Package ‘qol’

January 13, 2026

Title Powerful 'SAS' Inspired Concepts for more Efficient Bigger
Outputs

Version 1.2.0

Description The main goal is to make descriptive evaluations easier to create bigger and more com-
plex outputs in less time with less code. Introducing format containers with multil-
abels <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
po6ciges4eaqobndzyqtz9p21nfb. htm>, a more powerful summarise which is capable to out-
put every possible combination of the provided grouping vari-
ables in one go <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
p@jvbbgkt@gs2cn1lod4zndbgsipe. htm>, tabulation functions which can create any table in dif-
ferent styles <https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/
n1gl5xnu@k3kdtn1igwa5hc7u435. htm> and other more readable functions. The code is opti-
mized to work fast even with datasets of over a million observations.

License MIT + file LICENSE
Encoding UTF-8
Language en-US

URL https://github.com/s3rdia/qol, https://s3rdia.github.io/qol/

Imports data.table (>=1.17.8), collapse (>= 2.1.2), openxlsx2 (>=
1.19)

Depends R (>=4.1.0)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Config/Needs/website rmarkdown

NeedsCompilation no

Author Tim Siebenmorgen [aut, cre, cph]

Maintainer Tim Siebenmorgen <qol_package@proton.me>
Repository CRAN

Date/Publication 2026-01-13 10:10:02 UTC

https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p06ciqes4eaqo6n0zyqtz9p21nfb.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p06ciqes4eaqo6n0zyqtz9p21nfb.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p0jvbbqkt0gs2cn1lo4zndbqs1pe.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/p0jvbbqkt0gs2cn1lo4zndbqs1pe.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/n1ql5xnu0k3kdtn11gwa5hc7u435.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_067/proc/n1ql5xnu0k3kdtn11gwa5hc7u435.htm
https://github.com/s3rdia/qol
https://s3rdia.github.io/qol/

2 Contents

Contents
add_extension e e 3
add_variable_range e 4
any_tableo 4
build_master e e 11
build_rstheme e 13
combine_into_workbook 15
COMEENE_TEPOTL .« . v v v v v e 18
CONVEIt_argumentsS v v v v v it e it e e e e e e e e e 19
convert_variables L. e e e 20
crosstabs L L L e e e e 21
drop_type_vars 25
dummy_data e e e e 26
error_handling 26
excel_output_style 28
export_with_style 33
first_ row_as_namest e e e e e e e e e 35
frequencies 36
fuse_variables e 39
get_excel_range L. e e e 40
get_integer_length 41
IMPOTE_EXPOTE .+ . v v v v v e e e e e e e e e e e e e e e e e 42
INVEISE . . . v v o v e e e e e e e e e e e e e e e 44
Libname e e e 44
modify_number_formatso 45
modify_output_style 46
multi_join e e e e e e 47
number_format_style 49
qOI_NeWS e e e e 52
qOLLOptionS 52
recode e e e 54
remove_stat_ eXtENSIONttt e e e e e e e e e e e e 56
rename_MUultl L 57
reName_PatterN o v v e 58
replace_except e 59
] 60
setcolorder_by_pattern L L 61
SOTE_PIUS . .« o o e e e e e 62
SPlit_by . . e e e 63
style_options 65
SUMMATISE_PIUS o o i e e e e e e e e e e 67
transpose_plus e e 70
vars_between e e e e e e e e e e e e e e e e e e 73

Index 75

add_extension 3

add_extension Add Extensions to Variable Names

Description

Renames variables in a data frame by adding the desired extensions to the original names. This
can be useful if you want to use pre summarised data with any_table(), which needs the value
variables to have the statistic extensions.

Usage
add_extension(data_frame, from, extensions, reuse = "none")
Arguments
data_frame The data frame in which variables should gain extensions to their name.
from The position of the variable inside the data frame at which to start the renaming.
extensions The extensions to add.
reuse "none" by default, meaning only the provided extensions will be set. E.g. if
there are two extensions provided, two variables will be renamed. If "last", the
last provided extension will be used for every following variable until the end
of the data frame. If "repeat”, the provided extensions will be repeated from the
first one for every following variable until the end of the data frame.
Value

Returns a data frame with extended variable names.

Examples

Example data frame
my_data <- dummy_data(10)

Add extensions to variable names

new_names1 <- my_data |> add_extension(5, c("sum”, "pct"))

new_names2 <- my_data |> add_extension(5, c("sum”, "pct"), reuse = "last")
new_names3 <- my_data |> add_extension(5, c("sum”, "pct"”), reuse = "alternate"”)

4 any_table

add_variable_range Add Empty Variables In A Given Range

Description

Add empty variables to a data frame in the provided range. Basically does in a data frame, what
pasteO("age", 1:10) does for a vector.

Usage

add_variable_range(data_frame, var_range)

Arguments

data_frame A data frame to add variables to.

var_range A range of variables to add, provided in the form: var_namel:var_namel0.
Value

Returns a data frame with added variables.

Examples

Example data frames
my_data <- dummy_data(100)

Add variable range
my_data <- my_data |> add_variable_range(statusl:status12)

any_table Compute Any Possible Table

Description

any_table() produces any possible descriptive table in ’Excel’ format. Any number of variables
can be nested and crossed. The output is an individually styled 'Excel’ table, which also receives
named ranges, making it easier to read the data back in.

any_table 5

Usage

any_table(

data_frame,

rows,

columns = "",

values,

statistics = c("sum"),
pct_group = c(),
pct_value = 1list(),
formats = list(),

by = cQ),

weight = NULL,
order_by = "stats”,
titles = .gol_options[["titles"]],

footnotes = .qol_options[["footnotes”]],
var_labels = .qgol_options[["var_labels"]1],
stat_labels = .qol_options[["stat_labels”]],
bOX = IIII,

workbook = NULL,
style = .qol_options[["excel_style”]],
output = .qgol_options[["output”]],

na.rm = .gol_options[["na.rm"1],
print = .gol_options[["print"1],
monitor = .qol_options[["monitor"]]
)
Arguments
data_frame A data frame in which are the variables to tabulate.
rows A vector that provides single variables or variable combinations that should ap-
pear in the table rows. To nest variables use the form: "varl + var2 + var3 +
columns A vector that provides single variables or variable combinations that should ap-
pear in the table rows. To nest variables use the form: "varl + var2 + var3 +
values A vector containing all variables that should be summarised.
statistics Available functions:

e "sum" -> Weighted and unweighted sum

e "sum_wgt" -> Sum of all weights

* "freq" -> Unweighted frequency

* "freq_g0" -> Unweighted frequency of all values greater than zero

* "pct_group" -> Weighted and unweighted percentages within the respective
group

e "pct_value" -> Weighted and unweighted percentages between value vari-
ables

pct_group

pct_value

formats
by
weight
order_by

titles
footnotes
var_labels

stat_labels

box
workbook

style

output
na.rm
print

monitor

any_table

e "pct_total" -> Weighted and unweighted percentages compared to the grand
total
* "mean" -> Weighted and unweighted mean
* "median" -> Weighted and unweighted median
* "mode" -> Weighted and unweighted mode
* "min" -> Minimum
* "max" -> Maximum
e "sd" -> Weighted and unweighted standard deviation
 "variance" -> Weighted and unweighted standard variance
* "first" -> First value
 "last" -> Last value
* "pn" -> Weighted and unweighted percentiles (any p1, p2, p3, ... possible)
* "missing" -> Missings generated by the value variables
If pct_group is specified in the statistics, this option is used to determine which

variable of the row and column variables should add up to 100 %. Multiple
variables can be specified in a vector to generate multiple group percentages.

If pct_value is specified in the statistics, you can pass a list here which con-
tains the information for a new variable name and between which of the value
variables percentages should be computed.

A list in which is specified which formats should be applied to which variables.
Compute tables stratified by the expressions of the provided variables.
Put in a weight variable to compute weighted results.

Determine how the columns will be ordered. "values" orders the results by the
order you provide the variables in values. "stats" orders them by the order under
statistics. "values_stats" is a combination of both. "columns" keeps the order as
given in columns and "interleaved" alternates the stats.

Specify one or more table titles.
Specify one or more table footnotes.

A list in which is specified which label should be printed for which variable
instead of the variable name.

A list in which is specified which label should be printed for which statistic
instead of the statistic name.

Provide a text for the upper left box of the table.

Insert a previously created workbook to expand the sheets instead of creating a
new file.

A list of options can be passed to control the appearance of *Excel’ outputs.
Styles can be created with excel_output_style().

The following output formats are available: excel and excel_nostyle.

FALSE by default. If TRUE removes all NA values from the variables.

TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.

Can be used if one only wants to catch the output data frame and workbook with
meta information.

FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.

any_table 7

Details

any_table() is based on the ’SAS’ procedure Proc Tabulate, which provides efficient and readable
ways to perform complex tabulations.

With this function you can combine any number of variables in any possible way, all at once. You
just define which variables or variable combinations should end up in the table rows and columns
with a simple syntax. Listing variables in a vector like c¢("varl", "var2", "var3",...) means to put
variables below (in case of the row variables) or besides (in case of the column variables) each
other. Nesting variables is as easy as putting a plus sign between them, e.g. c("varl + var2", "var2"
+ "var3" + "var4", etc.). And of course you can combine both versions.

The real highlight is, that this function not only creates all the desired variable combinations and
exports them to an "Excel’ file, it prints a fully custom styled table to a workbook. Setting up a
custom, reusable style is as easy as setting up options like: provide a color for the table header,
set the font size for the row header, should borders be drawn for the table cells yes/no, and so on.
Merging doubled header texts, happens automatically.

With this function you basically can fully concentrate on designing a table, instead of thinking hard
about how to calculate where to put a border or to even manually prepare a designed workbook.

Value

Returns a list with the data table containing the results for the table, the formatted "Excel’ workbook
and the meta information needed for styling the final table.

See Also

Creating a custom table style: excel_output_style(),modify_output_style(), number_format_style(),
modify_number_formats().

Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Creating formats: discrete_format() and interval_format().

Functions that can handle formats and styles: frequencies(), crosstabs().

Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi(),
transpose_plus(), sort_plus()

Examples

Example data frame
my_data <- dummy_data(1000)
my_datal[["person”"]] <- 1

Formats

age. <- discrete_format(
"Total” = 0:100,
"under 18" =0:17,

"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” = 65:100)

sex. <- discrete_format(
"Total” = 1:2,
"Male” =1,
"Female" = 2)
education.

"Total”
"low education”

"middle education” =

"high education”

<- discrete_format(

= c("low”, "middle”, "high"),

= "low",
"middle”,
= "high")

state. <- discrete_format(

"Germany"
"Schleswig-Holst
"Hamburg"

"Lower Saxony"
"Bremen”

"North Rhine-Wes
"Hesse"
"Rhineland-Palat

"Baden-Wirttemberg” =

"Bavaria"
"Saarland”
"West"

"Berlin”
"Brandenburg”
"Mecklenburg-Wes
"Saxony"
"Saxony-Anhalt"”
"Thuringia”
"East"

Define style

set_style_options(column_widths =

Define titles and footnotes. If you want to add hyperlinks you can do so by

—_
o))

ein” =

tphalia” =

inate” =

|
00 NOY Ul W= =

1
[Ce)

=10,

=1:10,

=1,

=12,
tern Pomerania” = 13,

= 14,

= 15,

= 16,

= 11:16)

c(2, 15, 15, 15, 9))

adding "link:" followed by the hyperlink to the main text.
title number 1 link: https://cran.r-project.org/",

set_titles("This is
"This is
"This is

set_footnotes("This
"This
"This

Output complex tables with different percentages

my_data |> any_table

title number 2",
title number 3")

is footnote number 1",
is footnote number 2",

is footnote number 3 link: https://cran.r-project.org/")

(rows = c("sex + age", "sex", "age"),

columns = c("year"”, "education + year"),

values = weight,

statistics = c("sum”, "pct_group”),

pct_group = c("sex", "age", "education", "year"),
formats = list(sex = sex., age = age.,

any_table

any_table

na.rm

If you want to get a clearer vision of what the result table looks like, in terms
of the row and column categories, you can write the code like this, to make

education
TRUE)

education.),

the variable crossings and see the order.

my_data |> any_table(columns
rows

c(
= C(“

n

n

values
statistics
pct_group
formats

na.rm

"year", "education + year"),

sex + age”,
sex”,
age"),
weight,
c("sum”, "pct_group”),
c("sex", "age", "education”, "year"),
list(sex = sex., age = age.,

education = education.),
TRUE)

Percentages based on value variables instead of categories

my_data |> any_table(rows

c("age + year"),

columns = c("sex"),

values = c(probability, person),

statistics = c("pct_value”, "sum", "freq"),

pct_value = list(rate = "probability / person”),

weight = weight,

formats = list(sex = sex., age = age.),

na.rm = TRUE)
Customize the visual appearance by adding variable and statistic labels. Both
can also be set as a global option, if labels should be reused over multiple
tables.
Note: You don't have to describe every element. Sometimes a table can be more
readable with less text. To completely remove a variable label just put in an
empty text "" as label.
my_data |> any_table(rows = c("age + year"),

columns = c("sex"),

values = weight,

statistics = c(”"sum”, "pct_group”),

order_by = "interleaved”,

formats = list(sex = sex., age = age.),

var_labels = list(age = "Age categories”,

sex = "" weight = ""),

stat_labels = list(pct = "%"),

na.rm = TRUE)
Individual styling can also be passed directly
my_style <- excel_output_style(header_back_color = "0077B6",

font "Times New Roman")

my_data |> any_table(rows c("age + year"),

columns = c("sex"),

values = c(probability, person),

statistics = c("pct_value”, "sum”, "freq"),
pct_value = list(rate = "probability / person”),

10

any_table
weight = weight,
formats = list(sex = sex., age = age.),
style = my_style,
na.rm = TRUE)

Pass on workbook to create more sheets in the same file
my_style <- my_style |> modify_output_style(sheet_name = "age_sex")

result_list <- my_data |>

any_table(rows = c("age"),
columns = c("sex"),
values = weight,
statistics = c("sum"),
formats = list(sex = sex., age = age.),
na.rm = TRUE,
print = FALSE)

my_style <- my_style |> modify_output_style(sheet_name = "edu_year")

my_data |> any_table(workbook = result_list[["workbook"]],
rows = c("education”),
columns = c("year"),
values = weight,
statistics = c("pct_group”),
formats = list(education = education.),
na.rm = TRUE)

Output multiple complex tables by expressions of another variable.

If you specify the sheet name as "by” in the output style, the sheet

names are named by the variable expressions of the by-variable. Otherwise
the given sheet named gets a running number.

my_style <- my_style |> modify_output_style(sheet_name = "by")

my_data |> any_table(rows = c("sex", "age"),
columns = c("education + year"),
values = weight,
by = state,
statistics = c("sum”, "pct_group”),
pct_group = c("education”),
formats = list(sex = sex., age = age., state = state.,
education = education.),
na.rm = TRUE)

To save a table as xlsx file you have to set the path and filename in the
style element

Example files paths

table_file <- tempfile(fileext = ".x1lsx")

Note: Normally you would directly input the path ("C:/MyPath/") and name ("MyFile.x1lsx").
set_style_options(save_path = dirname(table_file),

file basename(table_file),

sheet_name = "MyTable")

build_master 11

my_data |> any_table(rows = "sex",
columns = "year",
values = weight,
formats = list(sex = sex.))

Manual cleanup for example
unlink(table_file)

Global options are permanently active until the current R session is closed.
There are also functions to reset the values manually.

reset_style_options()

reset_gol_options()

close_file()

build_master Build a Master Script From Folder

Description

build_master() reads a given folder structure, which contains scripts, and builds a master script
as a markdown file.

Usage

build_master(
dir,
master_name = "Master”,
author = "",
with_structure = TRUE,
with_run_all = TRUE,
with_run_folder = TRUE

)
Arguments
dir The folder structure which contains the scripts to build upon.
master_name The file name which should be written.
author Authors name to be put in the header.

with_structure Whether the folder structure as tree should be written to the master script.

with_run_all Whether a section, which let’s the user run all scripts, should be written to the
master script.

with_run_folder

Whether a section, which let’s the user run all scripts from a specific folder,
should be written to the master script.

12 build_master

Details

The function works with folder structures that look like this:

root/

subfolder1/
script1.R
script2.R
..R
subfolder2/
script3.R
script4.R

..R

Value

Returns the script as character vector and saves it as markdown file.

Examples

Example export file paths

NOTE: These tempfiles are only for the examples. In reality you just call the
main function and put in your desired path and name directly.

temp_file <- tempfile(fileext = ".rstheme")

file_name <- basename(tools::file_path_sans_ext(temp_file))

Example master
build_master(dir = dirname(temp_file),
master_name = file_name)

Manual cleanup for example
unlink(temp_file)

build_rstheme 13

build_rstheme Build a Theme From Scratch

Description

Build your own theme by just setting up the colors for the different parts of RStudio. A theme file
will be exported which can be added by going to:

Tools -> Global Options -> Appearance -> Add

Usage
build_rstheme(
file_path,
theme_name = "qol_green”,
dark_theme = TRUE,

editor_background = "#062625",
editor_headline = "#3B3B3B",
editor_font = "#C3B79D",
toolbar = "#2E2E2E",

tab = "#3B3B3B",

selected_tab = "#062625",
line_number = "#C3B79D",
print_margin = "#3B3B3B",
cursor = "#CCCcCcCC",

selection = "#1B436E",
smart_highlight = "#3686dc",
bracket_highlight = "#595959",
active_line = "#202324",
whitespace = "#CCCCCC",
debug_line = "#F18889",
scrollbar = "#3B3B3B",
scrollbar_hover = "#595959",
scrollbar_active = "#BFBFBF",
class_name = "#BEDD1A",
keyword = "#FFC9QE",
language_constant = "#FFC90QE",
function_name = "#C3B79D",
numeric = "#C93F3F",

string = "#63C2C9",

regex = "#E8EG6E3",

variable = "#ESE6E3",

comment = "#32CD32",

symbol = "#C3B79D",
console_code = "#C3B79D",
markdown_code = "#083332"

14 build_rstheme

Arguments
file_path The path to which the theme file should be saved.
theme_name The themes name.
dark_theme Handles some elements not covered with the other parameters.

editor_background
Base background color in the editor.
editor_headline
Mostly used for the headlines of the environment panel.

editor_font Base font color of the editor.
toolbar Base toolbar and frame color.
tab Color of inactive tabs.

selected_tab Color of active tabs.

line_number The color of the line numbers on the left.
print_margin Color of the vertical line showing the print margin.
cursor Cursor color.

selection The background color of the current selection.
smart_highlight

Background color of smart highlighted words.
bracket_highlight

Background color of highlighted bracket pairs.

active_line Color for the active line the cursor is in.
whitespace Color for whitespace characters.
debug_line Color of the current debug line.
scrollbar Color of the scrollbars.

scrollbar_hover

Highlight color when hovering over a scrollbar.
scrollbar_active

Highlight color when clicking on a scrollbar.
class_name Code color for class names (like package names).

keyword Code color for fixed keywords (like function, if, else).
language_constant
Code color for language constants (like the @ keywords).

function_name Code color for base and package functions.

numeric Code color for numeric values.

string Code color for string values.

regex Code color for regex expressions.

variable Code color for variables, parameters and arguments.
comment Code color for comments.

symbol Code Color of symbols (like <-, brackets).

console_code Color of executed Code in the Console.

markdown_code Background color of code passages in a markdown file.

combine_into_workbook 15

Details

In the *SAS Enterprise Guide’ the user is able to not only choose a given theme, but to also pick
the colors for the different parts of the editor by themselves. Everyone has a different taste of what
colors look pleasing to the eyes, so you should be able to choose them by yourself.

Value

Saves a complete theme file.

Examples

Example export file paths

NOTE: These tempfiles are only for the examples. In reality you just call the
main function and put in your desired path and name directly.

temp_file <- tempfile(fileext = ".rstheme")

file_name <- basename(tools::file_path_sans_ext(temp_file))

Example theme

build_rstheme(file_path = dirname(temp_file),
theme_name = file_name,
editor_background = "#417291",
editor_headline = "#602BCA",
editor_font = "#C75C48")

Manual cleanup for example
unlink(temp_file)

combine_into_workbook Combine Multiple Tables Into One Workbook

Description
Combines any number of tables created with any_table() into one workbook and styles them
according to their meta information.

Usage

combine_into_workbook(

file = NULL,

output = "excel”,
print = TRUE,

monitor = FALSE

16

Arguments

file

output

print

monitor

Value

combine_into_workbook

Provide any number of result lists output by any_table().

If NULL, opens the output as temporary file. If a filename with path is specified,
saves the output to the specified path.

The following output formats are available: excel and excel_nostyle.

TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the combined workbook.

FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.

A fully styled workbook containing the provided tables.

Examples

Example data frame
my_data <- dummy_data(1000)

my_datal["person”]] <- 1

Formats

age. <- discrete_format(
"Total” = 0:100,
"under 18" =0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” = 65:100)

sex. <- discrete_format(
"Total” = 1:2,
"Male" =1,
"Female” = 2)

education. <- discrete_format(

"Total” = c("low”, "middle"”, "high"),
"low education” = "low",

"middle education” = "middle”,

"high education” = "high")

Define style

my_style <- excel_output_style(column_widths = c(2, 15, 15, 15, 9))

Define titles and footnotes. If you want to add hyperlinks you can do so by

adding "link:"

followed by the hyperlink to the main text.

titles <- c("This is title number 1 link: https://cran.r-project.org/",
"This is title number 2",
"This is title number 3")
footnotes <- c("This is footnote number 1",
"This is footnote number 2",

combine_into_workbook

17

"This is footnote number 3 link: https://cran.r-project.org/")

Catch the output and additionally use the options:
pint = FALSE and output = "excel_nostyle”.
This skips the styling and output part, so that the function runs faster.

The styling is done later on.

my_style <- my_style |> modify_output_style(sheet_name = "big table")

tabl <- my_data |> any_table(rows
columns
values
statistics
pct_group
formats

style
na.rm
print
output

c("sex + age", "sex", "age"),
c("year", "education + year"),
weight,

c("sum”, "pct_group"),

c("sex", "age", "education”, "year"),

list(sex = sex., age = age.,
education = education.),
my_style,

= TRUE,
= FALSE,

"excel_nostyle")

my_style <- my_style |> modify_output_style(sheet_name = "age_sex")

tab2 <- my_data |> any_table(rows
columns
values
statistics
formats
style
na.rm
print
output

c("age"),

c("sex"),

weight,

c("sum"),

list(sex = sex., age = age.),
my_style,

TRUE,

= FALSE,

"excel_nostyle")

my_style <- my_style |> modify_output_style(sheet_name = "edu_year")

tab3 <- my_data |> any_table(rows
columns
values
statistics
formats
style
na.rm
print
output

= c("education”),

c("year"),

weight,

c("pct_group”),
list(education = education.),
my_style,

TRUE,

= FALSE,

"excel_nostyle")

Every of the above tabs is a list, which contains the data table, an unstyled

workbook and the meta information needed for the individual styling. These

tabs can be input into the following function, which reads the meta information,

styles each table individually and combines them as separate sheets into a single workbook.

combine_into_workbook(tab1, tab2, tab3)

18 content_report

content_report Get Detailed Summary About A Data Frame

Description

Prints a summary of a data frames contents, including details such as variable names, types, unique
values, missings and min/max values. It also tells you the number of observations and variables
present in the data frame, memory usage and the number of duplicate observations.

Usage
content_report(data_frame, output = "console"”, monitor = FALSE)
Arguments
data_frame The data frame to get the content information from.
output The following output formats are available: console (default) or text.
monitor FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.
Details

content_report() is based on the "SAS’ procedure Proc Contents, which provides a summary of
global information one one hand like number of observations and variables among many others and
on the other hand shows per variable information like type and length.

'R’ doesn’t store the same information in a data frame like ’SAS’, but there are many useful infor-
mation to get a quick overview of a data frame. With this function you don’t need to look at each
variable individually. You can simply run it over a data frame and get values for: number of unique
values, missing values (absolute and relative), min and max value as well as the top value.

Value

Returns a list containing the global information as well as a data table containing the per variable
information.

Examples

Example data frame
my_data <- dummy_data(100)

content_report(my_data)

convert_arguments 19

convert_arguments Convert Function Arguments to Character Vector

Description

args_to_char(): Converts any argument passed as a single character or symbol as well as charac-
ter vectors or vector of symbols back as character vector.

dots_to_char(): When you define a function and want the user to be able to pass variable names
without the need to have them stored in a vector c() or list() beforehand and without putting the
names into quotation marks, you can convert this variable list passed as ... into a character vector.

Note: If the user passes a list of characters it is returned as given.

get_origin_as_char() is a wrapper that allows to retrieve the original contents of the provided
variable, whether called directly or nested in multiple function calls, as a character vector.

Usage

args_to_char(argument)
dots_to_char(...)

get_origin_as_char(original, substituted)

Arguments
argument Function argument to convert.
Used for variable names listed in ... without the need to put them in c() or list().
original The data frame which contains the columns to be checked.
substituted The grouping variables which potentially form unique combinations.
Value

Returns a character vector.

Examples

Example function with function parameter
print_vnames <- function(parameter){
var_names <- args_to_char(substitute(parameter))
print(var_names)

}

print_vnames(age)

print_vnames("age")

print_vnames(c(age, sex, income, weight))
print_vnames(c("age", "sex", "income", "weight"))

"

20

convert_variables

You can also pass in a character vector, if you have stored variable names elsewhere
var_names <- c("age", "sex”, "income", "weight")
print_vnames(var_names)

"

If you plan to use the function within other functions, better use get_origin_as_char()
print_vnames <- function(parameter){

var_names <- get_origin_as_char(parameter, substitute(parameter))

print(var_names)

another_function <- function(parameter){
print_vnames(parameter)

another_function("age")
another_function(c("age",

"

sex”, "income”, "weight"))

Example function with ellipsis

print_vnames <- function(...){
var_names <- dots_to_char(...)
print(var_names)

print_vnames(age)

print_vnames("age")

print_vnames(age, sex, income, weight)
print_vnames("age"”, "sex", "income”, "weight")
You can also pass in a character vector, if you have stored variable names elsewhere
var_names <- c("age", "sex”, "income"”, "weight")

print_vnames(var_names)

convert_variables Convert Variables

Description

convert_numeric() converts all given variables to numeric if possible. If a variable contains none
numerical values (not including NAs), the variable will not be converted.

convert_factor() converts all given variables to factor.

Usage

convert_numeric(data_frame, variables)

convert_factor(data_frame, variables)

crosstabs 21

Arguments

data_frame A data frame containing variables to convert.

variables Variables from the data frame which should be converted.
Value

convert_numeric() returns the same data frame with converted variables where possible.

convert_factor() returns the same data frame with converted variables.

Examples

Convert variables in a data frame to numeric where possible
test_df <- data.frame(var_a = c(1, 2, 3, NA, 4, 5),
var_b = c(1, 2, "Hello"”, NA, 4, 5))

convert_df <- test_df |> convert_numeric(c("var_a", "var_b"))
Convert variables in a data frame to factor
test_df <- data.frame(var_a = c(1, 2, 3, 4, 5),

Val”_b - C(”e”, "C", nau’ ”d", ubn))

convert_df <- test_df |> convert_factor("var_b")

crosstabs Display Cross Table of Two Variables

Description

crosstabs() produces a cross table of two variables. Statistics can be weighted sums, unweighted
frequencies or different percentages.

Usage

crosstabs(
data_frame,
rows,
columns,
show_total = TRUE,
statistics = c("sum"),
formats = c(),
by = cQ),
weight = NULL,
titles = .gol_options[["titles"]],
footnotes = .qol_options[["footnotes"]],
style = .gol_options[["excel_style”]1],
output = .qgol_options[["output”]l],

22

na.rm =
print =
monitor

Arguments

data_frame
rows
columns
show_total
statistics

formats
by
weight
titles
footnotes
style

output

na.rm

print

monitor

Details

crosstabs

.qol_options[["na.rm"]],
.qol_options[["print"]],
.qol_options[["monitor"]]

A data frame in which are the variables to tabulate.

The variable that appears in the table rows.

The variable that appears in the table columns.

TRUE by default. Whether to print row and column totals or not.
The user requested statistics.Available functions:

e "sum" -> Weighted and unweighted sum

* "freq" -> Unweighted frequency

* "pct_row" -> Weighted and unweighted row percentages

* "pct_column" -> Weighted and unweighted column percentages

* "pct_total" -> Weighted and unweighted percentages compared to the grand
total

A list in which is specified which formats should be applied to which variables.
Compute tables stratified by the expressions of the provided variables.

Put in a weight variable to compute weighted results.

Specify one or more table titles.

Specify one or more table footnotes.

A list of options can be passed to control the appearance of *Excel’ outputs.
Styles can be created with excel_output_style().

The following output formats are available: console (default), text, excel and
excel_nostyle.

FALSE by default. If TRUE removes all NA values from the variables.

TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output data frame.

FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.

crosstabs() is based on the ’SAS’ procedure Proc Freq, which provides efficient and readable
ways to perform cross tabulations.

To create a cross table you only need to provide a variable for the rows and columns. Nothing
special about this. The real power comes into play, when you output your tables as a fully styled
’Excel” workbook. Setting up a custom, reusable style is as easy as setting up options like: provide
a color for the table header, set the font size for the row header, should borders be drawn for the
table cells yes/no, and so on.

You can not only output sums and frequencies, but also different percentages, all set up in separate,
evenly designed tables. For just a quick overview, rather than fully designed tables, you can also
just output the tables in ASCII style format.

crosstabs 23

Value

Returns a data tables containing the results for the cross table.

See Also

Creating a custom table style: excel_output_style(),modify_output_style(), number_format_style(),
modify_number_formats().

Global style options: set_style_options(), set_variable_labels(), set_stat_labels().
Creating formats: discrete_format() and interval_format().

Functions that can handle formats and styles: frequencies(), any_table().

Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi(),
transpose_plus(), sort_plus()

Examples

Example data frame
my_data <- dummy_data(1000)

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
set_titles("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",

"This is title number 3")

set_footnotes("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Output cross tables
my_data |> crosstabs(age, sex)
my_data |> crosstabs(age, sex,
weight = "weight")

Also works with characters
my_data |> crosstabs(”age", "sex")

my_data |> crosstabs("age”, "sex",
weight = "weight")

Applying formats

age. <- discrete_format(
"Total” = 0:100,
"under 18" =0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” = 65:100)

sex. <- discrete_format(
"Total” = 1:2,

24

crosstabs
"Male" =1,
"Female" = 2)
my_data |> crosstabs(age, sex,
formats = list(age = age., sex = sex.))
Split cross table by expressions of another variable
my_data |> crosstabs(age, sex, by = education)
Compute different stats
my_data |> crosstabs(age, sex,
statistics = c("sum”, "freq", "pct_row”, "pct_column”, "pct_total"”))

Get a list with two data tables for further usage
result_list <- my_data |> crosstabs(age, sex,

formats = list(age = age., sex = sex.))

Output in text file
my_data |> crosstabs(age, sex, output = "text")

Output to Excel
my_data |> crosstabs(age, sex, output = "excel")

Individual styling can also be passed directly
my_style <- excel_output_style(header_back_color = "0077B6",
font "Times New Roman")

my_data |> crosstabs(age, sex, output = "excel”, style = my_style)

To save a table as xlsx file you have to set the path and filename in the

style element
Example files paths
table_file <- tempfile(fileext = ".x1lsx")

Note: Normally you would directly input the path ("C:/MyPath/") and name ("MyFile.x1lsx").

set_style_options(save_path = dirname(table_file),

file = basename(table_file),
sheet_name = "MyTable")
my_data |> crosstabs(age, sex, output = "excel")

Manual cleanup for example
unlink(table_file)

Global options are permanently active until the current R session is closed.

There are also functions to reset the values manually.
reset_style_options()

reset_gol_options()

close_file()

drop_type_vars 25

drop_type_vars Drop automatically generated Variables

Description

If summarise_plus() is used with the nested options "all" or "single", three variables are automat-
ically generated: TYPE, TYPE_NR and DEPTH. With this functions these variables are dropped.

Usage

drop_type_vars(data_frame)

Arguments

data_frame The data frame with automatically generated variables.

Value

Returns a data frame without the variables TYPE, TYPE_NR and DEPTH.

Examples

Example format
sex. <- discrete_format(

"Total” = 1:2,
"Male” =1,
"Female" = 2)

Example data frame
my_data <- dummy_data(1000)

Call function
all_possible <- my_data |>

summarise_plus(class
values

statistics
formats

weight

nesting

na.rm
drop_type_vars()

c(year, sex),
c(income, probability),

c("sum”, "mean", "freq"),
list(sex = "sex."),

= weight,

= "all”,
TRUE) [|>

26 error_handling

dummy_data Dummy Data

Description

The dummy data frame contains a few randomly generated variables like year, sex, age, income and
weight to test out functionalities. It can be generated with the desired number of observations.

Usage
dummy_data(no_obs, monitor = .qol_options[["monitor"]])
Arguments
no_obs Number of observations.
monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.
Value

Returns a dummy data table.

Examples

my_data <- dummy_data(1000)

error_handling Error Handling

Description

resolve_intersection(): Compares if two vectors have intersecting values. If TRUE, removes
the intersection values from the base vector

part_of_df(): Check if variable names are part of a data frame. If not, remove them from the
given vector.

remove_doubled_values(): Remove values from a vector that appear more than once.

check_weight(): Check if a weight variable was provided. If TRUE, check whether it can be used
else add a temporary weight variable.

error_handling 27
Usage
resolve_intersection(base, vector_to_check, check_only = FALSE)
part_of_df(data_frame, var_names, check_only = FALSE)
remove_doubled_values(var_names)

check_weight(data_frame, var_names)

Arguments

base The base vector from which to remove any intersecting values.

vector_to_check
The vector for which intersections should be checked.

check_only Returns a list of invalid entries instead of a vector. Additionally it doesn’t throw
a warning.
data_frame A data frame in which to look up variable names.
var_names A character vector of variable names.
Value

Returns a vector or list.

Examples
Resolve intersection between two vectors
vecl <- C(”a”, "b", "C”, "d")
vec2 <- c("e”, "f", "a", "g")

vecl <- resolve_intersection(vecl, vec2)
Check if variables are part of a data frame

my_data <- dummy_data(100)
var_names <- c("year"”, "state",

n

age”, "test”)
var_names <- my_data |> part_of_df(var_names)

Remove doubled values
var_names <- c("year", "state", "state"”, "age")

var_names <- remove_doubled_values(var_names)

Check the provided weight variable
var_names <- my_data |> check_weight("weight")

28 excel_output_style

excel_output_style Style for ’Excel’ Table Outputs

Description
Set different options which define the visual output of ’Excel’ tables produced by frequencies(),
crosstabs() and any_table().

Usage

excel_output_style(
save_path = NULL,

file = NULL,

sheet_name = "Table”,
font = "Arial”,
column_widths = "auto”,
row_heights = "auto”,

title_heights = NULL,
header_heights = NULL,
table_heights = NULL,
footnote_heights = NULL,
start_row = 2,

start_column = 2,
freeze_col_header = FALSE,
freeze_row_header = FALSE,
filters = TRUE,

grid_lines = TRUE,
header_back_color "FFFFFF",
header_font_color = "000000",

header_font_size = 10,
header_font_bold = TRUE,
header_alignment = "center”,

header_wrap = "1",
header_indent = 0,
header_borders = TRUE,
header_border_color = "000000",
cat_col_back_color = "FFFFFF",
cat_col_font_color = "000000",
cat_col_font_size = 10,
cat_col_font_bold = FALSE,
cat_col_alignment = "left"”,
cat_col_wrap = "1",
cat_col_indent = 1,
cat_col_borders = TRUE,
cat_col_border_color = "000000",
table_back_color = "FFFFFF",
table_font_color = "000000",

excel_output_style

table_font_size
table_font_bold

29

10,
FALSE,

table_alignment = "right",
table_indent = 1,
table_borders = FALSE,
table_border_color = "000000",
as_heatmap = FALSE,
heatmap_low_color = "F8696B",
heatmap_middle_color = "FFFFFF",
heatmap_high_color = "63BE7B",
box_back_color = "FFFFFF",
box_font_color = "000000",
box_font_size = 10,
box_font_bold = TRUE,

box_alignment = "center”,
box_wrap = "1",
box_indent = 0,

box_borders = TRUE,

box_border_color = "000000",
number_formats = number_format_style(),
title_font_color = "000000",
title_font_size = 10,

title_font_bold

TRUE,

title_alignment = "left”,
footnote_font_color = "000000",
footnote_font_size = 8,

footnote_font_bold

FALSE,

footnote_alignment = "left"”,

na_symbol =

Arguments

save_path
file

sheet_name

font
column_widths

row_heights

n on

If NULL, opens the output as temporary file. Otherwise specify an output path.

If NULL, opens the output as temporary file. Otherwise specify a filename with
extension.

Name of the sheet inside the workbook to which the output shall be written. If
multiple outputs are produced in one go, the sheet name additionally receives a
running number.

Set the font to be used for the entire output.

Specify whether column widths should be set automatically and individually or
if a numeric vector is passed each column width can be specified manually. If a
table has more columns than column widths are provided, the last given column
width will be repeated until the end of the table.

Specify whether row heights should be set automatically and individually or if
a numeric vector is passed each row height can be specified manually. If a table
has more rows than row heights are provided, the last given row height will be
repeated until the end of the table.

30

excel_output_style

title_heights Setindividual row heights for the titles only.
header_heights Setindividual row heights for the table header only.

table_heights Set individual row heights for the table body only.

footnote_heights
Set individual row heights for the footnotes only.

start_row The row in which the table starts.

start_column The column in which the table starts.

freeze_col_header
Whether to freeze the column header so that it is always visible while scrolling
down the document.

freeze_row_header
Whether to freeze the row header so that it is always visible while scrolling
sideways in the document.

filters Whether to set filters in the column header, when exporting a data frame.

grid_lines Whether to show grid lines or not.
header_back_color

Background cell color of the table header.
header_font_color

Font color of the table header.
header_font_size

Font size of the table header.
header_font_bold

Whether to print the table header in bold letters.
header_alignment

Set the text alignment of the table header.

header_wrap Whether to wrap the texts in the table header.
header_indent Indentation level of the table header.

header_borders Whether to draw borders around the table header cells.
header_border_color

Borders colors of the table header cells.
cat_col_back_color

Background cell color of the category columns inside the table.
cat_col_font_color

Font color of the category columns inside the table.
cat_col_font_size

Font size of the category columns inside the table.
cat_col_font_bold

Whether to print the category columns inside the table in bold letters.
cat_col_alignment

Set the text alignment of the category columns inside the table.

cat_col_wrap Whether to wrap the texts in the category columns inside the table.

cat_col_indent Indentation level of the category columns inside the table.

excel_output_style 31

cat_col_borders

Whether to draw borders around the category columns inside the table.
cat_col_border_color

Borders colors of the category columns inside the table.
table_back_color

Background color of the inner table cells.
table_font_color

Font color of the inner table cells.
table_font_size

Font size of the inner table cells.
table_font_bold

Whether to print the inner table cells in bold numbers
table_alignment

Set the text alignment of the inner table cells.
table_indent Indentation level of the inner table cells.
table_borders Whether to draw borders around the inner table cells.
table_border_color

Borders colors of the inner table cells.

as_heatmap Whether to lay a conditional formatting over the values.
heatmap_low_color

The color for lower values in the conditional formatting.
heatmap_middle_color

The color for middle values in the conditional formatting.
heatmap_high_color

The color for high values in the conditional formatting.
box_back_color Background color of the left box in table header.
box_font_color Font color of the left box in table header.
box_font_size Font size of the left box in table header.
box_font_bold Whether to print the left box in table header in bold letters.

box_alignment Set the text alignment of the left box in table header.

box_wrap Whether to wrap the texts in the left box in table header.
box_indent Indentation level of the left box in table header.
box_borders Whether to draw borders around the left box in table header.

box_border_color
Borders colors of the left box in table header.

number_formats Put in a list of number formats which should be assigned to the different stats.
Number formats can be created with number_format_style().
title_font_color
Font color of the titles.
title_font_size
Font size of the tables titles.
title_font_bold
Whether to print the tables titles in bold letters.

32 excel_output_style

title_alignment
Set the text alignment of the titles.

footnote_font_color

Font color of the footnotes
footnote_font_size

Font size of the tables footnotes
footnote_font_bold

Whether to print the tables footnotes in bold letters.

footnote_alignment
Set the text alignment of the footnotes.

na_symbol Define the symbol that should be used for NA values.

Details

excel_output_style() is based on the Output Delivery System (ODS) in *SAS’, which provides
efficient and readable ways to set up different table styles.

With the output style you have full control over the table design. There is no need to think about
calculating the right place to input a background color or a border of a certain type and how to do
this in a loop for multiple cells. Just input colors, borders, font styles, etc. for the different table
parts and everything else is handled by the functions capable of using styles.

The concept basically is: design over complex calculations.

Value

Returns a list of named style options.

See Also
Creating a custom table style: modify_output_style(), number_format_style(), modify_number_formats().
Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

Examples

For default values
excel_style <- excel_output_style()

Set specific options, the rest will be set to default values
excel_style <- excel_output_style(font = "Calibri”,
sheet_name = "My_Output”)

For cells with no background color pass an empty string
excel_style <- excel_output_style(table_back_color = "")

export_with_style 33

export_with_style Export Data Frame With Style

Description

export_with_style() prints a data frame as an individually styled *Excel’ table. Titles, footnotes
and labels for variable names can optionally be added.

Usage

export_with_style(
data_frame,
titles = .gol_options[["titles"]],
footnotes = .qol_options[["footnotes"]],
var_labels = .qol_options[["var_labels"]],
workbook = NULL,
style = .qol_options[["excel_style”]],
output = .qol_options[["output”]1],
print = .qol_options[["print”]],

monitor = .qol_options[["monitor"]]
)
Arguments
data_frame A data frame to print.
titles Specify one or more table titles.
footnotes Specify one or more table footnotes.
var_labels A list in which is specified which label should be printed for which variable
instead of the variable name.
workbook Insert a previously created workbook to expand the sheets instead of creating a
new file.
style A list of options can be passed to control the appearance of 'Excel’ outputs.
Styles can be created with excel_output_style().
output The following output formats are available: excel and excel_nostyle.
print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output workbook.
monitor FALSE by default. If TRUE outputs two charts to visualize the functions time
consumption.
Details

export_with_style() is based on the ’SAS’ procedure Proc Print, which outputs the data frame
as is into a styled table.

34 export_with_style

Value

Returns a formatted *Excel” workbook.

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style(),
modify_number_formats().

Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Functions that can handle styles: frequencies(), crosstabs(), any_table().

Examples

Example data frame
my_data <- dummy_data(1000)

Define style
set_style_options(column_widths = c(2, 15, 15, 15, 9))

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
set_titles("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",

"This is title number 3")

set_footnotes("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Print styled data frame
my_data |> export_with_style()

Retrieve formatted workbook for further usage
wb <- my_data |> export_with_style()

To save a table as xlsx file you have to set the path and filename in the
style element

Example files paths

table_file <- tempfile(fileext = ".x1lsx")

Note: Normally you would directly input the path ("C:/MyPath/") and name ("MyFile.x1lsx").
set_style_options(save_path = dirname(table_file),

file = basename(table_file),

sheet_name = "MyTable")

my_data |> export_with_style()

Manual cleanup for example
unlink(table_file)

Global options are permanently active until the current R session is closed.
There are also functions to reset the values manually.

first_row_as_names 35

reset_style_options()
reset_gol_options()
close_file()

first_row_as_names Set First Data Frame Row As Variable Names

Description

Sets the first row of a data frame as variable names and deletes it. In case of NA, numeric values or
empty characters in the first row, the old names are kept.

Usage

first_row_as_names(data_frame)

Arguments

data_frame A data frame for which to set new variable names.

Value

Returns a data frame with renamed variables.

Examples

Example data frame

my_data <- data.frame(
varl = c("id", 1, 2, 3),
var2 = c(NA, "a", "b", "c"),
var3 = c("value", 1, 2, 3),
vard = c("", "a", "b", "c"),
var5 = c(1, 2, 3, 4))

my_data <- my_data |> first_row_as_names()

36 frequencies

frequencies Display Frequency Tables of Single Variables

Description

frequencies() produces two kinds of tables for a quick overview of single variables. The first
table is for a broader overview and contains mean, sd, min, max, freq and missings. The second
table is the actual frequency table which shows the weighted sums, percentages and unweighted
frequencies per expression.

Usage

frequencies(
data_frame,
variables,
formats = c(),
by = cQ,
weight = NULL,
titles = .qol_options[["titles"]],
footnotes = .qol_options[["footnotes”"]],
style = .qol_options[["excel_style"]1],
output = .qgol_options[["output”]],

na.rm = .gol_options[["na.rm"1],
print = .qol_options[["print"]],
monitor = .qgol_options[["monitor”]]
)
Arguments
data_frame A data frame in which are the variables to tabulate.
variables A vector of single variables to create frequency tables for.
formats A list in which is specified which formats should be applied to which variables.
by Compute tables stratified by the expressions of the provided variables.
weight Put in a weight variable to compute weighted results.
titles Specify one or more table titles.
footnotes Specify one or more table footnotes.
style A list of options can be passed to control the appearance of *Excel’ outputs.
Styles can be created with excel_output_style().
output The following output formats are available: console (default), text, excel and
excel_nostyle.
na.rm FALSE by default. If TRUE removes all NA values from the variables.
print TRUE by default. If TRUE prints the output, if FALSE doesn’t print anything.
Can be used if one only wants to catch the output data frame.
monitor FALSE by default. If TRUE, outputs two charts to visualize the functions time

consumption.

frequencies 37

Details

frequencies() is based on the "SAS’ procedure Proc Freq, which provides efficient and readable
ways to output frequency tables.

To create a frequency table you only need to provide a single variable. Nothing special about this.
The real power comes into play, when you output your tables as a fully styled ’Excel’ workbook.
Setting up a custom, reusable style is as easy as setting up options like: provide a color for the table
header, set the font size for the row header, should borders be drawn for the table cells yes/no, and
SO on.

You also can provide multiple single variables to generate multiple, evenly designed tables, all at
once. For just a quick overview, rather than fully designed tables, you can also just output the tables
in ASCII style format.

Value

Returns a list of two data tables containing the results for the frequency tables.

See Also
Creating a custom table style: excel_output_style(),modify_output_style(), number_format_style(),
modify_number_formats().
Global style options: set_style_options(), set_variable_labels(), set_stat_labels().
Creating formats: discrete_format() and interval_format().
Functions that can handle formats and styles: crosstabs(), any_table().
Additional functions that can handle styles: export_with_style()

Additional functions that can handle formats: summarise_plus(), recode(), recode_multi(),
transpose_plus(), sort_plus()

Examples

Example data frame
my_data <- dummy_data(1000)

Define titles and footnotes. If you want to add hyperlinks you can do so by
adding "link:" followed by the hyperlink to the main text.
set_titles("This is title number 1 link: https://cran.r-project.org/",

"This is title number 2",

"This is title number 3")

set_footnotes("This is footnote number 1",
"This is footnote number 2",
"This is footnote number 3 link: https://cran.r-project.org/")

Output frequencies tables

my_data |> frequencies(sex)

my_data |> frequencies(c(age, education),
weight = weight)

Also works with characters

38

my_data |> frequencies("sex")
my_data |> frequencies(c("age", "education"),
weight = "weight")

Applying

sex. <- discrete_format(
"Total” = 1:2,
"Male” =1,
"Female"” = 2)

my_data |> frequencies(sex,
formats = (sex = sex.))

Split frequencies by expressions of another variable
my_data |> frequencies(sex, by = education)

Get a list with two data tables for further usage
result_list <- my_data |> frequencies(sex, formats = (sex = sex.))

Output in text file
my_data |> frequencies(sex, output = "text")

Output to Excel
my_data |> frequencies(sex, output

"excel")

Individual styling can also be passed directly

my_style <- excel_output_style(header_back_color = "0077B6",
font = "Times New Roman")
my_data |> frequencies(sex, output = "excel”, style = my_style)

To save a table as xlsx file you have to set the path and filename in the
style element

Example files paths

table_file <- tempfile(fileext = ".x1lsx")

Note: Normally you would directly input the path ("C:/MyPath/") and name ("MyFi
set_style_options(save_path = dirname(table_file),

file = basename(table_file),

sheet_name = "MyTable")

my_data |> frequencies(sex, output = "excel”)

Manual cleanup for example
unlink(table_file)

Global options are permanently active until the current R session is closed.
There are also functions to reset the values manually.

reset_style_options()

reset_gol_options()

close_file()

frequencies

le.x1sx").

fuse_variables 39

fuse_variables Fuse Multiple Variables

Description

When you have a situation where you have multiple variables with different NA values that happen
to be in different places (where one variable has a value the other is NA and vice versa) you can
fuse these together to a single variable.

Usage

fuse_variables(
data_frame,
new_variable_name,
variables_to_fuse,
drop_original_vars = TRUE

)

Arguments

data_frame A data frame with variables to fuse.
new_variable_name

The name of the new fused variable.
variables_to_fuse

A vector with the variables that should be fused together.

drop_original_vars
Whether to drop or keep the original values. TRUE by default.

Value

Returns a data frame without the variables TYPE, TYPE_NR and DEPTH.

Examples

Example format
sex. <- discrete_format(

"Total” = 1:2,
"Male” =1,
"Female"” = 2)

Example data frame
my_data <- dummy_data(1000)

Call function
all_possible <- my_data |>
summarise_plus(class c(year, sex),
values c(income, probability),
statistics = c(”sum”, "mean”, "freq"),

40

formats
weight
nesting
na.rm

n

list(sex = "sex."),
weight,

"all”,

TRUE)

all_possible <- all_possible[DEPTH <= 1] |>
fuse_variables("fusion”, c("year", "sex"))

NOTE: You can generally use this function to fuse variables. What

get_excel_range

is done in

multiple steps above can be achieved by just using nested = "single” in

summarise_plus.
single <- my_data |>
summarise_plus(class

values
statistics
formats
weight
nesting
na.rm

c(year, sex),
c(income, probability),

c("sum”, "mean", "freq"),
list(sex = "sex."),
weight,

"single”,

TRUE)

get_excel_range

Converts Numbers into ’Excel’ Ranges

Description

Converts a column number into the according letter to form a cell reference like it is used in "Excel’

(e.g "A1"). Also can compute a range from cell to cell (e.g. "A1:BY22").

Usage

get_excel_range(
row = NULL,
column = NULL,
from_row = NULL,
from_column = NULL,
to_row = NULL,
to_column = NULL

)

Arguments
row Single row number.
column Single column number.
from_row Range start row.

from_column
to_row

to_column

Range end row.

Range start column.

Range end column.

get_integer_length

Value

Returns a character with an *Excel’ range.

Examples

single_cell <- get_excel_range(row = 1, column = 6)
range <- get_excel_range(from_row = 1, from_column = 6,
to_row = 5, to_column = 35)

41

get_integer_length Get Integer Length

Description

Get the number of digits of an integer variable.

Usage

get_integer_length(variable)

Arguments

variable The integer variable from which to get the length.

Value

Returns a vector with the number of digits places.

Examples

Example data frame
my_data <- dummy_data(100)

my_data[["age_length"]] <- get_integer_length(my_datal[["age"]1])

42

import_export

import_export

High Level Import From And Export To CSV And XLSX

Description

import_data(): A wrapper for data. table: :fread() and openxlsx2::wb_to_df(), providing
basic import functionality with minimal code.

export_data(): A wrapper for data.table::fwrite() and openxlsx2::wb_save(), providing
basic export functionality with minimal code.

Usage

import_data(
infile,
sheet = 1,

)

region = NULL,

separator = "auto"

decimal = "auto”,
var_names = TRUE

export_data(

data_frame,
outfile,
separator = ";",
decimal = ",
var_names

1
—
0 -~
c
T

Arguments

infile
sheet

region

separator
decimal
var_names
data_frame

outfile

Full file path with extension to a csv or xIsx file to be imported.

name of a named region.

TRUE by default. Whether to export variable names or not.

A data frame to export.

Only used in xIsx import. Which sheet of the workbook to import.

Only used in xIsx import. Can either be an "Excel” range like ’A1:BY27’ or the

Only used in CSV-export. Defines the single character value separator.

Only used in CSV-export. Defines the single character decimal character.

Full file path with extension. Allowed extensions are ".csv" and " xIsx".

import_export 43

Details

import_data() and export_data() are based on the 'SAS’ procedures Proc Import and Proc
Export, which provide a very straight forward syntax. While *SAS’ can import many different
formats with these procedures, these 'R’ versions concentrate on importing CSV and XLSX files.

The main goal here is to just provide as few as possible parameters to tackle most of the imports and
exports. These error handling also tries to let an import and export happen, even though a parameter
wasn’t provided in the correct way.

Value

Returns a data frame.

See Also

Functions that can export with style: frequencies(), crosstabs(), any_table(), export_with_style().

Creating a custom table style: excel_output_style(),modify_output_style(), number_format_style(),
modify_number_formats().

Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Examples
Example files
csv_file <- system.file("extdata”, "qol_example_data.csv”, package = "qol")
xlsx_file <- system.file("extdata”, "qol_example_data.xlsx", package = "qol")

Import: Provide full file path
my_csv <- import_data(csv_file)
my_xlsx <- import_data(xlsx_file)

Import specific regions
range_import <- import_data(xlsx_file, region = "B4:H32")
name_import <- import_data(xlsx_file, region = "test_region")

Import from another sheet
sheet_import <- import_data(xlsx_file, sheet = "Sheet 2")

Example data frame
my_data <- dummy_data(100)

Example export file paths
export_csv <- tempfile(fileext = ".csv")
export_xlsx <- tempfile(fileext " x1lsx")

Export: Provide full file path
my_data |> export_data(export_csv)
my_data |> export_data(export_xlsx)

Manual cleanup for example
unlink(c(export_csv, export_xlsx))

44 libname

inverse Get Variable Names Which Are Not Part Of The Given Vector

Description
If you have stored variable names inside a character vector, this function gives you the inverse
variable name vector.

Usage

inverse(data_frame, var_names)

Arguments
data_frame The data frame from which to take the variable names.
var_names A character vector of variable names.

Value

Returns the inverse vector of variable names compared to the given vector.

Examples

Example data frame
my_data <- dummy_data(1000)

Get variable names
var_names <- c("year"”, "age", "sex")
other_names <- my_data |> inverse(var_names)

Can also be used to just get all variable names
all_names <- my_data |> inverse()

libname Check If Path Exists And Retrieve Files

Description
libname () checks if a given path exists and writes a message in the console accordingly. Optional
all files from the given path can be retrieved as a named character vector.

Usage

libname(path, get_files = FALSE)

modify_number_formats 45

Arguments
path A folder path.
get_files FALSE by default. If TRUE returns a named character vector containing file
paths.
Value

Returns the given file path or a named character vector containing file paths.

Examples

my_path <- libname("”C:/My_Path/")
file_list <- libname("C:/My_Path/", get_files = TRUE)

modify_number_formats Modify Number Formats Used by any_table()

Description

Modify previously created number formats with number_format_style().

Usage

modify_number_formats(formats_to_modify, ...)

Arguments

formats_to_modify
Pre created number formats where only certain elements should be modified
while the rest is kept as is.

Pass in names and corresponding new values for existing number formats.

Details
modify_number_formats() is based on "SAS’ number formats and the Output Delivery System
(ODS), which provides efficient and readable ways to set up different table styles.

With the number format style you have full control over formatting numbers according to the differ-
ent statistics. There is no need to think about calculating the right place to input the number formats
and how to do this in a loop for multiple cells. Just input the different number formats and decimals
for the different statistics and everything else is handled by the functions capable of using number
styles.

The concept basically is: design over complex calculations.

Value

Returns a modified list of number format options.

46 modify_output_style

See Also

Creating a custom table style: excel_output_style(), modify_output_style(), number_format_style().
Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style().

Examples

For default values
format_list <- number_format_style(pct_excel = "0.00000000",
pct_decimals = 8)

Set specific options, the rest will be kept as is
format_list <- format_list |> modify_number_formats(sum_excel = "#, #i#i# ##0.000")

IMPORTANT: Don't forget to add individual formats to an excel style, otherwise
they won't come into affect.
excel_style <- excel_output_style(number_formats = format_list)

modify_output_style Modify Style for 'Excel’ Table Outputs

Description

Modify a previously created style with excel_output_style().

Usage

modify_output_style(style_to_modify, ...)

Arguments

style_to_modify
A pre created style where only certain elements should be modified while the
rest is kept as is.

Pass in names and corresponding new values for existing style elements.

Details

modify_output_style() is based on the Output Delivery System (ODS) in ’SAS’, which provides
efficient and readable ways to set up different table styles.

With the output style you have full control over the table design. There is no need to think about
calculating the right place to input a background color or a border of a certain type and how to do
this in a loop for multiple cells. Just input colors, borders, font styles, etc. for the different table
parts and everything else is handled by the functions capable of using styles.

The concept basically is: design over complex calculations.

multi_join 47

Value

Returns a modified list of named style options.

See Also

Creating a custom table style: excel_output_style(), number_format_style(), modify_number_formats().
Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

Examples

For default values
excel_style <- excel_output_style()

Set specific options, the rest will be kept as is
excel_style <- excel_style |> modify_output_style(sheet_name = "Sheet"”,

title_font_bold = FALSE)
For cells with no background color pass an empty string
excel_style <- excel_style |> modify_output_style(table_back_color = "")

multi_join Join Multiple Data Frames In One Go

Description
Join two or more data frames together in one operation. multi_join() can handle multiple differ-
ent join methods and can join on differently named variables.

Usage

multi_join(
data_frames,

on,
how = "left”,
keep_indicators = FALSE,
monitor = .qgol_options[["monitor”]]

)

Arguments
data_frames A list of data frames to join together. The second and all following data frames
will be joined on the first one.
on The key variables on which the data frames should be joined. If a character

vector is provided, the function assumes all the variables are in every data frame.
To join on different variable names a list of character vectors has to be provided.

48 multi_join

how A character vector containing the join method names. Available methods are:
left, right, inner, full, outer, left_inner and right_inner.

keep_indicators

FALSE by default. If TRUE, a variable for each data frame is created, which
indicates whether a data frame provides values.

monitor FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.

Details

multi_join() is based on the *SAS’ Data-Step function Merge. Merge is capable of joining mul-
tiple data sets together at once, with a very basic syntax.

Provide the dataset names, the variables, on which they should be joined and after a full join is
complete, the user can decide which parts of the joins should remain in the final dataset.

multi_join() tries to keep the simplicity, while giving the user the power, to do more joins at
the same time. Additionally to what Merge can do, this function also makes use of the Proc SQL
possibility to join datasets on different variable names.

Value

Returns a single data frame with joined variables from all given data frames.

Examples

Example data frames
df1 <- data.frame(key = c(1, 1, 1, 2, 2, 2),
a =c("a", "a", "a", "a", "a", "a"))

df2 <- data.frame(key = c(2, 3),
b = c("b”, "b"))

See all different joins in action
join_methods <- c("left”, "right"”, "inner"”, "full”, "outer"”, "left_inner”, "right_inner")
joined_data <- list()

for (method in seq_along(join_methods)){
joined_datal[[method]] <- multi_join(list(df1, df2),
on = "key",
how = join_methods[[method]])
3

Left join on more than one key
df1b <- data.frame(keyl = c(1, 1, 1, 2, 2, 2),

key2 - C(”a", a", a", a", ”a”, ”a"),
a - C(”a“, nan’ nan, nan’ nan, nan))

df2b <- data.frame(keyl = c(2, 3),
keyz = C(”a”, Ilall)’
b = c("b", "b"))

number_format_style

left_joined <- multi_join(list(df1b, df2b), on = c("keyl”, "key2"))

Join more than two data frames
df3 <- data.frame(key = c(1, 2),
¢ =c("c", "e"y)

multiple_joined <- multi_join(list(df1, df2, df3), on = "key")

You can also use different methods for each join
multiple_joined2 <- multi_join(list(df1, df3, df2),

on = "key",

how = c("left"”, "right"))

Joining on different variable names
df1c <- data.frame(keyl = c(1, 1, 1, 2, 2, 2),
n n n n n n n n s llall) s

key2 = c("a", "a", "a", "a", "a
a = c("a", "a", "a”, "a", "a", "a"))

df2c <- data.frame(varl = c(2, 3),
var2 = c("a", "a"y,
b = c("b", "b"))

df3c <- data.frame(any = c(1, 2),
name = c("a", "a"y,
c = C(VICII’ IICII))

multiple_joined3 <- multi_join(list(dflc, df2c, df3c),
on = list(dflc = c("key1”, "key2"),
df2c = c("var1”, "var2"),
df3c = c("any”, "name")))

number_format_style Number Formats Used by any_table()

Description

Set individual number formats for the different statistics in tables produced with any_table().

Usage

number_format_style(
pct_excel = "0.0",
freq_excel = "#, #it# ##0",
freq.g@_excel = "# ### ##0",
sum_excel = "# ### ##0",
sum.wgt_excel = "#, ##Hf ##0",
mean_excel = "# i ##0",
median_excel = "#, ##Ht, #4#0",

50

mode_excel = "# #i## ##0",
min_excel = "#, #Ht ##0",
max_excel = "# #HE ##0",
sd_excel = "# #Ht ##0.000",

variance_excel = "#, #it# ##0.000",

first_excel = "#,### ##0",
last_excel = "#, #i## ##0",
p_excel = "# #i#HE #H0",
missing_excel = "#, #i## ##0",
pct_decimals = 1,
freg_decimals = 0

number_format_style

freq.gd_decimals

0,

sum_decimals = 3,

sum.wgt_decimals
mean_decimals

3,

mode_decimals =

2,
median_decimals = 2,
2,

min_decimals =
:2,

max_decimals

2,

sd_decimals = 3,
variance_decimals = 3,
first_decimals = 0,

last_decimals

p_decimals =

:0,

2,

missing_decimals = @

Arguments

pct_excel
freg_excel
freq.god_excel
sum_excel
sum.wgt_excel
mean_excel
median_excel
mode_excel
min_excel
max_excel
sd_excel
variance_excel
first_excel
last_excel

p_excel

Number format for percentage applied in Excel workbook.
Number format for frequency applied in Excel workbook.
Number format for frequency greater zero applied in Excel workbook.
Number format for sum applied in Excel workbook.

Number format for sum of weights applied in Excel workbook.
Number format for mean applied in Excel workbook.

Number format for median applied in Excel workbook.
Number format for mode applied in Excel workbook.

Number format for min applied in Excel workbook.

Number format for max applied in Excel workbook.

Number format for sd applied in Excel workbook.

Number format for variance applied in Excel workbook.
Number format for first applied in Excel workbook.

Number format for last applied in Excel workbook.

Number format for percentile applied in Excel workbook.

number_format_style 51

missing_excel Number format for missing applied in Excel workbook.
pct_decimals Number of decimals for percentage.

freq_decimals Number of decimals for frequency.
freq.g@_decimals
Number of decimals for frequency greater zero.

sum_decimals Number of decimals for sum.
sum.wgt_decimals
Number of decimals for sum of weights.

mean_decimals Number of decimals for mean.
median_decimals
Number of decimals for median.

mode_decimals Number of decimals for mode.
min_decimals Number of decimals for min.
max_decimals Number of decimals for max.

sd_decimals Number of decimals for sd.
variance_decimals
Number of decimals for variance.

first_decimals Number of decimals for first.
last_decimals Number of decimals for last.

p_decimals Number of decimals for percentile.
missing_decimals
Number of decimals for missing.

Details

number_format_style() is based on *SAS’ number formats and the Output Delivery System
(ODS), which provides efficient and readable ways to set up different table styles.

With the number format style you have full control over formatting numbers according to the differ-
ent statistics. There is no need to think about calculating the right place to input the number formats
and how to do this in a loop for multiple cells. Just input the different number formats and decimals
for the different statistics and everything else is handled by the functions capable of using number
styles.

The concept basically is: design over complex calculations.

Value

Returns a list of named number format options.

See Also
Creating a custom table style: excel_output_style(),modify_output_style(), modify_number_formats().
Global style options: set_style_options(), set_variable_labels(), set_stat_labels().

Functions that can handle styles: frequencies(), crosstabs(), any_table(), export_with_style()

52 gol_options

Examples

For default values
format_list <- number_format_style()

Set specific options, the rest will be set to default values
format_list <- number_format_style(pct_excel = "0.00000000",
pct_decimals = 8)

IMPORTANT: Don't forget to add individual formats to an excel style, otherwise
they won't come into affect.
excel_style <- excel_output_style(number_formats = format_list)

gol_news Go To GitHub NEWS Page

Description

Opens browser and goes to the Github NEWS page

Usage

gol_news()

Value

URL.

gol_options Set Global Print Option

Description

set_print(): Set the print option globally for the tabulation and export to Excel functions.
get_print(): Get the globally stored print option.

set_monitor(): Set the monitor option globally for the heavier functions which are able to show
how they work internally.

get_monitor(): Get the globally stored monitor option.
set_na.rm(): Set the na.rm option globally for each function which can remove NA values.
get_na.rm(): Get the globally stored na.rm option.

set_output(): Set the output option globally for each function that can output results to "console",

"text", "excel" or "excel_nostyle".

get_output(): Get the globally stored output option.

qol_options 53

set_titles(): Set the titles globally for each function that can print titles above the output table.
get_titles(): Get the globally stored titles.

set_footnotes(): Set the footnotes globally for each function that can print footnotes above the
output table.

get_footnotes(): Get the globally stored footnotes.

Usage
set_print(...)
get_print()
set_monitor(...)
get_monitor()
set_na.rm(...)
get_na.rm()
set_output(...)
get_output()
set_titles(...)
get_titles()
set_footnotes(...)

get_footnotes()

Arguments

Put in TRUE or FALSE to activate or deactivate the option.

Value
set_print(): Changed global print option.
get_print(): TRUE or FALSE.
set_monitor(): Changed global monitor option.
get_monitor(): TRUE or FALSE.
set_na.rm(): Changed global na.rm option.
get_na.rm(): TRUE or FALSE.
set_output(): Changed global output option.

get_output(): Current output option as character.

54 recode

set_titles(): Changed global titles.
get_titles(): Current titles as character.
set_footnotes(): Changed global footnotes.

get_footnotes(): Current footnotes as character.

Examples

set_print(FALSE)
set_print(TRUE)

get_print()

set_monitor (TRUE)
set_monitor (FALSE)

get_monitor()

set_na.rm(TRUE)
set_na.rm(FALSE)

get_na.rm()

set_output("excel”)

get_output()

set_titles("This is title number 1 link: https://cran.r-project.org/",
"This is title number 2",
"This is title number 3")

get_titles()

set_footnotes("This is title number 1 link: https://cran.r-project.org/",
"This is title number 2",

"This is title number 3")

get_footnotes()

recode Recode New Variables With Formats

Description

Instead of writing multiple if-clauses to recode values into a new variable, you can use formats to
recode a variable into a new one.

recode 55

Usage
recode(data_frame, new_var, ...)
recode_multi(data_frame, ...)
Arguments
data_frame A data frame which contains the the original variables to recode.
new_var The name of the newly created and recoded variable.
recode () Pass in the original variable name that should be recoded along with
the corresponding format container in the form: variable = format.
In recode_multi () multiple variables can be recoded in one go and multilabels
can be applied. This overwrites the original variables and duplicates rows if
multilabels are applied. In occasions were you want to use format containers
to afterwards perform operations with other packages, you can make use of this
principle with this function.
Details

recode() is based on the "SAS’ function put(), which provides an efficient and readable way, to
generate new variables with the help of formats.

When creating a format you can basically write code like you think: This new category consists of
these original values. And after that you just apply these new categories to the original values to
create a new variable. No need for multiple if_else statements.

Value

Returns a data frame with the newly recoded variable.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table().

Examples

Example formats

age. <- discrete_format(
"under 18" =0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” 65:100)

Example data frame
my_data <- dummy_data(1000)

Call function
my_data <- my_data |> recode("age_groupl1”, age = age.)

56 remove_stat_extension

Formats can also be passed as characters
my_data <- my_data |> recode("age_group2”, age = "age.")

Multilabel recode
sex. <- discrete_format(

"Total” = 1:2,
"Male” =1,
"Female"” = 2)

income. <- interval_format(

"Total” = 0:99999,
"below 500" = 0:499,
"500 to under 1000" = 500:999,

"1000 to under 2000" = 1000:1999,
"2000 and more"” 2000:99999)

multi_data <- my_data |> recode_multi(sex = sex., income = income.)

remove_stat_extension Replace Statistic From Variable Names

Description
Remove the statistic name from variable names, so that they get back their old names without
extension.

Usage

remove_stat_extension(data_frame, statistics)

Arguments
data_frame The data frame in which there are variables to be renamed.
statistics Statistic extensions that should be removed from the variable names.
Value

Returns a data frame with renamed variables.

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>
summarise_plus(class = c(year, sex),

rename_multi 57

values = c(weight, income),

statistics = c(”"sum”, "pct_group”, "pct_total”, "sum_wgt"”, "freq"),
weight = weight,

nesting = "deepest”,

na.rm = TRUE)

Remove statistic extension
new_names <- all_nested |> remove_stat_extension("sum")

rename_multi Rename One Or More Variables

Description

Can rename one or more existing variable names into the corresponding new variable names in one
go.

Usage
rename_multi(data_frame, ...)
Arguments
data_frame The data frame which contains the variable names to be renamed.
Pass in variables to be renamed in the form: "old_var" = "new_var".
Value

Returns a data_frame with renamed variables.

Examples

Example data frame
my_data <- dummy_data(10)

Rename multiple variables at once

new_names_df <- my_data |> rename_multi("sex" "varl",
"age” "var2”,
"state"” = "var3")

58 rename_pattern

rename_pattern Replace Patterns Inside Variable Names

Description

Replace a certain pattern inside a variable name with a new one. This can be used if there are
multiple different variable names which have a pattern in common (e.g. all end in "_sum" but start
different), so that there don’t have to be multiple rename variable calls.

Usage

rename_pattern(data_frame, old_pattern, new_pattern)

Arguments
data_frame The data frame in which there are variables to be renamed.
old_pattern The pattern which should be replaced in the variable names.
new_pattern The pattern which should be set in place for the old one.
Value

Returns a data frame with renamed variables.

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>

summarise_plus(class = c(year, sex),
values = c(weight, income),
statistics = c("sum”, "pct_group”, "pct_total”, "sum_wgt"”, "freq"),
weight = weight,
nesting = "deepest”,
na.rm = TRUE)

Rename variables by repacing patterns

new_names <- all_nested |>
rename_pattern(”pct”, "percent”) |>
rename_pattern(”_sum”, "")

replace_except 59

replace_except Replace Patterns While Protecting Exceptions

Description

Replaces a provided pattern with another, while protecting exceptions. Exceptions can contain the
given pattern, but won’t be changed during replacement.

Usage

replace_except(vector, pattern, replacement, exceptions = NULL)

Arguments
vector A vector containing the texts, where a pattern should be replaced.
pattern The pattern that should be replaced.
replacement The new pattern, which replaces the old one.
exceptions A character vector containing exceptions, which should not be altered.
Value

Returns a vector with replaced pattern.

Examples

Vector, where underscores should be replaced
underscores <- c("my_variable”, "var_with_underscores”, "var_sum”, "var_pct_total")

Extensions, where underscores shouldn't be replaced

extensions <- c("”_sum”, "_pct_group”, "_pct_total”, "_pct_value”, "_pct”, "_freq_g@",
" _freq”, "_mean”, "_median”, "_mode”, "_min"”, "_max", "_first",
" last”, "_p1”, "_p2", "_p3", "_p4", "_p5", "_p6", "_p7", "_p8", "_p9”,
"sum_wgt", "_sd", "_variance", "_missing")

Replace

"o

new_vector <- underscores |> replace_except("_", , extensions)

60 set

set Stack Multiple Data Frames

Description

Stacks multiple data frames and matches column names.

Usage
set(..., id = FALSE, compress = NULL, guessing_rows = 100)
Arguments
Put in multiple data frames to stack them in the provided order.
id Adds an ID column to indicate the different data frames.
compress No compression by default. If compression receives any value, set() will con-

vert character variables to numeric or integer where possible. If set to "factor"
all non numeric character variables will be converted to factors.

guessing_rows 100 by default. set() takes a sample of rows to determine of which type vari-
ables are.

Value

Returns a stacked data frame.

Examples

Example data frames

my_datal <- dummy_data(100)
my_data2 <- dummy_data(100)
my_data3 <- dummy_data(100)
my_data4 <- dummy_data(100)
my_data5 <- dummy_data(100)

Stack data frames

stacked_df <- set(my_datal,
my_data2,
my_data3s,
my_data4,
my_databs)

setcolorder_by_pattern 61

setcolorder_by_pattern
Order Columns by Variable Name Patterns

Description

Order variables in a data frame based on a pattern rather than whole variable names. E.g. grab every
variable that contains "sum" in it’s name and order them together so that they appear next to each
other.

Usage

setcolorder_by_pattern(data_frame, pattern)

Arguments

data_frame The data frame to be ordered.

pattern The pattern which is used for ordering the data frame columns.
Value

Returns a reordered data frame with the ordered variables at the end.

Examples

Example data frame
my_data <- dummy_data(1000)

Summarise data
all_nested <- my_data |>

summarise_plus(class = c(year, sex),
values = c(weight, income),
statistics = c("sum”, "pct_group”, "pct_total”, "sum_wgt"”, "freq"),
weight = weight,
nesting = "deepest”,
na.rm = TRUE)

Set a different column order
new_order <- all_nested |> setcolorder_by_pattern(c("pct”, "freq", "sum"))

62 sort_plus

sort_plus Sort Data Frame Rows With Some Additions

Description

Sort data frame rows by the provided variables. sort_plus() is also able to preserve the current
order of certain variables and only sort other variables within this order. As another option one can
sort a variable with the help of formats, which can be used to e.g. sort a character variable in another
than alphabetical order without creating a temporary variable just for sorting.

Usage
sort_plus(
data_frame,
by,
preserve = NULL,
order = "ascending”,
formats = c(),
na.last = TRUE
)
Arguments
data_frame A data frame to summarise.
by A variable vector which contains the variables to sort by.
preserve A vector containing all variables which current order should be preserved.
order A vector containing the sorting order for each variable. ’ascending’/’a’ or ’de-
scending’/’d’ can be used. If there are less orders given than by variables pro-
vided, the last given sorting order will be used for the additional by variables.
formats A list in which is specified which formats should be used to sort certain vari-
ables.
na.last TRUE by default. Specifies whether NA values should come last or first.
Details

sort_plus() is just very loosely based on the SAS’ procedure Proc Sort. It tries to keep the
simplicity, but with some added features.
Value

Returns a sorted data table.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table(), recode(),
recode_multi(), transpose_plus().

split_by 63

Examples

Example formats
education. <- discrete_format(

" o= ”].OW” ,
non = ”middle“,
n3n o= nhighn)

Example data frame
my_data <- dummy_data(1000)

Simple sorting
sort_df1 <- my_data |> sort_plus(by = c(state, sex, age))
sort_df2 <- my_data |> sort_plus(by = c(state, sex, age),
order = c("ascending”, "descending"))

Character variables will normally be sorted alphabetically. With the help
of a format this variable can be sorted in a completely different way.
sort_df3 <- my_data |> sort_plus(by = education,

formats = list(education = education.))

Preserve the order of the character variable, otherwise it couldn't stay in
it's current order.
sort_df4 <- sort_df3 |> sort_plus(by age,

preserve = education)

split_by Split Data Frame By Variable Expressions Or Condition

Description

Split up a data frame based on variable expressions or on conditions to receive multiple smaller data
frames. Both possibilities can be used at the same time.

Usage
split_by(
data_frame,

L

formats = list(),

inverse = FALSE,
monitor = .qol_options[["monitor"]]
)
Arguments
data_frame A data frame which should be split up into multiple data frames.

Pass in one or multiple variables and/or conditions on which the provided data
frame should be splitted.

64 split_by

formats A list in which is specified which formats should be applied to which variables.
inverse Uses the inverse conditions to split up the data frame.
monitor FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.
Details

split_by() is based on the explicit Output from *SAS’. With the Output function one can - among
other things - explicitly tell ’SAS’ which observation to output into which data set. Which enables
the user to output one observation into one or multiple data sets.

Instead of subsetting the same data frame multiple times manually, you can subset it multiple times
at once with this function.

Value

Returns a list of data frames split by variable expressions and/or conditions. The lists names are the
variable expressions or conditions.

Examples

Example data frame
my_data <- dummy_data(1000)

Split by variable expressions
split_var_df <- my_data |> split_by(sex)

Split by conditions
split_cond_df <- my_data |> split_by(sex == 1 & age < 18,
sex == 2 & age >= 18)

Split by condition with inverse group
split_inv_df <- my_data |> split_by(sex == 1, inverse = TRUE)

Split by variables and conditions
split_combi_df <- my_data |> split_by(state, education,
sex == 1, age < 18)

Split by variable expressions using formats

state. <- discrete_format(
"Germany"” =
"Schleswig-Holstein” =
"Hamburg” =
"Lower Saxony" =
"Bremen” =
"North Rhine-Westphalia” =5,

1:16,
]
2
3
4
5
"Hesse" =6,
7
8
9
1
1

’
’
’

’

"Rhineland-Palatinate” =
"Baden-Wiurttemberg” =
"Bavaria” =
"Saarland” =
"West” =

’

07
210,

style_options 65

"Berlin” =1,
"Brandenburg” =12,
"Mecklenburg-Western Pomerania” = 13,
"Saxony” = 14,
"Saxony-Anhalt” =15,
"Thuringia” = 16,
"East” = 11:16)

split_format_df <- my_data |> split_by(state,
formats = list(state = state.))

style_options Set Global Styling Options For Excel Workbooks

Description

Modify Styling options for Excel workbooks. Available parameters can be seen in excel_output_style()
or number_format_style().

set_style_options() sets the styling options for Excel workbooks globally.These options are
used by all tabulation and output functions, which are capable of exporting styled outputs.

reset_style_options() resets global style options to the default parameters.
get_style_options() prints out the currently set global styling options.
close_file() is a simple, more readable wrapper for setting file parameter to NULL.

set_variable_labels(): Can set variable labels globally so that they don’t have to be provided
in every output function separately.

get_variable_labels(): Get the globally stored variable labels.

set_stat_labels(): Can set statistic labels globally so that they don’t have to be provided in
every output function separately.

get_stat_labels(): Get the globally stored statistic labels.

reset_qol_options() resets global options to the default parameters.

Usage

set_style_options(...)
reset_style_options()
get_style_options()
close_file()
set_variable_labels(...)

get_variable_labels()

66 style_options

set_stat_labels(...)
get_stat_labels()

reset_qgol_options()

Arguments

Put in any styling option from excel_output_style() or number_format_style()
with the new value.

Value
set_style_options(): Returns modified global styling options.
reset_style_options(): Returns default global styling options.
get_style_options(): List of global styling options.
close_file(): List of global styling options with file = NULL.
set_variable_labels(): List of variable labels.
get_variable_labels(): List of variable labels.
set_stat_labels(): List of statistic labels.
get_stat_labels(): List of statistic labels.

reset_qgol_options(): Returns default global options.

See Also

Functions that use global styling optionss: any_table(), frequencies(), crosstabs().
Functions that also use global variable labels: export_with_style().
Functions that use global variable and statistic labels: any_table(), frequencies(), crosstabs().

Functions that also use global variable labels: export_with_style().

Examples
set_style_options(save_path = "C:/My Projects/",
sum_decimals = 8)
reset_style_options()
get_style_options()
close_file()
set_variable_labels(age_gr = "Group of ages”,
status = "Current status”)

get_variable_labels()

summarise_plus

set_stat_labels(pct = "%",
freq = "Count”)

get_stat_labels()

reset_gol_options()

67

summarise_plus

Fast And Powerful Yet Simple To Use Summarise

Description

summarise_plus() creates a new aggregated data table with the desired grouping. It can output
only the deepest nested combination of the grouping variables (default) or you can also output
every possible combination of the grouping variables at once, with just one small change. Besides
the normal summary functions like sum, mean or median, you can also calculate their respective
weighted version by just setting a weight variable.

Usage
summarise_plus(
data_frame,
class = NULL,
values,
statistics = c("sum”, "freq"),
formats = list(),
types = nn R
weight = NULL,
nesting = "deepest”,
merge_back = FALSE,
na.rm = .qol_options[["na.rm"1],
monitor = .qgol_options[["monitor”]],
notes = TRUE
)
Arguments
data_frame A data frame to summarise.
class A vector containing all grouping variables.
values A vector containing all variables that should be summarised.
statistics Available functions:

* "sum" -> Weighted and unweighted sum

e "sum_wgt" -> Sum of all weights

* "freq" -> Unweighted frequency

* "freq_g0" -> Unweighted frequency of all values greater than zero

68

formats

types

weight

nesting

merge_back

na.rm

monitor

notes

Details

summarise_plus

* "pct_group" -> Weighted and unweighted percentages within the respective
group

 "pct_total" -> Weighted and unweighted percentages compared to the grand
total

* "mean" -> Weighted and unweighted mean

* "median" -> Weighted and unweighted median

* "mode" -> Weighted and unweighted mode

* "min" -> Minimum

* "max" -> Maximum

e "sd" -> Weighted and unweighted standard deviation

* "variance" -> Weighted and unweighted standard variance
* "first" -> First value

e "last" -> Last value

* "pn" -> Weighted and unweighted percentiles (any pl, p2, p3, ... possible)
* "missing" -> Missings generated by the value variables

A list in which is specified which formats should be applied to which class
variables.

A character vector specifying the different combinations of group variables which
should be computed when using nesting = "all". If left empty all possible com-
binations will be computed.

Put in a weight variable to compute weighted results.

The predefined value is "deepest" meaning that only the fully nested version of
all class variables will be computed. If set to "all", all possible combinations will
be computed in one data table. The option "single" only outputs the ungrouped
summary of all class variables in one data table.

Newly summarised variables can be merged back to the original data frame if
TRUE. Only works if nested = "deepest and no formats are defined.

FALSE by default. If TRUE removes all NA values from the class variables.

FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.

TRUE by default. Prints notifications about NA values produced by class vari-
ables during summarise.

summarise_plus() is based on the "SAS’ procedure Proc Summary, which provides efficient and
readable ways to perform complex aggregations.

Normally you would compute new categorical variables beforehand - probably even in different
forms, if you wanted to have different categorizations - and bloat up the data set. After all this
recoding footwork you could finally use multiple summaries to compute all the stats you need to
then put them back together. With this function this is no more necessary.

In summarise_plus() you put in the original data frame and let the recoding happen via format
containers. This is very efficient, since new variables and categories are only created just before the
summarise happens.

summarise_plus 69

Additionally you can specify whether you only want to produce the all nested version of all group
variables or whether you want to produce every possible combination in one go. All with a single
option.

The function is optimized to always take the fastest route, depending on the options specified.

Value

Returns a summarised data table.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table(), recode(),
recode_multi(), transpose_plus(), sort_plus().

Examples

Example formats

age. <- discrete_format(
"Total” = 0:100,
"under 18" =0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” = 65:100)

sex. <- discrete_format(

"Total” = 1:2,
"Male" =1,
"Female" = 2)

income. <- interval_format(

"Total” = 0:99999,
"below 500" = 0:499,
"500 to under 1000" = 500:999,

"1000 to under 2000" = 1000:1999,
"2000 and more"” 2000:99999)

Example data frame
my_data <- dummy_data(1000)

Call function
all_nested <- my_data |>

summarise_plus(class = c(year, sex, age),
values = income,
statistics = c("sum”, "pct_group”, "pct_total”, "sum_wgt”, "freq"),
formats = list(sex = sex., age = age.),
weight = weight,
nesting = "deepest”,

na.rm = TRUE)

70 transpose_plus

all_possible <- my_data |>

summarise_plus(class = c(year, sex, age, income),
values = c(probability),
statistics = c("sum”, "p1", "p99", "min”, "max", "freq”, "freq_gd"),
formats = list(sex = sex.,
age = age.,
income = income.),
weight = weight,
nesting = "all”,
na.rm = TRUE)

Formats can also be passed as characters
single <- my_data |>

summarise_plus(class = c(year, age, sex),
values = weight,
statistics = c("sum”, "mean"),
formats = list(sex = "sex.", age = "age."),
nesting = "single")

merge_back <- my_data |>

summarise_plus(class = c(year, age, sex),
values = weight,
statistics = c("sum”, "mean"),
nesting = "deepest”,

merge_back = TRUE)

certain_types <- my_data |>

summarise_plus(class = c(year, sex, age),
values = c(probability),
statistics = c("sum”, "mean”, "freq"),
formats = list(sex = sex.,

age = age.),
types = c("year"”, "year + age", "age + sex"),
weight = weight,
nesting = "all”,
na.rm = TRUE)
transpose_plus Fast And Powerful Yet Simple To Use Transpose
Description

transpose_plus() is able to reshape a data frame from long to wide and from wide to long. In
the long to wide transposition variables can be nested or placed side by side. With the wide to long
transposition it is also possible to transpose multiple variables at once.

Additionally transpose_plus() is able to weight results before transposing them from long to
wide.

transpose_plus 71

The function also makes use of formats, which means you don’t need to create variables storing the
new variable names before transposition. You can just use formats to name the new variables and
with multilabels you can even generate new variable expressions at the same time.

Usage

transpose_plus(
data_frame,
preserve = NULL,
pivot,
values = NULL,
formats = c(),
weight = NULL,

na.rm = .gol_options[["na.rm"]1],
monitor = .qol_options[["monitor"]]
)
Arguments
data_frame A data frame to transpose
preserve Variables to keep and preserve in their current form.
pivot A vector that provides the expressions of single variables or od variable combi-
nations that should be transposed. To nest variables use the form: "varl + var2
+var3 +..".
values A vector containing all value variables that should be transposed.
formats A list in which is specified which formats should be applied to which variables.
weight Put in a weight variable to compute weighted results.
na.rm FALSE by default. If TRUE removes all NA values from the preserve and pivot
variables.
monitor FALSE by default. If TRUE, outputs two charts to visualize the functions time
consumption.
Details

transpose_plus() is just very loosely based on the *SAS’ procedure Proc Transpose, and the
possibilities of a Data-Step transposition using loops.

The transposition methods "SAS’ has to offer are actually fairly weak. Which is weird because all
tools are there to have another powerful function. So transpose_plus() tries to create the function
’SAS’ should have.

The function is able to interpret which transposition direction the user wants by just looking at what
the user provided with the function parameters. For a long to wide transposition it is natural to just
provide variables to transpose. While it is also just natural to provide new variable names when
transposing from wide to long. That alone reduces the number of parameters the user has to enter
to perform a simple transposition.

The real magic happens when formats come into play. With their help you can not only name new
variables or their expressions, but you can also generate completely new expressions with no effort,
just with the help of multilabels.

72 transpose_plus

Value

Returns a transposed data table.

See Also

Creating formats: discrete_format() and interval_format().

Functions that also make use of formats: frequencies(), crosstabs(), any_table(), recode(),
recode_multi(), sort_plus().

Examples

Example formats

age. <- discrete_format(
"Total” = 0:100,
"under 18" 0:17,
"18 to under 25" = 18:24,
"25 to under 55" = 25:54,
"55 to under 65" = 55:64,
"65 and older” 65:100)

sex. <- discrete_format(

"Total” = 1:2,
"Male" =1,
"Female" = 2)

sex2. <- discrete_format(

"Total” = c("Male”, "Female"),
"Male” = "Male”,
"Female"” = "Female")

income. <- interval_format(

"Total” = 0:99999,
"below 500" = 0:499,
"500 to under 1000" = 500:999,

"1000 to under 2000" = 1000:1999,
"2000 and more” 2000:99999)

Example data frame
my_data <- dummy_data(1000)

Transpose from long to wide and use a multilabel to generate additional categories
long_to_wide <- my_data |>
transpose_plus(preserve = c(year, age),

pivot = c("sex", "education"),

values = income,

formats = list(sex = sex., age = age.),
weight = weight,

na.rm = TRUE)

Transpose back from wide to long
wide_to_long <- long_to_wide |>

vars_between 73

transpose_plus(preserve = c(year, age),
pivot = list(sex c("Total”, "Male"”, "Female"),
education = c("low”, "middle"”, "high")))

Nesting variables in long to wide transposition
nested <- my_data |>
transpose_plus(preserve = c(year, age),

pivot = "sex + education”,

values = income,

formats = list(sex = sex., age = age.),
weight = weight,

na.rm = TRUE)

Or both, nested and un-nested, at the same time
both <- my_data |>
transpose_plus(preserve = c(year, age),

pivot = c("sex + education”, "sex", "education"),
values = income,
formats = list(sex = sex., age = age.),
weight = weight,
na.rm = TRUE)
vars_between Get All Variable Names Between Two Variables

Description

Get all the variable names inside a data frame between two variables (including the provided ones)
as a character vector

Usage

vars_between(data_frame, from, to)

Arguments
data_frame The data frame from which to take the variable names.
from Starting variable of variable range.
to Ending variable of variable range.

Value

Returns a character vector of variable names.

74 vars_between

Examples

Example data frame
my_data <- dummy_data(1000)

Get variable names
var_names <- my_data |> vars_between(state, income)

Get variable names in reverse order
vars_reverse <- my_data |> vars_between(income, state)

If you only provide "from” or "to" you get all variable names from a point to
the end or from the beginning to a given point.

vars_from <- my_data |> vars_between(state)

vars_to <- my_data |> vars_between(to = state)

Or just get all variable names
vars_all <- my_data |> vars_between()

Index

add_extension, 3

add_variable_range, 4

any_table, 4

any_table(), 3,4, 7, 15, 16, 23, 28, 32, 34,
37,43,45-47,49, 51, 55, 62, 66, 69,
72

args_to_char (convert_arguments), 19

args_to_char(), 19

build_master, 11
build_master(), 11
build_rstheme, 13

check_weight (error_handling), 26
check_weight(), 26
close_file (style_options), 65
close_file(), 65, 66
combine_into_workbook, 15
content_report, 18
content_report(), I8
convert_arguments, 19
convert_factor (convert_variables), 20
convert_factor(), 20, 21
convert_numeric (convert_variables), 20
convert_numeric(), 20, 21
convert_variables, 20
crosstabs, 21
crosstabs(), 7, 21, 22, 28, 32, 34, 37, 43, 46,
47,51, 55, 62, 66, 69, 72

data.table::fread(), 42
data.table::fwrite(), 42
discrete_format(), 7, 23,37, 55,62, 69, 72
dots_to_char (convert_arguments), 19
dots_to_char(), 19

drop_type_vars, 25

dummy_data, 26

error_handling, 26
excel_output_style, 28

75

excel_output_style(), 6, 7, 22, 23, 32-34,
36, 37,43, 46, 47,51, 65, 66

export_data (import_export), 42

export_data(), 42, 43

export_with_style, 33

export_with_style(), 7, 23, 32, 33, 37, 43,
46, 47,51, 66

first_row_as_names, 35

frequencies, 36

frequencies(), 7, 23, 28, 32, 34, 36, 37,43,
46, 47,51, 55, 62, 66, 69, 72

fuse_variables, 39

get_excel_range, 40

get_footnotes (qol_options), 52

get_footnotes(), 53, 54

get_integer_length, 41

get_monitor (gqol_options), 52

get_monitor(), 52, 53

get_na.rm(qol_options), 52

get_na.rm(), 52, 53

get_origin_as_char (convert_arguments),
19

get_origin_as_char(), 19

get_output (qol_options), 52

get_output(), 52, 53

get_print (qol_options), 52

get_print(), 52, 53

get_stat_labels (style_options), 65

get_stat_labels(), 65, 66

get_style_options (style_options), 65

get_style_options(), 65, 66

get_titles (qol_options), 52

get_titles(), 53, 54

get_variable_labels (style_options), 65

get_variable_labels(), 65, 66

import_data (import_export), 42
import_data(), 42, 43

76

import_export, 42
interval_format(), 7, 23, 37, 55, 62, 69, 72
inverse, 44

libname, 44
libname(), 44

modify_number_formats, 45

modify_number_formats(), 7, 23, 32, 34, 37,
43,45,47,51

modify_output_style, 46

modify_output_style(), 7, 23, 32, 34, 37,
43,46, 51

multi_join, 47

multi_join(), 47, 48

number_format_style, 49
number_format_style(), 7, 23, 31, 32, 34,
37,43,45-47, 51, 65, 66

openxlsx2: :wb_save(), 42
openxlsx2::wb_to_df (), 42

part_of_df (error_handling), 26
part_of_df (), 26

gol_news, 52
gol_options, 52

recode, 54

recode(), 7, 23, 37, 55,62, 69, 72

recode_multi (recode), 54

recode_multi(), 7, 23, 37, 55, 62, 69, 72

remove_doubled_values (error_handling),
26

remove_doubled_values(), 26

remove_stat_extension, 56

rename_multi, 57

rename_pattern, 58

replace_except, 59

reset_qol_options (style_options), 65

reset_qol_options(), 65, 66

reset_style_options (style_options), 65

reset_style_options(), 65, 66

resolve_intersection (error_handling),
26

resolve_intersection(), 26

set, 60
set(), 60

INDEX

set_footnotes (qol_options), 52

set_footnotes(), 53, 54

set_monitor (qol_options), 52

set_monitor(), 52, 53

set_na.rm(qol_options), 52

set_na.rm(), 52, 53

set_output (qol_options), 52

set_output(), 52, 53

set_print (qol_options), 52

set_print(), 52, 53

set_stat_labels (style_options), 65

set_stat_labels(), 7, 23, 32, 34, 37, 43, 46,
47,51, 65, 66

set_style_options (style_options), 65

set_style_options(), 7, 23, 32, 34, 37,43,
46, 47,51, 65, 66

set_titles (gqol_options), 52

set_titles(), 53, 54

set_variable_labels (style_options), 65

set_variable_labels(), 7, 23, 32, 34, 37,
43,46, 47,51, 65, 66

setcolorder_by_pattern, 61

sort_plus, 62

sort_plus(), 7, 23,37,62,69, 72

split_by, 63

split_by(), 64

style_options, 65

summarise_plus, 67

summarise_plus(), 7, 23, 25, 37, 67, 68

transpose_plus, 70
transpose_plus(), 7, 23, 37,62, 69-71

vars_between, 73

	add_extension
	add_variable_range
	any_table
	build_master
	build_rstheme
	combine_into_workbook
	content_report
	convert_arguments
	convert_variables
	crosstabs
	drop_type_vars
	dummy_data
	error_handling
	excel_output_style
	export_with_style
	first_row_as_names
	frequencies
	fuse_variables
	get_excel_range
	get_integer_length
	import_export
	inverse
	libname
	modify_number_formats
	modify_output_style
	multi_join
	number_format_style
	qol_news
	qol_options
	recode
	remove_stat_extension
	rename_multi
	rename_pattern
	replace_except
	set
	setcolorder_by_pattern
	sort_plus
	split_by
	style_options
	summarise_plus
	transpose_plus
	vars_between
	Index

