
Package ‘phenofit’
January 23, 2026

Type Package

Title Extract Remote Sensing Vegetation Phenology

Version 0.3.11

Description The merits of 'TIMESAT' and 'phenopix' are adopted. Besides, a simple and
growing season dividing method and a practical snow elimination method
based on Whittaker were proposed. 7 curve fitting methods and 4 phenology
extraction methods were provided. Parameters boundary are considered for
every curve fitting methods according to their ecological meaning.
And 'optimx' is used to select best optimization method for different
curve fitting methods.
Reference:
Kong, D., (2020). R package: A state-of-the-art Vegetation Phenology extraction
package, phenofit version 0.3.1, <doi:10.5281/zenodo.5150204>;
Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains
the Asynchronization Between Vegetation Carbon Phenology and Vegetation Greenness
Phenology. Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636.
<doi:10.1029/2020JG005636>;
Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing
global MODIS EVI time series on the Google Earth Engine.
ISPRS Journal of Photogrammetry and Remote Sensing, 155, 13–24;
Zhang, Q., Kong, D., Shi, P., Singh, V.P., Sun, P., 2018. Vegetation phenology
on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013).
Agric. For. Meteorol. 248, 408–417. <doi:10.1016/j.agrformet.2017.10.026>.

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

LinkingTo Rcpp, RcppArmadillo

Depends R (>= 3.1)

Imports Rcpp, purrr, dplyr (>= 1.1.0), stringr, magrittr, lubridate,
data.table, zoo, gridExtra, ggplot2, optimx, ucminf, numDeriv,
methods, zeallot

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

1

https://doi.org/10.5281/zenodo.5150204
https://doi.org/10.1029/2020JG005636
https://doi.org/10.1016/j.agrformet.2017.10.026

2 Contents

URL https://github.com/eco-hydro/phenofit

BugReports https://github.com/eco-hydro/phenofit/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Dongdong Kong [aut, cre],
Mingzhong Xiao [aut],
Yongqiang Zhang [aut],
Xihui Gu [aut],
Jianjian Cui [aut]

Maintainer Dongdong Kong <kongdd.sysu@gmail.com>

Repository CRAN

Date/Publication 2026-01-23 09:30:06 UTC

Contents
CA_NS6 . 3
check_input . 3
check_ylu . 6
curvefit . 6
curvefits . 8
curvefits_LocalModel . 10
findpeaks . 12
FitDL . 14
f_goal . 16
get_fitting . 17
get_GOF . 17
get_param . 19
get_pheno . 20
GOF . 22
input_single . 23
Logistic . 23
MOD13A1 . 25
movmean . 26
optim_pheno . 26
opt_FUN . 28
PhenoDeriv . 30
PhenoGu . 31
PhenoKl . 33
PhenoTrs . 34
plot_curvefits . 35
plot_input . 37
plot_season . 38
qcFUN . 39
qc_sentinel2 . 40
rcpp_wSG . 41

https://github.com/eco-hydro/phenofit
https://github.com/eco-hydro/phenofit/issues

CA_NS6 3

season_mov . 42
set_options . 45
smooth_wHANTS . 48
smooth_wSG . 49
smooth_wWHIT . 50
whit2 . 52
wSELF . 53

Index 55

CA_NS6 MOD13A1 EVI observations at flux site CA-NS6

Description

Variables in CA-NS6:

• site: site name

• y: EVI

• date: date of image

• t: date of compositing image

• w: weights of data point

• QC_flag: QC flag of y, in the range of c("snow", "cloud", "shadow", "aerosol", "marginal",
"good")

Usage

data('CA_NS6')

Format

An object of class data.table (inherits from data.frame) with 161 rows and 6 columns.

check_input check_input

Description

Check input data, interpolate NA values in y, remove spike values, and set weights for NA in y and
w.

4 check_input

Usage

check_input(
t,
y,
w,
QC_flag,
nptperyear,
south = FALSE,
wmin = 0.2,
wsnow = 0.8,
ymin,
missval,
maxgap,
alpha = 0.02,
alpha_high = NULL,
date_start = NULL,
date_end = NULL,
mask_spike = TRUE,
na.rm = FALSE,
...

)

Arguments

t Numeric vector, Date variable

y Numeric vector, vegetation index time-series

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

QC_flag Factor (optional) returned by qcFUN, levels should be in the range of c("snow",
"cloud", "shadow", "aerosol", "marginal", "good"), others will be cat-
egoried into others. QC_flag is used for visualization in get_pheno() and
plot_curvefits().

nptperyear Integer, number of images per year.

south Boolean. In south hemisphere, growing year is 1 July to the following year 31
June; In north hemisphere, growing year is 1 Jan to 31 Dec.

wmin Double, minimum weight of bad points, which could be smaller the weight of
snow, ice and cloud.

wsnow Doulbe. Reset the weight of snow points, after get ylu. Snow flag is an im-
portant flag of ending of growing season. Snow points is more valuable than
marginal points. Hence, the weight of snow should be great than that of marginal.

ymin If specified, ylu[1] is constrained greater than ymin. This value is critical for
bare, snow/ice land, where vegetation amplitude is quite small. Generally, you
can set ymin=0.08 for NDVI, ymin=0.05 for EVI, ymin=0.5 gC m-2 s-1 for GPP.

missval Double, which is used to replace NA values in y. If missing, the default vlaue is
ylu[1].

check_input 5

maxgap Integer, nptperyear/4 will be a suitable value. If continuous missing value num-
bers less than maxgap, then interpolate those NA values by zoo::na.approx; If
false, then replace those NA values with a constant value ylu[1].
Replacing NA values with a constant missing value (e.g. background value
ymin) is inappropriate for middle growing season points. Interpolating all val-
ues by na.approx, it is unsuitable for large number continous missing segments,
e.g. in the start or end of growing season.

alpha Double, in [0,1], quantile prob of ylu_min.

alpha_high Double, [0,1], quantile prob of ylu_max. If not specified, alpha_high=alpha.
date_start, date_end

starting and ending date of the original vegetation time-sereis (before add_HeadTail)

mask_spike Boolean. Whether to remove spike values?

na.rm Boolean. If TRUE, NA and spike values will be removed; otherwise, NA and
spike values will be interpolated by valid neighbours.

... Others will be ignored.

Value

A list object returned:

• t : Numeric vector

• y0: Numeric vector, original vegetation time-series.

• y : Numeric vector, checked vegetation time-series, NA values are interpolated.

• w : Numeric vector

• Tn: Numeric vector

• ylu: = [ymin, ymax]. w_critical is used to filter not too bad values.
If the percentage good values (w=1) is greater than 30\
The else, if the percentage of w >= 0.5 points is greater than 10\ w_critical=0.5. In boreal
regions, even if the percentage of w >= 0.5 points is only 10\
We can’t rely on points with the wmin weights. Then,
y_good = y[w >= w_critical],
ymin = pmax(quantile(y_good, alpha/2), 0)
ymax = max(y_good).

Examples

data("CA_NS6")
d = CA_NS6
head(d)

nptperyear = 23
INPUT <- check_input(dt, dy, d$w, QC_flag = d$QC_flag,

nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)

plot_input(INPUT)

6 curvefit

check_ylu check_ylu

Description

Curve fitting values are constrained in the range of ylu. Only constrain trough value for a stable
background value. But not for peak value.

Usage

check_ylu(yfit, ylu)

Arguments

yfit Numeric vector, curve fitting result

ylu limits of y value, [ymin, ymax]

Value

yfit, the numeric vector in the range of ylu.

Examples

check_ylu(1:10, c(2, 8))

curvefit Fine curve fitting

Description

Curve fit vegetation index (VI) time-series of every growing season using fine curve fitting methods.

Usage

curvefit(
y,
t = index(y),
tout = t,
methods = c("AG", "Beck", "Elmore", "Gu", "Klos", "Zhang"),
w = NULL,
...,
type = 1L,
use.cpp = FALSE

)

curvefit 7

Arguments

y Vegetation time-series index, numeric vector

t The corresponding doy of x

tout The output interpolated time.

methods Fine curve fitting methods, can be one or more of c('AG', 'Beck', 'Elmore',
'Gu', 'Klos', 'Zhang').

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

... other parameters passed to curve fitting function.

type integer, 1 or -1

• 1: trough-to-trough curve fitting

• -1: peak-to-peak curve fitting

use.cpp (unstable, not used) boolean, whether to use c++ defined fine fitting function? If
FALSE, R version will be used.

Value

fFITs S3 object, see fFITs() for details.

Note

’Klos’ have too many parameters. It will be slow and not stable.

See Also

fFITs()

Examples

library(phenofit)
simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout = tout, methods)

8 curvefits

curvefits Fine Curve fitting

Description

Fine Curve fitting for INPUT time-series.

Usage

curvefits(INPUT, brks, options = list(), ...)

Arguments

INPUT A list object with the elements of ’t’, ’y’, ’w’, ’Tn’ (optional) and ’ylu’, returned
by check_input.

brks A list object with the elements of ’fit’ and ’dt’, returned by season or season_mov,
which contains the growing season division information.

options see section: options for fitting for details.

... other parameters to curvefit()

Value

List of phenofit fitting object.

options for fitting

• methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more of c(’AG’,
’Beck’, ’Elmore’, ’Zhang’, ’Gu’, ’Klos’)‘. Note that ’Gu’ and ’Klos’ are very slow.

• iters (default 2): max iterations of fine fitting.

• wFUN (default wTSM): Character or function, weights updating function of fine fitting function.

• wmin (default 0.1): min weights in the weights updating procedure.

• use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input?
If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If
true, original input y will be used (rough fitting is used to divide growing seasons and update
weights.

• use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note
that not for curve fitting. y0 is the original value before the process of check_input.

• nextend (default 2): Extend curve fitting window, until nextend good or marginal points are
found in the previous and subsequent growing season.

• maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent
maxExtendMonth period.

• minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth,
should be no shorter than minExtendMonth. When all points of the input time-series are
good value, then the extending period will be too short. In that situation, we can’t make sure
the connection between different growing seasons is smoothing.

curvefits 9

• minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is
less than minPercValid, curve fiting result is set to NA.

• minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature
Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

See Also

FitDL()

Examples

data("CA_NS6")
d = CA_NS6

nptperyear <- 23
INPUT <- check_input(dt, dy, d$w, QC_flag = d$QC_flag,

nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)

plot_input(INPUT)

Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,

options = list(
rFUN = "smooth_wWHIT", wFUN = wFUN,
r_min = 0.05, ypeak_min = 0.05,
lambda = 10,
verbose = FALSE

))
plot_season(INPUT, brks2, d)
Fine fitting
fits <- curvefits(

INPUT, brks2,
options = list(

methods = c("AG", "Beck", "Elmore", "Zhang"), #,"klos", "Gu"
wFUN = wFUN,
nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2

)
)

r_param = get_param(fits)
r_pheno = get_pheno(fits)
r_gof = get_GOF(fits)
d_fit = get_fitting(fits)

g <- plot_curvefits(d_fit, brks2)
grid::grid.newpage(); grid::grid.draw(g)

10 curvefits_LocalModel

curvefits_LocalModel curvefits by local model functions of TIMESAT

Description

Local model functions f_L(t), f_C(t) and f_R(t) describe the VI variation in intervals around
the left minima, the central maxima and the right minima.

Local model function are merged into global model function via merge_LocalModels() and Per
J\"onsson et al. (2004; their Eq. 12), where cut-off function sharply drop from 1 to 0 in small
intervals around (t_L + t_C)/2 and (t_C + t_R)/2.

F (t) =

{
α(t)fL(t) + [1− α(t)]fC(t), tL < t < tC

β(t)fC(t) + [1− β(t)]fR(t), tC < t < tR

Usage

curvefits_LocalModel(INPUT, brks, options = list(), ...)

merge_LocalModels(fits)

Arguments

INPUT A list object with the elements of ’t’, ’y’, ’w’, ’Tn’ (optional) and ’ylu’, returned
by check_input.

brks A list object with the elements of ’fit’ and ’dt’, returned by season or season_mov,
which contains the growing season division information.

options see section: options for fitting for details.

... other parameters to curvefit()

fits List objects returned by curvefits_LocalModel() (not curvefits()).

options for fitting

• methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more of c(’AG’,
’Beck’, ’Elmore’, ’Zhang’, ’Gu’, ’Klos’)‘. Note that ’Gu’ and ’Klos’ are very slow.

• iters (default 2): max iterations of fine fitting.

• wFUN (default wTSM): Character or function, weights updating function of fine fitting function.

• wmin (default 0.1): min weights in the weights updating procedure.

• use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input?
If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If
true, original input y will be used (rough fitting is used to divide growing seasons and update
weights.

• use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note
that not for curve fitting. y0 is the original value before the process of check_input.

curvefits_LocalModel 11

• nextend (default 2): Extend curve fitting window, until nextend good or marginal points are
found in the previous and subsequent growing season.

• maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent
maxExtendMonth period.

• minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth,
should be no shorter than minExtendMonth. When all points of the input time-series are
good value, then the extending period will be too short. In that situation, we can’t make sure
the connection between different growing seasons is smoothing.

• minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is
less than minPercValid, curve fiting result is set to NA.

• minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature
Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

References

1. Per J\"onsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of
satellite sensor data. Comput. Geosci. 30, 833-845. doi:10.1016/j.cageo.2004.05.006.

See Also

curvefits()

Examples

Not run:
library(phenofit)

data("CA_NS6")
d = CA_NS6

nptperyear <- 23
INPUT <- check_input(dt, dy, d$w, QC_flag = d$QC_flag,

nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)

plot_input(INPUT)

Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,

options = list(
rFUN = "smooth_wWHIT", wFUN = wFUN,
r_min = 0.05, ypeak_min = 0.05,
lambda = 10,
verbose = FALSE

))
plot_season(INPUT, brks2, d)

Fine fitting
fits <- curvefits_LocalModel(

INPUT, brks2,

https://doi.org/10.1016/j.cageo.2004.05.006

12 findpeaks

options = list(
methods = c("AG", "Beck", "Elmore", "Zhang", "Gu"), #,"klos", "Gu"
wFUN = wFUN,
nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2

),
constrain = TRUE

)
merge local model function into global model function
fits_merged = merge_LocalModels(fits)

Visualization ---
l_fitting = map(fits %>% guess_names, get_fitting) #%>% melt_list("period")

d_merged = get_fitting(fits_merged[[2]]) %>% cbind(type = "Merged")
d_raw = l_fitting[2:4] %>% set_names(c("Left", "Central", "Right")) %>%

melt_list("type")
d_obs = d_raw[, .(t, y, QC_flag)] %>% unique()
d_fit = rbind(d_merged, d_raw)[meth == "Zhang"]

levs = c("Left", "Central", "Right", "Merged")
levs_new = glue("({letters[1:4]}) {levs}") %>% as.character()
d_fit$type %<>% factor(levs, levs_new)

p = ggplot(d_obs, aes(t, y)) +
geom_point() +
geom_line(data = d_fit, aes(t, ziter2, color = type)) +
facet_wrap(~type) +
labs(x = "Date", y = "EVI") +
scale_x_date(date_labels = "%b %Y", expand = c(1, 1)*0.08) +
theme_bw(base_size = 13) +
theme(legend.position = "none",

strip.text = element_text(size = 14))
p

End(Not run)

findpeaks findpeaks

Description

Find peaks (maxima) in a time series. This function is modified from pracma::findpeaks.

Usage

findpeaks(
x,
nups = 1,
ndowns = nups,
zero = "0",

findpeaks 13

peakpat = NULL,
minpeakheight = -Inf,
minpeakdistance = 1,
h_min = 0,
h_max = 0,
npeaks = 0,
sortstr = FALSE,
include_gregexpr = FALSE,
IsPlot = F

)

Arguments

x Numeric vector.

nups minimum number of increasing steps before a peak is reached

ndowns minimum number of decreasing steps after the peak

zero can be +, -, or 0; how to interprete succeeding steps of the same value: increas-
ing, decreasing, or special

peakpat define a peak as a regular pattern, such as the default pattern [+]{1,}[-]{1,}; if
a pattern is provided, the parameters nups and ndowns are not taken into account

minpeakheight The minimum (absolute) height a peak has to have to be recognized as such
minpeakdistance

The minimum distance (in indices) peaks have to have to be counted. If the
distance of two maximum extreme value less than minpeakdistance, only the
real maximum value will be left.

h_min h is defined as the difference of peak value to the adjacent left and right trough
value (h_left and h_right respectively). The real peaks should follow min(h_left,
h_right) >= h_min.

h_max Similar as h_min, the real peaks should follow max(h_left, h_right) >= h_min.

npeaks the number of peaks to return. If sortstr = true, the largest npeaks maximum
values will be returned; If sortstr = false, just the first npeaks are returned in
the order of index.

sortstr Boolean, Should the peaks be returned sorted in decreasing oreder of their max-
imum value?

include_gregexpr

Boolean (default FALSE), whether to include the matched gregexpr?

IsPlot Boolean, whether to plot?

Note

In versions before v0.3.4, findpeaks(c(1, 2, 3, 4, 4, 3, 1)) failed to detect peaks when a flat
pattern exit in the middle.

From version v0.3.4, the peak pattern was changed from [+]{%d,}[-]{%d,} to [+]{%d,}[0]{0,}[-]{%d,}.
The latter can escape the flat part successfully.

14 FitDL

Examples

x <- seq(0, 1, len = 1024)
pos <- c(0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81)
hgt <- c(4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)
wdt <- c(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005)
pSignal <- numeric(length(x))
for (i in seq(along=pos)) {

pSignal <- pSignal + hgt[i]/(1 + abs((x - pos[i])/wdt[i]))^4
}

plot(pSignal, type="l", col="navy"); grid()
x <- findpeaks(pSignal, npeaks=3, h_min=4, sortstr=TRUE)
points(val~pos, x$X, pch=20, col="maroon")

FitDL Fine fitting

Description

Fine curve fitting function is used to fit vegetation time-series in every growing season.

Usage

FitDL.Zhang(y, t = index(y), tout = t, method = "nlm", w, type = 1L, ...)

FitDL.AG(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)

FitDL.AG2(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)

FitDL.Beck(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)

FitDL.Elmore(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)

FitDL.Gu(y, t = index(y), tout = t, method = "nlminb", w, type = 1L, ...)

FitDL.Klos(y, t = index(y), tout = t, method = "BFGS", w, type = 1L, ...)

Arguments

y input vegetation index time-series.

t the corresponding doy(day of year) of y.

tout the time of output curve fitting time-series.

method method passed to optimx or optim function.

w weights

type integer, 1 or -1

FitDL 15

• 1: trough-to-trough curve fitting
• -1: peak-to-peak curve fitting

... other paraters passed to optim_pheno().

Value

• tout: The time of output curve fitting time-series.

• zs : Smoothed vegetation time-series of every iteration.

• ws : Weights of every iteration.

• par : Final optimized parameter of fine fitting.

• fun : The name of fine fitting.

References

1. Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved
monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI.
Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021.

2. Elmore, A.J., Guinn, S.M., Minsley, B.J., Richardson, A.D., 2012. Landscape controls on the
timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Chang.
Biol. 18, 656-674. https://doi.org/10.1111/j.1365-2486.2011.02521.x.

3. Gu, L., Post, W.M., Baldocchi, D.D., Black, TRUE.A., Suyker, A.E., Verma, S.B., Vesala,
TRUE., Wofsy, S.C., 2009. Characterizing the Seasonal Dynamics of Plant Community Pho-
tosynthesis Across a Range of Vegetation Types, in: Noormets, A. (Ed.), Phenology of Ecosys-
tem Processes: Applications in Global Change Research. Springer New York, New York, NY,
pp. 35-58. https://doi.org/10.1007/978-1-4419-0026-5_2.

4. https://github.com/cran/phenopix/blob/master/R/FitDoubleLogGu.R

Examples

simulate vegetation time-series
t <- seq(1, 365, 8)
par <- c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)
data <- data.frame(t, y)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang")
tout <- seq(1, 365, 1)
r <- FitDL.Elmore(y, t, tout)

plot(r, data)
get_GOF(r, data)
get_param(r)

16 f_goal

f_goal Goal function of fine curve fitting methods

Description

Goal function of fine curve fitting methods

Usage

f_goal(par, fun, y, t, pred, w, ylu, ...)

Arguments

par A vector of parameters

fun A curve fitting function, can be one of doubleAG, doubleLog.Beck, doubleLog.Elmore,
doubleLog.Gu, doubleLog.Klos, doubleLog.Zhang, see Logistic() for de-
tails.

y Numeric vector, vegetation index time-series

t Numeric vector, Date variable

pred Numeric Vector, predicted values

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

ylu [ymin, ymax], which is used to force ypred in the range of ylu.

... others will be ignored.

Value

RMSE Root Mean Square Error of curve fitting values.

Examples

library(phenofit)

par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
par0 = c(mn = 0.15, mx = 0.65, sos = 100, rsp = 0.12, eos = 200, rau = 0.12)

simulate vegetation time-series
fFUN = doubleLog_Beck
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- fFUN(par, t)

f_goal(par0, fFUN, y, t)

get_fitting 17

get_fitting getFittings

Description

Get curve fitting data.frame

Usage

get_fitting(x)

S3 method for class 'list'
get_fitting(x)

S3 method for class 'fFITs'
get_fitting(x)

Arguments

x fFITs object returned by curvefit(), or list of fFITs objects

Examples

library(phenofit)
simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object
fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)

get_GOF get_GOF

Description

Goodness-of-fitting (GOF) of fine curve fitting results.

18 get_GOF

Usage

get_GOF(x, ...)

S3 method for class 'list'
get_GOF(x, ...)

S3 method for class 'fFITs'
get_GOF(x, ...)

S3 method for class 'fFIT'
get_GOF(x, data, ...)

Arguments

x fFITs object returned by curvefit(), or list of fFITs objects

... ignored.

data A data.frame with the columns of c('t', 'y')

Value

• meth: The name of fine curve fitting method

• RMSE: Root Mean Square Error

• NSE : Nash-Sutcliffe model efficiency coefficient

• R : Pearson-Correlation

• R2 : determined coefficient

• pvalue: pvalue of R

• n : The number of observations

References

1. https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient

2. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

See Also

curvefit()

Examples

library(phenofit)
simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)

get_param 19

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object
fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)

get_param Get parameters from curve fitting result

Description

Get parameters from curve fitting result

Usage

get_param(x)

S3 method for class 'list'
get_param(x)

S3 method for class 'fFITs'
get_param(x)

S3 method for class 'fFIT'
get_param(x)

Arguments

x fFITs object returned by curvefit(), or list of fFITs objects

Value

A list of tibble with the length being equal to the number of methods. Each line of tibble cotains
the corresponding parameters of each growing season.

Examples

library(phenofit)
simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object

20 get_pheno

fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)

get_pheno get_pheno

Description

Get yearly vegetation phenological metrics of a curve fitting method

Usage

get_pheno(x, ...)

S3 method for class 'rfit'
get_pheno(x, TRS = c(0.2, 0.5), asymmetric = TRUE, ...)

S3 method for class 'list'
get_pheno(
x,
method,
TRS = c(0.2, 0.5, 0.6),
analytical = FALSE,
smoothed.spline = FALSE,
IsPlot = FALSE,
show.title = TRUE,
...

)

S3 method for class 'fFITs'
get_pheno(
x,
method,
TRS = c(0.2, 0.5),
analytical = FALSE,
smoothed.spline = FALSE,
IsPlot = FALSE,
title.left = "",
show.PhenoName = TRUE,
...

)

get_pheno 21

Arguments

x One of:

• rfit (rought fitting object), returned by brks2rfit().
• fFITs (fine fitting object), return by multiple curve fitting methods by curvefit()

for a growing season.
• list of fFITs() object, for multiple growing seasons.

... ignored.

TRS Threshold for PhenoTrs.

asymmetric If true, background value in spring season and autumn season is regarded as
different.

method Which fine curve fitting method to be extracted?

analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will
be used.

smoothed.spline

Whether apply smooth.spline first?

IsPlot Boolean. Whether to plot figure?

show.title Whether to show the name of fine curve fitting method in top title?

title.left String of growing season flag.

show.PhenoName Whether to show phenological methods names in the top panel?

fFITs fFITs object returned by curvefits()

Value

List of every year phenology metrics

Examples

library(phenofit)
simulate vegetation time-series
FUN = doubleLog.Beck
par = c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object
fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)

22 GOF

GOF GOF

Description

Good of fitting

Usage

GOF(Y_obs, Y_sim, w, include.r = TRUE, include.cv = FALSE)

Arguments

Y_obs Numeric vector, observations
Y_sim Numeric vector, corresponding simulated values
w Numeric vector, weights of every points. If w included, when calculating mean,

Bias, MAE, RMSE and NSE, w will be taken into considered.
include.r If true, r and R2 will be included.
include.cv If true, cv will be included.

Value

• RMSE root mean square error
• NSE NASH coefficient
• MAE mean absolute error
• AI Agreement index (only good points (w == 1)) participate to calculate. See details in Zhang

et al., (2015).
• Bias bias
• Bias_perc bias percentage
• n_sim number of valid obs
• cv Coefficient of variation
• R2 correlation of determination
• R pearson correlation
• pvalue pvalue of R

References

Zhang Xiaoyang (2015), http://dx.doi.org/10.1016/j.rse.2014.10.012

Examples

Y_obs = rnorm(100)
Y_sim = Y_obs + rnorm(100)/4
GOF(Y_obs, Y_sim)

input_single 23

input_single input object with one growing season per year

Description

Variables in input_single:

• t: date of compositing image
• y: EVI
• w: weights of data point
• ylu: lower and upper boundary
• nptperyear: points per year
• south: boolean, whether in south Hemisphere?

Usage

data('input_single')

Format

An object of class list of length 6.

Logistic Fine fitting functions

Description

double logistics, piecewise logistics and many other functions to curve fit VI time-series.

Usage

Logistic(par, t)

doubleLog.Zhang(par, t)

doubleLog.AG(par, t)

doubleLog.AG2(par, t)

doubleLog.Beck(par, t)

doubleLog.Elmore(par, t)

doubleLog.Gu(par, t)

doubleLog.Klos(par, t)

24 Logistic

Arguments

par A vector of parameters

t A Date or numeric vector

Details

• Logistic The traditional simplest logistic function. It can be only used in half growing sea-
son, i.e. vegetation green-up or senescence period.

• doubleLog.Zhang Piecewise logistics, (Zhang Xiaoyang, RSE, 2003).

• doubleAG Asymmetric Gaussian.

• doubleLog.Beck Beck logistics.

• doubleLog.Gu Gu logistics.

• doubleLog.Elmore Elmore logistics.

• doubleLog.Klos Klos logistics.

All of those function have par and formula attributes for the convenience for analytical D1 and D2

References

1. Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved
monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI.
Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021.

2. Elmore, A.J., Guinn, S.M., Minsley, B.J., Richardson, A.D., 2012. Landscape controls on the
timing of spring, autumn, and growing season length in mid-Atlantic forests. Glob. Chang.
Biol. 18, 656-674. https://doi.org/10.1111/j.1365-2486.2011.02521.x.

3. Gu, L., Post, W.M., Baldocchi, D.D., Black, TRUE.A., Suyker, A.E., Verma, S.B., Vesala,
TRUE., Wofsy, S.C., 2009. Characterizing the Seasonal Dynamics of Plant Community Pho-
tosynthesis Across a Range of Vegetation Types, in: Noormets, A. (Ed.), Phenology of Ecosys-
tem Processes: Applications in Global Change Research. Springer New York, New York, NY,
pp. 35-58. https://doi.org/10.1007/978-1-4419-0026-5_2.

4. Peter M. Atkinson, et al., 2012, RSE, 123:400-417

5. https://github.com/cran/phenopix/blob/master/R/FitDoubleLogGu.R

Examples

simulate vegetation time-series
t <- seq(1, 365, 8)
par <- c(mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)
data <- data.frame(t, y)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang")
tout <- seq(1, 365, 1)
r <- FitDL.Elmore(y, t, tout)

plot(r, data)

MOD13A1 25

get_GOF(r, data)
get_param(r)

MOD13A1 MOD13A1

Description

A data.table dataset, raw data of MOD13A1 data, clipped in 10 representative points (’DE-Obe’,
’IT-Col’, ’CN-Cha’, ’AT-Neu’, ’ZA-Kru’, ’AU-How’, ’CA-NS6’, ’US-KS2’, ’CH-Oe2’, ’CZ-wet’).

Usage

data('MOD13A1')

Format

An object of class list of length 2.

Details

Variables in MOD13A1:

• dt: vegetation index data

– system:index: image index
– DayOfYear: Numeric, Julian day of year
– DayOfYear: corresponding doy of compositing NDVI and EVI
– DetailedQA: VI quality indicators
– SummaryQA: Quality reliability of VI pixel
– EVI: Enhanced Vegetation Index
– NDVI: Normalized Difference Vegetation Index
– date: Date, corresponding date
– site: String, site name
– sur_refl_b01: Red surface reflectance
– sur_refl_b02: NIR surface reflectance
– sur_refl_b03: Blue surface reflectance
– sur_refl_b07: MIR surface reflectance
– .geo: geometry

• st: station info

– ID: site ID
– site: site name
– lat: latitude
– lon: longitude
– IGBPname: IGBP land cover type

26 optim_pheno

References

1. https://code.earthengine.google.com/dataset/MODIS/006/MOD13A1

movmean movmean

Description

NA and Inf values in the yy will be ignored automatically.

Usage

movmean(y, halfwin = 1L, SG_style = FALSE, w = NULL)

Arguments

y A numeric vector.

halfwin Integer, half of moving window size

SG_style If true, head and tail values will be in the style of SG (more weights on the center
point), else traditional moving mean style.

w Corresponding weights of yy, same long as yy.

Examples

x <- 1:100
x[50] <- NA; x[80] <- Inf
s1 <- movmean(x, 2, SG_style = TRUE)
s2 <- movmean(x, 2, SG_style = FALSE)

optim_pheno optim_pheno

Description

Interface of optimization functions for double logistics and other parametric curve fitting functions.

optim_pheno 27

Usage

optim_pheno(
prior,
sFUN,
y,
t,
tout,
method,
w,
nptperyear,
ylu,
iters = 2,
wFUN = wTSM,
lower = -Inf,
upper = Inf,
constrain = TRUE,
verbose = FALSE,
...,
use.cpp = FALSE

)

Arguments

prior A vector of initial values for the parameters for which optimal values are to be
found. prior is suggested giving a column name.

sFUN The name of fine curve fitting functions, can be one of 'FitAG', 'FitDL.Beck', 'FitDL.Elmore', 'FitDL.Gu' and 'FitDL.Klos', 'FitDL.Zhang'.
y Numeric vector, vegetation index time-series
t Numeric vector, Date variable
tout Corresponding doy of prediction.
method The name of optimization method to solve fine fitting, one of 'BFGS','CG','Nelder-Mead', 'L-BFGS-B', 'nlm', 'nlminb', 'ucminf'

and 'spg','Rcgmin','Rvmmin', 'newuoa','bobyqa','nmkb','hjkb'.
w (optional) Numeric vector, weights of y. If not specified, weights of all NA values

will be wmin, the others will be 1.0.
nptperyear Integer, number of images per year, passed to wFUN. Only wTSM() needs nptperyear.

If not specified, nptperyear will be calculated based on t.
ylu [ymin, ymax], which is used to force ypred in the range of ylu.
iters How many times curve fitting is implemented.
wFUN weights updating function, can be one of ’wTSM’, ’wChen’ and ’wBisquare’.
lower, upper vectors of lower and upper bounds, replicated to be as long as start. If unspec-

ified, all parameters are assumed to be unconstrained.
constrain boolean, whether to use parameter constrain
verbose Whether to display intermediate variables?
... other parameters passed to I_optim() or I_optimx().
use.cpp (unstable, not used) boolean, whether to use c++ defined fine fitting function? If

FALSE, R version will be used.

28 opt_FUN

Value

A fFIT() object, with the element of:

• tout: The time of output curve fitting time-series.
• zs : Smoothed vegetation time-series of every iteration.
• ws : Weights of every iteration.
• par : Final optimized parameter of fine fitting.
• fun : The name of fine fitting.

See Also

fFIT(), stats::nlminb()

Examples

library(magrittr)
library(purrr)

simulate vegetation time-series
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)

FUN = doubleLog_Beck
par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
par0 = c(mn = 0.15, mx = 0.65, sos = 100, rsp = 0.12, eos = 200, rau = 0.12)

y <- FUN(par, t)

methods = c("BFGS", "ucminf", "nlm", "nlminb")
opt1 <- I_optim(par0, doubleLog_Beck, y, t, methods) # "BFGS", "ucminf", "nlm",
opt2 <- I_optimx(prior, fFUN, y, t, tout,)

sFUN = "doubleLog.Beck" # doubleLog.Beck
r <- optim_pheno(par0, sFUN, y, t, tout, method = methods[4],

nptperyear = 46, iters = 2, wFUN = wTSM, verbose = FALSE, use.julia = FALSE)

opt_FUN Unified optimization function

Description

I_optimx is rich of functionality, but with a low computing performance. Some basic optimization
functions are unified here, with some input and output format.

• opt_ncminf General-Purpose Unconstrained Non-Linear Optimization, see ucminf::ucminf().
• opt_nlminb Optimization using PORT routines, see stats::nlminb().
• opt_nlm Non-Linear Minimization, stats::nlm().
• opt_optim General-purpose Optimization, see stats::optim().

opt_FUN 29

Usage

opt_ucminf(par0, objective, ...)

opt_nlm(par0, objective, ...)

opt_optim(par0, objective, method = "BFGS", ...)

opt_nlminb(par0, objective, ...)

Arguments

par0 Initial values for the parameters to be optimized over.

objective A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

... other parameters passed to objective.

method optimization method to be used in p_optim. See stats::optim().

Value

• convcode: An integer code. 0 indicates successful convergence. Various methods may or may
not return sufficient information to allow all the codes to be specified. An incomplete list of
codes includes

– 1: indicates that the iteration limit maxit had been reached.

– 20: indicates that the initial set of parameters is inadmissible, that is, that the function
cannot be computed or returns an infinite, NULL, or NA value.

– 21: indicates that an intermediate set of parameters is inadmissible.

– 10: indicates degeneracy of the Nelder–Mead simplex.

– 51: indicates a warning from the "L-BFGS-B" method; see component message for fur-
ther details.

– 52: indicates an error from the "L-BFGS-B" method; see component message for further
details.

– 9999: error

• value: The value of fn corresponding to par

• par: The best parameter found

• nitns: the number of iterations

• fevals: The number of calls to objective.

See Also

optim_pheno(), I_optim()

30 PhenoDeriv

Examples

library(phenofit)
library(ggplot2)
library(magrittr)
library(purrr)
library(data.table)

simulate vegetation time-series
fFUN = doubleLog_Beck
par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
par0 = c(mn = 0.15, mx = 0.65, sos = 100, rsp = 0.12, eos = 200, rau = 0.12)

t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- fFUN(par, t)

optFUNs <- c("opt_ucminf", "opt_nlminb", "opt_nlm", "opt_optim") %>% set_names(., .)
opts <- lapply(optFUNs, function(optFUN){

optFUN <- get(optFUN)
opt <- optFUN(par0, f_goal, y = y, t = t, fun = fFUN)
opt$ysim <- fFUN(opt$par, t)
opt

})

visualization
df <- map(opts, "ysim") %>% as.data.table() %>% cbind(t, y, .)
pdat <- data.table::melt(df, c("t", "y"), variable.name = "optFUN")

ggplot(pdat) +
geom_point(data = data.frame(t, y), aes(t, y), size = 2) +
geom_line(aes(t, value, color = optFUN), linewidth = 0.9)

PhenoDeriv Phenology extraction in Derivative method (DER)

Description

Phenology extraction in Derivative method (DER)

Usage

PhenoDeriv(x, t, ...)

S3 method for class 'fFIT'
PhenoDeriv(x, t = NULL, analytical = FALSE, smoothed.spline = FALSE, ...)

Default S3 method:
PhenoDeriv(x, t, der1, IsPlot = TRUE, show.legend = TRUE, ...)

PhenoGu 31

Arguments

x numeric vector, or fFIT object returned by curvefit().

t doy vector, corresponding doy of vegetation index.

... Other parameters will be ignored.

analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will
be used.

smoothed.spline

Whether apply smooth.spline first?

der1 the first order difference

IsPlot whether to plot?

show.legend whether show figure lelend?

References

1. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., . . .
Richardson, A. D. (2016). Phenopix: A R package for image-based vegetation phenology.
Agricultural and Forest Meteorology, 220, 141–150. doi:10.1016/j.agrformet.2016.01.006

See Also

PhenoTrs(), PhenoGu(), PhenoKl()

PhenoGu Phenology extraction in GU method (GU)

Description

Phenology extraction in GU method (GU)

Usage

PhenoGu(x, t, ...)

S3 method for class 'fFIT'
PhenoGu(x, t = NULL, analytical = FALSE, smoothed.spline = FALSE, ...)

Default S3 method:
PhenoGu(x, t, der1, IsPlot = TRUE, ...)

https://doi.org/10.1016/j.agrformet.2016.01.006

32 PhenoGu

Arguments

x numeric vector, or fFIT object returned by curvefit().
t doy vector, corresponding doy of vegetation index.
... other parameters to PhenoGu.default() or PhenoGu.fFIT()
analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will

be used.
smoothed.spline

Whether apply smooth.spline first?
der1 the first order difference
IsPlot whether to plot?

Value

A numeric vector, with the elements of:

• UD: upturn date
• SD: stabilisation date
• DD: downturn date
• RD: recession date

References

1. Gu, L., Post, W. M., Baldocchi, D. D., Black, T. A., Suyker, A. E., Verma, S. B., . . . Wofsy, S.
C. (2009). Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across
a Range of Vegetation Types. In A. Noormets (Ed.), Phenology of Ecosystem Processes:
Applications in Global Change Research (pp. 35–58). New York, NY: Springer New York.
doi:10.1007/9781441900265_2

2. Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., . . .
Richardson, A. D. (2016). Phenopix: A R package for image-based vegetation phenology.
Agricultural and Forest Meteorology, 220, 141–150. doi:10.1016/j.agrformet.2016.01.006

Examples

`doubleLog.Beck` simulate vegetation time-series
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoDeriv(x)
PhenoGu(x)
PhenoKl(x)

https://doi.org/10.1007/978-1-4419-0026-5_2
https://doi.org/10.1016/j.agrformet.2016.01.006

PhenoKl 33

PhenoKl Phenology extraction in Inflection method (Zhang)

Description

Phenology extraction in Inflection method (Zhang)

Usage

PhenoKl(
fFIT,
t = NULL,
analytical = FALSE,
smoothed.spline = FALSE,
IsPlot = TRUE,
show.legend = TRUE,
...

)

Arguments

fFIT object return by curvefit()

t doy vector, corresponding doy of vegetation index.

analytical If true, numDeriv package grad and hess will be used; if false, D1 and D2 will
be used.

smoothed.spline

Whether apply smooth.spline first?

IsPlot whether to plot?

show.legend whether show figure lelend?

... Other parameters will be ignored.

Value

A numeric vector, with the elements of: Greenup, Maturity, Senescence, Dormancy.

References

1. Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F. F., Gao, F., . . . Huete,
A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment,
84(3), 471–475. doi:10.1016/S00344257(02)001359

https://doi.org/10.1016/S0034-4257%2802%2900135-9

34 PhenoTrs

Examples

`doubleLog.Beck` simulate vegetation time-series
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoDeriv(x)
PhenoGu(x)
PhenoKl(x)

PhenoTrs Phenology extraction in Threshold method (TRS)

Description

Phenology extraction in Threshold method (TRS)

Usage

PhenoTrs(
x,
t = NULL,
approach = c("White", "Trs"),
trs = 0.5,
asymmetric = TRUE,
IsPlot = TRUE,
...

)

S3 method for class 'fFIT'
PhenoTrs(x, t = NULL, ...)

Default S3 method:
PhenoTrs(
x,
t = NULL,
approach = c("White", "Trs"),
trs = 0.5,
asymmetric = TRUE,
IsPlot = TRUE,
...

)

plot_curvefits 35

Arguments

x numeric vector, or fFIT object returned by curvefit().

t doy vector, corresponding doy of vegetation index.

approach to be used to calculate phenology metrics. ’White’ (White et al. 1997) or ’Trs’
for simple threshold.

trs threshold to be used for approach "Trs", in (0, 1).

asymmetric If true, background value in spring season and autumn season is regarded as
different.

IsPlot whether to plot?

... other parameters to PhenoPlot

See Also

PhenoDeriv(), PhenoGu(), PhenoKl()

Examples

`doubleLog.Beck` simulate vegetation time-series
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
par = c(mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
y <- doubleLog.Beck(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
x <- fit$model$AG # one model

par(mfrow = c(2, 2))
PhenoTrs(x)
PhenoDeriv(x)
PhenoGu(x)
PhenoKl(x)

plot_curvefits plot_curvefits

Description

plot_curvefits

Usage

plot_curvefits(
d_fit,
seasons,
d_obs = NULL,

36 plot_curvefits

title = NULL,
xlab = "Time",
ylab = "Vegetation Index",
yticks = NULL,
font.size = 14,
theme = NULL,
cex = 2,
shape = "point",
angle = 30,
show.legend = TRUE,
layer_extra = NULL,
...

)

Arguments

d_fit data.frame of curve fittings returned by get_fitting().

seasons growing season division object returned by season() and season_mov().

d_obs data.frame of original vegetation time series, with the columns of t, y and
QC_flag. If not specified, it will be determined from d_fit.

title String, title of figure.

xlab, ylab String, title of xlab and ylab.

yticks ticks of y axis

font.size Font size of axis.text

theme ggplot theme

cex point size for VI observation.

shape the shape of input VI observation? line or point

angle text.x angle

show.legend Boolean

layer_extra (not used) extra ggplot layers

... ignored

Examples

data("CA_NS6")
d = CA_NS6

nptperyear <- 23
INPUT <- check_input(dt, dy, d$w, QC_flag = d$QC_flag,

nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)

plot_input(INPUT)

Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,

plot_input 37

options = list(
rFUN = "smooth_wWHIT", wFUN = wFUN,
r_min = 0.05, ypeak_min = 0.05,
lambda = 10,
verbose = FALSE

))
plot_season(INPUT, brks2, d)
Fine fitting
fits <- curvefits(

INPUT, brks2,
options = list(

methods = c("AG", "Beck", "Elmore", "Zhang"), #,"klos", "Gu"
wFUN = wFUN,
nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2

)
)

r_param = get_param(fits)
r_pheno = get_pheno(fits)
r_gof = get_GOF(fits)
d_fit = get_fitting(fits)

g <- plot_curvefits(d_fit, brks2)
grid::grid.newpage(); grid::grid.draw(g)

plot_input Plot INPUT returned by check_input

Description

Plot INPUT returned by check_input

Usage

plot_input(INPUT, wmin = 0.2, show.y0 = TRUE, ylab = "VI", ...)

Arguments

INPUT A list object with the elements of t, y, w, Tn (optional) and ylu, returned by
check_input().

wmin double, minimum weigth (i.e. weight of snow, ice and cloud).

show.y0 boolean. Whether to show original time-series y0 or processed time-series y by
check_input()?

ylab y axis title

... other parameter will be ignored.

38 plot_season

Examples

library(phenofit)
data("CA_NS6"); d = CA_NS6
global parameter
IsPlot = TRUE
nptperyear = 23
ypeak_min = 0.05

INPUT <- check_input(dt, dy, dw, dQC_flag, nptperyear,
maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)

plot_input(INPUT)

plot_season plot_season

Description

Plot growing season divding result.

Usage

plot_season(
INPUT,
brks,
plotdat,
IsPlot.OnlyBad = FALSE,
show.legend = TRUE,
ylab = "VI",
title = NULL,
show.shade = TRUE,
margin = 0.35

)

Arguments

INPUT A list object with the elements of t, y, w, Tn (optional) and ylu, returned by
check_input().

brks A list object returned by season or season_mov.
plotdat (optional) A list or data.table, with t, y and w. Only if IsPlot=TRUE, plot_input()

will be used to plot. Known that y and w in INPUT have been changed, we sug-
gest using the original data.table.

IsPlot.OnlyBad If true, only plot partial figures whose NSE < 0.3.
show.legend Whether to show legend?
ylab y axis title
title The main title (on top)
show.shade Boolean, period inside growing cycle colored as shade?
margin ylim = c(ymin, ymax + margin * A); A = ymax - ymin.

qcFUN 39

qcFUN Initial weights according to qc

Description

• getBits: Extract bitcoded QA information from bin value

• qc_summary: Initial weigths based on Quality reliability of VI pixel, suit for MOD13A1,
MOD13A2 and MOD13Q1 (SummaryQA band).

• qc_5l: Initial weights based on Quality control of five-level confidence score, suit for MCD15A3H(LAI,
FparLai_QC), MOD17A2H(GPP, Psn_QC) and MOD16A2(ET, ET_QC).

• qc_StateQA: Initial weights based on StateQA, suit for MOD09A1, MYD09A1.

• qc_FparLai: For MODIS LAI

• qc_NDVI3g: For AVHRR NDVI3g

• qc_NDVIv4: For AVHRR NDVIv4

Usage

getBits(x, start, end = start)

qc_summary(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_StateQA(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_FparLai(QA, FparLai_QC = NULL, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_5l(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_NDVIv4(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_NDVI3g(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_SPOT(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

Arguments

x Binary value

start Bit starting position, count from zero

end Bit ending position

QA quality control variable

wmin Double, minimum weigth (i.e. weight of snow, ice and cloud).

wmid Dougle, middle weight, i.e. marginal

wmax Double, maximum weight, i.e. good

FparLai_QC Another QC flag of MCD15A3H

40 qc_sentinel2

Details

If FparLai_QC specified, I_margin = SCF_QC >= 2 & SCF_QC <= 3.

Value

A list object with

• weigths: Double vector, initial weights.

• QC_flag: Factor vector, with the level of c("snow", "cloud", "shadow", "aerosol", "marginal",
"good")

Note

qc_5l and qc_NDVIv4 only returns weight, without QC_flag.

References

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A1

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD15A3H

Erwin Wolters, Else Swinnen, Carolien Toté, Sindy Sterckx. SPOT-VGT COLLECTION 3 PROD-
UCTS USER MANUAL V1.2, 2018, P47

See Also

qc_sentinel2()

Examples

set.seed(100)
QA <- as.integer(runif(100, 0, 2^7))

r1 <- qc_summary(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r2 <- qc_StateQA(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_5l <- qc_5l(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_NDVI3g <- qc_NDVI3g(QA, wmin = 0.2, wmid = 0.5, wmax = 1)
r_NDVIv4 <- qc_NDVIv4(QA, wmin = 0.2, wmid = 0.5, wmax = 1)

qc_sentinel2 Initial weights for sentinel2 according to SCL band

rcpp_wSG 41

Description

SCL Value Description Quality weight
1 Saturated or defective Bad wmin

2 Dark Area Pixels Bad wmin

3 Cloud Shadows Bad wmin

4 Vegetation Good wmax

5 Bare Soils Good wmax

6 Water Good wmax

7 Clouds Low Probability / Unclassified Good wmax

8 Clouds Medium Probability Marginal wmid

9 Clouds High Probability Bad wmid

10 Cirrus Good wmid

11 Snow / Ice Bad wmid

Usage

qc_sentinel2(SCL, wmin = 0.2, wmid = 0.5, wmax = 1)

Arguments

SCL quality control variable for sentinel2

wmin Double, minimum weigth (i.e. weight of snow, ice and cloud).

wmid Dougle, middle weight, i.e. marginal

wmax Double, maximum weight, i.e. good

References

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR

Examples

qc_sentinel2(1:11)

rcpp_wSG Weighted Savitzky-Golay written in RcppArmadillo

Description

NA and Inf values in the yy has been ignored automatically.

42 season_mov

Usage

rcpp_wSG(y, halfwin = 1L, d = 1L, w = NULL)

rcpp_SG(y, halfwin = 1L, d = 1L)

Arguments

y colvec

halfwin halfwin of Savitzky-Golay

d polynomial of degree. When d = 1, it becomes moving average.

w colvec of weight

Examples

y <- 1:15
w <- seq_along(y)/length(y)

frame = 5
d = 2
s1 <- rcpp_wSG(y, frame, d, w)
s2 <- rcpp_SG(y, frame, d)

season_mov Moving growing season division

Description

Moving growing season division

Usage

season_mov(INPUT, options = list(), ..., years.run = NULL)

Arguments

INPUT A list object with the elements of t, y, w, Tn (optional) and ylu, returned by
check_input().

options see the following section options for season for details.

... others parameter to set_options()

years.run Numeric vector. Which years to run? If not specified, it is all years.

season_mov 43

options for season

(a) Parameters for rough fitting:
• rFUN : character (default smooth_wWHIT), the name of rough curve fitting function, can be

one of c("smooth_wSG", "smooth_wWHIT", "smooth_wHANTS"), which are corresponding
to smooth_wSG(), smooth_wWHIT() and smooth_wHANTS().

• wFUN : character (default wTSM), the name of weights updating functions, can be one of
c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(), wChen(), wBisquare() and
wSELF() for details.

• iters : integer (default 2), the number of rough fitting iterations.
• wmin : double, the minimum weight of bad points (i.e. snow, ice and cloud).
• verbose : logical (default FALSE). If TRUE, options$season will be printed on the console.
• lambda : double (default NULL), the smoothing parameter of smooth_wWHIT().

– If lambda = NULL, V-curve theory will be employed to find the optimal lambda. See
lambda_vcurve() for details.

• frame : integer (default NULL), the parameter of smooth_wSG(), moving window size.
– If frame = NULL, frame will be reset as floor(nptperyear/5)*2 + 1 (refered by TIME-

SAT).
• nf : integer (default 4), the number of frequencies in smooth_wHANTS().
• maxExtendMonth: integer (default 12), previous and subsequent maxExtendMonth (in month)

data were added to the current year for rough fitting.
• nextend : integer (default NULL), same as maxExtendMonth, but in points.

– If nextend provided, maxExtendMonth will be ignored.
– If nextend = NULL, nextend will be reset as ceiling(maxExtendMonth/12*nptperyear)

(b) Parameters for growing season division:
• minpeakdistance : double (default NULL), the minimum distance of two peaks (in points).

If the distance of two maximum extreme value less than minpeakdistance, only the maxi-
mum one will be kept.

– If minpeakdistance = NULL, it will be reset as nptperyear/6.
• r_max : double (default 0.2; in (0, 1)). r_max and r_min are used to eliminate fake peaks and

troughs.
– The real peaks should satisfy:

1. max(hpeak,L, hpeak,R) > rmaxA

2. min(hpeak,L, hpeak,R) > rminA, where hpeak,L, hpeak,R are height difference from
the peak to the left- and right-hand troughs.

– The troughs should satisfy:
1. max(htrough,L, htrough,R) > rmaxA, where htrough,L, htrough,R are height differ-

ence from the trough to the left- and right-hand peaks.
• r_min : double (default 0.05; in (0, 1)), see above r_max for details. r_min < r_max.
• rtrough_max : double (default 0.6, in (0, 1)), ypeak <= rtroughmax ∗A+ ylu[1].
• ypeak_min : double 0.1 (in VI unit), ypeak >= ypeakmin.
• .check_season : logical (default TRUE). check the growing season length according to
len_min and len_max. If FALSE, len_min and len_max will lose their effect.

• len_min : integer (default 45), the minimum length (in days) of growing season

44 season_mov

• len_max : integer (default 650), the minimum length (in days) of growing season
• adj.param : logical. If TRUE (default), if there are too many or too less peaks and troughs,
phenofit will automatically adjust rough curve fitting function parameters. See MaxPeaksPerYear
and MaxTroughsPerYear for details.

• MaxPeaksPerYear (optional) : integer (default 2), the max number of peaks per year. If
PeaksPerYear > MaxPeaksPerYear, then lambda = lambda*2.

• MaxTroughsPerYear (optional) : integer (default 3), the max number of troughs per year. If
TroughsPerYear > MaxTroughsPerYear, then lambda = lambda*2.

• calendarYear : logical (default FALSE). If TRUE, the start and end of a calendar year will
be regarded as growing season division (North Hemisphere is from 01 Jan to 31 Dec; South
Hemisphere is from 01 Jul to 30 Jun).

• rm.closed : logical (default TRUE). If TRUE, closed peaks (or troughs) will be further tidied.
Only the maximum

• is.continuous (not used): logical (default TRUE). This parameter is for fluxnet2015 fluxsite
data, where the input might be not continuous.

References

1. Kong, D., Zhang, Y., Wang, D., Chen, J., & Gu, X. (2020). Photoperiod Explains the Asyn-
chronization Between Vegetation Carbon Phenology and Vegetation Greenness Phenology.
Journal of Geophysical Research: Biogeosciences, 125(8), e2020JG005636. https://doi.org/10.1029/2020JG005636

2. Kong, D., Zhang, Y., Gu, X., & Wang, D. (2019). A robust method for reconstructing global
MODIS EVI time series on the Google Earth Engine. ISPRS Journal of Photogrammetry and
Remote Sensing, 155, 13-24.

See Also

season()

Examples

data("CA_NS6")
d <- CA_NS6

nptperyear <- 23
INPUT <- check_input(dt, dy, d$w,

QC_flag = d$QC_flag,
nptperyear = nptperyear, south = FALSE,
maxgap = nptperyear / 4, alpha = 0.02, wmin = 0.2

)

curve fitting by year
brks_mov <- season_mov(INPUT,

options = list(
rFUN = "smooth_wWHIT", wFUN = "wTSM",
lambda = 10,
r_min = 0.05, ypeak_min = 0.05,
verbose = TRUE

)
)

set_options 45

plot_season(INPUT, brks_mov)

rfit <- brks2rfit(brks_mov)
Phenological Metrics from rough fitting
r <- get_pheno(rfit)

set_options set and get phenofit option

Description

set and get phenofit option

Usage

set_options(..., options = NULL)

get_options(names = NULL)

Arguments

... list of phenofit options FUN_season: character, season_mov or season rFUN:
character, rough fitting function. smooth_wWHIT, smooth_wSG or smooth_wHANTs.

options If not NULL, options will overwrite the default parameters (get_options()).

• qcFUN : function to process qc flag, see qcFUN() for details.
• nptperyear : Integer, number of images per year.
• wFUN : character (default wTSM), the name of weights updating functions,

can be one of c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(),
wChen(), wBisquare() and wSELF() for details.

– If options$season$wFUN or options$season$wFUN is NULL, the options$wFUN
will overwrite it.

• wmin : double, the minimum weigth of bads points (i.e. snow, ice and
cloud).

– If options$season$wmin or options$season$wmin is NULL, the options$wmin
will overwrite it.

• season : See the following part: options for season for details.
• fitting : See the following part: options for fitting for details.

names vector of character, names of options

options for season

(a) Parameters for rough fitting:
• rFUN : character (default smooth_wWHIT), the name of rough curve fitting function, can be

one of c("smooth_wSG", "smooth_wWHIT", "smooth_wHANTS"), which are corresponding
to smooth_wSG(), smooth_wWHIT() and smooth_wHANTS().

46 set_options

• wFUN : character (default wTSM), the name of weights updating functions, can be one of
c("wTSM", "wChen", "wBisquare", "wSELF"). See wTSM(), wChen(), wBisquare() and
wSELF() for details.

• iters : integer (default 2), the number of rough fitting iterations.
• wmin : double, the minimum weight of bad points (i.e. snow, ice and cloud).
• verbose : logical (default FALSE). If TRUE, options$season will be printed on the console.
• lambda : double (default NULL), the smoothing parameter of smooth_wWHIT().

– If lambda = NULL, V-curve theory will be employed to find the optimal lambda. See
lambda_vcurve() for details.

• frame : integer (default NULL), the parameter of smooth_wSG(), moving window size.
– If frame = NULL, frame will be reset as floor(nptperyear/5)*2 + 1 (refered by TIME-

SAT).
• nf : integer (default 4), the number of frequencies in smooth_wHANTS().
• maxExtendMonth: integer (default 12), previous and subsequent maxExtendMonth (in month)

data were added to the current year for rough fitting.
• nextend : integer (default NULL), same as maxExtendMonth, but in points.

– If nextend provided, maxExtendMonth will be ignored.
– If nextend = NULL, nextend will be reset as ceiling(maxExtendMonth/12*nptperyear)

(b) Parameters for growing season division:
• minpeakdistance : double (default NULL), the minimum distance of two peaks (in points).

If the distance of two maximum extreme value less than minpeakdistance, only the maxi-
mum one will be kept.

– If minpeakdistance = NULL, it will be reset as nptperyear/6.
• r_max : double (default 0.2; in (0, 1)). r_max and r_min are used to eliminate fake peaks and

troughs.
– The real peaks should satisfy:

1. max(hpeak,L, hpeak,R) > rmaxA

2. min(hpeak,L, hpeak,R) > rminA, where hpeak,L, hpeak,R are height difference from
the peak to the left- and right-hand troughs.

– The troughs should satisfy:
1. max(htrough,L, htrough,R) > rmaxA, where htrough,L, htrough,R are height differ-

ence from the trough to the left- and right-hand peaks.
• r_min : double (default 0.05; in (0, 1)), see above r_max for details. r_min < r_max.
• rtrough_max : double (default 0.6, in (0, 1)), ypeak <= rtroughmax ∗A+ ylu[1].
• ypeak_min : double 0.1 (in VI unit), ypeak >= ypeakmin.
• .check_season : logical (default TRUE). check the growing season length according to
len_min and len_max. If FALSE, len_min and len_max will lose their effect.

• len_min : integer (default 45), the minimum length (in days) of growing season
• len_max : integer (default 650), the minimum length (in days) of growing season
• adj.param : logical. If TRUE (default), if there are too many or too less peaks and troughs,
phenofit will automatically adjust rough curve fitting function parameters. See MaxPeaksPerYear
and MaxTroughsPerYear for details.

• MaxPeaksPerYear (optional) : integer (default 2), the max number of peaks per year. If
PeaksPerYear > MaxPeaksPerYear, then lambda = lambda*2.

set_options 47

• MaxTroughsPerYear (optional) : integer (default 3), the max number of troughs per year. If
TroughsPerYear > MaxTroughsPerYear, then lambda = lambda*2.

• calendarYear : logical (default FALSE). If TRUE, the start and end of a calendar year will
be regarded as growing season division (North Hemisphere is from 01 Jan to 31 Dec; South
Hemisphere is from 01 Jul to 30 Jun).

• rm.closed : logical (default TRUE). If TRUE, closed peaks (or troughs) will be further tidied.
Only the maximum

• is.continuous (not used): logical (default TRUE). This parameter is for fluxnet2015 fluxsite
data, where the input might be not continuous.

options for fitting

• methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more of c(’AG’,
’Beck’, ’Elmore’, ’Zhang’, ’Gu’, ’Klos’)‘. Note that ’Gu’ and ’Klos’ are very slow.

• iters (default 2): max iterations of fine fitting.

• wFUN (default wTSM): Character or function, weights updating function of fine fitting function.

• wmin (default 0.1): min weights in the weights updating procedure.

• use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input?
If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If
true, original input y will be used (rough fitting is used to divide growing seasons and update
weights.

• use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note
that not for curve fitting. y0 is the original value before the process of check_input.

• nextend (default 2): Extend curve fitting window, until nextend good or marginal points are
found in the previous and subsequent growing season.

• maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent
maxExtendMonth period.

• minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth,
should be no shorter than minExtendMonth. When all points of the input time-series are
good value, then the extending period will be too short. In that situation, we can’t make sure
the connection between different growing seasons is smoothing.

• minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is
less than minPercValid, curve fiting result is set to NA.

• minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature
Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

Examples

set_options(verbose = FALSE)
get_options("season") %>% str()

48 smooth_wHANTS

smooth_wHANTS Weighted HANTS SMOOTH

Description

Weighted HANTS smoother

Usage

smooth_wHANTS(
y,
t,
w,
nf = 3,
ylu,
periodlen = 365,
nptperyear,
wFUN = wTSM,
iters = 2,
wmin = 0.1,
...

)

Arguments

y Numeric vector, vegetation index time-series

t Numeric vector, Date variable

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

nf number of frequencies to be considered above the zero frequency
ylu [low, high] of time-series y (curve fitting values are constrained in the range

of ylu.

periodlen length of the base period, measured in virtual samples (days, dekads, months,
etc.). nptperyear in timesat.

nptperyear Integer, number of images per year.

wFUN weights updating function, can be one of ’wTSM’, ’wChen’ and ’wBisquare’.

iters How many times curve fitting is implemented.

wmin Double, minimum weigth (i.e. weight of snow, ice and cloud).

... Additional parameters are passed to wFUN.

Value

• ws: weights of every iteration

• zs: curve fittings of every iteration

smooth_wSG 49

Author(s)

Wout Verhoef, NLR, Remote Sensing Dept. June 1998 Mohammad Abouali (2011), Converted to
MATLAB Dongdong Kong (2018), introduced to R and modified into weighted model.

Examples

library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu",]

l <- check_input(dt, dy, d$w, nptperyear=23)
r_wHANTS <- smooth_wHANTS(ly, lt, l$w, ylu = l$ylu, nptperyear = 23, iters = 2)

smooth_wSG Weighted Savitzky-Golay

Description

Weighted Savitzky-Golay

Usage

smooth_wSG(
y,
w,
nptperyear,
ylu,
wFUN = wTSM,
iters = 2,
frame = floor(nptperyear/5) * 2 + 1,
d = 2,
...

)

Arguments

y Numeric vector, vegetation index time-series

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

nptperyear Integer, number of images per year.

ylu (optional) [low, high] value of time-series y (curve fitting values are con-
strained in the range of ylu.

wFUN weights updating function, can be one of ’wTSM’, ’wChen’ and ’wBisquare’.

iters How many times curve fitting is implemented.

frame Savitzky-Golay windows size

50 smooth_wWHIT

d polynomial of degree. When d = 1, it becomes moving average.

... Additional parameters are passed to wFUN.

Value

• ws: weights of every iteration

• zs: curve fittings of every iteration

References

1. Chen, J., J\"onsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple
method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-
Golay filter. Remote Sens. Environ. 91, 332-344. https://doi.org/10.1016/j.rse.2004.03.014.

2. https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter

Examples

library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu",]

l <- check_input(dt, dy, d$w, nptperyear=23)
r_wSG <- smooth_wSG(ly, lw, l$ylu, nptperyear = 23, iters = 2)

smooth_wWHIT Weigthed Whittaker Smoother

Description

Weigthed Whittaker Smoother

Usage

smooth_wWHIT(
y,
w,
ylu,
nptperyear,
wFUN = wTSM,
iters = 1,
lambda = 15,
second = FALSE,
...

)

smooth_wWHIT 51

Arguments

y Numeric vector, vegetation index time-series

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

ylu [low, high] of time-series y (curve fitting values are constrained in the range
of ylu.

nptperyear Integer, number of images per year.

wFUN weights updating function, can be one of ’wTSM’, ’wChen’ and ’wBisquare’.

iters How many times curve fitting is implemented.

lambda scaler or numeric vector, whittaker parameter.

• If lambda = NULL, V-curve theory will be applied to retrieve the optimal
lambda.

• If multiple lambda provided (numeric vector), a list of the smoothing results
with the same length of lambda will be returned.

second If true, in every iteration, Whittaker will be implemented twice to make sure
curve fitting is smooth. If curve has been smoothed enough, it will not care
about the second smooth. If no, the second one is just prepared for this situation.
If lambda value has been optimized, second smoothing is unnecessary.

... Additional parameters are passed to wFUN.

Value

• ws: weights of every iteration

• zs: curve fittings of every iteration

Note

Whittaker smoother of the second order difference is used!

References

1. Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem. doi:10.1021/ac034173t

2. Frasso, G., Eilers, P.H.C., 2015. L- and V-curves for optimal smoothing. Stat. Modelling 15,
91-111. doi:10.1177/1471082X14549288.

See Also

lambda_vcurve()

Examples

data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu",]

l <- check_input(dt, dy, d$w, nptperyear=23)

https://doi.org/10.1021/ac034173t
https://doi.org/10.1177/1471082X14549288

52 whit2

r_wWHIT <- smooth_wWHIT(ly, lw, l$ylu, nptperyear = 23, iters = 2)

Optimize `lambda` by V-curve theory
(a) optimize manually
lambda_vcurve(ly, lw, plot = TRUE)

(b) optimize automatically by setting `lambda = NULL` in smooth_wWHIT
r_wWHIT2 <- smooth_wWHIT(ly, lw, l$ylu, nptperyear = 23, iters = 2, lambda = NULL) #

whit2 Weighted Whittaker smoothing with a second order finite difference
penalty

Description

This function smoothes signals with a finite difference penalty of order 2. This function is modified
from ptw package.

Usage

whit2(y, lambda, w = rep(1, ny))

Arguments

y signal to be smoothed: a vector

lambda smoothing parameter: larger values lead to more smoothing

w weights: a vector of same length as y. Default weights are equal to one

Value

A numeric vector, smoothed signal.

Author(s)

Paul Eilers, Jan Gerretzen

References

1. Eilers, P.H.C. (2004) "Parametric Time Warping", Analytical Chemistry, 76 (2), 404 – 411.

2. Eilers, P.H.C. (2003) "A perfect smoother", Analytical Chemistry, 75, 3631 – 3636.

wSELF 53

Examples

library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
y <- dt[site == "AT-Neu",][1:120, y]

plot(y, type = "b")
lines(whit2(y, lambda = 2), col = 2)
lines(whit2(y, lambda = 10), col = 3)
lines(whit2(y, lambda = 100), col = 4)
legend("bottomleft", paste("lambda = ", c(2, 10, 15)), col = 2:4, lty = rep(1, 3))

wSELF Weight updating functions

Description

• wSELF weigth are not changed and return the original.

• wTSM weight updating method in TIMESAT.

• wBisquare Bisquare weight update method. wBisquare has been modified to emphasis on
upper envelope.

• wBisquare0 Traditional Bisquare weight update method.

• wChen Chen et al., (2004) weight updating method.

• wBeck Beck et al., (2006) weigth updating method. wBeck need sos and eos input. The
function parameter is different from others. It is still not finished.

Usage

wSELF(y, yfit, w, ...)

wTSM(y, yfit, w, iter = 2, nptperyear, wfact = 0.5, ...)

wBisquare0(y, yfit, w, ..., wmin = 0.2)

wBisquare(y, yfit, w, ..., wmin = 0.2, .toUpper = TRUE)

wChen(y, yfit, w, ..., wmin = 0.2)

wKong(y, yfit, w, ..., wmin = 0.2)

Arguments

y Numeric vector, vegetation index time-series

yfit Numeric vector curve fitting values.

w (optional) Numeric vector, weights of y. If not specified, weights of all NA values
will be wmin, the others will be 1.0.

54 wSELF

... other parameters are ignored.

iter iteration of curve fitting.

nptperyear Integer, number of images per year.

wfact weight adaptation factor (0-1), equal to the reciprocal of ’Adaptation strength’
in TIMESAT.

wmin Double, minimum weight of bad points, which could be smaller the weight of
snow, ice and cloud.

.toUpper Boolean. Whether to approach the upper envelope?

Value

wnew Numeric Vector, adjusted weights.

Author(s)

wTSM is implemented by Per J\"onsson, Malm\"o University, Sweden <per.jonsson@ts.mah.se>
and Lars Eklundh, Lund University, Sweden <lars.eklundh@nateko.lu.se>. And Translated
into Rcpp by Dongdong Kong, 01 May 2018.

References

1. Per J\"onsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of satel-
lite sensor data. Comput. Geosci. 30, 833-845. https://doi.org/10.1016/j.cageo.2004.05.006.

2. https://au.mathworks.com/help/curvefit/smoothing-data.html#bq_6ys3-3

3. Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with miss-
ing values. Computational statistics & data analysis, 54(4), pp.1167-1178.

4. Chen, J., J\"onsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple
method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-
Golay filter. Remote Sens. Environ. 91, 332-344. https://doi.org/10.1016/j.rse.2004.03.014.

5. Beck, P.S.A., Atzberger, C., Hogda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved
monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI.
Remote Sens. Environ. https://doi.org/10.1016/j.rse.2005.10.021

6. https://github.com/kongdd/phenopix/blob/master/R/FitDoubleLogBeck.R

Index

∗ datasets
CA_NS6, 3
input_single, 23
MOD13A1, 25

brks2rfit(), 21

CA_NS6, 3
check_input, 3
check_input(), 37, 38, 42
check_ylu, 6
curvefit, 6
curvefit(), 8, 10, 17–19, 21, 31–33, 35
curvefits, 8
curvefits(), 10, 11, 21
curvefits_LocalModel, 10
curvefits_LocalModel(), 10

doubleLog.AG (Logistic), 23
doubleLog.AG2 (Logistic), 23
doubleLog.Beck (Logistic), 23
doubleLog.Elmore (Logistic), 23
doubleLog.Gu (Logistic), 23
doubleLog.Klos (Logistic), 23
doubleLog.Zhang (Logistic), 23

f_goal, 16
fFIT(), 28
fFITs(), 7, 21
findpeaks, 12
FitDL, 14
FitDL(), 9

get_fitting, 17
get_fitting(), 36
get_GOF, 17
get_options (set_options), 45
get_param, 19
get_pheno, 20
get_pheno(), 4
getBits (qcFUN), 39

GOF, 22

I_optim(), 27, 29
I_optimx(), 27
input_single, 23

lambda_vcurve(), 43, 46, 51
Logistic, 23
Logistic(), 16

merge_LocalModels
(curvefits_LocalModel), 10

merge_LocalModels(), 10
MOD13A1, 25
movmean, 26

opt_FUN, 28
opt_nlm (opt_FUN), 28
opt_nlminb (opt_FUN), 28
opt_optim (opt_FUN), 28
opt_ucminf (opt_FUN), 28
optim_pheno, 26
optim_pheno(), 15, 29

PhenoDeriv, 30
PhenoDeriv(), 35
PhenoGu, 31
PhenoGu(), 31, 35
PhenoGu.default(), 32
PhenoGu.fFIT(), 32
PhenoKl, 33
PhenoKl(), 31, 35
PhenoTrs, 34
PhenoTrs(), 31
plot_curvefits, 35
plot_curvefits(), 4
plot_input, 37
plot_input(), 38
plot_season, 38

qc_5l (qcFUN), 39

55

56 INDEX

qc_FparLai (qcFUN), 39
qc_NDVI3g (qcFUN), 39
qc_NDVIv4 (qcFUN), 39
qc_sentinel2, 40
qc_sentinel2(), 40
qc_SPOT (qcFUN), 39
qc_StateQA (qcFUN), 39
qc_summary (qcFUN), 39
qcFUN, 39
qcFUN(), 45

rcpp_SG (rcpp_wSG), 41
rcpp_wSG, 41

season(), 36, 44
season_mov, 42
season_mov(), 36
set_options, 45
set_options(), 42
smooth_wHANTS, 48
smooth_wHANTS(), 43, 45, 46
smooth_wSG, 49
smooth_wSG(), 43, 45, 46
smooth_wWHIT, 50
smooth_wWHIT(), 43, 45, 46
stats::nlm(), 28
stats::nlminb(), 28
stats::optim(), 28, 29

ucminf::ucminf(), 28

wBisquare (wSELF), 53
wBisquare(), 43, 45, 46
wBisquare0 (wSELF), 53
wChen (wSELF), 53
wChen(), 43, 45, 46
whit2, 52
wKong (wSELF), 53
wSELF, 53
wSELF(), 43, 45, 46
wTSM (wSELF), 53
wTSM(), 27, 43, 45, 46

	CA_NS6
	check_input
	check_ylu
	curvefit
	curvefits
	curvefits_LocalModel
	findpeaks
	FitDL
	f_goal
	get_fitting
	get_GOF
	get_param
	get_pheno
	GOF
	input_single
	Logistic
	MOD13A1
	movmean
	optim_pheno
	opt_FUN
	PhenoDeriv
	PhenoGu
	PhenoKl
	PhenoTrs
	plot_curvefits
	plot_input
	plot_season
	qcFUN
	qc_sentinel2
	rcpp_wSG
	season_mov
	set_options
	smooth_wHANTS
	smooth_wSG
	smooth_wWHIT
	whit2
	wSELF
	Index

