Package ‘protti’

January 14, 2026

Title Bottom-Up Proteomics and LiP-MS Quality Control and Data
Analysis Tools

Version 1.0.0

Description Useful functions and workflows for proteomics quality control and data analy-
sis of both limited proteolysis-coupled mass spectrometry (LiP-
MS) (Feng et. al. (2014) <doi:10.1038/nbt.2999>) and regular bottom-up proteomics experi-
ments. Data generated with search tools such as 'Spectronaut’, MaxQuant' and 'Proteome Dis-
cover' can be easily used due to flexibility of functions.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

Imports rlang, dplyr, stringr, magrittr, data.table, janitor,
progress, purrtr, tidyr, ggplot2, forcats, tibble, plotly,
ggrepel, utils, grDevices, curl, readr, lifecycle, httr,
methods, R.utils, stats

RoxygenNote 7.3.3

Suggests testthat, covr, knitr, rmarkdown, shiny, r3dmol, proDA,
limma, dendextend, pheatmap, heatmaply, furrr, future,
parallel, seriation, drc, igraph, stringi, STRINGdb, iq,
scales, farver, ggforce, xml2, jsonlite, missForest

Depends R (>=4.0)

URL https://github.com/jpquast/protti,
https://jpquast.github.io/protti/

BugReports https://github.com/jpquast/protti/issues
VignetteBuilder knitr
NeedsCompilation no

Author Jan-Philipp Quast [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2713-778X>),
Dina Schuster [aut] (ORCID: <https://orcid.org/0000-0001-6611-8237>),
ETH Zurich [cph, fnd]

https://doi.org/10.1038/nbt.2999
https://github.com/jpquast/protti
https://jpquast.github.io/protti/
https://github.com/jpquast/protti/issues
https://orcid.org/0000-0003-2713-778X
https://orcid.org/0000-0001-6611-8237

2 Contents

Maintainer Jan-Philipp Quast <jpquast.software@gmail.com>
Repository CRAN
Date/Publication 2026-01-14 07:50:01 UTC

Contents
analyse_functional_network L L L 4
ANOVA_PIOtH . .« v v v v e e e e e e e e e e e e e e e 6
aSSIN_MISSINGNESS« o v v v vt e e e e e e e e 7
assign_peptide_type L e 9
barcode_plot e 10
calculate_aa_SCOTES v v v e e e 12
calculate_diff abundance 13
calculate_go_enrichment e 17
calculate_imputationo e 22
calculate_kegg_enrichment 23
calculate_protein_abundance Lo 25
calculate_Sequence_COVerage v ot e e e e e 27
calculate_treatment_enrichment 28
correct_lip_for_abundance 30
CTEALE_QUEUE . . . v v v v v e 33
create_structure_Contact_Mmap ¢« v v v bt e e e e e e e e e e e 37
create_synthetic_data 39
dre_4p . . o e e 42
dre_4p_plot e 43
extract_metal_binders 45
fetch_alphafold_aligned_error 48
fetch_alphafold_prediction 50
fetch_chebi e 52
fetch_eco e 52
fetch_go e 54
fetch_interpro L L 54
fetch_kegg e 55
fetch_metal_pdb 56
fetch_mobidb e 58
fetch_pdb e 59
fetch_pdb_structure 61
fetch_quickgo L 62
fetch_uniprot L e 64
fetch_uniprot_proteome 65
Alter_CV 66
find_all_subs e e e 68
find_chebis e 69
find_peptide e 69
find_peptide_in_structure e e 70
fitdre_4p e e e 73

IMPULE o o o 77

Contents

Index

3

impute_randomforest e 79
mako_colours e e 81
map_peptides_On_Structureo e e e e e 82
metal_chebi_uniprot 85
metal_go_slim_subset. 86
metal_liSt e 86
normaliSe e e e e 87
parallel_create_structure_contact_mapot i u e e e e 88
parallel_fit_drc_4p 91
peptide_profile_plot L. 95
predict_alphafold_domain 97
protti_colours e e e e 99
PSI_PEK . o o e e e 99
pval_distribution_plot 100
ge_charge_states e e e e e e e 101
gC_CONtaminNantSo u i e e e e e e e e e e e 103
QC_CVS o v v e e e e e e e e e e e e e e 104
gc_data_completenesso e 106
qo_ids . . . e e 107
gc_intensity_distribution 109
gec_median_intensitieso 110
gc_missed_cleavages L. e e 112
QO_PCA .« v v e e e e e 114
gc_peak_width L 115
ge_peptide_type e e e e e e e e e e 117
(C_PIOtEOME_COVEIAZE . . . « v o v v e o e e et e et e et e e e e 119
gc_ranked_intensities e e e e e 120
gc_sample_correlation L. 122
(C_SEQUENCE_COVETAZE . . « v v vt v v e e e e e e e e e e e e e e e 123
randomiSe_qUEUEttt e e e e e e e e e 124
rapamycin_10uM _ oL oL 126
rapamycin_doSe_TeSPONSE v v v v v i e e e e e e e e e e e e e e 126
read_prottio 127
replace_identified_by_x L 128
scale_protti 128
split_metal_name L. e e 129
Y_QUETY .« o o o o e e e e e e e e e e e e 130
teSt_Protti e e 131
viridis_colours e e e e 132
volcano_plot 132
woods_plot L e e e 135
138

4 analyse_tfunctional_network

analyse_functional_network
Analyse protein interaction network for significant hits

Description

The STRING database provides a resource for known and predicted protein-protein interactions.
The type of interactions include direct (physical) and indirect (functional) interactions. Through
the R package STRINGdb this resource if provided to R users. This function provides a convenient
wrapper for STRINGdb functions that allow an easy use within the protti pipeline.

Usage

analyse_functional_network(
data,
protein_id,
string_id,
organism_id,
version = "12.0",
score_threshold = 900,
binds_treatment = NULL,
halo_color = NULL,

plot = TRUE
)
Arguments

data a data frame that contains significantly changing proteins (STRINGdb is only
able to plot 400 proteins at a time so do not provide more for network plots).
Information about treatment binding can be provided and will be displayed as
colorful halos around the proteins in the network.

protein_id a character column in the data data frame that contains the protein accession
numbers.

string_id a character column in the data data frame that contains STRING database iden-
tifiers. These can be obtained from UniProt.

organism_id a numeric value specifying an organism ID (NCBI taxon-ID). This can be ob-
tained from here. H. sapiens: 9606, S. cerevisiae: 4932, E. coli: 511145.

version a character value that specifies the version of STRINGdDb to be used. Default is
12.0.

score_threshold
a numeric value specifying the interaction score that based on STRING has to
be between 0 and 1000. A score closer to 1000 is related to a higher confidence
for the interaction. The default value is 900.

binds_treatment
a logical column in the data data frame that indicates if the corresponding pro-
tein binds to the treatment. This information can be obtained from different
databases, e.g UniProt.

https://string-db.org/cgi/input?sessionId=bpvps5GS2As6&input_page_show_search=on
https://string-db.org/cgi/info?sessionId=bBP5N4cIf0PA&footer_active_subpage=scores

analyse_functional_network 5

halo_color optional, character value with a color hex-code. This is the color of the halo of
proteins that bind the treatment.
plot a logical that indicates whether the result should be plotted or returned as a table.
Value

A network plot displaying interactions of the provided proteins. If binds_treatment was provided
halos around the proteins show which proteins interact with the treatment. If plot = FALSE a data
frame with interaction information is returned.

Examples

Create example data
data <- data.frame(
uniprot_id = c(
"PQATR1",
"P@2359",
"P60624",
"POATM2"
"POA7X3",
"POAGD3"

),

xref_string = c(
"511145.b4203;",
"511145.b3341;",
"511145.b3309;",
"511145.b3637;",
"511145.b3230;",
"511145.b1656;"

),

is_known = c(
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
FALSE

)

)

Perform network analysis

network <- analyse_functional_network(
data,
protein_id = uniprot_id,
string_id = xref_string,
organism_id = 511145,
binds_treatment = is_known,
plot = TRUE

)

network

6 anova_protti

anova_protti Perform ANOVA

Description

Performs an ANOVA statistical test

Usage

anova_protti(data, grouping, condition, mean_ratio, sd, n)

Arguments
data a data frame containing at least the input variables.
grouping a character column in the data data frame that contains precursor or peptide
identifiers.
condition a character or numeric column in the data data frame that contains the condi-
tions.
mean_ratio a numeric column in the data data frame that contains mean intensities or mean
intensity ratios.
sd a numeric column in the data data frame that contains the standard deviation
corresponding to the mean.
n a numeric column in the data data frame that contains the number of replicates
for which the corresponding mean was calculated.
Value

a data frame that contains the within group error (ms_group) and the between group error (ms_error),
f statistic and p-values.

Examples

data <- data.frame(
precursor = c("A", "A", "A", "B", "B", "B"),
condition = c(”C1”, "C2", "C3", "C1", "C2", "C3"),
mean = c(10, 12, 20, 11, 12, 8),
sd = c(2, 1, 1.5, 1, 2, 4),
n=c(4, 4, 4, 4, 4, 4)

)

anova_protti(
data,
grouping = precursor,
condition = condition,
mean = mean,
sd = sd,
n=n

assign_missingness

assign_missingness Assignment of missingness types

Description

The type of missingness (missing at random, missing not at random) is assigned based on the
comparison of a reference condition and every other condition.

Usage

assign_missingness(

data,
sample,
condition,
grouping,
intensity,

ref_condition = "all”,
completeness_MAR = 0.7,
completeness_MNAR = 0.2,
retain_columns = NULL

Arguments

data
sample

condition

grouping

intensity

ref_condition

a data frame containing at least the input variables.
a character column in the data data frame that contains the sample name.

a character or numeric column in the data data frame that contains the condi-
tions.

a character column in the data data frame that contains protein, precursor or
peptide identifiers.

anumeric column in the data data frame that contains intensity values that relate
to the grouping variable.

a character vector providing the condition that is used as a reference for miss-
ingness determination. Instead of providing one reference condition, "all" can be
supplied, which will create all pairwise condition pairs. By default ref_condition
="all".

completeness_MAR

a numeric value that specifies the minimal degree of data completeness to be
considered as MAR. Value has to be between 0 and 1, default is 0.7. It is multi-
plied with the number of replicates and then adjusted downward. The resulting
number is the minimal number of observations for each condition to be consid-
ered as MAR. This number is always at least 1.

completeness_MNAR

a numeric value that specifies the maximal degree of data completeness to be
considered as MNAR. Value has to be between 0 and 1, default is 0.20. It is

8 assign_missingness

multiplied with the number of replicates and then adjusted downward. The re-
sulting number is the maximal number of observations for one condition to be
considered as MNAR when the other condition is complete.

retain_columns a vector that indicates columns that should be retained from the input data frame.
Default is not retaining additional columns retain_columns = NULL. Specific
columns can be retained by providing their names (not in quotations marks, just
like other column names, but in a vector).

Value

A data frame that contains the reference condition paired with each treatment condition. The
comparison column contains the comparison name for the specific treatment/reference pair. The
missingness column reports the type of missingness.

* "complete": No missing values for every replicate of this reference/treatment pair for the
specific grouping variable.

* "MNAR": Missing not at random. All replicates of either the reference or treatment condition
have missing values for the specific grouping variable.

* "MAR": Missing at random. At least n-1 replicates have missing values for the reference/treatment
pair for the specific grouping varible.

* NA: The comparison is not complete enough to fall into any other category. It will not be
imputed if imputation is performed. For statistical significance testing these comparisons are
filtered out after the test and prior to p-value adjustment. This can be prevented by setting
filter_NA_missingness = FALSE in the calculate_diff_abundance() function.

The type of missingness has an influence on the way values are imputeted if imputation is performed
subsequently using the impute () function. How each type of missingness is specifically imputed
can be found in the function description. The type of missingness assigned to a comparison does
not have any influence on the statistical test in the calculate_diff_abundance() function.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 10,
frac_change = 0.5,
n_replicates = 4,
n_conditions = 2,
method = "effect_random”,
additional_metadata = FALSE

)

head(data, n = 24)

Assign missingness information
data_missing <- assign_missingness(
data,
sample = sample,

assign_peptide_type 9

condition = condition,

grouping = peptide,

intensity = peptide_intensity_missing,
ref_condition = "all"”,

retain_columns = c(protein)

)

head(data_missing, n = 24)

assign_peptide_type Assign peptide type

Description

Based on preceding and C-terminal amino acid, the peptide type of a given peptide is assigned.
Peptides with preceeding and C-terminal lysine or arginine are considered fully-tryptic. If a peptide
is located at the N- or C-terminus of a protein and fulfills the criterium to be fully-tryptic otherwise,
it is also considered as fully-tryptic. Peptides that only fulfill the criterium on one terminus are
semi-tryptic peptides. Lastly, peptides that are not fulfilling the criteria for both termini are non-
tryptic peptides. In addition, peptides that miss the initial Methionine of a protein are considered
"tryptic" at that site if there is no other peptide starting at position 1 for that protein.

Usage

assign_peptide_type(
data,
aa_before = aa_before,
last_aa = last_aa,
aa_after = aa_after,
protein_id = NULL,
start = start

)
Arguments

data a data frame containing at least information about the preceding and C-terminal
amino acids of peptides.

aa_before a character column in the data data frame that contains the preceding amino
acid as one letter code.

last_aa a character column in the data data frame that contains the C-terminal amino
acid as one letter code.

aa_after a character column in the data data frame that contains the following amino
acid as one letter code.

protein_id a character column in the data data frame that contains the protein accession

numbers.

10 barcode_plot

start a numeric column in the data data frame that contains the start position of each
peptide within the corresponding protein. This is used to check if the protein is
consistently missing the initial Methionine, making peptides starting at position
2 "tryptic" on that site.

Value

A data frame that contains the input data and an additional column with the peptide type informa-
tion.

Examples

data <- data.frame(
aa_before = c("K", "M", "", "M" "S" UM"_ "-="),
laSt_aa = C("R”, IIKII’ IIRIV’ IVRVI, VIYII’ HK”’ IIKII),
aa_after = c('T", "R", "T", "R", "T", "R", "T"),
protein_id = c("P1", "P1", "P3", "P3", "P2", "P2", "P2"),
start = ¢(38, 2, 1, 2, 10, 2, 1)

)

assign_peptide_type(data, aa_before, last_aa, aa_after, protein_id, start)

barcode_plot Barcode plot

Description

Plots a "barcode plot" - a vertical line for each identified peptide. Peptides can be colored based on
an additional variable. Also differential abundance can be displayed.

Usage

barcode_plot(
data,
start_position,
end_position,
protein_length,
coverage = NULL,
colouring = NULL,
fill_colour_gradient = protti::mako_colours,
fill_colour_discrete = c("#999999", protti::protti_colours),
protein_id = NULL,
facet = NULL,
facet_n_col = 4,
cutoffs = NULL

barcode_plot

Arguments

data

start_position

end_position

protein_length

coverage

colouring

11

a data frame containing differential abundance, start and end peptide or precur-
sor positions and protein length.

a numeric column in the data frame containing the start positions for each pep-
tide or precursor.

anumeric column in the data frame containing the end positions for each peptide
Or precursor.

a numeric column in the data frame containing the length of the protein.

optional, numeric column in the data frame containing coverage in percent. Will
appear in the title of the barcode if provided.

optional, column in the data frame containing information by which peptide or
precursors should be colored.

fill_colour_gradient

a vector that contains colours that should be used to create a colour gradient
for the barcode plot bars if the colouring argument is continuous. Default is
mako_colours.

fill_colour_discrete

protein_id

facet

facet_n_col

cutoffs

Value

a vector that contains colours that should be used to fill the barcode plot bars if
the colouring argument is discrete. Default is protti_colours.

optional, column in the data frame containing protein identifiers. Required if
only one protein should be plotted and the data frame contains only information
for this protein.

optional, column in the data frame containing information by which data should
be faceted. This can be protein identifiers. Only 20 proteins are plotted at a time,
the rest is ignored. If more should be plotted, a mapper over a subsetted data
frame should be created.

a numeric value that specifies the number of columns the faceted plot should
have if a column name is provided to group. The default is 4.

optional argument specifying the log2 fold change and significance cutoffs used
for highlighting peptides. If this argument is provided colouring information
will be overwritten with peptides that fulfill this condition. The cutoff should
be provided in a vector of the form c(diff = 2, pval = 0.05). The name of the
cutoff should reflect the column name that contains this information (log2 fold
changes, p-values or adjusted p-values).

A barcode plot is returned.

Examples

data <- data.frame(
start = c(5, 40, 55, 130, 181, 195),
end = c(11, 51, 60, 145, 187, 200),
length = rep(200, 6),
pg_protein_accessions = rep(”"Protein 1", 6),

12 calculate_aa_scores

diff
pval
)

c(1, 2, 5, 2,1, 1),
c(0.1, 0.01, 0.01, 0.2, 0.2, 0.01)

barcode_plot(
data,
start_position = start,
end_position = end,
protein_length = length,
facet = pg_protein_accessions,
cutoffs = c(diff = 2, pval = 0.05)

calculate_aa_scores Calculate scores for each amino acid position in a protein sequence

Description

[Experimental] Calculate a score for each amino acid position in a protein sequence based on the
product of the -log10(adjusted p-value) and the absolute log2(fold change) per peptide covering this
amino acid. In detail, all the peptides are aligned along the sequence of the corresponding protein,
and the average score per amino acid position is computed. In a limited proteolysis coupled to mass
spectrometry (LiP-MS) experiment, the score allows to prioritize and narrow down structurally
affected regions.

Usage

calculate_aa_scores(
data,
protein,
diff = diff,
adj_pval = adj_pval,
start_position,
end_position,
retain_columns = NULL

)

Arguments
data a data frame containing at least the input columns.
protein a character column in the data frame containing the protein identifier or name.
diff a numeric column in the data data frame containing the log2 fold change.
adj_pval a numeric column in the data data frame containing the adjusted p-value.

start_position anumeric column data in the data frame containing the start position of a pep-
tide or precursor.

end_position a numeric column in the data frame containing the end position of a peptide or
precursor.

calculate_diff _abundance 13

retain_columns a vector indicating if certain columns should be retained from the input data
frame. Default is not retaining additional columns retain_columns = NULL.
Specific columns can be retained by providing their names (not in quotations
marks, just like other column names, but in a vector).

Value

A data frame that contains the aggregated scores per amino acid position, enabling to draw finger-
prints for each individual protein.

Author(s)
Patrick Stalder

Examples

data <- data.frame(
pg_protein_accessions = c(rep("protein_1", 10)),
diff = c(2, -3, 1, 2, 3, -3, 5, 1, -0.5, 2),
adj_pval = c(0.001, 0.01, 0.2, 0.05, 0.002, 0.5, 0.4, 0.7, 0.001, 0.02),
start = c(1, 3, 5, 10, 15, 25, 28, 30, 41, 51),
end = c(6, 8, 10, 16, 23, 35, 35, 35, 48, 55)

)

calculate_aa_scores(
data,
protein = pg_protein_accessions,
diff = diff,
adj_pval = adj_pval,
start_position = start,
end_position = end

calculate_diff_abundance
Calculate differential abundance between conditions

Description

Performs differential abundance calculations and statistical hypothesis tests on data frames with
protein, peptide or precursor data. Different methods for statistical testing are available.

Usage

calculate_diff_abundance(
data,
sample,
condition,
grouping,
intensity_log2,

14 calculate_diff _abundance

missingness = missingness,
comparison = comparison,

mean = NULL,

sd = NULL,

n_samples = NULL,

ref_condition = "all",
filter_NA_missingness = TRUE,
method = c("moderated_t-test”, "t-test”, "t-test_mean_sd”, "proDA"),
p_adj_method = "BH",
limma_legacy_estimation = NULL,
retain_columns = NULL

)
Arguments

data a data frame containing at least the input variables that are required for the se-
lected method. Ideally the output of assign_missingness or impute is used.

sample a character column in the data data frame that contains the sample name. Is not
required if method = "t-test_mean_sd".

condition a character or numeric column in the data data frame that contains the condi-
tions.

grouping a character column in the data data frame that contains precursor, peptide or

protein identifiers.

intensity_log2 anumeric column in the data data frame that contains intensity values. The in-
tensity values need to be log2 transformed. Is not required if method = "t-test_mean_sd".

missingness a character column in the data data frame that contains missingness informa-
tion. Can be obtained by calling assign_missingness(). Is not required if
method = "t-test_mean_sd". The type of missingness assigned to a compari-
son does not have any influence on the statistical test. However, if filter_NA_missingness
= TRUE and method = "proDA", then comparisons with missingness NA are fil-
tered out prior to p-value adjustment.

comparison a character column in the data data frame that contains information of treat-
ment/reference condition pairs. Can be obtained by calling assign_missingness.
Comparisons need to be in the form conditionl_vs_condition2, meaning two
compared conditions are separated by "_vs_". This column determines for
which condition pairs differential abundances are calculated. Is not required if
method = "t-test_mean_sd", in that case please provide a reference condition
with the ref_condition argument.

mean a numeric column in the data data frame that contains mean values for two
conditions. Is only required if method = "t-test_mean_sd".

sd a numeric column in the data data frame that contains standard deviations for
two conditions. Is only required if method = "t-test_mean_sd".

n_samples a numeric column in the data data frame that contains the number of samples
per condition for two conditions. Is only required if method = "t-test_mean_sd".

ref_condition optional, character value providing the condition that is used as a reference for
differential abundance calculation. Only required for method = "t-test_mean_sd".

calculate_diff _abundance 15

Instead of providing one reference condition, "all" can be supplied, which will
create all pairwise condition pairs. By default ref_condition = "all".

filter_NA_missingness

method

p_adj_method

a logical value, default is TRUE. For all methods except "t-test_mean_sd"
missingness information has to be provided. This information can be for ex-
ample obtained by calling assign_missingness(). If a reference/treatment
pair has too few samples to be considered robust based on user defined cutoffs,
it is annotated with NA as missingness by the assign_missingness() function.
If this argument is TRUE, these NA reference/treatment pairs are filtered out. For
method = "proDA” this is done before the p-value adjustment.

a character value, specifies the method used for statistical hypothesis testing.
Methods include Welch test ("t-test"), a Welch test on means, standard de-
viations and number of replicates ("t-test_mean_sd") and a moderated t-test
based on the 1imma package ("moderated_t-test"). More information on the
moderated t-test can be found in the 1imma documentation. Furthermore, the
proDA package specific method ("proDA") can be used to infer means across
samples based on a probabilistic dropout model. This eliminates the need for
data imputation since missing values are inferred from the model. More infor-
mation can be found in the proDA documentation. We do not recommend using
the moderated_t-test or proDA method if the data was filtered for low CVs or
imputation was performed. Default is method = "moderated_t-test"”.

a character value, specifies the p-value correction method. Possible methods are
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
Default method is "BH".

limma_legacy_estimation

retain_columns

Value

a logical value, specifying if the new or old hyperparameter estimation of the
limma package should be used. See the legacy argument of ?1imma:eBayes
for more information. Our default is the same as for the 1imma package, which
introduces a changed and more robust estimation of hyperparameters. This may
cause changes to the results when compared to before August 2024 (limma
3.61.8).

a vector indicating if certain columns should be retained from the input data
frame. Default is not retaining additional columns retain_columns = NULL.
Specific columns can be retained by providing their names (not in quotations
marks, just like other column names, but in a vector). Please note that if you
retain columns that have multiple rows per grouped variable there will be dupli-
cated rows in the output.

A data frame that contains differential abundances (diff), p-values (pval) and adjusted p-values
(adj_pval) for each protein, peptide or precursor (depending on the grouping variable) and the
associated treatment/reference pair. Depending on the method the data frame contains additional

columns:

e "t-test": The std_error column contains the standard error of the differential abundances.
n_obs contains the number of observations for the specific protein, peptide or precursor (de-
pending on the grouping variable) and the associated treatment/reference pair.

16

calculate_diff _abundance

» "t-test_mean_sd": Columns labeled as control refer to the second condition of the compari-

son pairs. Treated refers to the first condition. mean_control and mean_treated columns
contain the means for the reference and treatment condition, respectively. sd_control and
sd_treated columns contain the standard deviations for the reference and treatment condi-
tion, respectively. n_control and n_treated columns contain the numbers of samples for the
reference and treatment condition, respectively. The std_error column contains the standard
error of the differential abundances. t_statistic contains the t_statistic for the t-test.

"moderated_t-test": CI_2.5 and CI_97.5 contain the 2.5% and 97.5% confidence interval
borders for differential abundances. avg_abundance contains average abundances for treat-
ment/reference pairs (mean of the two group means). t_statistic contains the t_statistic for
the t-test. B The B-statistic is the log-odds that the protein, peptide or precursor (depending on
grouping) has a differential abundance between the two groups. Suppose B=1.5. The odds of
differential abundance is exp(1.5)=4.48, i.e, about four and a half to one. The probability that
there is a differential abundance is 4.48/(1+4.48)=0.82, i.e., the probability is about 82% that
this group is differentially abundant. A B-statistic of zero corresponds to a 50-50 chance that
the group is differentially abundant.n_obs contains the number of observations for the spe-
cific protein, peptide or precursor (depending on the grouping variable) and the associated
treatment/reference pair.

"proDA": The std_error column contains the standard error of the differential abundances.
avg_abundance contains average abundances for treatment/reference pairs (mean of the two
group means). t_statistic contains the t_statistic for the t-test. n_obs contains the number
of observations for the specific protein, peptide or precursor (depending on the grouping
variable) and the associated treatment/reference pair.

For all methods execept "proDA”, the p-value adjustment is performed only on the proportion of
data that contains a p-value that is not NA. For "proDA" the p-value adjustment is either performed
on the complete dataset (filter_NA_missingness = TRUE) or on the subset of the dataset with
missingness that is not NA (filter_NA_missingness = FALSE).

Examples

set.seed(123) # Makes example reproducible

Create synthetic data
data <- create_synthetic_data(

n_proteins = 10,
frac_change = 0.5,

n_replicates = 4,
n_conditions = 2,

method = "effect_random”,
additional_metadata = FALSE

)

Assign missingness information
data_missing <- assign_missingness(
data,
sample = sample,
condition = condition,
grouping = peptide,
intensity = peptide_intensity_missing,

calculate_go_enrichment 17

ref_condition = "all”,
retain_columns = c(protein, change_peptide)

)

Calculate differential abundances
Using "moderated_t-test” and "proDA" improves
true positive recovery progressively
diff <- calculate_diff_abundance(
data = data_missing,
sample = sample,
condition = condition,
grouping = peptide,
intensity_log2 = peptide_intensity_missing,
missingness = missingness,
comparison = comparison,
method = "t-test”,
retain_columns = c(protein, change_peptide)

)

head(diff, n = 10)

calculate_go_enrichment
Perform gene ontology enrichment analysis

Description

Analyses enrichment of gene ontology terms associated with proteins in the fraction of significant
proteins compared to all detected proteins. A two-sided Fisher’s exact test is performed to test sig-
nificance of enrichment or depletion. GO annotations can be provided to this function either through
UniProt go_annotations_uniprot, through a table obtained with fetch_go in the go_data argu-
ment or GO annotations are fetched automatically by the function by providing ontology_type
and organism_id.

Usage

calculate_go_enrichment(
data,
protein_id,
is_significant,
group = NULL,
y_axis_free = TRUE,
facet_n_col = 2,
go_annotations_uniprot = NULL,
ontology_type,
organism_id = NULL,
go_data = NULL,
plot = TRUE,

18

plot_style =
plot_title =
barplot_fill

label = TRUE,
label_size =

heatmap_fill_
heatmap_fill_

calculate_go_enrichment

"barplot”,

"Gene ontology enrichment of significant proteins”,
colour = c("#56B4E9", "#E76145"),

colour = protti::mako_colours,

colour_rev = TRUE,

7,

enrichment_type = "all"”,

replace_long_

name = TRUE,

label_move_frac = 0.2,
min_n_detected_proteins_in_process = 1,
plot_cutoff = "adj_pval topl@”

Arguments

data

protein_id

is_significant

group

y_axis_free

facet_n_col

go_annotations_

ontology_type

organism_id

a data frame that contains at least the input variables.

a character column in the data data frame that contains the protein accession
numbers.

a logical column in the data data frame that indicates if the corresponding pro-
tein has a significantly changing peptide. The input data frame may contain
peptide level information with significance information. The function is able to
extract protein level information from this.

optional, character column in the data data frame that contains information by
which the analysis should be grouped. The analysis will be performed separately
for each of the groups. This is most likely a column that labels separate com-
parisons of different conditions. In protti the assign_missingness() function
creates such a column automatically.

a logical value that specifies if the y-axis of the plot should be "free" for each
facet if a grouping variable is provided. Default is TRUE. If FALSE is selected it
is easier to compare GO categories directly with each other.

a numeric value that specifies the number of columns the faceted plot should
have if a column name is provided to group. The default is 2.

uniprot

recommended, a character column in the data data frame that contains gene
ontology annotations obtained from UniProt using fetch_uniprot. These an-
notations are already separated into the desired ontology type so the argument
ontology_type is not required.

optional, character value specifying the type of ontology that should be used.
Possible values are molecular function (MF), biological process (BP), cellular
component (CC). This argument is not required if GO annotations are provided
from UniProt in go_annotations_uniprot. It is required if annotations are
provided through go_data or automatically fetched.

optional, character value specifying an NCBI taxonomy identifier of an organ-
ism (TaxId). Possible inputs include only: "9606" (Human), "559292" (Yeast)
and "83333" (E. coli). Is only necessary if GO data is not provided either by
go_annotations_uniprot or in go_data.

calculate_go_enrichment 19

go_data Optional, a data frame that can be obtained with fetch_go(). If you provide
data not obtained with fetch_go() make sure column names for protein ID
(db_id) and GO ID (go_id) are the same as for data obtained with fetch_go().

plot a logical argument indicating whether the result should be plotted or returned as
a table.
plot_style a character argument that specifies the plot style. Can be either "barplot" (de-

fault) or "heatmap". The "heatmap" plot is especially useful for the compar-
ison of multiple groups. We recommend, however, that you use it only with
enrichment_type = "enriched” or enrichment_type = "deenriched, be-
cause otherwise it is not possible to distinguish between enrichment and deen-
richment in the plot.

plot_title a character value that specifies the title of the plot. The default is "Gene ontology
enrichment of significant proteins".

barplot_fill_colour
a vector that contains two colours that should be used as the fill colours for deen-
riched and enriched GO terms, respectively. If enrichment_type = "enriched”
or "deenriched, please still provide two values in the vector, the colour not used
for the plot can be NA in this case. E.g. c¢(NA, "red") for enrichment_type =
"enriched”.

heatmap_fill_colour
a vector that contains colours that should be used to create the gradient in the
heatmap plot. Default is mako_colours.

heatmap_fill_colour_rev

a logical value that specifies if the provided colours in heatmap_fill_colour
should be reversed in order. Default is TRUE.

label a logical argument indicating whether labels should be added to the plot. Default
is TRUE.

label_size a numeric argument that specifies the text size of the labels with the unit "pt".
The default is 7.

enrichment_type
a character argument that is either "all", "enriched" or "deenriched". This deter-
mines if the enrichment analysis should be performed in order to check for both
enrichemnt and deenrichemnt or only one of the two. This affects the statistics
performed and therefore also the displayed plot.
replace_long_name
a logical argument that specifies if GO term names above 50 characters should
be replaced by the GO ID instead for the plot. This ensures that the plotting area
doesn’t become too small due to the long name. The default is TRUE.
label_move_frac
anumeric argument between 0 and 1 that specifies which labels should be moved
outside of the bar. The default is 0.2, which means that the labels of all bars that
have a size of 20% or less of the largest bar are moved to the right of the bar.
This prevents labels from overlapping with the bar boundaries.
min_n_detected_proteins_in_process
is a numeric argument that specifies the minimum number of detected proteins
required for a GO term to be displayed in the plot. The default is 1, meaning

20

plot_cutoff

Value

calculate_go_enrichment

no filtering of the plotted data is performed. This argument does not affect any
computations or the returned data if plot = FALSE. This argument is useful in
order to remove terms that were only detected in for example 1 protein. Even
though these terms are sometimes significant, they are not really relevant.

a character value indicating if the plot should contain the top n (e.g. topl0)
most significant proteins (p-value or adjusted p-value), or if a significance cutoff
should be used to determine the number of GO terms in the plot. This informa-
tion should be provided with the type first followed by the threshold separated
by a space. Example are plot_cutoff = "adj_pval top10”, plot_cutoff =
"pval 0.05" or plot_cutoff = "adj_pval 0.01". The threshold can be cho-
sen freely. The default value is "adj_pval top10".

A bar plot or heatmap (depending on plot_style). By default the bar plot displays negative log10
adjusted p-values for the top 10 enriched or deenriched gene ontology terms. Alternatively, plot
cutoffs can be chosen individually with the plot_cutoff argument. Bars are colored according

to the direction of

the enrichment (enriched or deenriched). If a heatmap is returned, terms are

organised on the y-axis, while the colour of each tile represents the negative log10 adjusted p-value
(default). If a group column is provided the x-axis contains all groups. If plot = FALSE, a data
frame is returned. P-values are adjusted with Benjamini-Hochberg.

Examples

Load libraries
library(dplyr)
library(stringr)

Create example data

Contains artificial de-enrichment for ribosomes.

uniprot_go_data <- fetch_uniprot_proteome(
organism_id = 83333,

columns = c(
"accession”,
Ngo_f‘rl

if (!is(uniprot_go_data, "character”)) {

data <- uniprot

_go_data %>%

mutate(significant = c(
rep(TRUE, 1000),
rep(FALSE, n() - 1000)

) %%

mutate(significant = ifelse(

str_detect(
go_f,
pattern =

),

FALSE,

significant

"ribosome”

calculate_go_enrichment

)) %>%
mutate(group = c(
rep("A", 500),
rep("B", 500),

rep("A", (n() - 1000) / 2),
rep(”"B", round((n() - 1000) / 2))
))

Plot gene ontology enrichment
calculate_go_enrichment(
data,
protein_id = accession,
go_annotations_uniprot = go_f,
is_significant = significant,
plot = TRUE,
plot_cutoff = "pval 0.01"
)

Plot gene ontology enrichment with group
calculate_go_enrichment(
data,
protein_id = accession,
go_annotations_uniprot = go_f,
is_significant = significant,
group = group,
facet_n_col = 1,
plot = TRUE,
plot_cutoff = "pval 0.01"
)

Plot gene ontology enrichment with group in a heatmap plot
calculate_go_enrichment(

data,

protein_id = accession,

group = group,

go_annotations_uniprot = go_f,

is_significant = significant,

min_n_detected_proteins_in_process = 15,

plot = TRUE,

label = TRUE,

plot_style = "heatmap”,
enrichment_type = "enriched”,

plot_cutoff = "pval 0.01"
)

Calculate gene ontology enrichment
go_enrichment <- calculate_go_enrichment(
data,
protein_id = accession,
go_annotations_uniprot = go_f,
is_significant = significant,
plot = FALSE,

21

22

calculate_imputation

head(go_enrichment, n = 10)

}

calculate_imputation Sampling of values for imputation

Description

calculate_imputation is a helper function that is used in the impute function. Depending on the
type of missingness and method, it samples values from a normal distribution that can be used for
the imputation. Note: The input intensities should be log2 transformed.

Usage

calculate_imputation(

min = NULL,
noise = NULL,
mean = NULL,
sd,

missingness = c("MNAR", "MAR"),
method = c(”ludovic”, "noise"),
skip_log2_transform_error = FALSE

Arguments

min
noise

mean

sd
missingness

method

a numeric value specifying the minimal intensity value of the precursor/peptide.
Is only required if method = "ludovic” and missingness = "MNAR".

a numeric value specifying a noise value for the precursor/peptide. Is only re-
quired if method = "noise” and missingness = "MNAR".

a numeric value specifying the mean intensity value of the condition with miss-
ing values for a given precursor/peptide. Is only required if missingness =
n MAR n .

a numeric value specifying the mean of the standard deviation of all conditions
for a given precursor/peptide.

a character value specifying the missingness type of the data determines how
values for imputation are sampled. This can be "MAR" or "MNAR".

a character value specifying the method to be used for imputation. For method
= "ludovic”, MNAR missingness is sampled around a value that is three lower
(log2) than the lowest intensity value recorded for the precursor/peptide. For
method = "noise”, MNAR missingness is sampled around the noise value for
the precursor/peptide.

skip_log2_transform_error

a logical value, if FALSE a check is performed to validate that input values
are log2 transformed. If input values are > 40 the test is failed and an error is
returned.

calculate_kegg enrichment 23

Value

A value sampled from a normal distribution with the input parameters. Method specifics are applied
to input parameters prior to sampling.

calculate_kegg_enrichment
Perform KEGG pathway enrichment analysis

Description

Analyses enrichment of KEGG pathways associated with proteins in the fraction of significant
proteins compared to all detected proteins. A Fisher’s exact test is performed to test significance of
enrichment.

Usage

calculate_kegg_enrichment(
data,
protein_id,
is_significant,
pathway_id = pathway_id,
pathway_name = pathway_name,

plot = TRUE,
plot_cutoff = "adj_pval top10”
)
Arguments
data a data frame that contains at least the input variables.
protein_id a character column in the data data frame that contains the protein accession

numbers.

is_significant alogical column in the data data frame that indicates if the corresponding pro-
tein has a significantly changing peptide. The input data frame may contain
peptide level information with significance information. The function is able to
extract protein level information from this.

pathway_id a character column in the data data frame that contains KEGG pathway identi-
fiers. These can be obtained from KEGG using fetch_kegg.

pathway_name acharacter column in the data data frame that contains KEGG pathway names.
These can be obtained from KEGG using fetch_kegg.

plot a logical value indicating whether the result should be plotted or returned as a
table.
plot_cutoff a character value indicating if the plot should contain the top 10 most significant

proteins (p-value or adjusted p-value), or if a significance cutoff should be used
to determine the number of GO terms in the plot. This information should be
provided with the type first followed by the threshold separated by a space. Ex-
ample are plot_cutoff = "adj_pval top10”, plot_cutoff = "pval 0.05" or
plot_cutoff = "adj_pval 0.01". The threshold can be chosen freely.

24 calculate_kegg enrichment

Value

A bar plot displaying negative log10 adjusted p-values for the top 10 enriched pathways. Bars are
coloured according to the direction of the enrichment. If plot = FALSE, a data frame is returned.

Examples

Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data
kegg_data <- fetch_kegg(species = "eco")

if (!is.null(kegg_data)) { # only proceed if information was retrieved
data <- kegg_data %>%
group_by(uniprot_id) %>%
mutate(significant = rep(

sample(
x = c(TRUE, FALSE),
size = 1,

replace = TRUE,
prob = c(0.2, 0.8)
),
n =n()
))

Plot KEGG enrichment

calculate_kegg_enrichment(
data,
protein_id = uniprot_id,
is_significant = significant,
pathway_id = pathway_id,
pathway_name = pathway_name,
plot = TRUE,
plot_cutoff = "pval 0.05"

)

Calculate KEGG enrichment

kegg <- calculate_kegg_enrichment(
data,
protein_id = uniprot_id,
is_significant = significant,
pathway_id = pathway_id,
pathway_name = pathway_name,
plot = FALSE

)

head(kegg, n = 10)

calculate_protein_abundance 25

calculate_protein_abundance

Label-free protein quantification

Description

Determines relative protein abundances from ion quantification. Only proteins with at least three
peptides are considered for quantification. The three peptide rule applies for each sample indepen-

dently.

Usage

calculate_prote
data,
sample,
protein_id,
precursor,
peptide,

in_abundance(

intensity_log2,
min_n_peptides = 3,

method = "sum

n
’

for_plot = FALSE,
retain_columns = NULL

Arguments

data
sample

protein_id

precursor

peptide

intensity_log?2

min_n_peptides

method

a data frame that contains at least the input variables.
a character column in the data data frame that contains the sample name.

a character column in the data data frame that contains the protein accession
numbers.

a character column in the data data frame that contains precursors.

a character column in the data data frame that contains peptide sequences. This
column is needed to filter for proteins with at least 3 unique peptides. This can
equate to more than three precursors. The quantification is done on the precursor
level.

a numeric column in the data data frame that contains log2 transformed precur-
sor intensities.

An integer specifying the minimum number of peptides required for a protein to
be included in the analysis. The default value is 3, which means proteins with
fewer than three unique peptides will be excluded from the analysis.

a character value specifying with which method protein quantities should be
calculated. Possible options include "sum”, which takes the sum of all precursor
intensities as the protein abundance. Another option is "iq", which performs
protein quantification based on a maximal peptide ratio extraction algorithm that

26 calculate_protein_abundance

is adapted from the MaxLFQ algorithm of the MaxQuant software. Functions
from the iq package (doi:10.1093/bioinformatics/btz961) are used. Default is
n iq n X

for_plot a logical value indicating whether the result should be only protein intensities
or protein intensities together with precursor intensities that can be used for
plotting using peptide_profile_plot(). Default is FALSE.

retain_columns a vector indicating if certain columns should be retained from the input data
frame. Default is not retaining additional columns retain_columns = NULL.
Specific columns can be retained by providing their names (not in quotations
marks, just like other column names, but in a vector).

Value

If for_plot = FALSE, protein abundances are returned, if for_plot = TRUE also precursor intensi-
ties are returned in a data frame. The later output is ideal for plotting with peptide_profile_plot()
and can be filtered to only include protein abundances.

Examples

Create example data
data <- data.frame(
sample = c(

rep("S1", 6),
rep("S2", 6),
rep("sS1", 2),
rep("S2", 2)

),

protein_id = c(
rep("P1", 12),
rep("P2", 4)

),

precursor = c(
rep(c("A1", "A2", "B1", "B2", "C1", "D1"), 2),
rep(c("E1", "F1"), 2)

),

peptide = c(
rep(c("A", "A", "B", "B", "C", "D"), 2),
rep(c("E", "F"), 2)

),
intensity = c(
rnorm(n = 6, mean = 15, sd = 2),
rnorm(n = 6, mean = 21, sd = 1),
rnorm(n = 2, mean = 15, sd = 1),
rnorm(n = 2, mean = 15, sd = 2)
)
)
data

Calculate protein abundances
protein_abundance <- calculate_protein_abundance(

https://doi.org/10.1093/bioinformatics/btz961

calculate_sequence_coverage 27

data,
sample = sample,
protein_id = protein_id,
precursor = precursor,
peptide = peptide,
intensity_log2 = intensity,
method = "sum”,
for_plot = FALSE

)

protein_abundance

Calculate protein abundances and retain precursor
abundances that can be used in a peptide profile plot
complete_abundances <- calculate_protein_abundance(

data,

sample = sample,

protein_id = protein_id,

precursor = precursor,

peptide = peptide,

intensity_log2 = intensity,

method = "sum”,

for_plot = TRUE
)

complete_abundances

calculate_sequence_coverage
Protein sequence coverage

Description

Calculate sequence coverage for each identified protein.

Usage

calculate_sequence_coverage(data, protein_sequence, peptides)

Arguments

data a data frame containing at least the protein sequence and the identified peptides
as columns.

protein_sequence
a character column in the data data frame that contains protein sequences. Can
be obtained by using the function fetch_uniprot()

peptides a character column in the data data frame that contains the identified peptides.

28 calculate_treatment_enrichment

Value

A new column in the data data frame containing the calculated sequence coverage for each identi-
fied protein

Examples

data <- data.frame(
protein_sequence = c("abcdefghijklmnop”, "abcdefghijklmnop”),
pep_stripped_sequence = c("abc", "jklmn")

)

calculate_sequence_coverage(
data,
protein_sequence = protein_sequence,
peptides = pep_stripped_sequence

)

calculate_treatment_enrichment
Check treatment enrichment

Description

Check for an enrichment of proteins interacting with the treatment in significantly changing proteins
as compared to all proteins.

Usage

calculate_treatment_enrichment(
data,
protein_id,
is_significant,
binds_treatment,

group = NULL,
treatment_name,
plot = TRUE,

fill_colours = protti::protti_colours,

fill_by_group = FALSE,
facet_n_col = 2
)
Arguments
data a data frame contains at least the input variables.
protein_id a character column in the data data frame that contains the protein accession

numbers.

calculate_treatment_enrichment 29

is_significant

binds_treatment

group

treatment_name

plot

fill_colours

fill_by_group

facet_n_col

Value

a logical column in the data data frame that indicates if the corresponding pro-
tein has a significantly changing peptide. The input data frame may contain
peptide level information with significance information. The function is able to
extract protein level information from this.

a logical column in the data data frame that indicates if the corresponding pro-
tein binds to the treatment. This information can be obtained from different
databases, e.g. UniProt.

optional, character column in the data data frame that contains information by
which the analysis should be grouped. The analysis will be performed separately
for each of the groups. This is most likely a column that labels separate com-
parisons of different conditions. In protti the assign_missingness() function
creates such a column automatically.

a character value that indicates the treatment name. It will be included in the
plot title.

a logical value indicating whether the result should be plotted or returned as a
table.

a character vector that specifies the fill colours of the plot.

a logical value that specifies if the bars in the plot should be filled by group if
the group argument is provided. Default is FALSE.

a numeric value that specifies the number of columns the facet plot should have
if a group column was provided.

A bar plot displaying the percentage of all detected proteins and all significant proteins that bind to
the treatment. A Fisher’s exact test is performed to calculate the significance of the enrichment in
significant proteins compared to all proteins. The result is reported as a p-value. If plot = FALSE a
contingency table in long format is returned.

Examples

Create example data
data <- data.frame(
protein_id = c(paste@("protein”, 1:50)),

significant = ¢

(

rep(TRUE, 20),
rep(FALSE, 30)

)!

binds_treatment = c(
rep(TRUE, 10),
rep(FALSE, 10),

rep(TRUE, 5),

rep(FALSE, 25)

)!

group = c(
rep("A”: 5)7
rep("B", 15),

30 correct_lip_for_abundance

rep("A", 15),
rep("B", 15)
)
)

Plot treatment enrichment
calculate_treatment_enrichment(
data,
protein_id = protein_id,
is_significant = significant,
binds_treatment = binds_treatment,
treatment_name = "Rapamycin”,
plot = TRUE

Plot treatment enrichment by group
calculate_treatment_enrichment(
data,
protein_id = protein_id,
group = group,
is_significant = significant,
binds_treatment = binds_treatment,

treatment_name = "Rapamycin”,
plot = TRUE,
fill_by_group = TRUE

Calculate treatment enrichment

enrichment <- calculate_treatment_enrichment(
data,
protein_id = protein_id,
is_significant = significant,
binds_treatment = binds_treatment,
plot = FALSE

enrichment

correct_lip_for_abundance
Protein abundance correction for LiP-data

Description

Performs the correction of LiP-peptides for changes in protein abundance and calculates their sig-
nificance using a t-test. This function was implemented based on the MSstatsLiP package developed
by the Vitek lab.

https://www.bioconductor.org/packages/release/bioc/html/MSstatsLiP.html

correct_lip_for_abundance 31

Usage

correct_lip_for_abundance(

lip_data,
trp_data,
protein_id,
grouping,
comparison =
diff = diff,

comparison,

n_obs = n_obs,

std_error =
p_adj_method

std_error,
= HBHM,

retain_columns = NULL,

method = c("satterthwaite”, "no_df_approximation”)
)
Arguments

lip_data a data frame containing at least the input variables. Ideally, the result from the
calculate_diff_abundance function is used.

trp_data a data frame containing at least the input variables minus the grouping column.
Ideally, the result from the calculate_diff_abundance function is used

protein_id a character column in the lip_data and trp_data data frames that contains
protein identifiers.

grouping a character column in the 1ip_data data frame that contains precursor or peptide
identifiers.

comparison a character column in the 1ip_data and trp_data data frames that contains the
comparisons between conditions.

diff anumeric column in the 1ip_data and trp_data data frames that contains log2-
fold changes for peptide or protein quantities.

n_obs a numeric column in the 1lip_data and trp_data data frames containing the
number of observations used to calculate fold changes.

std_error a numeric column in the 1lip_data and trp_data data frames containing the

p_adj_method

retain_columns

method

standard error of fold changes.

a character value, specifies the p-value correction method. Possible methods are
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
Default method is "BH".

a vector indicating if certain columns should be retained from the input data
frame. Default is not retaining additional columns retain_columns = NULL.
Specific columns can be retained by providing their names (not in quotations
marks, just like other column names, but in a vector). Please note that if you
retain columns that have multiple rows per grouped variable there will be dupli-
cated rows in the output.

a character value, specifies the method used to estimate the degrees of freedom.

non

Possible methods are c("satterthwaite", "no_df_approximation"). satterthwaite

32 correct_lip_for_abundance

uses the Welch-Satterthwaite equation to estimate the pooled degrees of free-
dom, as described in https://doi.org/10.1016/j.mcpro.2022.100477 and imple-
mented in the MSstatsLiP package. This approach respects the number of pro-
tein measurements for the degrees of freedom. no_df_approximation just
takes the number of peptides into account when calculating the degrees of free-
dom.

Value

a data frame containing corrected differential abundances (adj_diff, adjusted standard errors
(adj_std_error), degrees of freedom (df), pvalues (pval) and adjusted p-values (adj_pval)

Author(s)
Aaron Fehr

Examples

Load libraries

library(dplyr)

Load example data and simulate tryptic data by summing up precursors
data <- rapamycin_10uM

data_trp <- data %>%

dplyr::group_by(pg_protein_accessions, r_file_name) %>%
dplyr::mutate(pg_quantity = sum(fg_quantity)) %>%
dplyr::distinct(

r_condition,

r_file_name,

pg_protein_accessions,

pg_quantity
)

Calculate differential abundances for LiP and Trp data

diff_lip <- data %>%
dplyr::mutate(fg_intensity_log2 = log2(fg_quantity)) %>%
assign_missingness(
sample = r_file_name,
condition = r_condition,
intensity = fg_intensity_log2,
grouping = eg_precursor_id,

ref_condition = "control”,
retain_columns = "pg_protein_accessions”
) %>%

calculate_diff_abundance(
sample = r_file_name,
condition = r_condition,

create_queue 33

grouping = eg_precursor_id,
intensity_log2 = fg_intensity_log2,
comparison = comparison,

method = "t-test”,

retain_columns = "pg_protein_accessions”

diff_trp <- data_trp %>%
dplyr::mutate(pg_intensity_log2 = log2(pg_quantity)) %>%
assign_missingness(
sample = r_file_name,
condition = r_condition,
intensity = pg_intensity_log2,
grouping = pg_protein_accessions,
ref_condition = "control”
) %%
calculate_diff_abundance(
sample = r_file_name,
condition = r_condition,
grouping = pg_protein_accessions,
intensity_log2 = pg_intensity_log2,
comparison = comparison,
method = "t-test”

Correct for abundance changes

corrected <- correct_lip_for_abundance(
lip_data = diff_lip,
trp_data = diff_trp,
protein_id = pg_protein_accessions,
grouping = eg_precursor_id,
retain_columns = c("missingness"),
method = "satterthwaite”

head(corrected, n = 10)

create_queue Creates a mass spectrometer queue for Xcalibur

Description

[Experimental] This function creates a measurement queue for sample acquisition for the software
Xcalibur. All possible combinations of the provided information will be created to make file and
sample names.

34

create_queue

Usage

create_queue(
date = NULL,
instrument = NULL,
user = NULL,
measurement_type = NULL,
experiment_name = NULL,
digestion = NULL,
treatment_type_1 = NULL,
treatment_type_2 = NULL,
treatment_dose_1 = NULL,
treatment_dose_2 = NULL,
treatment_unit_1 = NULL,
treatment_unit_2 = NULL,
n_replicates = NULL,
number_runs = FALSE,
organism = NULL,
exclude_combinations = NULL,
inj_vol = NA,
data_path = NA,
method_path = NA,
position_row = NA,
position_column = NA,
blank_every_n = NULL,
blank_position = NA,
blank_method_path = NA,
blank_inj_vol = 1,
export = FALSE,
export_to_queue = FALSE,
queue_path = NULL

)
Arguments
date optional, character value indicating the start date of the measurements.
instrument optional, character value indicating the instrument initials.
user optional, character value indicating the user name.

measurement_type
optional, character value indicating the measurement type of the samples (e.g
"DIA", "DDA", "library" etc.).

experiment_name
optional, character value indicating the name of the experiment.

digestion optional, character vector indicating the digestion types used in this experiment
(e.g "LiP" and/or "tryptic control").

treatment_type_1
optional, character vector indicating the name of the treatment.

create_queue

35

treatment_type_2

optional, character vector indicating the name of a second treatment that was
combined with the first treatment.

treatment_dose_1

optional, numeric vector indicating the doses used for treatment 1. These can be
concentrations or times etc.

treatment_dose_2

optional, numeric vector indicating the doses used for treatment 2. These can be
concentrations or times etc.

treatment_unit_1

optional, character vector indicating the unit of the doses for treatment 1 (e.g
min, mM, etc.).

treatment_unit_2

n_replicates

number_runs

organism

optional, character vector indicating the unit of the doses for treatment 2 (e.g
min, mM, etc.).

optional, a numeric value indicating the number of replicates used per sample.

a logical that specifies if file names should be numbered from 1:n instead of
adding experiment information. Default is FALSE.

optional, character value indicating the name of the organism used.

exclude_combinations

inj_vol

data_path

method_path

position_row

position_column

blank_every_n

blank_position

optional, list of lists that contains vectors of treatment types and treatment doses
of which combinations should be excluded from the final queue.

a numeric value indicating the volume used for injection in microliter. Will be
NA if not specified. Then it needs to be manually specified before the queue can
be used.

a character value indicating the file path where the MS raw data should be saved.
Backslashes should be escaped by another backslash. Will be NA if not specified,
but needs to be specified later on then.

a character value indicating the file path of the MS acquisition method. Back-
slashes should be escaped by another backslash. Will be NA if not specified, but
needs to be specified later on then.

a character vector that contains row positions that can be used for the samples
(e.g c("A", "B")). If the number of specified rows and columns does not equal
the total number of samples, positions will be repeated.

a character vector that contains column positions that can be used for the samples
(e.g 8). If the number of specified rows and columns does not equal the total
number of samples, positions will be repeated.

optional, numeric value that specifies in which intervals a blank sample should
be inserted.

a character value that specifies the plate position of the blank. Will be NA if not
specified, but needs to be specified later on then.

blank_method_path

a character value that specifies the file path of the MS acquisition method of the
blank. Backslashes should be escaped by another backslash. Will be NA if not
specified, but needs to be specified later on then.

36 create_queue

blank_inj_vol anumeric value that specifies the injection volume of the blank sample. Will be
NA if not specified, but needs to be specified later on then.

export a logical value that specifies if the queue should be exported from R and saved
as a .csv file. Default is TRUE. Further options for export can be adjusted with
the export_to_queue and queue_path arguments.

export_to_queue
a logical value that specifies if the resulting queue should be appended to an
already existing queue. If false result will be saved as queue.csv.

queue_path optional, a character value that specifies the file path to a queue file to which
the generated queue should be appended if export_to_queue = TRUE. If not
specified queue file can be chosen interactively.

Value

If export_to_queue = FALSE a file named queue. csv will be returned that contains the generated
queue. If export_to_queue = TRUE, the resulting generated queue will be appended to an already
existing queue that needs to be specified either interactively or through the argument queue_path.

Examples

create_queue(

date = c("200722"),

instrument = c("EX1"),

user = c("jquast"),

measurement_type = c("DIA"),

experiment_name = c("JPQ@31"),

digestion = c("LiP", "tryptic control”),

treatment_type_1 = c("EDTA", "H20"),

treatment_type_2 = c("Zeba”, "unfiltered"),

treatment_dose_1 = c(10, 30, 60),

treatment_unit_1 = c("min"),

n_replicates = 4,

number_runs = FALSE,

organism = c("E. coli"),

exclude_combinations = list(list(
treatment_type_1 = c("H20"),
treatment_type_2 = c("Zeba"”, "unfiltered"),
treatment_dose_1 = c(10, 30)

),

inj_vol = c(2),

data_path = "D:\\2007_Data",

method_path = "C:\\Xcalibur\\methods\\DIA_120min",

position_row = c("A", "B", "C", "D", "E", "F"),

position_column = 8,

blank_every_n = 4,

blank_position = "1-V1",

blank_method_path = "C:\\Xcalibur\\methods\\blank"

create_structure_contact_map 37

create_structure_contact_map

Creates a contact map of all atoms from a structure file

Description

Creates a contact map of a subset or of all atom or residue distances in a structure or AlphaFold
prediction file. Contact maps are a useful tool for the identification of protein regions that are in
close proximity in the folded protein. Additionally, regions that are interacting closely with a small
molecule or metal ion can be easily identified without the need to open the structure in programs
such as PyMOL or ChimeraX. For large datasets (more than 40 contact maps) it is recommended
to use the parallel_create_structure_contact_map() function instead, regardless of if maps
should be created in parallel or sequential.

Usage

create_structure_contact_map(

data,
data2
id,

chain

auth_seq_id = NULL,

distance_cutoff = 10,
pdb_model_number_selection = c(@, 1),
return_min_residue_distance = TRUE,

show_progress

= TRUE,

export = FALSE,
export_location = NULL,
structure_file = NULL

Arguments

data

a data frame containing at least a column with PDB ID information of which
the name can be provided to the id argument. If only this column is provided,
all atom or residue distances are calculated. Additionally, a chain column can
be present in the data frame of which the name can be provided to the chain
argument. If chains are provided, only distances of this chain relative to the
rest of the structure are calculated. Multiple chains can be provided in multiple
rows. If chains are provided for one structure but not for another, the rows
should contain NAs. Furthermore, specific residue positions can be provided in
the auth_seq_id column if the selection should be further reduced. It is not
recommended to create full contact maps for more than a few structures due to
time and memory limitations. If contact maps are created only for small regions
it is possible to create multiple maps at once. By default distances of regions
provided in this data frame to the complete structure are computed. If distances
of regions from this data frame to another specific subset of regions should be

38

create_structure_contact_imap

computed, the second subset of regions can be provided through the optional
data2 argument.

data2 optional, a data frame that contains a subset of regions for which distances to
regions provided in the data data frame should be computed. If regions from
the data data frame should be compared to the whole structure, data2 does not
need to be provided. This data frame should have the same structure and column
names as the data data frame.

id a character column in the data data frame that contains PDB or UniProt IDs for
structures or AlphaFold predictions of which contact maps should be created. If
a structure not downloaded directly from PDB is provided (i.e. a locally stored
structure file) to the structure_file argument, this column should contain
"my_structure" as content.

chain optional, a character column in the data data frame that contains chain identi-
fiers for the structure file. Identifiers defined by the structure author should be
used. Distances will be only calculated between the provided chains and the rest
of the structure.

auth_seq_id optional, a character (or numeric) column in the data data frame that contains
semicolon separated positions of regions for which distances should be calcu-
lated. This always needs to be provided in combination with a correspond-
ing chain in chain. The position should match the positioning defined by the
structure author. For PDB structures this information can be obtained from the
find_peptide_in_structure function. The corresponding column in the out-
put is called auth_seq_id. If an AlphaFold prediction is provided, UniProt
positions should be used. If signal positions and not stretches of amino acids are
provided, the column can be numeric and does not need to contain the semicolon
separator.

distance_cutoff
a numeric value specifying the distance cutoff in Angstrom. All values for pair-
wise comparisons are calculated but only values smaller than this cutoff will be
returned in the output. If a cutoff of e.g. 5 is selected then only residues with a
distance of 5 Angstrom and less are returned. Using a small value can reduce the
size of the contact map drastically and is therefore recommended. The default
value is 10.

pdb_model_number_selection
a numeric vector specifying which models from the structure files should be
considered for contact maps. E.g. NMR models often have many models in one
file. The default for this argument is c(0, 1). This means the first model of each
structure file is selected for contact map calculations. For AlphaFold predictions
the model number is O (only .pdb files), therefore this case is also included here.

return_min_residue_distance
a logical value that specifies if the contact map should be returned for all atom
distances or the minimum residue distances. Minimum residue distances are
smaller in size. If atom distances are not strictly needed it is recommended to
set this argument to TRUE. The default is TRUE.

show_progress alogical value that specifies if a progress bar will be shown (default is TRUE).

export a logical value that indicates if contact maps should be exported as ".csv". The
name of the file will be the structure ID. Default is export = FALSE.

create_synthetic_data 39

export_location
optional, a character value that specifies the path to the location in which the
contact map should be saved if export = TRUE. If left empty, they will be saved
in the current working directory. The location should be provided in the follow-
ing format "folderA/folderB".

structure_file optional, a character value that specifies the path to the location and name of
a structure file in ".cif" or ".pdb" format for which a contact map should be
created. All other arguments can be provided as usual with the exception of the
id column in the data data frame, which should not contain a PDB or UniProt
ID but a character vector containing only "my_structure".

Value

A list of contact maps for each PDB or UniProt ID provided in the input is returned. If the export
argument is TRUE, each contact map will be saved as a ".csv" file in the current working directory
or the location provided to the export_location argument.

Examples

Create example data
data <- data.frame(
pdb_id = c("6NPF"”, "1C14", "3NIR"),
chain = c("A", "A", NA),
auth_seq_id = c¢("1;2;3;4;5;6;7", NA, NA)
)

Create contact map

contact_maps <- create_structure_contact_map(
data = data,
id = pdb_id,
chain = chain,
auth_seq_id = auth_seq_id,
return_min_residue_distance = TRUE

)
str(contact_maps[["3NIR"]1])

contact_maps

create_synthetic_data Creates a synthetic limited proteolysis proteomics dataset

Description

This function creates a synthetic limited proteolysis proteomics dataset that can be used to test
functions while knowing the ground truth.

40

Usage

create_synthetic_data

create_synthetic_data(

n_proteins,
frac_change,
n_replicates,
n_conditions,

method = "effect_random”,
concentrations = NULL,
median_offset_sd = 0.05,
mean_protein_intensity = 16.88,
sd_protein_intensity = 1.4,
mean_n_peptides = 12.75,
size_n_peptides = 0.9,
mean_sd_peptides = 1.7,
sd_sd_peptides = 0.75,
mean_log_replicates = -2.2,
sd_log_replicates = 1.05,

effect_sd = 2

’

dropout_curve_inflection = 14,
dropout_curve_sd = -1.2,
additional_metadata = TRUE

Arguments

n_proteins

frac_change

n_replicates
n_conditions

method

concentrations

a numeric value that specifies the number of proteins in the synthetic dataset.

a numeric value that specifies the fraction of proteins that has a peptide changing
in abundance. So far only one peptide per protein is changing.

a numeric value that specifies the number of replicates per condition.
a numeric value that specifies the number of conditions.

a character value that specifies the method type for the random sampling of
significantly changing peptides. If method = "effect_random”, the effect for
each condition is randomly sampled and conditions do not depend on each other.
If method = "dose_response”, the effect is sampled based on a dose response
curve and conditions are related to each other depending on the curve shape. In
this case the concentrations argument needs to be specified.

a numeric vector of length equal to the number of conditions, only needs to be
specified if method = "dose_response”. This allows equal sampling of pep-
tide intensities. It ensures that the same positions of dose response curves are
sampled for each peptide based on the provided concentrations.

median_offset_sd

a numeric value that specifies the standard deviation of normal distribution that
is used for sampling of inter-sample-differences. Default is 0.05.

mean_protein_intensity

a numeric value that specifies the mean of the protein intensity distribution. De-
fault: 16.8.

create_synthetic_data 41

sd_protein_intensity
a numeric value that specifies the standard deviation of the protein intensity
distribution. Default: 1.4.

mean_n_peptides
a numeric value that specifies the mean number of peptides per protein. Default:
12.75.

size_n_peptides
a numeric value that specifies the dispersion parameter (the shape parameter
of the gamma mixing distribution). Can be theoretically calculated as mean +
mean”2/variance, however, it should be rather obtained by fitting the negative
binomial distribution to real data. This can be done by using the optim function
(see Example section). Default: 0.9.

mean_sd_peptides
a numeric value that specifies the mean of peptide intensity standard deviations
within a protein. Default: 1.7.

sd_sd_peptides a numeric value that specifies the standard deviation of peptide intensity stan-
dard deviation within a protein. Default: 0.75.

mean_log_replicates, sd_log_replicates
a numeric value that specifies the meanlog and sdlog of the log normal distribu-
tion of replicate standard deviations. Can be obtained by fitting a log normal dis-
tribution to the distribution of replicate standard deviations from a real dataset.
This can be done using the optim function (see Example section). Default: -2.2
and 1.05.

effect_sd a numeric value that specifies the standard deviation of a normal distribution
around mean = @ that is used to sample the effect of significantly changeing pep-
tides. Default: 2.

dropout_curve_inflection
a numeric value that specifies the intensity inflection point of a probabilistic
dropout curve that is used to sample intensity dependent missing values. This
argument determines how many missing values there are in the dataset. Default:
14.

dropout_curve_sd
a numeric value that specifies the standard deviation of the probabilistic dropout
curve. Needs to be negative to sample a droupout towards low intensities. De-
fault: -1.2.

additional_metadata
a logical value that determines if metadata such as protein coverage, missed
cleavages and charge state should be sampled and added to the list.

Value
A data frame that contains complete peptide intensities and peptide intensities with values that were

created based on a probabilistic dropout curve.

Examples

create_synthetic_data(
n_proteins = 10,

42 drc_4p

frac_change = 0.1,
n_replicates = 3,
n_conditions 2

)

determination of mean_n_peptides and size_n_peptides parameters based on real data (count)
example peptide count per protein
count <- c(6, 3, 2, 0, 1, 0, 1, 2, 2, 0)
theta <- ¢c(mu =1, k = 1)
negbinom <- function(theta) {
-sum(stats::dnbinom(count, mu = theta[1], size = theta[2], log = TRUE))
3
fit <- stats::optim(theta, negbinom)
fit

determination of mean_log_replicates and sd_log_replicates parameters
based on real data (standard_deviations)

example standard deviations of replicates
standard_deviations <- c(0.61, 0.54, 0.2, 1.2, 0.8, 0.3, 0.2, 0.6)
theta2 <- c(meanlog = 1, sdlog = 1)
lognorm <- function(theta2) {
-sum(stats::dlnorm(standard_deviations, meanlog = theta2[1], sdlog = theta2[2], log = TRUE))

}
fit2 <- stats::optim(theta2, lognorm)
fit2
drc_4p Dose response curve helper function
Description

This function peforms the four-parameter dose response curve fit. It is the helper function for the fit
in the fit_drc_4p function.

Usage
drc_4p(data, response, dose, log_logarithmic = TRUE, pb = NULL)

Arguments
data a data frame that contains at least the dose and response column the model
should be fitted to.
response a numeric column that contains the response values.
dose a numeric column that contains the dose values.

log_logarithmic
a logical value indicating if a logarithmic or log-logarithmic model is fitted. If
response values form a symmetric curve for non-log transformed dose values, a
logarithmic model instead of a log-logarithmic model should be used. Usually

drc_4p_plot 43

biological dose response data has a log-logarithmic distribution, which is the
reason this is the default. Log-logarithmic models are symmetric if dose values
are log transformed.

pb progress bar object. This is only necessary if the function is used in an iteration.

Value

An object of class drc. If no fit was performed a character vector with content "no_fit".

drc_4p_plot Plotting of four-parameter dose response curves

Description

Function for plotting four-parameter dose response curves for each group (precursor, peptide or
protein), based on output from fit_drc_4p function.

Usage

drc_4p_plot(
data,
grouping,
response,
dose,
targets,
unit = "uM",
y_axis_name = "Response”,
facet_title_size = 15,
facet = TRUE,
scales = "free",
x_axis_scale_logl10 = TRUE,
x_axis_limits = c(NA, NA),
colours = NULL,
export = FALSE,
export_height = 25,
export_width = 30,

export_name = "dose-response_curves”
)
Arguments
data a data frame that is obtained by calling the fit_drc_4p function.
grouping a character column in the data data frame that contains the precursor, peptide
or protein identifiers.
response a numeric column in a nested data frame called plot_points that is part of the

data data frame. This column contains the response values, e.g. log2 trans-
formed intensities.

44 drc_4p_plot

dose a numeric column in a nested data frame called plot_points that is part of
the data data frame. This column contains the dose values, e.g. the treatment
concentrations.

targets a character vector that specifies the names of the precursors, peptides or proteins

(depending on grouping) that should be plotted. This can also be "all” if plots
for all curve fits should be created.

unit a character value specifying the unit of the concentration.

y_axis_name a character value specifying the name of the y-axis of the plot.
facet_title_size
a numeric value that specifies the size of the facet title. Default is 15.

facet a logical value that indicates if plots should be summarised into facets of 20
plots. This is recommended for many plots.

scales a character value that specifies if the scales in faceted plots (if more than one
target was provided) should be "free” or "fixed".

x_axis_scale_log10
a logical value that indicates if the x-axis scale should be log10 transformed.

x_axis_limits a numeric vector of length 2, defining the lower and upper x-axis limit. The
default is c(NA, NA), meaning the limits are not defined by the user but by the
data.

colours a character vector containing at least three colours. The first is used for the
points, the second for the confidence interval and the third for the curve. By
default the first two protti colours are used for the points and confidence interval
and the curve is black.

export a logical value that indicates if plots should be exported as PDF. The output
directory will be the current working directory. The name of the file can be
chosen using the export_name argument. If only one target is selected and
export = TRUE, the plot is exported and in addition returned in R.

export_height anumeric value that specifies the plot height in inches for an exported plot. The
default is 25. For a non-facet plot we recommend using 8.

export_width a numeric value that specifies the plot height in inches for an exported plot. The
default is 30. For a non-facet plot we recommend using 12.

export_name a character value providing the name of the exported file if export = TRUE.

Value

If targets = "all" a list containing plots for every unique identifier in the grouping variable is
created. Otherwise a plot for the specified targets is created with maximally 20 facets.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 2,
frac_change = 1,

extract_metal binders 45

n_replicates = 3,
n_conditions = 8,
method = "dose_response”,
concentrations = c(@, 1, 10, 50, 100, 500, 1000, 5000),
additional_metadata = FALSE
)

Perform dose response curve fit
drc_fit <- fit_drc_4p(

data = data,

sample = sample,

grouping = peptide,

response = peptide_intensity_missing,

dose = concentration,

retain_columns = c(protein)

)
str(drc_fit)

Plot dose response curves
if ('is.null(drc_fit)) {
drc_4p_plot(

data = drc_fit,
grouping = peptide,
response = peptide_intensity_missing,
dose = concentration,
targets = c("peptide_2_1", "peptide_2_3"),
unit = "pM”

extract_metal_binders Extract metal-binding protein information from UniProt

Description

Information of metal binding proteins is extracted from UniProt data retrieved with fetch_uniprot
as well as QuickGO data retrieved with fetch_quickgo.

Usage

extract_metal_binders(
data_uniprot,
data_quickgo,
data_chebi = NULL,
data_chebi_relation = NULL,
data_eco = NULL,
data_eco_relation = NULL,
show_progress = TRUE

46 extract_metal_binders

Arguments

data_uniprot a data frame containing at least the ft_binding, cc_cofactor, cc_catalytic_activity
and keyword columns.

data_quickgo a data frame containing molecular function gene ontology information for at
least the proteins of interest. This data should be obtained by calling fetch_quickgo().

data_chebi optional, a data frame that can be manually obtained with fetch_chebi(stars
=c(2, 3)). It should contain 2 and 3 star entries. If not provided it will be
fetched within the function. If the function is run many times it is recommended
to provide the data frame to save time.

data_chebi_relation
optional, a data frame that can be manually obtained with fetch_chebi(relation
= TRUE). If not provided it will be fetched within the function. If the function is
run many times it is recommended to provide the data frame to save time.

data_eco optional, a data frame that contains evidence and conclusion ontology data that
can be obtained by calling fetch_eco(). If not provided it will be fetched
within the function. If the function is run many times it is recommended to
provide the data frame to save time.

data_eco_relation
optional, a data frame that contains relational evidence and conclusion ontology
data that can be obtained by calling fetch_eco(return_relation = TRUE). If
not provided it will be fetched within the function. If the function is run many
times it is recommended to provide the data frame to save time.

show_progress alogical value that specifies if progress will be shown (default is TRUE).

Value

A data frame containing information on protein metal binding state. It contains the following
columns:

* accession: UniProt protein identifier.

* most_specific_id: ChEBI ID that is most specific for the position after combining infor-

mation from all sources. Can be multiple IDs separated by "," if a position appears multiple
times due to multiple fitting IDs.

e most_specific_id_name: The name of the ID in the most_specific_id column. This in-
formation is based on ChEBI.

e ligand_identifier: A ligand identifier that is unique per ligand per protein. It consists of
the ligand ID and ligand name. The ligand ID counts the number of ligands of the same type
per protein.

* ligand_position: The amino acid position of the residue interacting with the ligand.

* binding_mode: Contains information about the way the amino acid residue interacts with the
ligand. If it is "covalent" then the residue is not in contact with the metal directly but only the
cofactor that binds the metal.

* metal_function: Contains information about the function of the metal. E.g. "catalytic".

* metal_id_part: Contains a ChEBI ID that identifies the metal part of the ligand. This is
always the metal atom.

extract_metal binders 47

e metal_id_part_name: The name of the ID in the metal_id_part column. This information
is based on ChEBI.

¢ note: Contains notes associated with information based on cofactors.

* chebi_id: Contains the original ChEBI IDs the information is based on.

non

* source: Contains the sources of the information. This can consist of "binding", "cofactor"”,
"catalytic_activity", "Keyword" and "go_term".

e eco: If there is evidence the annotation is based on it is annotated with an ECO ID, which is
split by source.

» eco_type: The ECO identifier can fall into the "manual_assertion" group for manually curated
annotations or the "automatic_assertion" group for automatically generated annotations. If
there is no evidence it is annotated as "automatic_assertion". The information is split by
source.

* evidence_source: The original sources (e.g. literature, PDB) of evidence annotations split
by source.

* reaction: Contains information about the chemical reaction catalysed by the protein that
involves the metal. Can contain the EC ID, Rhea ID, direction specific Rhea ID, direction of
the reaction and evidence for the direction.

» go_term: Contains gene ontology terms if there are any metal related ones associated with the
annotation.

» go_name: Contains gene ontology names if there are any metal related ones associated with
the annotation.

* assigned_by: Contains information about the source of the gene ontology term assignment.

¢ database: Contains information about the source of the ChEBI annotation associated with
gene ontology terms.

* keyword: Contains keywords if they were annotated in UniProt.

For each protein identifier the data frame contains information on the bound ligand as well as on
its position if it is known. Since information about metal ligands can come from multiple sources,
additional information (e.g. evidence) is nested in the returned data frame. In order to unnest the
relevant information the following steps have to be taken: It is possible that there are multiple
IDs in the "most_specific_id" column. This means that one position cannot be uniquely attributed
to one specific ligand even with the same ligand_identifier. Apart from the "most_specific_id"
column, in which those instances are separated by ",", in other columns the relevant information is
separated by "lI". Then information should be split based on the source (not the source column,
that one can be removed from the data frame). There are certain columns associated with specific
sources (e.g. go_term is associated with the "go_term” source). Values of columns not relevant
for a certain source should be replaced with NA. Since a most_specific_id can have multiple
chebi_ids associated with it we need to unnest the chebi_id column and associated columns
in which information is separated by "I". Afterwards evidence and additional information can be
unnested by first splitting data for ";;" and then for ";". If the "metal_id_part_name" column contains
an NA value the indicated ligand position does not directly contact the metal ion. This is usually
the case for ligands such as e.g. heme.

48

fetch_alphatold_aligned_error

Examples

Create example data
uniprot_ids <- c("P00393", "P06129", "AQAQC5Q309", "AQAQCIVDO4")

UniProt data
data_uniprot <- fetch_uniprot(
uniprot_ids = uniprot_ids,
columns = c(
"ft_binding",
"cc_cofactor”,
"cc_catalytic_activity”,
"keyword"
)
)

QuickGO data

data_quickgo <- fetch_quickgo(
id_annotations = uniprot_ids,
ontology_annotations = "molecular_function”

)

ChEBI data (2 and 3 star entries)
data_chebi <- fetch_chebi(stars = c(2, 3))
data_chebi_relation <- fetch_chebi(relation = TRUE)

ECO data
eco <- fetch_eco()
eco_relation <- fetch_eco(return_relation = TRUE)

Extract metal binding information
metal_info <- extract_metal_binders(
data_uniprot = data_uniprot,
data_quickgo = data_quickgo,
data_chebi = data_chebi,
data_chebi_relation = data_chebi_relation,
data_eco = eco,
data_eco_relation = eco_relation

)

metal_info

fetch_alphafold_aligned_error

Fetch AlphaFold aligned error

Description

Fetches the aligned error for AlphaFold predictions for provided proteins. The aligned error is
useful for assessing inter-domain accuracy. In detail it represents the expected position error at

fetch_alphatold_aligned_error 49

residue x (scored residue), when the predicted and true structures are aligned on residue y (aligned

residue).

Usage

fetch_alphafold_aligned_error(

uniprot_ids =

NULL,

error_cutoff = 20,

timeout = 30,

max_tries = 1,
version = "v6",
return_data_frame = FALSE,

show_progress

Arguments

uniprot_ids

error_cutoff

timeout

max_tries

version

= TRUE

a character vector of UniProt identifiers for which predictions should be fetched.

a numeric value specifying the maximum position error (in Angstroms) that
should be retained. setting this value to a low number reduces the size of the
retrieved data. Default is 20.

a numeric value specifying the time in seconds until the download times out.
The default is 30 seconds.

a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 1.

a character value that specifies the alphafold version that should be used. This is
regularly updated by the database. We always try to make the current version the
default version. Available version can be found here: https://ftp.ebi.ac.uk/pub/databases/alphafold/

return_data_frame

show_progress

Value

a logical value; if TRUE a data frame instead of a list is returned. It is recom-
mended to only use this if information for few proteins is retrieved. Default is
FALSE.

a logical value; if TRUE a progress bar will be shown. Default is TRUE.

A list that contains aligned errors for AlphaFold predictions. If return_data_frame is TRUE, a data
frame with this information is returned instead. The data frame contains the following columns:

* scored_residue: The error for this position is calculated based on the alignment to the aligned

residue.

* aligned_residue: The residue that is aligned for the calculation of the error of the scored

residue

* error: The predicted aligned error computed by alpha fold.

* accession: The UniProt protein identifier.

50 fetch_alphatold_prediction

Examples

aligned_error <- fetch_alphafold_aligned_error(
uniprot_ids = c("F4HVG8", "015552"),
error_cutoff = 5,
return_data_frame = TRUE

)

head(aligned_error, n = 10)

fetch_alphafold_prediction
Fetch AlphaFold prediction

Description

Fetches atom level data for AlphaFold predictions either for selected proteins or whole organisms.

Usage

fetch_alphafold_prediction(
uniprot_ids = NULL,
organism_name = NULL,
version = "v6",
timeout = 3600,
max_tries = 5,
return_data_frame = FALSE,
show_progress = TRUE

)
Arguments
uniprot_ids optional, a character vector of UniProt identifiers for which predictions should
be fetched. This argument is mutually exclusive to the organism_name argu-
ment.

organism_name optional, a character value providing the name of an organism for which all
available AlphaFold predictions should be retreived. The name should be the
capitalised scientific species name (e.g. "Homo sapiens"). Note: Some organ-
isms contain a lot of predictions which might take a considerable amount of time
and memory to fetch. Therefore, you should be sure that your system can handle
fetching predictions for these organisms. This argument is mutually exclusive
to the uniprot_ids argument.

version a character value that specifies the alphafold version that should be used. This is
regularly updated by the database. We always try to make the current version the
default version. Available version can be found here: https://ftp.ebi.ac.uk/pub/databases/alphafold/

timeout a numeric value specifying the time in seconds until the download of an organ-
ism archive times out. The default is 3600 seconds.

fetch_alphatold_prediction 51

max_tries a numeric value that specifies the number of times the function tries to down-

load the data in case an error occurs. The default is 5. This only applies if
uniprot_ids were provided.

return_data_frame

a logical value that specifies if true, a data frame instead of a list is returned.
It is recommended to only use this if information for few proteins is retrieved.
Default is FALSE.

show_progress a logical value that specifies if true, a progress bar will be shown. Default is

Value

TRUE.

A list that contains atom level data for AlphaFold predictions. If return_data_frame is TRUE, a data
frame with this information is returned instead. The data frame contains the following columns:

label_id: Uniquely identifies every atom in the prediction following the standardised conven-
tion for mmCIF files.

type_symbol: The code used to identify the atom species representing this atom type. This
code is the element symbol.

label_atom_id: Uniquely identifies every atom for the given residue following the standardised
convention for mmCIF files.

label_comp_id: A chemical identifier for the residue. This is the three- letter code for the
amino acid.

label_asym_id: Chain identifier following the standardised convention for mmCIF files. Since
every prediction only contains one protein this is always "A".

label_seq_id: Uniquely and sequentially identifies residues for each protein. The numbering
corresponds to the UniProt amino acid positions.

x: The x coordinate of the atom.

y: The y coordinate of the atom.

z: The z coordinate of the atom.

prediction_score: Contains the prediction score for each residue.
auth_seq_id: Same as label_seq_id. But of type character.
auth_comp_id: Same as label_comp_id.

auth_asym_id: Same as label_asym_id.

uniprot_id: The UniProt identifier of the predicted protein.
score_quality: Score annotations.

Examples

alphafold <- fetch_alphafold_prediction(
uniprot_ids = c("F4HVG8", "015552"),
return_data_frame = TRUE

)

head(alphafold, n = 10)

52 fetch_eco

fetch_chebi Fetch ChEBI database information

Description

Fetches information from the ChEBI database.

Usage

fetch_chebi(relation = FALSE, stars = c(3), timeout = 60)

Arguments
relation a logical value that indicates if ChEBI Ontology data will be returned instead
the main compound data. This data can be used to check the relations of ChEBI
ID’s to each other. Default is FALSE.
stars anumeric vector indicating the "star" level (confidence) for which entries should
be retrieved (Possible levels are 1, 2 and 3). Default is c(3) retrieving only "3-
star" entries, which are manually annotated by the ChEBI curator team.
timeout a numeric value specifying the time in seconds until the download of an organ-
ism archive times out. The default is 60 seconds.
Value

A data frame that contains information about each molecule in the ChEBI database.

Examples

chebi <- fetch_chebi()

head(chebi)

fetch_eco Fetch evidence & conclusion ontology

Description

Fetches all evidence & conclusion ontology (ECO) information from the QuickGO EBI database.
The ECO project is maintained through a public GitHub repository.

https://github.com/evidenceontology/evidenceontology

fetch_eco 53

Usage

fetch_eco(
return_relation = FALSE,
return_history = FALSE,
show_progress = TRUE

)

Arguments

return_relation
a logical value that indicates if relational information should be returned instead

the main descriptive information. This data can be used to check the relations of
ECO terms to each other. Default is FALSE.

return_history a logical value that indicates if the entry history of an ECO term should be
returned instead the main descriptive information. Default is FALSE.

show_progress alogical value that indicates if a progress bar will be shown. Default is TRUE.

Details

According to the GitHub repository ECO is defined as follows:

"The Evidence & Conclusion Ontology (ECO) describes types of scientific evidence within the bi-
ological research domain that arise from laboratory experiments, computational methods, literature
curation, or other means. Researchers use evidence to support conclusions that arise out of scientific
research. Documenting evidence during scientific research is essential, because evidence gives us
a sense of why we believe what we think we know. Conclusions are asserted as statements about
things that are believed to be true, for example that a protein has a particular function (i.e. a protein
functional annotation) or that a disease is associated with a particular gene variant (i.e. a phenotype-
gene association). A systematic and structured (i.e. ontological) classification of evidence allows us
to store, retreive, share, and compare data associated with that evidence using computers, which are
essential to navigating the ever-growing (in size and complexity) corpus of scientific information."

More information can be found in their publication (doi:10.1093/nar/gky1036).

Value

A data frame that contains descriptive information about each ECO term in the EBI database. If
either return_relation or return_history is set to TRUE, the respective information is returned
instead of the usual output.

Examples

eco <- fetch_eco()

head(eco)

https://doi.org/10.1093/nar/gky1036

54 fetch_interpro

fetch_go Fetch gene ontology information from geneontology.org

Description

Fetches gene ontology data from geneontology.org for the provided organism ID.

Usage
fetch_go(organism_id)

Arguments
organism_id a character value NCBI taxonomy identifier of an organism (TaxId). Possible
inputs inlude only: "9606" (Human), "559292" (Yeast) and "83333" (E. coli).
Value

A data frame that contains gene ontology mappings to UniProt or SGD IDs. The original file is a
.GAF file. A detailed description of all columns can be found here: http://geneontology.org/docs/go-
annotation-file-gaf-format-2.1/

Examples

go <- fetch_go("9606")

head(go)

fetch_interpro Fetch domain and residue information from InterPro

Description

Fetches either domain level information with e.g. gene ontology annotations or residue level infor-
mation from the InterPro database.

Usage

fetch_interpro(
uniprot_ids = NULL,
return_residue_info = FALSE,
manual_query = NULL,
page_size = 200,
max_tries = 3,
timeout = 20,
show_progress = TRUE

fetch_kegg 55

Arguments

uniprot_ids a character vector of UniProt accession numbers.
return_residue_info

a logical value that specifies if either domain or residue information should be
returned by the function. The default is FALSE.

manual_query optional, a character value that is a custom query to the InterPro database. This
query is pastes after "https://www.ebi.ac.uk/interpro/api/" and before "&page_size=200".
The raw data of the query is returned as a list.

page_size a numeric value that specifies the number of entries that should be retrieved
per page of a request. The function anyway iterates through all pages, but this
parameters allows you to finetune the number of iterations and thus number of
requests to the database. Default is 200.

max_tries a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 3.

timeout a numeric value that specifies the maximum request time per try. Default is 20
seconds.

show_progress alogical value that determines if a progress bar will be shown. Default is TRUE.

Value

A data frame that contains either domain or residue level information for the provided UniProt IDs.

Examples
uniprot_ids <- c("P36578", "043324", "Q00796", "032583")
domain_info <- fetch_interpro(uniprot_ids = uniprot_ids)
head(domain_info)
residue_info <- fetch_interpro(
uniprot_ids = uniprot_ids,

return_residue_info = TRUE

)

head(residue_info)

fetch_kegg Fetch KEGG pathway data from KEGG

Description

Fetches gene IDs and corresponding pathway IDs and names for the provided organism.

56 fetch_metal_pdb

Usage
fetch_kegg(species)

Arguments
species a character value providing an abreviated species name. "hsa" for human, "eco"
for E. coli and "sce" for S. cerevisiae. Additional possible names can be found
for eukaryotes and for prokaryotes.
Value

A data frame that contains gene IDs with corresponding pathway IDs and names for a selected
organism.

Examples

kegg <- fetch_kegg(species = "hsa")

head(kegg)
fetch_metal_pdb Fetch structural information about protein-metal binding from Met-
alPDB
Description

Fetches information about protein-metal binding sites from the MetalPDB database. A complete
list of different possible search queries can be found on their website.

Usage

fetch_metal_pdb(
id_type = "uniprot”,

id_value,

site_type = NULL,

pfam = NULL,

cath = NULL,

scop = NULL,
representative = NULL,
metal = NULL,

ligands = NULL,
geometry = NULL,
coordination = NULL,
donors = NULL,
columns = NULL,
show_progress = TRUE

https://www.kegg.jp/kegg-bin/show_organism?category=Eukaryotes
https://www.kegg.jp/kegg-bin/show_organism?category=Prokaryotes

fetch_metal_pdb

Arguments

id_type

id_value

site_type

pfam

cath

scop

representative

metal

ligands

geometry

coordination

donors

columns

show_progress

Value

57

a character value that specifies the type of the IDs provided to id_value. De-
fault is "uniprot". Possible options include: "uniprot", "pdb", "ec_number",
"molecule" and "organism".

a character vector supplying IDs that are of the ID type that was specified in
id_type. E.g. UniProt IDs. Information for these IDs will be retreived.

optional, a character value that specifies a nuclearity for which information
should be retrieved. The specific nuclearity can be supplied as e.g. "tetranu-
clear".

optional, a character value that specifies a Pfam domain for which information
should be retrieved. The domain can be specified as e.g. "Carb_anhydrase".

optional, a character value that specifies a CATH ID for which information
should be retrieved. The ID can be specified as e.g. "3.10.200.10".

optional, a character value that specifies a SCOP ID for which information
should be retrieved. The ID can be specified as e.g. "b.74.1.1".

optional, a logical that indicates if only information of representative sites of a
family should be retrieved it can be specified here. A representative site is a
site selected to represent a cluster of equivalent sites. The selection is done by
choosing the PDB structure with the best X-ray resolution among those contain-
ing the sites in the cluster. NMR structures are generally discarded in favor of
X-ray structures, unless all the sites in the cluster are found in NMR structures.
If it is TRUE, only representative sites are retrieved, if it is FALSE, all sites are
retrieved.

optional, a character value that specifies a metal for which information should
be retrieved. The metal can be specified as e.g. "Zn".

optional, a character value that specifies a metal ligand residue for which infor-
mation should be retrieved. The ligand can be specified as e.g. "His".

optional, a character value that specifies a metal site geometry for which infor-
mation should be retrieved. The geometry can be specified here based on the
three letter code for geometries provided on their website.

optional, a character value that specifies a coordination number for which infor-
mation should be retrieved. The number can be specified as e.g. "3".

optional, a character value that specifies a metal ligand atom for which informa-
tion should be retrieved. The atom can be specified as e.g. "S" for sulfur.

optional, a character vector that specifies specific columns that should be re-
trieved based on the MetalPDB website. If nothing is supplied here, all possible
columns will be retrieved.

logical, if true, a progress bar will be shown. Default is TRUE.

A data frame that contains information about protein-metal binding sites. The data frame contains
some columns that might not be self explanatory.

58

fetch_mobidb

auth_id_metal: Unique structure atom identifier of the metal, which is provided by the author
of the structure in order to match the identification used in the publication that describes the
structure.

auth_seq_id_metal: Residue identifier of the metal, which is provided by the author of the
structure in order to match the identification used in the publication that describes the structure.

pattern: Metal pattern for each metal bound by the structure.

is_representative: A representative site is a site selected to represent a cluster of equivalent
sites. The selection is done by choosing the PDB structure with the best X-ray resolution
among those containing the sites in the cluster. NMR structures are generally discarded in
favor of X-ray structures, unless all the sites in the cluster are found in NMR structures.

auth_asym_id_ligand: Chain identifier of the metal-coordinating ligand residues, which is
provided by the author of the structure in order to match the identification used in the publica-
tion that describes the structure.

auth_seq_id_ligand: Residue identifier of the metal-coordinating ligand residues, which is
provided by the author of the structure in order to match the identification used in the publica-
tion that describes the structure.

auth_id_ligand: Unique structure atom identifier of the metal-coordinating ligand r esidues,
which is provided by the author of the structure in order to match the identification used in the
publication that describes the structure.

auth_atom_id_ligand: Unique residue specific atom identifier of the metal-coordinating ligand
residues, which is provided by the author of the structure in order to match the identification
used in the publication that describes the structure.

Examples

head(fetch_metal_pdb(id_value = c("P42345", "P00918")))

fetch_metal_pdb(id_type = "pdb", id_value = c("1g54"), metal = "Zn")

fetch_mobidb Fetch protein disorder and mobility information from MobiDB

Description

Fetches information about disordered and flexible protein regions from MobiDB.

Usage

fetch_mobidb(

uniprot_ids = NULL,
organism_id = NULL,
show_progress = TRUE,
timeout = 60,
max_tries = 2

fetch_pdb 59

Arguments
uniprot_ids optional, a character vector of UniProt identifiers for which information should
be fetched. This argument is mutually exclusive to the organism_id argument.
organism_id optional, a character value providing the NCBI taxonomy identifier of an or-

ganism (TaxId) of an organism for which all available information should be
retreived. This argument is mutually exclusive to the uniprot_ids argument.

show_progress alogical value; if TRUE a progress bar will be shown. Default is TRUE.

timeout a numeric value specifying the time in seconds until the download of an organ-
ism archive times out. The default is 60 seconds.

max_tries a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 2.

Value

A data frame that contains start and end positions for disordered and flexible protein regions. The
feature column contains information on the source of this annotation. More information on the
source can be found here.

Examples

fetch_mobidb(
uniprot_ids = c("PQA799", "P62707")
)

fetch_pdb Fetch structure information from RCSB

Description
Fetches structure metadata from RCSB. If you want to retrieve atom data such as positions, use the
function fetch_pdb_structure().

Usage

fetch_pdb(pdb_ids, batchsize = 100, show_progress = TRUE)

Arguments
pdb_ids a character vector of PDB identifiers.
batchsize anumeric value that specifies the number of structures to be processed in a single

query. Default is 100.

show_progress alogical value that indicates if a progress bar will be shown. Default is TRUE.

https://mobidb.org/about/mobidb

60 fetch_pdb

Value

A data frame that contains structure metadata for the PDB IDs provided. The data frame contains
some columns that might not be self explanatory.

e auth_asym_id: Chain identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure.

* label_asym_id: Chain identifier following the standardised convention for mmCIF files.

* entity_beg_seq_id, ref_beg_seq_id, length, pdb_sequence: entity_beg_seq_id is a position
in the structure sequence (pdb_sequence) that matches the position given in ref_beg_seq_id,
which is a position within the protein sequence (not included in the data frame). length iden-
tifies the stretch of sequence for which positions match accordingly between structure and
protein sequence. entity_beg_seq_id is a residue ID based on the standardised convention
for mmCIF files.

 auth_seq_id: Residue identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure. This character vector has the
same length as the pdb_sequence and each position is the identifier for the matching amino
acid position in pdb_sequence. The contained values are not necessarily numbers and the
values do not have to be positive.

* modified_monomer: Is composed of first the composition ID of the modification, followed by
the label_seqg_id position. In parenthesis are the parent monomer identifiers as they appear
in the sequence.

e ligand_*: Any column starting with the 1igand_x* prefix contains information about the posi-
tion, identity and donors for ligand binding sites. If there are multiple entities of ligands they

non

are separated by "I". Specific donor level information is separated by ";

* secondar_structure: Contains information about helix and sheet secondary structure elements.

non

Individual regions are separated by ";".

» unmodeled_structure: Contains information about unmodeled or partially modeled regions in

non

the model. Individual regions are separated by ";

 auth_seq_id_original: In some cases the sequence positions do not match the number of
residues in the sequence either because positions are missing or duplicated. This always coin-
cides with modified residues, however does not always occur when there is a modified residue
in the sequence. This column contains the original auth_seq_id information that does not
have these positions corrected.

Examples
pdb <- fetch_pdb(pdb_ids = c("6HG1", "1E9I", "6D3Q", "4JHW"))

head(pdb)

fetch_pdb_structure 61

fetch_pdb_structure Fetch PDB structure atom data from RCSB

Description

Fetches atom data for a PDB structure from RCSB. If you want to retrieve metadata about PDB
structures, use the function fetch_pdb(). The information retrieved is based on the .cif file of the
structure, which may vary from the .pdb file.

Usage

fetch_pdb_structure(pdb_ids, return_data_frame = FALSE, show_progress = TRUE)

Arguments

pdb_ids a character vector of PDB identifiers.
return_data_frame

a logical value that indicates if a data frame instead of a list is returned. It is
recommended to only use this if not many pdb structures are retrieved. Default
is FALSE.

show_progress alogical value that indicates if a progress bar will be shown. Default is TRUE.

Value

A list that contains atom data for each PDB structures provided. If return_data_frame is TRUE, a
data frame with this information is returned instead. The data frame contains the following columns:

label_id: Uniquely identifies every atom in the structure following the standardised convention
for mmCIF files. Example value: "5", "C12", "Ca3g28", "Fe3+17", "H*251", "boron2a", "C
aphe 83a0","ZnZn 301 A Q"

type_symbol: The code used to identify the atom species representing this atom type. Nor-
mally this code is the element symbol. The code may be composed of any character except
an underscore with the additional proviso that digits designate an oxidation state and must be
followed by a + or - character. Example values: "C", "Cu2+", "H(SDS)", "dummy", "FeNi".

label_atom_id: Uniquely identifies every atom for the given residue following the standardised
convention for mmCIF files. Example values: "CA", "HB1", "CB", "N"

label_comp_id: A chemical identifier for the residue. For protein polymer entities, this is the
three- letter code for the amino acid. For nucleic acid polymer entities, this is the one-letter
code for the base. Example values: "ala", "val", "A", "C".

label_asym_id: Chain identifier following the standardised convention for mmCIF files. Ex-
ample values: "1", "A", "2B3".

entity_id: Records details about the molecular entities that are present in the crystallographic
structure. Usually all different types of molecular entities such as polymer entities, non-
polymer entities or water molecules are numbered once for each structure. Each type of non-
polymer entity has its own number. Thus, the highest number in this column represents the
number of different molecule types in the structure.

62 fetch_quickgo
label_seq_id: Uniquely and sequentially identifies residues for each label_asym_id. This
is always a number and the sequence of numbers always progresses in increasing numerical
order.
x: The x coordinate of the atom.
y: The y coordinate of the atom.
z: The z coordinate of the atom.
site_occupancy: The fraction of the atom type present at this site.
b_iso_or_equivalent: Contains the B-factor or isotopic atomic displacement factor for each
atom.
formal_charge: The net integer charge assigned to this atom. This is the formal charge assign-
ment normally found in chemical diagrams. It is currently only assigned in a small subset of
structures.
auth_seq_id: An alternative residue identifier (Label_seq_id) provided by the author of the
structure in order to match the identification used in the publication that describes the structure.
This does not need to be numeric and is therefore of type character.
auth_comp_id: An alternative chemical identifier (1abel_comp_id) provided by the author
of the structure in order to match the identification used in the publication that describes the
structure.
auth_asym_id: An alternative chain identifier (label_asym_id) provided by the author of
the structure in order to match the identification used in the publication that describes the
structure.
pdb_model_number: The PDB model number.
pdb_id: The protein database identifier for the structure.

Examples

pdb_structure <- fetch_pdb_structure(

)

pdb_ids = c("6HG1", "1E9I", "6D3Q", "4JHW"),
return_data_frame = TRUE

head(pdb_structure, n = 10)

fetch_quickgo Fetch information from the QuickGO API

Description

Fetches gene ontology (GO) annotations, terms or slims from the QuickGO EBI database. Anno-
tations can be retrieved for specific UniProt IDs or NCBI taxonomy identifiers. When terms are
retrieved, a complete list of all GO terms is returned. For the generation of a slim dataset you can
provide GO IDs that should be considered. A slim dataset is a subset GO dataset that considers all
child terms of the supplied IDs.

fetch_quickgo

Usage
fetch_quickgo(

63

type = "annotations”,
id_annotations = NULL,
taxon_id_annotations = NULL,

ontology_annotations = "all"”,
go_id_slims = NULL,
relations_slims = c("is_a", "part_of"”, "regulates”, "occurs_in"),

timeout = 1200,
max_tries = 2,

show_progress

Arguments

type

id_annotations

= TRUE

a character value that indicates if gene ontology terms, annotations or slims
should be retrieved. The possible values therefore include "annotations", "terms"
and "slims". If annotations are retrieved, the maximum number of results is

2,000,000.
an optional character vector that specifies UniProt IDs for which GO annotations

should be retrieved. This argument should only be provided if annotations are
retrieved.

taxon_id_annotations

an optional character value that specifies the NCBI taxonomy identifier (TaxId)
for an organism for which GO annotations should be retrieved. This argument
should only be provided if annotations are retrieved.

ontology_annotations

go_id_slims

relations_slims

timeout

max_tries

show_progress

Value

an optional character value that specifies the ontology that should be retrieved.
This can either have the values "all", "molecular_function", "biological_process"
or "cellular_component". This argument should only be provided if annotations
are retrieved.

an optional character vector that specifies gene ontology IDs (e.g. GO:0046872)

for which a slim go set should be generated. This argument should only be
provided if slims are retrieved.

an optional character vector that specifies the relations of GO IDs that should be
considered for the generation of the slim dataset. This argument should only be
provided if slims are retrieved.

a numeric value specifying the time in seconds until the download times out.
The default is 1200 seconds.

a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 2.

a logical value that indicates if a progress bar will be shown. Default is TRUE.

A data frame that contains descriptive information about gene ontology annotations, terms or slims
depending on what the input "type" was.

64 fetch_uniprot

Examples

Annotations

annotations <- fetch_quickgo(
type = "annotations”,
id = c("P63328", "Q4FFP4"),
ontology = "molecular_function”

)
head(annotations)

Terms
terms <- fetch_quickgo(type = "terms")

head(terms)

Slims
slims <- fetch_quickgo(

type = "slims”,

go_id_slims = c("G0:0046872", "GO:0051540")
)

head(slims)

fetch_uniprot Fetch protein data from UniProt

Description

Fetches protein metadata from UniProt.

Usage

fetch_uniprot(
uniprot_ids,

columns = c("protein_name"”, "length”, "sequence", "gene_names”, "xref_geneid”,
"xref_string”, "go_f", "go_p", "go_c", "cc_interaction”, "ft_act_site”, "ft_binding",
"cc_cofactor”, "cc_catalytic_activity”, "xref_pdb", "keyword"),

batchsize = 100,
max_tries = 10,

timeout = 20,
show_progress = TRUE
)
Arguments

uniprot_ids a character vector of UniProt accession numbers.

fetch_uniprot_proteome 65

columns a character vector of metadata columns that should be imported from UniProt
(all possible columns can be found here. For cross-referenced database provide
the database name with the prefix "xref ", e.g. "xref_pdb")

batchsize a numeric value that specifies the number of proteins processed in a single single
query. Default and max value is 100.

max_tries a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 10.

timeout a numeric value that specifies the maximum request time per try. Default is 20
seconds.

show_progress alogical value that determines if a progress bar will be shown. Default is TRUE.

Value

A data frame that contains all protein metadata specified in columns for the proteins provided. The
input_id column contains the provided UniProt IDs. If an invalid ID was provided that contains a
valid UniProt ID, the valid portion of the ID is still fetched and present in the accession column,
while the input_id column contains the original not completely valid ID.

Examples

fetch_uniprot(c("P36578", "043324", "Q00796"))

Not completely valid ID
fetch_uniprot(c("P02545", "P02545;P20700"))

fetch_uniprot_proteome
Fetch proteome data from UniProt

Description

Fetches proteome data from UniProt for the provided organism ID.

Usage

fetch_uniprot_proteome(
organism_id,
columns = c("accession"),
reviewed = TRUE,
timeout = 120,
max_tries = 5

https://www.uniprot.org/help/return_fields

66

Arguments

organism_id

columns

reviewed

timeout

max_tries

Value

filter_cv

a numeric value that specifies the NCBI taxonomy identifier (TaxId) for an or-
ganism.

a character vector of metadata columns that should be imported from UniProt
(all possible columns can be found here. For cross-referenced database pro-
vide the database name with the prefix "xref_", e.g. "xref_pdb"). Note: Not
more than one or two columns should be selected otherwise the function will
not be able to efficiently retrieve the information. If more information is needed,
fetch_uniprot() can be used with the IDs retrieved by this function.

a logical value that determines if only reviewed protein entries will be retrieved.

a numeric value specifying the time in seconds until the download times out.
The default is 60 seconds.

a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. The default is 2.

A data frame that contains all protein metadata specified in columns for the organism of choice.

Examples

head(fetch_uniprot_proteome(9606))

filter_cv

Data filtering based on coefficients of variation (CV)

Description

Filters the input data based on precursor, peptide or protein intensity coefficients of variation. The
function should be used to ensure that only robust measurements and quantifications are used for
data analysis. It is advised to use the function after inspection of raw values (quality control) and
median normalisation. Generally, the function calculates CVs of each peptide, precursor or protein
for each condition and removes peptides, precursors or proteins that have a CV above the cutoff in
less than the (user-defined) required number of conditions. Since the user-defined cutoff is fixed
and does not depend on the number of conditions that have detected values, the function might bias
for data completeness.

Usage

filter_cv(
data,
grouping,

condition,

log2_intensity,
cv_limit = 0.25,

https://www.uniprot.org/help/return_fields

filter_cv

67

min_conditions,
silent = FALSE

Arguments

data

grouping

condition

log2_intensity

cv_limit

min_conditions

silent

Value

a data frame that contains at least the input variables.

a character column in the data data frame that contains the grouping variable
that can be either precursors, peptides or proteins.

a character or numeric column in the data data frame that contains information
on the sample condition.

a numeric column in the data data frame that contains log2 transformed inten-
sities.

optional, a numeric value that specifies the CV cutoff that will be applied. De-
fault is 0.25.

a numeric value that specifies the minimum number of conditions for which
grouping CVs should be below the cutoff.

a logical value that specifies if a message with the number of filtered out condi-
tions should be returned. Default is FALSE.

The CV filtered data frame.

Examples

set.seed(123) #

Makes example reproducible

Create synthetic data

data <- create_synthetic_data(
n_proteins = 50,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”,
additional_metadata = FALSE

)

Filter coefficients of variation

data_filtered <- filter_cv(
data = data,
grouping = peptide,
condition = condition,

log2_intensity = peptide_intensity_missing,

cv_limit = 0.25,
min_conditions = 2

68

find_all_subs

find_all_subs

Find all sub IDs of an ID in a network

Description

For a given ID, find all sub IDs and their sub IDs etc. The type of relationship can be selected too.
This is a helper function for other functions.

Usage
find_all_subs(
data,
ids,
main_id = id,
type = type,
accepted_types = "is_a",
exclude_parent_id = FALSE
)
Arguments
data a data frame that contains relational information on IDs (main_id) their sub IDs
(sub_id) and their relationship (type). For ChEBI this data frame can be obtained
by calling fetch_chebi(relation = TRUE). For ECO data it can be obtained by
calling fetch_eco(relation = TRUE).
ids a character vector of IDs for which sub IDs should be searched.
main_id a character or integer column containing IDs. Default is id for ChEBI IDs.
type a character column that contains the type of interactions. Default is type for

accepted_types

ChEBI IDs.

a character vector containing the accepted_types of relationships that should be
considered for the search. It is possible to use "all" relationships. The default
type is "is_a". A list of possible relationships for e.g. ChEBI IDs can be found
here.

exclude_parent_id

Value

a logical value that specifies if the parent ID should be included in the returned
list.

A list of character vectors containing the provided ID and all of its sub IDs. It contains one element

per input ID.

https://docs.google.com/document/d/1_w-DwBdCCOh1gMeeP6yqGzcnkpbHYOa3AGSODe5epcg/edit#heading=h.hnsqoqu978s5

find_chebis 69

find_chebis Find ChEBI IDs for name patterns

Description

Search for chebi IDs that match a specific name pattern. A list of corresponding ChEBI IDs is
returned.

Usage

find_chebis(chebi_data, pattern)

Arguments

chebi_data a data frame that contains at least information on ChEBI IDs (id) and their names
(name). This data frame can be obtained by calling fetch_chebi (). Ideally this
should be subsetted to only contain molecules of a specific type e.g. metals. This
can be achieved by calling find_all_subs with a general ID such as "25213"
(Metal cation) and then subset the complete ChEBI database to only include the
returned sub-IDs. Using a subsetted database ensures better search results. This
is a helper function for other functions.

pattern a character vector that contains names or name patterns of molecules. Name
patterns can be for example obtained with the split_metal_name function.

Value

A list of character vectors containing ChEBI IDs that have a name matching the supplied pattern. It
contains one element per pattern.

find_peptide Find peptide location

Description

The position of the given peptide sequence is searched within the given protein sequence. In addi-
tion the last amino acid of the peptide and the amino acid right before are reported.

Usage

find_peptide(data, protein_sequence, peptide_sequence)

70 find_peptide_in_structure

Arguments

data a data frame that contains at least the protein and peptide sequence.
protein_sequence

a character column in the data data frame that contains the protein sequence.
peptide_sequence

a character column in the data data frame that contains the peptide sequence.

Value

A data frame that contains the input data and four additional columns with peptide start and end
position, the last amino acid and the amino acid before the peptide.

Examples

Create example data

data <- data.frame(
protein_sequence = c("abcdefg"),
peptide_sequence = c("cde")

)

Find peptide

find_peptide(
data = data,
protein_sequence = protein_sequence,
peptide_sequence = peptide_sequence

)

find_peptide_in_structure
Finds peptide positions in a PDB structure based on positional match-
ing

Description

Finds peptide positions in a PDB structure. Often positions of peptides in UniProt and a PDB
structure are different due to different lengths of structures. This function maps a peptide based on
its UniProt positions onto a PDB structure. This method is superior to sequence alignment of the
peptide to the PDB structure sequence, since it can also match the peptide if there are truncations
or mismatches. This function also provides an easy way to check if a peptide is present in a PDB
structure.

Usage

find_peptide_in_structure(
peptide_data,
peptide,
start,

find_peptide_in_structure 71

end,

uniprot_id,

pdb_data = NULL,
retain_columns = NULL

Arguments

peptide_data a data frame containing at least the input columns to this function.

peptide a character column in the peptide_data data frame that contains the sequence
or any other unique identifier for the peptide that should be found.

start a numeric column in the peptide_data data frame that contains start positions
of peptides.

end a numeric column in the peptide_data data frame that contains end positions
of peptides.

uniprot_id a character column in the peptide_data data frame that contains UniProt iden-

tifiers that correspond to the peptides.

pdb_data optional, a data frame containing data obtained with fetch_pdb(). If not pro-

vided, information is fetched automatically. If this function should be run multi-
ple times it is faster to fetch the information once and provide it to the function.
If provided, make sure that the column names are identical to the ones that would
be obtained by calling fetch_pdb().

retain_columns a vector indicating if certain columns should be retained from the input data

Value

frame. Default is not retaining additional columns retain_columns = NULL.
Specific columns can be retained by providing their names (not in quotations
marks, just like other column names, but in a vector).

A data frame that contains peptide positions in the corresponding PDB structures. If a peptide is not
found in any structure or no structure is associated with the protein, the data frame contains NAs
values for the output columns. The data frame contains the following and additional columns:

auth_asym_id: Chain identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure.

label_asym_id: Chain identifier following the standardised convention for mmCIF files.

peptide_seq_in_pdb: The sequence of the peptide mapped to the structure. If the peptide only
maps partially, then only the part of the sequence that maps on the structure is returned.

fit_type: The fit type is either "partial" or "fully" and it indicates if the complete peptide or
only part of it was found in the structure.

start_adjusted: The adjusted start position of the peptide if the peptide was only partially
covered by the structure. If the peptide is fully covered it is just the provided start position.

end_adjusted: The adjusted end position of the peptide if the peptide was only partially cov-
ered by the structure. If the peptide is fully covered it is just the provided end position.

label_seq_id_start: Contains the first residue position of the peptide in the structure following
the standardised convention for mmCIF files.

72

find_peptide_in_structure

label_seq_id_end: Contains the last residue position of the peptide in the structure following
the standardised convention for mmCIF files.

auth_seq_id_start: Contains the first residue position of the peptide in the structure based on
the alternative residue identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure. This does not need to be
numeric and is therefore of type character.

auth_seq_id_end: Contains the last residue position of the peptide in the structure based on
the alternative residue identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure. This does not need to be
numeric and is therefore of type character.

non

auth_seq_id: Contains all positions (separated by ";") of the peptide in the structure based on
the alternative residue identifier provided by the author of the structure in order to match the
identification used in the publication that describes the structure. This does not need to be
numeric and is therefore of type character.

n_peptides: The number of peptides from one protein that were searched for within the current
structure.

n_peptides_in_structure: The number of peptides from one protein that were found within the
current structure.

percentage_covered_peptides: The percentage of all provided peptides that were at least par-
tially found in the structure.

Examples

Create example data
peptide_data <- data.frame(

)

uniprot_id = c("POA8T7", "POA8T7", "P60906"),
peptide_sequence = c(

"SGIVSFGKETKGKRRLVITPVDGSDPYEEMIPKWRQLNV",
"NVFEGERVER",
"AIGEVTDVVEKE"

)?
start = c(1160, 1197, 55),
end = c(1198, 1206, 66)

Find peptides in protein structure
peptide_in_structure <- find_peptide_in_structure(

)

peptide_data = peptide_data,
peptide = peptide_sequence,
start = start,

end = end,

uniprot_id = uniprot_id

head(peptide_in_structure, n = 10)

fit_drc_4p

73

fit_drc_4p

Fitting four-parameter dose response curves

Description

Function for fitting four-parameter dose response curves for each group (precursor, peptide or pro-
tein). In addition it can annotate data based on completeness, the completeness distribution and
statistical testing using ANOVA. Filtering by the function is only performed based on completeness

if selected.

Usage

fit_drc_4p(
data,
sample,
grouping,
response,
dose,
filter =

"post”,

replicate_completeness
condition_completeness
n_replicate_completeness

1
N ©
(€]

n_condition_completeness = NULL,
complete_doses = NULL,
anova_cutoff = 0.05,
correlation_cutoff = 0.8,
log_logarithmic = TRUE,
include_models = FALSE,
retain_columns = NULL

Arguments

data
sample

grouping

response

dose

filter

a data frame that contains at least the input variables.
a character column in the data data frame that contains the sample names.

a character column in the data data frame that contains the precursor, peptide
or protein identifiers.

a numeric column in the data data frame that contains the response values, e.g.
log2 transformed intensities.

a numeric column in the data data frame that contains the dose values, e.g. the
treatment concentrations.

n on

a character value that can either be "pre”, "post” or "none"”. The data is anno-
tated for completeness, ANOVA significance and the completeness distribution
along the doses ("pre"” and "post”). The combined output of this filtering step
can be found in the passed_filter column and depends on the cutoffs provided

74

fit_drc_4p

to the function. Note that this is only an annotation and nothing is removed from
the output. If "pre” is selected then, in addition to the annotation, the data is
filtered for completeness based on the condition completeness prior to the curve
fitting and ANOVA calculation and p-value adjustment. This has the benefit that
less curves need to be fitted and that the ANOVA p-value adjustment is done
only on the relevant set of tests. If "none” is selected the data will be neither
annotated nor filtered.

replicate_completeness

[Deprecated] please use n_replicate_completeness instead. A numeric value
which similar to completenss_MAR of the assign_missingness function sets
a threshold for the completeness of data. In contrast to assign_missingness
it only determines the completeness for one condition and not the comparison
of two conditions. The threshold is used to calculate a minimal degree of data
completeness. The value provided to this argument has to be between 0 and
1, default is 0.7. It is multiplied with the number of replicates and then ad-
justed downward. The resulting number is the minimal number of observa-
tions that a condition needs to have to be considered "complete enough" for the
condition_completeness argument.

condition_completeness

[Deprecated] please use n_condition_completeness instead. A numeric value
which determines how many conditions need to at least fulfill the "complete
enough" criteria set with replicate_completeness. The value provided to
this argument has to be between 0 and 1, default is 0.5. It is multiplied with the
number of conditions and then adjusted downward. The resulting number is the
minimal number of conditions that need to fulfill the replicate_completeness
argument for a peptide to pass the filtering.

n_replicate_completeness

a numeric value that defines the minimal number of observations that a condi-
tion (concentration) needs to have to be considered "complete enough" for the
n_condition_completeness argument. E.g. if each concentration has 4 repli-
cates this argument could be set to 3 to allow for one replicate to be missing for
the completeness criteria.

n_condition_completeness

complete_doses

anova_cutoff

a numeric value that defines the minimal number of conditions that need to ful-
fill the n_replicate_completeness argument for a feature to pass the filtering.
E.g. if an experiment has 12 concentrations, this argument could be set to 6 to
define that at least 6 of 12 concentrations need to make the replicate complete-
ness cutoff.

an optional numeric vector that supplies all the actually used doses (concentra-
tions) to the function. Usually the function extracts this information from the
supplied data. However, for incomplete datasets the total number of assumed
doses might be wrong. Therefore, it becomes important to provide this argu-
ment when the dataset is small and potentially incomplete. This information is
only used for the missing not at random (MNAR) estimations.

a numeric value that specifies the ANOVA adjusted p-value cutoff used for data
filtering. Any fits with an adjusted ANOVA p-value bellow the cutoff will be
considered for scoring. The default is 0. 05.

fit_drc_4p 75

correlation_cutoff

a numeric value that specifies the correlation cutoff used for data filtering. Any
fits with a correlation above the cutoff will be considered for scoring.

log_logarithmic
a logical value that indicates if a logarithmic or log-logarithmic model is fitted.
If response values form a symmetric curve for non-log transformed dose values,
a logarithmic model instead of a log-logarithmic model should be used. Usually
biological dose response data has a log-logarithmic distribution, which is the
reason this is the default. Log-logarithmic models are symmetric if dose values
are log transformed.

include_models a logical value that indicates if model fit objects should be exported. These are
usually very large and not necessary for further analysis.

retain_columns a vector that specifies columns that should be retained from the input data frame.
Default is not retaining additional columns retain_columns = NULL. Specific
columns can be retained by providing their names (not in quotations marks, just
like other column names, but in a vector).

Details

If data filtering options are selected, data is annotated based on multiple criteria. If "post” is
selected the data is annotated based on completeness, the completeness distribution, the adjusted
ANOVA p-value cutoff and a correlation cutoff. Completeness of features is determined based on
the n_replicate_completeness and n_condition_completeness arguments. The completeness
distribution determines if there is a distribution of not random missingness of data along the dose.
For this it is checked if half of a features values (+/-1 value) pass the replicate completeness criteria
and half do not pass it. In order to fall into this category, the values that fulfill the completeness
cutoff and the ones that do not fulfill it need to be consecutive, meaning located next to each other
based on their concentration values. Furthermore, the values that do not pass the completeness
cutoff need to be lower in intensity. Lastly, the difference between the two groups is tested for
statistical significance using a Welch’s t-test and a cutoff of p <= 0.1 (we want to mainly discard
curves that falsely fit the other criteria but that have clearly non-significant differences in mean).
This allows curves to be considered that have missing values in half of their observations due to a
decrease in intensity. It can be thought of as conditions that are missing not at random (MNAR). It
is often the case that those entities do not have a significant p-value since half of their conditions
are not considered due to data missingness. The ANOVA test is performed on the features by
concentration. If it is significant it is likely that there is some response. However, this test would also
be significant even if there is one outlier concentration so it should only be used only in combination
with other cutoffs to determine if a feature is significant. The passed_filter column is TRUE for
all the features that pass the above mentioned criteria and that have a correlation greater than the
cutoff (default is 0.8) and the adjusted ANOVA p-value below the cutoff (default is 0.05).

The final list is ranked based on a score calculated on entities that pass the filter. The score is the
negative log10 of the adjusted ANOVA p-value scaled between 0 and 1 and the correlation scaled
between 0 and 1 summed up and divided by 2. Thus, the highest score an entity can have is 1
with both the highest correlation and adjusted p-value. The rank is corresponding to this score.
Please note, that entities with MNAR conditions might have a lower score due to the missing or
non-significant ANOVA p-value. If no score could be calculated the usual way these cases receive
a score of 0. You should have a look at curves that are TRUE for dose_MNAR in more detail.

76

fit_drc_4p

If the "pre” option is selected for the filter argument then the data is filtered for completeness
prior to curve fitting and the ANOVA test. Otherwise annotation is performed exactly as mentioned
above. We recommend the "pre"” option because it leaves you with not only the likely hits of your
treatment, but also with rather high confidence true negative results. This is because the filtered data
has a high degree of completeness making it unlikely that a real dose-response curve is missed due
to data missingness.

Please note that in general, curves are only fitted if there are at least 5 conditions with data points
present to ensure that there is potential for a good curve fit. This is done independent of the selected
filtering option.

Value

If include_models = FALSE a data frame is returned that contains correlations of predicted to
measured values as a measure of the goodness of the curve fit, an associated p-value and the
four parameters of the model for each group. Furthermore, input data for plots is returned in
the columns plot_curve (curve and confidence interval) and plot_points (measured points). If
include_models = TURE, a list is returned that contains:

* fit_objects: The fit objects of type drc for each group.

e correlations: The correlation data frame described above

Examples

Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 2,
frac_change = 1,
n_replicates = 3,
n_conditions = 8,
method = "dose_response”,
concentrations = c(@, 1, 10, 50, 100, 500, 1000, 5000),
additional_metadata = FALSE

)

Perform dose response curve fit
drc_fit <- fit_drc_4p(
data = data,
sample = sample,
grouping = peptide,
response = peptide_intensity_missing,
dose = concentration,
n_replicate_completeness
n_condition_completeness ,
retain_columns = c(protein, change_peptide)

2,

impute 77

glimpse(drc_fit)

head(drc_fit, n = 10)

impute Imputation of missing values

Description

impute is calculating imputation values for missing data depending on the selected method.

Usage

impute(
data,
sample,
grouping,
intensity_log2,
condition,
comparison = comparison,
missingness = missingness,
noise = NULL,
method = "ludovic”,
skip_log2_transform_error = FALSE,
retain_columns = NULL

)
Arguments

data a data frame that is ideally the output from the assign_missingness function.
It should containing at least the input variables. For each "reference_vs_treatment"
comparison, there should be the pair of the reference and treatment condition.
That means the reference condition should be doublicated once for every treat-
ment.

sample a character column in the data data frame that contains the sample names.

grouping a character column in the data data frame that contains the precursor or peptide
identifiers.

intensity_log2 anumeric column in the data data frame that contains the intensity values.

condition a character or numeric column in the data data frame that contains the the con-
ditions.
comparison a character column in the data data frame that contains the the comparisons of

treatment/reference pairs. This is an output of the assign_missingnes func-
tion.

78

missingness

noise

method

impute

a character column in the data data frame that contains the missingness type of
the data determines how values for imputation are sampled. This should at least
contain "MAR" or "MNAR". Missingness assigned as NA will not be imputed.

a numeric column in the data data frame that contains the noise value for the
precursor/peptide. Is only required if method = "noise”. Note: Noise values
need to be log2 transformed.

a character value that specifies the method to be used for imputation. For method
= "ludovic”, MNAR missingness is sampled from a normal distribution around
a value that is three lower (log2) than the lowest intensity value recorded for
the precursor/peptide and that has a spread of the mean standard deviation for
the precursor/peptide. For method = "noise”, MNAR missingness is sampled
from a normal distribution around the mean noise for the precursor/peptide and
that has a spread of the mean standard deviation (from each condition) for the
precursor/peptide. Both methods impute MAR data using the mean and variance
of the condition with the missing data.

skip_log2_transform_error

a logical value that determines if a check is performed to validate that input
values are log2 transformed. If input values are > 40 the test is failed and an
error is returned.

retain_columns a vector that indicates columns that should be retained from the input data frame.

Value

Default is not retaining additional columns retain_columns = NULL. Specific
columns can be retained by providing their names (not in quotations marks, just
like other column names, but in a vector).

A data frame that contains an imputed_intensity and imputed column in addition to the required
input columns. The imputed column indicates if a value was imputed. The imputed_intensity
column contains imputed intensity values for previously missing intensities.

Examples

set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(

n_proteins

10,

frac_change = 0.5,
n_replicates = 4,

n_conditions =

27

method = "effect_random”,
additional_metadata = FALSE

)

head(data, n = 24)

Assign missingness information
data_missing <- assign_missingness(

data,

impute_randomforest 79

sample = sample,

condition = condition,

grouping = peptide,

intensity = peptide_intensity_missing,
ref_condition = "all"”,

retain_columns = c(protein, peptide_intensity)

head(data_missing, n = 24)

Perform imputation
data_imputed <- impute(
data_missing,
sample = sample,
grouping = peptide,
intensity_log2 = peptide_intensity_missing,
condition = condition,
comparison = comparison,
missingness = missingness,
method = "ludovic”,
retain_columns = c(protein, peptide_intensity)

head(data_imputed, n = 24)

impute_randomforest Imputation of Missing Values Using Random Forest Imputation

Description

impute_randomforest performs imputation for missing values in the data using the random forest-
based method implemented in the missForest package.

Usage

impute_randomforest(
data,
sample,
grouping,
intensity_log2,
retain_columns = NULL,

Arguments

data A data frame that contains the input variables. This should include columns for
the sample names, precursor or peptide identifiers, and intensity values.

sample A character column in the data data frame that contains the sample names.

80

grouping

intensity_log2

retain_columns

Details

impute_randomforest

A character column in the data data frame that contains the precursor or peptide
identifiers.

A numeric column in the data data frame that contains the intensity values.

A character vector indicating which columns should be retained from the input
data frame. These columns will be preserved in the output alongside the im-
puted values. By default, no additional columns are retained (retain_columns
= NULL), but specific columns can be retained by providing their names as a vec-
tor.

Additional parameters to pass to the missForest function. These parameters
can control aspects such as the number of trees (ntree) and the stopping criteria
(maxiter).

The function imputes missing values by building random forests, where missing values are pre-
dicted based on other available values within the dataset. For each variable with missing data, the
function trains a random forest model using the available (non-missing) data in that variable, and
subsequently predicts the missing values.

In addition to the imputed values, users can choose to retain additional columns from the original
input data frame that were not part of the imputation process.

This function allows passing additional parameters to the underlying missForest function, such as
controlling the number of trees used in the random forest models or specifying the stopping criteria.
For a full list of parameters, refer to the missForest documentation.

To enable parallelisation, ensure that the doParallel package is installed and loaded:

install.packages("doParallel”)
library(doParallel)

Then register the desired number of cores for parallel processing:

registerDoParallel(cores = 6)

To leverage parallelisation during the imputation, pass parallelize = "variables” as an argu-
ment to the missForest function.

Value

A data frame that contains an imputed_intensity column with the imputed values and an imputed
column indicating whether each value was imputed (TRUE) or not (FALSE), in addition to any
columns retained via retain_columns.

Author(s)

Elena Krismer

mako_colours 81

References

Stekhoven, D.J., & Bithlmann, P. (2012). MissForest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1), 112-118. https://doi.org/10.1093/bioinformatics/btr597

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 10,
frac_change = 0.5,
n_replicates = 4,
n_conditions = 2,
method = "effect_random”,
additional_metadata = FALSE

)
head(data, n = 24)

Perform imputation
data_imputed <- impute_randomforest(
data,
sample = sample,
grouping = peptide,
intensity_log2 = peptide_intensity_missing

)

head(data_imputed, n = 24)

mako_colours Viridis colour scheme

Description

A perceptually uniform colour scheme originally created for the Seaborn python package.

Usage

mako_colours

Format

A vector containing 256 colours

Source

created for the Seaborn statistical data visualization package for Python

82

map_peptjdes_on_structure

map_peptides_on_structure

Maps peptides onto a PDB structure or AlphaFold prediction

Description

Peptides are mapped onto PDB structures or AlphaFold prediction based on their positions. This
is accomplished by replacing the B-factor information in the structure file with values that allow
highlighting of peptides, protein regions or amino acids when the structure is coloured by B-factor.
In addition to simply highlighting peptides, protein regions or amino acids, a continuous variable
such as fold changes associated with them can be mapped onto the structure as a colour gradient.

Usage

map_peptides_on_structure(

peptide_data,
uniprot_id,

pdb_id,
chain,

auth_seq_id,

map_value,

baseline_map_value = NULL,
file_format = ".cif",
alphafold_version = "v6",
scale_per_structure = TRUE,
export_location = NULL,
structure_file = NULL,

show_progress

Arguments

peptide_data

uniprot_id

pdb_id

= TRUE

a data frame that contains the input columns to this function. If structure or pre-
diction files should be fetched automatically, please provide column names to
the following arguments: uniprot_id, pdb_id, chain, auth_seq_id, map_value.
If no PDB structure for a protein is available the pdb_id and chain column
should contain NA at these positions. If a structure or prediction file is provided
in the structure_file argument, this data frame should only contain infor-
mation associated with the provided structure. In case of a user provided struc-
ture, column names should be provided to the following arguments: uniprot_id,
chain, auth_seq_id, map_value.

a character column in the peptide_data data frame that contains UniProt iden-
tifiers for a corresponding peptide, protein region or amino acid.

a character column in the peptide_data data frame that contains PDB iden-
tifiers for structures in which a corresponding peptide, protein region or amino

map_peptides_on_structure 83

acid is found. If a protein prediction should be fetched from AlphaFold, this col-
umn should contain NA. This column is not required if a structure or prediction
file is provided in the structure_file argument.

chain a character column in the peptide_data data frame that contains the name
of the chain from the PDB structure in which the peptide, protein region or
amino acid is found. If a protein prediction should be fetched from AlphaFold,
this column should contain NA. If an AlphaFold prediction is provided to the
structure_file argument the chain should be provided as usual (All AlphaFold
predictions only have chain A). Important: please provide the author defined
chain definitions for both ".cif" and ".pdb" files. When the output of the find_peptide_in_structure
function is used as the input for this function, this corresponds to the auth_asym_id
column.

auth_seq_id a character (or numeric) column in the peptide_data data frame that con-
tains semicolon separated positions of peptides, protein regions or amino acids
in the corresponding PDB structure or AlphaFold prediction. Can be NA for
rows that should not be mapped. This information can be obtained from the
find_peptide_in_structure function. The corresponding column in the out-
put is called auth_seq_id. In case of AlphaFold predictions, UniProt positions
should be used. If signal positions and not stretches of amino acids are pro-
vided, the column can be numeric and does not need to contain the semicolon
separator.

map_value a numeric column in the peptide_data data frame that contains a value as-
sociated with each peptide, protein region or amino acid. If one start to end
position pair has multiple different map values, the maximum will be used. This
value will be displayed as a colour gradient when mapped onto the structure.
The value can for example be the fold change, p-value or score associated with
each peptide, protein region or amino acid (selection). If the selections should
be displayed with just one colour, the value in this column should be the same
for every selection. For the mapping, values are scaled between 50 and 100.
Regions in the structure that do not map any selection receive a value of 0. If
an amino acid position is associated with multiple mapped values, e.g. from
different peptides, the maximum mapped value will be displayed.

baseline_map_value
optional, a numeric value defining the baseline of the map_value. If, for a given
structure or protein or the whole dataset (scale_per_structure = FALSE), all
mapped values are equal to this baseline, the scaled values are set to 50, which is
the lower bound of the scaling range. If not provided, constant values are scaled
to 100, which is the upper bound.

file_format a character vector containing the file format of the structure that will be fetched
from the database for the PDB identifiers provided in the pdb_id column. This
can be either ".cif" or ".pdb". The defaultis ".cif"”. We recommend using ".cif"
files since every structure contains a ".cif" file but not every structure contains a
".pdb" file. Fetching and mapping onto ".cif" files takes longer than for ".pdb"
files. If a structure file is provided in the structure_file argument, the file
format is detected automatically and does not need to be provided.

alphafold_version
a character value that specifies the alphafold version that should be used. This is

84 map_peptides_on_structure

regularly updated by the database. We always try to make the current version the
default version. Available version can be found here: https://ftp.ebi.ac.uk/pub/databases/alphafold/
scale_per_structure
a logical value that specifies if scaling should be performed for each structure in-
dependently (TRUE) or over the whole data set (FALSE). The default is TRUE,
which scales the scores of each structure independently so that each structure
has a score range from 50 to 100.
export_location
optional, a character argument specifying the path to the location in which the
fetched and altered structure files should be saved. If left empty, they will be
saved in the current working directory. The location should be provided in the
following format "folderA/folderB".

structure_file optional, a character argument specifying the path to the location and name
of a structure file in ".cif" or ".pdb" format. If a structure is provided the
peptide_data data frame should only contain mapping information for this
structure.

"

show_progress a logical, if show_progress = TRUE, a progress bar will be shown (default is
TRUE).

Value

The function exports a modified ".pdb" or ".cif" structure file. B-factors have been replaced with
scaled (50-100) values provided in the map_value column.

Examples

Load libraries
library(dplyr)

Create example data
peptide_data <- data.frame(
uniprot_id = c("POA8T7", "PQA8T7", "P60906"),
peptide_sequence = c(
"SGIVSFGKETKGKRRLVITPVDGSDPYEEMIPKWRQLNV",
"NVFEGERVER",
"AIGEVTDVVEKE"
),
start = c(1160, 1197, 55),
end = ¢(1198, 1206, 66),
map_value = c(70, 100, 100)
)

Find peptide positions in structures
positions_structure <- find_peptide_in_structure(
peptide_data = peptide_data,
peptide = peptide_sequence,
start = start,
end = end,
uniprot_id = uniprot_id,

metal_chebi_uniprot 85

retain_columns = c(map_value)) %>%
filter(pdb_ids %in% c("6UU2", "2EL9"))

Map peptides on structures
You can determine the preferred output location
with the export_location argument. Currently it
is saved in the working directory.
map_peptides_on_structure(

peptide_data = positions_structure,

uniprot_id = uniprot_id,

pdb_id = pdb_ids,

chain = auth_asym_id,

auth_seq_id = auth_seq_id,

map_value = map_value,

file_format = ".pdb",

export_location = getwd()

metal_chebi_uniprot List of metal-related ChEBI IDs in UniProt

Description

A list that contains all ChEBI IDs that appear in UniProt and that contain either a metal atom in
their formula or that do not have a formula but the ChEBI term is related to metals. This was last
updated on the 08/08/24.

Usage

metal_chebi_uniprot

Format

A data.frame containing information retrieved from ChEBI using fetch_chebi(stars = c(2, 3)),
filtered using symbols in the metal_list and manual annotation of metal related ChEBI IDs that
do not contain a formula.

Source

UniProt (cc_cofactor, cc_catalytic_activity, ft_binding) and ChEBI

86 metal_list

metal_go_slim_subset Molecular function gene ontology metal subset

Description

A subset of molecular function gene ontology terms related to metals that was created using the
slimming process provided by the QuickGO EBI database. This was last updated on the 19/02/24.

Usage

metal_go_slim_subset

Format

A data.frame containing a slim subset of molecular function gene ontology terms that are related
to metal binding. The slims_from_id column contains all IDs relevant in this subset while the
slims_to_ids column contains the starting IDs. If ChEBI IDs have been annotated manually this
is indicated in the database column.

Source

QuickGO and ChEBI

metal_list List of metals

Description

A list of all metals and metalloids in the periodic table.

Usage

metal_list

Format

A data.frame containing the columns atomic_number, symbol, name, type, chebi_id, chebi_ion_id.

Source

https://en.wikipedia.org/wiki/Metal and https://en.wikipedia.org/wiki/Metalloid

normalise 87

normalise Intensity normalisation

Description

Performs normalisation on intensities. For median normalisation the normalised intensity is the
original intensity minus the run median plus the global median. This is also the way it is imple-
mented in the Spectronaut search engine.

Usage
normalise(data, sample, intensity_log2, method = "median")
Arguments
data a data frame containing at least sample names and intensity values. Please note
that if the data frame is grouped, the normalisation will be computed by group.
sample a character column in the data data frame that contains the sample names.

intensity_log2 a numeric column in the data data frame that contains the log2 transformed
intensity values to be normalised.

method a character value specifying the method to be used for normalisation. Default is
"median".

Value

A data frame with a column called normalised_intensity_log2 containing the normalised inten-
sity values.

Examples

data <- data.frame(

r_file_name = C(”S‘I ", ”5211’ ”33”’ "51 Il’ ”52”’ ”5311)’
intensity_log2 = c(18, 19, 17, 20, 21, 19)

)

normalise(data,

sample = r_file_name,
intensity_log2 = intensity_log2,
method = "median”

88

parallel_create_structure_contact_map

parallel_create_structure_contact_map

Creates a contact map of all atoms from a structure file (using parallel
processing)

Description

This function is a wrapper around create_structure_contact_map() that allows the use of all
system cores for the creation of contact maps. Alternatively, it can be used for sequential processing
of large datasets. The benefit of this function over create_structure_contact_map() is that it
processes contact maps in batches, which is recommended for large datasets. If used for parallel
processing it should only be used on systems that have enough memory available. Workers can
either be set up manually before running the function with future: :plan(multisession) or au-
tomatically by the function (maximum number of workers is 12 in this case). If workers are set up
manually the processing_type argument should be set to "parallel manual". In this case workers
can be terminated after completion with future: :plan(sequential).

parallel_create_structure_contact_map(

Usage
data,
data2 = NULL,
id,
chain = NULL,

auth_seq_id = NULL,

distance_cutoff = 10,
pdb_model_number_selection = c(0, 1),
return_min_residue_distance = TRUE,
export = FALSE,

export_location = NULL,

split_n = 40,
processing_type
)
Arguments
data

"parallel”

a data frame containing at least a column with PDB ID information of which
the name can be provided to the id argument. If only this column is provided,
all atom or residue distances are calculated. Additionally, a chain column can
be present in the data frame of which the name can be provided to the chain
argument. If chains are provided, only distances of this chain relative to the
rest of the structure are calculated. Multiple chains can be provided in multiple
rows. If chains are provided for one structure but not for another, the rows
should contain NAs. Furthermore, specific residue positions can be provided in
the auth_seq_id column if the selection should be further reduced. It is not
recommended to create full contact maps for more than a few structures due to
time and memory limitations. If contact maps are created only for small regions

parallel_create_structure_contact_map 89

data?2

id

chain

auth_seq_id

distance_cutoff

it is possible to create multiple maps at once. By default distances of regions
provided in this data frame to the complete structure are computed. If distances
of regions from this data frame to another specific subset of regions should be
computed, the second subset of regions can be provided through the optional
data2 argument.

optional, a data frame that contains a subset of regions for which distances to
regions provided in the data data frame should be computed. If regions from
the data data frame should be compared to the whole structure, data2 does not
need to be provided. This data frame should have the same structure and column
names as the data data frame.

a character column in the data data frame that contains PDB or UniProt IDs for
structures or AlphaFold predictions of which contact maps should be created. If
a structure not downloaded directly from PDB is provided (i.e. a locally stored
structure file) to the structure_file argument, this column should contain
"my_structure" as content.

optional, a character column in the data data frame that contains chain identi-
fiers for the structure file. Identifiers defined by the structure author should be
used. Distances will be only calculated between the provided chains and the rest
of the structure.

optional, a character (or numeric) column in the data data frame that contains
semicolon separated positions of regions for which distances should be calcu-
lated. This always needs to be provided in combination with a correspond-
ing chain in chain. The position should match the positioning defined by the
structure author. For PDB structures this information can be obtained from the
find_peptide_in_structure function. The corresponding column in the out-
put is called auth_seq_id. If an AlphaFold prediction is provided, UniProt
positions should be used. If single positions and not stretches of amino acids are
provided, the column can be numeric and does not need to contain the semicolon
separator.

a numeric value specifying the distance cutoff in Angstrom. All values for pair-
wise comparisons are calculated but only values smaller than this cutoff will be
returned in the output. If a cutoff of e.g. 5 is selected then only residues with a
distance of 5 Angstrom and less are returned. Using a small value can reduce the
size of the contact map drastically and is therefore recommended. The default
value is 10.

pdb_model_number_selection

a numeric vector specifying which models from the structure files should be
considered for contact maps. E.g. NMR models often have many models in one
file. The default for this argument is c(0, 1). This means the first model of each
structure file is selected for contact map calculations. For AlphaFold predictions
the model number is O (only .pdb files), therefore this case is also included here.

return_min_residue_distance

a logical value that specifies if the contact map should be returned for all atom
distances or the minimum residue distances. Minimum residue distances are
smaller in size. If atom distances are not strictly needed it is recommended to
set this argument to TRUE. The default is TRUE.

90 parallel_create_structure_contact_map

export a logical value that indicates if contact maps should be exported as ".csv". The
name of the file will be the structure ID. Default is export = FALSE.

export_location
optional, a character value that specifies the path to the location in which the
contact map should be saved if export = TRUE. If left empty, they will be saved
in the current working directory. The location should be provided in the follow-
ing format "folderA/folderB".

split_n a numeric value that specifies the number of structures that should be included
in each batch. Default is 40.

processing_type
a character value that is either "parallel" for parallel processing or "sequen-
tial" for sequential processing. Alternatively it can also be "parallel manual"
in this case you have to set up the number of cores on your own using the
future: :plan(multisession) function. The default is "parallel".

Value

A list of contact maps for each PDB or UniProt ID provided in the input is returned. If the export
argument is TRUE, each contact map will be saved as a ".csv" file in the current working directory
or the location provided to the export_location argument.

Examples

Not run:
Create example data
data <- data.frame(
pdb_id = c("6NPF", "1C14", "3NIR"),
chain = c("A”, "A", NA),
auth_seq_id = c("1;2;3;4;5;6;7", NA, NA)
)

Create contact map
contact_maps <- parallel_create_structure_contact_map(
data = data,
id = pdb_id,
chain = chain,
auth_seq_id = auth_seq_id,
split_n =1,
)

str(contact_maps[["3NIR"1])
contact_maps

End(Not run)

parallel_fit_drc_4p

91

parallel_fit_drc_4p Fitting four-parameter dose response curves (using parallel process-

ing)

Description

This function is a wrapper around fit_drc_4p that allows the use of all system cores for model
fitting. It should only be used on systems that have enough memory available. Workers can either be
set up manually before running the function with future: :plan(multisession) or automatically
by the function (maximum number of workers is 12 in this case). If workers are set up manually the
number of cores should be provided to n_cores. Worker can be terminated after completion with
future: :plan(sequential). It is not possible to export the individual fit objects when using this
function as compared to the non parallel function as they are too large for efficient export from the

workers.

Usage

parallel_fit_drc_4p(

data,
sample,
grouping,
response,
dose,

filter = "post”,

replicate_completeness
condition_completeness =
n_replicate_completeness
n_condition_completeness =

|
N o
(]

|
=
Cc
=
—

complete_doses = NULL,
anova_cutoff = 0.05,
correlation_cutoff = 0.8,
log_logarithmic = TRUE,
retain_columns = NULL,

n_cores =

Arguments

data
sample

grouping

response

dose

NULL

a data frame that contains at least the input variables.
a character column in the data data frame that contains the sample names.

a character column in the data data frame that contains the precursor, peptide
or protein identifiers.

a numeric column in the data data frame that contains the response values, e.g.
log2 transformed intensities.

a numeric column in the data data frame that contains the dose values, e.g. the
treatment concentrations.

92

filter

parallel_fit_drc_4p

n on

a character value that can either be "pre”, "post” or "none”. The data is anno-
tated for completeness, ANOVA significance and the completeness distribution
along the doses ("pre” and "post"). The combined output of this filtering step
can be found in the passed_filter column and depends on the cutoffs provided
to the function. Note that this is only an annotation and nothing is removed from
the output. If "pre” is selected then, in addition to the annotation, the data is
filtered for completeness based on the condition completeness prior to the curve
fitting and ANOVA calculation and p-value adjustment. This has the benefit that
less curves need to be fitted and that the ANOVA p-value adjustment is done
only on the relevant set of tests. If "none"” is selected the data will be neither
annotated nor filtered.

replicate_completeness

[Deprecated] please use n_replicate_completeness instead. A numeric value
which similar to completenss_MAR of the assign_missingness function sets
a threshold for the completeness of data. In contrast to assign_missingness
it only determines the completeness for one condition and not the comparison
of two conditions. The threshold is used to calculate a minimal degree of data
completeness. The value provided to this argument has to be between 0 and
1, default is 0.7. It is multiplied with the number of replicates and then ad-
justed downward. The resulting number is the minimal number of observa-
tions that a condition needs to have to be considered "complete enough" for the
condition_completeness argument.

condition_completeness

[Deprecated] please use n_condition_completeness instead. A numeric value
which determines how many conditions need to at least fulfill the "complete
enough" criteria set with replicate_completeness. The value provided to
this argument has to be between 0 and 1, default is 0.5. It is multiplied with the
number of conditions and then adjusted downward. The resulting number is the
minimal number of conditions that need to fulfill the replicate_completeness
argument for a peptide to pass the filtering.

n_replicate_completeness

a numeric value that defines the minimal number of observations that a condi-
tion (concentration) needs to have to be considered "complete enough" for the
n_condition_completeness argument. E.g. if each concentration has 4 repli-
cates this argument could be set to 3 to allow for one replicate to be missing for
the completeness criteria.

n_condition_completeness

complete_doses

a numeric value that defines the minimal number of conditions that need to ful-
fill the n_replicate_completeness argument for a feature to pass the filtering.
E.g. if an experiment has 12 concentrations, this argument could be set to 6 to
define that at least 6 of 12 concentrations need to make the replicate complete-
ness cutoff.

an optional numeric vector that supplies all the actually used doses (concentra-
tions) to the function. Usually the function extracts this information from the
supplied data. However, for incomplete datasets the total number of assumed
doses might be wrong. This might especially affect parallel fitting of curves
since the dataset is split up into smaller pieces. Therefore, it becomes important

parallel_fit_drc_4p 93

to provide this argument especially when the dataset is small and potentially in-
complete. This information is only used for the missing not at random (MNAR)
estimations.

anova_cutoff anumeric value that specifies the ANOVA adjusted p-value cutoff used for data
filtering. Any fits with an adjusted ANOVA p-value bellow the cutoff will be
considered for scoring. The default is 0. 05.

correlation_cutoff
a numeric value that specifies the correlation cutoff used for data filtering. Any
fits with a correlation above the cutoff will be considered for scoring.

log_logarithmic
a logical value that indicates if a logarithmic or log-logarithmic model is fitted.
If response values form a symmetric curve for non-log transformed dose values,
a logarithmic model instead of a log-logarithmic model should be used. Usually
biological dose response data has a log-logarithmic distribution, which is the
reason this is the default. Log-logarithmic models are symmetric if dose values
are log transformed.

retain_columns a vector that specifies columns that should be retained from the input data frame.
Default is not retaining additional columns retain_columns = NULL. Specific
columns can be retained by providing their names (not in quotations marks, just
like other column names, but in a vector).

n_cores optional, a numeric value that specifies the number of cores used if workers are
set up manually.

Details

If data filtering options are selected, data is annotated based on multiple criteria. If "post” is
selected the data is annotated based on completeness, the completeness distribution, the adjusted
ANOVA p-value cutoff and a correlation cutoff. Completeness of features is determined based on
the n_replicate_completeness and n_condition_completeness arguments. The completeness
distribution determines if there is a distribution of not random missingness of data along the dose.
For this it is checked if half of a features values (+/-1 value) pass the replicate completeness criteria
and half do not pass it. In order to fall into this category, the values that fulfill the completeness
cutoff and the ones that do not fulfill it need to be consecutive, meaning located next to each other
based on their concentration values. Furthermore, the values that do not pass the completeness
cutoff need to be lower in intensity. Lastly, the difference between the two groups is tested for
statistical significance using a Welch’s t-test and a cutoff of p <= 0.1 (we want to mainly discard
curves that falsely fit the other criteria but that have clearly non-significant differences in mean).
This allows curves to be considered that have missing values in half of their observations due to a
decrease in intensity. It can be thought of as conditions that are missing not at random (MNAR). It
is often the case that those entities do not have a significant p-value since half of their conditions
are not considered due to data missingness. The ANOVA test is performed on the features by
concentration. If it is significant it is likely that there is some response. However, this test would also
be significant even if there is one outlier concentration so it should only be used only in combination
with other cutoffs to determine if a feature is significant. The passed_filter column is TRUE for
all the features that pass the above mentioned criteria and that have a correlation greater than the
cutoff (default is 0.8) and the adjusted ANOVA p-value below the cutoff (default is 0.05).

The final list is ranked based on a score calculated on entities that pass the filter. The score is the
negative log10 of the adjusted ANOVA p-value scaled between 0 and 1 and the correlation scaled

94

parallel_fit_drc_4p

between 0 and 1 summed up and divided by 2. Thus, the highest score an entity can have is 1
with both the highest correlation and adjusted p-value. The rank is corresponding to this score.
Please note, that entities with MNAR conditions might have a lower score due to the missing or
non-significant ANOVA p-value. If no score could be calculated the usual way these cases receive
a score of 0. You should have a look at curves that are TRUE for dose_MNAR in more detail.

If the "pre” option is selected for the filter argument then the data is filtered for completeness
prior to curve fitting and the ANOVA test. Otherwise annotation is performed exactly as mentioned
above. We recommend the "pre” option because it leaves you with not only the likely hits of your
treatment, but also with rather high confidence true negative results. This is because the filtered data
has a high degree of completeness making it unlikely that a real dose-response curve is missed due
to data missingness.

Please note that in general, curves are only fitted if there are at least 5 conditions with data points
present to ensure that there is potential for a good curve fit. This is done independent of the selected
filtering option.

Value

A data frame is returned that contains correlations of predicted to measured values as a measure
of the goodness of the curve fit, an associated p-value and the four parameters of the model for
each group. Furthermore, input data for plots is returned in the columns plot_curve (curve and
confidence interval) and plot_points (measured points).

Examples

Not run:
Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(
n_proteins = 2,
frac_change = 1,
n_replicates = 3,
n_conditions = 8,
method = "dose_response”,
concentrations = c(@, 1, 10, 50, 100, 500, 1000, 5000),
additional_metadata = FALSE
)

Perform dose response curve fit

drc_fit <- parallel_fit_drc_4p(
data = data,
sample = sample,
grouping = peptide,
response = peptide_intensity_missing,
dose = concentration,
n_replicate_completeness = 2,
n_condition_completeness = 5,
retain_columns = c(protein, change_peptide)

peptide_profile_plot

)

glimpse(drc_fit)

head(drc_fit, n

End(Not run)

95

10)

peptide_profile_plot Peptide abundance profile plot

Description

Creates a plot of peptide abundances across samples. This is helpful to investigate effects of peptide
and protein abundance changes in different samples and conditions.

Usage

peptide_profile_plot(

data,
sample,
peptide,

intensity_log2,

grouping,
targets,

complete_sample = FALSE,
protein_abundance_plot = FALSE,

interactive = FALSE,
export = FALSE,
export_name = "peptide_profile_plots”
)
Arguments
data a data frame that contains at least the input variables.
sample a character column in the data data frame that contains sample names.
peptide a character column in the data data frame that contains peptide or precursor

intensity_log?2

grouping

targets

names.

a numeric column in the data data frame that contains log2 transformed inten-
sities.

a character column in the data data frame that contains groups by which the
data should be split. This can be for example protein IDs.

a character vector that specifies elements of the grouping column which should
be plotted. This can also be "all” if plots for all groups should be created.
Depending on the number of elements in your grouping column this can be
many plots.

96 peptide_profile_plot

complete_sample
a logical value that indicates if samples that are completely missing for a given
protein should be shown on the x-axis of the plot anyway. The default value is
FALSE.
protein_abundance_plot
alogical value. If the input for this plot comes directly from calculate_protein_abundance
this argument can be set to TRUE. This displays all peptides in gray, while the
protein abundance is displayed in green.

interactive a logical value that indicates whether the plot should be interactive (default is
FALSE). If this is TRUE only one target can be supplied to the function. Inter-
active plots cannot be exported either.

export a logical value that indicates if plots should be exported as PDF. The output
directory will be the current working directory. The name of the file can be
chosen using the export_name argument.

export_name a character vector that provides the name of the exported file if export = TRUE.

Value

A list of peptide profile plots.

Examples

Create example data
data <- data.frame(
sample = c(

rep("sS1”, 6),
rep("S2", 6),
rep("s1", 2),
rep("S2", 2)

),

protein_id = c(
rep("P1", 12),
rep("P2", 4)

),

precursor = c(
rep(c("A1", "A2", "B1", "B2", "C1", "D1"), 2),
rep(c("E1", "F1"), 2)

),

peptide = c(
rep(c("A", "A", "B", "B", "C", "D"), 2),
rep(c("E", "F"), 2)

),

intensity = c(
rnorm(n = 6, mean = 15, sd = 2),
rnorm(n = 6, mean = 21, sd = 1),
rnorm(n = 2, mean = 15, sd = 1),
rnorm(n = 2, mean = 15, sd = 2)

)

)

Calculate protein abundances and retain precursor

predict_alphafold_domain 97

abundances that can be used in a peptide profile plot
complete_abundances <- calculate_protein_abundance(
data,
sample = sample,
protein_id = protein_id,
precursor = precursor,
peptide = peptide,
intensity_log2 = intensity,
method = "sum”,
for_plot = TRUE

)

Plot protein abundance profile
protein_abundance_plot can be set to
FALSE to to also colour precursors
peptide_profile_plot(
data = complete_abundances,
sample = sample,
peptide = precursor,
intensity_log2 = intensity,
grouping = protein_id,
targets = c("P1"),
protein_abundance_plot = TRUE

predict_alphafold_domain
Predict protein domains of AlphaFold predictions

Description

Uses the predicted aligned error (PAE) of AlphaFold predictions to find possible protein domains.
A graph-based community clustering algorithm (Leiden clustering) is used on the predicted error
(distance) between residues of a protein in order to infer pseudo-rigid groups in the protein. This is
for example useful in order to know which parts of protein predictions are likely in a fixed relative
position towards each other and which might have varying distances. This function is based on
python code written by Tristan Croll. The original code can be found on his GitHub page.

Usage

predict_alphafold_domain(
pae_list,
pae_power = 1,
pae_cutoff = 5,
graph_resolution = 1,
return_data_frame = FALSE,
show_progress = TRUE

https://github.com/tristanic/pae_to_domains

98 predict_alphafold_domain

Arguments

pae_list a list of proteins that contains aligned errors for their AlphaFold predictions.
This list can be retrieved with the fetch_alphafold_aligned_error() func-
tion. It should contain a column containing the scored residue (scored_residue),
the aligned residue (aligned_residue) and the predicted aligned error (error).

pae_power a numeric value, each edge in the graph will be weighted proportional to (1 /
pae“pae_power). Default is 1.

pae_cutoff a numeric value, graph edges will only be created for residue pairs with pae <

pae_cutoff. Default is 5.

graph_resolution
anumeric value that regulates how aggressive the clustering algorithm is. Smaller
values lead to larger clusters. Value should be larger than zero, and values larger
than 5 are unlikely to be useful. Higher values lead to stricter (i.e. smaller)
clusters. The value is provided to the Leiden clustering algorithm of the igraph
package as graph_resolution / 100. Default is 1.

return_data_frame
a logical value; if TRUE a data frame instead of a list is returned. It is recom-
mended to only use this if information for few proteins is retrieved. Default is
FALSE.

show_progress alogical value that specifies if a progress bar will be shown. Default is TRUE.

Value

A list of the provided proteins that contains domain assignments for each residue. If return_data_frame
is TRUE, a data frame with this information is returned instead. The data frame contains the follow-
ing columns:

* residue: The protein residue number.
* domain: A numeric value representing a distinct predicted domain in the protein.

* accession: The UniProt protein identifier.

Examples

Fetch aligned errors

aligned_error <- fetch_alphafold_aligned_error(
uniprot_ids = c("F4HVG8", "015552"),
error_cutoff = 4

)

Predict protein domains

af_domains <- predict_alphafold_domain(
pae_list = aligned_error,
return_data_frame = TRUE

)

head(af_domains, n = 10)

protti_colours 99

protti_colours Colour scheme for protti

Description

A colour scheme for protti that contains 100 colours.

Usage

protti_colours

Format

A vector containing 100 colours

Source

Dina’s imagination.

ptsi_pgk Structural analysis example data

Description

Example data used for the vignette about structural analysis. The data was obtained from Cappelletti
et al. 2021 (doi:10.1016/j.cell.2020.12.021) and corresponds to two separate experiments. Both ex-
periments were limited proteolyis coupled to mass spectrometry (LiP-MS) experiments conducted
on purified proteins. The first protein is phosphoglycerate kinase 1 (pgk) and it was treated with
25mM 3-phosphoglyceric acid (3PG). The second protein is phosphoenolpyruvate-protein phos-
photransferase (ptsl) and it was treated with 25mM fructose 1,6-bisphosphatase (FBP). From both
experiments only peptides belonging to either protein were used for this data set. The ptsI data set
contains precursor level data while the pgk data set contains peptide level data. The pgk data can be
obtained from supplementary table 3 from the tab named "pgk+3PG". The ptsI data is only included
as raw data and was analysed using the functions of this package.

Usage

ptsi_pgk

Format

A data frame containing differential abundances and adjusted p-values for peptides/precursors of
two proteins.

https://doi.org/10.1016/j.cell.2020.12.021

100 pval_distribution_plot

Source

Cappelletti V, Hauser T, Piazza I, Pepelnjak M, Malinovska L, Fuhrer T, Li Y, Dorig C, Boersema
P, Gillet L, Grossbach J, Dugourd A, Saez-Rodriguez J, Beyer A, Zamboni N, Caflisch A, de Souza
N, Picotti P. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ.
Cell. 2021 Jan 21;184(2):545-559.€22. doi:10.1016/j.cell.2020.12.021. Epub 2020 Dec 23. PMID:
33357446; PMCID: PMC7836100.

pval_distribution_plot
Plot histogram of p-value distribution

Description

Plots the distribution of p-values derived from any statistical test as a histogram.

Usage
pval_distribution_plot(data, grouping, pval, facet_by = NULL)

Arguments
data a data frame that contains at least grouping identifiers (precursor, peptide or
protein) and p-values derived from any statistical test.
grouping a character column in the data data frame that contains either precursor, peptide
or protein identifiers. For each entry in this column there should be one unique
p-value. That means the statistical test that created the p-value should have been
performed on the level of the content of this column.
pval a numeric column in the data data frame that contains p-values.
facet_by optional, a character column that contains information by which the data should
be faceted into multiple plots.
Value

A histogram plot that shows the p-value distribution.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- data.frame(
peptide = paste@("peptide”, 1:1000),
pval = runif(n = 1000)

)

Plot p-values
pval_distribution_plot(

https://doi.org/10.1016/j.cell.2020.12.021

qc_charge_states

data = data,

101

grouping = peptide,

pval = pval
)

gc_charge_states

Check charge state distribution

Description

Calculates the charge state distribution for each sample (by count or intensity).

Usage

gc_charge_states(

data,
sample,
grouping,

charge_states,
intensity = NULL,
remove_na_intensities = TRUE,

method = "count”,
plot = FALSE,
interactive = FALSE
)
Arguments
data a data frame that contains at least sample names, peptide or precursor identifiers
and missed cleavage counts for each peptide or precursor.
sample a character or factor column in the data data frame that contains the sample
name.
grouping a character column in the data data frame that contains either precursor or pep-

charge_states

intensity

tide identifiers.

a character or numeric column in the data data frame that contains the different
charge states assigned to the precursor or peptide.

a numeric column in the data data frame that contains the corresponding raw or
normalised intensity values (not log2) for each peptide or precursor. Required
when "intensity" is chosen as the method.

remove_na_intensities

a logical value that specifies if sample/grouping combinations with intensities
that are NA (not quantified IDs) should be dropped from the data frame for
analysis of missed cleavages. Default is TRUE since we are usually interested
in quantifiable peptides. This is only relevant for method = "count".

102 gc_charge_states

method a character value that indicates the method used for evaluation. "count" calcu-
lates the charge state distribution based on counts of the corresponding peptides
or precursors in the charge state group, "intensity" calculates the percentage of
precursors or peptides in each charge state group based on the corresponding
intensity values.

plot a logical value that indicates whether the result should be plotted.
interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).
Value

A data frame that contains the calculated percentage made up by the sum of either all counts or
intensities of peptides or precursors of the corresponding charge state (depending on which method
is chosen).

Examples

Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”
) %%
mutate(intensity_non_log2 = 2”*peptide_intensity_missing)

Calculate charge percentages
gc_charge_states(
data = data,
sample = sample,
grouping = peptide,
charge_states = charge,
intensity = intensity_non_log2,
method = "intensity”,
plot = FALSE
)

Plot charge states
gc_charge_states(
data = data,
sample = sample,
grouping = peptide,
charge_states = charge,
intensity = intensity_non_log?2,
method = "intensity",

gc_contaminants 103

plot = TRUE
)

gc_contaminants Percentage of contaminants per sample

Description

Calculates the percentage of contaminating proteins as the share of total intensity.

Usage
gc_contaminants(
data,
sample,
protein,
is_contaminant,
intensity,
n_contaminants = 5,
plot = TRUE,
interactive = FALSE
)
Arguments
data a data frame that contains at least the input variables.
sample a character or factor column in the data data frame that contains the sample
names.
protein a character column in the data data frame that contains protein IDs or protein
names.

is_contaminant alogical column that indicates if the protein is a contaminant.

intensity a numeric column in the data data frame that contains the corresponding raw or
normalised intensity values (not log2).

n_contaminants a numeric value that indicates how many contaminants should be displayed in-
dividually. The rest is combined to a group called "other". The default is 5.

plot a logical value that indicates if a plot is returned. If FALSE a table is returned.
interactive a logical value that indicates if the plot is made interactive using the r package
plotly.
Value

A bar plot that displays the percentage of contaminating proteins over all samples. If plot = FALSE
a data frame is returned.

104 gc_cvs

Examples

data <- data.frame(
sample = c(rep("sample_1", 10), rep("sample_2", 10)),
leading_razor_protein = c(rep(c(”"P1", "P1", "P1", "P2", "P2", "P2", "P2", "P3", "P3", "P3"), 2)),
potential_contaminant = c(rep(c(rep(TRUE, 7), rep(FALSE, 3)), 2)),
intensity = c(rep(1, 2), rep(4, 4), rep(6, 4), rep(2, 3), rep(3, 5), rep(4, 2))
)

gc_contaminants(
data,
sample = sample,
protein = leading_razor_protein,
is_contaminant = potential_contaminant,
intensity = intensity

gc_cvs Check CV distribution

Description

Calculates and plots the coefficients of variation for the selected grouping.

Usage

gc_cvs(
data,
grouping,
condition,
intensity,
plot = TRUE,
plot_style = "density”,
max_cv = 200

)
Arguments

data a data frame containing at least peptide, precursor or protein identifiers, infor-
mation on conditions and intensity values for each peptide, precursor or protein.

grouping a character column in the data data frame that contains the grouping variables
(e.g. peptides, precursors or proteins).

condition a character or factor column in the data data frame that contains condition in-
formation (e.g. "treated" and "control").

intensity a numeric column in the data data frame that contains the corresponding raw or

untransformed normalised intensity values for each peptide or precursor.

plot a logical value that indicates whether the result should be plotted.

qgc_cvs 105

plot_style a character value that indicates the plotting style. plot_style = "boxplot”
plots a boxplot, whereas plot_style = "density” plots the CV density distri-
bution. plot_style = "violin" returns a violin plot. Default is plot_style =
"density”.

max_cv a numeric value that specifies the maximum percentage of CVs that should be
included in the returned plot. The default value is max_cv = 200.

Value

Either a data frame with the median CVs in % or a plot showing the distribution of the CVs is
returned.

Examples

Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”
) %%
mutate(intensity_non_log2 = 2*peptide_intensity_missing)

Calculate coefficients of variation
qgc_cvs(
data = data,
grouping = peptide,
condition = condition,
intensity = intensity_non_log2,
plot = FALSE
)

Plot coefficients of variation
Different plot styles are available
qgc_cvs(
data = data,
grouping = peptide,
condition = condition,
intensity = intensity_non_log2,
plot = TRUE,
plot_style = "violin"

106

gc_data_completeness

gc_data_completeness Data completeness

Description

Calculates the percentage of data completeness. That means, what percentage of all detected pre-
cursors is present in each sample.

Usage

gc_data_completeness(

data,
sample,
grouping,
intensity,

digestion = NULL,

plot = TRUE,
interactive =

Arguments

data

sample

grouping

intensity

digestion

plot

interactive

Value

FALSE

a data frame containing at least the input variables.

a character or factor column in the data data frame that contains the sample
names.

a character column in the data data frame that contains either precursor or pep-
tide identifiers.

a numeric column in the data data frame that contains any intensity intensity
values that missingness should be determined for.

optional, a character column in the data data frame that indicates the mode of
digestion (limited proteolysis or tryptic digest). Alternatively, any other variable
by which the data should be split can be provided.

a logical value that indicates whether the result should be plotted.

a logical value that specifies whether the plot should be interactive (default is
FALSE).

A bar plot that displays the percentage of data completeness over all samples. If plot = FALSE a
data frame is returned. If interactive = TRUE, the plot is interactive.

gc_ids 107

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,

n_replicates = 3,
n_conditions = 2,
method = "effect_random”

)

Determine data completeness
gc_data_completeness(
data = data,
sample = sample,
grouping = peptide,
intensity = peptide_intensity_missing,
plot = FALSE
)

Plot data completeness
gc_data_completeness(
data = data,
sample = sample,
grouping = peptide,
intensity = peptide_intensity_missing,
plot = TRUE

gc_ids Check number of precursor, peptide or protein IDs

Description

Returns a plot or table of the number of IDs for each sample. The default settings remove grouping
variables without quantitative information (intensity is NA). These will not be counted as IDs.

Usage

gc_ids(
data,
sample,
grouping,
intensity,
remove_na_intensities = TRUE,
condition = NULL,
title = "ID count per sample”,
plot = TRUE,

108

interactive

Arguments

data

sample

grouping

intensity

gc_ids

= FALSE

a data frame containing at least sample names and precursor/peptide/protein IDs.

a character or factor column in the data data frame that contains the sample
name.

a character column in the data data frame that contains either precursor or pep-
tide identifiers.

a character column in the data data frame that contains raw or log2 transformed
intensities. If remove_na_intensities = FALSE, this argument is optional.

remove_na_intensities

condition

title

plot

interactive

Value

a logical value that specifies if sample/grouping combinations with intensities
that are NA (not quantified IDs) should be dropped from the data frame. Default
is TRUE since we are usually interested in the number of quantifiable IDs.

optional, a column in the data data frame that contains condition information
(e.g. "treated" and "control"). If this column is provided, the bars in the plot will
be coloured according to the condition.

optional, a character value that specifies the plot title (default is "ID count per
sample").

a logical value that indicates whether the result should be plotted.

a logical value that specifies whether the plot should be interactive (default is
FALSE).

A bar plot with the height corresponding to the number of IDs, each bar represents one sample (if
plot = TRUE). If plot = FALSE a table with ID counts is returned.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_

n_proteins =

frac_change =
n_replicates =

synthetic_data(
100,
0.05,

3,

n_conditions = 2,
method = "effect_random”

)

Calculate number of identifications

qgc_ids(
data = data,

sample = sample,
grouping = peptide,

gc_intensity_distribution 109

intensity = peptide_intensity_missing,
condition = condition,

Plot number of identifications

plot = FALSE
)
gc_ids(

data = data,

sample = sample,

grouping = peptide,

intensity = peptide_intensity_missing,
condition = condition,

plot = TRUE

gc_intensity_distribution

Check intensity distribution per sample and overall

Description

Plots the overall or sample-wise distribution of all peptide intensities as a boxplot or histogram.

Usage

gc_intensity_distribution(

data,

sample = NULL,

grouping,

intensity_log2,

plot_style

Arguments

data

sample

grouping
intensity_log?2

plot_style

a data frame that contains at least sample names, grouping identifiers (precursor,
peptide or protein) and log2 transformed intensities for each grouping identifier.

an optional character or factor column in the data data frame that contains the
sample name. If the sample column is of type factor, the ordering is based on
the factor levels. NOTE: If the overall distribution should be returned please do
not provide the name of the sample column.

a character column in the data data frame that contains the grouping variables
(e.g. peptides, precursors or proteins).

a numeric column in the data data frame that contains the log2 transformed
intensities of each grouping identifier sample combination.

a character value that indicates the plot type. This can be either "histogram",
"boxplot” or "violin". Plot style "boxplot" and "violin" can only be used if a
sample column is provided.

110 gc_median_intensities

Value

A histogram or boxplot that shows the intensity distribution over all samples or by sample.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”

)

Plot intensity distribution
The plot style can be changed
gc_intensity_distribution(
data = data,
sample = sample,
grouping = peptide,
intensity_log2 = peptide_intensity_missing,
plot_style = "boxplot”

gc_median_intensities Median run intensities

Description

Median intensities per run are returned either as a plot or a table.

Usage

gc_median_intensities(
data,
sample,
grouping,
intensity,
plot = TRUE,
interactive = FALSE

Arguments

data a data frame that contains at least the input variables.

sample a character or factor column in the data data frame that contains the sample
name.

gc_median_intensities 111

grouping a character column in the data data frame that contains either precursor or pep-
tide identifiers.

intensity a numeric column in the data data frame that contains intensity values. The
intensity should be ideally log2 transformed, but also non-transformed values
can be used.
plot a logical value that indicates whether the result should be plotted.
interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).
Value

A plot that displays median intensity over all samples. If plot = FALSE a data frame containing
median intensities is returned.

Examples
set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”

)

Calculate median intensities
gc_median_intensities(
data = data,
sample = sample,
grouping = peptide,
intensity = peptide_intensity_missing,
plot = FALSE
)

Plot median intensities
gc_median_intensities(
data = data,
sample = sample,
grouping = peptide,
intensity = peptide_intensity_missing,
plot = TRUE

112 gc_missed_cleavages

gc_missed_cleavages Check missed cleavages

Description

Calculates the percentage of missed cleavages for each sample (by count or intensity). The default
settings remove grouping variables without quantitative information (intensity is NA). These will
not be used for the calculation of missed cleavage percentages.

Usage
gc_missed_cleavages(
data,
sample,
grouping,
missed_cleavages,
intensity,
remove_na_intensities = TRUE,
method = "count”,
plot = FALSE,
interactive = FALSE
)
Arguments
data a data frame containing at least sample names, peptide or precursor identifiers
and missed cleavage counts for each peptide or precursor.
sample a character or factor column in the data data frame that contains the sample
name.
grouping a character column in the data data frame that contains either precursor or pep-

tide identifiers.

missed_cleavages
a numeric column in the data data frame that contains the counts of missed
cleavages per peptide or precursor.

intensity a numeric column in the data data frame that contains the corresponding raw or
normalised intensity values (not log2) for each peptide or precursor. Required
when "intensity" is chosen as the method.

remove_na_intensities
a logical value that specifies if sample/grouping combinations with intensities
that are NA (not quantified IDs) should be dropped from the data frame for
analysis of missed cleavages. Default is TRUE since we are usually interested
in quantifiable peptides. This is only relevant for method = "count".

method a character value that indicates the method used for evaluation. "count" calcu-
lates the percentage of missed cleavages based on counts of the corresponding
peptide or precursor, "intensity" calculates the percentage of missed cleavages
by intensity of the corresponding peptide or precursor.

gc_missed_cleavages 113

plot a logical value that indicates whether the result should be plotted.
interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).
Value

A data frame that contains the calculated percentage made up by the sum of all peptides or precur-
sors containing the corresponding amount of missed cleavages.

Examples
library(dplyr)
set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”
) %>%
mutate(intensity_non_log2 = 2*peptide_intensity_missing)

Calculate missed cleavage percentages
gc_missed_cleavages(
data = data,
sample = sample,
grouping = peptide,
missed_cleavages = n_missed_cleavage,
intensity = intensity_non_log2,
method = "intensity”,
plot = FALSE

Plot missed cleavages
gc_missed_cleavages(
data = data,
sample = sample,
grouping = peptide,
missed_cleavages = n_missed_cleavage,
intensity = intensity_non_log2,
method = "intensity”,
plot = TRUE

114

gc_pca

gc_pca

Plot principal component analysis

Description

Plots a principal component analysis based on peptide or precursor intensities.

Usage

gc_pca(
data,
sample,
grouping,
intensity,
condition,

components = c("PC1", "PC2"),

digestion =
plot_style =

Arguments

data

sample

grouping

intensity

condition

components

digestion

plot_style

NULL,
llpcall

a data frame that contains sample names, peptide or precursor identifiers, corre-
sponding intensities and a condition column indicating e.g. the treatment.

a character column in the data data frame that contains the sample name.

a character column in the data data frame that contains either precursor or pep-
tide identifiers.

a numeric column in the data data frame that contains the corresponding inten-
sity values for each peptide or precursor.

a numeric or character column in the data data frame that contains condition
information (e.g. "treated" and "control").

a character vector indicating the two components that should be displayed in the
plot. By default these are PC1 and PC2. You can provide these using a character
vector of the form c("PC1", "PC2").

optional, a character column in the data data frame that indicates the mode of
digestion (limited proteolysis or tryptic digest). Alternatively, any other variable
by which the data should be split can be provided.

a character value that specifies what plot should be returned. If plot_style =
"pca” is selected the two PCA components supplied with the components argu-
ment are plottet against each other. This is the default. plot_style = "scree”
returns a scree plot that displays the variance explained by each principal com-
ponent in percent. The scree is useful for checking if any other than the default
first two components should be plotted.

gc_peak_width 115

Value

A principal component analysis plot showing PC1 and PC2. If plot_style = "scree”, a scree plot
for all dimensions is returned.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,

n_replicates = 3,

n_conditions = 2,
)
Plot scree plot
qc_pca(

data = data,

sample = sample,

grouping = peptide,

intensity = peptide_intensity_missing,
condition = condition,

plot_style = "scree”
)
Plot principal components
gc_pca(

data = data,

sample = sample,

grouping = peptide,

intensity = peptide_intensity_missing,
condition = condition

gc_peak_width Peak width over retention time

Description

Plots one minute binned median precursor elution peak width over retention time for each sample.

Usage

gc_peak_width(
data,
sample,
intensity,
retention_time,

116 gc_peak_width

peak_width = NULL,
retention_time_start = NULL,
retention_time_end = NULL,
remove_na_intensities = TRUE,
interactive = FALSE

)
Arguments
data a data frame containing at least sample names and protein IDs.
sample a character column in the data data frame that contains the sample names.
intensity anumeric column in the data data frame that contains intensities. If remove_na_intensities

= FALSE, this argument is not required.

retention_time a numeric column in the data data frame that contains retention times of pre-
Cursors.

peak_width a numeric column in the data data frame that contains peak width informa-
tion. It is not required if retention_time_start and retention_time_end
columns are provided.
retention_time_start
a numeric column in the data data frame that contains the start time of the
precursor elution peak. It is not required if the peak_width column is provided.
retention_time_end
a numeric column in the data data frame that contains the end time of the pre-
cursor elution peak. It is not required if the peak_width column is provided.
remove_na_intensities
a logical value that specifies if sample/grouping combinations with intensities
that are NA (not quantified IDs) should be dropped from the data frame. Default
is TRUE since we are usually interested in the peak width of quantifiable data.

interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).

Value

A line plot displaying one minute binned median precursor elution peak width over retention time
for each sample.

Examples

data <- data.frame(
r_file_name = c(rep("”sample_1", 10), rep("sample2”, 10)),
fg_quantity = c(rep(2000, 20)),
eg_mean_apex_rt = c(rep(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 2)),
eg_start_rt = c(0.5, 1, 3, 4, 5, 6, 7, 7.5, 8, 9,1, 2,2, 3, 4, 5,5,38,9, 9,

eg_end_rt = c(

1.5, 2, 3.1, 4.5, 5.8, 6.6, 8, 8, 8.4,

9.1, 3, 2.2, 4, 3.4, 4.5, 5.5, 5.6, 8.3, 10, 12
)

gc_peptide_type 117

gc_peak_width(
data,
sample = r_file_name,
intensity = fg_quantity,
retention_time = eg_mean_apex_rt,
retention_time_start = eg_start_rt,
retention_time_end = eg_end_rt

gc_peptide_type Check peptide type percentage share

Description

Calculates the percentage share of each peptide types (fully-tryptic, semi-tryptic, non-tryptic) for
each sample.

Usage
gc_peptide_type(
data,
sample,
peptide,
pep_type,
intensity,
remove_na_intensities = TRUE,
method = "count”,
plot = FALSE,
interactive = FALSE
)
Arguments
data a data frame that contains at least the input columns.
sample a character or factor column in the data data frame that contains the sample
names.
peptide a character column in the data data frame that contains the peptide sequence.
pep_type a character column in the data data frame that contains the peptide type. Can
be obtained using the find_peptide and assign_peptide_type function to-
gether.
intensity a numeric column in the data data frame that contains the corresponding raw or

normalised intensity values (not log2) for each peptide or precursor. Required
when "intensity" is chosen as the method.

remove_na_intensities

a logical value that specifies if sample/peptide combinations with intensities that
are NA (not quantified IDs) should be dropped from the data frame for analysis

118 qc_peptide_type

of peptide type distributions. Default is TRUE since we are usually interested
in the peptide type distribution of quantifiable IDs. This is only relevant for
method = "count".

n

method a character value that indicates the method used for evaluation. method = "intensity
calculates the peptide type percentage by intensity, whereas method = "count”
calculates the percentage by peptide ID count. Default is method = count.

plot a logical value that indicates whether the result should be plotted.
interactive a logical value that indicates whether the plot should be interactive.
Value

A data frame that contains the calculated percentage shares of each peptide type per sample. The
count column contains the number of peptides with a specific type. The peptide_type_percent
column contains the percentage share of a specific peptide type.

Examples

Load libraries
library(dplyr)

set.seed(123) # Makes example reproducible

Create example data
data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”
) %%
mutate(intensity_non_log2 = 2”*peptide_intensity_missing)

Determine peptide type percentages
qgc_peptide_type(
data = data,
sample = sample,
peptide = peptide,
pep_type = pep_type,
intensity = intensity_non_log2,
method = "intensity”,
plot = FALSE
)

Plot peptide type
qgc_peptide_type(

data = data,

sample = sample,

peptide = peptide,

pep_type = pep_type,

intensity = intensity_non_log2,

method = "intensity",

gc_proteome_coverage 119

plot = TRUE
)

gc_proteome_coverage Proteome coverage per sample and total

Description

Calculates the proteome coverage for each samples and for all samples combined. In other words t
he fraction of detected proteins to all proteins in the proteome is calculated.

Usage

gc_proteome_coverage(
data,
sample,
protein_id,
organism_id,
reviewed = TRUE,

plot = TRUE,
interactive = FALSE
)
Arguments
data a data frame that contains at least sample names and protein ID’s.
sample a character column in the data data frame that contains the sample name.
protein_id a character or numeric column in the data data frame that contains protein iden-
tifiers such as UniProt accessions.
organism_id a numeric value that specifies a NCBI taxonomy identifier (TaxId) of the organ-
ism used. Human: 9606, S. cerevisiae: 559292, E. coli: 83333.
reviewed a logical value that determines if only reviewed protein entries will be consid-
ered as the full proteome. Default is TRUE.
plot a logical value that specifies whether the result should be plotted.
interactive a logical value that indicates whether the plot should be interactive (default is
FALSE).
Value

A bar plot showing the percentage of of the proteome detected and undetected in total and for each
sample. If plot = FALSE a data frame containing the numbers is returned.

120

Examples

Create example data

proteome <- data.frame(id = 1:4518)

data <- data.frame(

sample = c(rep("A", 101), rep("B"”, 1000), rep("C", 1000)),

gc_ranked_intensities

protein_id = c(proteome$id[1:100], proteome$id[1:1000], proteome$id[1000:2000]1)

)

Calculate proteome coverage
gc_proteome_coverage(
data = data,
sample = sample,
protein_id = protein_id,
organism_id = 83333,
plot = FALSE
)

Plot proteome coverage
gc_proteome_coverage(
data = data,
sample = sample,
protein_id = protein_id,
organism_id = 83333,
plot = TRUE

gc_ranked_intensities Check ranked intensities

Description

Calculates and plots ranked intensities for proteins, peptides or precursors.

Usage

gc_ranked_intensities(
data,
sample,
grouping,
intensity_log2,
facet = FALSE,
plot = FALSE,

y_axis_transformation = "logl@",

interactive = FALSE

gc_ranked_intensities 121

Arguments
data a data frame that contains at least sample names, grouping identifiers (precursor,
peptide or protein) and log2 transformed intensities for each grouping identifier.
sample a character column in the data data frame that contains the sample names.
grouping a character column in the data data frame that contains protein, precursor, or

peptide identifiers.

intensity_log2 a numeric column in the data data frame that contains the log2 transformed
intensities of the selected grouping variable.

facet a logical value that specifies whether the calculation should be done group wise
by sample and if the resulting plot should be faceted by sample. (default is
FALSE). If facet = FALSE the median of each protein intensity will be returned.

plot a logical value that specifies whether the result should be plotted (default is
FALSE).

y_axis_transformation

a character value that determines that y-axis transformation. The value is either
"log2" or "logl10" (default is "log10").

interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).

Value

A data frame containing the ranked intensities is returned. If plot = TRUE a plot is returned. The
intensities are log10 transformed for the plot.

Examples

set.seed(123) # Makes example reproducible

Create synthetic data

data <- create_synthetic_data(
n_proteins = 50,
frac_change = 0.05,
n_replicates = 4,
n_conditions = 3,
method = "effect_random”,
additional_metadata = FALSE

)

Plot ranked intensities for all samples combined
gc_ranked_intensities(

data = data,

sample = sample,

grouping = peptide,

intensity_log2 = peptide_intensity,

plot = TRUE,

Plot ranked intensities for each sample separately

122 gc_sample_correlation

gc_ranked_intensities(
data = data,
sample = sample,
grouping = peptide,
intensity_log2 = peptide_intensity,
plot = TRUE,
facet = TRUE

gc_sample_correlation Correlation based hirachical clustering of samples

Description

A correlation heatmap is created that uses hirachical clustering to determine sample similarity.

Usage
gc_sample_correlation(
data,
sample,
grouping,
intensity_log2,
condition,
digestion = NULL,
run_order = NULL,
method = "spearman”,
interactive = FALSE
)
Arguments
data a data frame that contains at least the input variables.
sample a character column in the data data frame that contains the sample names.
grouping a character column in the data data frame that contains precursor or peptide

identifiers.

intensity_log2 anumeric column in the data data frame that contains log2 intensity values.

condition a character or numeric column in the data data frame that contains the condi-
tions.
digestion optional, a character column in the data data frame that contains information

about the digestion method used. e.g. "LiP" or "tryptic control".

run_order optional, a character or numeric column in the data data frame that contains the
order in which samples were measured. Useful to investigate batch effects due
to run order.

gc_sequence_coverage 123

method a character value that specifies the method to be used for correlation. "spearman”
is the default but can be changed to "pearson” or "kendall”.

interactive a logical value that specifies whether the plot should be interactive. Deter-
mines if an interactive or static heatmap should be created using heatmaply
or pheatmap, respectively.

Value

A correlation heatmap that compares each sample. The dendrogram is sorted by optimal leaf order-
ing.

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”

)

Create sample correlation heatmap
gc_sample_correlation(
data = data,
sample = sample,
grouping = peptide,
intensity_log2 = peptide_intensity_missing,
condition = condition

gc_sequence_coverage Protein coverage distribution

Description

Plots the distribution of protein coverages in a histogram.

Usage

gc_sequence_coverage(
data,
protein_identifier,
coverage,
sample = NULL,
interactive = FALSE

124 randomise_queue

Arguments

data a data frame that contains at least the input variables.
protein_identifier
a character column in the data data frame that contains protein identifiers.

coverage a numeric column in the data data frame that contains protein coverage in per-
cent. This information can be obtained using the sequence_coverage function.

sample optional, a character or factor column in the data data frame that contains sam-
ple names. Please only provide this argument if you want to facet the distribution
plot by sample otherwise do not provide this argument.

interactive a logical value that specifies whether the plot should be interactive (default is
FALSE).

Value

A protein coverage histogram with 5 percent binwidth. The vertical dotted line indicates the median.

See Also

sequence_coverage

Examples

set.seed(123) # Makes example reproducible

Create example data

data <- create_synthetic_data(
n_proteins = 100,
frac_change = 0.05,
n_replicates = 3,
n_conditions = 2,
method = "effect_random”

Plot sequence coverage
gc_sequence_coverage(
data = data,
protein_identifier = protein,
coverage = coverage

)

randomise_queue Randomise samples in MS queue

Description

[Experimental] This function randomises the order of samples in an MS queue. QC and Blank
samples are left in place. It is also possible to randomise only parts of the queue. Before running this
make sure to set a specific seed with the set.seed() function. This ensures that the randomisation
of the result is consistent if the function is run again.

randomise_queue 125

Usage

randomise_queue(data = NULL, rows = NULL, export = FALSE)

Arguments
data optional, a data frame that contains a queue. If not provided a queue file can be
chosen interactively.
rows optional, a numeric vector that specifies a range of rows in for which samples
should be randomized.
export a logical value that determines if a "randomised_queue.csv" file will be saved
in the working directory. If FALSE a data frame will be returned.
Value

If export = TRUE a "randomised_queue.csv" file will be saved in the working directory. If export
= FALSE a data frame that contains the randomised queue is returned.

Examples

queue <- create_queue(

date = c("200722"),

instrument = c("EX1"),

user = c("jquast"),

measurement_type = c("DIA"),

experiment_name = c("JPQ@31"),

digestion = c("LiP", "tryptic control"”),

treatment_type_1 = c("EDTA", "H20"),

treatment_type_2 = c("Zeba", "unfiltered"),

treatment_dose_1 = c(10, 30, 60),

treatment_unit_1 = c("min"),

n_replicates = 4,

number_runs = FALSE,

organism = c("E. coli"),

exclude_combinations = list(list(
treatment_type_1 = c("H20"),
treatment_type_2 = c("Zeba", "unfiltered”),
treatment_dose_1 = c(10, 30)

),

inj_vol = c(2),

data_path = "D:\\2007_Data",

method_path = "C:\\Xcalibur\\methods\\DIA_120min",

position_row = c("A", "B", "C", "D", "E", "F"),

position_column = 8,

blank_every_n = 4,

blank_position = "1-V1",

blank_method_path = "C:\\Xcalibur\\methods\\blank"

)

head(queue, n = 20)

randomised_queue <- randomise_queue(

126 rapamycin_dose_response

data = queue,
export = FALSE

)

head(randomised_queue, n = 20)

rapamycin_10uM Rapamycin 10 uM example data

Description

Rapamycin example data used for the vignette about binary control/treated data. The data was
obtained from Piazza 2020 and corresponds to experiment 18. FKBP1A the rapamycin binding
protein and 49 other randomly sampled proteins were used for this example dataset. Furthermore,
only the DMSO control and the 10 uM condition were used.

Usage

rapamycin_10uM

Format

A data frame containing peptide level data from a Spectronaut report.

Source

Piazza, 1., Beaton, N., Bruderer, R. et al. A machine learning-based chemoproteomic approach
to identify drug targets and binding sites in complex proteomes. Nat Commun 11, 4200 (2020).
doi:10.1038/s4146702018071x

rapamycin_dose_response
Rapamycin dose response example data

Description

Rapamycin example data used for the vignette about dose response data. The data was obtained
from Piazza 2020 and corresponds to experiment 18. FKBP1A the rapamycin binding protein and
39 other randomly sampled proteins were used for this example dataset. The concentration range
includes the following points: 0 (DMSO control), 10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 uM,
10 uM and 100 uM.

Usage

rapamycin_dose_response

https://www.nature.com/articles/s41467-020-18071-x
https://doi.org/10.1038/s41467-020-18071-x
https://www.nature.com/articles/s41467-020-18071-x

read_protti 127

Format

A data frame containing peptide level data from a Spectronaut report.

Source

Piazza, 1., Beaton, N., Bruderer, R. et al. A machine learning-based chemoproteomic approach
to identify drug targets and binding sites in complex proteomes. Nat Commun 11, 4200 (2020).
doi:10.1038/s4146702018071x

read_protti Read, clean and convert

Description

The function uses the very fast fread function form the data. table package. The column names
of the resulting data table are made more r-friendly using clean_names from the janitor package.
It replaces "." and " " with "_" and converts names to lower case which is also known as snake_case.

In the end the data table is converted to a tibble.

Usage
read_protti(filename, ...)
Arguments
filename a character value that specifies the path to the file.
additional arguments for the fread function.
Value

A data frame (with class tibble) that contains the content of the specified file.

Examples

Not run:
read_protti(”"folder\\filename")

End(Not run)

https://doi.org/10.1038/s41467-020-18071-x

128 scale_protti

replace_identified_by_x
Replace identified positions in protein sequence by "x"

Description

nyn

Helper function for the calculation of sequence coverage, replaces identified positions with an "x
within the protein sequence.

Usage

replace_identified_by_x(sequence, positions_start, positions_end)

Arguments

sequence a character value that contains the protein sequence.

positions_start
a numeric vector of start positions of the identified peptides.

positions_end anumeric vector of end positions of the identified peptides.

Value

A character vector that contains the modified protein sequence with each identified position replaced
by IIXH .

scale_protti Scaling a vector

Description

scale_protti is used to scale a numeric vector either between 0 and 1 or around a centered value
using the standard deviation. If a vector containing only one value or repeatedly the same value
is provided, 1 is returned as the scaled value for method = "@1" and O is returned for metod =
"center”.

Usage

scale_protti(x, method, default_to_high = TRUE)

split_metal_name 129

Arguments
X a numeric vector
method a character value that specifies the method to be used for scaling. "01" scales

the vector between 0 and 1. "center" scales the vector equal to base: :scale
around a center. This is done by subtracting the mean from every value and then
deviding them by the standard deviation.

default_to_high
if there is only one number in the vector the "01" method will default to scale
this to 1. If this argument is set to FALSE it will be scaled to O instead.

Value

A scaled numeric vector.

Examples

scale_protti(c(1, 2, 1, 4, 6, 8), method = "01")

split_metal_name Convert metal names to search pattern

Description

Converts a vector of metal names extracted from the ft_metal column obtained with fetch_uniprot
to a pattern that can be used to search for corresponding ChEBI IDs. This is used as a helper func-
tion for other functions.

Usage

split_metal_name(metal_names)

Arguments

metal_names a character vector containing names of metals and metal containing molecules.

Value

A character vector with metal name search patterns.

130 try_query

try_query Query from URL

Description

Downloads data table from URL. If an error occurs during the query (for example due to no con-
nection) the function waits 3 seconds and tries again. If no result could be obtained after the given
number of tries a message indicating the problem is returned.

Usage

try_query(
url,
max_tries = 5,
silent = TRUE,
type = "text/tab-separated-values”,
timeout = 60,
accept = NULL,

)
Arguments
url a character value of an URL to the website that contains the table that should be
downloaded.
max_tries a numeric value that specifies the number of times the function tries to download
the data in case an error occurs. Default is 5.
silent a logical value that specifies if individual messages are printed after each try that
failed.
type a character value that specifies the type of data at the target URL. Options are
all options that can be supplied to httr::content, these include e.g. "text/tab-
separated-values", "application/json" and "txt/csv". Default is "text/tab-separated-
values".
timeout a numeric value that specifies the maximum request time. Default is 60 seconds.
accept a character value that specifies the type of data that should be sent by the API
if it uses content negotiation. The default is NULL and it should only be set for
APIs that use content negotiation.
other parameters supplied to the parsing function used by httr::content.
Value

A data frame that contains the table from the url.

ttest_protti

131

ttest_protti

Perform Welch’s t-test

Description

Performs a Welch’s t-test and calculates p-values between two groups.

Usage

ttest_protti(meanl, mean2, sdl, sd2, nl, n2, log_values = TRUE)

Arguments

mean1
mean2
sd1
sd2

ni

n2

log_values

Value

a numeric vector that contains the means of groupl.
a numeric vector that contains the means of group?2.
a numeric vector that contains the standard deviations of groupl.
a numeric vector that contains the standard deviations of group?2.

a numeric vector that contains the number of replicates used for the calculation
of each mean and standard deviation of groupl.

a numeric vector that contains the number of replicates used for the calculation
of each mean and standard deviation of group2.

a logical value that indicates if values are log transformed. This determines how
fold changes are calculated. Default is 1og_values = TRUE.

A data frame that contains the calculated differences of means, standard error, t statistic and p-

values.

Examples

ttest_protti(

meanl = 10,
mean2 = 15.5,
sdl =1,

sd2 = 0.5,

nl = 3,

n2 =3

132 volcano_plot

viridis_colours Viridis colour scheme

Description

A colour scheme by the viridis colour scheme from the viridis R package.

Usage

viridis_colours

Format

A vector containing 256 colours

Source

viridis R package, created by Stéfan van der Walt (stefanv) and Nathaniel Smith (njsmith)

volcano_plot Volcano plot

Description

Plots a volcano plot for the given input.

Usage

volcano_plot(
data,
grouping,
log2FC,
significance,
method,
target_column = NULL,
target = NULL,
facet_by = NULL,
facet_scales = "fixed",
title = "Volcano plot”,
x_axis_label = "log2(fold change)”,
y_axis_label "-logl@(p-value)”,
legend_label = "Target”,
colour = NULL,
log2FC_cutoff = 1,
significance_cutoff = 0.01,
interactive = FALSE

volcano_plot

Arguments

data

grouping

log2FC

significance

method

target_column

target

facet_by

facet_scales

title

Xx_axis_label

y_axis_label

legend_label

colour

log2FC_cutoff

133

a data frame that contains at least the input variables.

a character column in the data data frame that contains either precursor or pep-
tide identifiers.

a character column in the data data frame that contains the log2 transfromed
fold changes between two conditions.

a character column in the data data frame that contains the p-value or adjusted
p-value for the corresponding fold changes. The values in this column will be
transformed using the -log10 and displayed on the y-axis of the plot.

a character value that specifies the method used for the plot. method = "target”
highlights your protein, proteins or any other entities of interest (specified in the
target argument) in the volcano plot. method = "significant” highlights all
significantly changing entities.

optional, a column required for method = "target”, can contain for example
protein identifiers or a logical that marks certain proteins such as proteins that
are known to interact with the treatment. Can also be provided if method =
"significant” to label data points in an interactive plot.

optional, a vector required for method = "target”. It can contain one or more
specific entities of the column provided in target_column. This can be for ex-
ample a protein ID if target_column contains protein IDs or TRUE or FALSE
for a logical column.

optional, a character column that contains information by which the data should
be faceted into multiple plots.

a character value that specifies if the scales should be "free", "fixed", "free_x"
or "free_y", if a faceted plot is created. These inputs are directly supplied to the
scales argument of ggplot2: : facet_wrap().

optional, a character value that specifies the title of the volcano plot. Default is
"Volcano plot".

optional, a character value that specifies the x-axis label. Default is "log2(fold
change)".

optional, a character value that specifies the y-axis label. Default is "-log10(g-
value)".

optional, a character value that specifies the legend label. Default is "Target".

optional, a character vector containing colours that should be used to colour
points according to the selected method. IMPORTANT: the first value in the
vector is the default point colour, the additional values specify colouring of tar-
get or significant points. E.g. c("grey60"”, "#5680C1") to achieve the same
colouring as the default for the "significant" method.

optional, a numeric value that specifies the log2 transformed fold change cut-
off used for the vertical lines, which can be used to assess the significance of
changes. Default value is 1.

significance_cutoff

optional, a character vector that specifies the p-value cutoff used for the hori-
zontal cutoff line, which can be used to assess the significance of changes. The

134

interactive

Value

volcano_plot

vector can consist solely of one element, which is the cutoff value. In that case
the cutoff will be applied directly to the plot. Alternatively, a second element can
be provided to the vector that specifies a column in the data data frame which
contains e.g. adjusted p-values. In that case the y-axis of the plot could display
p-values that are provided to the significance argument, while the horizontal
cutoff line is on the scale of adjusted p-values transformed to the scale of p-
values. The provided vector can be e.g. c(@.05, "adj_pval"). In that case the
function looks for the closest adjusted p-value above and below 0.05 and takes
the mean of the corresponding p-values as the cutoff line. If there is no adjusted
p-value in the data that is below 0.05 no line is displayed. This allows the user
to display volcano plots using p-values while using adjusted p-values for the
cutoff criteria. This is often preferred because adjusted p-values are related to
unadjusted p-values often in a complex way that makes them hard to be interpret
when plotted. Default is c(@.01).

a logical value that specifies whether the plot should be interactive (default is
FALSE).

Depending on the method used a volcano plot with either highlighted targets (method = "target")
or highlighted significant proteins (method = "significant") is returned.

Examples

set.seed(123) # Makes example reproducible

Create synthetic data
data <- create_synthetic_data(
n_proteins = 10,

frac_change = 0.5,
n_replicates = 4,
n_conditions = 3,
method = "effect_random”,

additional_metadata = FALSE

)

Assign missingness information
data_missing <- assign_missingness(

data,

sample = sample,

condition =

condition,

grouping = peptide,
intensity = peptide_intensity_missing,
ref_condition = "all”,

retain_columns

)

= c(protein, change_peptide)

Calculate differential abundances
diff <- calculate_diff_abundance(
data = data_missing,
sample = sample,

woods_plot 135

condition = condition,

grouping = peptide,

intensity_log2 = peptide_intensity_missing,
missingness = missingness,

comparison = comparison,

method = "t-test”,

retain_columns = c(protein, change_peptide)

)

volcano_plot(
data = diff,
grouping = peptide,
log2FC = diff,
significance = pval,
method = "target”,
target_column = change_peptide,
target = TRUE,
facet_by = comparison,
significance_cutoff = c(0.05, "adj_pval”)

woods_plot Woods’ plot

Description

Creates a Woods’ plot that plots log2 fold change of peptides or precursors along the protein se-
quence. The peptides or precursors are located on the x-axis based on their start and end positions.
The position on the y-axis displays the fold change. The vertical size (y-axis) of the box represent-
ing the peptides or precursors do not have any meaning.

Usage

woods_plot(
data,
fold_change,
start_position,
end_position,
protein_length,
coverage = NULL,
protein_id,
targets = "all”,
facet = TRUE,
colouring = NULL,
fold_change_cutoff = 1,
highlight = NULL,
export = FALSE,
export_name = "woods_plots”

136

Arguments

data

fold_change

start_position

end_position

protein_length

coverage

protein_id

targets

facet

colouring

woods_plot

a data frame that contains differential abundance, start and end peptide or precur-
sor positions, protein length and optionally a variable based on which peptides
or precursors should be coloured.

a numeric column in the data data frame that contains log2 fold changes.

a numeric column in the data data frame that contains the start positions for
each peptide or precursor.

a numeric column in the data data frame that contains the end positions for each
peptide or precursor.

a numeric column in the data data frame that contains the length of the protein.

optional, a numeric column in the data data frame that contains coverage in
percent. Will appear in the title of the Woods’ plot if provided.

a character column in the data data frame that contains protein identifiers.

a character vector that specifies the identifiers of the proteins (depending on
protein_id) that should be plotted. This can also be "all” if plots for all
proteins should be created. Default is "all".

a logical value that indicates if plots should be summarised into facets of 20
plots. This is recommended for many plots. Default is facet = TRUE.

optional, a character or numeric (discrete or continous) column in the data frame
containing information by which peptide or precursors should be coloured.

fold_change_cutoff

highlight

export

export_name

Value

optional, a numeric value that specifies the log2 fold change cutoff used in the
plot. The default value is 2.

optional, a logical column that specifies whether specific peptides or precursors
should be highlighted with an asterisk.

a logical value that indicates if plots should be exported as PDF. The output
directory will be the current working directory. The name of the file can be
chosen using the export_name argument. Default is export = FALSE.

a character vector that provides the name of the exported file if export = TRUE.
Default is export_name = "woods_plots”

A list containing Woods’ plots is returned. Plotting peptide or precursor log2 fold changes along
the protein sequence.

Examples

Create example data
data <- data.frame(

fold_change =

c(2.3, 0.3, -0.4, -4, 1),

pval = c(0.001, 0.7, 0.9, 0.003, 0.03),

start = c(20,

30, 45, 90, 140),

end = c(33, 40, 64, 100, 145),
protein_length = c(rep(150, 5)),

woods_plot 137

protein_id = c(rep("P1”, 5))
)

Plot Woods' plot

woods_plot(
data = data,
fold_change = fold_change,
start_position = start,
end_position = end,
protein_length = protein_length,
protein_id = protein_id,
colouring = pval

Index

+ datasets
mako_colours, 81
metal_chebi_uniprot, 85
metal_go_slim_subset, 86
metal_list, 86
protti_colours, 99
ptsi_pgk, 99
rapamycin_10uM, 126
rapamycin_dose_response, 126
viridis_colours, 132

analyse_functional_network, 4
anova_protti, 6
assign_missingness, 7
assign_peptide_type, 9

barcode_plot, 10

calculate_aa_scores, 12
calculate_diff_abundance, 13
calculate_go_enrichment, 17
calculate_imputation, 22
calculate_kegg_enrichment, 23
calculate_protein_abundance, 25
calculate_sequence_coverage, 27

calculate_treatment_enrichment, 28

correct_lip_for_abundance, 30
create_queue, 33
create_structure_contact_map, 37
create_synthetic_data, 39

drc_4p, 42
drc_4p_plot, 43

extract_metal_binders, 45

fetch_alphafold_aligned_error, 48
fetch_alphafold_prediction, 50
fetch_chebi, 52

fetch_eco, 52

fetch_go, 54

138

fetch_interpro, 54
fetch_kegg, 55
fetch_metal_pdb, 56
fetch_mobidb, 58
fetch_pdb, 59
fetch_pdb_structure, 61
fetch_quickgo, 62
fetch_uniprot, 64
fetch_uniprot_proteome, 65
filter_cv, 66
find_all_subs, 68
find_chebis, 69
find_peptide, 69
find_peptide_in_structure, 70
fit_drc_4p, 73

impute, 77
impute_randomforest, 79

mako_colours, 81
map_peptides_on_structure, 82
metal_chebi_uniprot, 85
metal_go_slim_subset, 86
metal_list, 86

normalise, 87

parallel_create_structure_contact_map,
88

parallel_fit_drc_4p, 91

peptide_profile_plot, 95

predict_alphafold_domain, 97

protti_colours, 99

ptsi_pgk, 99

pval_distribution_plot, 100

gc_charge_states, 101
qgc_contaminants, 103
qc_cvs, 104
qgc_data_completeness, 106
qc_ids, 107

INDEX 139

gc_intensity_distribution, 109
gc_median_intensities, 110
gc_missed_cleavages, 112
gc_pca, 114

gc_peak_width, 115
gc_peptide_type, 117
gc_proteome_coverage, 119
gc_ranked_intensities, 120
gc_sample_correlation, 122
gc_sequence_coverage, 123

randomise_queue, 124
rapamycin_10uM, 126
rapamycin_dose_response, 126
read_protti, 127
replace_identified_by_x, 128

scale_protti, 128
sequence_coverage, 124
split_metal_name, 129

try_query, 130
ttest_protti, 131

viridis_colours, 132
volcano_plot, 132

woods_plot, 135

	analyse_functional_network
	anova_protti
	assign_missingness
	assign_peptide_type
	barcode_plot
	calculate_aa_scores
	calculate_diff_abundance
	calculate_go_enrichment
	calculate_imputation
	calculate_kegg_enrichment
	calculate_protein_abundance
	calculate_sequence_coverage
	calculate_treatment_enrichment
	correct_lip_for_abundance
	create_queue
	create_structure_contact_map
	create_synthetic_data
	drc_4p
	drc_4p_plot
	extract_metal_binders
	fetch_alphafold_aligned_error
	fetch_alphafold_prediction
	fetch_chebi
	fetch_eco
	fetch_go
	fetch_interpro
	fetch_kegg
	fetch_metal_pdb
	fetch_mobidb
	fetch_pdb
	fetch_pdb_structure
	fetch_quickgo
	fetch_uniprot
	fetch_uniprot_proteome
	filter_cv
	find_all_subs
	find_chebis
	find_peptide
	find_peptide_in_structure
	fit_drc_4p
	impute
	impute_randomforest
	mako_colours
	map_peptides_on_structure
	metal_chebi_uniprot
	metal_go_slim_subset
	metal_list
	normalise
	parallel_create_structure_contact_map
	parallel_fit_drc_4p
	peptide_profile_plot
	predict_alphafold_domain
	protti_colours
	ptsi_pgk
	pval_distribution_plot
	qc_charge_states
	qc_contaminants
	qc_cvs
	qc_data_completeness
	qc_ids
	qc_intensity_distribution
	qc_median_intensities
	qc_missed_cleavages
	qc_pca
	qc_peak_width
	qc_peptide_type
	qc_proteome_coverage
	qc_ranked_intensities
	qc_sample_correlation
	qc_sequence_coverage
	randomise_queue
	rapamycin_10uM
	rapamycin_dose_response
	read_protti
	replace_identified_by_x
	scale_protti
	split_metal_name
	try_query
	ttest_protti
	viridis_colours
	volcano_plot
	woods_plot
	Index

