_store_build_index(store, type = c("vss", "fts"))

Arguments

store a RagnarStore object

type The retrieval search type to build an index for.

Value

store, invisibly.

ragnar_store_create Create and connect to a vector store

Description

Create and connect to a vector store

Usage

ragnar_store_create(
location = ":memory:",
embed = embed_ollama(),
...,
embedding_size = ncol(embed("foo")),
overwrite = FALSE,
extra_cols = NULL,
name = NULL,
title = NULL,
version = 2

)

ragnar_store_connect(location, ..., read_only = TRUE)

Arguments

location filepath, or :memory:. Location can also be a database name specified with
md:dbname, in this case the database will be created in MotherDuck after a con-
nection is established.

embed A function that is called with a character vector and returns a matrix of embed-
dings. Note this function will be serialized and then deserialized in new R ses-
sions, so it cannot reference to any objects in the global or parent environments.
Make sure to namespace all function calls with ::. If additional R objects must
be available in the function, you can optionally supply a carrier::crate()
with packaged data. It can also be NULL for stores that don’t need to embed their
texts, for example, if only using FTS algorithms such as ragnar_retrieve_bm25().



24 ragnar_store_create

... unused; must be empty.

embedding_size integer

overwrite logical, what to do if location already exists

extra_cols A zero row data frame used to specify additional columns that should be added
to the store. Such columns can be used for adding additional context when re-
trieving. See the examples for more information. vctrs::vec_cast() is used
to consistently perform type checks and casts when inserting with ragnar_store_insert().

name A unique name for the store. Must match the ^[a-zA-Z0-9_-]+$ regex. Used
by ragnar_register_tool_retrieve() for registering tools.

title A title for the store, used by ragnar_register_tool_retrieve() when the
store is registered with an ellmer::Chat object.

version integer. The version of the store to create. See details.

read_only logical, whether the returned connection can be used to modify the store.

Details

Store versions:
Version 2 – documents with chunk ranges (default)
With version = 2, ragnar stores each document once and records the start and end positions of
its chunks. This provides strong support for overlapping chunk ranges with de-overlapping at
retrieval, and generally allows retrieving arbitrary ranges from source documents, but does not
support modifying chunks directly before insertion. Chunks can be augmented via the context
field and with additional fields passed to extra_cols. The easiest way to prepare chunks for
version = 2 is with read_as_markdown() and markdown_chunk().
Version 1 – flat chunks
With version = 1, ragnar keeps all chunks in a single table. This lets you easily modify chunk
text before insertion. However, dynamic rechunking (de-overlapping) or extracting arbitrary
ranges from source documents is not supported, since the original full documents are no longer
available. Chunks can be augmented by modifying the chunk text directly (e.g., with glue()).
Additionally, if you intend to call ragnar_store_update(), it is your responsibility to provide
rlang::hash(original_full_document) with each chunk. The easiest way to prepare chunks
for version = 1 is with ragnar_read() and ragnar_chunk().

Value

a RagnarStore object

Examples

# A store with a dummy embedding
store <- ragnar_store_create(

embed = \(x) matrix(stats::runif(10), nrow = length(x), ncol = 10),
version = 1

)
ragnar_store_insert(store, data.frame(text = "hello"))

# A store with a schema. When inserting into this store, users need to



ragnar_store_ingest 25

# provide an `area` column.
store <- ragnar_store_create(

embed = \(x) matrix(stats::runif(10), nrow = length(x), ncol = 10),
extra_cols = data.frame(area = character()),
version = 1

)
ragnar_store_insert(store, data.frame(text = "hello", area = "rag"))

# If you already have a data.frame with chunks that will be inserted into
# the store, you can quickly create a suitable store with `vec_ptype()`:
chunks <- data.frame(text = letters, area = "rag")
store <- ragnar_store_create(

embed = \(x) matrix(stats::runif(10), nrow = length(x), ncol = 10),
extra_cols = vctrs::vec_ptype(chunks),
version = 1

)
ragnar_store_insert(store, chunks)

# version = 2 (the default) has support for deoverlapping
store <- ragnar_store_create(

# if embed = NULL, then only bm25 search is used (not vss)
embed = NULL

)
doc <- MarkdownDocument(

paste0(letters, collapse = ""),
origin = "/some/where"

)
chunks <- markdown_chunk(doc, target_size = 3, target_overlap = 2 / 3)
chunks$context <- substring(chunks$text, 1, 1)
chunks
ragnar_store_insert(store, chunks)
ragnar_store_build_index(store)

ragnar_retrieve(store, "abc bcd xyz", deoverlap = FALSE)
ragnar_retrieve(store, "abc bcd xyz", deoverlap = TRUE)

ragnar_store_ingest Concurrently ingest documents into a Ragnar store

Description

ragnar_store_ingest() distributes document preparation work over multiple processes using mi-
rai. Each worker calls prepare on a single path and returns the resulting chunks (and any warnings)
to the main process, which then writes them to the store.

Usage

ragnar_store_ingest(
store,

https://mirai.r-lib.org
https://mirai.r-lib.org


26 ragnar_store_insert

paths,
prepare = function(path) markdown_chunk(read_as_markdown(path)),
n_workers = NULL,
progress = TRUE,
build_index = TRUE

)

Arguments

store A RagnarStore. Currently only version 2 stores are supported.

paths Character vector of file paths or URLs to ingest.

prepare Function that converts a single path into a MarkdownDocumentChunks object. It
is called with an argument path and should return the prepared chunks (with or
without an embedding column).

n_workers Number of worker processes to use. Defaults to the smaller of length(paths)
and parallel::detectCores() (with a minimum of 1).

progress Logical; if TRUE, show a CLI progress bar.

build_index Logical; whether to call ragnar_store_build_index() after ingestion.

Value

store, invisibly.

ragnar_store_insert Inserts or updates chunks in a RagnarStore

Description

Inserts or updates chunks in a RagnarStore

Usage

ragnar_store_insert(store, chunks)

ragnar_store_update(store, chunks)

Arguments

store a RagnarStore object

chunks Content to insert or update. The precise input structure depends on store@version.
See Details.



ragnar_store_inspect 27

Details

Store Version 2

chunks must be MarkdownDocumentChunks object.

Store Version 1

chunks must be a data frame containing origin, hash, and text columns. We first filter out chunks
for which origin and hash are already in the store. If an origin is in the store, but with a different
hash, we replace all of its chunks with the new chunks. Otherwise, a regular insert is performed.

This can help avoid needing to compute embeddings for chunks that are already in the store.

Value

store, invisibly.

ragnar_store_inspect Launch the Ragnar Store Inspector

Description

Launches a Shiny app for interactively browsing a Ragnar store, previewing document chunks, and
testing search behavior.

Usage

ragnar_store_inspect(store, ...)

Arguments

store A RagnarStore object to inspect.

... Passed to shiny::runApp().

Details

The Store Inspector is a Shiny app for exploring a RagnarStore. Use it to quickly see what was
ingested and preview search results for different queries. Type a query in the search bar and choose
BM25 or VSS. The list of documents on the left updates, and clicking a row shows its text and
metadata on the right. You can drag the divider to resize the document list and preview area.

The preview area shows the chunk content. You can view it as rendered Markdown or switch to
“Raw Text” to see the stored text (long lines are wrapped). Metadata is shown above the text in
YAML format, including any extra fields stored with the chunk.

Value

NULL (invisibly).



28 read_as_markdown

Keyboard Shortcuts

Context Shortcut Action
Global /, Esc Focus search; clear it
Documents list ArrowUp/ArrowDown, j/k Move selection
Vertical Divider ArrowLeft/ArrowRight (+Shift), g/Home Resize; reset

read_as_markdown Convert files to Markdown

Description

Convert files to Markdown

Usage

read_as_markdown(
path,
...,
origin = path,
html_extract_selectors = c("main"),
html_zap_selectors = c("nav"),
youtube_transcript_formatter = NULL

)

Arguments

path [string] A filepath or URL. Accepts a wide variety of file types, including plain
text (markdown), PDF, PowerPoint, Word, Excel, images (EXIF metadata and
OCR), audio (EXIF metadata and speech transcription), HTML, text-based for-
mats (CSV, JSON, XML), ZIP files (iterates over contents), YouTube URLs, and
EPUBs.

... Passed on to MarkItDown.convert().

origin The value to use for the @origin property of the returned MarkdownDocument.
html_extract_selectors

Character vector of CSS selectors. If a match for a selector is found in the
document, only the matched node’s contents are converted. Unmatched extract
selectors have no effect.

html_zap_selectors

Character vector of CSS selectors. Elements matching these selectors will be
excluded ("zapped") from the HTML document before conversion to markdown.
This is useful for removing navigation bars, sidebars, headers, footers, or other
unwanted elements. By default, navigation elements (nav) are excluded.



read_as_markdown 29

youtube_transcript_formatter

A function used to customize how YouTube transcript data is converted to mark-
down. It receives a tibble/data.frame with columns text (chr), start (dbl,
seconds), and duration (dbl, seconds), along with a "youtube_metadata" at-
tribute, a named list containing elements language, language_code, video_id,
and is_generated. The formatter must return a single string; by default it be-
haves like \(transcript) paste0(transcript$text, collapse = " ").
Provide a custom formatter to include timestamps or links (see examples).

Details

Converting HTML:
When converting HTML, you might want to omit certain elements, like sidebars, headers, footers,
etc. You can pass CSS selector strings to either extract nodes or exclude nodes during conversion.
The easiest way to make selectors is to use SelectorGadget: https://rvest.tidyverse.org/
articles/selectorgadget.html

You can also right-click on a page and select "Inspect Element" in a browser to better understand
an HTML page’s structure.
For comprehensive or advanced usage of CSS selectors, consult https://www.crummy.com/
software/BeautifulSoup/bs4/doc/#css-selectors-through-the-css-property and https:
//facelessuser.github.io/soupsieve/selectors/

Value

A MarkdownDocument object, which is a single string of Markdown with an @origin property.

Examples

## Not run:
# Convert HTML
md <- read_as_markdown("https://r4ds.hadley.nz/base-R.html")
md

cat_head <- \(md, n = 10) writeLines(head(strsplit(md, "\n")[[1L]], n))
cat_head(md)

## Using selector strings

# By default, this output includes the sidebar and other navigational elements
url <- "https://duckdb.org/code_of_conduct"
read_as_markdown(url) |> cat_head(15)

# To extract just the main content, use a selector
read_as_markdown(url, html_extract_selectors = "#main_content_wrap") |>

cat_head()

# Alternative approach: zap unwanted nodes
read_as_markdown(

url,
html_zap_selectors = c(
"header", # name

https://rvest.tidyverse.org/articles/selectorgadget.html
https://rvest.tidyverse.org/articles/selectorgadget.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors-through-the-css-property
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors-through-the-css-property
https://facelessuser.github.io/soupsieve/selectors/
https://facelessuser.github.io/soupsieve/selectors/


30 read_as_markdown

".sidenavigation", # class
".searchoverlay", # class
"#sidebar" # ID

)
) |> cat_head()

# Quarto example
read_as_markdown(

"https://quarto.org/docs/computations/python.html",
html_extract_selectors = "main",
html_zap_selectors = c(

"#quarto-sidebar",
"#quarto-margin-sidebar",
"header",
"footer",
"nav"

)
) |> cat_head()

## Convert PDF
pdf <- file.path(R.home("doc"), "NEWS.pdf")
read_as_markdown(pdf) |> cat_head(15)
## Alternative:
# pdftools::pdf_text(pdf) |> cat_head()

# Convert images to markdown descriptions using OpenAI
jpg <- file.path(R.home("doc"), "html", "logo.jpg")
if (Sys.getenv("OPENAI_API_KEY") != "") {

# if (xfun::is_macos()) system("brew install ffmpeg")
reticulate::py_require("openai")
llm_client <- reticulate::import("openai")$OpenAI()
read_as_markdown(jpg, llm_client = llm_client, llm_model = "gpt-4.1-mini") |>

writeLines()
# # Description:
# The image displays the logo of the R programming language. It features a
# large, stylized capital letter "R" in blue, positioned prominently in the
# center. Surrounding the "R" is a gray oval shape that is open on the right
# side, creating a dynamic and modern appearance. The R logo is commonly
# associated with statistical computing, data analysis, and graphical
# representation in various scientific and professional fields.

}

# Alternative approach to image conversion:
if (

Sys.getenv("OPENAI_API_KEY") != "" &&
rlang::is_installed("ellmer") &&
rlang::is_installed("magick")

) {
chat <- ellmer::chat_openai(echo = TRUE)
chat$chat("Describe this image", ellmer::content_image_file(jpg))

}

# YouTube transcripts



read_as_markdown 31

## read_as_markdown() fetches transcripts for YouTube links
cat_head(read_as_markdown("https://youtu.be/GELhdezYmP0"))

## The default transcript omits timestamps. Supply a custom
## `youtube_transcript_formatter` to control the output. This example formats
## the transcript with timestamped YouTube links.

format_youtube_timestamp <- function(time) {
h <- time %/% 3600
time <- time %% 3600
m <- time %/% 60
time <- time %% 60
s <- floor(time)
out <- paste0(h, "h", m, "m", s, "s")
out <- sub("^0h", "", out)
out <- sub("^0m", "", out)
out

}

format_transcript_with_timestamps <-
function(data, min_timestamp_stride_seconds = 30, links = FALSE) {
ts <- format_youtube_timestamp(data$start)
if (links) {

video_id <- attr(data, "youtube_metadata")$video_id
ts <- sprintf("\n<https://youtu.be/%s?t=%s>\n", video_id, ts)

} else {
ts <- sprintf("\n[%s] ", ts)

}

if (!is.null(min_timestamp_stride_seconds)) {
show <- c(TRUE, as.logical(diff(x %/% min_timestamp_stride_seconds)))
ts[!show] <- ""

}

paste0(ts, data$text, sep = "", collapse = "\n")
}

read_as_markdown(
"https://www.youtube.com/watch?v=GELhdezYmP0",
youtube_transcript_formatter = \(data) {

format_transcript_with_timestamps(data, links = TRUE)
}

) |>
cat_head(n = 60)

## End(Not run)



Index

∗ ragnar_retrieve
ragnar_retrieve, 18
ragnar_retrieve_bm25, 19
ragnar_retrieve_vss, 20

chunks_deoverlap, 2
chunks_deoverlap(), 18
commonmark::markdown_html(), 16

ellmer::Chat, 14, 17, 24
ellmer::chat_databricks, 5
embed_azure_openai, 3
embed_bedrock, 4
embed_databricks, 5
embed_databricks(), 5
embed_google_gemini, 6
embed_google_vertex

(embed_google_gemini), 6
embed_lm_studio (embed_ollama), 7
embed_ollama, 7
embed_ollama(), 5
embed_openai (embed_ollama), 7
embed_snowflake, 9

httr2::req_headers(), 10
httr2::req_perform_parallel(), 16

markdown_chunk, 12
markdown_chunk(), 11
MarkdownDocument, 10, 13, 29
MarkdownDocument(), 11, 13
MarkdownDocumentChunks, 11, 13
MarkdownDocumentChunks(), 13
mcp_serve_store, 14
mcptools::mcp_server(), 14
modifyList(), 10

paws.common::locate_credentials, 4

ragnar_chunks_view, 15
ragnar_chunks_view(), 13

ragnar_find_links, 15
ragnar_read(), 15
ragnar_register_tool_retrieve, 17
ragnar_register_tool_retrieve(), 24
ragnar_retrieve, 18, 20, 21
ragnar_retrieve(), 3
ragnar_retrieve_bm25, 18, 19, 21
ragnar_retrieve_bm25(), 23
ragnar_retrieve_vss, 18, 20, 20
ragnar_retrieve_vss_and_bm25, 18, 20, 21
ragnar_store_atlas, 21
ragnar_store_build_index, 22
ragnar_store_connect

(ragnar_store_create), 23
ragnar_store_connect(), 14
ragnar_store_create, 23
ragnar_store_ingest, 25
ragnar_store_insert, 26
ragnar_store_insert(), 24
ragnar_store_inspect, 27
ragnar_store_update

(ragnar_store_insert), 26
read_as_markdown, 28
read_as_markdown(), 10

shiny::runApp(), 22, 27

tibble, 3

vctrs::vec_cast(), 24

32


	chunks_deoverlap
	embed_azure_openai
	embed_bedrock
	embed_databricks
	embed_google_gemini
	embed_ollama
	embed_snowflake
	MarkdownDocument
	MarkdownDocumentChunks
	markdown_chunk
	mcp_serve_store
	ragnar_chunks_view
	ragnar_find_links
	ragnar_register_tool_retrieve
	ragnar_retrieve
	ragnar_retrieve_bm25
	ragnar_retrieve_vss
	ragnar_store_atlas
	ragnar_store_build_index
	ragnar_store_create
	ragnar_store_ingest
	ragnar_store_insert
	ragnar_store_inspect
	read_as_markdown
	Index

