Approximate partial dependence plots

Brandon M. Greenwell

May 11, 2022

Introduction

The partial dependence (PD) of the response on a set of predictors is essentially computed by averaging
predictions over the observed values of all the other features; see Greenwell [2017] for details. Constructing
PD plots can be time consuming and computationally infeasible in practice, especially when dealing with
complex models or large data sets. A less accurate, but faster alternative is to fix the other predictors at a
“typical” value (e.g., the mean/median for continuous features and the most frequent value for categorical
features). This is essentially what’s accomplished by default with the plotmo() function from the plotmo
package [Milborrow, 2015]!; Steven Millborrow, the author of plotmo, even refers to them as “a poor man’s
partial dependence plot” in the package documentation (see ?plotmo: :plotmo).

To this end, I've added a new exemplar () function to the package. This function essentially flattens a data
frame by summarizing each column with a “typical” value (i.e., the median for numeric columns and the most
frequent value for categoricals and factors) into an “exemplar” record. To illustrate, the code chunk below
constructs an exemplar record from the Boston housing data frame that’s built into pdp (see 7pdp: :boston
for details):

library (pdp)

(boston.ex <- exemplar(boston)) # construct exemplar record

#> lon lat cmedv crim zn indus chas nox rm age dis rad
#> 1 -71.05629 42.2181 21.2 0.266561 0O 9.69 0 0.538 6.2085 77.5 3.20745 5
#> tax ptratio b lstat

#> 1 330 19.05 391.44 11.36

Notice that the numeric feature nox has been replaced by its median 0.538. Same goes for the rest of the
columns. SO, how can we use this to compute faster, but approximate PD plots? Well, a simple trick is to
pass the “exemplar” record into the train argument in the call to partial (), but you'd also have to provide
a grid of plotting values via the pred.grid argument; see 7pdp: :partial for details on pred.grid. This
is demonstrated below for a simple random forest fit to the Boston housing data via the awesome ranger
package [Wright, 2016]; the results are displayed in Figure 1.

library(ranger)
Fit a default random forest to the Boston housing data
set.seed(1228) # for reproducibility

(rfo <- ranger(cmedv ~ ., data = boston))

#> Ranger result

#>
#> Call:
#> ranger(cmedv ~ ., data = boston)

k%

LAs of version 3.3.0, **plotmo** includes support for ordinary PD plots as well.

#>

#> Type: Regression
#> Number of trees: 500

#> Sample size: 506

#> Number of independent variables: 15

#> Mtry: 3

#> Target node size: 5

#> Variable importance mode: none

#> Splitrule: variance
#> 00B prediction error (MSE): 10.19975
#> R squared (00B): 0.8790243

Construct plotting grid; evenly spaced grid of 51 values
lstat.grid <- data.frame("lstat" = seq(

from = min(boston$lstat), to = max(boston$lstat), length = 51
))

Approximate PD plot (Figure 1)
partial(rfo, pred.var = "lstat", pred.grid = lstat.grid,
train = boston.ex, plot = TRUE)

28 -
26 -
T 24 - -
>
22 — -
20 -

| | I I I
10 20 30

Istat

Figure 1: Marginal effect of 1stat on median home value.

To simplify the construction, you can just set approx = TRUE in the call to partial(), as demonstrated
below (see Figure 2):

partial(rfo, pred.var = "lstat", approx = TRUE, plot = TRUE,
plot.engine = "ggplot2") # Figure 2

system.time({ # standard PD
pdl <- partial(rfo, pred.var = "lstat", grid.resolution = 100)

b

27 -

yhat

21 -

0 10 20 30
Istat

Figure 2: Marginal effect of 1stat on median home value using the new approx = TRUE argument.

#> user system elapsed
#> 5.002 0.131 1.983

system.time({ # approximate PD
pd2 <- partial(rfo, pred.var = "lstat", approx = TRUE, grid.resolution = 100)
)

#> user system elapsed
0.551 0.116 0.576

The code chunk below displays the resulting plots in a single display; see Figure ??. Notice how the two
curves are nearly parallel, but the approximate method is much faster to compute.

ylim <- range(c(pdi$yhat, pd2$yhat))

palette("Okabe-Ito")

plot(pdl, type = "1", ylim = ylim)

lines(pd2, col = 2)

legend("topright", legend = c("Original PD plot", "Approximate PD plot"),
inset = 0.01, 1ty =1, col = 1:2, bty = "n"

palette("default")

As mentioned in the plotmo vignette, an approximate PD plot will differ from the original PD plot in the
presence of interaction effects. If there are no substantial interaction effects, the two plots will have a similar
shape, but may differ slightly in scale.

References

Brandon M. Greenwell. pdp: An R Package for Constructing Partial Dependence Plots. The R Journal, 9(1):
421-436, 2017. doi: 10.32614/RJ-2017-016. URL https://doi.org/10.32614/RJ-2017-016.

—— Original PD plot
Approximate PD plot

30

yhat

24

22

20

I | I
10 20 30
Istat

Figure 3: Partial dependence of median home value on 1stat using the original method (black curve) and
approximate method (yellow curve)

Stephen Milborrow. Plotmo: Plot a Model’s Response and Residuals, 2015. URL https://CRAN.R-project.
org/package=plotmo. R package version 3.1.4.

Marvin N. Wright. Ranger: A Fast Implementation of Random Forests, 2016. URL https://CRAN.R-
project.org/package=ranger. R package version 0.6.0.

