Package ‘plgp’

January 21, 2026
Type Package

Title Particle Learning of Gaussian Processes
Version 1.1-13

Date 2026-01-21

Maintainer Robert B. Gramacy <rbg@vt.edu>

Description Sequential Monte Carlo (SMC) inference for fully Bayesian
Gaussian process (GP) regression and classification models by
particle learning (PL) following Gramacy & Polson (2011) <doi:10.48550/arXiv.0909.5262>.
The sequential nature of inference
and the active learning (AL) hooks provided facilitate thrifty
sequential design (by entropy) and optimization
(by improvement) for classification and
regression models, respectively.

This package essentially provides a generic

PL interface, and functions (arguments to the interface) which
implement the GP models and AL heuristics. Functions for

a special, linked, regression/classification GP model and

an integrated expected conditional improvement (IECI) statistic
provide for optimization in the presence of unknown constraints.
Separable and isotropic Gaussian, and single-index correlation
functions are supported.

See the examples section of ?plgp and demo(package=""plgp")
for an index of demos.

Depends R (>=2.4), mvtnorm, tgp
Suggests ellipse, splancs, interp, MASS
License LGPL

URL https://bobby.gramacy.com/r_packages/plgp/
NeedsCompilation yes

Author Robert B. Gramacy [aut, cre]

Repository CRAN

Date/Publication 2026-01-21 15:00:02 UTC

https://doi.org/10.48550/arXiv.0909.5262
https://bobby.gramacy.com/r_packages/plgp/

2 plgp-package

Contents
plgp-package L 2
addpallGP e 3
data.GP e e e e 4
draw.GP e e e 6
exp2d.C . . e 8
mit.GP e e e e e 9
Ipredprob.GP 10
PAPPLY . . o e e 11
params.GP e 13
PL . e e e 14
pred.GP 16
prior.GP . . . e e 18
propagate. GP 20
rectscale L L e e 21

Index 22

plgp-package Farticle Learning of Gaussian Processes
Description

Sequential Monte Carlo inference for fully Bayesian Gaussian process (GP) regression and classi-
fication models by particle learning (PL). The sequential nature of inference and the active learning
(AL) hooks provided facilitate thrifty sequential design (by entropy) and optimization (by improve-
ment) for classification and regression models, respectively. This package essentially provides a
generic PL interface, and functions (arguments to the interface) which implement the GP mod-
els and AL heuristics. Functions for a special, linked, regression/classification GP model and an
integrated expected conditional improvement (IECI) statistic is provides for optimization in the
presence of unknown constraints. Separable and isotropic Gaussian, and single-index correlation
functions are supported. See the examples section of ?plgp and demo(package="plgp") for an index
of demos

Details

For a fuller overview including a complete list of functions, and demos, please use help(package="plgp").

Author(s)

Robert B. Gramacy <rbgevt.edu>

addpall. GP 3

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing”.
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

PL, tgp

addpall.GP Add data to pall

Description

Add sufficient data common to all particles to the global pall variable, a mnemonic for “particles-
all”, for Gaussian process (GP) regression, classification, or combined unknown constraint models

Usage

addpall.GP(Z)
addpall.CGP(Z)
addpall.ConstGP(Z)

Arguments
z new observation(s) (usually the next one in “time”) to add to the pall global
variable
Details

All three functions add new Z$x to pall$X; addpall.GP also adds Z$y to pall$yY, addpall.CGP
also adds Z$c to pall$yY, and addpall.ConstGP does both

Value

nothing is returned, but global variables are modified

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

4 data.GP

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also
PL

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

data.GP Supply GP data to PL

Description

Functions to supply data to PL for Gaussian process (GP) regression, classification, or combined
unknown constraint models

Usage

data.GP(begin, end = NULL, X, Y)
data.GP.improv(begin, end = NULL, f, rect, prior,
adapt = ei.adapt, cands = 40,
save = TRUE, oracle = TRUE, verb = 2,
interp = interp.loess)
data.CGP(begin, end = NULL, X, C)
data.CGP.adapt(begin, end = NULL, f, rect, prior,
cands = 40, verb = 2, interp=interp.loess)
data.ConstGP(begin, end = NULL, X, Y, C)
data.ConstGP.improv(begin, end = NULL, f, rect, prior,
adapt = ieci.const.adapt , cands = 40,
save = TRUE, oracle = TRUE, verb
interp = interp.loess)

1
N

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

data.GP 5

Arguments

begin positive integer starting time for data to be returned

end positive integer (end >= begin) ending time for data being returned; may be
NULL if only data at time begin is needed

data.frame with at least end rows containing covariates
vector of length at least end containing real-valued responses

vector of length at least end containing class labels

-H O < X

function returning a responses when called as f (X) formatrix X; for data.GP. improv
the responses must be real-valued returned as a vector; for data.CGP.adapt

they must be class labels returned as a vector; for data.ConstGP. improv they

must be pairs of real-valued and in {0,1} (1 indicates constraint violation), re-
turned as a 2-column data. frame

rect bounding rectangle for the inputs X to f (X) with two columns and rows equalling
nrow(X)

prior prior parameters passed from PL generated by one of the prior functions, e.g.,
prior.GP

adapt function that evaluates a sequential design criterion on some candidate locations;
the default ei.adapt EI about the minimum; ieci.adapt providing IECI is
another possibility , which is hard coded into data.ConstGP.adapt

cands number of Latin Hypercube candidate locations used to choose the next adap-
tively sampled input design point

save scalar logical indicating if the improvment information for chosen candidate
should be saved in the psave global variable

oracle scalar logical indicating if the candidates should be augmented with the point
found to maximize the predictive surface (with a search starting at the most
recently chosen input)

verb verbosity level for printing the progress of improv and other adaptive sampling
calculations

interp function for smoothing of 2-d image plots. The default comes from interp. loess,
but what works best is interp which requires the interp or akima package

Details

These functions provide data to PL for Gaussian progress regression and classification methods
in a variety of ways. The simplest, data.GP and data.CGP supply pre-recorded regression and
classification data stored in data frames and vectors; data.ConstGP is a hybrid that does joint
regression and classification. The other functions provide data by active learning/sequential design:

The data.GP. improv function uses expected improvement (EI); data.CGP. improv uses predictive
entropy; data.ConstGP. improv uses integrated expected conditional improvement (IECI). In these
cases, once the x-location(s) is/are chosen, the function f is used to provide the response(s)

Value

The output are vectors or data. frames.

6 draw.GP

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also
PL

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

draw.GP Metropolis-Hastings draw for GP parameters

Description

Functions for using Metropolis-Hastings (MH) to evolve a particle according to the posterior dis-
tribution given by a Gaussian process (GP) for regression, classification, or combined unknown
constraint model

Usage

draw.GP(Zt, prior, 1 = 3, h = 4, thin = 10, Y = NULL)
draw.CGP(Zt, prior, 1 =3, h = 4, thin = 10)
draw.ConstGP(Zt, prior, 1 = 3, h = 4, thin = 10)

Arguments
Zt the particle describing model parameters and sufficient statistics that determines
the predictive distribution
prior prior parameters passed from PL generated by one of the prior functions, e.g.,

prior.GP

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

draw.GP 7

1 positive uniform random walk parameter; for old parameter pold, a new pa-
rameter is proposed as p = runif (1, p*x1/h, pxh/1). Such proposals are then
accepted (or rejected) via the MH acceptance ratio

h positive uniform random walk parameter; see above
thin thinning level in the MCMC; describes the number of MH rounds executed be-
fore the value is saved as a sample from the (marginal) posterior distribution
Y not for external use; used internally by CGP and ConstGP internal routines
Details

These functions are used in two important places in plgp. At the user level, they can be used to
initialize the particles at time start; see PL and the demos. Internally, they are used in the PL
propagate step, e.g., propagate.GP

draw.ConstGP is a combination of the draw.GP and draw.CGP methods, which are for regression
and classification GPs, respectively

Value

These functions return an updated particle Zt

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

init.GP, propagate.GP, PL

Examples

See the demos via demo(package="plgp"”) and the examples
section of ?plgp

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

8 exp2d.C

exp2d.C 2-d Exponential Hessian Data

Description
Generates 2-d classification data with two or three class labels, based on the Hessian data from a
2-d real-valued response

Usage
exp2d.C(X, threed = TRUE)

Arguments
X amatrix or data.frame describing the design at which the response categories
are desired
threed a scalar logical indicating if the two or three-class version of the class labels
should be returned.
Details

The underlying real-valued response is governed by
Z(X) =z * exp(z? — x3).

Two class labels are generated by inspecting the sign of the sum of the eigenvalues of the Hessian
(Broderick & Gramacy, 2010). This generates the first (-) and second (+) classes in a three-class
function. A third class label (the default) may created from the first one where X[, 1] > @ (Gramacy
& Polson, 2011)

Value

A vector of class labels of length nrow(X) is returned

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References
Broderick, T. and Gramacy, R. (2010). “Classification and categorical inputs with treed Gaussian
process models.” Tech. rep., University of Cambridge. ArXiv:0904.4891.

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

init. GP 9

Examples

The following demos use this data

Not run:

Illustrates classification GPs on a simple 2-d exponential
data generating mechanism

demo("plcgp_exp”, ask=FALSE)

Illustrates active learning via entropy with classification
GPs on a simple 2-d exponential data generating mechanism

demo("plcgp_exp_entropy”, ask=FALSE)

End(Not run)

init.GP Initialize particles for GPs

Description

Functions for initializing particles for Gaussian process (GP) regression, classification, or combined
unknown constraint models

Usage

init.GP(prior, d = NULL, g = NULL, Y = NULL)
init.CGP(prior, d = NULL, g = NULL)
init.ConstGP(prior)

Arguments
prior prior parameters passed from PL generated by one of the prior functions, e.g.,
prior.GP
d initial range (or length-scale) parameter(s) for the GP correlation function(s)
initial nugget parameter for the GP correlation
data used to update GP sufficient information in the case of init.GP; if NULL
then pall$y is used
Value

Returns a particle for internal use in the PL method

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

10 Ipredprob.GP

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

PL, draw.GP

Examples

See the demos via demo(package="plgp"”) and the examples
section of ?plgp

lpredprob.GP Log-Predictive Probability Calculation for GPs

Description

Log-predictive probability calculation for Gaussian process (GP) regression, classification, or com-
bined unknown constraint models; primarily to be used particle learning (PL) re-sample step

Usage

lpredprob.GP(z, Zt, prior)
lpredprob.CGP(z, Zt, prior)
lpredprob.ConstGP(z, Zt, prior)

Arguments
z new observation whose (log) predictive probability is to be calculated given the
particle Zt
Zt the particle describing model parameters and sufficient statistics that determines
the predictive distribution
prior prior parameters passed from PL generated by one of the prior functions, e.g.,

prior.GP

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

papply 11

Details

This is the workhorse of the PL re-sample step. For each new observation (in sequence), the PL
function calls 1predprob and these values determine the weights used in the sample function to
obtain the new particle set, which is then propagated, e.g., using propagate.GP

The 1predprob.ConstGP is essentially the combination (product) of 1predprob.GP and 1predprob.CGP
for regression and classification GP models, respectively
Value

Returns a real-valued scalar - the log predictive probability

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

PL, propagate.GP

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

papply Extending apply to particles

Description
Applies a user-specified function to each particle contained in the global variables peach and pall,
collecting the output in a data. frame

Usage
papply(fun, verb = 1, pre = "", ...)

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

12

Arguments

fun

verb

pre

Details

papply

a user-defined function which which takes a particle as its first input; the output
of fun should be a vector, matrix or data. frame

a scalar logical indicating whether progress statements should be printed to
the screen

an optional character prefix used in the progress print statements; ignored if
verb =0

these ellipses arguments are used to pass extra optional arguments to the user-
supplied function fun

This is a extension to the built-in apply family of function to particles, intended to be used with the
particles created by PL. Perhaps the most common use of this function is in obtaining samples form
the posterior predictive distribution, i.e., with the user supplied fun = pred.GP

The particles applied over must be present in the global variables pall, containing sufficient infor-
mation common to all particles, peach, containing sufficient information particular to each particle,
as constructed by PL

Value

Returns a data frame with the collected output of the user-specified function fun

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing.”
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

https://bobby.gramacy.com/r_packages/plgp/

See Also

PL, pred.GP

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

https://bobby.gramacy.com/r_packages/plgp/

params.GP 13

params.GP Extract parameters from GP particles

Description
Extract parameters from particles for Gaussian process (GP) regression, classification, or combined
unknown constraint models

Usage

params.GP()
params.CGP()
params.ConstGP()

Details

Collects the parameters from each of the particles (contained in the global variable peach) into a
data. frame that can be used for quick summary and visualization, e.g., via hist. These functions
are also called to make progress visualizations in PL

Value

returns a data. frame containing summaries for each parameter in its columns

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/
See Also

PL, 1predprob.GP, propagate.GP, init.GP, pred.GP

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

14 PL

PL Farticle Learning Skeleton Method

Description
Implements the Particle Learning sequential Monte Carlo algorithm on the data sequence provided,
using re-sample and propagate steps

Usage

PL(dstream, start, end, init, lpredprob, propagate, prior = NULL,
addpall = NULL, params = NULL, save = NULL, P = 100,
progress = 10, cont = FALSE, verb = 1)

Arguments

dstream function generating the data stream; for examples see data.GP

start a scalar integer specifying the starting “time”; the data entry/sample where PL
will start

end a scalar integer specifying the ending “time”; the data entry/sample where PL
will stop

init function used to initialize the particles at the start of PL; for examples see
draw.GP

lpredprob function used to calculate the predictive probability of an observation (usually
the next one in “time”) given a particle. This is the primary function used in the
PL re-sample step; for examples see 1predprob.GP

propagate function used to propagate particles given an observation (usually the next one
in “time”); for examples see propagate.GP

prior function used to generate prior parameters that may be passed into the dstream,
init, 1predprob and propagate functions as needed; for examples see prior.GP

addpall an optional function that adds the new observation (usually the next one in
“time”) to the pall variable in the PL.env environment (i.e., PL.env$pall),
which stores the sufficient information shared by all particles; for examples see
addpall.GP

params an optional function called each progress rounds that collects parameters from
the particles for summary and visualization; for examples see params.GP

save an option function that is called every round to save some information about the
particles

P number of particles to use

progress number of PL rounds after which to collect params and draws histograms; a
non-positive value or params = NULL skips the progress meter

cont if TRUE then PL will try to use the existing set of particles to “continue” where
it left off; start and end should be specified appropriately when continuing

verb if nonzero, then screen prints will indicate the proportion of PL updates finished

so far; verb = 1 will cause PL to pause on progress drawings for inspection

PL 15

Details

Uses the PL. SMC algorithm via the functions provided. This function is just a skeleton framework.
The hard work is in specifying the arguments/functions which execute the calculations needed in
the re-sample and propagate steps.

PL and uses the variables stored in the PL.env environment: pall, containing sufficient informa-
tion common to all particles, peach, containing sufficient information particular to each of the
P particles, and psave containing any saved information. These variables may be accessed as
PL.env$psave, for example.

Note that PL is designed to be fast for sequential updating (of GPs) when new data arrive. This
facilitates efficient sequential design of experiments by active learning techniques, e.g., optimiza-
tion by expected improvement and sequential exploration of classification label boundaries by the
predictive entropy. PL is not optimized for static inference when all of the data arrive at once, in
batch

Value

PL modifies the PL . env$peach variable, containing sufficient information particular to each (of the
P) particles

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Carvalho, C., Johannes, M., Lopes, H., and Polson, N. (2008). “Particle Learning and Smoothing.”
Discussion Paper 2008-32, Duke University Dept. of Statistical Science.

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

papply, draw.GP, data.GP, 1lpredprob.GP, propagate.GP, params.GP, pred.GP

Examples

See the demos via demo(package="plgp"”); it is important to
run them with the ask=FALSE argument so that the

automatically generated plots may refresh automatically
(without requiring the user to press RETURN)

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

16 pred.GP

Not run:

Illustrates regression GPs on a simple 1-d sinusoidal
data generating mechanism

demo("plgp_sinld”, ask=FALSE)

Illustrates classification GPs on a simple 2-d exponential
data generating mechanism
demo("plcgp_exp", ask=FALSE)

Illustrates classification GPs on Ripley's Cushings data
demo("plcgp_cush”, ask=FALSE)

Illustrates active learning via the expected improvement
statistic on a simple 1-d data generating mechanism
demo("plgp_exp_ei”, ask=FALSE)

Illustrates active learning via entropy with classification
GPs on a simple 2-d exponential data generating mechanism
demo("plcgp_exp_entropy”, ask=FALSE)

Illustrates active learning via the integrated expected
conditional improvement statistic for optimization

under known constraints on a simple 1-d data generating
mechanism

demo("plgp_1d_ieci”, ask=FALSE)

Illustrates active learning via the integrated expected
conditional improvement statistic for optimization under
unknown constraints on a simple 1-d data generating

mechanism

demo("plconstgp_1d_ieci”, ask=FALSE)

Illustrates active learning via the integrated expected
conditional improvement statistic for optimization under
unknokn constraints on a simple 2-d data generating

mechanism

demo("plconstgp_2d_ieci”, ask=FALSE)

End(Not run)

pred.GP Prediction for GPs

Description

Prediction on a per-particle basis for Gaussian process (GP) regression, classification, or combined
unknown constraint models

pred.GP

Usage

17

pred.GP(XX, Zt, prior, Y = NULL, quants = FALSE, Sigma = FALSE,

sub = 1:7t$t)

pred.CGP(XX, Zt, prior, mcreps = 100, cs = NULL)
pred.ConstGP (XX, Zt, prior, quants = TRUE)

Arguments

XX

Zt

prior

Y
quants

Sigma

sub

mcreps

CS

Details

matrix ordata. frame containing (a design of) predictive locations where ncol (XX)
=ncol (X), on which the data were trained and particle Zt thus obtained

the particle describing model parameters and sufficient statistics that determines
the predictive distribution

prior parameters passed from PL generated by one of the prior functions, e.g.,
prior.GP

not for external use; used internally by CGP and ConstGP internal routines
a scalar logical indicating if predictive quantiles should be are desired

a scalar logical indicating if the full predictive variance-covariance matrix is
desired; typically only used internally by CGP and ConstGP

not for external used; used internally by CGP and ConstGP internal routines

number of Monte Carlo iterations used in CGP prediction, integrating over the
latent real-valued Y variables at the XX locations

indicates a class label at which the predictive probability is desired; the entire
probability distribution over all class labels will be provided if not specified

For pred.GP the predictive mean (and quantiles if quants = TRUE is provided. For pred.CGP
the predictive distribution over the class labels is provided, unless only one class (cs) is desired.
pred.ConstGP is a combination of the pred.GP and pred.CGP methods

It is suggested that this function is used in as an argument to papply to obtain many predictions -
one for each particle in a cloud - which are combined into a data. frame

Some of the function arguments aren’t meant to be specified by the user, but are rather there to
facilitate usage as a subroutine inside other PL functions, such as 1predprob.GP and others

Value

A single-row data.frame is returned with the desired predictive; these rows are automatically
combined when used with papply

Author(s)

Robert B. Gramacy, <rbgevt.edu>

18 prior. GP

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also
papply, PL, 1predprob.GP

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

prior.GP Generate priors for GP models

Description

Generate priors for Gaussian process (GP) regression, classification, or combined unknown con-
straint models

Usage
prior.GP(m, cov = c("isotropic”, "separable”, "sim"))
prior.CGP(m, cov = c("isotropic"”, "separable”, "sim"))
prior.ConstGP(m, cov.GP = c("isotropic”, "separable"”, "sim"),
cov.CGP = cov.GP)
Arguments
m positive scalar integer specifying the dimensionality of the input space
cov whether to use an "isotropic” or "separable” power exponential correla-
tion function with power 2 — nugget included; a single index model ("sim")
capability is provided as “beta” functionality; applies to both regression and
classification GPs
cov.GP specifies the covariance for the real-valued response in the combined unknown
constraint GP model
cov.CGP specifies the covariance for the categorical response in the combined unknown

constraint GP model

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

prior. GP 19

Details

These function generate a default prior object in the correct format for use with the other PL rou-
tines, e.g., init.GP and pred.GP. The object returned may be modified as necessary.

The prior.ConstGP is essentially the combination of prior.GP and prior.CGP for regression and
classification GP models, respectively

Value

a valid prior object for the appropriate GP model;

By making the output $drate and/or $grate values negative causes the corresponding lengthscale
d parameter(s) and nugget d parameter to be fixed at the reciprocal of their absolute values, respec-
tively. This effectively turns off inference for these values, and allows one to study the GP predictive
distribution as a function of fixed values. When both are fixed it is sensible to use only one particle
(P=1, as an argument to PL)

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also

PL, 1predprob.GP, propagate.GP, init.GP, pred.GP

Examples

See the demos via demo(package="plgp") and the examples
section of ?plgp

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/

20 propagate.GP

propagate.GP PL propagate rule for GPs

Description
Incorporation of a new data point for Gaussian process (GP) regression, classification, or combined
unknown constraint models; primarily to be used particle learning (PL) propagate step

Usage

propagate.GP(z, Zt, prior)
propagate.CGP(z, Zt, prior)
propagate.ConstGP(z, Zt, prior)

Arguments
z new observation whose to be incorporate into the particle Zt
Zt the particle describing model parameters and sufficient statistics that the new
data is being incorporated into
prior prior parameters passed from PL generated by one of the prior functions, e.g.,
prior.GP
Details

This is the workhorse of the PL propagate step. After re-sampling the particles, PL calls propagate
on each of the particles to obtain the set used in the next round/time-step

The propagate.ConstGP is essentially the combination of propagate.GP and propagate.CGP for
regression and classification GP models, respectively
Value

These functions return a new particle with the new observation incorporated

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

Gramacy, R. and Polson, N. (2011). “Particle learning of Gaussian process models for sequential
design and optimization.” Journal of Computational and Graphical Statistics, 20(1), pp. 102-118;
arXiv:0909.5262

Gramacy, R. and Lee, H. (2010). “Optimization under unknown constraints”. Bayesian Statistics
9, J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West (Eds.); Oxford University Press

rectscale 21

Gramacy, R. (2020). “Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences”. Chapman Hall/CRC; https://bobby.gramacy.com/surrogates/

https://bobby.gramacy.com/r_packages/plgp/

See Also
PL, 1predprob.GP

Examples

See the demos via demo(package="plgp"”) and the examples
section of ?plgp

rectscale Un/Scale data in a bounding rectangle

Description

Scale data lying in an arbitrary rectangle to lie in the unit rectangle, and back again

Usage

rectscale(X, rect)
rectunscale(X, rect)

Arguments
X amatrix or data.frame of real-valued covariates
rect a matrix describing a bounding rectangle for X with 2 columns and ncol (X)
TOWs
Value

amatrix or data.frame with the same dimensions as X scaled or un-scaled as appropriate

Author(s)

Robert B. Gramacy, <rbg@vt.edu>

References

https://bobby.gramacy.com/r_packages/plgp/

Examples

X <- matrix(runif(10, 1, 3), ncol=2)
rect <- rbind(c(1,3), c(1,3))

Xs <- rectscale(X, rect)
rectunscale(Xs, rect)

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/r_packages/plgp/
https://bobby.gramacy.com/r_packages/plgp/

Index

x classif params.GP, 13
draw.GP, 6 pred.GP, 16
init.GP, 9 prior.GP, 18
params.GP, 13 propagate.GP, 20
pred.GP, 16 * utilities
prior.GP, 18 addpall.GP, 3
propagate.GP, 20 rectscale, 21

x datagen
data.GP, 4 addpall.CGP (addpall.GP), 3
exp2d.C, 8 addpall.ConstGP (addpall.GP), 3

addpall.GP, 3, 14

* iterations
PL, 14 apply, 12

* iteration data.CGP (data.GP), 4

papply, 11 data.ConstGP (data.GP), 4
+ methods data.frame, 11, 13,17
data.GP, 4 data.GP, 4, 14, 15
draw.GP, 6 draw.CGP (draw.GP), 6
init.GP,9 draw.ConstGP (draw.GP), 6
Ipredprob.GP, 10 draw.GP, 6, 10, 14, 15
papply, 11
params.GP, 13 exp2d.C, 8
PL, 14
pred.GP, 16 hist, 13
prior.GP, 18 o L
propagate.GP, 20 }n}t.CGP (1n1t:GI?), 9
+ models ?n}t.ConstGP (init.GP), 9
draw.GP, 6 %nlt.GP, 7,9,13,19
init.GP,9 interp, 5

lpredprob.GP, 10 interp.loess, 5

params.GP, 13 lpredprob.CGP, 11

prgd.GP, 16 lpredprob.CGP (1lpredprob.GP), 10
prior.GP, 18 1predprob.ConstGP, 1
propagate.GP, 20 lpredprob.ConstGP (1predprob.GP), 10
* package lpredprob.GP, 10, 11, 13-15, 17-19, 21
plgp-package, 2
* regression papply, 11, 15,17, 18
draw.GP, 6 params.CGP (params.GP), 13
init.GP,9 params.ConstGP (params.GP), 13
lpredprob.GP, 10 params.GP, 13, 15

22

INDEX

PL, 3-7,9-13,14, 17-21

plgp (PL), 14

plgp-package, 2

pred.CGP (pred.GP), 16
pred.ConstGP (pred.GP), 16
pred.GP, 12, 13,15, 16, 19
prior.CGP, 19

prior.CGP (prior.GP), 18
prior.ConstGP, /19

prior.ConstGP (prior.GP), 18
prior.GP, 5, 6,9, 10, 14, 17,18, 19, 20
propagate.CGP, 20

propagate.CGP (propagate.GP), 20
propagate.ConstGP, 20
propagate.ConstGP (propagate.GP), 20
propagate.GP, 7, 11, 13-15, 19, 20, 20

rectscale, 21
rectunscale (rectscale), 21

sample, 11
summary, 13

23

	plgp-package
	addpall.GP
	data.GP
	draw.GP
	exp2d.C
	init.GP
	lpredprob.GP
	papply
	params.GP
	PL
	pred.GP
	prior.GP
	propagate.GP
	rectscale
	Index

