
Package ‘qrng’
January 22, 2026

Version 0.0-11

Encoding UTF-8

Title (Randomized) Quasi-Random Number Generators

Description Functionality for generating (randomized) quasi-random numbers in
high dimensions.

Author Marius Hofert [aut, cre],
Christiane Lemieux [aut]

Maintainer Marius Hofert <mhofert@hku.hk>

Depends R (>= 3.0.0)

Imports utils

Suggests spacefillr, randtoolbox, copula, simsalapar

License GPL-2 | GPL-3

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-22 06:10:43 UTC

Contents
qrng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
test_functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
to_array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 8

qrng Compute Quasi-Random Sequences

Description

Computing Korobov, generalize Halton and Sobol’ quasi-random sequences.

1



2 qrng

Usage

korobov(n, d = 1, generator, randomize = c("none", "shift"))
ghalton(n, d = 1, method = c("generalized", "halton"))
sobol (n, d = 1, randomize = c("none", "digital.shift", "Owen", "Faure.Tezuka",

"Owen.Faure.Tezuka"), seed, skip = 0, ...)

Arguments

n number n of points to be generated ≥ 2.

d dimension d.

generator numeric of length d or length 1 (in which case it is appropriately extended to
length d). All numbers must be in {1, . . . , n} and must be (coercible to) integers.

randomize character string indicating the type of randomization for the point set.

korobov() one of the following:
"none" no randomization.
"shift" a uniform random variate modulo 1.

sobol() one of the following:
"none" no randomization.
"digital.shift" a digital shift.
"Owen" calls generate_sobol_owen_set() from package spacefillr.
"Faure.Tezuka","Owen.Faure.Tezuka" calls sobol() from package rand-

toolbox with scrambling being 2 and 3, respectively.
If randomize is a logical, then it is interpreted as "none" if FALSE and
"digital.shift" if TRUE.

method character string indicating which sequence is generated, generalized Halton or
(plain) Halton.

seed if provided, an integer used within set.seed() for the non-scrambling randomize
methods (so "none" or "digital.shift") or passed to the underlying generate_sobol_owen_set()
from package spacefillr (for "Owen") and sobol() from package randtoolbox
for the scrambling methods. If not provided, the non-scrambling methods re-
spect a global set.seed() but the scrambling methods do not (they then use a
randomly generated one based on time and process identifier).

skip number of initial points in the sequence to be skipped (skip = 0 means the se-
quence starts with at the origin). Note that for the scrambling methods this
simply computes n + skip points and omits the first skip-many.

... additional arguments passed to sobol() from package randtoolbox for ran-
domization methods "Faure.Tezuka" and "Owen.Faure.Tezuka".

Details

For sobol() examples see demo(sobol_examples).

Note that these procedures call fast C code. The following restrictions apply:

korobov() n,d must be ≤ 231 − 1.

ghalton() n must be ≤ 232 − 1 and d must be ≤ 360.



qrng 3

sobol() if randomize = "none" or randomize = "digital.shift", n must be ≤ 231 − 1 and d
must be ≤ 16510.

The choice of parameters for korobov() is crucial for the quality of this quasi-random sequence
(only basic sanity checks are conducted). For more details, see l’Ecuyer and Lemieux (2000).

The generalized Halton sequence uses the scrambling factors of Faure and Lemieux (2009).

Value

korobov() and ghalton() return an (n, d)-matrix; for d = 1 an n-vector is returned.

Author(s)

Marius Hofert and Christiane Lemieux

References

Faure, H., Lemieux, C. (2009). Generalized Halton Sequences in 2008: A Comparative Study.
ACM-TOMACS 19(4), Article 15.

l’Ecuyer, P., Lemieux, C. (2000). Variance Reduction via Lattice Rules. Stochastic Models and
Simulation, 1214–1235.

Lemieux, C., Cieslak, M., Luttmer, K. (2004). RandQMC User’s guide. See https://www.math.uwaterloo.ca/~clemieux/randqmc/guide.pdf

Examples

n <- 1021 # prime
d <- 4 # dimension

## Korobov's sequence
generator <- 76 # see l'Ecuyer and Lemieux
u <- korobov(n, d = d, generator = generator)
pairs(u, gap = 0, pch = ".", labels = as.expression(

sapply(1:d, function(j) bquote(italic(u[.(j)])))))

## Randomized Korobov's sequence
set.seed(271)
u <- korobov(n, d = d, generator = generator, randomize = "shift")
pairs(u, gap = 0, pch = ".", labels = as.expression(

sapply(1:d, function(j) bquote(italic(u[.(j)])))))

## Generalized Halton sequence (randomized by definition)
set.seed(271)
u <- ghalton(n, d)
pairs(u, gap = 0, pch = ".", labels = as.expression(

sapply(1:d, function(j) bquote(italic(u[.(j)])))))

## For sobol() examples, see demo(sobol_examples)



4 test_functions

test_functions Test Functions

Description

Functions for testing low-discrepancy sequences.

Usage

sum_of_squares(u)
sobol_g(u, copula = copula::indepCopula(dim = ncol(u)), alpha = 1:ncol(u), ...)
exceedance(x, q, p = 0.99, method = c("indicator", "individual.given.sum.exceeds",

"sum.given.sum.exceeds"))

Arguments

u (n, d)-matrix containing n d-dimensional realizations (of a potential quasi-random
number generator). For sum_of_squares() these need to be marginally stan-
dard uniform and for sobol_g() they need to follow the copula specified by
copula.

copula Copula object for which the inverse Rosenblatt transformation exists.

alpha vector of parameters of Sobol’s g test function.

... additional arguments passed to the underlying cCopula().

x (n, d)-matrix containing n d-dimensional realizations.

q "indicator" d-vector containing the componentwise thresholds; if a number it
is recycled to a d-vector.

"individual.given.sum.exceeds", "sum.given.sum.exceeds" threshold for the
sum (row sums of x).

p If q is not provided, the probability p is used to determine q.

"indicator" d-vector containing the probabilities determining componentwise
thresholds via empirical quantiles; if a number, it is recycled to a d-vector.

"individual.given.sum.exceeds", "sum.given.sum.exceeds" probability deter-
mining the threshold for the sum (row sums of x) via the corresponding
empirical quantile.

method character string indicating the type of exceedance computed (see Section Value
below).

Details

For examples see the demo man_test_functions.

See ES_np(<matrix>) from qrmtools for another test function.



test_functions 5

Value

sum_of_squares() returns an n-vector (numeric(n)) with the rowwise computed scaled sum of
squares (theoretically integrating to 1).

sobol_g() returns an n-vector (numeric(n)) with the rowwise computed Sobol’ g functions.

exceedance()’s return value depends on method:

"indicator" returns indicators whether, componentwise, x exceeds the threshold determined by q.

"individual.given.sum.exceeds" returns all rows of x whose sum exceeds the threshold deter-
mined by q.

"sum.given.sum.exceeds" returns the row sums of those rows of x whose sum exceeds the thresh-
old determined by q.

Author(s)

Marius Hofert and Christiane Lemieux

References

Radovic, I., Sobol’, I. M. and Tichy, R. F. (1996). Quasi-Monte Carlo methods for numerical
integration: Comparison of different low discrepancy sequences. Monte Carlo Methods and Appli-
cations 2(1), 1–14.

Faure, H., Lemieux, C. (2009). Generalized Halton Sequences in 2008: A Comparative Study.
ACM-TOMACS 19(4), Article 15.

Owen, A. B. (2003). The dimension distribution and quadrature test functions. Stat. Sinica 13,
1-–17.

Sobol’, I. M. and Asotsky, D. I. (2003). One more experiment on estimating high-dimensional
integrals by quasi-Monte Carlo methods. Math. Comput. Simul. 62, 255—263.

Examples

## Generate some (here: copula, pseudo-random) data
library(copula)
set.seed(271)
cop <- claytonCopula(iTau(claytonCopula(), tau = 0.5)) # Clayton copula
U <- rCopula(1000, copula = cop)

## Compute sum of squares test function
mean(sum_of_squares(U)) # estimate of E(3(sum_{j=1}^d U_j^2)/d)

## Compute the Sobol' g test function
if(packageVersion("copula") >= "0.999-20")

mean(sobol_g(U)) # estimate of E(<Sobol's g function>)

## Compute an exceedance probability
X <- qnorm(U)
mean(exceedance(X, q = qnorm(0.99))) # fixed threshold q
mean(exceedance(X, p = 0.99)) # empirically estimated marginal p-quantiles as thresholds



6 to_array

## Compute 99% expected shortfall for the sum
mean(exceedance(X, p = 0.99, method = "sum.given.sum.exceeds"))
## Or use ES_np(X, level = 0.99) from 'qrmtools'

to_array Compute Matrices to Arrays

Description

Converting higher-dimensional matrices of quasi-random numbers to arrays of specific formats.

Usage

to_array(x, f, format = c("(n*f,d)", "(n,f,d)"))

Arguments

x (n,fd)-matrix of quasi-random numbers to be converted.

f factor f ≥ 1 dividing ncol{x}.

format character string indicating the output format to which x should be converted.

Details

to_array() is helpful for converting quasi-random numbers to time series paths.

Value

(n * f, d)-matrix or (n, f, d)-array depending on the chosen format.

Author(s)

Marius Hofert

See Also

korobov(), ghalton(), sobol().

Examples

## Basic call
N <- 4 # replications
n <- 3 # time steps
d <- 2 # dimension
set.seed(271) # note: respected for the choice of 'randomize'
x <- sobol(N, d = n * d, randomize = "digital.shift") # higher-dim. Sobol'
stopifnot(dim(to_array(x, f = n)) == c(N * n, d)) # conversion and check
stopifnot(dim(to_array(x, f = n, format = "(n,f,d)")) == c(N, n, d))

## See how the conversion is done



to_array 7

(x <- matrix(1:(N * n * d), nrow = N, byrow = TRUE))
to_array(x, f = n) # => (n * d)-column x was blocked in n groups of size d each



Index

∗ distribution
qrng, 1

∗ utilities
test_functions, 4
to_array, 6

array, 6

cCopula, 4
character, 2, 4, 6
Copula, 4

exceedance (test_functions), 4

generate_sobol_owen_set, 2
ghalton, 6
ghalton (qrng), 1

korobov, 6
korobov (qrng), 1

logical, 2

matrix, 3, 6

numeric, 2, 5

qrng, 1

set.seed, 2
sobol, 2, 6
sobol (qrng), 1
sobol_g (test_functions), 4
sum_of_squares (test_functions), 4

test_functions, 4
to_array, 6

8


	qrng
	test_functions
	to_array
	Index

