Package ‘paws.common’

January 13, 2026

Type Package
Title Paws Low-Level Amazon Web Services API
Version 0.8.8

Description Functions for making low-level API requests to Amazon Web Services
<https://aws.amazon.com>. The functions handle building, signing, and
sending requests, and receiving responses. They are designed to help build
higher-level interfaces to individual services, such as Simple Storage
Service (S3).

License Apache License (>= 2.0)

Depends R (>=4.1.0)

URL https://github.com/paws-r/paws,
https://paws-r.r-universe.dev/paws.common,

https://www.paws-r-sdk.com

BugReports https://github.com/paws-r/paws/issues

Encoding UTF-8

LinkingTo Rcpp

Imports base64enc, curl, digest, httr2 (>= 1.0.4), jsonlite, methods,
utils, stats, Rcpp, xml2

Suggests covr, crayon, mockery, withr, rstudioapi, testthat (>= 3.0.0)

SystemRequirements pandoc (>= 1.12.3) - http://pandoc.org

RoxygenNote 7.3.3

Collate 'RcppExports.R' 'util.R' 'cache.R' 'struct.R' 'handlers.R’
'iniutil.R' 'config.R' 'logging.R" 'dateutil.R’
'credential_sso.R' 'credential_sts.R' 'url.R' 'net.R’
'credential_providers.R' 'credentials.R' 'client.R' 'convert.R’
'service.R' 'custom_dynamodb.R' 'custom_rds.R' 'head_bucket.R'
'http_status.R' 'error.R" 'custom_s3.R' 'handlers_core.R'
'handlers_ec2query.R' 'handlers_jsonrpc.R' 'handlers_query.R’

'handlers_rest.R' "handlers_restjson.R' 'tags.R' 'xmlutil.R'
'handlers_restxml.R' 'handlers_stream.R' 'idempotency.R'

1

https://aws.amazon.com
https://github.com/paws-r/paws
https://paws-r.r-universe.dev/paws.common
https://www.paws-r-sdk.com
https://github.com/paws-r/paws/issues

2 Contents
"jsonutil.R' 'mock_bindings.R' 'onLoad.R' 'paginate.R’
'‘populateutil.R' 'queryutil.R' 'request.R' 'retry.R’
'service_parameter_helper.R' 'signer_bearer.R' 'signer_v4.R'
'signer_s3.R' 'signer_s3v4.R' 'signer_v1.R' 'signer_v2.R’
'time.R'
Config/testthat/edition 3
NeedsCompilation yes
Author David Kretch [aut],
Adam Banker [aut],
Dyfan Jones [cre],
Amazon.com, Inc. [cph]
Maintainer Dyfan Jones <dyfan.r.jones@gmail.com>
Repository CRAN
Date/Publication 2026-01-13 17:00:03 UTC
Contents
asJiSt.SIrUCt L e e e e e e e e e 3
get_config e 3
IS_BMPLY .« o v ot e e e e e e e e e 4
is_empty_xml 4
lSt_paginators e e e e e e e e e 5
locate_credentials e e e 6
new_handlers L L e 6
NEW_OPEIationt v vttt e e e e e e e e e e 7
NEW_TEQUESE v v v o e i e e e e e e e e e e e e e e e e e e e 8
NEW_SEIVICE . .« v v v v v e i e 9
Paginate e e e e e e 10
paws_config_log 12
paws_reset_cache L. e e 13
PAWS_SIICAM oo e e e e e e e e e e e e 13
populate e e 15
send_request L. e 16
set_config e e e e 16
SE_SErVICe_Parameter v v v v e e e e e e e e e e e e e e e e e 17
TAZS . o . e e 20
Index 22

as.list.struct

as.list.struct Create a list from an struct object

Description

Create a list from an struct object

Usage
S3 method for class 'struct'
as.list(x, ...)

Arguments
X An struct object.

Other arguments, which will be ignored.

get_config Get the service configuration from the service object.

Description

Look up the service configuration from the service object, e.g. when calling svc$operation(),
get_config() will look up svc, then get any configuration stored in it, as if the operation function

were a method and the service object were a class instance.

Usage

get_config()

Details

get_config must be called directly by the operation function and assigned immediately, not pro-

vided as an argument to another function.

We look up the service object then fetch its data so we can both support documentation tooltips in
RStudio and also have class-object-like behavior. Alternatives that do not support documentation
tooltips in RStudio include reference classes (RC), R6 classes, and any modification of the functions
at run-time, e.g. inserting the configuration into the function definition for each operation in a

particular service object.

4 is_empty_xml

is_empty Check whether an object is empty

Description

Check whether an object is empty, e.g. has no sub-elements, is NA, or is the empty string.

Usage

is_empty(x)

Arguments

X An object.

Examples

is_empty(NA) # TRUE
is_empty("") # TRUE
is_empty(list()) # TRUE
is_empty(list(list())) # TRUE

is_empty(1) # FALSE
is_empty(list(1)) # FALSE
is_empty(list(list(1))) # FALSE

is_empty_xml Check whether an object is empty for xml builds

Description

Check whether an object is empty, e.g. has no sub-elements, is NA

Usage

is_empty_xml(x)

Arguments

X An object.

list_paginators

Examples

is_empty_xml(NA) # TRUE
is_empty_xml(list()) # TRUE
is_empty_xml(list(list())) # TRUE

is_empty_xml(1) # FALSE
is_empty_xml("") # FALSE
is_empty_xml(list(1)) # FALSE
is_empty_xml(list(list(1))) # FALSE

list_paginators List methods that can be paginated from a paws client.

Description

List methods that can be paginated from a paws client.

Usage

list_paginators(svc)

Arguments

svC paws client (for example paws: :s3()).

Value

character vector of functions that can be paginated.

Examples

Not run:
Note: where svc is a paws client.
list_paginators(svc)

End(Not run)

6 new_handlers

locate_credentials Locate AWS credentials

Description

Locate AWS credentials

Usage

nn

locate_credentials(profile = , anonymous = FALSE)

Arguments
profile The name of a profile to use. If not given, then the default profile is used.
anonymous Set anonymous credentials.

Value

list containing AWS credentials

* access_key_id - (character) AWS access key ID

* secret_access_key - (character) AWS secret access key

* session_token - (character) AWS temporary session token

* access_token - (character) A token that gives a user permission to access certain resources
e expiration - (numeric) Indicates the Unix time when an access token will expire.

* region - (character) The AWS Region used in instantiating the client.

new_handlers Return request handlers for a service

Description

Return request handlers for a given protocol and request signer.

Usage

new_handlers(protocol, signer)

Arguments

protocol Protocol: ec2query, jsonrpc, query, rest, restjson, or restxml.

signer Signer: v2 or v4.

new_operation 7

See Also

Other API request functions: new_operation(), new_request(), new_service(), send_request()

Examples

Get the handlers needed for an API using REST-JSON and AWS signature V4.

handlers <- new_handlers("restjson”, "v4")
new_operation Return an API operation object
Description

Return an API operation object, with information on what to request for a given API operation. For
example, the S3 service’s "list buckets" operation is named ListBuckets, it requires a GET request,
and so on.

Usage

new_operation(
name,
http_method,
http_path,
host_prefix,
paginator,
stream_api = FALSE,
before_presign_fn = NULL

)
Arguments
name The API operation name.
http_method The HTTP method, e.g. "GET" or "POST".
http_path The HTTP path.
host_prefix The HTTP prefix
paginator List input_token and output_token.
stream_api Set if operation is stream api or not

before_presign_fn
Currently unused.

See Also

Other API request functions: new_handlers(), new_request(), new_service(), send_request()

8 new_request

Examples

Save info about the S3 ListBuckets API operation.
op <- new_operation(

name = "ListBuckets”,

http_method = "GET",

http_path = "/",

paginator = list()

new_request Return an API request object

Description

Return an API request object with everything needed to make a request.

Usage

new_request(client, operation, params, data, dest = NULL)

Arguments
client A service client, e.g. from new_service.
operation An operation, e.g. from new_operation.
params A populated input object.
data An empty output object.
dest Control where the response body is written
See Also

Other API request functions: new_handlers(), new_operation(), new_service(), send_request()

Examples

Not run:
Make a request object for the S3 ListBuckets operation.
metadata <- list(
endpoints = list("x" = list(endpoint = "s3.{region}.amazonaws.com”, global = FALSE)),
service_name = "s3"
)
client <- new_service(metadata, new_handlers("restxml”, "s3"))
op <- new_operation("ListBuckets”, "GET", "/", list())
params <- list()
data <- tag_add(list(Buckets = list()), list(type = "structure"))
req <- new_request(client, op, params, data)

End(Not run)

new_service 9

new_service Return an AWS API service object

Description

Return an API service object with information and handlers needed to make API requests.

Usage

new_service(metadata, handlers, cfgs = NULL, operation = Operation())

Arguments
metadata A named list of API metadata. It should look like:
list(
service_name = "string",
endpoints = list("region” = list(endpoint = "endpoint”, global = FALSE)),
service_id = "string",
api_version = "string",
signing_name = "string"|NULL,
json_version = "string",
target_prefix = "string”
)
handlers A set of handlers, e.g. from new_handlers.
cfgs A config defined by the service. Defaults to null.
operation A operation defined by the service.

Region and credentials
new_service requires that you’ve set your AWS region in one of:

1. AWS_REGION R environment variable

2. AWS_REGION OS environment variable (Linux and macOS)
3. ~/.aws/config AWS configuration file

new_service also requires that you’ve set your AWS credentials in one of:

1. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY R environment variables

2. AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY OS environment variables (Linux and
macQOS)

3. ~/.aws/credentials AWS credentials file
4. TAM role

10 paginate

See Also

new_operation()

Other API request functions: new_handlers(), new_operation(), new_request(), send_request()

Examples

Not run:
Metadata for the S3 API.
metadata <- list(

service_name = "s3",
endpoints = list("us-east-1" = list(endpoint = "s3.amazonaws.com”, global = FALSE)),
service_id = "S3",

api_version = "2006-03-01",
signing_name = NULL,
json_version = "",
target_prefix =

)

nn

Handlers for S3.
handlers <- new_handlers("restxml”, "v4")

Build a service object for S3, containing the information necessary to
build, send, and receive requests.

service <- new_service(metadata, handlers)

End(Not run)

paginate Paginate over an operation.

Description

Some AWS operations return results that are incomplete and require subsequent requests in order to
attain the entire result set. The process of sending subsequent requests to continue where a previous
request left off is called pagination. For example, the list_objects operation of Amazon S3 returns
up to 1000 objects at a time, and you must send subsequent requests with the appropriate Marker in
order to retrieve the next page of results.

Usage

paginate(
Operation,
PageSize = NULL,
MaxItems = NULL,
StartingToken = NULL,
StopOnSameToken = FALSE

paginate 11

paginate_lapply(
Operation,
FUN,

PageSize = NULL,
MaxItems = NULL,
StartingToken = NULL,
StopOnSameToken = FALSE

)

paginate_sapply(
Operation,
FUN,
simplify = TRUE,
PageSize = NULL,
MaxItems = NULL,

StartingToken = NULL,
StopOnSameToken = FALSE

)
Arguments
Operation The operation for example an s3 operation: svc$list_buckets()
PageSize The size of each page.
MaxItems Limits the maximum number of total returned items returned while paginating.

StartingToken Can be used to modify the starting marker or token of a paginator. This argument
if useful for resuming pagination from a previous token or starting pagination at
a known position.

StopOnSameToken

Exits paginator if previous token matches current token. For some APIs, such
as CloudWatchLogs events, the next page token will always be present. When
set to TRUE, the paginator will stop when the token doesn’t change.

FUN the function to be applied to each response element of operation.
optional arguments to FUN.

simplify See base::sapply().

Value

list of responses from the operation.

Examples

Not run:
The following example retrieves object list. The request specifies max
keys to limit response to include only 2 object keys.

12 paws_config_log

paginate(
svc$list_objects_v2(
Bucket = "DOC-EXAMPLE-BUCKET"
),
MaxItems = 50
)

End(Not run)

paws_config_log paws logging system

Description

Ability to configure paws logging system, through the use of paws helper function ~paws_config_log"
or R:base options function. Users are able to change logging levels without calling paws. common
by the use of options e.g. options("paws.log_level” =2L).

* paws.log_level (integer): The minimum log level that should be tracked

* paws.log_file (character): path for logs to populate, default output logs to console.

¢ paws.log_timestamp_fmt (character): see format.POSIXct()

Usage
paws_config_log(
level = 2L,
file = ",
timestamp_fmt = "%Y-%m-%d %H:%M:%0S3"
)
Arguments
level (integer) to determine the level logging threshold.
* 5L: TRACE
* 4L: DEBUG
e 3L: INFO
* 2L: WARNING
* 1L: ERROR
file (character) path for logs to populate, default output logs to console.

timestamp_fmt (character) for timestamp format, see format.POSIXct().

paws_reset_cache 13

Examples

log to a file

temp_file <- tempfile()
paws_config_log(file = temp_file)
unlink(temp_file)

change log threshold to INFO
paws_config_log(level = 3L)

reset to default config
paws_config_log()

paws_reset_cache Clear down paws cache environments

Description

Clears down the cache environments.

* ini_cache: an environment that stores the results from read_ini, mainly used for storing
AWS config files.

* os_env_cache: an environment that stores environmental variables from Unix Operating Sys-
tems.

e bearer_token_cache: an environment that stores bearer tokens

Usage

paws_reset_cache()

paws_stream Iterate over AWS Event Stream connection

Description

Iterate over AWS Event Stream connection

Usage

paws_stream_handler (FUN, .connection = FALSE)

paws_stream_parser(con)

14 paws_stream

Arguments
FUN function to iterate over stream connection.
.connection return paws_connection object a subclass of httr2: :req_perform_connection
(default FALSE)
con A streaming response created by paws_stream_handler.
Value

list of responses from the operation or a paws_connection object

Examples

Not run:

Developed from:

https://docs.aws.amazon.com/code-library/latest/ug/python_3_bedrock-runtime_code_examples.html
library(paws)

Create a Bedrock Runtime client in the AWS Region you want to use.
client <- bedrockruntime(region = "us-east-1")

Set the model ID, e.g., Titan Text Premier.
model_id <- "amazon.titan-text-premier-v1:0"

Start a conversation with the user message.
user_message <- "Describe the purpose of a 'hello world' program in one line.”
conversation <- list(
list(
role = "user”,
content = list(list(text = user_message))
)
)

resp <- client$converse_stream(
modelId = model_id,
messages = conversation,
inferenceConfig = list(maxTokens = 512, temperature = 0.5, topP = 0.9)
)
resp$stream(\(chunk) chunk$contentBlockDelta$delta$text)
Note: stream will close connection after all chunks are read

Get connection object
resp <- client$converse_stream(

modelId = model_id,

messages = conversation,

inferenceConfig = list(maxTokens = 512, temperature = 0.5, topP = 0.9)
)

con <- resp$stream(.connection = T)

Handle connection object using paws_stream_parser
while (!is.null(chunk <- paws_stream_parser(con))) {
print(chunk$contentBlockDelta$delta$text)

populate 15

Note: paws_stream_parser will close connection after all chunks are read

resp <- client$converse_stream(
modelId = model_id,
messages = conversation,
inferenceConfig = list(maxTokens = 512, temperature = 0.5, topP = 0.9)

)

Or handle connection using httr2::resp_stream_aws

while (!is.null(chunk <- resp_stream_aws(con))) {
str(chunk)

3

close(con)

Note: connection needs to be closed manually after all chunks have been read.

End(Not run)

populate Populate a list with data from another list

Description

populate copies data from a list (e.g. input by a user) to another list with a similar shape. The sec-
ond list, called the interface, will generally also contain extra metadata for making API requests,
such as names or types.

Usage

populate(input, interface, parent = NULL)

Arguments

input A list with data to copy.

interface A list of a similar shape to copy data into.

parent Internal parameter used to track parent interface for recursive structures.
Examples

Make an interface with metadata, e.g. type.
interface <- tag_add(list(foo = c(), bar = c()), list(type = "structure"))

Combine data and the metadata from the interface.
populate(list(foo = 1, bar = 2), interface)

16 set_config

send_request Send a request and handle the response

Description
Send a request and handle the response. Build the HTTP request, send it to AWS, interpret the
response, and throw an error if the response is not ok.

Usage

send_request(request)

Arguments

request A request, e.g. from new_request.

See Also

Other API request functions: new_handlers(), new_operation(), new_request(), new_service()

Examples

Not run:
Send a request and handle the response.
resp <- send_request(req)

End(Not run)

set_config Add configuration settings to a service object.

Description

set_config adds a given set of configuration settings in cfgs to a service object, i.e. the service
object for S3. Configuration settings can include credentials, region, endpoint, etc. These configu-
ration settings will be used whenever an operation is called from that service object.

Usage

set_config(svc, cfgs = list())

Arguments

svc A service object containing service operations.

cfgs A list of optional configuration settings.

set_service_parameter 17

Details

set_config explicitly makes the credentials property mutable, such that when the SDK retrieves
credentials later on, it will save them in the service object. This means that credentials don’t need
to be fetched on each operation, only if and when the saved credentials expire.

The optional configuration settings can include the following:

list(
credentials = list(
creds = list(

access_key_id = "string",
secret_access_key = "string”,
session_token = "string”
),
profile = "string”
),
endpoint = "string”,
region = "string”
)
Examples

Create a config object with custom credentials and endpoint.
config <- set_config(
svc = list(),
cfgs = list(
credentials = list(
creds = list(
access_key_id = "abc",
secret_access_key = "123"
)
),
endpoint = "https://foo.com"”
)
)

set_service_parameter Set service parameters

Description

Help functions for setting the parameters for services

Usage

config(
credentials = list(creds = list(access_key_id = "", secret_access_key = "",

session_token = "" | access_token = "", expiration = Inf), profile = "", anonymous =

18 set_service_parameter

FALSE),
endpoint = "",
region = ""
close_connection = FALSE,
max_retries = 3,
connect_timeout = 60,
s3_force_path_style = FALSE,
s3_virtual_address = FALSE,
sts_regional_endpoint = "",
signature_version = ""

credentials(
creds = list(access_key_id = , secret_access_key =
access_token = "", expiration = Inf),
profile = "",
anonymous = FALSE

)

nn nn nn

, session_token = s

creds(
access_key_id = "",
secret_access_key = "",

nn

session_token = s

nn

access_token = ,
expiration = Inf

Arguments

credentials credentials() or 1ist in same format.

e creds: creds() or list in same format.
— access_key_id: AWS access key ID
— secret_access_key: AWS secret access key
— session_token: AWS temporary session token

— access_token: The token issued by the CreateToken API call. For
more information, see CreateToken in the IAM Identity Center OIDC API Reference Guide.

— expiration: The date and time when the temporary credentials expire.
expiration must be a POSIXct date-time or able to be compared with
them.

* profile: The name of a profile to use. If not given, then the default profile
is used.

e anonymous: Set anonymous credentials.
endpoint The complete URL to use for the constructed client.

region The AWS Region used in instantiating the client.

close_connection
Immediately close all HTTP connections.

https://docs.aws.amazon.com/singlesignon/latest/OIDCAPIReference/API_CreateToken.html

set_service_parameter 19

max_retries Max number of retries call AWS API (default set to 3).
connect_timeout
The time in seconds till a timeout exception is thrown when attempting to make
a connection. The default is 60 seconds.
s3_force_path_style
Set this to true to force the request to use path-style addressing, i.e. http://s3.amazonaws.com/BUCKET
s3_virtual_address
Set this to true to force the request to use virtual-hosted-style
sts_regional_endpoint
Set sts regional endpoint resolver to regional or legacy https://docs.aws.
amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.
html
signature_version
The signature version used when signing requests. Note that the default version
is Signature Version 4.
creds creds() or list in same format.

* access_key_id: AWS access key ID
* secret_access_key: AWS secret access key
* session_token: AWS temporary session token

* access_token: The token issued by the CreateToken API call. For more in-
formation, see CreateToken in the IAM Identity Center OIDC API Reference Guide.

* expiration: The date and time when the temporary credentials expire. expiration
must be a POSIXct date-time or able to be compared with them.

profile The name of a profile to use. If not given, then the default profile is used.
anonymous Set anonymous credentials.

access_key_id AWS access key ID
secret_access_key
AWS secret access key

session_token AWS temporary session token

access_token The token issued by the CreateToken API call. For more information, see Cre-
ateToken in the IAM Identity Center OIDC API Reference Guide.

expiration The date and time when the temporary credentials expire. expiration must be
a POSIXct date-time or able to be compared with them.

Value

list set of parameter variables for paws services.

Examples
set service parameter access_key_id and secret_access_key
config(credentials(creds("dummy”, "secret”)))

set service parameter access_key_id and secret_access_key using using lists

https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html
https://docs.aws.amazon.com/singlesignon/latest/OIDCAPIReference/API_CreateToken.html
https://docs.aws.amazon.com/singlesignon/latest/OIDCAPIReference/API_CreateToken.html
https://docs.aws.amazon.com/singlesignon/latest/OIDCAPIReference/API_CreateToken.html

20 tags

config(
credentials = list(
creds = list(

access_key_id = "dummy"”,
secret_access_key = "secret”
)
)
)
tags Get, set, and delete object tags
Description

Tags are metadata stored in an object’s attributes, used to store types and names needed to make
AWS API requests.

nn

tag_get returns the value of the given tag, or "" if the tag doesn’t exist.

tag_has returns whether the object has the given tag.
tag_add returns the object after adding the given list of tags and values.
tag_del returns the object after recursively deleting tags in tags, or all tags if NULL.

type returns broadly what type an object is, based on its type tag.
Usage

tag_get(object, tag)

tag_get_all(object)

tag_has(object, tag)

tag_add(object, tags)

tag_del(object, tags = NULL)

type(object)

Arguments
object An object.
tag A tag name.
tags A list of tags.

* tag_add: A named vector with tag names and their values.
* tag_del: A character vector of tags to delete.

tags

Examples

foo <- list()

foo <- tag_add(foo, list(tag_name = "tag_value"))
tag_has(foo, "tag_name") # TRUE

tag_get(foo, "tag_name") # "tag_value"
tag_get(foo, "not_exist") # ""

foo <- tag_del(foo)

tag_has(foo, "tag_name") # FALSE

21

Index

* API request functions set_config, 16
new_handlers, 6 set_service_parameter, 17
new_operation, 7
new_request, 8 tag_add (tags), 20
new_service, 9 tag_del (tags), 20
send_request, 16 tag_get (tags), 20

tag_get_all (tags), 20

as.list.struct, 3 tag_has (tags), 20

tags, 20
base: :sapply(), 11 type (tags), 20

config (set_service_parameter), 17
credentials (set_service_parameter), 17
creds (set_service_parameter), 17

format.POSIXct(), 12
get_config, 3

is_empty, 4
is_empty_xml, 4

list_paginators, 5
locate_credentials, 6

new_handlers, 6, 7, 8, 10, 16
new_operation, 7,7, 8, 10, 16
new_operation(), 10
new_request, 7, 8, 10, 16
new_service, 7, 8,9, 16

paginate, 10

paginate_lapply (paginate), 10
paginate_sapply (paginate), 10
paws_config_log, 12
paws_reset_cache, 13

paws_stream, 13

paws_stream_handler (paws_stream), 13
paws_stream_parser (paws_stream), 13
populate, 15

send_request, 7, 8, 10, 16

22

	as.list.struct
	get_config
	is_empty
	is_empty_xml
	list_paginators
	locate_credentials
	new_handlers
	new_operation
	new_request
	new_service
	paginate
	paws_config_log
	paws_reset_cache
	paws_stream
	populate
	send_request
	set_config
	set_service_parameter
	tags
	Index

