
Package ‘qs2’
January 20, 2026

Type Package

Title Efficient Serialization of R Objects

Version 0.1.7

Date 2026-01-18

Maintainer Travers Ching <traversc@gmail.com>

Description Streamlines and accelerates the process of saving and loading R objects, improv-
ing speed and compression compared to other methods. The package provides two compres-
sion formats: the 'qs2' format, which uses R serialization via the C API while optimizing com-
pression and disk I/O, and the 'qdata' format, featuring custom serialization for slightly faster per-
formance and better compression. Additionally, the 'qs2' format can be directly con-
verted to the standard 'RDS' format, ensuring long-term compatibility with future versions of R.

License GPL-3

LazyData true

Biarch true

Depends R (>= 3.5.0)

Imports Rcpp, stringfish (>= 0.18.0)

LinkingTo Rcpp, stringfish, RcppParallel

Suggests knitr, rmarkdown, dplyr, data.table, stringi

SystemRequirements GNU make

Encoding UTF-8

RoxygenNote 7.3.3

VignetteBuilder knitr

Copyright This package includes code from the 'zstd' library owned by
Facebook, Inc. and created by Yann Collet; and code derived
from the 'Blosc' library created and owned by Francesc Alted.

URL https://github.com/qsbase/qs2

BugReports https://github.com/qsbase/qs2/issues

NeedsCompilation yes

1

https://github.com/qsbase/qs2
https://github.com/qsbase/qs2/issues

2 Contents

Author Travers Ching [aut, cre, cph],
Yann Collet [ctb, cph] (Yann Collet is the author of the bundled zstd),
Facebook, Inc. [cph] (Facebook is the copyright holder of the bundled
zstd code),

Reichardt Tino [ctb, cph] (Contributor/copyright holder of zstd bundled
code),

Skibinski Przemyslaw [ctb, cph] (Contributor/copyright holder of zstd
bundled code),

Mori Yuta [ctb, cph] (Contributor/copyright holder of zstd bundled
code),

Francesc Alted [ctb, cph] (Shuffling routines derived from Blosc
library)

Repository CRAN

Date/Publication 2026-01-20 06:10:02 UTC

Contents
base85_decode . 3
base85_encode . 3
base91_decode . 4
base91_encode . 4
blosc_shuffle_raw . 5
blosc_unshuffle_raw . 6
catquo . 6
decode_source . 7
encode_source . 7
qd_deserialize . 8
qd_read . 9
qd_save . 10
qd_serialize . 11
qopt . 12
qs_deserialize . 13
qs_read . 14
qs_readm . 15
qs_save . 16
qs_savem . 17
qs_serialize . 17
qs_to_rds . 18
qx_dump . 19
rds_to_qs . 20
starnames . 21
xxhash_raw . 21
zstd_compress_bound . 22
zstd_compress_raw . 22
zstd_decompress_raw . 23
zstd_file_functions . 24
zstd_in . 25

base85_decode 3

Index 26

base85_decode Z85 Decoding

Description

Decodes a Z85 encoded string back to binary

Usage

base85_decode(encoded_string)

Arguments

encoded_string A string.

Value

The original raw vector.

base85_encode Z85 Encoding

Description

Encodes binary data (a raw vector) as ASCII text using Z85 encoding format.

Usage

base85_encode(rawdata)

Arguments

rawdata A raw vector.

Details

Z85 is a binary to ASCII encoding format created by Pieter Hintjens in 2010 and is part of the
ZeroMQ RFC. The encoding has a dictionary using 85 out of 94 printable ASCII characters. There
are other base 85 encoding schemes, including Ascii85, which is popularized and used by Adobe.
Z85 is distinguished by its choice of dictionary, which is suitable for easier inclusion into source
code for many programming languages. The dictionary excludes all quote marks and other control
characters, and requires no special treatment in R and most other languages. Note: although the
official specification restricts input length to multiples of four bytes, the implementation here works
with any input length. The overhead (extra bytes used relative to binary) is 25%. In comparison,
base 64 encoding has an overhead of 33.33%.

https://rfc.zeromq.org/spec/32/

4 base91_encode

Value

A string representation of the raw vector.

References

https://rfc.zeromq.org/spec/32/

base91_decode basE91 Decoding

Description

Decodes a basE91 encoded string back to binary

Usage

base91_decode(encoded_string)

Arguments

encoded_string A string.

Value

The original raw vector.

base91_encode basE91 Encoding

Description

Encodes binary data (a raw vector) as ASCII text using basE91 encoding format.

Usage

base91_encode(rawdata, quote_character = "\"")

Arguments

rawdata A raw vector.
quote_character

The character to use in the encoding, replacing the double quote character. Must
be either a single quote ("'"), a double quote ("\"") or a dash ("-").

https://base91.sourceforge.net/

blosc_shuffle_raw 5

Details

basE91 (capital E for stylization) is a binary to ASCII encoding format created by Joachim Henke
in 2005. The overhead (extra bytes used relative to binary) is 22.97% on average. In comparison,
base 64 encoding has an overhead of 33.33%. The original encoding uses a dictionary of 91 out of
94 printable ASCII characters excluding - (dash), \ (backslash) and ' (single quote). The original
encoding does include double quote characters, which are less than ideal for strings in R. Therefore,
you can use the quote_character parameter to substitute dash or single quote.

Value

A string representation of the raw vector.

References

https://base91.sourceforge.net/

blosc_shuffle_raw Shuffle a raw vector

Description

Shuffles a raw vector using BLOSC shuffle routines.

Usage

blosc_shuffle_raw(data, bytesofsize)

Arguments

data A raw vector to be shuffled.

bytesofsize Either 4 or 8.

Value

The shuffled vector.

Examples

x <- serialize(1L:1000L, NULL)
xshuf <- blosc_shuffle_raw(x, 4)
xunshuf <- blosc_unshuffle_raw(xshuf, 4)

6 catquo

blosc_unshuffle_raw Un-shuffle a raw vector

Description

Un-shuffles a raw vector using BLOSC un-shuffle routines.

Usage

blosc_unshuffle_raw(data, bytesofsize)

Arguments

data A raw vector to be unshuffled.

bytesofsize Either 4 or 8.

Value

The unshuffled vector.

Examples

x <- serialize(1L:1000L, NULL)
xshuf <- blosc_shuffle_raw(x, 4)
xunshuf <- blosc_unshuffle_raw(xshuf, 4)

catquo catquo

Description

Prints a string with single quotes on a new line.

Usage

catquo(...)

Arguments

... Arguments passed on to cat().

decode_source 7

decode_source Decode a compressed string

Description

A helper function for encoding and compressing a file or string to ASCII using base91_encode()
and qs_serialize() with the highest compression level.

Usage

decode_source(string)

Arguments

string A string to decode.

Value

The original (decoded) object.

See Also

encode_source() for more details.

encode_source Encode and compress a file or string

Description

A helper function for encoding and compressing a file or string to ASCII using base91_encode()
and qs_serialize() with the highest compression level.

Usage

encode_source(x = NULL, file = NULL, width = 120)

Arguments

x The object to encode (if file is not NULL)

file The file to encode (if x is not NULL)

width The output will be broken up into individual strings, with width being the
longest allowable string.

8 qd_deserialize

Details

The encode_source() and decode_source() functions are useful for storing small amounts of
data or text inline to a .R or .Rmd file.

Value

A character vector in base91 representing the compressed original file or object.

Examples

set.seed(1); data <- sample(500)
result <- encode_source(data)
Note: the result string is not guaranteed to be consistent between qs or zstd versions
but will always properly decode regardless
print(result)
result <- decode_source(result) # [1] 1 2 3 4 5 6 7 8 9 10

qd_deserialize qd_deserialize

Description

Deserializes a raw vector to an object using the qdata format.

Usage

qd_deserialize(input,
use_alt_rep = qopt("use_alt_rep"),
validate_checksum = qopt("validate_checksum"),
nthreads = qopt("nthreads"))

Arguments

input The raw vector to deserialize.

use_alt_rep Use ALTREP when reading in string data (the initial value is FALSE).

validate_checksum

Whether to validate the stored checksum in the file (the initial value is FALSE).

nthreads The number of threads to use when reading data (the initial value is 1L). When
TBB is not available, values greater than 1 emit a warning and fall back to 1.

Value

The deserialized object.

qd_read 9

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

xserialized <- qd_serialize(x)
x2 <- qd_deserialize(xserialized)
identical(x, x2) # returns TRUE

qd_read qd_read

Description

Reads an object that was saved to disk in the qdata format.

Usage

qd_read(file,
use_alt_rep = qopt("use_alt_rep"),
validate_checksum = qopt("validate_checksum"),
nthreads = qopt("nthreads"))

Arguments

file The file name/path.

use_alt_rep Use ALTREP when reading in string data (the initial value is FALSE).
validate_checksum

Whether to validate the stored checksum in the file (the initial value is FALSE).

nthreads The number of threads to use when reading data (the initial value is 1L). When
TBB is not available, values greater than 1 emit a warning and fall back to 1.

Value

The object stored in file.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qd_save(x, myfile)
x2 <- qd_read(myfile)
identical(x, x2) # returns TRUE

10 qd_save

qd_save qd_save

Description

Saves an object to disk using the qdata format.

Usage

qd_save(object, file,
compress_level = qopt("compress_level"),
shuffle = qopt("shuffle"),
warn_unsupported_types = qopt("warn_unsupported_types"),
nthreads = qopt("nthreads"))

Arguments

object The object to save.
file The file name/path.
compress_level The compression level used (the initial value is 3L).

The maximum and minimum possible values depend on the version of the ZSTD
library used. As of ZSTD 1.5.6 the maximum compression level is 22, and the
minimum is -131072. Usually, values in the low positive range offer very good
performance in terms of speed and compression.

shuffle Whether to allow byte shuffling when compressing data (the initial value is
TRUE).

warn_unsupported_types

Whether to warn when saving an object with an unsupported type (the initial
value is TRUE).

nthreads The number of threads to use when compressing data (the initial value is 1L).
When TBB is not available, values greater than 1 emit a warning and fall back
to 1.

Value

No value is returned. The file is written to disk.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qd_save(x, myfile)
x2 <- qd_read(myfile)
identical(x, x2) # returns TRUE

qd_serialize 11

qd_serialize qd_serialize

Description

Serializes an object to a raw vector using the qdata format.

Usage

qd_serialize(object,
compress_level = qopt("compress_level"),
shuffle = qopt("shuffle"),
warn_unsupported_types = qopt("warn_unsupported_types"),
nthreads = qopt("nthreads"))

Arguments

object The object to save.

compress_level The compression level used (the initial value is 3L).
The maximum and minimum possible values depend on the version of the ZSTD
library used. As of ZSTD 1.5.6 the maximum compression level is 22, and the
minimum is -131072. Usually, values in the low positive range offer very good
performance in terms of speed and compression.

shuffle Whether to allow byte shuffling when compressing data (the initial value is
TRUE).

warn_unsupported_types

Whether to warn when saving an object with an unsupported type (the initial
value is TRUE).

nthreads The number of threads to use when compressing data (the initial value is 1L).
When TBB is not available, values greater than 1 emit a warning and fall back
to 1.

Value

The serialized object as a raw vector.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

xserialized <- qd_serialize(x)
x2 <- qd_deserialize(xserialized)
identical(x, x2) # returns TRUE

12 qopt

qopt qs2 Option Getter/Setter

Description

Get or set a global qs2 option.

Usage

qopt(parameter, value = NULL)

Arguments

parameter A character string specifying the option to access. Must be one of "compress_level",
"shuffle", "nthreads", "validate_checksum", "warn_unsupported_types", or "use_alt_rep".

value If NULL (the default), the current value is retrieved. Otherwise, the global option
is set to value.

Details

This function provides an interface to retrieve or update internal qs2 options such as compression
level, shuffle flag, number of threads, checksum validation, warning for unsupported types, and
ALTREP usage. It directly calls the underlying C-level functions.

The default settings are:

• compress_level: 3L

• shuffle: TRUE

• nthreads: 1L

• validate_checksum: FALSE

• warn_unsupported_types: TRUE (used only in qd_save)

• use_alt_rep: FALSE (used only in qd_read)

When value is NULL, the current value of the specified option is returned. Otherwise, the option is
set to value and the new value is returned invisibly.

Value

If value is NULL, returns the current value of the specified option. Otherwise, sets the option and
returns the new value invisibly.

qs_deserialize 13

Examples

Get the current compression level:
qopt("compress_level")

Set the compression level to 5:
qopt("compress_level", value = 5)

Get the current shuffle setting:
qopt("shuffle")

Get the current setting for warn_unsupported_types (used in qd_save):
qopt("warn_unsupported_types")

Get the current setting for use_alt_rep (used in qd_read):
qopt("use_alt_rep")

qs_deserialize qs_deserialize

Description

Deserializes a raw vector to an object using the qs2 format.

Usage

qs_deserialize(input,
validate_checksum = qopt("validate_checksum"),
nthreads = qopt("nthreads"))

Arguments

input The raw vector to deserialize.

validate_checksum

Whether to validate the stored checksum in the file (the initial value is FALSE).

nthreads The number of threads to use when reading data (the initial value is 1L). When
TBB is not available, values greater than 1 emit a warning and fall back to 1.

Value

The deserialized object.

14 qs_read

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

xserialized <- qs_serialize(x)
x2 <- qs_deserialize(xserialized)
identical(x, x2) # returns TRUE

qs_read qs_read

Description

Reads an object that was saved to disk in the qs2 format.

Usage

qs_read(file,
validate_checksum = qopt("validate_checksum"),
nthreads = qopt("nthreads"))

Arguments

file The file name/path.
validate_checksum

Whether to validate the stored checksum in the file (the initial value is FALSE).

nthreads The number of threads to use when reading data (the initial value is 1L). When
TBB is not available, values greater than 1 emit a warning and fall back to 1.

Value

The object stored in file.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qs_save(x, myfile)
x2 <- qs_read(myfile)
identical(x, x2) # returns TRUE

qs_readm 15

qs_readm qs_readm

Description

Reads an object in a file serialized to disk using qs_savem().

Usage

qs_readm(file, env = parent.frame(), ...)

Arguments

file The file name/path.

env The environment where the data should be loaded. Default is the calling envi-
ronment (parent.frame()).

... additional arguments will be passed to qs_read.

Details

This function extends qs_read to replicate the functionality of base::load() to load multiple saved
objects into your workspace.

Value

Nothing is explicitly returned, but the function will load the saved objects into the workspace.

Examples

x1 <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$`IAU Name`, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

x2 <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$`IAU Name`, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qs_savem(x1, x2, file=myfile)
rm(x1, x2)
qs_readm(myfile)
exists('x1') && exists('x2') # returns true

16 qs_save

qs_save qs_save

Description

Saves an object to disk using the qs2 format.

Usage

qs_save(object, file,
compress_level = qopt("compress_level"),
shuffle = qopt("shuffle"),
nthreads = qopt("nthreads"))

Arguments

object The object to save.

file The file name/path.

compress_level The compression level used (the initial value is 3L).
The maximum and minimum possible values depend on the version of the ZSTD
library used. As of ZSTD 1.5.6 the maximum compression level is 22, and the
minimum is -131072. Usually, values in the low positive range offer very good
performance in terms of speed and compression.

shuffle Whether to allow byte shuffling when compressing data (the initial value is
TRUE).

nthreads The number of threads to use when compressing data (the initial value is 1L).
When TBB is not available, values greater than 1 emit a warning and fall back
to 1.

Value

No value is returned. The file is written to disk.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qs_save(x, myfile)
x2 <- qs_read(myfile)
identical(x, x2) # returns TRUE

qs_savem 17

qs_savem qs_savem

Description

Saves (serializes) multiple objects to disk.

Usage

qs_savem(...)

Arguments

... Objects to serialize. Named arguments will be passed to qs_save() during sav-
ing. Un-named arguments will be saved. A named file argument is required.

Details

This function extends qs_save() to replicate the functionality of base::save() to save multiple
objects. Read them back with qs_readm().

Examples

x1 <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$`IAU Name`, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

x2 <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(starnames$`IAU Name`, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qs_savem(x1, x2, file=myfile)
rm(x1, x2)
qs_readm(myfile)
exists('x1') && exists('x2') # returns true

qs_serialize qs_serialize

Description

Serializes an object to a raw vector using the qs2 format.

18 qs_to_rds

Usage

qs_serialize(object,
compress_level = qopt("compress_level"),
shuffle = qopt("shuffle"),
nthreads = qopt("nthreads"))

Arguments

object The object to save.

compress_level The compression level used (the initial value is 3L).
The maximum and minimum possible values depend on the version of the ZSTD
library used. As of ZSTD 1.5.6 the maximum compression level is 22, and the
minimum is -131072. Usually, values in the low positive range offer very good
performance in terms of speed and compression.

shuffle Whether to allow byte shuffling when compressing data (the initial value is
TRUE).

nthreads The number of threads to use when compressing data (the initial value is 1L).
When TBB is not available, values greater than 1 emit a warning and fall back
to 1.

Value

The serialized object as a raw vector.

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

xserialized <- qs_serialize(x)
x2 <- qs_deserialize(xserialized)
identical(x, x2) # returns TRUE

qs_to_rds qs2 to RDS format

Description

Converts a file saved in the qs2 format to the RDS format.

Usage

qs_to_rds(input_file, output_file, compress_level = 6)

qx_dump 19

Arguments

input_file The qs2 file to convert.

output_file The RDS file to write.

compress_level The gzip compression level to use when writing the RDS file (a value between
0 and 9).

Value

No value is returned. The converted file is written to disk.

Examples

qs_tmp <- tempfile(fileext = ".qs2")
rds_tmp <- tempfile(fileext = ".RDS")

x <- runif(1e6)
qs_save(x, qs_tmp)
qs_to_rds(input_file = qs_tmp, output_file = rds_tmp)
x2 <- readRDS(rds_tmp)
stopifnot(identical(x, x2))

qx_dump qx_dump

Description

Exports the uncompressed binary serialization to a list of raw vectors for both qs2 and qdata
formats. For testing and exploratory purposes mainly.

Usage

qx_dump(file)

Arguments

file A file name/path.

Value

A list containing uncompressed binary serialization and metadata.

20 rds_to_qs

Examples

x <- data.frame(int = sample(1e3, replace=TRUE),
num = rnorm(1e3),
char = sample(state.name, 1e3, replace=TRUE),
stringsAsFactors = FALSE)

myfile <- tempfile()
qs_save(x, myfile)
binary_data <- qx_dump(myfile)

rds_to_qs RDS to qs2 format

Description

Converts a file saved in the RDS format to the qs2 format.

Usage

rds_to_qs(input_file, output_file, compress_level = 3)

Arguments

input_file The RDS file to convert.

output_file The qs2 file to write.

compress_level The zstd compression level to use when writing the qs2 file. See the qs_save
help file for more details on this parameter.

Details

The shuffle parameters is currently not supported when converting from RDS to qs2. When reading
the resulting qs2 file, validate_checksum must be set to FALSE.

Value

No value is returned. The converted file is written to disk.

Examples

qs_tmp <- tempfile(fileext = ".qs2")
rds_tmp <- tempfile(fileext = ".RDS")

x <- runif(1e6)
saveRDS(x, rds_tmp)
rds_to_qs(input_file = rds_tmp, output_file = qs_tmp)
x2 <- qs_read(qs_tmp, validate_checksum = FALSE)
stopifnot(identical(x, x2))

starnames 21

starnames Official list of IAU Star Names

Description

Data from the International Astronomical Union. An official list of the 336 internationally recog-
nized named stars, updated as of June 1, 2018.

Usage

data(starnames)

Format

A data.frame with official IAU star names and several properties, such as coordinates.

Source

Naming Stars | International Astronomical Union.

References

E Mamajek et. al. (2018), WG Triennial Report (2015-2018) - Star Names, Reports on Astronomy,
22 Mar 2018.

Examples

data(starnames)

xxhash_raw XXH3_64 hash

Description

Calculates a 64-bit XXH3 hash.

Usage

xxhash_raw(data)

Arguments

data The data to hash.

Value

The 64-bit hash.

https://iauarchive.eso.org/public/themes/naming_stars/

22 zstd_compress_raw

Examples

x <- as.raw(c(1,2,3))
xxhash_raw(x)

zstd_compress_bound Zstd compress bound

Description

Exports the compress bound function from the zstd library. Returns the maximum potential com-
pressed size of an object of length size.

Usage

zstd_compress_bound(size)

Arguments

size An integer size

Value

Maximum compressed size.

Examples

zstd_compress_bound(100000)
zstd_compress_bound(1e9)

zstd_compress_raw Zstd compression

Description

Compresses to a raw vector using the zstd algorithm. Exports the main zstd compression function.

Usage

zstd_compress_raw(data, compress_level = qopt("compress_level"))

Arguments

data Raw vector to be compressed.

compress_level The compression level used.

zstd_decompress_raw 23

Value

The compressed data as a raw vector.

Examples

x <- 1:1e6
xserialized <- serialize(x, connection=NULL)
xcompressed <- zstd_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(zstd_decompress_raw(xcompressed))

zstd_decompress_raw Zstd decompression

Description

Decompresses a zstd compressed raw vector.

Usage

zstd_decompress_raw(data)

Arguments

data A raw vector to be decompressed.

Value

The decompressed data as a raw vector.

Examples

x <- 1:1e6
xserialized <- serialize(x, connection=NULL)
xcompressed <- zstd_compress_raw(xserialized, compress_level = 1)
xrecovered <- unserialize(zstd_decompress_raw(xcompressed))

24 zstd_file_functions

zstd_file_functions Zstd file helpers

Description

Helpers for compressing and decompressing zstd files.

A utility function to compresses a file with zstd.

A utility function to decompresses a zstd file to disk.

Usage

zstd_compress_file(input_file, output_file, compress_level = qopt("compress_level"))

zstd_decompress_file(input_file, output_file)

Arguments

compress_level The compression level used.

input_file Path to the input file.

output_file Path to the output file.

Value

No value is returned. The file is written to disk.

No value is returned. The file is written to disk.

Examples

infile <- tempfile()
writeBin(as.raw(1:5), infile)
outfile <- tempfile()
zstd_compress_file(infile, outfile, compress_level = 1)
stopifnot(file.exists(outfile))
infile <- tempfile()
writeBin(as.raw(1:5), infile)
zfile <- tempfile()
zstd_compress_file(infile, zfile, compress_level = 1)
outfile <- tempfile()
zstd_decompress_file(zfile, outfile)
stopifnot(identical(readBin(infile, what = "raw", n = 5), readBin(outfile, what = "raw", n = 5)))

zstd_in 25

zstd_in Zstd file substitution for input

Description

Substitutes a zstd compressed file for a regular input file. The zstd compressed file is decompressed
to the input FUN.

Substitutes a zstd compressed file for a regular output file. The output of FUN is converted to a zstd
compressed file at the target zstd file path.

Usage

zstd_in(FUN, ..., envir = parent.frame(), tmpfile = tempfile())

zstd_out(FUN, ..., envir = parent.frame(), tmpfile = tempfile())

Arguments

FUN Function to call.

... Arguments passed to FUN. The first named argument is treated as the file path.

envir Environment for FUN evaluation.

tmpfile Temporary file path. If not supplied, a temp file is created and removed on exit.

Details

This is a generic wrapper that works with any function that reads from a file.

This is a generic wrapper that works with any function that writes to a file.

Value

The value returned by FUN.

The value returned by FUN, with its visibility preserved.

Examples

if (requireNamespace("data.table", quietly = TRUE)) {
zfile <- tempfile(fileext = ".csv.zst")
zstd_out(data.table::fwrite, mtcars, file = zfile)
dt <- zstd_in(data.table::fread, file = zfile)
print(nrow(dt))

}

Index

∗ datasets
starnames, 21

base85_decode, 3
base85_encode, 3
base91_decode, 4
base91_encode, 4
base91_encode(), 7
base::load(), 15
base::save(), 17
blosc_shuffle_raw, 5
blosc_unshuffle_raw, 6

cat(), 6
catquo, 6

decode_source, 7
decode_source(), 8

encode_source, 7
encode_source(), 7, 8

parent.frame(), 15

qd_deserialize, 8
qd_read, 9
qd_save, 10
qd_serialize, 11
qopt, 12
qs_deserialize, 13
qs_read, 14, 15
qs_readm, 15
qs_readm(), 17
qs_save, 16
qs_save(), 17
qs_savem, 17
qs_savem(), 15
qs_serialize, 17
qs_serialize(), 7
qs_to_rds, 18
qx_dump, 19

rds_to_qs, 20

starnames, 21

xxhash_raw, 21

zstd_compress_bound, 22
zstd_compress_file

(zstd_file_functions), 24
zstd_compress_raw, 22
zstd_decompress_file

(zstd_file_functions), 24
zstd_decompress_raw, 23
zstd_file_functions, 24
zstd_in, 25
zstd_out (zstd_in), 25

26

	base85_decode
	base85_encode
	base91_decode
	base91_encode
	blosc_shuffle_raw
	blosc_unshuffle_raw
	catquo
	decode_source
	encode_source
	qd_deserialize
	qd_read
	qd_save
	qd_serialize
	qopt
	qs_deserialize
	qs_read
	qs_readm
	qs_save
	qs_savem
	qs_serialize
	qs_to_rds
	qx_dump
	rds_to_qs
	starnames
	xxhash_raw
	zstd_compress_bound
	zstd_compress_raw
	zstd_decompress_raw
	zstd_file_functions
	zstd_in
	Index

