Package ‘optweight’

January 24, 2026
Type Package
Title Optimization-Based Stable Balancing Weights
Version 2.0.0

Description Use optimization to estimate weights that balance covariates for binary, multi-
category, continuous, and multivariate treatments in the spirit of Zu-
bizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be speci-
fied for each covariate. In addition, sampling weights can be estimated that allow a sam-
ple to generalize to a population specified with given target moments of covariates, as in match-
ing-adjusted indirect comparison (MAIC).

Depends R (>=4.1.0)

Imports osqp (>= 0.6.3.3), chk (>=0.10.0), rlang (>= 1.1.6), cli (>=
3.6.5), Matrix (>= 1.2-13), collapse (>= 2.1.5), ggplot2 (>=
4.0.0), graphics, stats, utils

Suggests cobalt (>=4.6.0), scs (>= 3.2.7), clarabel (>= 0.10.1),
highs (>= 1.10.0-3), IpSolve (>= 5.6.23), Weightlt, gbm,
marginaleffects, sandwich, fwb, knitr, rmarkdown, testthat (>=
3.0.0)

License GPL
Encoding UTF-8

URL https://ngreifer.github.io/optweight/,
https://github.com/ngreifer/optweight

BugReports https://github.com/ngreifer/optweight/issues
VignetteBuilder knitr

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Noah Greifer [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3067-7154>)

Maintainer Noah Greifer <noah.greifer@gmail.com>
Repository CRAN
Date/Publication 2026-01-24 00:30:12 UTC

https://doi.org/10.1080/01621459.2015.1023805
https://ngreifer.github.io/optweight/
https://github.com/ngreifer/optweight
https://github.com/ngreifer/optweight/issues
https://orcid.org/0000-0003-3067-7154

2 optweight

Contents
optweight 2
OPtWEIghE.SVY 10
optweightMV 14
plotoptweight 18
PrOCEeSS_targetS v i i i e e e e e e e e e e e e e e 20
Process_tolso e e e e 22
summary.optweight e 24

Index 27

optweight Stable Balancing Weights
Description

Estimates stable balancing weights for the supplied treatments and covariates. The degree of bal-
ance for each covariate is specified by tols and the target population can be specified with targets
or estimand. See Zubizarreta (2015) and Wang & Zubizarreta (2020) for details of the properties
of the weights and the methods used to fit them.

Usage

optweight(

formula,

data = NULL,

tols = 0,
estimand = "ATE",
targets = NULL,
target.tols = 0,
s.weights = NULL,
b.weights = NULL,
focal = NULL,
norm = "12",
min.w = 1e-08,
verbose = FALSE,

)

optweight.fit(

covs,

treat,

tols = 0,
estimand = "ATE",
targets = NULL,
target.tols = 0,
s.weights = NULL,

optweight

b.weights = NULL,
focal = NULL,

norm = "12",
std.binary = FALSE,

std.cont = TRUE,
min.w = 1e-08,

verbose =
solver =

Arguments

formula

data

tols

estimand

targets

target.tols

s.weights

b.weights

FALSE,
NULL,

a formula with a treatment variable on the left hand side and the covariates to be
balanced on the right hand side, or a list thereof. Interactions and functions of
covariates are allowed.

an optional data set in the form of a data frame that contains the variables in
formula.

a vector of balance tolerance values for each covariate. The resulting weighted
balance statistics will be at least as small as these values. If only one value is
supplied, it will be applied to all covariates. Can also be the output of a call to
process_tols(). See Details. Default is O for all covariates.

a string containing the desired estimand, which determines the target popula-
tion. For binary treatments, can be "ATE", "ATT", "ATC", or NULL. For multi-
category treatments, can be "ATE", "ATT", or NULL. For continuous treatments,
can be "ATE" or NULL. The default for both is "ATE". estimand is ignored when
targetsis non-NULL. If both estimand and targets are NULL, no targeting will
take place. See Details.

an optional vector of target population mean values for each covariate. The re-
sulting weights ensure the midpoint between group means are within target.tols
units of the target values for each covariate. If NULL or all NA, estimand will be
used to determine targets. Otherwise, estimand is ignored. If any target values
are NA, the corresponding variable will not be targeted and its weighted mean
will be wherever the weights yield the smallest value of the objective function;
this is only allowed for binary and multi-category treatments. Can also be the
output of a call to process_targets(). See Details.

a vector of target balance tolerance values for each covariate. For binary and
multi-category treatments, the average of each pair of means will be at most as
far from the target means as these values. Can also be the output of a call to
process_tols(). See Details. Default is O for all covariates. Ignored with
continuous treatments and when estimand is "ATT" or "ATC".

a vector of sampling weights. For optweight(), can also be the name of a
variable in data that contains sampling weights.

a vector of base weights. If supplied, the desired norm of the distance between
the estimated weights and the base weights is minimized. For optweight(),
can also the name of a variable in data that contains base weights.

4 optweight

focal when multi-category treatments are used and estimand = "ATT", which group
to consider the "treated" or focal group. This group will not be weighted, and
the other groups will be weighted to be more like the focal group. If specified,
estimand will automatically be set to "ATT".

norm character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "11" for the L; norm,
"12" for the Lo norm (the default), "1inf" for the L., norm, "entropy” for the
relative entropy, and "log" for the sum of the negative logs. See Details.

min.w numeric; a single value less than 1 for the smallest allowable weight. Some
analyses require nonzero weights for all units, so a small, nonzero minimum
may be desirable. The default is Te-8 (10~%), which does not materially change
the properties of the weights from a minimum of O but prevents warnings in
some packages that use weights in model fitting. When norm is "entropy” or
"log" and min.w <= @, min.w will be set to the smallest nonzero value.

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

for optweight (), additional arguments passed to optweight.fit(), including
options that are passed to the settings function corresponding to solver.

covs a numeric matrix of covariates to be balanced.
treat a vector of treatment statuses. Non-numeric (i.e., factor or character) vectors are
allowed.

std.binary, std.cont
logical; whether the tolerances are in standardized mean units (TRUE) or raw
units (FALSE) for binary variables and continuous variables, respectively. The
default is FALSE for std.binary because raw proportion differences make more
sense than standardized mean difference for binary variables. These arguments
are analogous to the binary and continuous arguments in cobalt: :bal. tab().

solver string; the name of the optimization solver to use. Allowable options depend
on norm. Default is to use whichever eligible solver is installed, if any, or the
default solver for the corresponding norm. See Details for information.

Details

optweight() is the primary user-facing function for estimating stable balancing weights. The
optimization is performed by the lower-level function optweight.fit(), which transforms the
inputs into the required inputs for the optimization functions and then supplies the outputs (the
weights, dual variables, and convergence information) back to optweight (). Little processing of
inputs is performed by optweight.fit(), as this is normally handled by optweight ().

For binary and multi-category treatments, weights are estimated so that the weighted mean differ-

ences of the covariates are within the given tolerance thresholds controlled by tols and target.tols
(unless std.binary or std.cont are TRUE, in which case standardized mean differences are con-

sidered for binary and continuous variables, respectively). For a covariate « with specified balance

tolerance J and target tolerance e, the weighted means of each each group will be within § of each

other, and the midpoint between the weighted group means will be with € of the target means. More

specifically, the constraints are specified as follows:

¥ +xy

2

—*

|7y — 75| <6

optweight 5

where 71" and z§ are the weighted means of covariate z for treatment groups 1 and 0, respec-
tively, and T* is the target mean for that covariate. ¢ corresponds to tols, and e corresponds to
target. tols. Setting a covariate’s value of target.tols to Inf orits target to NA both serve to
remove the second constraint, as is done in Barnard et al. (2025).

If standardized tolerance values are requested, the standardization factor corresponds to the es-
timand requested: when the ATE is requested or a target population specified, the standardization
factor is the square root of the average variance for that covariate across treatment groups, and when
the ATT or ATC are requested, the standardization factor is the standard deviation of the covariate
in the focal group. The standardization factor is computed accounting for s.weights.

Target and balance constraints are applied to the product of the estimated weights and the sampling
weights. In addition, the sum of the product of the estimated weights and the sampling weights is
constrained to be equal to the sum of the product of the base weights and sampling weights. For
binary and multi-category treatments, these constraints apply within each treatment group.

Continuous treatments:

For continuous treatments, weights are estimated so that the weighted correlation between the
treatment and each covariate is within the specified tolerance threshold. The means of the weighted
covariates and treatment are restricted to be exactly equal to those of the target population to en-
sure generalizability to the desired target population, regardless of tols or target.tols. The
weighted correlation is computed as the weighted covariance divided by the product of the un-
weighted standard deviations. The means used to center the variables in computing the covariance
are those specified in the target population.

norm:
The objective function for the optimization problem is f (w,b,s), where w = {wy,...,w,}
are the estimated weights, s = {s1, ..., s, } are sampling weights (supplied by s.weights), and
b = {b1,...,b,} are base weights (supplied by b.weights). The norm argument determines
f(,.,.), as detailed below:

e whennorm="12", f (w,b,s) = L 3" s;(w; — b;)?

* when norm="11", f (w,b,s) = L 3" s;|w; — b;]

e when norm="1inf", f (w,b,s) = max; |w; — b;|

e when norm = "entropy”, f (w,b,s) = %Zl s;w; log 117”—1

* when norm="log", f (w,b,s) = 1 > —silog P

n

By default, s.weights and b.weights are set to 1 for all units unless supplied. b.weights
must be positive when norm is "entropy” or "log”, and norm="1inf" cannot be used when
s.weights are supplied.

When norm = "12" and both s.weights and b.weights are NULL, weights are estimated to max-
imize the effective sample size. When norm = "entropy"”, the estimated weights are equivalent to
entropy balancing weights (Killberg & Waernbaum, 2023). When norm = "log"”, b.weights are
ignored in the optimization, as they do not affect the estimated weights.

Dual Variables:

Two types of constraints may be associated with each covariate: target constraints and balance
constraints, controlled by target.tols and tols, respectively. In the duals component of the
output, each covariate has a dual variable for each constraint placed on it. The dual variable for
each constraint is the instantaneous rate of change of the objective function at the optimum cor-
responding to a change in the constraint. Because this relationship is not linear, large changes

optweight

in the constraint will not exactly map onto corresponding changes in the objective function at
the optimum, but will be close for small changes in the constraint. For example, for a covariate
with a balance constraint of .01 and a corresponding dual variable of 40, increasing (i.e., relax-
ing) the constraint to .025 will decrease the value of the objective function at the optimum by
approximately (.025 — .01) % 40 = .6.

For factor variables, optweight () takes the sum of the absolute dual variables for the constraints
for all levels and reports it as the the single dual variable for the variable itself. This summed dual
variable works the same way as dual variables for continuous variables do.

An additional dual variable is computed for the constraint on the range of the weights, controlled

by min.w. A high dual variable for this constraint implies that decreasing min.w will decrease the
value of the objective function at the optimum.

solver:

The solver argument controls which optimization solver is used. Different solvers are compatible
with each norm. See the table below for allowable options, which package they require, which
function does the solving, and which function controls the settings.

solver norm Package Solver function Settings function

"osqp” "12","11", "1linf" osqp osqp: :solve_osgp() osqp: :osqgpSettings()

"highs" "12","11", "1linf" highs highs::highs_solve() highs::highs_control()/highs::highs_av
"lpsolve” "11", "linf" IpSolve 1pSolve::1p() .

"scs" "entropy”, "log" scs scs::scs() scs::scs_control()

"clarabel” "entropy”, "log" clarabel clarabel::clarabel() clarabel::clarabel_control()

Note that "1psolve” can only be used when min.w is nonnegative.
The default solver for each norm is as follows:

norm Default solver
"12” Hosqp”

Ill‘lll Ilhighsll
"linf" "highs"
"entropy” HSCSH

Hlogll HSCSH

If the package corresponding to a default solver is not installed but the package for a different
eligible solver is, that will be used. Otherwise, you will be asked to install the required package.
osqp is required for optweight, and so will be the default for the 11" and "1inf" norms if highs
is not installed. The default package is the one has shown good performance for the given norm
in informal testing; generally, all eligible solvers perform about equally well in terms of accuracy
but differ in time taken.

Solving Convergence Failure:

Sometimes the optimization will fail to converge at a solution. There are a variety of reasons why
this might happen, which include that the constraints are nearly impossible to satisfy or that the
optimization surface is relatively flat. It can be hard to know the exact cause or how to solve
it, but this section offers some solutions one might try. Typically, solutions can be found most

https://CRAN.R-project.org/package=osqp
https://CRAN.R-project.org/package=highs
https://CRAN.R-project.org/package=lpSolve
https://CRAN.R-project.org/package=scs
https://CRAN.R-project.org/package=clarabel

optweight 7

easily when using the "12" norm; other norms, especially "1inf" and "11", are more likely to
see problems.

Rarely is the problem too few iterations, though this is possible. Most problems can be solved
in the default 200,000 iterations, but sometimes it can help to increase this number with the
max_iter argument. Usually, though, this just ends up taking more time without a solution found.
If the problem is that the constraints are too tight, it can be helpful to loosen the constraints.
Sometimes examining the dual variables of a solution that has failed to converge can reveal which
constraints are causing the problem. An extreme value of a dual variable typically suggests that
its corresponding constraint is one cause of the failure to converge.

Sometimes a suboptimal solution is possible; such a solution does not satisfy the constraints
exactly but will come pretty close. To allow these solutions, the argument eps can be increased to
larger values. This is more likely to occur when s.weights are supplied.

Sometimes using a different solver can improve performance. Using the default solver for each
norm, as described above, can reduce the probability of convergence failures.

Value

For optweight (), an optweight object with the following elements:

weights The estimated weights, one for each unit.

treat The values of the treatment variable.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

s.weights The provided sampling weights.

b.weights The provided base weights.

estimand The estimand requested.

focal The focal variable if the ATT was requested with a multi-category treatment.

call The function call.

tols The balance tolerance values for each covariate.

target.tols

The target balance tolerance values for each covariate.

duals A data.frame containing the dual variables for each covariate. See Details for
interpretation of these values.

info A list containing information about the performance of the optimization at ter-
mination.

norm The norm used.

solver The solver used.

For optweight.fit(), an optweight.fit object with the following elements:

w The estimated weights, one for each unit.

duals A data.frame containing the dual variables for each covariate.

info A list containing information about the performance of the optimization at ter-
mination.

norm The norm used.

solver The solver used.

8 optweight

References

Barnard, M., Huling, J. D., & Wolfson, J. (2025). Partially Retargeted Balancing Weights for Causal
Effect Estimation Under Positivity Violations (No. arXiv:2510.22072). arXiv. doi:10.48550/
arXiv.2510.22072

Chattopadhyay, A., Cohn, E. R., & Zubizarreta, J. R. (2024). One-Step Weighting to Generalize
and Transport Treatment Effect Estimates to a Target Population. The American Statistician, 78(3),
280-289. doi:10.1080/00031305.2023.2267598

de los Angeles Resa, M., & Zubizarreta, J. R. (2020). Direct and Stable Weight Adjustment in
Non-Experimental Studies With Multivalued Treatments: Analysis of the Effect of an Earthquake
on Post-Traumatic Stress. Journal of the Royal Statistical Society Series A: Statistics in Society,
183(4), 1387-1410. doi:10.1111/rssa.12561

Killberg, D., & Waernbaum, 1. (2023). Large Sample Properties of Entropy Balancing Estimators
of Average Causal Effects. Econometrics and Statistics. doi:10.1016/j.ecosta.2023.11.004

Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93-105. doi:10.1093/
biomet/asz050

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910-922. doi:10.1080/
01621459.2015.1023805

See Also

optweightMV() for estimating stable balancing weights for multivariate (i.e., multiple) treatments
simultaneously.

sbw, which was the inspiration for this package and provides some additional functionality for
binary treatments.

Weightlt, which provides a simplified interface to optweight () and a more efficient implementa-
tion of entropy balancing.

Examples

library("cobalt")
data(”lalonde”, package = "cobalt")

Balancing covariates between treatment groups (binary)
(owl <- optweight(treat ~ age + educ + married +
nodegree + re74,
data = lalonde,
tols = c(.01, .02, .03, .04, .05),
estimand = "ATE"))
bal.tab(owl)

Exactly balancing covariates with respect to
race (multi-category)
(ow2 <- optweight(race ~ age + educ + married +
nodegree + re74,
data = lalonde,
tols = 0,

https://doi.org/10.48550/arXiv.2510.22072
https://doi.org/10.48550/arXiv.2510.22072
https://doi.org/10.1080/00031305.2023.2267598
https://doi.org/10.1111/rssa.12561
https://doi.org/10.1016/j.ecosta.2023.11.004
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805
https://CRAN.R-project.org/package=sbw
https://CRAN.R-project.org/package=WeightIt

optweight

estimand = "ATT",
focal = "black"))
bal.tab(ow2)

Balancing covariates between treatment groups (binary)
and requesting a specified target population
targets <- process_targets(~ age + educ + married +
nodegree + re74,
data = lalonde,
targets = c(26, 12, .4, .5,
1000))

(ow3a <- optweight(treat ~ age + educ + married +
nodegree + re74,
data = lalonde,
targets = targets,
estimand = NULL))

bal.tab(ow3a, disp.means = TRUE)

Balancing covariates between treatment groups (binary)
and requesting a specified target population, allowing
for approximate target balance
(ow3db <- optweight(treat ~ age + educ + married +
nodegree + re74,

data = lalonde,

targets = targets,

estimand = NULL,

target.tols = .05))

bal.tab(ow3b, disp.means = TRUE)

Balancing covariates between treatment groups (binary)
and not requesting a target population
(ow3c <- optweight(treat ~ age + educ + married +
nodegree + re74,
data = lalonde,
targets = NULL,
estimand = NULL))

bal.tab(ow3c, disp.means = TRUE)

Using a different norm
(owlb <- optweight(treat ~ age + educ + married +
nodegree + re74,
data = lalonde,
tols = c(.01, .02, .03, .04, .05),
estimand = "ATE",
norm = "11"))

summary(owlb, weight.range = FALSE)
summary (owl, weight.range = FALSE)

10 optweight.svy

Allowing for negative weights
ow4 <- optweight(treat ~ age + educ + married + race +
nodegree + re74 + re75,
data = lalonde,
estimand = "ATE",
min.w = -Inf)

summary (ow4)

Using “optweight.fit()"
treat <- lalonde$treat
covs <- splitfactor(lalonde[2:8], drop.first = "if2")

ow.fit <- optweight.fit(covs,
treat = treat,
tols = .02,
estimand = "ATE",
norm = "12")

optweight.svy Stable Balancing Weights for Generalization

Description

Estimates stable balancing weights to generalize a sample characterized by supplied covariates to
a given target population. The target means are specified with targets and the maximum distance
between each weighted covariate mean. See Jackson et al. (2021) for details of the properties of the
weights and the methods used to fit them.

Usage

optweight.svy(
formula,
data = NULL,
tols = 0,
targets = NULL,
s.weights = NULL,
b.weights = NULL,
norm = "12"
min.w = 1e-08,
verbose = FALSE,

optweight.svy.fit(
covs,
targets,

optweight.svy

tols = 0,

s.weights = NULL,
b.weights = NULL,
norm = "12",
std.binary = FALSE,
std.cont = TRUE,

11

min.w = 1e-08,
verbose = FALSE,
solver = NULL,

Arguments

formula

data

tols

targets

s.weights

b.weights

norm

min.w

a formula with nothing on the left hand side and the covariates to be targeted on
the right hand side. Interactions and functions of covariates are allowed. Can
be omitted, in which case all variables in data are assumed targeted. If data is
NULL and formula is a data.frame, data will be replaced with formula.

an optional data set in the form of a data frame that contains the variables in
formula.

a vector of target balance tolerance values for each covariate. The resulting
weighted covariate means will be no further away from the targets than the spec-
ified values. If only one value is supplied, it will be applied to all covariates. Can
also be the output of a call to process_tols(). Default is O for all covariates.

a vector of target population mean values for each covariate. The resulting
weights will yield sample means within tols units of the target values for each
covariate. If any target values are NA, the corresponding variable will not be
targeted and its weighted mean will be wherever the weights yield the smallest
variance. To ensure the weighted mean for a covariate is equal to its unweighted
mean (i.e., so that its original mean is its target mean), its original mean must
be supplied as a target. For factor variables, a target value must be specified
for each level of the factor, and these values must add up to 1. Can also be the
output of a call to process_targets().

a vector of sampling weights. For optweight(), can also be the name of a
variable in data that contains sampling weights.

a vector of base weights. If supplied, the desired norm of the distance between
the estimated weights and the base weights is minimized. For optweight(),
can also the name of a variable in data that contains base weights.

character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "11" for the L; norm,
"12" for the Lo norm (the default), "1inf" for the L., norm, "entropy” for the
relative entropy, and "log" for the sum of the negative logs. See Details.

numeric; a single value less than 1 for the smallest allowable weight. Some
analyses require nonzero weights for all units, so a small, nonzero minimum
may be desirable. The default is 1e-8 (10~%), which does not materially change
the properties of the weights from a minimum of O but prevents warnings in

12 optweight.svy

some packages that use weights in model fitting. When norm is "entropy” or
"log" and min.w <=0, min.w will be set to the smallest nonzero value.

verbose logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

for optweight (), additional arguments passed to optweight.fit(), including
options that are passed to the settings function corresponding to solver.

covs a numeric matrix of covariates to be targeted.

std.binary, std.cont
logical; whether the tolerances are in standardized mean units (TRUE) or raw
units (FALSE) for binary variables and continuous variables, respectively. The
default is FALSE for std.binary because raw proportion differences make more
sense than standardized mean difference for binary variables. These arguments
are analogous to the binary and continuous arguments in cobalt: :bal. tab().

solver string; the name of the optimization solver to use. Allowable options depend
on norm. Default is to use whichever eligible solver is installed, if any, or the
default solver for the corresponding norm. See Details for information.

Details

optweight.svy() is the primary user-facing function for estimating stable balancing weights for
generalization to a target population. The optimization is performed by the lower-level function
optweight.svy.fit(), which transforms the inputs into the required inputs for the optimization
functions and then supplies the outputs (the weights, dual variables, and convergence information)
back to optweight.svy(). Little processing of inputs is performed by optweight.svy.fit(), as
this is normally handled by optweight.svy().

Weights are estimated so that the standardized differences between the weighted covariate means
and the corresponding targets are within the given tolerance thresholds (unless std.binary or
std.cont are FALSE, in which case unstandardized mean differences are considered for binary and
continuous variables, respectively). For a covariate x with specified tolerance ¢, the weighted mean
will be within § of the target. If standardized tolerance values are requested, the standardization
factor is the standard deviation of the covariate in the whole sample. The standardization factor is
always unweighted.

Target constraints are applied to the product of the estimated weights and the sampling weights. In
addition, sum of the product of the estimated weights and the sampling weights is constrained to be
equal to the sum of the product of the base weights and sampling weights.

See optweight () for information on norm, solver, and convergence failure.

Value

For optweight.svy(), an optweight. svy object with the following elements:

weights The estimated weights, one for each unit.

covs The covariates used in the fitting. Only includes the raw covariates, which may
have been altered in the fitting process.

s.weights The provided sampling weights.

call The function call.

optweight.svy 13

tols The tolerance values for each covariate.

duals A data.frame containing the dual variables for each covariate. See optweight ()
for interpretation of these values.

info A list containing information about the performance of the optimization at ter-
mination.

norm The norm used.

solver The solver used.

For optweight.svy.fit(), an optweight.svy.fit object with the following elements:

w The estimated weights, one for each unit.
duals A data.frame containing the dual variables for each covariate.
info A list containing information about the performance of the optimization at ter-
mination.
norm The norm used.
solver The solver used.
References

Jackson, D., Rhodes, K., & Ouwens, M. (2021). Alternative weighting schemes when performing
matching-adjusted indirect comparisons. Research Synthesis Methods, 12(3), 333-346. doi:10.1002/
jrsm.1466

See Also

optweight() for estimating weights that balance treatment groups.

process_targets() for specifying the covariate target means supplied to targets.

Examples

library("cobalt")
data(”lalonde”, package = "cobalt")

cov.names <- c("age", "educ", "race",
"married”, "nodegree")

targets <- c(age = 23,
educ = 9,
race_black = .3,
race_hispan = .3,
race_white = .4
married = .2,
nodegree = .5)

’

ows <- optweight.svy(lalonde[cov.names],
targets = targets)
ows

Unweighted means

https://doi.org/10.1002/jrsm.1466
https://doi.org/10.1002/jrsm.1466

14 optweightM'V

col_w_mean(lalonde[cov.names])

Weighted means; same as targets
col_w_mean(lalonde[cov.names],
w = ows$weights)

optweightMV Stable Balancing Weights for Multivariate Treatments

Description

Estimates stable balancing weights for the supplied multivariate (i.e., multiple) treatments and co-
variates. The degree of balance for each covariate is specified by tols.list. See Zubizarreta
(2015) and Wang & Zubizarreta (2020) for details of the properties of the weights and the methods
used to fit them.

Usage

optweightMV(
formula.list,
data = NULL,
tols.list = 1ist(0Q),
estimand = "ATE",
targets = NULL,
target.tols.list = list(0),
s.weights = NULL,
b.weights = NULL,
norm = "12",
min.w = 1e-08,
verbose = FALSE,

)

optweightMV.fit(
covs.list,
treat.list,
tols.list = 1list(0),
estimand = "ATE",
targets = NULL,
target.tols.list = list(0),
s.weights = NULL,
b.weights = NULL,
norm = "12"
std.binary = FALSE,
std.cont = TRUE,
min.w = 1e-08,

optweightM'V

verbose =

15

FALSE,

solver = NULL,

Arguments

formula.list

data

tols.list

estimand

targets

a list of formulas, each with a treatment variable on the left hand side and the
covariates to be balanced on the right hand side.

an optional data set in the form of a data frame that contains the variables in
formula.list.

a list of vectors of balance tolerance values for each covariate for each treatment.
The resulting weighted balance statistics will be at least as small as these values.
If only one value is supplied, it will be applied to all covariates. See Details.
Default is O for all covariates.

the desired estimand, which determines the target population. Only "ATE" or
NULL are supported. estimand is ignored when targets is non-NULL. If both
estimand and targets are NULL, no targeting will take place.

an optional vector of target population mean values for each covariate. The re-
sulting weights ensure the midpoint between group means are within target. tols
units of the target values for each covariate. If NULL or all NA, estimand will be
used to determine targets. Otherwise, estimand is ignored. If any target values
are NA, the corresponding variable will not be targeted and its weighted mean
will be wherever the weights yield the smallest value of the objective function;
this is only allowed if all treatments are binary or multi-category. Can also be
the output of a call to process_targets(). See Details.

target.tols.list

s.weights

b.weights

norm

min.w

a list of vectors of target balance tolerance values for each covariate for each
treatment. For binary and multi-category treatments, the average of each pair
of means will be at most as far from the target means as these values. Can also
be the output of a call to process_tols(). See Details. Default is 0 for all
covariates. Ignored with continuous treatments.

a vector of sampling weights. For optweightMV(), can also be the name of a
variable in data that contains sampling weights.

a vector of base weights. If supplied, the desired norm of the distance between
the estimated weights and the base weights is minimized. For optweightMV (),
can also the name of a variable in data that contains base weights.

character; a string containing the name of the norm corresponding to the ob-
jective function to minimize. Allowable options include "11" for the L; norm,
"12" for the Lo norm (the default), "1inf" for the L., norm, "entropy"” for the
relative entropy, and "log" for the sum of the negative logs. See Details.

numeric; a single value less than 1 for the smallest allowable weight. Some
analyses require nonzero weights for all units, so a small, nonzero minimum
may be desirable. The default is Te-8 (10~%), which does not materially change
the properties of the weights from a minimum of O but prevents warnings in
some packages that use weights in model fitting. When norm is "entropy” or
"log" and min.w <= @, min.w will be set to the smallest nonzero value.

16

verbose

covs.list

treat.list
std.binary, std.

solver

Details

optweightMv() is

optweightM'V

logical; whether information on the optimization problem solution should be
printed. Default is FALSE.

for optweightMV(), additional arguments passed to optweightMV.fit(), in-
cluding options that are passed to the settings function corresponding to solver.

a list containing one numeric matrix of covariates to be balanced for each treat-
ment.

a list containing one vector of treatment statuses for each treatment.

cont

logical; whether the tolerances are in standardized mean units (TRUE) or raw
units (FALSE) for binary variables and continuous variables, respectively. The
default is FALSE for std.binary because raw proportion differences make more
sense than standardized mean difference for binary variables. These arguments
are analogous to the binary and continuous arguments in cobalt: :bal. tab().

string; the name of the optimization solver to use. Allowable options depend
on norm. Default is to use whichever eligible solver is installed, if any, or the
default solver for the corresponding norm. See Details for information.

the primary user-facing function for estimating stable balancing weights for mul-

tivariate treatments. The optimization is performed by the lower-level function optweightMV.fit(),
which transforms the inputs into the required inputs for the optimization functions and then supplies
the outputs (the weights, dual variables, and convergence information) back to optweightMV().
Little processing of inputs is performed by optweightMV.fit(), as this is normally handled by

optweightMv().

See optweight () for more information about balance tolerances (i.e., those specified in tols.list),
targets, norm, solver, and convergence failure.

Value

For optweightMV (), an optweightMV object with the following elements:

weights
treat.list

covs.list

s.weights
b.weights
call
tols

duals

info

norm

The estimated weights, one for each unit.
A list of the values of the treatment variables.

A list of the covariates for each treatment used in the fitting. Only includes the
raw covariates, which may have been altered in the fitting process.

The provided sampling weights.

The provided base weights.

The function call.

A list of tolerance values for each covariate for each treatment.

A list of data.frames containing the dual variables for each covariate for each
treatment. See optweight () for interpretation of these values.

A list containing information about the performance of the optimization at ter-
mination.

The norm used.

optweightM'V 17

solver The solver used.

For optweightMV.fit(), an optweightMV.fit object with the following elements:

w The estimated weights, one for each unit.
duals A data.frame containing the dual variables for each covariate.
info A list containing information about the performance of the optimization at ter-
mination.
norm The norm used.
solver The solver used.
References

Chattopadhyay, A., Cohn, E. R., & Zubizarreta, J. R. (2024). One-Step Weighting to Generalize
and Transport Treatment Effect Estimates to a Target Population. The American Statistician, 78(3),
280-289. doi:10.1080/00031305.2023.2267598

Killberg, D., & Waernbaum, 1. (2023). Large Sample Properties of Entropy Balancing Estimators
of Average Causal Effects. Econometrics and Statistics. doi:10.1016/j.ecosta.2023.11.004

Wang, Y., & Zubizarreta, J. R. (2020). Minimal dispersion approximately balancing weights:
Asymptotic properties and practical considerations. Biometrika, 107(1), 93-105. doi:10.1093/
biomet/asz050

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910-922. doi:10.1080/
01621459.2015.1023805

See Also

optweight() for more information on the optimization, specifications, and options.

Examples

library("cobalt")
data(”lalonde”, package = "cobalt")

Balancing two treatments
(owl <- optweightMV(list(treat ~ age + educ + race + re74,
re75 ~ age + educ + race + re74),
data = lalonde))

summary (ow1)

bal.tab(owl)

https://doi.org/10.1080/00031305.2023.2267598
https://doi.org/10.1016/j.ecosta.2023.11.004
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1093/biomet/asz050
https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805

18 plot.optweight

plot.optweight Plot Dual Variables for Covariate Constraints

Description

Plots the dual variables resulting from optweight(), optweightMV(), or optweight.svy() in a
way similar to figure 2 of Zubizarreta (2015), which explains how to interpret these values.
Usage

S3 method for class 'optweight'
plot(x, type = "variables"”, ...)

S3 method for class 'optweightMV'
plot(x, which.treat = 1L, type = "variables”, ...)

S3 method for class 'optweight.svy'

plot(x, type = "variables”, ...)
Arguments
X an optweight, optweightMV, or optweight. svy object; the output of a call to

optweight(), optweightMV (), or optweight.svy().

type the type of plot to display; allowable options include "variables” (the default),
which produces a row for each covariate, and "constraints”, which produces
a row for each type of constraint (computed as the sum of the absolute dual
variables for each constraint type).

ignored.

which.treat for optweightMV objects, an integer corresponding to which treatment to dis-
play. Only one may be displayed at a time.

Details

Dual variables represent the cost of changing the constraint on the objective function minimized to
estimate the weights. For covariates with large values of the dual variable, tightening the constraint
will increase the variability of the weights, and relaxing the constraint will decrease the variability
of the weights, both to a greater extent than would doing the same for covariate with small values
of the dual variable. See optweight() and vignette("optweight”) for more information on
interpreting dual variables.

Value

A ggplot object that can be used with other ggplot2 functions.

plot.optweight 19

References

Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete
Outcome Data. Journal of the American Statistical Association, 110(511), 910-922. doi:10.1080/
01621459.2015.1023805

See Also

optweight(), optweightMV(), or optweight.svy() to estimate the weights and the dual vari-
ables.

plot.summary.optweight() for plots of the distribution of weights.

Examples

library("cobalt")
data(”lalonde”, package = "cobalt")

tols <- process_tols(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
tols = .1)

#Balancing covariates between treatment groups (binary)
owl <- optweight(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

Note the L2 divergence and effective sample
size (ESS)
summary(owl, weight.range = FALSE)

age has a low value, married is high
plot(owl)

tols["age"] <- 0
ow2 <- optweight(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

Notice that tightening the constraint on age has
a negligible effect on the variability of the

weights and ESS

summary (ow2, weight.range = FALSE)

tols["age"] <- .1
tols["married"] <- @
ow3 <- optweight(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
tols = tols,
estimand = "ATT")

https://doi.org/10.1080/01621459.2015.1023805
https://doi.org/10.1080/01621459.2015.1023805

20

process_targets

In contrast, tightening the constraint on married
has a large effect on the variability of the

weights, shrinking the ESS

summary (ow3, weight.range = FALSE)

More duals are displayed when targeting other

estimands:

ow4 <- optweight(treat ~ age + educ + married +

plot(ow4)

nodegree + re74, data = lalonde,
estimand = "ATE")

Display duals by constraint type
plot(ow4, type = "constraints")

process_targets

Construct and Check Targets Input

Description

Checks whether proposed target population means values for targets are suitable in number and
order for submission to optweight(), optweightMV(), and optweight.svy(), and returns an
object that can supplied to the targets argument of these functions.

Usage

process_targets(formula, data = NULL, targets = NULL, s.weights = NULL)

check.targets(...)

S3 method for class 'optweight.targets'

print(x, digits =5, ...)
Arguments
formula a formula with nothing on the left hand side and the covariates to be targeted on

data

targets

the right hand side. Interactions and functions of covariates are allowed. Can
be omitted, in which case all variables in data are assumed targeted. If data is
NULL and formula is a data.frame, data will be replaced with formula.

an optional data set in the form of a data frame that contains the variables in
formula.

a vector of target population mean values for each covariate. These should be in
the order corresponding to the order of the corresponding variable in formula,
except for interactions, which will appear after all lower-order terms. For factor
variables, a target value must be specified for each level of the factor, and these
values must add up to 1. If NULL, the current sample means will be produced

process_targets 21

(weighted by s.weights). If NA, an NA vector named with the covariate names
will be produced.

s.weights a vector of sampling weights. For optweight(), can also be the name of a
variable in data that contains sampling weights.

for optweight (), additional arguments passed to optweight.fit(), including
options that are passed to the settings function corresponding to solver.

X an optweight. targets object; the output of a call to process_targets().
digits how many digits to print.
Details

The purpose of process_targets() is to allow users to ensure that their proposed input to targets
in optweight (), optweightMV (), and optweight.svy() is correct both in the number of entries
and their order. This is especially important when factor variables and interactions are included
in the formula because factor variables are split into several dummies and interactions are moved
to the end of the variable list, both of which can cause some confusion and potential error when
entering targets values.

Factor variables are internally split into a dummy variable for each level, so the user must specify a
target population mean value for each level of the factor. These must add up to 1, and an error will
be displayed if they do not. These values represent the proportion of units in the target population
with each factor level.

Interactions (e.g., a:b or a*b in the formula input) are always sent to the end of the variable list
even if they are specified elsewhere in the formula. It is important to run process_targets() to
ensure the order of the proposed targets corresponds to the represented order of covariates used in
the formula. You can run process_targets(., targets =NA) to see the order of covariates that
is required without specifying any targets.

Value

An optweight. targets object, which is a named vector of target population mean values, one for
each (expanded) covariate specified in formula. This should be used as an input to the targets
argument of optweight(), optweightMV(), and optweight.svy().

See Also

process_tols()

Examples

library("cobalt")
data("lalonde”, package = "cobalt")

Generating targets; means by default
targets <- process_targets(~ age + race + married +
nodegree + re74,
data = lalonde)

Notice race is split into three values

22

targets

process_tols

Generating targets; NA by default
targets <- process_targets(~ age + race + married +

targets

nodegree + re74,
data = lalonde,
targets = NA)

Can also supply just a dataset
covs <- lalonde |>
subset(select = c(age, race, married,

nodegree, re74))

targets <- process_targets(covs)

targets

process_tols

Construct and Check Tolerance Input

Description

Checks whether proposed tolerance values for tols are suitable in number and order for submis-
sion to optweight() and optweight.svy(), and returns an object that can supplied to the tols
argument of these functions.

Usage

process_tols(formula, data = NULL, tols = @)

check.tols(...)

S3 method for class 'optweight.tols'

print(x, internal = FALSE, digits =5, ...)
Arguments
formula a formula with the covariates to be balanced on the right-hand side. Interac-

data

tols

tions and functions of covariates are allowed. Lists of formulas are not allowed;
multiple formulas must be checked one at a time.

an optional data set in the form of a data frame that contains the variables in
formula.

a vector of balance tolerance values in standardized mean difference units for
each covariate. These should be in the order corresponding to the order of the
corresponding variable in formula, except for interactions, which will appear
after all lower-order terms. If only one value is supplied, it will be applied to all
covariates.

process_tols 23

ignored.
X an optweight. tols object; the output of a call to process_tols().
internal logical; whether to print the tolerance values that are to be used internally by
optweight(). See Value section.
digits how many digits to print.
Details

The purpose of process_tols() is to allow users to ensure that their proposed input to tols in
optweight() is correct both in the number of entries and their order. This is especially important
when factor variables and interactions are included in the formula because factor variables are split
into several dummies and interactions are moved to the end of the variable list, both of which can
cause some confusion and potential error when entering tols values.

Factor variables are internally split into a dummy variable for each level, but the user only needs to
specify one tolerance value per original variable; process_tols() automatically expands the tols
input to match the newly created variables.

Interactions (e.g., a:b or a*b in the formula input) are always sent to the end of the variable list
even if they are specified elsewhere in the formula. It is important to run process_tols() to
ensure the order of the proposed tols corresponds to the represented order of covariates used in
optweight(). You can run process_tols() with no tols input to see the order of covariates that
is required.

Note that only one formula and vector of tolerance values can be assessed at a time; for multiple
treatments, each formula and tolerance vector must be entered separately.

Value

An optweight.tols object, which is a named vector of tolerance values, one for each variable
specified in formula. This should be used as an input to the tols argument of optweight (). The
"internal.tols"” attribute contains the tolerance values to be used internally by optweight().
These will differ from the vector values when there are factor variables that are split up; the user
only needs to submit one tolerance per factor variable, but separate tolerance values are produced
for each new dummy created.

See Also

process_targets()

Examples

library("cobalt")
data("lalonde”, package = "cobalt")

Generating tols; @ by default
tols <- process_tols(treat ~ age + educ + married +
nodegree + re74,
data = lalonde)

tols

24 summary.optweight

tols <- process_tols(treat ~ age + educ + married +
nodegree + re74,
data = lalonde,
tols = .05)

tols

Checking the order of interactions; notice they go
at the end even if specified at the beginning.
tols <- process_tols(treat ~ age:educ + married*race +
nodegree + re74,
data = lalonde,
tols = .05)

tols

Internal tolerances for expanded covariates
print(tols, internal = TRUE)

summary .optweight Summarize, Print, and Plot Information about Estimated Weights

Description

These functions summarize the weights resulting from a call to optweight(), optweightMV(), or
optweight.svy(). summary() produces summary statistics on the distribution of weights, includ-
ing their range and variability, and the effective sample size of the weighted sample (computed
using the formula in McCaffrey, et al., 2004). plot() creates a histogram of the weights.

Usage

S3 method for class 'optweight'
summary(object, top = 5L, ignore.s.weights = FALSE, weight.range = TRUE, ...)

S3 method for class 'optweightMV'
summary(object, top = 5L, ignore.s.weights = FALSE, weight.range = TRUE, ...)

S3 method for class 'optweight.svy'
summary(object, top = 5L, ignore.s.weights = FALSE, weight.range = TRUE, ...)

S3 method for class 'summary.optweight'
plot(x, ...)
Arguments

object an optweight, optweightMV, or optweight.svy object; the output of a call to
optweight (), optweightMV (), or optweight.svy().

summary.optweight 25

top integer; how many of the largest and smallest weights to display. Default is 5.

Ignored when weight.range = FALSE.
ignore.s.weights

logical; whether to ignore sampling weights when computing the weight summary. Default is
weight.range logical; whether to display statistics about the range of weights and the highest

and lowest weights for each group. Default is TRUE.

Additional arguments. For plot (), additional arguments passed to graphics: :hist()
to determine the number of bins, though ggplot2::geom_histogram() from
ggplot2 is actually used to create the plot.

X a summary.optweight, summary.optweightMV, or summary.optweight.svy
object; the output of a call to summary.optweight(), summary.optweightMV(),
or ()summary.optweight.svy.

Value

For point treatments (i.e., optweight objects), summary () returns a summary.optweight object
with the following elements:
weight.range The range (minimum and maximum) weight for each treatment group.

weight.top The units with the greatest weights in each treatment group; how many are in-
cluded is determined by top.

12 The square root of the Lo norm of the estimated weights from the base weights,
weighted by the sampling weights (if any): \/ L5 si(wi — b;)?

11 The L; norm of the estimated weights from the base weights, weighted by the
sampling weights (if any): 2 3", s;[w; — by

linf The L, norm (maximum absolute deviation) of the estimated weights from the
base weights: max; |w; — b;]|

rel.ent The relative entropy between the estimated weights and the base weights, weighted
by the sampling weights (if any): % >, siw; log (%) Only computed if all
weights are positive.

num.zeros The number of units with a weight equal to 0.
effective.sample.size
The effective sample size for each treatment group before and after weighting.

For multivariate treatments (i.e., optweightMV objects), a list of the above elements for each treat-
ment.

For optweight. svy objects, the above object but with no treatment group divisions.

plot() returns a ggplot object with a histogram displaying the distribution of the estimated weights.
If the estimand is the ATT or ATC, only the weights for the non-focal group(s) will be displayed
(since the weights for the focal group are all 1). A dotted line is displayed at the mean of the weights
(the mean of the base weights, or 1 if not supplied).

References

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation With Boosted
Regression for Evaluating Causal Effects in Observational Studies. Psychological Methods, 9(4),
403-425. doi:10.1037/1082989X.9.4.403

https://doi.org/10.1037/1082-989X.9.4.403

26 summary.optweight

See Also

plot.optweight() for plotting the values of the dual variables.

Examples

library("cobalt")
data("lalonde”, package = "cobalt")

#Balancing covariates between treatment groups (binary)
(owl <- optweight(treat ~ age + educ + married +
nodegree + re74, data = lalonde,
tols = .001,
estimand = "ATT"))

(s <- summary(owl))

plot(s, breaks = 12)

Index

check.targets (process_targets), 20
check.tols (process_tols), 22
clarabel::clarabel(), 6
clarabel::clarabel_control(), 6
cobalt::bal.tab(),4, 12, 16

ggplot2::geom_histogram(), 25
graphics::hist(), 25

highs::highs_available_solver_options(),
6

highs: :highs_control(), 6

highs::highs_solve(), 6

1pSolve::1p(), 6

optweight, 2
optweight(), 12, 13, 16-24
optweight.svy, 10
optweight.svy(), 18-22, 24
optweightMv, 14
optweightMv(), 8, 18-21, 24
osqp: :osgpSettings(), 6
osqp: :solve_osgp(), 6

plot.optweight, 18
plot.optweight(), 26
plot.optweightMV (plot.optweight), 18
plot.summary.optweight
(summary.optweight), 24
plot.summary.optweight(), 19
print.optweight.targets
(process_targets), 20
print.optweight.tols (process_tols), 22
process_targets, 20
process_targets(), 3,11, 13,15, 23
process_tols, 22
process_tols(), 3,11,15,21

scs::scs(), 6
scs::scs_control(), 6

27

summary.optweight, 24
summary .optweightMv
(summary.optweight), 24

	optweight
	optweight.svy
	optweightMV
	plot.optweight
	process_targets
	process_tols
	summary.optweight
	Index

