Package ‘openxlsx2’

January 19, 2026
Type Package
Title Read, Write and Edit 'xIsx' Files
Version 1.23.1
Language en-US

Description Simplifies the creation of 'xIsx' files by
providing a high level interface to writing, styling and editing
worksheets.

License MIT + file LICENSE

URL https://janmarvin.github.io/openxlsx2/,
https://github.com/JanMarvin/openxlsx?2

BugReports https://github.com/JanMarvin/openxlsx2/issues
Depends R (>=3.5.0)

Imports R6, Repp, grDevices, stringi, utils

LinkingTo Rcpp

Suggests ggplot2, knitr, mschart (>= 0.4), rmarkdown, rvg, testthat
(>=3.0.0), waldo, zip

VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.3
Config/testthat/edition 3
NeedsCompilation yes

Author Jordan Mark Barbone [aut] (ORCID:
<https://orcid.org/0000-0001-9788-3628>),

Jan Marvin Garbuszus [aut, cre],

Olivier Roy [ctb],

openxlsx authors [cph] (openxlsx package),

Arseny Kapoulkine [ctb, cph] (Author of included pugixml code)
Maintainer Jan Marvin Garbuszus <jan.garbuszus@ruhr-uni-bochum.de>
Repository CRAN

Date/Publication 2026-01-19 08:30:02 UTC

https://janmarvin.github.io/openxlsx2/
https://github.com/JanMarvin/openxlsx2
https://github.com/JanMarvin/openxlsx2/issues
https://orcid.org/0000-0001-9788-3628

2 Contents

Contents
active_sheet-wb L L e 4
apply_numfmt 5
as_ xXml . . . 6
base_font-wb 7
clean_worksheet_ name e 8
COIZINt e e e e e e e 9
col_widths-wb e e e e 9
convert_date e e e e 11
convert_to_excel date e 12
create_border 13
create_cell_style L 14
create_colors_xml e e 17
create_dxfs_style L. 18
create_fill L e e e e e 20
create_font L L e 21
create_hyperlink L 23
create_ numfmt L L L e 24
create_shape L 25
create_sparklines 27
create_tablestyle L. e 29
creators-whb L L e e e e e e e e e 32
dims_helper e 33
filter-wb e 34
MO EXE. . . e 35
grouping-wh 37
Int2col e e e 39
named_region-wb L. e e e 40
openxlsx2-deprecated 42
openxlsx2_optionsl e 43
person-wb . ..o e 44
print.pugi_xml L 45
Properties-wb L e e 46
pugixml . . .o 47
read_xml e 48
row_heights-wb 50
sheet_ names-wb e e e 51
sheet_visibility-wb 52
styles_on_sheet L 53
temp_XISX 53
WAIVETS . . o v v v e i e e e e e e e e e e e e e e e e e e e 54
wbWorkbook e e e e 54
wb_add_border e 102
wb_add_cell_style 105
wb_add_chartsheet 107
wb_add_chart_ xml e 108

wb_add_comment L e 109

Contents

3
wb_add_conditional_formatting L L L 110
wb_add_data e e 113
wb_add_data_table 116
wb_add_data_validation e 119
wb_add_drawing L. 121
wb_add_dxfs_style L 122
wb_add_fill e e 124
wb_add_font e e 125
wb_add_formula e 127
wb_add_form_control e 130
wb_add_hyperlink 131
wb_add_ignore_error e e e e e e 132
wb_add_image 133
wb_add_mips 135
wb_add_mschart e 136
wb_add_named_style 137
wb_add_numfmt e 138
wb_add_page_break 140
wb_add_pivot_table L 141
wb_add_plot 144
wb_add_slicer e 145
wb_add_sparklines 148
wb_add_style 149
wb_add_thread e 150
wb_add_worksheet 151
wb_base_colors e e e e e 154
whb_cell_style e 155
wb_clean_sheet e 156
wb_clone_sheet_style e 157
wb_clone_worksheet 157
Wb _COlOor . . . L 158
WD_COMMENT o o e e e e e e 160
wb_copy_cells 161
wbodata s 162
Wb _dimS e 163
wb_freeze_pane L. e 166
wb_get_tables e 167
wb_load e 168
wb_merge_cells e 169
WD_OPEN e e e e 171
wb_oorder 171
Wh_page_setup e e e e 172
WD_PIOtect o e e e e e e e 178
wb_protect_worksheet 179
wb_remove_tables e 180
wb_remove_worksheet 181
WD_SAVE e e e 182

Wb_Set_bOOKVIEW e 183

active_sheet-wb

wb_set_grid_lines 185
wb_set_header_footer e 186
wb_set_last_modified_by 188
wb_set_sheetview e 189
wb_to_df 191
wb_update_table 195
wb_workbook e e e e 196
WItE_XISX o e e 198
XLOpen e e e e e 200
xml_add_child e 201
xml_attr mod L e 202
xml node create e e e 203
xml_rm_child e 204
Index 205
active_sheet-wb Modify the state of active and selected sheets in a workbook
Description

Get and set table of sheets and their state as selected and active in a workbook

Multiple sheets can be selected, but only a single one can be active (visible). The visible sheet, must
not necessarily be a selected sheet.

Usage

wb_get_active_sheet (wb)

wb_set_active_sheet(wb, sheet)

wb_get_selected(wb)

wb_set_selected(wb, sheet)

Arguments

wb a workbook

sheet a sheet name of the workbook
Value

a data frame with tabSelected and names

apply_numfmt 5

Examples

wb <- wb_load(file = system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2"))
testing is the selected sheet

wh_get_selected(wb)

change the selected sheet to Sheet2

wb <- wb_set_selected(wb, "Sheet2")

get the active sheet

wb_get_active_sheet(wb)

change the selected sheet to Sheet2

wb <- wb_set_active_sheet(wb, sheet = "Sheet2")

apply_numfmt Format Values using OOXML (Spreadsheet) Number Format Codes

Description

This function emulates a spreadsheet formatting engine. It takes numeric, date, or character values
and applies an OOXML format code to produce a formatted string. It supports standard number
formatting, date/time, elapsed durations, fractions, and conditional formatting sections.

Usage

apply_numfmt(value, format_code)

Arguments
value A vector of values to format. Supports numeric, Date, POSIXct, character
(ISO dates or times), hms, or difftime.
format_code A character vector of format strings (e.g., "#, ##0.00", "yyyy-mm-dd”, or "[h]:mm:ss").

Details

The function splits the format_code into up to four sections separated by semicolons (Positive;
Negative; Zero; Text).

* Date and Time: Supports standard tokens (yyyy, mm, dd, hh, ss) and AM/PM toggles.

* Durations: Supports elapsed time tokens in square brackets, such as [h], [m], and [s],
calculating total units.

* HMS Handling: Character strings in "HH:MM:SS" format are automatically coerced to a
date-time object using a base date to allow clock and duration formatting.

* Numbers: Supports thousands separators (,), precision, percentage conversion, and scientific
notation (E+).

* Fractions: Uses the Farey algorithm to approximate decimals as fractions (e.g., ?/?, # 2/7).

* Conditionals: Evaluates bracketed conditions like [<1000] to select the appropriate format-
ting section.

* Literals: Handles escaped characters (\\), quoted text ("text"), and the text placeholder (@).

Rounding is based on the R function round() and does not match spreadsheet software behavior.

6 as_xml

Value

A character vector of formatted strings.

Examples

Numeric formatting
apply_numfmt(1234.5678, "#,##0.00") # "1,234.57"

Date and Time
apply_numfmt(”2025-01-05", "dddd, mmm dd") # "Sunday, Jan 05"
apply_numfmt(”13:45:30", "hh:mm AM/PM") # "01:45 PM"

Durations
apply_numfmt(”1900-01-12 08:17:47", "[h]:mm:ss") # "296:17:47"

Fractions
apply_numfmt(1.75, "# ?2/?") # "1 3/4"

as_xml loads character string to pugixml and returns an externalptr

Description

loads character string to pugixml and returns an externalptr

Usage
as_xml(x, ...)
Arguments
X input as xml
additional arguments passed to read_xml()
Details

might be useful for larger documents where single nodes are shortened and otherwise the full tree
has to be reimported. unsure where we have such a case. is useful, for printing nodes from a larger
tree, that have been exported as characters (at some point in time we have to convert the xml to R)

Examples

tmp_x1sx <- tempfile()
xlsxFile <- system.file("extdata”, "openxlsx2_example.xlsx”, package = "openxlsx2")
unzip(xlsxFile, exdir = tmp_x1lsx)

wb <- wb_load(xlsxFile)

base_font-wb 7

styles_xml <- sprintf("%s/x1/styles.xml”, tmp_x1lsx)

is external pointer
sxml <- read_xml(styles_xml)

is character
font <- xml_node(sxml, "styleSheet”, "fonts"”, "font")

is again external pointer
as_xml(font)

base_font-wb Set the default font in a workbook

Description

Modify / get the default font for the workbook. This will alter the latin major and minor font in the
workbooks theme.

Usage
wb_set_base_font(
wb,
font_size = 11,
font_color = wb_color(theme = "1"),
font_name = "Aptos Narrow”,

)

wb_get_base_font(wb)

Arguments
wb A workbook object
font_size Font size
font_color Font color
font_name Name of a font
Additional arguments
Details

The font name is not validated in anyway. Spreadsheet software replaces unknown font names with
system defaults.

The default base font is Aptos Narrow, black, size 11. If font_name differs from the name in
wb_get_base_font(), the theme is updated to use the newly selected font name.

8 clean_worksheet_name

See Also

Other workbook styling functions: wb_add_dxfs_style(), wb_add_style(), wb_base_colors

Other workbook wrappers: col_widths-wb, creators-wb, grouping-wb, row_heights-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Examples

create a workbook

wb <- wb_workbook(theme = "Office 2013 - 2022 Theme")

wb$add_worksheet ("S1")

modify base font to size 10 Aptos Narrow in red

wb$set_base_font(font_size = 10, font_color = wb_color(”"red”), font_name = "Aptos Narrow")

wb$add_data(x = iris)

font color does not affect tables
wb$add_data_table(x = iris, dims = wb_dims(from_col = 10))

get the base font
wb_get_base_font(wb)

clean_worksheet_name Clean worksheet name

Description

Cleans a worksheet name by removing legal characters.

Usage
clean_worksheet_name(x, replacement = " ")
Arguments
X A vector, coerced to character
replacement A single value to replace illegal characters by.
Details

Illegal characters are considered \, /, ?, *, :, [, and]. These must be intentionally removed from
worksheet names prior to creating a new worksheet.

Value

x with bad characters removed

col2int 9

col2int Convert spreadsheet column to integer

Description
Converts a spreadsheet column in A1 notation to an integer. "A" is 1, "B" is 2, ..., "Z" is 26 and
"AA" is 27.

Usage

col2int(x)

Arguments

X A character vector

Value

An integer column label (or NULL if x is NULL)

Examples

col2int (LETTERS)

col_widths-wb Modify column widths of a worksheet

Description

Remove / set worksheet column widths to specified width or "auto".

Usage
wb_set_col_widths(
wb,
sheet = current_sheet(),
cols,
widths = 8.43,
hidden = FALSE

)

wb_remove_col_widths(wb, sheet = current_sheet(), cols)

10 col_widths-wb

Arguments
wb A wbWorkbook object.
sheet A name or index of a worksheet, a vector in the case of remove_
cols Indices of cols to set/remove column widths.
widths Width to set cols to specified column width or "auto” for automatic sizing.
widths is recycled to the length of cols. openxlsx2 sets the default width is
8.43, as this is the standard in some spreadsheet software. See Details for gen-
eral information on column widths.
hidden Logical vector recycled to the length of cols. If TRUE, the columns are hidden.
Details

The global minimum and maximum column width for "auto" columns are controlled by:

e options("openxlsx2.minWidth" = 3)
e options("openxlsx2.maxWidth" = 250) (the maximum width allowed in OOXML)

Automatic column width calculation is a heuristic that may not be accurate in all scenarios. Known
limitations include issues with wrapped text, merged cells, and font styles with variable kerning.
The underlying logic primarily assumes a monospace font and provides limited support for spe-
cific number formats. As a safeguard to avoid very narrow columns, widths calculated below the
openxlsx2.minWidth (or if unset, below 4) threshold are slightly increased.

Be aware that calculating widths can be computationally slow for large worksheets. Additionally,
the hidden parameter is linked with settings in wb_group_cols(), so changing one will update the
other. Because default column widths are influenced by the specific spreadsheet software, operating
system, and DPI settings, even providing specific values for widths does not guarantee perfectly
consistent output across all environments.

For automatic text wrapping of columns use wb_add_cell_style(wrap_text = TRUE)

See Also

Other workbook wrappers: base_font-wb, creators-wb, grouping-wb, row_heights-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(), wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: filter-wb, grouping-wb, named_region-wb, row_heights-wb,
wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

Create a new workbook
wb <- wb_workbook ()

Add a worksheet
wb$add_worksheet("”Sheet 1")

convert_date 11

set col widths
wb$set_col_widths(cols = c(1, 4, 6, 7, 9), widths = c(16, 15, 12, 18, 33))

auto columns

wb$add_worksheet("”Sheet 2")

wb$add_data(sheet = 2, x = iris)

wb$set_col_widths(sheet = 2, cols = 1:5, widths = "auto")

removing column widths
Create a new workbook
wb <- wb_load(file = system.file("extdata”, "openxlsx2_example.xlsx"”, package = "openxlsx2"))

remove column widths in columns 1 to 20
wb_remove_col_widths(wb, 1, cols = 1:20)

convert_date Convert from spreadsheet date, datetime or hms number to R Date type

Description

Convert from spreadsheet date number to R Date type

Usage
convert_date(x, origin = "1900-01-01")

convert_datetime(x, origin = "1900-01-01", tz = "UTC")

convert_hms(x)

Arguments
X A vector of integers
origin date. There are two options, 1900 or 1904. The default is what spreadsheet
software usually uses
tz A timezone, defaults to "UTC"
Details

Spreadsheet software stores dates as number of days from some origin day

Setting the timezone in convert_datetime() will alter the value. If users expect a datetime value
in a specific timezone, they should try e.g. lubridate: :force_tz.

Value

A date, datetime, or hms.

12 convert_to_excel date

See Also
wb_add_data()

Examples

date --

2014 April 21st to 25th

convert_date(c(41750, 41751, 41752, 41753, 41754, NA))
convert_date(c(41750.2, 41751.99, NA, 41753))

datetime --

2014-07-01, 2014-06-30, 2014-06-29

X <- c(41821.8127314815, 41820.8127314815, NA, 41819, NaN)
convert_datetime(x)

convert_datetime(x, tz = "Australia/Perth")
convert_datetime(x, tz = "UTC")

hms ---

#H# 12:13:14

X <- 0.50918982
convert_hms(x)

convert_to_excel_date convert back to an Excel Date

Description

convert back to an Excel Date

Usage

convert_to_excel_date(df, date1904 = FALSE)

Arguments
df dataframe
date1904 take different origin
Examples
xlsxFile <- system.file("extdata"”, "openxlsx2_example.xlsx", package = "openxlsx2")

wb1 <- wb_load(xlsxFile)

df <- wb_to_df (wb1)

conversion is done on dataframes only
convert_to_excel_date(df = df["Var5"], date1904 = FALSE)

create_border

13

create_border

Create border format

Description

This function creates border styles for a cell in a spreadsheet. Border styles can be any of the
following: "none", "thin", "medium", "dashed", "dotted", "thick", "double", "hair", "medium-
Dashed", "dashDot", "mediumDashDot", "dashDotDot", "mediumDashDotDot", "slantDashDot".
Border colors can be created with wb_color().

Usage

create_border(
diagonal_down =
diagonal_up = ""

outline = ,
bottom = NULL,

bottom_color = NULL,

diagonal = NULL,
diagonal_color =
end = HH,

horizontal = "",

left = NULL,

left_color = NULL,

right = NULL,

right_color = NULL,

nn

start = ,
top = NULL,

top_color = NULL,

nn
’

vertical =

start_color = NULL,
end_color = NULL,

horizontal_color
vertical_color =

Arguments

NULL,

NULL,
NULL,

diagonal_down, diagonal_up
Logical, whether the diagonal border goes from the bottom left to the top right,
or top left to bottom right.

outline Logical, whether the border is.

bottom, left, right, top, diagonal
Character, the style of the border.

14 create_cell_style

bottom_color, 1left_color, right_color, top_color, diagonal_color,
start_color, end_color, horizontal_color, vertical_color

awb_color(), the color of the border.
horizontal, vertical

Character, the style of the inner border (only for dxf objects).

start, end leading and trailing edge of a border.

Additional arguments passed to other methods.

Value

A formatted border object to be used in a spreadsheet.

See Also
wb_add_border ()

Other style creating functions: create_cell_style(), create_colors_xml(), create_dxfs_style(),
create_fill(), create_font(), create_numfmt(), create_tablestyle()

Examples

Create a border with a thick bottom and thin top
border <- create_border(

bottom = "thick",

bottom_color = wb_color("FF0000"),

top = "thin",
top_color = wb_color("0@0FF00")
)
create_cell_style Create cell style
Description

This function creates a cell style for a spreadsheet, including attributes such as borders, fills, fonts,
and number formats.

Usage

create_cell_style(
border_id = "",
fill_id = "",
font_id = "",
num_fmt_id = "",
pivot_button = ""
quote_prefix = "",
xf_id = "",

create_cell_style

horizontal =
indent = "",
justify_last_

reading_order

15

nn
’

line = "
— nn
- ’

nn

relative_indent = ,

shrink_to_fit
text_rotation
vertical = ""
wrap_text =
ext_lst = "",

n

hidden = "",
locked = "",

Arguments

border_id, fill_

pivot_button

quote_prefix

xf_id

horizontal

indent

nn
’
nn
’

’
n
’

id, font_id, num_fmt_id
IDs for style elements.
Logical parameter for the pivot button.

Logical parameter for the quote prefix. (This way a number in a character cell
will not cause a warning).

Dummy parameter for the xf ID. (Used only with named format styles).

ELINE]

Character, alignment can be ”, *general’, ’left’, *center’, 'right’, "fill’, ’justify’,
’centerContinuous’, *distributed’.

Integer parameter for the indent.

justify_last_line

reading_order

relative_indent

shrink_to_fit
text_rotation
vertical
wrap_text
ext_lst
hidden

locked

Details

Logical for justifying the last line.
Logical parameter for reading order. O (Left to right; default) or 1 (right to left).

Dummy parameter for relative indent.
Logical parameter for shrink to fit.
Integer parameter for text rotation (-180 to 180).

9

Character, alignment can be ”, ’top’, ’center’, ’bottom’, ’justify’, ’distributed’.
Logical parameter for wrap text. (Required for linebreaks).

Dummy parameter for extension list.

Logical parameter for hidden.

Logical parameter for locked. (Impacts the cell only).

Reserved for additional arguments.

A single cell style can make use of various other styles like border, fill, and font. These styles are
independent of the cell style and must be registered with the style manager separately. This allows

16 create_cell_style

multiple cell styles to share a common font type, for instance. The used style elements are passed
to the cell style via their IDs. An example of this can be seen below. The number format can be a
custom one created by create_numfmt (), or a built-in style from the formats table below.

"ID" "numFmt"

"0" "General"
nn e

"2 "0.00"

"3 "# ##0"

"4" "#,##0.00"
"9" "0%"

"10" "0.00%"
"11" "0.00E+00"
12" "#AU
13" "#UM

"14" "mm-dd-yy"

"15" "d-mmm-yy"

"16" "d-mmm"

"17" "mmm-yy"

"18" "h:mm AM/PM"

"19" "h:mm:ss AM/PM"
"20" "h:mm"

"21" "h:mm:ss"

"22" "m/d/yy h:mm"

"37" "##H0 (#,##0)"

"38" "###0 ;[Red](###0)"
"39" "###0.00;(#,##0.00)"
"40" "###0.00;[Red](#,##0.00)"

"45" "mm:ss"
"46" "[h]:mm:ss"
"47" "mmss.0"
"48" "##0.0E+0"
"49" "@"

Value

A formatted cell style object to be used in a spreadsheet.

See Also
wb_add_cell_style()

Other style creating functions: create_border(), create_colors_xml(), create_dxfs_style(),
create_fill(), create_font(), create_numfmt(), create_tablestyle()
Examples

foo_fill <- create_fill(pattern_type = "lightHorizontal",
fg_color = wb_color(”"blue"),

create_colors_xml 17

bg_color = wb_color("orange"))
foo_font <- create_font(sz = 36, b = TRUE, color = wb_color("yellow"))

wb <- wb_workbook ()
wb$styles_mgr$add(foo_fill, "foo")
wb$styles_mgr$add(foo_font, "foo")

foo_style <- create_cell_style(
fill_id = wb$styles_mgr$get_fill_id("foo"),
font_id = wb$styles_mgr$get_font_id("foo")
)

create_colors_xml Create custom color xml schemes

Description

Create custom color themes that can be used with wb_set_base_colors(). The color input will
be checked with wb_color(), so it must be either a color R from grDevices: :colors() or a hex
value. Default values for the dark argument are: black, white, darkblue and lightgray. For the
accent argument, the six inner values of grDevices: :palette(). The link argument uses blue
and purple by default for active and visited links.

Usage

create_colors_xml(name = "Base R", dark = NULL, accent = NULL, link = NULL)

Arguments
name the color name
dark four colors: dark, light, brighter dark, darker light
accent six accent colors
link two link colors: link and visited link
See Also

Other style creating functions: create_border(), create_cell_style(), create_dxfs_style(),
create_fill(), create_font(), create_numfmt(), create_tablestyle()

Examples

colors <- create_colors_xml()
wb <- wb_workbook () $add_worksheet () $set_base_colors(xml = colors)

18

create_dxts_style

create_dxfs_style

Create a custom formatting style

Description

Create a new style to apply to worksheet cells. These styles are used in conditional formatting and
in (pivot) table styles.

Usage

create_dxfs_style(

font_name =

NULL,

font_size = NULL,

font_color

NULL,

num_fmt = NULL,
border = NULL,

border_color
border_style

= wb_color(getOption("openxlsx2.borderColor”, "black")),
= getOption("openxlsx2.borderStyle”, "thin"),

bg_fill = NULL,
fg_color = NULL,
gradient_fill = NULL,
text_bold = NULL,

text_strike
text_italic

NULL,
NULL,

text_underline = NULL,

Arguments

font_name

font_size

font_color

num_fmt
border
border_color
border_style
bg_fill
fg_color
gradient_fill

A name of a font. Note the font name is not validated. If font_name is NULL, the
workbook base_font is used. (Defaults to Calibri), see wb_get_base_font ()

Font size. A numeric greater than 0. By default, the workbook base font size is
used. (Defaults to 11)

Color of text in cell. A valid hex color beginning with "#" or one of colors().
If font_color is NULL, the workbook base font colors is used. (Defaults to
black)

Cell formatting. Some custom openxml format
NULL or TRUE

"black”

"thin"

Cell background fill color.

Cell foreground fill color.

An xml string beginning with <gradientFill> ...

create_dxfs_style 19

text_bold bold
text_strike strikeout
text_italic italic

text_underline underline 1, true, single or double

Additional arguments

Details

It is possible to override border_color and border_style with {left, right, top, bottom}_color, {left,
right, top, bottom}_style.

Value

A dxfs style node

See Also

wb_add_style() wb_add_dxfs_style()

Other style creating functions: create_border(), create_cell_style(), create_colors_xml(),
create_fill(), create_font(), create_numfmt(), create_tablestyle()

Examples

do not apply anything
stylel <- create_dxfs_style()

change font color and background color
style2 <- create_dxfs_style(
font_color = wb_color(hex = "FF9C0006"),
bg_fill = wb_color(hex = "FFFFC7CE")
)

change font (type, size and color) and background
the old default in openxlsx and openxlsx2 <= 0.3
style3 <- create_dxfs_style(

font_name = "Aptos Narrow”,

font_size = 11,

font_color = wb_color(hex = "FF9C0006"),

bg_fill = wb_color(hex = "FFFFC7CE")
)

See package vignettes for further examples

20 create_fill

create_fill Create fill pattern

Description

This function creates fill patterns for a cell in a spreadsheet. Fill patterns can be simple solid colors
or more complex gradient fills. For certain pattern types, two colors are needed.

Usage

create_fill(
gradient_fill =
pattern_type = "",
bg_color = NULL,
fg_color = NULL,

nn

Arguments

gradient_fill Character, specifying complex gradient fills.

pattern_type Character, specifying the fill pattern type. Valid values are "none" (default),
"solid", "mediumGray", "darkGray", "lightGray", "darkHorizontal", "dark Verti-
cal", "darkDown", "darkUp", "darkGrid", "darkTrellis", "lightHorizontal", "lightVer-
tical", "lightDown", "lightUp", "lightGrid", "lightTrellis", "gray125", "gray0625".

bg_color Character, specifying the background color in hex8 format (alpha, red, green,
blue) for pattern fills.

fg_color Character, specifying the foreground color in hex8 format (alpha, red, green,
blue) for pattern fills.

Additional arguments passed to other methods.

Value

A formatted fill pattern object to be used in a spreadsheet.

See Also

wb_add_fill()

Other style creating functions: create_border(), create_cell_style(), create_colors_xml(),
create_dxfs_style(), create_font(), create_numfmt (), create_tablestyle()

create_font

Examples

21

Create a solid fill pattern with foreground color
fill <- create_fill(

pattern_type = "solid",

fg_color = wb_color(hex = "FFFFQ000")

)

create_font

Create font format

Description

This function creates font styles for a cell in a spreadsheet. It allows customization of various font
properties including bold, italic, color, size, underline, and more.

Usage
create_font(
b = nn R
charset = "",
color = wb_color(hex = "FFQ00000"),
condense = "",
extend = "",
family = "2",
i = nn R
name = "Aptos Narrow”,
outline = ""
scheme = "minor”,
shadow = "",
strike = "",
sz = "11",
u = nn ,
vert_align = "",
)
Arguments
b Logical, whether the font should be bold.
charset Character, the character set to be used. The list of valid IDs can be found in the
Details section of fmt_txt().
color A wb_color (), the color of the font. Default is "FF0O00000".
condense Logical, whether the font should be condensed.
extend Logical, whether the font should be extended.

22

family

i
name
outline

scheme

shadow
strike
sz

u

vert_align

Value

create_font

Character, the font family. Default is "2" (modern). "0" (auto), "1" (roman), "2"
(swiss), "3" (modern), "4" (script), "5" (decorative). # 6-14 unused

Logical, whether the font should be italic.
Character, the name of the font. Default is "Aptos Narrow".

Logical, whether the font should have an outline.

"non non

Character, the font scheme. Valid values are "minor", "major", "none". Default
is "minor".

Logical, whether the font should have a shadow.

Logical, whether the font should have a strikethrough.

Character, the size of the font. Defaultis "11".

Character, the underline style. Valid values are "single", "double", "singleAc-

non non

counting", "doubleAccounting”, "none".

non

Character, the vertical alignment of the font. Valid values are "baseline", "su-

non

perscript", "subscript".

Additional arguments passed to other methods.

A formatted font object to be used in a spreadsheet.

See Also

wb_add_font ()

Other style creating functions: create_border(), create_cell_style(), create_colors_xml(),
create_dxfs_style(), create_fill(), create_numfmt(), create_tablestyle()

Examples

Create a font with bold and italic styles
font <- create_font(

b = TRUE,
i = TRUE,

color = wb_color(hex = "FFQOFF00Q"),

name = "Arial”,

sz = "12"

)

openxml has the alpha value leading
hex8 <- unlist(xml_attr(read_xml(font), "font", "color"))
hex8 <- paste@("#", substr(hex8, 3, 8), substr(hex8, 1, 2))

write test color
col <- crayon::make_style(col2rgb(hex8, alpha = TRUE))
cat(col("Test"))

create_hyperlink 23

create_hyperlink Create spreadsheet hyperlink string

Description

Wrapper to create internal hyperlink string to pass to wb_add_formula(). Either link to external
URLSs or local files or straight to cells of local xIsx sheets.

Note that for an external URL, only file and text should be supplied. You can supply dims to
wb_add_formula() to control the location of the link.

Usage

create_hyperlink(sheet, row = 1, col = 1, text = NULL, file = NULL)

Arguments

sheet Name of a worksheet

row integer row number for hyperlink to link to

col column number of letter for hyperlink to link to

text Display text

file Hyperlink or xIsx file name to point to. If NULL, hyperlink is internal.
See Also

wb_add_hyperlink()

Examples

wb <- wb_workbook()$
add_worksheet ("Sheet1")$add_worksheet("”"Sheet2")$add_worksheet("”Sheet3")

Internal Hyperlink - create hyperlink formula manually
X <- '=HYPERLINK(\"#Sheet2!B3\", "Text to Display - Link to Sheet2")'
wb$add_formula(sheet = "Sheetl1”, x = x, dims = "A1")

Internal - No text to display using create_hyperlink() function
x <- create_hyperlink(sheet = "Sheet3"”, row = 1, col = 2)
wb$add_formula(sheet = "Sheetl1”, x = x, dims = "A2")

Internal - Text to display
x <- create_hyperlink(sheet = "Sheet3"”, row = 1, col
wb$add_formula(sheet = "Sheet1”, x = x, dims = "A3")

2,text = "Link to Sheet 3")

Link to file - No text to display

fl <- system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
x <- create_hyperlink(sheet = "Sheetl1”, row = 3, col = 10, file = f1)
wb$add_formula(sheet = "Sheetl1”, x = x, dims = "A4")

24 create_numfmt

Link to file - Text to display

fl <- system.file("extdata”, "openxlsx2_example.xlsx"”, package = "openxlsx2")

x <- create_hyperlink(sheet = "Sheet2"”, row = 3, col = 10, file = f1, text = "Link to File.")
wb$add_formula(sheet = "Sheetl1”, x = x, dims = "A5")

Link to external file - Text to display
x <- "=HYPERLINK("[C:/Users]"”, "Link to an external file")'
wb$add_formula(sheet = "Sheetl1”, x = x, dims = "A6")

x <- create_hyperlink(text "test.png”, file = "D:/somepath/somepicture.png")
wb$add_formula(x = x, dims = "A7")

Link to an URL.
x <- create_hyperlink(text = "openxlsx2 website”, file = "https://janmarvin.github.io/openxlsx2/")

wb$add_formula(x = x, dims = "A8")
if (interactive()) wb$open()

create_numfmt Create number format

Description
This function creates a number format for a cell in a spreadsheet. Number formats define how
numeric values are displayed, including dates, times, currencies, percentages, and more.

Usage
create_numfmt (numFmtId = 164, formatCode = "#,##0.00")

Arguments
numFmtId An ID representing the number format. The list of valid IDs can be found in the
Details section of create_cell_style().
formatCode A format code that specifies the display format for numbers. This can include
custom formats for dates, times, and other numeric values.
Value

A formatted number format object to be used in a spreadsheet.

See Also
wb_add_numfmt ()

Other style creating functions: create_border(), create_cell_style(), create_colors_xml(),
create_dxfs_style(), create_fill(), create_font(), create_tablestyle()

create_shape 25

Examples

Create a number format for currency
numfmt <- create_numfmt(

numFmtId = 164,

formatCode = "$#,##0.00"
)

create_shape Helper to create a shape

Description

Helper to create a shape

Usage
create_shape(
shape = "rect”,
name = "shape 1",
text = "",

fill_color = NULL,
fill_transparency = 0,
text_color = NULL,
text_transparency = 0,
line_color = fill_color,
line_transparency = 0,
text_align = "left”,
rotation = 0,

id = 1,
)
Arguments
shape a shape (see details)
name a name for the shape
text a text written into the object. This can be a simple character or a fmt_txt ()

fill_color, text_color, line_color

a color for each, accepts only theme and rgb colors passed with wb_color ()
fill_transparency, text_transparency, line_transparency

sets the alpha value of the shape, an integer value in the range 0 to 100

text_align sets the alignment of the text. Can be ’left’, *center’, ’right’, ’justify’, ’justify-
Low’, ’distributed’, or ’thaiDistributed’

rotation the rotation of the shape in degrees

id an integer id (effect is unknown)

additional arguments

26 create_shape

Details

non " H

Possible shapes are (from ST_ShapeType - Preset Shape Types): "line", "linelnv",
Triangle", "rect", "diamond", "parallelogram", "trapezoid", "nonlsoscelesTrapezoid", "pentagon,
"hexagon", "heptagon", "octagon", "decagon"”, "dodecagon", "star4", "star5", "star6", "star7", "star8",
"star10", "star12", "star16", "star24", "star32", "roundRect", "round1Rect", "round2SameRect",
"round2DiagRect", "snipRoundRect", "sniplRect", "snip2SameRect", "snip2DiagRect", "plaque",
"ellipse", "teardrop”, "homePlate", "chevron", "pieWedge", "pie", "blockArc", "donut", "noSmok-
1ng" "rightArrow", "leftArrow", "upArrow", "downArrow", "stripedRightArrow", "notchedRightAr-
w", "bentUpArrow", "leftRightArrow", "upDownArrow", "leftUpArrow", "leftRightUpArrow",
quadArrow" "leftArrowCallout", "rightArrowCallout", "upArrowCallout", "downArrowCallout",
"leftRightArrowCallout", "upDownArrowCallout", "quadArrowCallout", "bentArrow", "uturnAr-
row", "circularArrow", "leftCircularArrow", "leftRightCircularArrow", "curvedeghtArrow” "curvedLef-
tArrow", “curvedUpArrow curvedDownArrow", "swooshArrow", "cube", "can", "lightningBolt",
"heart", "sun", "moon", "smileyFace", "irregularSeall", "irregularSeal2", ”foldedCorner" "bevel",
"frame", "halfFrame“ "corner", "diagStripe", "chord", "arc", "leftBracket", "rightBracket", "left-
Brace", "rightBrace", "bracketPair", "bracePair", "straightConnectorl", "bentConnector2", "bent-
Connector3", "bentConnector4", "bentConnector5", "curvedConnector2", "curvedConnector3", "curved-
Connector4", "curvedConnector5", "calloutl", "callout2", "callout3", "accentCalloutl", "accent-
Callout2", "accentCallout3", "borderCalloutl", "borderCallout2", "borderCallout3", "accentBor-
derCallout1", "accentBorderCallout2", "accentBorderCallout3", "wedgeRectCallout", "wedgeRoundRect-
Callout", "wedgeEllipseCallout", "cloudCallout", "cloud", "ribbon", "ribbon2", "ellipseRibbon",
"ellipseRibbon2", "leftRightRibbon", "verticalScroll", "horizontalScroll", "wave", "doubleWave",
"plus”, "flowChartProcess", "flowChartDecision", "flowChartInputOutput”, "flowChartPredefined-
Process", "flowChartInternalStorage", "flowChartDocument", "flowChartMultidocument”, "flowChart-
Terminator", "flowChartPreparation”, "flowChartManuallnput", "flowChartManualOperation", "flowChart-
Connector", "flowChartPunchedCard", "flowChartPunchedTape", "flowChartSummingJunction", "flowChar-
tOr", "flowChartCollate", "flowChartSort", "flowChartExtract", "flowChartMerge", "flowChartOf-
flineStorage", "flowChartOnlineStorage", "flowChartMagneticTape", "flowChartMagneticDisk", "flowChart-
MagneticDrum", "flowChartDisplay", "flowChartDelay", "flowChartAlternateProcess", "flowChartOff-
pageConnector"”, "actionButtonBlank", "actionButtonHome", "actionButtonHelp", "actionButton-
Information", "actionButtonForwardNext", "actionButtonBackPrevious", "actionButtonEnd", "ac-
tionButtonBeginning", "actionButtonReturn", "actionButtonDocument", "actionButtonSound", "ac-
tionButtonMovie", "gear6", "gear9", "funnel", "mathPlus", "mathMinus", "mathMultiply", "math-
Divide", "mathEqual”, "mathNotEqual", "cornerTabs", "squareTabs", "plaqueTabs", "chartX", "chart-
Star", "chartPlus"

triangle"”,

non

non non non non

"non non non " ll

non non

non

Value

a character containing the XML

See Also
wb_add_drawing()

Examples

wb <- wb_workbook()$add_worksheet()$
add_drawing(xml = create_shape())

create_sparklines

create_sparklines Create sparklines object

Description

Create a sparkline to be added a workbook with wb_add_sparklines()

Usage

create_sparklines(
sheet = current_sheet(),
dims,
sqref,
type = NULL,
negative = NULL,
display_empty_cells_as = "gap”,
markers = NULL,

high = NULL,
low = NULL,

first = NULL,
last = NULL,

color_series = wb_color(hex = "FF376092"),
color_negative = wb_color(hex = "FFD00000"),
color_axis = wb_color(hex = "FFDQ000Q"),
color_markers = wb_color(hex = "FFD00000"),
color_first = wb_color(hex = "FFD00000Q"),
color_last = wb_color(hex "FFD00000Q") ,
color_high = wb_color(hex = "FFD00@0@0"),
color_low = wb_color(hex = "FFD0000Q"),
manual_max = NULL,

manual_min = NULL,

line_weight = NULL,

date_axis = NULL,

display_x_axis = NULL,

display_hidden = NULL,

min_axis_type = NULL,

max_axis_type NULL,

right_to_left = NULL,

direction = NULL,

Arguments

sheet sheet

dims Cell range of cells used to create the sparklines

28

sqref

type
negative

Cell range of the destination of the sparklines.

Either NULL, stacked or column

negative

display_empty_cells_as

markers
high
low
first
last

color_series

color_negative

color_axis
color_markers
color_first
color_last
color_high
color_low
manual_max
manual_min
line_weight

date_axis

display_x_axis

display_hidden

min_axis_type
max_axis_type
right_to_left

direction

Details

Colors are all predefined to be rgb. Maybe theme colors can be used too.

Value

Either gap, span or zero
markers add marker to line
highlight highest value
highlight lowest value

highlight first value
highlight last value
colorSeries
colorNegative
colorAxis
colorMarkers
colorFirst
colorLast
colorHigh
colorLow
manualMax
manualMin
lineWeight
dateAxis
display X Axis
displayHidden
minAxisType
maxAxisType
rightToLeft

create_sparklines

Either NULL, row (or 1) or col (or 2). Should sparklines be created in the row or
column direction? Defaults to NULL. When NULL the direction is inferred from
dims in cases where dims spans a single row or column and defaults to row

otherwise.

additional arguments

A string containing XML code

create_tablestyle

Examples

create multiple sparklines

sparklines <- c(
create_sparklines("Sheet 1", "A3:L3", "M3", type = "column”, first = "1"),
create_sparklines("Sheet 1", "A2:L2", "M2", markers = "1"),
create_sparklines("Sheet 1", "A4:L4", "M4", type = "stacked”, negative = "1"),
create_sparklines("Sheet 1", "A5:L5;A7:L7", "M5;M7", markers = "1")

t1 <- AirPassengers
t2 <- do.call(cbhind, split(tl, cycle(t1)))
dimnames(t2) <- dimnames(.preformat.ts(t1))

wb <- wb_workbook()$
add_worksheet ("Sheet 1")$
add_data(x = t2)$
add_sparklines(sparklines = sparklines)

create sparkline groups
sparklines <- c(
create_sparklines("Sheet 2", "A2:L6;", "M2:M6", markers = "1"),
create_sparklines(
"Sheet 2", "A7:L7;A9:L9", "M7;M9", type = "stacked”, negative = "1"
),
create_sparklines(
"Sheet 2", "A8:L8;A10:L13", "M8;M10:M13",
type = "column”, first = "1"
),
create_sparklines(
"Sheet 2", "A2:L13", "A14:L14", type = "column”, first = "1",
direction = "col”
)
)

wb <- wb$
add_worksheet ("”Sheet 2")$
add_data(x = t2)$
add_sparklines(sparklines = sparklines)

29

create_tablestyle Create custom (pivot) table styles

Description

Create a custom (pivot) table style. These functions are for expert use only. Use other styling

functions instead.

30

Usage

create_tablestyle(

)

name,

whole_table = NULL,
header_row = NULL,
total_row = NULL,
first_column = NULL,
last_column = NULL,
first_row_stripe = NULL,
second_row_stripe = NULL,
first_column_stripe = NULL,
second_column_stripe = NULL,
first_header_cell = NULL,
last_header_cell = NULL,
first_total_cell = NULL,
last_total_cell = NULL,

create_pivottablestyle(

name,

whole_table = NULL,

header_row = NULL,
grand_total_row = NULL,
first_column = NULL,
grand_total_column = NULL,
first_row_stripe = NULL,
second_row_stripe = NULL,
first_column_stripe = NULL,
second_column_stripe = NULL,
first_header_cell = NULL,
first_subtotal_column = NULL,
second_subtotal_column = NULL,
third_subtotal_column = NULL,
first_subtotal_row = NULL,
second_subtotal_row = NULL,
third_subtotal_row = NULL,
blank_row = NULL,
first_column_subheading = NULL,
second_column_subheading = NULL,
third_column_subheading = NULL,
first_row_subheading = NULL,
second_row_subheading = NULL,
third_row_subheading = NULL,
page_field_labels = NULL,
page_field_values = NULL,

create_tablestyle

create_tablestyle 31

Arguments

name name

whole_table wholeTable
header_row, total_row
...Row
first_column, last_column
...Column
first_row_stripe, second_row_stripe
...RowStripe
first_column_stripe, second_column_stripe
...ColumnStripe
first_header_cell, last_header_cell
...HeaderCell

first_total_cell, last_total_cell
...TotalCell

additional arguments
grand_total_row
totalRow

grand_total_column
lastColumn

first_subtotal_column, second_subtotal_column, third_subtotal_column

...JubtotalColumn
first_subtotal_row, second_subtotal_row, third_subtotal_row
...SubtotalRow
blank_row blankRow
first_column_subheading, second_column_subheading,
third_column_subheading
...ColumnSubheading

first_row_subheading, second_row_subheading, third_row_subheading
...RowSubheading

page_field_labels
pageFieldLabels

page_field_values
pageFieldValues

See Also

Other style creating functions: create_border(), create_cell_style(), create_colors_xml(),
create_dxfs_style(), create_fill(), create_font(), create_numfmt ()

32 creators-wb

creators-wb Modify creators of a workbook

Description

Modify and get workbook creators

Usage

wb_add_creators(wb, creators)
wb_set_creators(wb, creators)
wb_remove_creators(wb, creators)

wb_get_creators(wb)

Arguments
wb A wbWorkbook object
creators A character vector of names
Value

e wb_set_creators(),wb_add_creators(), and wb_remove_creators() return the woWorkbook
object
e wb_get_creators() returns a character vector of creators

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, grouping-wb, row_heights-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(), wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer (), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(), wb_workbook()

Examples

workbook made with default creator (see [wbWorkbook])
wb <- wb_workbook ()
wb_get_creators(wb)

add a new creator (assuming "test” isn't your default creator)
wb <- wb_add_creators(wb, "test")
wb_get_creators(wb)

remove the creator (should be the same as before)
wb <- wb_remove_creators(wb, "test")
wb_get_creators(wb)

dims_helper 33

dims_helper Helper functions to work with dims

Description

Internal helpers to (de)construct a dims argument from/to a row and column vector. Exported for
user convenience.

Usage

dims_to_rowcol(x, as_integer = FALSE)
validate_dims(x)

rowcol_to_dims(row, col, single = TRUE, fix = NULL)

Arguments
X a dimension object "Al1" or "Al:A1"
as_integer If the output should be returned as integer, (defaults to string)
row a numeric vector of rows
col a numeric or character vector of cols
single argument indicating if rowcol_to_dims() returns a single cell dimension
fix setting the type of the reference. Per default, no type is set. Options are "all”,
"row”, and "col”
Value

* A dims string for _to_dimi.e "Al:Al"

¢ A named list of rows and columns for to_rowcol

See Also

wb_dims()

Examples

dims_to_rowcol("A1:J10")
wb_dims(1:10, 1:10)

34 filter-wb

filter-wb Add/remove column filters in a worksheet

Description

Add or remove spreadsheet column filters to a worksheet

Usage

wb_add_filter(wb, sheet = current_sheet(), rows, cols)

wb_remove_filter(wb, sheet = current_sheet())

Arguments
wb A workbook object
sheet A worksheet name or index. In wb_remove_filter(), you may supply a vector
of worksheets.
rows A row number.
cols columns to add filter to.
Details

Adds filters to worksheet columns, same as with_filter = TRUE inwb_add_data() wb_add_data_table()
automatically adds filters to first row of a table.

NOTE Can only have a single filter per worksheet unless using tables.

See Also
wb_add_data(), wb_add_data_table()

Other worksheet content functions: col_widths-wb, grouping-wb, named_region-wb, row_heights-wb,
wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

wb <- wb_workbook ()

wb$add_worksheet("”Sheet 1")
wb$add_worksheet("”Sheet 2")
wb$add_worksheet("”Sheet 3")

wb$add_data(1, iris)
wb$add_filter(1, row = 1, cols = seq_along(iris))

Equivalently
wb$add_data(2, x = iris, with_filter = TRUE)

fmt_txt

Similarly
wb$add_data_table(3, iris)
wb <- wb_workbook ()
wb$add_worksheet("”Sheet 1")
wb$add_worksheet("”Sheet 2")
wb$add_worksheet("”Sheet 3")

wb$add_data(1, iris)
wb_add_filter(wb, 1, row = 1, cols = seq_along(iris))

Equivalently
wb$add_data(2, x = iris, with_filter = TRUE)

Similarly
wb$add_data_table(3, iris)

remove filters
wb_remove_filter(wb, 1:2) ## remove filters
wb_remove_filter(wb, 3) ## Does not affect tables!

35

fmt_txt format strings independent of the cell style.

Description

format strings independent of the cell style.

Usage

fmt_txt(
X,
bold = FALSE,
italic = FALSE,
underline = FALSE,
strike = FALSE,

size = NULL,
color = NULL,
font = NULL,

charset = NULL,
outline = NULL,
vert_align = NULL,
family = NULL,
shadow = NULL,
condense = NULL,
extend = NULL,

36

S3 method for class 'fmt_txt'

Xty

S3 method for class 'fmt_txt'

as.character(x, ...)

S3 method for class 'fmt_txt'

print(x, ...)

Arguments

X, Y an openxlsx2 fmt_txt string

bold, italic, underline, strike

logical defaulting to FALSE

size the font size

color awb_color() for the font

font the font name

charset integer value from the table below

outline, shadow, condense, extend
logical defaulting to NULL

vert_align any of baseline, superscript, or subscript

family a font family

additional arguments

Details

fmt_txt

The result is an xml string. It is possible to paste multiple fmt_txt() strings together to create a

string with differing styles. It is possible to supply different underline styles to underline.

Using fmt_txt(charset = 161) will give the Greek Character Set

charset

0

1

2
77
128
129
130
134
136
161
162
163
177
178
186

"Character Set"
"ANSI_CHARSET"
"DEFAULT_CHARSET"
"SYMBOL_CHARSET"
"MAC_CHARSET"
"SHIFTJIS_CHARSET"
"HANGUL_CHARSET"
"JOHAB_CHARSET"
"GB2312_CHARSET"
"CHINESEBIG5_CHARSET"
"GREEK_CHARSET"
"TURKISH_CHARSET"
"VIETNAMESE_CHARSET"
"HEBREW_CHARSET"
"ARABIC_CHARSET"
"BALTIC_CHARSET"

grouping-wb 37

204 "RUSSIAN_CHARSET"

222 "THAI_CHARSET"

238 "EASTEUROPE_CHARSET"
255 "OEM_CHARSET"

You can join additional objects into fmt_txt() objects using "+". Though be aware that fmt_txt("sum:")
+ (2 + 2) is different to fmt_txt("sum:") +2 + 2.
See Also

create_font()

Examples

fmt_txt("bar"”, underline = TRUE)
fmt_txt("foo ", bold = TRUE) + fmt_txt("bar")
as.character(fmt_txt(2))

grouping-wb Group rows and columns in a worksheet

Description

Group a selection of rows or cols

Usage
wb_group_cols(
wb,
sheet = current_sheet(),
cols,

collapsed = FALSE,
levels = NULL
)

wb_ungroup_cols(wb, sheet = current_sheet(), cols)

wb_group_rows(
wb,
sheet = current_sheet(),
rows,
collapsed = FALSE,
levels = NULL

)

wb_ungroup_rows (wb, sheet = current_sheet(), rows)

38 grouping-wb

Arguments

wb A wbWorkbook object

sheet A name or index of a worksheet

collapsed If TRUE the grouped columns are collapsed

levels levels

rows, cols Indices or for columns also characters of rows and columns to group
Details

If row was previously hidden, it will now be shown. Columns can be added using A1 notion, so cols

= 2:3issimilarto cols = "B:C". Itis possible to add nested groups, so cols = 1ist("3" = list(1:2, 3:4)
is also possible. Depending on the selected summary column either left or right will be selected for
grouping, this can be changed in wb_set_page_setup().

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, row_heights-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(), wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, named_region-wb, row_heights-wb,
wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, row_heights-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(),wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(), wb_workbook()

Examples

create matrix

t1 <- AirPassengers

t2 <- do.call(cbhind, split(tl, cycle(t1)))
dimnames(t2) <- dimnames(.preformat.ts(t1))

wb <- wb_workbook()
wb$add_worksheet ("AirPass"”)
wb$add_data("AirPass”, t2, row_names = TRUE)

groups will always end on/show the last row. in the example 1950, 1955, and 1960
wb <- wb_group_rows(wb, "AirPass", 2:3, collapsed = TRUE) # group years < 1950

wb <- wb_group_rows(wb, "AirPass”, 4:8, collapsed = TRUE) # group years 1951-1955
wb <- wb_group_rows(wb, "AirPass”, 9:13) # group years 1956-1960

wb <- wb_group_cols(wb, "AirPass”, 2:4, collapsed = TRUE)
wb <- wb_group_cols(wb, "AirPass”, 5:7, collapsed = TRUE)
wb <- wb_group_cols(wb, "AirPass”, 8:10, collapsed = TRUE)

int2col

wb <- wb_group_cols(wb, "AirPass”, 11:13)

create grouping levels
grp_rows <- list(

"1" = seq(2, 3),

"2" = seq(4, 8),

"3" = seq(9, 13)
)

grp_cols <- list(
"1" = seq(2, 4),
"2" = seq(5, 7),
"3" = seq(8, 10),
"4" = seq(11, 13)
)

wb <- wb_workbook ()
wb$add_worksheet ("AirPass")

wb$add_data("AirPass"”, t2, row_names = TRUE)

39

wb$group_cols("AirPass”, cols = grp_cols)
wb$group_rows("AirPass"”, rows = grp_rows)
int2col Convert integer to spreadsheet column
Description
Converts an integer to a spreadsheet column in A1 notation. 11is "A", 2 is "B", ..., 26 is "Z" and 27
is "AA".
Usage
int2col(x)
Arguments
X A numeric vector.
Examples

int2col(1:10)

40

named_region-wb

named_region-wb Modify named regions in a worksheet

Description

Create / delete a named region. You can also specify a named region by using the name argument in
wb_add_data(x = iris, name = "my-region"). It is important to note that named regions are not
case-sensitive and must be unique.

Usage

wb_add_named_region(

)

wb_remove_named_region(wb, sheet = current_sheet(), name = NULL)

wb,

sheet = current_sheet(),
dims = "A1",

name,

local_sheet = FALSE,
overwrite = FALSE,
comment = NULL,

hidden = NULL,
custom_menu = NULL,
description = NULL,
is_function = NULL,
function_group_id = NULL,
help = NULL,

local_name = NULL,
publish_to_server = NULL,
status_bar = NULL,
vb_procedure = NULL,
workbook_parameter = NULL,
xml = NULL,

wb_get_named_regions(wb, tables = FALSE, x = NULL)

Arguments
wb A Workbook object
sheet A name or index of a worksheet
dims Worksheet cell range of the region ("A1:D4").
name

be case-insensitive unique.

local_sheet If TRUE the named region will be local for this sheet

Name for region. A character vector of length 1. Note that region names must

named_region-wb 41

overwrite Boolean. Overwrite if exists? Default to FALSE.

comment description text for named region

hidden Should the named region be hidden?

custom_menu, description, is_function, function_group_id,

help, 1local_name, publish_to_server, status_bar, vb_procedure,
workbook_parameter, xml

Unknown XML feature
additional arguments
tables Should included both data tables and named regions in the result?
X Deprecated. Use wb. For workbook input use wb_load() to first load the xIsx

file as a workbook.

Details

You can use the wb_dims () helper to specify the cell range of the named region

Value

A workbook, invisibly.

A data frame with the all named regions in wb. Or NULL, if none are found.

See Also
wb_get_tables()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, row_heights-wb,
wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

create named regions
wb <- wb_workbook ()
wb$add_worksheet("”Sheet 1")

specify region
wb$add_data(x = iris, start_col = 1, start_row = 1)
wb$add_named_region(

name = "iris”,

dims = wb_dims(x = iris)

)

using add_data 'name' argument
wb$add_data(sheet = 1, x = iris, name = "iris2", start_col = 10)

delete one
wb$remove_named_region(name = "iris2")
wb$get_named_regions()

42 openxlsx2-deprecated

read named regions
df <- wb_to_df(wb, named_region = "iris")
head(df)

Extract named regions from a file
out_file <- temp_x1lsx()
wb_save(wb, out_file, overwrite = TRUE)

Load the file as a workbook first, then get named regions.
wb1 <- wb_load(out_file)
wb1$get_named_regions()

openxlsx2-deprecated Deprecated functions in package openxlsx2

Description

These functions are provided for compatibility with older versions of openx1lsx2, and may be de-
funct as soon as the next release. This guide helps you update your code to the latest standards.

As of openxlsx2 v1.0, API change should be minimal.

Internal functions

These functions are used internally by openxlsx2. It is no longer advertised to use them in scripts.
They originate from openxlsx, but do not fit openxlIsx2’s API.

You should be able to modify

e delete_data() ->wb_clean_sheet()

e write_data() ->wb_add_data()

* write_datatable() ->wb_add_data_table()
e write_comment() ->wb_add_comment()

e remove_comment () -> wb_remove_comment ()

e write_formula() ->wb_add_formula()

You should be able to change those with minimal changes

Deprecated functions

First of all, you can set an option that will add warnings when using deprecated functions.

options("openxlsx2.soon_deprecated” = TRUE)

openxlIsx2_options

Argument changes

43

For consistency, arguments were renamed to snake_case for the 0.8 release. It is now recommended
to use dims (the cell range) in favor of row, col, start_row, start_col

See wb_dims() as it provides many options on how to provide cell range

Functions with a new name

These functions were renamed for consistency.

e convertToExcelDate() -> convert_to_excel_date()

e wb_grid_lines() ->wb_set_grid_lines()

e create_comment() ->wb_comment ()

Deprecated usage

* wb_get_named_regions() will no longer allow providing a file.

Before
wb_get_named_regions(file)

Now

wb <- wb_load(file)
wb_get_named_regions(wb)
also possible
wb_load(file)$get_named_regions()"

See Also

.Deprecated

openxlsx2_options

Options consulted by openxlsx2

Description

The openxlsx2 package allows the user to set global options to simplify formatting:

If the built-in defaults don’t suit you, set one or more of these options. Typically, this is done in the
.Rprofile startup file

options("openxlsx2.
options("openxlsx2.
options("openxlsx2.
options("openxlsx2.
options("openxlsx2.

options("openxlsx2.

borderColor"” = "black")

borderStyle” = "thin")

dateFormat” = "mm/dd/yyyy")

datetimeFormat” = "yyyy-mm-dd hh:mm:ss")

maxWidth" = NULL) (Maximum width allowed in OOXML is 250)
minWidth" = NULL)

44 person-wb

e options("openxlsx2.numFmt"” = NULL)

* options("openxlsx2.paperSize"” = 9) corresponds to a A4 paper size
e options("openxlsx2.orientation” = "portrait”) page orientation
e options("openxlsx2.sheet.default_name"” = "Sheet")

e options("openxlsx2.rightToLeft"” =NULL)

* options("openxlsx2.soon_deprecated” = FALSE) Set to TRUE if you want a warning if
using some functions deprecated recently in openxlsx2

* options("openxlsx2.creator”) A default name for the creator of new wbWorkbook object
with wb_workbook () or new comments with wb_add_comment ()

* options("openxlsx2.thread_id") the default person id when adding a threaded comment
to a cell with wb_add_thread()

e options("openxlsx2.accountingFormat” =4)
e options("openxlsx2.currencyFormat” =4)

* options("openxlsx2.commaFormat” = 3)

e options("openxlsx2.percentageFormat” =10)
* options("openxlsx2.scientificFormat” =48)

e options("openxlsx2.string_nums” = TRUE) numerics in character columns will be con-
verted. "1" will be written as 1

e options("openxlsx2.na” = "#N/A") consulted by write_x1lsx(),wb_add_data() and wb_add_data_table().

* options("openxlsx2.zip_flags") custom zip flags passed toutils: :zip() required when
using a custom zip tool

* options("openxlsx2.compression_level” =6) compression level for the output file. In-
creasing compression and time consumed from 1-9.

person-wb Helper for adding threaded comments

Description

Adds a person to a workbook, so that they can be the author of threaded comments in a workbook
with wb_add_thread()

Usage

wb_add_person(wb, name = NULL, id = NULL, user_id = NULL, provider_id = "None")

wb_get_person(wb, name = NULL)

print.pugi_xml

Arguments
wb a Workbook
name the name of the person to display.
id (optional) the display id
user_id (optional) the user id
provider_id (optional) the provider id

See Also

wb_add_thread()

45

print.pugi_xml print pugi_xml

Description

print pugi_xml

Usage

S3 method for class 'pugi_xml'

print(x, indent = " ", raw = FALSE, attr_indent = FALSE,
Arguments

X something to print

indent indent used defaultis " "

raw print as raw text

attr_indent print attributes indented on new line

to please check

Examples

a pointer

x <= read_xml("<a>")
print(x)

print(x, raw = TRUE)

)

46 properties-wb

properties-wb Modify workbook properties

Description

This function is useful for workbooks that are loaded. It can be used to set the workbook title,
subject and category field. Use wb_workbook() to easily set these properties with a new work-
book.

Usage

wb_get_properties(wb)

wb_set_properties(

wb,
creator = NULL,
title = NULL,

subject = NULL,

category = NULL,
datetime_created = NULL,
datetime_modified = NULL,
modifier = NULL,

keywords = NULL,

comments NULL,

manager = NULL,

company = NULL,

custom = NULL

)
Arguments
wb A Workbook object
creator Creator of the workbook (your name). Defaults to login username or options("”openxlsx2.creator”)

if set.

title, subject, category, keywords, comments, manager, company
Workbook property, a string.

datetime_created
The time of the workbook is created

datetime_modified
The time of the workbook was last modified

modifier A character string indicating who was the last person to modify the workbook

custom A named vector of custom properties added to the workbook

pugixml

Details

To set properties, the following XML core properties are used.

title = dc:title

subject = dc:subject

creator = dc:creator

keywords = cp:keywords

comments = dc:description

modifier = cp:lastModifiedBy
datetime_created = dcterms:created
datetime _modified = dcterms:modified

category = cp:category

In addition, manager and company are used.

Value

A wbWorkbook object, invisibly.

See Also

wb_workbook ()

Examples

file <- system.file("extdata"”, "openxlsx2_example.xlsx", package = "openxlsx2")
wb <- wb_load(file)
wb$get_properties()

Add a title to properties
wb$set_properties(title = "my title”)
wb$get_properties()

47

pugixml xml_node

Description

returns xml values as character

Usage

xml_

xml_

xml_

xml_

node(xml, levell = NULL, level2 = NULL, level3 = NULL, ...)
node_name(xml, levell = NULL, level2 = NULL, ...)
value(xml, levell = NULL, level2 = NULL, level3 = NULL, ...)

attr(xml, levell = NULL, level2 = NULL, level3 = NULL, ...)

48 read_xml

Arguments
xml something xml
leveli to please check
level2 to please check
level3 to please check
additional arguments passed to read_xml()
Details

This function returns XML nodes as used in openxlsx2. In theory they could be returned as pointers
as well, but this has not yet been implemented. If no level is provided, the nodes on levell are
returned

Examples

x <= read_xml("<a>")

return a

xml_node(x, "a")

return b. requires the path to the node
xml_node(x, "a", "b")
xml_node_name("<a/>")
xml_node_name("<a>", "a")

x <- read_xml("<a>1")

xml_value(x, "a")

X <= read_xml("<a><b r=\"1\">2")
xml_value(x, "a", "b")

X <= read_xml("1")
xml_attr(x, "a")

X <= read_xml("<a><b r=\"1\">2")
xml_attr(x, "a", "b")

x <= read_xml("1")
xml_attr(x, "a")

x <= read_xml("")
xml_attr(x, "b", "a")

read_xml read xml file

Description

read xml file

read_xml 49

Usage

read_xml(
xml,
pointer = TRUE,
escapes = FALSE,
declaration = FALSE,
whitespace = TRUE,

empty_tags = FALSE,
skip_control = TRUE
)
Arguments
xml something to read character string or file
pointer should a pointer be returned?
escapes bool if characters like "&" should be escaped. The default is no escapes. As-
suming that the input already provides valid information.
declaration should the declaration be imported
whitespace should whitespace pcdata be imported
empty_tags should or be returned

skip_control should whitespace character be exported

Details

Read xml files or strings to pointer and checks if the input is valid XML. If the input is read into a
character object, it will be reevaluated every time it is called. A pointer is evaluated once, but lives
only for the lifetime of the R session or once it is gc().

Examples

a pointer

x <= read_xml("<a>")
print(x)

print(x, raw = TRUE)

str(x)

a character

y <- read_xml("<a>", pointer = FALSE)
print(y)

print(y, raw = TRUE)

str(y)

Errors if the import was unsuccessful
try(z <- read_xml("<a>"))

xml <- '<?xml test="yay" ?><a>A & B'
difference in escapes
read_xml(xml, escapes = TRUE, pointer = FALSE)

50 row_heights-wb

read_xml(xml, escapes = FALSE, pointer = FALSE)
read_xml(xml, escapes = TRUE)
read_xml(xml, escapes = FALSE)

read declaration
read_xml(xml, declaration = TRUE)

row_heights-wb Modify row heights of a worksheet

Description

Set / remove custom worksheet row heights

Usage
wb_set_row_heights(
wb,
sheet = current_sheet(),
rows,

heights = NULL,
hidden = FALSE,
hide_blanks = NULL

)

wb_remove_row_heights(wb, sheet = current_sheet(), rows)

Arguments
wb A wbWorkbook object
sheet A name or index of a worksheet. (A vector is accepted for remove_row_heights())
rows Indices of rows to set / remove (if any) custom height.
heights Heights to set rows to specified in a spreadsheet column height units.
hidden Option to hide rows. A logical vector of length 1 or length of rows
hide_blanks Option to hide blank (uninitialized) rows. These rows are not only empty, they
must not be part of the worksheet.
See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, wb_add_chartsheet(),
wb_add_data(),wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

sheet_names-wb 51

Examples

Create a new workbook
wb <- wb_workbook ()

Add a worksheet
wb$add_worksheet("”Sheet 1")

set row heights
wb <- wb_set_row_heights(
wb, 1,
rows = c(1, 4, 22, 2, 19),
heights = c(24, 28, 32, 42, 33)
)

overwrite row 1 height

wb <- wb_set_row_heights(wb, 1, rows = 1, heights = 40)
remove any custom row heights in row 1
wb$remove_row_heights(sheet = 1, rows = 1)

sheet_names-wb Get / Set worksheet names for a workbook

Description

Gets / Sets the worksheet names for a wbWorkbook object.

Usage

wb_set_sheet_names(wb, old = NULL, new)

wb_get_sheet_names(wb, escape = FALSE)

Arguments
wb A wbWorkbook object
old The name (or index) of the old sheet name. If NULL will assume all worksheets
are to be renamed.
new The name of the new sheet
escape Should the xml special characters be escaped?
Details

This only changes the sheet name as shown in spreadsheet software and will not alter it elsewhere.
Not in formulas, chart references, named regions, pivot tables or anywhere else.

52 sheet_visibility-wb

Value

* set_: The wbWorkbook object.

* get_: A named character vector of sheet names in order. The names represent the original
value of the worksheet prior to any character substitutions.

sheet_visibility-wb Get/set worksheet visible state in a workbook

Description

Get and set worksheet visible state. This allows to hide worksheets from the workbook. The
visibility of a worksheet can either be "visible", "hidden", or "veryHidden". You can set this when
creating a worksheet with wb_add_worksheet (visible = FALSE)

Usage

wb_get_sheet_visibility(wb)

wb_set_sheet_visibility(wb, sheet = current_sheet(), value)

Arguments
wb A wbWorkbook object
sheet Worksheet identifier
value a logical/character vector the same length as sheet, if providing a character vec-
tor, you can provide any of "hidden", "visible", or "veryHidden"
Value

* wb_set_sheet_visibility: The Workbook object, invisibly.

* wb_get_sheet_visibility(): A character vector of the worksheet visibility value

Examples

wb <- wb_workbook()

wb$add_worksheet(sheet = "S1", visible = FALSE)
wb$add_worksheet(sheet = "S2", visible = TRUE)
wb$add_worksheet(sheet = "S3", visible = FALSE)

wh$get_sheet_visibility()

wb$set_sheet_visibility(1, TRUE) ## show sheet 1
wb$set_sheet_visibility(2, FALSE) ## hide sheet 2
wh$set_sheet_visibility(3, "hidden") ## hide sheet 3

wb$set_sheet_visibility(3, "veryHidden") ## hide sheet 3 from UI

styles_on_sheet 53

styles_on_sheet Get all styles on a sheet

Description

Get all styles on a sheet

Usage

styles_on_sheet(wb, sheet)

Arguments
wb workbook
sheet worksheet
temp_x1sx helper function to create temporary directory for testing purpose
Description

helper function to create temporary directory for testing purpose

Usage

temp_xlsx(name = "temp_xlsx", macros = FALSE)
Arguments

name for the temp file

macros logical if the file extension is xIsm or xlsx

54 wbWorkbook

waivers openxlsx2 waivers

Description
Waiver functions for openxlsx2 functions.

* current_sheet() uses wb_get_active_sheet () by default if performing actions on a work-
sheet, for example when you add data.

* next_sheet() is used when you add a new worksheet, a new chartsheet or when you add a
pivot table. It is defined as available sheets + 1L.

Usage

current_sheet()
next_sheet()

na_strings()

Value

An object of class openxlsx2_waiver

wbWorkbook Workbook class

Description
This is the class used by openx1sx2 to modify workbooks from R. You can load an existing work-
book with wb_load() and create a new one with wb_workbook ().
After that, you can modify the wbWorkbook object through two primary methods:

Wrapper Function Method: Utilizes the wb family of functions that support piping to streamline
operations.

wb <- wb_workbook(creator = "My name here")
wb <- wb_add_worksheet(wb, sheet = "Expenditure"”, grid_lines = FALSE)
wb <- wb_add_data(wb, x = USPersonalExpenditure, row_names = TRUE)

Chaining Method: Directly modifies the object through a series of chained function calls.

wb <- wb_workbook(creator = "My name here")$
add_worksheet (sheet = "Expenditure”, grid_lines = FALSE)$
add_data(x = USPersonalExpenditure, row_names = TRUE)

wbWorkbook 55

While wrapper functions require explicit assignment of their output to reflect changes, chained func-
tions inherently modify the input object. Both approaches are equally supported, offering flexibility
to suit user preferences. The documentation mainly highlights the use of wrapper functions.

Import workbooks
path <- system.file("extdata/openxlsx2_example.xlsx", package = "openxlsx2")
wb <- wb_load(path)

or create one yourself

wb <- wb_workbook ()

add a worksheet

wb$add_worksheet("sheet")

add some data

wb$add_data("sheet”, cars)

Add data in a different location

wb <- wb_add_data(wb, x = cars, dims = wb_dims(from_dims = "D4"))
open it in your default spreadsheet software

if (interactive()) wb$open()

Note that the documentation is more complete in each of the wrapper functions. (i.e. ?wb_add_data
rather than ?wbWorkbook).

Public fields

sheet_names The names of the sheets
calcChain calcChain

charts charts

is_chartsheet A logical vector identifying if a sheet is a chartsheet.
customXml customXml

connections connections

ctrlProps ctrlProps

Content_Types Content_Types

app app

core The XML core

custom custom

drawings drawings

drawings_rels drawings_rels
docMetadata doc_meta_data

activeX activeX

embeddings embeddings
externallLinks externalLinks
externallLinksRels externalLinksRels

featurePropertyBag featurePropertyBag

56

python python

webextensions webextensions

headFoot The header and footer

media media

metadata contains cell/value metadata imported on load from xl/metadata.xml
persons Persons of the workbook. to be used with wb_add_thread()
pivotTables pivotTables

pivotTables.xml.rels pivotTables.xml.rels
pivotDefinitions pivotDefinitions

pivotRecords pivotRecords
pivotDefinitionsRels pivotDefinitionsRels
queryTables queryTables

richData richData

slicers slicers

slicerCaches slicerCaches

sharedStrings sharedStrings

styles_mgr styles_mgr

tables tables

tables.xml.rels tables.xml.rels

theme theme

vbaProject vbaProject

vml vml

vml_rels vml_rels

comments Comments (notes) present in the workbook.
threadComments Threaded comments

timelines timelines

timelineCaches timelineCaches

workbook workbook

workbook. xml.rels workbook.xml.rels

worksheets worksheets

worksheets_rels worksheets_rels

wbWorkbook

sheetOrder The sheet order. Controls ordering for worksheets and worksheet names.

path path
tmpDir tmpDir

namedSheetViews namedSheetViews

wbWorkbook

Methods

Public methods:

wbWorkbook$new ()
wbWorkbook$append ()
wbWorkbook$append_sheets()
wbWorkbook$validate_sheet()
wbWorkbook$add_chartsheet ()
wbWorkbook$add_worksheet ()
wbWorkbook$clone_worksheet ()
wbWorkbook$add_data()
wbWorkbook$add_data_table()
wbWorkbook$add_pivot_table()
wbWorkbook$add_slicer()
wbWorkbook$remove_slicer()
wbWorkbook$add_timeline()
wbWorkbook$remove_timeline()
wbWorkbook$add_formula()
wbWorkbook$add_hyperlink()
wbWorkbook$remove_hyperlink()
wbWorkbook$add_style()
wbWorkbook$to_df ()
wbWorkbook$load ()
wbWorkbook$save ()
wbWorkbook$open ()
wbWorkbook$buildTable()
wbWorkbook$update_table()
wbWorkbook$copy_cells()
wbWorkbook$get_base_font ()
wbWorkbook$set_base_font ()
wbWorkbook$get_base_colors()
wbWorkbook$get_base_colours()
wbWorkbook$set_base_colors()
wbWorkbook$set_base_colours()
wbWorkbook$get_bookview()
wbWorkbook$remove_bookview()
wbWorkbook$set_bookview()
wbWorkbook$get_sheet_names()
wbWorkbook$set_sheet_names()
wbWorkbook$set_row_heights()

wbWorkbook$remove_row_heights()

wbWorkbook$createCols()
wbWorkbook$group_cols()

57

58

wbWorkbook$ungroup_cols()
wbWorkbook$remove_col_widths()
wbWorkbook$set_col_widths()
wbWorkbook$group_rows ()
wbWorkbook$ungroup_rows ()
wbWorkbook$remove_worksheet ()
wbWorkbook$add_data_validation()
wbWorkbook$merge_cells()
wbWorkbook$unmerge_cells()
wbWorkbook$freeze_pane()
wbWorkbook$add_comment ()
wbWorkbook$get_comment ()
wbWorkbook$remove_comment ()
wbWorkbook$add_thread()
wbWorkbook$get_thread()
wbWorkbook$add_conditional_formatting()
wbWorkbook$remove_conditional_formatting()
wbWorkbook$add_image ()
wbWorkbook$add_plot ()
wbWorkbook$add_drawing()
wbWorkbook$add_chart_xml ()
wbWorkbook$add_mschart ()
wbWorkbook$add_form_control()
wbWorkbook$print ()
wbWorkbook$protect ()
wbWorkbook$protect_worksheet ()
wbWorkbook$get_properties()
wbWorkbook$set_properties()
wbWorkbook$add_mips()
wbWorkbook$get_mips()
wbWorkbook$set_creators()
wbWorkbook$add_creators()
wbWorkbook$remove_creators()
wbWorkbook$set_last_modified_by()
wbWorkbook$set_page_setup()
wbWorkbook$page_setup()
wbWorkbook$set_header_footer()
wbWorkbook$get_tables()
wbWorkbook$remove_tables()
wbWorkbook$add_filter()
wbWorkbook$remove_filter()
wbWorkbook$set_grid_lines()

wbWorkbook

wbWorkbook

wbWorkbook$grid_lines()
wbWorkbook$add_named_region()
wbWorkbook$get_named_regions()
wbWorkbook$remove_named_region()
wbWorkbook$set_order ()
wbWorkbook$get_sheet_visibility()
wbWorkbook$set_sheet_visibility()
wbWorkbook$add_page_break ()
wbWorkbook$clean_sheet ()
wbWorkbook$add_border ()
wbWorkbook$add_fill()
wbWorkbook$add_font ()
wbWorkbook$add_numfmt ()
wbWorkbook$add_cell_style()
wbWorkbook$get_cell_style()
wbWorkbook$set_cell_style()
wbWorkbook$set_cell_style_across()
wbWorkbook$add_named_style()
wbWorkbook$add_dxfs_style()
wbWorkbook$clone_sheet_style()
wbWorkbook$add_sparklines()
wbWorkbook$add_ignore_error()
wbWorkbook$set_sheetview()
wbWorkbook$add_person()
wbWorkbook$get_person()
wbWorkbook$get_active_sheet ()
wbWorkbook$set_active_sheet ()
wbWorkbook$get_selected()
wbWorkbook$set_selected()
wbWorkbook$clone ()

Method new(): Creates a new wbWorkbook object

Usage:
wbWorkbook$new (

creator = NULL,

title = NULL,

subject = NULL,

category = NULL,
datetime_created = Sys.time(),
datetime_modified = NULL,
theme = NULL,

keywords = NULL,

comments = NULL,

manager = NULL,

59

60

wbWorkbook

company = NULL,

)

Arguments:

creator character vector of creators. Duplicated are ignored.

title, subject, category, keywords, comments, manager, company workbook properties

datetime_created The datetime (as POSIXt) the workbook is created. Defaults to the current
Sys.time() when the workbook object is created, not when the wb_workbook () files are

saved.
datetime_modified The datetime (as POSIXt) that should be recorded as last modification
date. Defaults to the creation date.
theme Optional theme identified by string or number
. additional arguments

Returns: awbWorkbook object

Method append(): Append a field. This method is intended for internal use

Usage:

wbWorkbook$append(field, value)
Arguments:

field A valid field name

value A value for the field

Method append_sheets(): Append to self$workbook$sheets This method is intended for
internal use

Usage:

wbWorkbook$append_sheets(value)

Arguments:

value A value for self$workbook$sheets

Method validate_sheet(): validate sheet

Usage:
wbWorkbook$validate_sheet(sheet)

Arguments:
sheet A character sheet name or integer location

Returns: The integer position of the sheet

Method add_chartsheet(): Add a chart sheet to the workbook

Usage:
wbWorkbook$add_chartsheet (
sheet = next_sheet(),
tab_color = NULL,
zoom = 100,
visible = c("true", "false", "hidden"”, "visible”, "veryhidden”),

wbWorkbook 61

Arguments:
sheet The name of the sheet
tab_color tab_color
zoom zoom
visible visible
. additional arguments

Returns: The wbWorkbook object, invisibly

Method add_worksheet(): Add worksheet to the wbWorkbook object

Usage:
wbWorkbook$add_worksheet (
sheet = next_sheet(),
grid_lines = TRUE,
row_col_headers = TRUE,
tab_color = NULL,
zoom = 100,
header = NULL,
footer = NULL,
odd_header = header,
odd_footer = footer,
even_header = header,
even_footer = footer,
first_header = header,
first_footer = footer,
visible = c("true", "false", "hidden"”, "visible”, "veryhidden”),
has_drawing = FALSE,
paper_size = getOption("openxlsx2.paperSize"”, default = 9),
orientation = getOption("openxlsx2.orientation”, default = "portrait”),
hdpi = getOption("openxlsx2.hdpi”, default = getOption("openxlsx2.dpi”, default = 300)),
vdpi = getOption("openxlsx2.vdpi”, default = getOption("openxlsx2.dpi”, default = 300)),

)...

Arguments:

sheet The name of the sheet
grid_lines gridLines
row_col_headers rowColHeaders
tab_color tabColor

zoom zoom

header header

footer footer

odd_header oddHeader
odd_footer oddFooter
even_header evenHeader
even_footer evenFooter
first_header firstHeader

62

first_footer firstFooter
visible visible
has_drawing hasDrawing
paper_size paperSize
orientation orientation
hdpi hdpi
vdpi vdpi

. additional arguments

Returns: The wbWorkbook object, invisibly

Method clone_worksheet(): Clone a workbooksheet to another workbook
Usage:
wbWorkbook$clone_worksheet(
old = current_sheet(),
new = next_sheet(),
from = NULL
)

Arguments:

old name of worksheet to clone
new name of new worksheet to add
from name of new worksheet to add

Method add_data(): add data

Usage:

wbWorkbook$add_data(
sheet = current_sheet(),
X,
dims = wb_dims(start_row, start_col),
start_col =1,
start_row = 1,
array = FALSE,
col_names = TRUE,
row_names = FALSE,
with_filter = FALSE,
name = NULL,
sep =", ",
apply_cell_style = TRUE,
remove_cell_style = FALSE,
na = na_strings(),
inline_strings = TRUE,
enforce = FALSE,

)

Arguments:

sheet The name of the sheet

wbWorkbook

wbWorkbook 63

X X
dims Cell range in a sheet

start_col startCol

start_row startRow

array array

col_names colNames

row_names rowNames

with_filter withFilter

name name

sep sep

apply_cell_style applyCellStyle

remove_cell_style if writing into existing cells, should the cell style be removed?

na Value used for replacing NA values from x. Default na_strings() uses the special #N/A
value within the workbook.

inline_strings write characters as inline strings

enforce enforce that selected dims is filled. For this to work, dims must match x
. additional arguments

return The wbWorkbook object

Method add_data_table(): add a data table

Usage:

wbWorkbook$add_data_table(
sheet = current_sheet(),
X,
dims = wb_dims(start_row, start_col),
start_col =1,
start_row 1,
col_names = TRUE,
row_names = FALSE,
table_style = "TableStylelLight9"”,
table_name = NULL,
with_filter = TRUE,
sep =", ",
first_column = FALSE,
last_column = FALSE,
banded_rows = TRUE,
banded_cols = FALSE,
apply_cell_style = TRUE,
remove_cell_style = FALSE,
na = na_strings(),
inline_strings = TRUE,
total_row = FALSE,

)

Arguments:

64

sheet The name of the sheet
X X

dims Cell range in a sheet
start_col startCol
start_row startRow
col_names colNames
row_names rowNames
table_style tableStyle
table_name tableName
with_filter withFilter
sep sep

first_column firstColumn
last_column lastColumn
banded_rows bandedRows
banded_cols bandedCols
apply_cell_style applyCellStyle

wbWorkbook

remove_cell_style if writing into existing cells, should the cell style be removed?

na Value used for replacing NA values from x. Default na_strings() uses the special #N/A

value within the workbook.
inline_strings write characters as inline strings
total_row write total rows to table
. additional arguments

Returns: The wbWorkbook object

Method add_pivot_table(): add pivot table

Usage:
wbWorkbook$add_pivot_table(

X,

sheet = next_sheet(),

dims = "A3",

filter,

rows,

cols,

data,

fun,

params,

pivot_table,

slicer,

timeline

)
Arguments:

x a wb_data object
sheet The name of the sheet

dims the worksheet cell where the pivot table is placed

wbWorkbook 65

filter a character object with names used to filter

rows a character object with names used as rows

cols a character object with names used as cols

data a character object with names used as data

fun a character object of functions to be used with the data
params a list of parameters to modify pivot table creation
pivot_table a character object with a name for the pivot table
slicer a character object with names used as slicer

timeline a character object with names used as timeline

Details: fun can be either of AVERAGE, COUNT, COUNTA, MAX, MIN, PRODUCT,
STDEYV, STDEVP, SUM, VAR, VARP

Returns: The wbWorkbook object

Method add_slicer(): add pivot table

Usage:
wbWorkbook$add_slicer(
X,
dims = "A1",

sheet = current_sheet(),
pivot_table,
slicer,
params
)
Arguments:
x a wb_data object
dims the worksheet cell where the pivot table is placed
sheet The name of the sheet
pivot_table the name of a pivot table on the selected sheet
slicer avariable used as slicer for the pivot table

params a list of parameters to modify pivot table creation

Returns: The wbWorkbook object

Method remove_slicer(): add pivot table

Usage:
wbWorkbook$remove_slicer(sheet = current_sheet())

Arguments:

sheet The name of the sheet

Returns: The wbWorkbook object

Method add_timeline(): add pivot table
Usage:

66

wbWorkbook

wbWorkbook$add_timeline(

X ’

dims = "A1",

sheet = current_sheet(),

pivot_table,

timeline,

params
)
Arguments:
x a wb_data object
dims the worksheet cell where the pivot table is placed
sheet The name of the sheet
pivot_table the name of a pivot table on the selected sheet
timeline a variable used as timeline for the pivot table
params a list of parameters to modify pivot table creation

Returns: The wbWorkbook object

Method remove_timeline(): add pivot table

Usage:
wbWorkbook$remove_timeline(sheet = current_sheet())

Arguments:

sheet The name of the sheet

Returns: The wbWorkbook object

Method add_formula(): Add formula

Usage:
wbWorkbook$add_formula(
sheet = current_sheet(),
X,
dims = wb_dims(start_row, start_col),
start_col =1,
start_row = 1,
array = FALSE,
cm = FALSE,
apply_cell_style = TRUE,
remove_cell_style = FALSE,
enforce = FALSE,
shared = FALSE,
name = NULL,

)...

Arguments:
sheet The name of the sheet
X X

wbWorkbook

dims Cell range in a sheet
start_col startCol
start_row startRow
array array
cm cm
apply_cell_style applyCellStyle
remove_cell_style if writing into existing cells, should the cell style be removed?
enforce enforce dims
shared shared formula
name name
. additional arguments

Returns: The wbWorkbook object

Method add_hyperlink(): Add hyperlink

Usage:
wbWorkbook$add_hyperlink(
sheet = current_sheet(),
dims = "A1",
target = NULL,
tooltip = NULL,
is_external = TRUE,
col_names = FALSE

)

Arguments:

sheet sheet

dims dims

target target

tooltip tooltip
is_external is_external

col_names col_names

Returns: The wbWorkbook object

Method remove_hyperlink(): remove hyperlink

Usage:
wbWorkbook$remove_hyperlink(sheet = current_sheet(), dims = NULL)

Arguments:
sheet sheet
dims dims

Returns: The wbWorkbook object

Method add_style(): add style
Usage:
wbWorkbook$add_style(style = NULL, style_name = NULL)

68

Arguments:

style style

style_name style_name

Returns: The wbWorkbook object

Method to_df (): to_df

Usage:
wbWorkbook$to_df (

sheet,

start_row = NULL,
start_col = NULL,
row_names = FALSE,
col_names = TRUE,
skip_empty_rows = FALSE,
skip_empty_cols = FALSE,
skip_hidden_rows = FALSE,
skip_hidden_cols = FALSE,
rows = NULL,

cols = NULL,
detect_dates = TRUE,
na = "#N/A",

fill_merged_cells = FALSE,
dims,

show_formula = FALSE,
convert = TRUE,

types,

named_region,
keep_attributes = FALSE,
check_names = FALSE,
show_hyperlinks = FALSE,
apply_numfmts = FALSE,

)

Arguments:

wbWorkbook

sheet Either sheet name or index. When missing the first sheet in the workbook is selected.

start_row first row to begin looking for data.

start_col first column to begin looking for data.

row_names If TRUE, the first col of data will be used as row names.
col_names If TRUE, the first row of data will be used as column names.
skip_empty_rows If TRUE, empty rows are skipped.
skip_empty_cols If TRUE, empty columns are skipped.
skip_hidden_rows If TRUE, hidden rows are skipped.
skip_hidden_cols If TRUE, hidden columns are skipped.

rows A numeric vector specifying which rows in the spreadsheet to read. If NULL, all rows are

read.

wbWorkbook 69

cols A numeric vector specifying which columns in the spreadsheet to read. If NULL, all
columns are read.

detect_dates If TRUE, attempt to recognize dates and perform conversion.

na Defines values to be treated as NA. Can be a character vector of strings or a named list:
list(strings = ..., numbers = ...). Blank cells are always converted to NA.

fill_merged_cells If TRUE, the value in a merged cell is given to all cells within the merge.
dims Character string of type "A1:B2" as optional dimensions to be imported.

show_formula If TRUE, the underlying spreadsheet formulas are shown.

convert If TRUE, a conversion to dates and numerics is attempted.

types A named numeric indicating, the type of the data. 0: character, 1: numeric, 2: date, 3:
posixt, 4:logical. Names must match the returned data

named_region Character string with a named_region (defined name or table). If no sheet is
selected, the first appearance will be selected.

keep_attributes If TRUE additional attributes are returned. (These are used internally to
define a cell type.)

check_names If TRUE then the names of the variables in the data frame are checked to ensure
that they are syntactically valid variable names.

show_hyperlinks If TRUE instead of the displayed text, hyperlink targets are shown.
apply_numfmts If TRUE numeric formats are applied if detected.
. additional arguments

Returns: a data frame

Method load(): load workbook
Usage:
wbWorkbook$load(file, sheet, data_only = FALSE, ...)
Arguments:
file file
sheet The name of the sheet
data_only data_only

. additional arguments

Returns: The wbWorkbook object invisibly

Method save(): Save the workbook
Usage:
wbWorkbook$save(file = self$path, overwrite = TRUE, path = NULL, flush = FALSE)
Arguments:
file The path to save the workbook to
overwrite If FALSE, will not overwrite when path exists
path Deprecated argument previously used for file. Please use file in new code.
flush Experimental, streams the worksheet file to disk

Returns: The wbWorkbook object invisibly

Method open(): open wbWorkbook in spreadsheet software

wbWorkbook

Usage:
wbWorkbook$open(interactive = NA, flush = FALSE)

Arguments:

interactive If FALSE will throw a warning and not open the path. This can be manually set
to TRUE, otherwise when NA (default) uses the value returned from base: :interactive()

flush flush

Details: minor helper wrapping x1_open which does the entire same thing

Returns: The wbWorkbook, invisibly

Method buildTable(): Build table

Usage:
wbWorkbook$buildTable(
sheet = current_sheet(),
colNames,
ref,
showColNames,
tableStyle,
tableName,
withFilter = TRUE,
totalsRowCount = 0,
totallLabel = FALSE,
showFirstColumn = 0,
showLastColumn = @,
showRowStripes = 1,
showColumnStripes = 0

)

Arguments:

sheet The name of the sheet
colNames colNames

ref ref

showColNames showColNames
tableStyle tableStyle

tableName tableName

withFilter withFilter
totalsRowCount totalsRowCount
totallLabel totalLabel
showFirstColumn showFirstColumn
showLastColumn showLastColumn
showRowStripes showRowStripes
showColumnStripes showColumnStripes

Returns: The wbWorksheet object, invisibly

Method update_table(): update a data_table
Usage:

wbWorkbook

wbWorkbook$update_table(sheet = current_sheet(), dims = "A1", tabname)

Arguments:

sheet The name of the sheet
dims Cell range in a sheet
tabname a tablename

Returns: The wbWorksheet object, invisibly

Method copy_cells(): copy cells around in a workbook
Usage:
wbWorkbook$copy_cells(
sheet = current_sheet(),
dims = "A1",
data,
as_value = FALSE,
as_ref = FALSE,
transpose = FALSE,

)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet
data a wb_data object
as_value should a copy of the value be written
as_ref should references to the cell be written
transpose should the data be written transposed
. additional arguments passed to add_data() if used with as_value

Returns: The wbWorksheet object, invisibly

Method get_base_font(): Get the base font

Usage:
wbWorkbook$get_base_font ()

Returns: A list of of the font

Method set_base_font(): Set the base font

Usage:
wbWorkbook$set_base_font(
font_size = 11,

font_color = wb_color(theme = "1"),
font_name = "Aptos Narrow”,

)

Arguments:

font_size fontSize

72

font_color font_color
font_name font_name
. additional arguments

Returns: The wbWorkbook object

Method get_base_colors(): Get the base color
Usage:

wbWorkbook

wbWorkbook$get_base_colors(xml = FALSE, plot = TRUE)

Arguments:
xml xml
plot plot
Method get_base_colours(): Get the base colour
Usage:

wbWorkbook$get_base_colours(xml = FALSE, plot = TRUE)

Arguments:
xml xml
plot plot
Method set_base_colors(): Set the base color

Usage:
wbWorkbook$set_base_colors(theme = "Office”,

Arguments:

theme theme

Returns: The wbWorkbook object

Method set_base_colours(): Set the base colour

Usage:
wbWorkbook$set_base_colours(theme = "Office”,

Arguments:

theme theme

Returns: The wbWorkbook object

Method get_bookview(): Get the book views

Usage:
wbWorkbook$get_bookview()

Returns: A dataframe with the bookview properties

Method remove_bookview(): Get the book views

Usage:

D)

.)

wbWorkbook

wbWorkbook$remove_bookview(view = NULL)

Arguments:

view view

Returns: The wbWorkbook object

Method set_bookview():

Usage:

wbWorkbook$set_bookview(
active_tab = NULL,
auto_filter_date_grouping = NULL,
first_sheet = NULL,
minimized = NULL,
show_horizontal_scroll = NULL,
show_sheet_tabs = NULL,
show_vertical_scroll = NULL,
tab_ratio = NULL,
visibility = NULL,
window_height = NULL,
window_width = NULL,
x_window = NULL,
y_window = NULL,
view = 1L,

)

Arguments:
active_tab activeTab
auto_filter_date_grouping autoFilterDateGrouping
first_sheet firstSheet
minimized minimized
show_horizontal_scroll showHorizontalScroll
show_sheet_tabs showSheetTabs
show_vertical_scroll showVerticalScroll
tab_ratio tabRatio
visibility visibility
window_height windowHeight
window_width windowWidth
x_window xWindow
y_window yWindow
view view

. additional arguments

Returns: The wbWorkbook object

Method get_sheet_names(): Get sheet names
Usage:

74

wbWorkbook

wbWorkbook$get_sheet_names(escape = FALSE)
Arguments:
escape Logical if the xml special characters are escaped

Returns: A named character vector of sheet names in their order. The names represent the
original value of the worksheet prior to any character substitutions.

Method set_sheet_names(): Sets a sheet name
Usage:
wbWorkbook$set_sheet_names(old = NULL, new)
Arguments:
old Old sheet name
new New sheet name

Returns: The wbWorkbook object, invisibly

Method set_row_heights(): Sets a row height for a sheet

Usage:
wbWorkbook$set_row_heights(
sheet = current_sheet(),

rows,

heights = NULL,
hidden = FALSE,
hide_blanks = NULL

)

Arguments:

sheet The name of the sheet
rows rows

heights heights

hidden hidden
hide_blanks hide_blanks

Returns: The wbWorkbook object, invisibly

Method remove_row_heights(): Removes a row height for a sheet
Usage:
wbWorkbook$remove_row_heights(sheet = current_sheet(), rows)

Arguments:
sheet The name of the sheet
rows rows

Returns: The wbWorkbook object, invisibly

Method createCols(): creates column object for worksheet

Usage:
wbWorkbook$createCols(sheet = current_sheet(), n, beg, end)

wbWorkbook

Arguments:

sheet The name of the sheet
nn

beg beg

end end

Method group_cols(): Group cols
Usage:
wbWorkbook$group_cols(
sheet = current_sheet(),
cols,
collapsed = FALSE,
levels = NULL

)

Arguments:

sheet The name of the sheet

cols cols

collapsed collapsed

levels levels

Returns: The wbWorkbook object, invisibly

Method ungroup_cols(): ungroup cols
Usage:
wbWorkbook$ungroup_cols(sheet = current_sheet(), cols)
Arguments:
sheet The name of the sheet
cols columns

Returns: The wbWorkbook object

Method remove_col_widths(): Remove row heights from a worksheet
Usage:
wbWorkbook$remove_col_widths(sheet = current_sheet(), cols)
Arguments:
sheet A name or index of a worksheet
cols Indices of columns to remove custom width (if any) from.

Returns: The wbWorkbook object, invisibly

Method set_col_widths(): Set column widths
Usage:

wbWorkbook$set_col_widths(
sheet = current_sheet(),

cols,
widths = 8.43,
hidden = FALSE

75

76

wbWorkbook

Arguments:

sheet The name of the sheet
cols cols

widths Width of columns

hidden A logical vector to determine which cols are hidden; values are repeated across length
of cols

Returns: The wbWorkbook object, invisibly

Method group_rows(): Group rows

Usage:

wbWorkbook$group_rows(
sheet = current_sheet(),
rows,
collapsed = FALSE,
levels = NULL

)

Arguments:

sheet The name of the sheet
rows rows

collapsed collapsed

levels levels

Returns: The wbWorkbook object, invisibly

Method ungroup_rows(): ungroup rows
Usage:

wbWorkbook$ungroup_rows(sheet = current_sheet(), rows)

Arguments:
sheet The name of the sheet

rows rows

Returns: The wbWorkbook object

Method remove_worksheet(): Remove a worksheet
Usage:
wbWorkbook$remove_worksheet(sheet = current_sheet())

Arguments:

sheet The worksheet to delete

Returns: The wbWorkbook object, invisibly

Method add_data_validation(): Adds data validation
Usage:

wbWorkbook

wbWorkbook$add_data_validation(
sheet = current_sheet(),
dims = "A1",
type,
operator,
value,
allow_blank = TRUE,
show_input_msg = TRUE,
show_error_msg = TRUE,
error_style = NULL,
error_title = NULL,
error = NULL,
prompt_title = NULL,
prompt = NULL,

)

Arguments:

sheet The name of the sheet
dims Cell range in a sheet

type type

operator operator

value value

allow_blank allowBlank
show_input_msg showInputMsg
show_error_msg showErrorMsg

77

error_style The icon shown and the options how to deal with such inputs. Default "stop"
(cancel), else "information" (prompt popup) or "warning" (prompt accept or change input)

error_title The error title
error The error text
prompt_title The prompt title
prompt The prompt text

. additional arguments

Returns: The wbWorkbook object

Method merge_cells(): Set cell merging for a sheet

Usage:
wbWorkbook$merge_cells(
sheet = current_sheet(),
dims = NULL,
solve = FALSE,
direction = NULL,

)

Arguments:

sheet The name of the sheet

wbWorkbook

dims Cell range in a sheet

solve logical if intersecting cells should be solved

direction direction in which to split the cell merging. Allows "row" or "col".
. additional arguments

Returns: The wbWorkbook object, invisibly

Method unmerge_cells(): Removes cell merging for a sheet
Usage:
wbWorkbook$unmerge_cells(sheet = current_sheet(), dims = NULL, ...)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet

. additional arguments

Returns: The wbWorkbook object, invisibly

Method freeze_pane(): Set freeze panes for a sheet

Usage:

wbWorkbook$freeze_pane(
sheet = current_sheet(),
first_active_row = NULL,
first_active_col = NULL,
first_row = FALSE,
first_col = FALSE,

)...

Arguments:
sheet The name of the sheet
first_active_row first_active_row
first_active_col first_active_col
first_row first_row
first_col first_col

. additional arguments

Returns: The wbWorkbook object, invisibly

Method add_comment(): Add comment

Usage:
wbWorkbook$add_comment (sheet = current_sheet(), dims = "A1", comment, ...)
Arguments:
sheet The name of the sheet
dims row and column as spreadsheet dimension, e.g. "A1"
comment a comment to apply to the worksheet
. additional arguments

wbWorkbook 79

Returns: The wbWorkbook object

Method get_comment(): Get comments
Usage:
wbWorkbook$get_comment (sheet = current_sheet(), dims = NULL)
Arguments:
sheet sheet
dims dims

Returns: A data frame containing comments

Method remove_comment(): Remove comment
Usage:
wbWorkbook$remove_comment (sheet = current_sheet(), dims = "A1", ...)
Arguments:
sheet The name of the sheet
dims row and column as spreadsheet dimension, e.g. "A1"
. additional arguments

Returns: The wbWorkbook object

Method add_thread(): add threaded comment to worksheet

Usage:
wbWorkbook$add_thread(
sheet = current_sheet(),

dims = "A1",
comment = NULL,
person_id,

reply = FALSE,
resolve = FALSE
)
Arguments:
sheet The name of the sheet
dims Cell range in a sheet
comment the comment to add
person_id the person Id this should be added for
reply logical if the comment is a reply
resolve logical if the comment should be marked as resolved

Method get_thread(): Get threads
Usage:
wbWorkbook$get_thread(sheet = current_sheet(), dims = NULL)
Arguments:

sheet sheet
dims dims

80 wbWorkbook

Returns: A data frame containing threads

Method add_conditional_formatting(): Add conditional formatting

Usage:
wbWorkbook$add_conditional_formatting(
sheet = current_sheet(),

dims = NULL,

rule = NULL,

style = NULL,

type = c("expression”, "colorScale”, "dataBar”, "iconSet", "duplicatedValues",
"uniqueValues", "containsErrors"”, "notContainsErrors”, "containsBlanks",

"notContainsBlanks”, "containsText"”, "notContainsText”, "beginsWith"”, "endsWith",
"between”, "topN", "bottomN"),
params = list(showValue = TRUE, gradient = TRUE, border = TRUE, percent = FALSE, rank =
5L, axisPosition = "automatic"),

)

Arguments:

sheet The name of the sheet

dims Cell range in a sheet

rule rule

style style

type type

params Additional parameters
. additional arguments

Returns: The wbWorkbook object

Method remove_conditional_formatting(): Remove conditional formatting

Usage:
wbWorkbook$remove_conditional_formatting(
sheet = current_sheet(),

dims = NULL,
first = FALSE,
last = FALSE

)

Arguments:

sheet sheet
dims dims
first first
last last

Returns: The wbWorkbook object

Method add_image(): Insert an image into a sheet

Usage:

wbWorkbook

wbWorkbook$add_image (
sheet = current_sheet(),

dims = "A1",
file,

width = 6,
height = 3,

row_offset = 0,
col_offset = 0,
units = "in",
dpi = 300,
address = NULL,

)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet
file file
width width
height height
row_offset, col_offset offsets
units units
dpi dpi
address address
. additional arguments

Returns: The wbWorkbook object, invisibly

Method add_plot(): Add plot. A wrapper for add_image()
Usage:
wbWorkbook$add_plot(

sheet = current_sheet(),
dims = "A1",

width = 6,

height = 4,

row_offset = 0,
col_offset = 0,
file_type = "png”,

units = "in",

dpi = 300,

)

Arguments:

sheet The name of the sheet
dims Cell range in a sheet
width width

height height

81

82

row_offset, col_offset offsets
file_type fileType
units units
dpi dpi
. additional arguments

Returns: The wbWorkbook object

Method add_drawing(): Add xml drawing

Usage:
wbWorkbook$add_drawing(
sheet = current_sheet(),

dims = "A1",
xml,
col_offset = 0,
row_offset = 0,
)
Arguments:

sheet The name of the sheet

dims Cell range in a sheet

xml xml

col_offset, row_offset offsets for column and row
. additional arguments

Returns: The wbWorkbook object

Method add_chart_xml(): Add xml chart

Usage:
wbWorkbook$add_chart_xml(
sheet = current_sheet(),

dims = NULL,
xml,
col_offset = 0,
row_offset = 0,
)
Arguments:

sheet The name of the sheet

dims Cell range in a sheet

xml xml

col_offset, row_offset positioning parameters
. additional arguments

Returns: The wbWorkbook object

Method add_mschart(): Add mschart chart to the workbook

wbWorkbook

wbWorkbook

Usage:
wbWorkbook$add_mschart (
sheet = current_sheet(),

dims = NULL,
graph,
col_offset = 0,
row_offset = 0,
)
Arguments:

sheet The name of the sheet

dims the dimensions where the sheet will appear

graph mschart graph

col_offset, row_offset offsets for column and row
. additional arguments

Returns: The wbWorkbook object

Method add_form_control(): Add form control to workbook

Usage:
wbWorkbook$add_form_control(
sheet = current_sheet(),

dims = "A1",
type = c("Checkbox"”, "Radio", "Drop"),
text = NULL,
link = NULL,
range = NULL,
checked = FALSE
)
Arguments:

sheet The name of the sheet
dims Cell range in a sheet

type type

text text

link link

range range
checked checked

Returns: The wbWorkbook object, invisibly

Method print(): Prints the wbWorkbook object

Usage:
wbWorkbook$print ()

Returns: The wbWorkbook object, invisibly; called for its side-effects

Method protect(): Protect a workbook

84 wbWorkbook

Usage:
wbWorkbook$protect(
protect = TRUE,
password = NULL,
lock_structure = FALSE,
lock_windows = FALSE,
type = 1,
file_sharing = FALSE,
username = unname(Sys.info()["user”]),
read_only_recommended = FALSE,

)

Arguments:

protect protect

password password

lock_structure lock_structure

lock_windows lock_windows

type type

file_sharing file_sharing

username username

read_only_recommended read_only_recommended
. additional arguments

Returns: The wbWorkbook object, invisibly

Method protect_worksheet(): protect worksheet
Usage:
wbWorkbook$protect_worksheet

sheet = current_sheet(),
protect = TRUE,
password = NULL,
properties = NULL
)
Arguments:
sheet The name of the sheet
protect protect
password password

properties A character vector of properties to lock. Can be one or more of the following:
"selectlLockedCells”, "selectUnlockedCells"”, "formatCells”, "formatColumns”,

n on n on n n

"formatRows"”, "insertColumns”, "insertRows", "insertHyperlinks", "deleteColumns”,

non n o n

"deleteRows", "sort",

n on n on n o n

autoFilter”, "pivotTables”, "objects”, "scenarios”

Returns: The wbWorkbook object

Method get_properties(): Get properties of a workbook
Usage:

wbWorkbook 85

wbWorkbook$get_properties()

Method set_properties(): Seta property of a workbook

Usage:
wbWorkbook$set_properties(
creator = NULL,
title = NULL,
subject = NULL,
category = NULL,
datetime_created = NULL,
datetime_modified = NULL,
modifier = NULL,
keywords = NULL,
comments NULL,
manager = NULL,
company = NULL,
custom = NULL

)

Arguments:
creator character vector of creators. Duplicated are ignored.

title, subject, category, datetime_created, datetime_modified, modifier, keywords, comments, manager
A workbook property to set

Method add_mips(): add mips string
Usage:
wbWorkbook$add_mips(xml = NULL)

Arguments:

xml A mips string added to self$custom

Method get_mips(): get mips string
Usage:
wbWorkbook$get_mips(single_xml = TRUE, quiet = TRUE)

Arguments:
single_xml single_xml
quiet quiet

Method set_creators(): Set creator(s)

Usage:
wbWorkbook$set_creators(creators)

Arguments:

creators A character vector of creators to set. Duplicates are ignored.

Method add_creators(): Add creator(s)
Usage:

86

wbWorkbook

wbWorkbook$add_creators(creators)

Arguments:

creators A character vector of creators to add. Duplicates are ignored.

Method remove_creators(): Remove creator(s)

Usage:
wbWorkbook$remove_creators(creators)

Arguments:

creators A character vector of creators to remove. All duplicated are removed.

Method set_last_modified_by(): Change the last modified by

Usage:
wbWorkbook$set_last_modified_by(name, ...)

Arguments:
name A new value
. additional arguments

Returns: The wbWorkbook object, invisibly

Method set_page_setup(): set_page_setup() this function is intended to supersede page_setup(),
but is not yet stable

Usage:
wbWorkbook$set_page_setup(
sheet = current_sheet(),
black_and_white = NULL,
cell_comments = NULL,
copies = NULL,
draft = NULL,
errors = NULL,
first_page_number = NULL,
id = NULL,
page_order = NULL,
paper_height = NULL,
paper_width = NULL,
hdpi = NULL,
vdpi = NULL,
use_first_page_number = NULL,
use_printer_defaults = NULL,
orientation = NULL,

scale = NULL,
left = 0.7,
right = 0.7,
top = 0.75,
bottom = 0.75,
header = 0.3,
footer = 0.3

’

wbWorkbook

fit_to_width = FALSE,
fit_to_height = FALSE,
paper_size = NULL,
print_title_rows = NULL,
print_title_cols = NULL,
summary_row = NULL,
summary_col = NULL,
tab_color = NULL,
horizontal_centered = NULL,
vertical_centered = NULL,
print_headings = NULL,

)

Arguments:

sheet The name of the sheet
black_and_white black_and_white
cell_comments cell_comment

copies copies

draft draft

errors errors

first_page_number first_page_number
id id

page_order page_order

paper_height, paper_width paper size
hdpi, vdpi horizontal and vertical dpi
use_first_page_number use_first_page_number
use_printer_defaults use_printer_defaults
orientation orientation

scale scale

left left

right right

top top

bottom bottom

header header

footer footer

fit_to_width fitToWidth
fit_to_height fitToHeight
paper_size paperSize
print_title_rows printTitleRows
print_title_cols printTitleCols
summary_row summaryRow
summary_col summaryCol

tab_color tabColor
horizontal_centered horizontal_centered

wbWorkbook

vertical_centered vertical_centered
print_headings print_headings
. additional arguments

Returns: The wbWorkbook object, invisibly

Method page_setup(): page_setup()

Usage:

wbWorkbook$page_setup(
sheet = current_sheet(),
orientation = NULL,

scale = 100,
left = 0.7,
right = 0.7,
top = 0.75,
bottom = 0.75,
header = 0.3,
footer = 0.3

fit_to_width = FALSE,
fit_to_height = FALSE,
paper_size = NULL,
print_title_rows = NULL,
print_title_cols = NULL,
summary_row = NULL,
summary_col = NULL,

)

Arguments:
sheet The name of the sheet
orientation orientation
scale scale
left left
right right
top top
bottom bottom
header header
footer footer
fit_to_width fitToWidth
fit_to_height fitToHeight
paper_size paperSize
print_title_rows printTitleRows
print_title_cols printTitleCols
summary_row summaryRow
summary_col summaryCol

. additional arguments

wbWorkbook 89

Returns: The wbWorkbook object, invisibly

Method set_header_footer(): Sets headers and footers

Usage:
wbWorkbook$set_header_footer(
sheet = current_sheet(),

header = NULL,

footer = NULL,

even_header = NULL,
even_footer = NULL,
first_header = NULL,
first_footer = NULL,
align_with_margins = NULL,
scale_with_doc = NULL,

)..

Arguments:

sheet The name of the sheet

header header

footer footer

even_header evenHeader

even_footer evenFooter

first_header firstHeader

first_footer firstFooter

align_with_margins align_with_margins

scale_with_doc scale_with_doc
. additional arguments

Returns: The wbWorkbook object, invisibly

Method get_tables(): get tables
Usage:
wbWorkbook$get_tables(sheet = current_sheet())
Arguments:

sheet The name of the sheet

Returns: The sheet tables. character () if empty

Method remove_tables(): remove tables
Usage:
wbWorkbook$remove_tables(sheet = current_sheet(), table, remove_data = TRUE)
Arguments:
sheet The name of the sheet
table table
remove_data removes the data as well

wbWorkbook

Returns: The wbWorkbook object

Method add_filter(): add filters

Usage:
wbWorkbook$add_filter(sheet = current_sheet(), rows, cols)

Arguments:
sheet The name of the sheet
rows rows

cols cols

Returns: The wbWorkbook object

Method remove_filter(): remove filters

Usage:
wbWorkbook$remove_filter(sheet = current_sheet())

Arguments:

sheet The name of the sheet

Returns: The wbWorkbook object

Method set_grid_lines(): grid lines

Usage:
wbWorkbook$set_grid_lines(sheet = current_sheet(), show = FALSE, print = show)

Arguments:

sheet The name of the sheet
show show

print print

Returns: The wbWorkbook object

Method grid_lines(): grid lines

Usage:
wbWorkbook$grid_lines(sheet = current_sheet(), show = FALSE, print = show)

Arguments:

sheet The name of the sheet
show show

print print

Returns: The wbWorkbook object

Method add_named_region(): add a named region

Usage:

wbWorkbook

wbWorkbook$add_named_region(
sheet = current_sheet(),
dims = "A1",
name,
local_sheet = FALSE,
overwrite = FALSE,
comment = NULL,
hidden = NULL,
custom_menu = NULL,
description = NULL,
is_function = NULL,
function_group_id = NULL,
help = NULL,
local_name = NULL,
publish_to_server = NULL,
status_bar = NULL,
vb_procedure = NULL,
workbook_parameter = NULL,
xml = NULL,

)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet
name name
local_sheet local_sheet
overwrite overwrite
comment comment
hidden hidden
custom_menu custom_menu
description description
is_function function
function_group_id function group id
help help
local_name localName
publish_to_server publish to server
status_bar status bar
vb_procedure vb procedure
workbook_parameter workbookParameter
xml xml

. additional arguments

Returns: The wbWorkbook object

Method get_named_regions(): get named regions in a workbook

Usage:

wbWorkbook

wbWorkbook$get_named_regions(tables = FALSE, x = NULL)

Arguments:
tables Return tables as well?
x Not used.

Returns: A data.frame of named regions

Method remove_named_region(): remove a named region
Usage:
wbWorkbook$remove_named_region(sheet = current_sheet(), name = NULL)

Arguments:
sheet The name of the sheet
name name

Returns: The wbWorkbook object

Method set_order(): set worksheet order

Usage:
wbWorkbook$set_order(sheets)

Arguments:
sheets sheets

Returns: The wbWorkbook object

Method get_sheet_visibility(): Get sheet visibility

Usage:
wbWorkbook$get_sheet_visibility()

Returns: Returns sheet visibility

Method set_sheet_visibility(): Set sheet visibility
Usage:
wbWorkbook$set_sheet_visibility(sheet = current_sheet(), value)
Arguments:
sheet The name of the sheet

value value

Returns: The wbWorkbook object

Method add_page_break(): Add a page break
Usage:
wbWorkbook$add_page_break(sheet = current_sheet(), row = NULL, col = NULL)
Arguments:
sheet The name of the sheet
row row
col col

wbWorkbook

Returns: The wbWorkbook object

Method clean_sheet(): clean sheet (remove all values)

Usage:

wbWorkbook$clean_sheet(
sheet = current_sheet(),
dims = NULL,
numbers = TRUE,
characters = TRUE,
styles = TRUE,
merged_cells = TRUE,
hyperlinks = TRUE

)

Arguments:

sheet The name of the sheet

dims Cell range in a sheet

numbers remove all numbers
characters remove all characters
styles remove all styles
merged_cells remove all merged_cells
hyperlinks remove all hyperlinks

Returns: The wbWorksheetObject, invisibly

Method add_border(): create borders for cell region

Usage:

wbWorkbook$add_border (
sheet = current_sheet(),
dims = "A1",
bottom_color = wb_color(hex = "FF000000"),
left_color = wb_color(hex = "FF000000"),
right_color = wb_color(hex = "FF000000"),
top_color = wb_color(hex = "FF000000"),
bottom_border = "thin",
left_border = "thin",
right_border = "thin",
top_border = "thin",
inner_hgrid = NULL,
inner_hcolor = NULL,
inner_vgrid = NULL,
inner_vcolor = NULL,
update = FALSE,
diagonal_up = NULL,
diagonal_down = NULL,
diagonal_color = NULL,

wbWorkbook

Arguments:
sheet The name of the sheet
dims dimensions on the worksheet e.g. "A1", "A1:A5", "A1:H5"

bottom_color, left_color, right_color, top_color, inner_hcolor, inner_vcolor acolor,
either something openxml knows or some RGB color

left_border, right_border, top_border, bottom_border, inner_hgrid, inner_vgrid
the border style, if NULL no border is drawn. See create_border for possible border styles

update update
diagonal_up, diagonal_down, diagonal_color (optional) arguments for diagonal border lines

. additional arguments

Returns: The wbWorkbook, invisibly

Method add_fill(): provide simple fill function

Usage:

wbWorkbook$add_fill(
sheet = current_sheet(),

dims = "A1",
color = wb_color(hex = "FFFFFFQQ"),
pattern = "solid”,

nn

gradient_fill = ,
every_nth_col = 1,
every_nth_row = 1,
bg_color = NULL,

)

Arguments:

sheet The name of the sheet

dims Cell range in a sheet

color the colors to apply, e.g. yellow: wb_color(hex = "FFFFFF00")

pattern various default "none" but others are possible: "solid", "mediumGray", "darkGray",
"lightGray", "darkHorizontal", "darkVertical", "darkDown", "darkUp", "darkGrid", "dark-
Trellis", "lightHorizontal", "lightVertical", "lightDown", "lightUp", "lightGrid", "lightTrel-
lis", "gray125", "gray0625"

gradient_fill a gradient fill xml pattern.

every_nth_col which col should be filled

every_nth_row which row should be filled

bg_color (optional) background wb_color ()

. additional arguments

Returns: The wbWorksheetObject, invisibly

Method add_font(): provide simple font function
Usage:

wbWorkbook

wbWorkbook$add_font (
sheet = current_sheet(),
dims = "A1",
name = "Aptos Narrow”,
color = wb_color(hex = "FF000000"),
size = "11",
bold = "",
italic = "",
outline =
strike = "",

nn

underline = R

nn

charset = ,

nn

condense = ,

nn

extend = R

family = "",
nn

scheme R

nn

shadow = R

nn

vert_align = ,
update = FALSE,

nn

)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet
name font name: default "Aptos Narrow"
color rgb color: default "FFO00000"
size font size: default "11",
bold bold
italic italic
outline outline
strike strike
underline underline
charset charset
condense condense
extend extend
family font family
scheme font scheme
shadow shadow
vert_align vertical alignment
update update
. additional arguments

Returns: The wbWorkbook, invisibly

Method add_numfmt (): provide simple number format function

Usage:

96

wbWorkbook$add_numfmt (sheet = current_sheet(), dims

Arguments:

sheet The name of the sheet

dims Cell range in a sheet

numfmt number format id or a character of the format

Returns: The wbWorksheetObject, invisibly

wbWorkbook

= "A1", numfmt)

Method add_cell_style(): provide simple cell style format function

Usage:

wbWorkbook$add_cell_style(
sheet = current_sheet(),
dims = "A1",
apply_alignment = NULL,
apply_border = NULL,
apply_fill = NULL,
apply_font = NULL,
apply_number_format = NULL,
apply_protection = NULL,
border_id = NULL,
ext_lst = NULL,
fill_id = NULL,
font_id = NULL,
hidden = NULL,
horizontal = NULL,
indent = NULL,
justify_last_line =
locked = NULL,
num_fmt_id = NULL,

NULL,

pivot_button = NULL,
quote_prefix = NULL,
reading_order = NULL,

relative_indent = NULL,
shrink_to_fit = NULL,
text_rotation = NULL,
vertical = NULL,
wrap_text = NULL,

xf_id = NULL,

)

Arguments:

sheet The name of the sheet

dims Cell range in a sheet
apply_alignment logical apply alignment
apply_border logical apply border
apply_fill logical apply fill

apply_font logical apply font

wbWorkbook

apply_number_format logical apply number format
apply_protection logical apply protection
border_id border ID to apply
ext_lst extension list something like <extLst>...</extLst>
fill_id fill ID to apply
font_id font ID to apply
hidden logical cell is hidden
horizontal align content horizontal (’left’, ’center’, ’right’)
indent logical indent content
justify_last_line logical justify last line
locked logical cell is locked
num_fmt_id number format ID to apply
pivot_button unknown
quote_prefix unknown
reading_order reading order left to right
relative_indent relative indentation
shrink_to_fit logical shrink to fit
text_rotation degrees of text rotation
vertical vertical alignment of content ("top’, ’center’, *bottom”)
wrap_text wrap text in cell
xf_id xf ID to apply
. additional arguments

Returns: The wbWorkbook object, invisibly

Method get_cell_style(): get sheet style

Usage:
wbWorkbook$get_cell_style(sheet = current_sheet(), dims)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet

Returns: a character vector of cell styles

Method set_cell_style(): set sheet style
Usage:
wbWorkbook$set_cell_style(sheet = current_sheet(), dims, style)
Arguments:
sheet The name of the sheet
dims Cell range in a sheet
style style

Returns: The wbWorksheetObject, invisibly

Method set_cell_style_across(): set style across columns and/or rows

97

98

Usage:
wbWorkbook$set_cell_style_across(
sheet = current_sheet(),

style,
cols = NULL,
rows = NULL
)
Arguments:

sheet sheet
style style
cols cols
rows rows

Returns: The wbWorkbook object

Method add_named_style(): set sheet style

Usage:
wbWorkbook$add_named_style(
sheet = current_sheet(),

dims = "A1",

name = "Normal”,
font_name = NULL,
font_size = NULL

)

Arguments:

sheet The name of the sheet
dims Cell range in a sheet
name name

font_name, font_size optional else the default of the theme

Returns: The wbWorkbook, invisibly

wbWorkbook

Method add_dxfs_style(): create dxfs style These styles are used with conditional formatting

and custom table styles

Usage:
wbWorkbook$add_dxfs_style(
name,
font_name = NULL,
font_size = NULL,

font_color = NULL,
num_fmt = NULL,
border = NULL,

border_color = wb_color(getOption("openxlsx2.borderColor”, "black")),

border_style = getOption("openxlsx2.borderStyle”, "thin"),

bg_fill = NULL,
gradient_fill = NULL,
text_bold = NULL,

wbWorkbook 99

text_italic = NULL,
text_underline = NULL,

)...

Arguments:
name the style name
font_name the font name
font_size the font size
font_color the font color (a wb_color () object)
num_fmt the number format
border logical if borders are applied
border_color the border color
border_style the border style
bg_fill any background fill
gradient_fill any gradient fill
text_bold logical if text is bold
text_italic logical if text is italic
text_underline logical if text is underlined
. additional arguments passed to create_dxfs_style()

Returns: The wbWorksheetObject, invisibly

Method clone_sheet_style(): clone style from one sheet to another

Usage:
wbWorkbook$clone_sheet_style(from = current_sheet(), to)
Arguments:

from the worksheet you are cloning
to the worksheet the style is applied to

Method add_sparklines(): apply sparkline to worksheet

Usage:
wbWorkbook$add_sparklines(sheet = current_sheet(), sparklines)

Arguments:
sheet The name of the sheet
sparklines sparkline created by create_sparkline()

Method add_ignore_error(): Ignore error on worksheet

Usage:

wbWorkbook$add_ignore_error(
sheet = current_sheet(),
dims = "A1",
calculated_column = FALSE,
empty_cell_reference = FALSE,
eval_error = FALSE,

100 wbWorkbook

formula = FALSE,

formula_range = FALSE,
list_data_validation = FALSE,
number_stored_as_text = FALSE,
two_digit_text_year = FALSE,
unlocked_formula = FALSE,

)

Arguments:
sheet The name of the sheet
dims Cell range in a sheet
calculated_column calculatedColumn
empty_cell_reference emptyCellReference
eval_error evalError
formula formula
formula_range formulaRange
list_data_validation listDataValidation
number_stored_as_text numberStoredAsText
two_digit_text_year twoDigitTextYear
unlocked_formula unlockedFormula

. additional arguments

Method set_sheetview(): add sheetview

Usage:

wbWorkbook$set_sheetview(
sheet = current_sheet(),
color_id = NULL,
default_grid_color = NULL,
right_to_left = NULL,
show_formulas = NULL,
show_grid_lines = NULL,
show_outline_symbols = NULL,
show_row_col_headers = NULL,
show_ruler = NULL,
show_white_space = NULL,
show_zeros = NULL,
tab_selected = NULL,
top_left_cell = NULL,
view = NULL,
window_protection = NULL,
workbook_view_id = NULL,
zoom_scale = NULL,
zoom_scale_normal = NULL,
zoom_scale_page_layout_view = NULL,
zoom_scale_sheet_layout_view = NULL,

wbWorkbook 101

Arguments:

sheet The name of the sheet

color_id, default_grid_color Integer: A color, default is 64

right_to_left Logical: if TRUE column ordering is right to left

show_formulas Logical: if TRUE cell formulas are shown

show_grid_lines Logical: if TRUE the worksheet grid is shown
show_outline_symbols Logical: if TRUE outline symbols are shown
show_row_col_headers Logical: if TRUE row and column headers are shown
show_ruler Logical: if TRUE a ruler is shown in page layout view

show_white_space Logical: if TRUE margins are shown in page layout view
show_zeros Logical: if FALSE cells containing zero are shown blank if !showFormulas
tab_selected Integer: zero vector indicating the selected tab

top_left_cell Cell: the cell shown in the top left corner / or top right with rightToLeft
view View: "normal", "pageBreakPreview" or "pageLayout"

window_protection Logical: if TRUE the panes are protected

workbook_view_id integer: Pointing to some other view inside the workbook

zoom_scale, zoom_scale_normal, zoom_scale_page_layout_view, zoom_scale_sheet_layout_view
Integer: the zoom scale should be between 10 and 400. These are values for current, normal
etc.

. additional arguments

Returns: The wbWorksheetObject, invisibly

Method add_person(): add person to workbook

Usage:
wbWorkbook$add_person(
name = NULL,
id = NULL,
user_id = NULL,
provider_id = "None"”
)
Arguments:
name name
id id
user_id user_id
provider_id provider_id

Method get_person(): description get person

Usage:
wbWorkbook$get_person(name = NULL)

Arguments:

name name

Method get_active_sheet(): description get active sheet

102

Usage:
wbWorkbook$get_active_sheet()

Method set_active_sheet(): description set active sheet
Usage:
wbWorkbook$set_active_sheet(sheet = current_sheet())
Arguments:

sheet The name of the sheet

Method get_selected(): description get selected sheets
Usage:
wbWorkbook$get_selected()

Method set_selected(): set selected sheet
Usage:
wbWorkbook$set_selected(sheet = current_sheet())
Arguments:

sheet The name of the sheet

Method clone(): The objects of this class are cloneable with this method.
Usage:
wbWorkbook$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

wb_add_border

wb_add_border Modify borders in a cell region of a worksheet

Description

Usage

wb_add_border(
wb,
sheet = current_sheet(),
dims = "A1",

bottom_color = wb_color(hex = "FF000000"),
left_color = wb_color(hex = "FF000000"),
right_color = wb_color(hex = "FF000000"),
top_color = wb_color(hex = "FF000000"),
bottom_border = "thin",

wb wrapper to create borders for cell regions. Setting update to NULL removes the style and resets
the cell to the workbook default.

wb_add_border 103

left_border = "thin",
right_border = "thin",
top_border = "thin",
inner_hgrid = NULL,
inner_hcolor = NULL,
inner_vgrid = NULL,
inner_vcolor = NULL,
update = FALSE,
diagonal_up = NULL,
diagonal_down = NULL,
diagonal_color = NULL,

Arguments
wb A wbWorkbook
sheet A worksheet
dims Cell range in the worksheet e.g. "A1", "A1:AS", "A1:H5"

bottom_color, 1left_color, right_color, top_color, inner_hcolor,

inner_vcolor
a color, either something openxml knows or some RGB color

left_border, right_border, top_border, bottom_border, inner_hgrid,

inner_vgrid
the border style, if NULL no border is drawn. See create_border () for possible
border styles

update Logical. Defaults to FALSE. If TRUE, and the border style includes NULL
entries, existing borders may be updated with new ones. When overlapping
cells (e.g., squares intersect), existing borders will be preserved where possible.
diagonal_up, diagonal_down, diagonal_color
(optional) arguments for diagonal border lines. If set, up and down must be a
unique style (there can be only one) and the color must be a wb_color () object

additional arguments

See Also

create_border()

Other styles: wb_add_cell_style(),wb_add_fill(), wb_add_font(), wb_add_named_style(),
wb_add_numfmt (), wb_cell_style

Examples

wb <- wb_workbook ()

wb <- wb_add_worksheet(wb, "S1")

wb <- wb_add_data(wb, "S1", mtcars)

wb <- wb_add_border(wb, 1, dims = "A1:K1",
left_border = NULL, right_border = NULL,

104

top_border = NULL, bottom_border = "double")

wb <- wb_add_border(wb, 1, dims = "A5",
left_border = "dotted”, right_border = "dotted”,
top_border = "hair"”, bottom_border = "thick")

wb <- wb_add_border(wb, 1, dims = "C2:C5")

wb <- wb_add_border(wb, 1, dims = "G2:H3")

wb <- wb_add_border(wb, 1, dims = "G12:H13",
left_color = wb_color(hex = "FF9400D3"), right_color
top_color = wb_color(hex = "FFQQQOFF"), bottom_color

wb <- wb_add_border(wb, 1, dims = "A20:C23")

wb <- wb_add_border(wb, 1, dims = "B12:D14",
left_color = wb_color(hex = "FFFFFF@Q"), right_color
bottom_color = wb_color(hex = "FFFFQ000"))

wb <- wb_add_border(wb, 1, dims = "D28:E28")

With chaining

wb <- wb_workbook()
wb$add_worksheet("S1")$add_data("S1", mtcars)
wb$add_border (1, dims = "A1:K1",
left_border = NULL, right_border = NULL,
top_border = NULL, bottom_border = "double")
wb$add_border (1, dims = "A5",
left_border = "dotted”, right_border = "dotted”,
top_border = "hair", bottom_border = "thick")
wb$add_border (1, dims = "C2:C5")
wb$add_border (1, dims = "G2:H3")
wb$add_border (1, dims = "G12:H13",
left_color = wb_color(hex = "FF9400D3"), right_color
top_color = wb_color(hex = "FF@QQQOFF"), bottom_color
wb$add_border (1, dims = "A20:C23")
wb$add_border(1, dims = "B12:D14",
left_color = wb_color(hex = "FFFFFF@Q"), right_color
bottom_color = wb_color(hex = "FFFFQ000"))
wb$add_border (1, dims = "D28:E28")
if (interactive()) wb$open()

wb <- wb_workbook ()

wb$add_worksheet("S1")$add_data("S1", mtcars)

wb$add_border (1, dims = "A2:K33", inner_vgrid = "thin"
inner_vcolor = wb_color(hex = "FF808080"))

wb$add_worksheet()$
add_border(dims = "B2:D4", bottom_border = "thick”,
right_border = "thick"”, top_border = "thick")$
add_border(dims = "C3:E5", update = TRUE)

wb$add_worksheet()$
add_border(
dims = "B2:D4",
diagonal_up = "thin",
diagonal_down = "thin",

’

wb_color (hex
wb_color (hex

wb_color (hex

wb_color (hex
wb_color (hex

wb_color (hex

wb_add_border

"FF4B0082"),
"FFOOFF00"))

"FFFF7F00"),

"FF4B0082"),
"FFOOFF00"))

"FFFF7F0"),

left_border = "thick”,

wb_add_cell_style

diagonal_color = wb_color("red")

)

105

wb_add_cell_style

Modify the style in a cell region

Description

Add cell style to a cell region

Usage

wb_add_cell_

wb,

style(

sheet = current_sheet(),
dims = "A1",
apply_alignment = NULL,
apply_border = NULL,
apply_fill = NULL,
apply_font = NULL,
apply_number_format = NULL,
apply_protection = NULL,

border_id
ext_lst =
fill_id
font_id =

= NULL,
NULL,
NULL,
NULL,

hidden = NULL,

horizontal = NULL,

indent = NULL,
justify_last_line = NULL,
locked = NULL,

num_fmt_id = NULL,
pivot_button = NULL,
quote_prefix = NULL,
reading_order = NULL,
relative_indent = NULL,

shrink_to_

fit = NULL,

text_rotation = NULL,

vertical =

wrap_text

NULL,
= NULL,

xf_id = NULL,

Arguments

wb

a workbook

106 whb_add_cell_style

sheet the worksheet

dims the cell range
apply_alignment

logical apply alignment
apply_border logical apply border
apply_fill logical apply fill
apply_font logical apply font
apply_number_format

logical apply number format
apply_protection

logical apply protection

border_id border ID to apply

ext_lst extension list something like <extLst>...</extLst>

fill_id fill ID to apply

font_id font ID to apply

hidden logical cell is hidden

horizontal align content horizontal (’general’, ’left’, *center’, 'right’, *fill’, ’justify’, ’cen-

terContinuous’, "distributed’)
indent logical indent content
justify_last_line

logical justify last line
locked logical cell is locked
num_fmt_id number format ID to apply
pivot_button unknown
quote_prefix unknown
reading_order reading order left to right
relative_indent

relative indentation
shrink_to_fit logical shrink to fit

text_rotation degrees of text rotation

vertical vertical alignment of content ('top’, *center’, “bottom’, *justify’, “distributed’)
wrap_text wrap text in cell
xf_id xf ID to apply

additional arguments

Value

The wbWorkbook object, invisibly

See Also

Other styles: wb_add_border (), wb_add_fill(),wb_add_font(),wb_add_named_style(),wb_add_numfmt(),
wb_cell_style

wb_add_chartsheet

Examples

wb <- wb_workbook
wb <- wb_add_work
wb <- wb_add_data

wb <- wb_add_cell
whb,
dims = "A1:K1
text_rotation

horizontal =
vertical = "c
wrap_text ="
)
Chaining

wb <- wb_workbook
wb$add_cell_style

107

O
sheet(wb, "S1")
(wb, "S1", x = mtcars)

_style(

n

’

= 45"
"center”,
enter”,
1

()$add_worksheet("S1")$add_data(x = mtcars)
(dims = "A1:K1",

text_rotation = "45",
horizontal = "center”,
vertical = "center”,

wrap_text = "1")

wb_add_chartsheet

Add a chartsheet to a workbook

Description

A chartsheet is a special type of sheet that handles charts output. You must add a chart to the sheet.
Otherwise, this will break the workbook.

Usage

wb_add_chartsheet(

wb,

sheet = next_sheet(),
tab_color = NULL,

zoom = 100,
visible = c("true", "false"”, "hidden", "visible"”, "veryhidden"),
)
Arguments
wb A Workbook object to attach the new chartsheet
sheet A name for the new chartsheet
tab_color Color of the sheet tab. A wb_color(), avalid color (belonging to grDevices: :colors())
or a valid hex color beginning with "#".
zoom The sheet zoom level, a numeric between 10 and 400 as a percentage. (A zoom

value smaller than 10 will default to 10.)

108 wb_add_chart xml

visible If FALSE, sheet is hidden else visible.

Additional arguments

See Also
wb_add_mschart ()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_data(),wb_add_data_table(), wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

wb_add_chart_xml Add a chart XML to a worksheet

Description

Add a chart XML to a worksheet

Usage
wb_add_chart_xml(
wb,
sheet = current_sheet(),
dims = NULL,
xml,
col_offset = 0,

row_offset = 0,

Arguments
wb a workbook
sheet the sheet on which the graph will appear
dims the dimensions where the sheet will appear
xml chart xml
col_offset, row_offset
positioning
additional arguments
See Also

wb_add_drawing() wb_add_image () wb_add_mschart() wb_add_plot()

wb_add_comment 109

wb_add_comment Add comment to worksheet

Description

Add comment to worksheet

Usage
wb_add_comment (wb, sheet = current_sheet(), dims = "A1", comment, ...)
wb_get_comment(wb, sheet = current_sheet(), dims = NULL)
wb_remove_comment(wb, sheet = current_sheet(), dims = "A1", ...)
Arguments
wb A workbook object
sheet A worksheet of the workbook
dims Optional row and column as spreadsheet dimension, e.g. "A1"
comment A comment to apply to dims created by wb_comment (), a string or a fmt_txt ()
object
additional arguments
Details

If applying a comment with a string, it will use wb_comment () default values. If additional back-
ground colors are applied, RGB colors should be provided, either as hex code or with builtin R
colors. The alpha channel is ignored.

Value

The Workbook object, invisibly.

See Also

wb_comment (), wb_add_thread()

Examples

wb <- wb_workbook ()

wb$add_worksheet("”Sheet 1")

add a comment without author

cl <- wb_comment(text = "this is a comment”, author = "")
wb$add_comment(dims = "B10", comment = c1)

#' # Remove comment

wb$remove_comment(sheet = "Sheet 1", dims = "B10")

110 wb_add_conditional_formatting

Write another comment with author information

c2 <- wb_comment(text = "this is another comment”, author = "Marco Polo"”, visible = TRUE)
wb$add_comment(sheet = 1, dims = "C10", comment = c2)

Works with formatted text also.

formatted_text <- fmt_txt("bar"”, underline = TRUE)

wb$add_comment(dims = "B5", comment = formatted_text)

With background color

wb$add_comment(dims = "B7", comment = formatted_text, color = wb_color("green"))
With background image. File extension must be png or jpeg, not jpg?
tmp <- tempfile(fileext = ".png")

png(file = tmp, bg = "transparent”)

plot(1:10)

rect(1, 5, 3, 7, col = "white")

dev.off()

cl <- wb_comment(text = "this is a comment”, author = "", visible = TRUE)
wb$add_comment(dims = "B12", comment = c1, file = tmp)

wb_add_conditional_formatting
Add conditional formatting to cells in a worksheet

Description

Add conditional formatting to cells. You can find more details in vignette(”conditional-formatting").

Usage
wb_add_conditional_formatting(
wb,
sheet = current_sheet(),
dims = NULL,
rule = NULL,
style = NULL,
type = c("expression”, "colorScale”, "dataBar"”, "iconSet”, "duplicatedValues”,
"uniqueValues”, "containsErrors”, "notContainsErrors”, "containsBlanks"”,

"notContainsBlanks”, "containsText", "notContainsText”, "beginsWith"”, "endsWith",
"between”, "topN"”, "bottomN"),
params = list(showValue = TRUE, gradient = TRUE, border = TRUE, percent = FALSE, rank =
5L, axisPosition = "automatic"),

wb_remove_conditional_formatting(
wb,
sheet = current_sheet(),
dims = NULL,
first = FALSE,

wb_add_conditional_formatting 111

last = FALSE
)
Arguments
wb A Workbook object
sheet A name or index of a worksheet
dims A cell or cell range like "A1" or "A1:B2"
rule The condition under which to apply the formatting. See Examples.
style A name of a style to apply to those cells that satisfy the rule. See wb_add_dxfs_style()
how to create one. The default style has font_color = "FF9C0006" and bg_fill
= "FFFFC7CE"
type The type of conditional formatting rule to apply. One of "expression”, "colorScale”
or others mentioned in Details.
params A list of additional parameters passed. See Details for more.
additional arguments
first remove the first conditional formatting
last remove the last conditional formatting
Details

openxml uses the alpha channel first then RGB, whereas the usual default is RGBA.

Conditional formatting type accept different parameters. Unless noted, unlisted parameters are
ignored. If an expression is pointing to a cell "A1=1", this cell reference is fluid and not fixed like
"A1=1". It will behave similar to a formula, when dims is spanning multiple columns or rows
(A1, A2, A3 ... in vertical direction, Al, B1, C1 ... in horizontal direction). If dims is a non
consecutive range ("A1:B2,D1:F2"), the expression is applied to each range. For the second dims
range it will be evaluated again as "A1=1".

expression [stylel]
A Style object

[rule]
A formula expression (as a character). Valid operators are: <, <=, >, >=, ==, |=

colorScale [style]
A character vector of valid colors with length 2 or 3

[rule]
NULL or a character vector of valid colors of equal length to styles

dataBar [style]
A character vector of valid colors with length 2 or 3

[rule]
A numeric vector specifying the range of the databar colors. Must be equal length to style

[params$showValue]

112

wb_add_conditional_formatting

If FALSE the cell value is hidden. Default TRUE

[params$gradient]
If FALSE color gradient is removed. Default TRUE

[params$border]
If FALSE the border around the database is hidden. Default TRUE

[params$direction]
A string the direction in which the databar points. Must be equal to one of the following
values: "context” (default), "leftToRight", "rightToLeft".

[params${axisColor,borderColor,negativeBarColorSameAsPositive,negativeBarBorderColorSameAsPosit
Colors and bools configuring the style of the border. [params$axisPosition]

A string specifying the data bar’s axis position. Must be equal to one of the following values:

"automatic” (default, variable position based on negative values), "middle” (cell midpoint),

"none” (negative bars shown in same direction as positive bars).

duplicatedValues/uniqueValues/ containsErrors [style]

A Style object

contains [style]

A Style object

[rule]
The text to look for within cells

between [style]

A Style object.

[rule]
A numeric vector of length 2 specifying lower and upper bound (Inclusive)

topN [stylel]

A Style object

[params$rank]
A numeric vector of length 1 indicating number of highest values. Default 5L

[params$percent] If TRUE, uses percentage

bottomN [style]

A Style object

[params$rank]
A numeric vector of length 1 indicating number of lowest values. Default 5L

[params$percent]
If TRUE, uses percentage

iconSet [params$showValue]

If FALSE, the cell value is hidden. Default TRUE

wb_add_data 113

[params$reverse]
If TRUE, the order is reversed. Default FALSE

[params$percent]
If TRUE, uses percentage

[params$iconSet]

Uses one of the implemented icon sets. Values must match the length of the icons in the
set 3Arrows, 3ArrowsGray, 3Flags, 3Signs, 3Stars, 3Symbols, 3Symbols2, 3TrafficLightsl,
3TrafficLights2, 3Triangles, 4Arrows, 4ArrowsGray, 4Rating, 4RedToBlack, 4TrafficLights,
5Arrows, SArrowsGray, SBoxes, SQuarters, SRating. The default is 3TrafficLights]1.

See Also

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_data(),wb_add_data_table(), wb_add_formula(),wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),wb_merge_cells()

Examples

wb <- wb_workbook()

wb$add_worksheet("a")

wb$add_data(x = 1:4, col_names = FALSE)

wb$add_conditional_formatting(dims = wb_dims(cols = "A", rows = 1:4), rule = ">2")

wb_add_data Add data to a worksheet

Description

Add data to worksheet with optional styling.

Usage
wb_add_data(
wb,
sheet = current_sheet(),
X ’

dims = wb_dims(start_row, start_col),
start_col =1,

start_row = 1,

array = FALSE,

col_names = TRUE,

row_names = FALSE,

with_filter = FALSE,

name = NULL,

n

sep = ”’ ’

114 wb_add_data

apply_cell_style = TRUE,
remove_cell_style = FALSE,
na = na_strings(),
inline_strings = TRUE,
enforce = FALSE,

)
Arguments
wb A Workbook object containing a worksheet.
sheet The worksheet to write to. Can be the worksheet index or name.
X Object to be written. For classes supported look at the examples.
dims Spreadsheet cell range that will determine start_col and start_row: "Al",
"Al:B2", "A:B"
start_col A vector specifying the starting column to write x to.
start_row A vector specifying the starting row to write x to.
array A bool if the function written is of type array
col_names If TRUE, column names of x are written.
row_names If TRUE, the row names of x are written.

with_filter If TRUE, add filters to the column name row. NOTE: can only have one filter per

worksheet.
name The name of a named region if specified.
sep Only applies to list columns. The separator used to collapse list columns to a

character vector e.g. sapply(x$list_column, paste, collapse = sep).
apply_cell_style

Should we write cell styles to the workbook
remove_cell_style

keep the cell style?
na Value used for replacing NA values from x. Default looks if options(”openxlsx2.na")

is set. Otherwise na_strings() uses the special #N/A value within the work-
book.

inline_strings write characters as inline strings
enforce enforce that selected dims is filled. For this to work, dims must match x

additional arguments

Details

Formulae written using wb_add_formula() to a Workbook object will not get picked up by read_x1sx().
This is because only the formula is written into the worksheet and it will be evaluated once the file
is opened in spreadsheet software. The string "_openx1sx_NA" is reserved for openxlsx2. If the
data frame contains this string, the output will be broken. Similar factor labels "_openxlsx_Inf",
"_openxlsx_nInf"”, and "_openxlsx_NaN" are reserved. The na string "_openxlsx_NULL" is

wb_add_data 115

a special that will be treated as NULL. So that setting the option options(”openxlsx2.na” =
" _openx1lsx_NULL") will behave similar to na = NULL.

Supported classes are data frames, matrices and vectors of various types and everything that can be
converted into a data frame with as.data.frame(). Everything else that the user wants to write
should either be converted into a vector or data frame or written in vector or data frame segments.
This includes base classes such as table, which were coerced internally in the predecessor of this
package.

Even vectors and data frames can consist of different classes. Many base classes are covered, though
not all and far from all third-party classes. When data of an unknown class is written, it is handled
with as.character(). It is not possible to write character nodes beginning with <r> or <r/>.
Both are reserved for internal functions. If you need these. You have to wrap the input string in
fmt_txt().

The columns of x with class Date/POSIXt, currency, accounting, hyperlink, percentage are auto-
matically styled as dates, currency, accounting, hyperlinks, percentages respectively. When writing
POSIXt, the users local timezone should not matter. The openxml standard does not have a time-
zone and the conversion from the local timezone should happen internally, so that date and time
are converted, but the timezone is dropped. This conversion could cause a minor precision loss.
The datetime in R and in spreadsheets might differ by 1 second, caused by floating point precision.
When read from the worksheet, starting with openx1sx2 release 1.15 the datetime is returned in
"uTC”.

Functions wb_add_data() and wb_add_data_table() behave quite similar. The distinction is that

the latter creates a table in the worksheet that can be used for different kind of formulas and can be
sorted independently, though is less flexible than basic cell regions.

Value

A wbWorkbook, invisibly.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data_table(),wb_add_formula(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data_table(),wb_add_formula(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

See formatting vignette for further examples.

Options for default styling (These are the defaults)
options("openxlsx2.dateFormat” = "mm/dd/yyyy")
options("openxlsx2.datetimeFormat” = "yyyy-mm-dd hh:mm:ss")
options("openxlsx2.numFmt"” = NULL)

116 wb_add_data_table

B S S S S S ST
Create Workbook object and add worksheets
wb <- wb_workbook ()

Add worksheets
wb$add_worksheet("Cars")
wb$add_worksheet ("Formula”)

x <- mtcars[1:6,]
wb$add_data("Cars”, x, start_col = 2, start_row = 3, row_names = TRUE)

AR AR AR AR R
Hyperlinks
- vectors/columns with class 'hyperlink' are written as hyperlinks'

v <- rep("https://CRAN.R-project.org/", 4)

names(v) <- paste@("Hyperlink”, 1:4) # Optional: names will be used as display text
class(v) <- "hyperlink”

wb$add_data("Cars”, x = v, dims = "B32")

S
Formulas
- vectors/columns with class 'formula' are written as formulas'

df <- data.frame(
x =1:3, y =1:3,
z = paste(paste@(”"A", 1:3 + 1L), paste@("B", 1:3 + 1L), sep = "+"),
stringsAsFactors = FALSE

)

class(df$z) <- c(class(df$z), "formula")
wb$add_data(sheet = "Formula”, x = df)

HHHEHHHEHEE AR AR

update cell range and add mtcars

xlsxFile <- system.file("”extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
wb2 <- wb_load(xlsxFile)

read dataset with inlinestr

wb_to_df (wb2)

wb2 <- wb_add_data(wb2, sheet = 1, mtcars, dims = wb_dims(4, 4))
wb_to_df (wb2)

wb_add_data_table Add a data table to a worksheet

Description

Add data to a worksheet and format as an spreadsheet table.

wb_add_data_table 117

Usage

wb_add_data_table(
wb,
sheet = current_sheet(),
X,
dims = wb_dims(start_row, start_col),
start_col =1,
start_row = 1,
col_names = TRUE,

row_names = FALSE,
table_style = "TableStyleLight9",
table_name = NULL,
with_filter = TRUE,

sep =", ",

first_column = FALSE,
last_column = FALSE,
banded_rows = TRUE,
banded_cols = FALSE,
apply_cell_style = TRUE,
remove_cell_style = FALSE,
na = na_strings(),
inline_strings = TRUE,
total_row = FALSE,

)
Arguments
wb A Workbook object containing a worksheet.
sheet The worksheet to write to. Can be the worksheet index or name.
X A data frame
dims Spreadsheet cell range that will determine start_col and start_row: "Al",
"A1:B2", "A:B"
start_col A vector specifying the starting column to write x to.
start_row A vector specifying the starting row to write X to.
col_names If TRUE, column names of x are written.
row_names If TRUE, the row names of x are written.
table_style Any table style name or "none" (see vignette("openxlsx2_style_manual”))
table_name Name of table in workbook. The table name must be unique.

with_filter If TRUE, columns with have filters in the first row.

sep Only applies to list columns. The separator used to collapse list columns to a
character vector e.g. sapply(x$list_column, paste, collapse = sep).

first_column logical. If TRUE, the first column is bold.
last_column logical. If TRUE, the last column is bold.

118 wb_add_data_table

banded_rows logical. If TRUE, rows are color banded.

banded_cols logical. If TRUE, the columns are color banded.

apply_cell_style
Should we write cell styles to the workbook

remove_cell_style
keep the cell style?

na Value used for replacing NA values from x. Default looks if options("openxlsx2.na")
is set. Otherwise na_strings() uses the special #N/A value within the work-
book.

inline_strings write characters as inline strings
total_row logical. With the default FALSE no total row is added.

additional arguments

Details

Formulae written using wb_add_formula() to a Workbook object will not get picked up by read_x1sx().
This is because only the formula is written into the worksheet and it will be evaluated once the file

is opened in spreadsheet software. The string "_openx1sx_NA" is reserved for openx1sx2. If the

data frame contains this string, the output will be broken. Similar factor labels "_openx1lsx_Inf",
"_openxlsx_nInf"”, and "_openxlsx_NaN" are reserved. The na string "_openxlsx_NULL" is

a special that will be treated as NULL. So that setting the option options(”openxlsx2.na" =
"_openx1sx_NULL") will behave similar to na = NULL.

Supported classes are data frames, matrices and vectors of various types and everything that can be
converted into a data frame with as.data.frame(). Everything else that the user wants to write
should either be converted into a vector or data frame or written in vector or data frame segments.
This includes base classes such as table, which were coerced internally in the predecessor of this
package.

Even vectors and data frames can consist of different classes. Many base classes are covered, though
not all and far from all third-party classes. When data of an unknown class is written, it is handled
with as.character(). It is not possible to write character nodes beginning with <r> or <r/>.
Both are reserved for internal functions. If you need these. You have to wrap the input string in
fmt_txtQ).

The columns of x with class Date/POSIXt, currency, accounting, hyperlink, percentage are auto-
matically styled as dates, currency, accounting, hyperlinks, percentages respectively. When writing
POSIXt, the users local timezone should not matter. The openxml standard does not have a time-
zone and the conversion from the local timezone should happen internally, so that date and time
are converted, but the timezone is dropped. This conversion could cause a minor precision loss.
The datetime in R and in spreadsheets might differ by 1 second, caused by floating point precision.
When read from the worksheet, starting with openxlsx2 release 1.15 the datetime is returned in
"UTC".

Functions wb_add_data() and wb_add_data_table() behave quite similar. The distinction is that
the latter creates a table in the worksheet that can be used for different kind of formulas and can be
sorted independently, though is less flexible than basic cell regions.

wb_add_data_validation 119

Modify total row argument

It is possible to further tweak the total row. In addition to the default FALSE possible values are TRUE
(the xlIsx file will create column sums each variable).

In addition it is possible to tweak this further using a character string with one of the following
functions for each variable: "average”, "count”, "countNums”, "max", "min", "stdDev", "sum",
"var". It is possible to leave the cell empty "none” or to create a text input using a named character
with name text like: c(text = "Total"). It’s also possible to pass other spreadsheet software

functions if they return a single value and hence "SUM" would work too.

See Also

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_formula(),wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),wb_merge_cells()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(), wb_workbook()

Examples

wb <- wb_workbook()$add_worksheet()$
add_data_table(
X = as.data.frame(USPersonalExpenditure),
row_names = TRUE,
total_row = c(text = "Total”, "none”, "sum”, "sum”, "sum”, "SUM"),
stringsAsFactors = FALSE

wb_add_data_validation
Add data validation to cells in a worksheet

Description

Add spreadsheet data validation to cells

Usage

wb_add_data_validation(
wb,
sheet = current_sheet(),
dims = "A1",
type,
operator,
value,
allow_blank = TRUE,

120

show_input_msg = TRUE,
show_error_msg = TRUE,

error_style

error_title =
error = NULL,

prompt_title

NULL,
NULL,

= NULL,

prompt = NULL,

Arguments

wb

sheet
dims
type
operator

value
allow_blank
show_input_msg
show_error_msg

error_style

error_title
error
prompt_title
prompt

Examples

A Workbook object

A name or index of a worksheet
A cell dimension ("A1" or "A1:B2")

wb_add_data_validation

One of "whole’, ’decimal’, ’date’, "time’, ’textLength’, ’list’ (see examples)

One of "between’, ‘notBetween’, "equal’, 'notEqual’, *greaterThan’, ’lessThan’,

"greaterThanOrEqual’, ’lessThanOrEqual’

a vector of length 1 or 2 depending on operator (see examples)

logical
logical

logical

The icon shown and the options how to deal with such inputs. Default "stop"
(cancel), else "information" (prompt popup) or "warning" (prompt accept or

change input)
The error title
The error text
The prompt title
The prompt text

additional arguments

wb <- wb_workbook ()
wb$add_worksheet("Sheet 1")
wb$add_worksheet("Sheet 2")

wb$add_data_table(1, x = iris[1:30, 1)
wb$add_data_validation(1,
dims = "A2:C31", type = "whole”,
operator = "between”, value = c(1, 9)

)

wb$add_data_validation(1,
dims = "E2:E31", type = "textLength"”,
operator = "between”, value = c(4, 6)

)

wb_add_drawing 121

Date and Time cell validation
df <- data.frame(
"d" = as.Date("2016-01-01") + -5:5,
"t" = as.POSIXct("2016-01-01") + -5:5 x 10000
)
wb$add_data_table(2, x = df)
wb$add_data_validation(2, dims = "A2:A12", type = "date”,
operator = "greaterThanOrEqual”, value = as.Date(”2016-01-01")
)
wb$add_data_validation(2,
dims = "B2:B12", type = "time",
operator = "between”, value = df$t[c(4, 8)]
)

B
If type == 'list'
operator argument is ignored.

wb <- wb_workbook ()
wb$add_worksheet("”Sheet 1")
wb$add_worksheet("Sheet 2")

wb$add_data_table(sheet = 1, x = iris[1:30, 1)
wb$add_data(sheet = 2, x = sample(iris$Sepal.Length, 10))

wb$add_data_validation(1, dims = "A2:A31", type = "list”, value = "'Sheet 2'!A1:A10")

wb_add_drawing Add drawings to a worksheet

Description

Add drawings to a worksheet. This requires the rvg package.

Usage
wb_add_drawing(
wb,
sheet = current_sheet(),
dims = "A1",
xml,
col_offset = 0,
row_offset = 0,

122 wb_add_dxts_style

Arguments
wb A wbWorkbook
sheet A sheet in the workbook
dims The dimension where the drawing is added.
xml the drawing xml as character or file

col_offset, row_offset
offsets for column and row

additional arguments

See Also
wb_add_chart_xml () wb_add_image () wb_add_mschart() wb_add_plot()

Examples

if (requireNamespace("rvg") && interactive()) {

rvg example

require(rvg)

tmp <- tempfile(fileext = ".xml")
dml_x1sx(file = tmp)

plot(1,1)

dev.off()

wb <- wb_workbook()$
add_worksheet()$
add_drawing(xml = tmp)$
add_drawing(xml = tmp, dims = NULL)
3

wb_add_dxfs_style Set a dxfs styling for the workbook

Description

These styles are used with conditional formatting and custom table styles.

Usage

wb_add_dxfs_style(
wb,
name,
font_name = NULL,
font_size = NULL,
font_color = NULL,
num_fmt = NULL,

whb_add_dxfs_style 123

border = NULL,

border_color = wb_color(getOption("openxlsx2.borderColor”, "black")),
border_style = getOption("openxlsx2.borderStyle”, "thin"),

bg_fill = NULL,

gradient_fill = NULL,

text_bold = NULL,

text_italic = NULL,

text_underline = NULL,

Arguments
wb A Workbook object.
name the style name
font_name the font name
font_size the font size
font_color the font color (a wb_color () object)
num_fmt the number format
border logical if borders are applied

border_color the border color
border_style the border style

bg_fill any background fill
gradient_fill any gradient fill
text_bold logical if text is bold
text_italic logical if text is italic

text_underline logical if text is underlined
additional arguments passed to create_dxfs_style()

Value

The Workbook object, invisibly

See Also

Other workbook styling functions: base_font-wb, wb_add_style(), wb_base_colors

Examples

wb <- wb_workbook()
wb <- wb_add_worksheet (wb)
wb <- wb_add_dxfs_style(
whb,
name = "nay”,
font_color = wb_color(hex = "FF9C0006"),
bg_fill = wb_color(hex = "FFFFC7CE")

124 wb_add_fill

wb_add_fill Modify the background fill color in a cell region

Description

Add fill to a cell region. Setting color to NULL removes the style and resets the cell to the workbook

default.
Usage

wb_add_fill(
wb,
sheet = current_sheet(),
dims = "A1",
color = wb_color(hex = "FFFFFFQQ"),
pattern = "solid",

nn

gradient_fill = "",
every_nth_col = 1,
every_nth_row = 1,
bg_color = NULL,

Arguments
wb a workbook
sheet the worksheet
dims the cell range
color the colors to apply, e.g. yellow: wb_color(hex = "FFFFFF00")
pattern various default "none" but others are possible: "solid", "mediumGray", "dark-

Gray", "lightGray", "darkHorizontal", "darkVertical", "darkDown", "darkUp",
"darkGrid", "darkTrellis", "lightHorizontal", "lightVertical", "lightDown", "lightUp",
"lightGrid", "lightTrellis", "gray125", "gray0625"

gradient_fill a gradient fill xml pattern.
every_nth_col which col should be filled
every_nth_row which row should be filled

bg_color (optional) background wb_color ()

Value

The wbWorkbook object, invisibly

wb_add_font 125

See Also

Other styles: wb_add_border (), wb_add_cell_style(),wb_add_font(),wb_add_named_style(),
wb_add_numfmt (), wb_cell_style

Examples

wb <- wb_workbook()

wb <- wb_add_worksheet(wb, "S1")

wb <- wb_add_data(wb, "S1", mtcars)

wb <- wb_add_fill(wb, "S1", dims = "D5:J23", color = wb_color(hex = "FFFFFF@0@"))
wb <- wb_add_fill(wb, "S1", dims = "B22:D27", color = wb_color(hex = "FFQOFF00"))

wb <- wb_add_worksheet(wb, "S2")
wb <- wb_add_data(wb, "S2", mtcars)

gradient_filll <- '<gradientFill degree="90">

<stop position="0"><color rgb="FF92D050"/></stop>

<stop position="1"><color rgb="FF0070C0"/></stop>

</gradientFill>'

wb <- wb_add_fill(wb, "S2", dims = "A2:K5", gradient_fill = gradient_fill1)

gradient_fill2 <- '<gradientFill type="path" left="0.2" right="0.8" top="0.2" bottom="0.8">
<stop position="0"><color theme="0"/></stop>

<stop position="1"><color theme="4"/></stop>

</gradientFill>'

wb <- wb_add_fill(wb, "S2", dims = "A7:K10", gradient_fill = gradient_fill2)

wb_add_font Modify font in a cell region

Description

Modify the font in a cell region with more precision You can specify the font in a cell with other
cell styling functions, but wb_add_font () gives you more control.

Usage

wb_add_font(
wb,
sheet = current_sheet(),
dims = "A1",
name = "Aptos Narrow”,
color = wb_color(hex = "FF000000"),
size = "11",
bold = "",
italic = "",
outline = ""

nn

strike = ,

126 wb_add_font
underline = "",
charset = "",
condense = "",
extend = "",
family = "",
scheme = "",
shadow = "",
vert_align = "",
update = FALSE,
)
Arguments
wb A Workbook object
sheet the worksheet
dims the cell range
name Font name: default "Aptos Narrow”.
color A wb_color(), the color of the font. Default is "FF000000".
size Font size: defaultis 11.
bold Logical, whether the font should be bold.
italic Logical, whether the font should be italic.
outline Logical, whether the font should have an outline.
strike Logical, whether the font should have a strikethrough.
underline underline, "single" or "double", default: ""
charset Character, the character set to be used. The list of valid IDs can be found in the
Details section of fmt_txt().
condense Logical, whether the font should be condensed.
extend Logical, whether the font should be extended.
family Character, the font family. Default is "2" (modern). "0" (auto), "1" (roman), "2"
(swiss), "3" (modern), "4" (script), "5" (decorative). # 6-14 unused
scheme Character, the font scheme. Valid values are "minor", "major", "none". Default
is "minor".
shadow Logical, whether the font should have a shadow.
vert_align Character, the vertical alignment of the font. Valid values are "baseline", "su-
perscript”, "subscript".
update Logical/Character if logical, all elements are assumed to be selected, whereas if

character, only matching elements are updated. This will not alter strings styled
with fmt_txt ().

wb_add_formula 127

Details

wb_add_font () provides all the options openxml accepts for a font node, not all have to be set.
Usually name, size and color should be what the user wants. Setting update to NULL removes the
style and resets the cell to the workbook default.

Value

A wbWorkbook, invisibly

See Also

Other styles: wb_add_border(),wb_add_cell_style(),wb_add_fill(),wb_add_named_style(),
wb_add_numfmt (), wb_cell_style

Examples

wb <- wb_workbook ()

wb <- wb_add_worksheet(wb, "S1")

wb <- wb_add_data(wb, "S1", mtcars)

wb <- wb_add_font(wb, "S1", "A1:K1", name = "Arial”, color = wb_color(theme = "4"))
With chaining

wb <- wb_workbook()$add_worksheet("S1")$add_data("S1", mtcars)

wb$add_font(”"S1", "A1:K1", name = "Arial"”, color = wb_color(theme = "4"))

Update the font color
wb$add_font(”"S1", "A1:K1", color = wb_color("orange"”), update = c("color"))

wb_add_formula Add a formula to a cell range in a worksheet

Description

This function can be used to add a formula to a worksheet. In wb_add_formula(), you can provide
the formula as a character vector.

Usage
wb_add_formula(
wb,
sheet = current_sheet(),
X,

dims = wb_dims(start_row, start_col),
start_col =1,

start_row = 1,

array = FALSE,

cm = FALSE,

apply_cell_style = TRUE,
remove_cell_style = FALSE,

128 wb_add_formula

enforce = FALSE,
shared = FALSE,

name = NULL,
)
Arguments
wb A Workbook object containing a worksheet.
sheet The worksheet to write to. (either as index or name)
X A formula as character vector.
dims Spreadsheet dimensions that will determine where x spans: "Al", "A1:B2",
"A:B"
start_col A vector specifying the starting column to write to.
start_row A vector specifying the starting row to write to.
array A bool if the function written is of type array
cm A special kind of array function that hides the curly braces in the cell. Add this,

if you see "@" inserted into your formulas.
apply_cell_style

Should we write cell styles to the workbook?
remove_cell_style

Should we keep the cell style?

enforce enforce dims
shared shared formula
name The name of a named region if specified.

additional arguments

Details

Currently, the local translations of formulas are not supported. Only the English functions work.

The examples below show a small list of possible formulas:

« SUM(B2:B4)
AVERAGE(B2:B4)
MIN(B2:B4)
MAX(B2:B4)

It is possible to pass vectors to x. If x is an array formula, it will take dims as a reference. For
some formulas, the result will span multiple cells (see the MMULT () example below). For this type
of formula, the output range must be known a priori and passed to dims, otherwise only the value
of the first cell will be returned. This type of formula, whose result extends over several cells, is
only possible with single strings. If a vector is passed, it is only possible to return individual cells.

wb_add_formula 129

Custom functions can be registered as lambda functions in the workbook. For this you take the
function you want to add "LAMBDA(x, y, x +y)" and escape it as follows. LAMBDA() is a future
function and needs a prefix _x1fn. The arguments need a prefix _x1pm.. So the full function looks
like this: "_x1fn.LAMBDA(_x1lpm.x, _xlpm.y, _xlpm.x + _x1lpm.y)". These custom formulas are
accessible via the named region manager and can be removed with wb_remove_named_region().
Contrary to other formulas, custom formulas must be registered with the workbook before they can
be used (see the example below).

If a function that normally works in spreadsheet software does not behave as expected when written
using wb_add_formula(), e.g., if spurious @ symbols appear in the formula, it is likely that the
formula is either an array formula or requires a future function prefix. In modern spreadsheet
software, it is no longer straightforward to detect whether a formula is an array formula, since this
hidden in cell metadata (cm). Therefore, a formula like SUM(1+(A1:A2)) will not be displayed as
{SUM(1+(AT:A2)) 3.

Value

The workbook, invisibly.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_hyperlink(),wb_add_pivot_table(),
wb_add_slicer (), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

wb <- wb_workbook () $add_worksheet ()
wb$add_data(dims = wb_dims(rows = 1, cols = 1:3), x = c(4, 5, 8))

calculate the sum of elements.
wb$add_formula(dims = "D1", x = "SUM(A1:C1)")

array formula with result spanning over multiple cells
mm <- matrix(1:4, 2, 2)

wb$add_worksheet()$

add_data(x = mm, dims = "A1:B2", col_names = FALSE)$

add_data(x = mm, dims = "A4:B5", col_names = FALSE)$

add_formula(x = "MMULT(A1:B2, A4:B5)", dims = "A7:B8", array = TRUE)

add shared formula

wb$add_worksheet()$

add_data(x = matrix(1:25, ncol =5, nrow = 5))$

add_formula(x = "SUM($A2:A2)", dims = "A8:E12", shared = TRUE)

130

wb_add_form_control

add a custom formula, first define it, then use it
wb$add_formula(x = c(YESTERDAY = "_x1fn.LAMBDA(TODAY() - 1)"))
wb$add_formula(x = "=YESTERDAY()", dims = "A1", cm = TRUE)

wb_add_form_control Add a checkbox, radio button or drop menu to a cell in a worksheet

Description

You can add Form Control to a cell. The three supported types are a Checkbox, a Radio button, or
a Drop menu.

Usage

wb_add_form_control(

wb,
sheet = current_sheet(),
dims = "A1",
type = c("Checkbox”, "Radio", "Drop"),
text = NULL,
link = NULL,
range = NULL,
checked = FALSE
)
Arguments
wb A Workbook object
sheet A worksheet of the workbook
dims A single cell as spreadsheet dimension, e.g. "Al".
type A type "Checkbox" (the default), "Radio" a radio button or "Drop" a drop down
menu
text A text to be shown next to the Checkbox or radio button (optional)
link A cell range to link to
range A cell range used as input
checked A logical indicating if the Checkbox or Radio button is checked
Value

The wbWorkbook object, invisibly.

wb_add_hyperlink 131

Examples

wb <- wb_workbook ()

wb <- wb_add_worksheet(wb)

wb <- wb_add_form_control(wb)

Add

wb$add_form_control(dims = "C5", type = "Radio"”, checked = TRUE)

wb_add_hyperlink wb_add_hyperlink

Description

Helper to add shared hyperlinks into a worksheet or remove shared hyperlinks from a worksheet

Usage

wb_add_hyperlink(
wb,
sheet = current_sheet(),
dims = "A1",

)

target = NULL,
tooltip = NULL,
is_external = TRUE,
col_names = FALSE

wb_remove_hyperlink(wb, sheet = current_sheet(), dims = NULL)

Arguments

wb A Workbook object containing a worksheet.

sheet The worksheet to write to. (either as index or name)

dims Spreadsheet dimensions that will determine where the hyperlink reference spans:
"Al H, "A] :BZYI’ HA:BH

target An optional target, if no target is specified, it is assumed that the cell already
contains a reference (the cell could be a url or a filename)

tooltip An optional description for a variable that will be visible when hovering over
the link text in the spreadsheet

is_external A logical indicating if the hyperlink is external (a url, a mail address, a file) or
internal (a reference to worksheet cells)

col_names Whether or not the object contains column names. If yes the first column of the

dimension will be ignored

132 wb_add_ignore_error

Details

There are multiple ways to add hyperlinks into a worksheet. One way is to construct a formula with
create_hyperlink() another is to assign a class hyperlink to a column of a data frame. Contrary
to the previous method, shared hyperlinks are not cell formulas in the worksheet, but references in
the worksheet relationship and hyperlinks in the worksheet xml structure. These shared hyperlinks
can be reused and they are not visible to spreadsheet users as HYPERLINK () formulas.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(), wb_add_formula(),wb_add_pivot_table(),
wb_add_slicer (), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_formula(), wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(), wb_freeze_pane(),
wb_merge_cells()

Examples

wb <- wb_workbook()$add_worksheet()$

add_data(x = "openxlsx2 on CRAN")$
add_hyperlink(target = "https://cran.r-project.org/package=openxlsx2"”,
tooltip = "The canonical form to link to our CRAN page.")

wb$remove_hyperlink()

wb_add_ignore_error Ignore error types on worksheet

Description

This function allows to hide / ignore certain types of errors shown in a worksheet.

Usage
wb_add_ignore_error(
wb,
sheet = current_sheet(),
dims = "A1",

calculated_column = FALSE,
empty_cell_reference = FALSE,
eval_error = FALSE,

formula = FALSE,

formula_range = FALSE,
list_data_validation = FALSE,
number_stored_as_text = FALSE,

wb_add_image 133

two_digit_text_year = FALSE,
unlocked_formula = FALSE,

Arguments
wb A workbook
sheet A sheet name or index.
dims Cell range to ignore the error

calculated_column
calculatedColumn
empty_cell_reference

emptyCellReference
eval_error evalError
formula formula

formula_range formulaRange

list_data_validation
listDataValidation
number_stored_as_text
If TRUE, will not display the error if numbers are stored as text.

two_digit_text_year
twoDigitTextYear

unlocked_formula
unlockedFormula

additional arguments

Value

The wbWorkbook object, invisibly.

wb_add_image Insert an image into a worksheet

Description

Insert an image into a worksheet

134

wb_add_image

sheet = current_sheet(),

Usage

wb_add_image(
wb,
dims = "A1"
file,
width = 6,
height = 3,
row_offset =
col_offset =
units = "in
dpi = 300,

’

’

o,
9,

address = NULL,

Arguments

wb
sheet

dims

file

width
height
row_offset
col_offset
units

dpi

address

See Also

A workbook object
A name or index of a worksheet

Dimensions where to plot. Default absolute anchor, single cell (eg. "A1") one-
CellAnchor, cell range (eg. "A1:D4") twoCell Anchor

An image file. Valid file types are: " jpeg”, "png”, "
Width of figure.

Height of figure.

bmpu

offset vector for one or two cell anchor within cell (row)
offset vector for one or two cell anchor within cell (column)
Units of width and height. Can be "in", "cm” or "px”
Image resolution used for conversion between units.

An optional character string specifying an external URL, relative or absolute
path to a file, or "mailto:" string (e.g. "mailto:example @example.com") that
will be opened when the image is clicked.

additional arguments

wb_add_chart_xml () wb_add_drawing() wb_add_mschart () wb_add_plot()

Examples

img <- system.file("extdata”, "einstein.jpg", package = "openxlsx2")

wb <- wb_workbook()$
add_worksheet()$

add_image("Sheet 1", dims = "C5", file = img, width

6, height = 5)$%

add_worksheet()$

wb_add_mips 135

add_image(dims = "B2", file = img)$
add_worksheet()$
add_image(dims = "G3", file = img, width = 15, height = 12, units = "cm")

wb_add_mips wb get and apply MIP section

Description

Read sensitivity labels from files and apply them to workbooks

Usage

wb_add_mips(wb, xml = NULL)

wb_get_mips(wb, single_xml = TRUE, quiet = TRUE)

Arguments
wb a workbook
xml amips string obtained from wb_get_mips () or a global option "openxlsx2.mips_xml_string"
single_xml option to define if the string should be exported as single string. helpful if storing
as option is desired.
quiet option to print a MIP section name. This is not always a human readable string.
Details

The MIP section is a special user-defined XML section that is used to create sensitivity labels in
workbooks. It consists of a series of XML property nodes that define the sensitivity label. This
XML string cannot be created and it is necessary to first load a workbook with a suitable sensitivity
label. Once the workbook is loaded, the string fmips <- wb_get_mips(wb) can be extracted. This
xml string can later be assigned to an options("openxlsx2.mips_xml_string” = fmips) option.

The sensitivity label can then be assigned with wb_add_mips(wb). If no xml string is passed, the
MIP section is taken from the option. This should make it easier for users to read the section from
a specific workbook, save it to a file or string and copy it to an option via the .Rprofile.

Value

the workbook invisible (wb_add_mips()) or the xml string (wb_get_mips())

136 wb_add_mschart

wb_add_mschart Add mschart object to a worksheet

Description

Add mschart object to a worksheet

Usage
wb_add_mschart(
wb,
sheet = current_sheet(),
dims = NULL,
graph,

col_offset = 0,
row_offset = 0,

)

Arguments
wb a workbook
sheet the sheet on which the graph will appear
dims the dimensions where the sheet will appear
graph mschart object

col_offset, row_offset
offsets for column and row

additional arguments

See Also
wb_data() wb_add_chart_xml() wb_add_image wb_add_mschart() wb_add_plot

Examples

if (requireNamespace("mschart”)) {
require(mschart)

Add mschart to worksheet (adds data and chart)
scatter <- ms_scatterchart(data = iris, x = "Sepal.Length", y = "Sepal.Width", group = "Species")
scatter <- chart_settings(scatter, scatterstyle = "marker")

wb <- wb_workbook ()
wb <- wb_add_worksheet (wb)
wb <- wb_add_mschart(wb, dims = "F4:L20", graph = scatter)

Add mschart to worksheet and use available data

wb_add_named_style 137

wb <- wb_workbook ()
wb <- wb_add_worksheet(wb)
wb <- wb_add_data(wb, x = mtcars, dims = "B2")

create wb_data object
dat <- wb_data(wb, 1, dims = "B2:E6")

call ms_scatterplot
data_plot <- ms_scatterchart(

data = dat,
x = "mpg"

y = c("disp”, "hp"),
labels = c("disp”, "hp")

)

add the scatterplot to the data
wb <- wb_add_mschart(wb, dims = "F4:L20", graph = data_plot)

}

wb_add_named_style Apply styling to a cell region with a named style

Description

Set the styling to a named style for a cell region. Use wb_add_cell_style() to style a cell re-
gion with custom parameters. A named style is the one in spreadsheet software, like "Normal",

"Warning".
Usage
wb_add_named_style(
wb,
sheet = current_sheet(),
dims = "A1",
name = "Normal”,
font_name = NULL,
font_size = NULL
)
Arguments
wb A wbWorkbook object
sheet A worksheet
dims A cell range
name The named style name. Builtin styles are Normal, Bad, Good, Neutral, Calculation,

Check Cell, Explanatory Text, Input,Linked Cell, Note, Output, Warning Text,
Heading 1,Heading 2,Heading 3,Heading 4, Title, Total, $x% - Accent$y

(for x in 20, 40, 60 and y in 1:6), Accent$y (for y in 1:6), Comma, Comma [@1],
Currency, Currency [0], Per cent

138 wb_add_numfmt

font_name, font_size
optional else the default of the theme

Value

The wbWorkbook, invisibly

See Also

Other styles: wb_add_border(),wb_add_cell_style(),wb_add_fill(),wb_add_font(),wb_add_numfmt(),
wb_cell_style

Examples

wb <- wb_workbook () $add_worksheet ()
name <- "Normal”

dims <- "A1"

wb$add_data(dims = dims, x = name)

name <- "Bad"

dims <- "B1"

wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Good”

dims <- "C1"

wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

wb_add_numfmt Modify number formatting in a cell region

Description

Add number formatting to a cell region. You can use a number format created by create_numfmt ().
Setting numfmt to NULL removes the style and resets the cell to the workbook default.

Usage
wb_add_numfmt (wb, sheet = current_sheet(), dims = "A1", numfmt)
Arguments
wb A Workbook
sheet the worksheet
dims the cell range
numfmt either an integer id for a builtin numeric font or a character string as described

in the Details

wb_add_numfmt 139

Details
The list of number formats ID is located in the Details section of create_cell_style().

General Number Formatting:
e "@": Displays numbers as integers without decimal places.
* "0.00": Displays numbers with two decimal places (e.g., 123.45).
o "#, ##0": Displays thousands separators without decimals (e.g., 1, 000).
» "#,##0.00": Displays thousands separators with two decimal places (e.g., 1,000.00).

Currency Formatting:
o "$# ##0.00": Formats numbers as currency with two decimal places (e.g., $1,000.00).
o "[$$-4091#,##0.00": Localized currency format in U.S. dollars.
o "¥#, ##0": Custom currency format (e.g., for Japanese yen) without decimals.
o "f£#,##0.00": GBP currency format with two decimal places.

Percentage Formatting:

* "0%": Displays numbers as percentages with no decimal places (e.g., 50%).
* "0.00%": Displays numbers as percentages with two decimal places (e.g., 50.00%).

Scientific Formatting:
* "@.00E+00": Scientific notation with two decimal places (e.g., 1.23E+03 for 1230).

Date and Time Formatting:
e "yyyy-mm-dd”: Year-month-day format (e.g., 2023-10-31).
e "dd/mm/yyyy": Day/month/year format (e.g., 31/10/2023).
e "mmmd, yyyy": Month abbreviation with day and year (e.g., Oct 31, 2023).
e "h:mm AM/PM": Time with AM/PM format (e.g., 1:30 PM).
e "h:mm:ss": Time with seconds (e.g., 13:30:15 for 1:30:15 PM).
e "yyyy-mm-dd h:mm:ss": Full date and time format.

Fraction Formatting:

e "#7?/7": Displays numbers as a fraction with a single digit denominator (e.g., 1/2).
o "#7272/2?7": Displays numbers as a fraction with a two-digit denominator (e.g., 1 12/25).

Custom Formatting:
o "_($x #,##0.00_);_($* (#,##0.00);_($*x "-"??_);_(@_): Custom currency format
with parentheses for negative values and dashes for zero values.

* "[Red]0.00;[Blue](@.00);0": Displays positive numbers in red, negatives in blue, and
zeroes as plain.

e "@": Text placeholder format (e.g., for cells with mixed text and numeric values).

Formatting Symbols Reference:
* 0: Digit placeholder, displays a digit or zero.
* #: Digit placeholder, does not display extra zeroes.
¢ .: Decimal point.

140 wb_add_page_break

e ,: Thousands separator.

e E+, E-: Scientific notation.

* _ (underscore): Adds a space equal to the width of the next character.
» "text": Displays literal text within quotes.

» *: Repeat character to fill the cell width.

Value

The wbWorkbook object, invisibly.

See Also

Other styles: wb_add_border (), wb_add_cell_style(),wb_add_fill(),wb_add_font(),wb_add_named_style(),
wb_cell_style

Examples

wb <- wb_workbook()

wb <- wb_add_worksheet(wb, "S1")

wb <- wb_add_data(wb, "S1", mtcars)

wb <- wb_add_numfmt(wb, "S1"”, dims = "F1:F33", numfmt = "#.0")
Chaining

wb <- wb_workbook()$add_worksheet (”S1")$add_data("S1", mtcars)
wb$add_numfmt ("S1"”, "A1:A33", numfmt = 1)

wb_add_page_break Add a page break to a worksheet

Description

Insert page breaks into a worksheet

Usage

wb_add_page_break(wb, sheet = current_sheet(), row = NULL, col = NULL)

Arguments

wb A workbook object

sheet A name or index of a worksheet

row, col Either a row number of column number. One must be NULL
See Also

wb_add_worksheet ()

whb_add_pivot_table 141

Examples

wb <- wb_workbook ()
wb$add_worksheet("”Sheet 1")
wb$add_data(sheet = 1, x = iris)

wb$add_page_break(sheet = 1, row = 10)
wb$add_page_break(sheet = 1, row = 20)
wb$add_page_break(sheet = 1, col = 2)

wb_add_pivot_table Add a pivot table to a worksheet

Description

The data must be specified using wb_data() to ensure the function works. The sheet will be empty
unless it is opened in spreadsheet software. Find more details in the section about pivot tables in

the openxlsx2 book.
Usage
wb_add_pivot_table(
wb,
X,
sheet = next_sheet(),
dims = "A3",
filter,
rows,
cols,
data,
fun,
params,
pivot_table,
slicer,
timeline
)
Arguments
wb A Workbook object containing a # worksheet.
X A data. frame that inherits the wb_data class.
sheet A worksheet containing a #
dims The worksheet cell where the pivot table is placed
filter The column name(s) of x used for filter.
rows The column name(s) of x used as rows

cols The column names(s) of x used as cols

https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html

142 wb_add_pivot_table

data The column name(s) of x used as data

fun A vector of functions to be used with data. See Details for the list of available
options.

params A list of parameters to modify pivot table creation. See Details for available
options.

pivot_table An optional name for the pivot table

slicer, timeline
Any additional column name(s) of x used as slicer/timeline

Details

The pivot table is not actually written to the worksheet, therefore the cell region has to remain
empty. What is written to the workbook is something like a recipe how the spreadsheet software
has to construct the pivot table when opening the file.

It is possible to add slicers to the pivot table. For this the pivot table has to be named and the variable
used as slicer, must be part of the selected pivot table names (cols, rows, filter, or slicer). If
these criteria are matched, a slicer can be added using wb_add_slicer().

Be aware that you should always test on a copy if a param argument works with a pivot table. Not
only to check if the desired effect appears, but first and foremost if the file loads. Wildly mixing
params might brick the output file and cause spreadsheet software to crash.

fun can be any of AVERAGE, COUNT, COUNTA, MAX, MIN, PRODUCT, STDEV, STDEVP, SUM, VAR, VARP.

show_data_as can be any of normal, difference, percent, percentDiff, runTotal, percentOfRow,
percent0fCol, percentOfTotal, index.

It is possible to calculate data fields if the formula is assigned as a variable name for the field to
calculate. This would look like this: data = c("am”, "disp/cyl” = "New")

Possible params arguments are listed below. Pivot tables accepts more parameters, but they were
either not tested or misbehaved (probably because we misunderstood how the parameter should be
used).

Boolean arguments:

* apply_alignment_formats
* apply_number_formats

* apply_border_formats

* apply_font_formats

* apply_pattern_formats

* apply_width_height_formats
* no_style

* compact

* outline

* compact_data

* row_grand_totals

* col_grand_totals

whb_add_pivot_table 143

Table styles accepting character strings:

* auto_format_id: style id as character in the range of 4096 to 4117
* table_style: a predefined (pivot) table style "TableStyleMedium23”

» show_data_as: accepts character strings as listed above
Miscellaneous:

* numfmt: accepts vectors of the form c(formatCode = "0.0%")

* choose: select variables in the form of a named logical vector like c(agegp = 'x > "25-34"")
for the esoph dataset.

e sort_item: named list of index or character vectors

See Also

wb_data()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_formula(), wb_add_hyperlink(),wb_add_slicer(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

wb <- wb_workbook ()
wb <- wb_add_worksheet(wb)
wb <- wb_add_data(wb, x = mtcars)

df <- wb_data(wb, sheet = 1)

default pivot table
wb <- wb_add_pivot_table(wb, x = df, dims = "A3",
filter = "am”, rows = "cyl”, cols = "gear”, data = "disp”
)
with parameters
wb <- wb_add_pivot_table(wb, x = df,
filter = "am", rows = "cyl”, cols = "gear"”, data = "disp”,
params = list(no_style = TRUE, numfmt = c(formatCode = "##0.0"))

)

144 wb_add_plot

wb_add_plot Insert the current plot into a worksheet

Description

The current plot is saved to a temporary image file using grDevices: :dev.copy() This file is then
written to the workbook using wb_add_image ().

Usage
wb_add_plot(
wb,
sheet = current_sheet(),
dims = "A1",
width = 6,
height = 4,

row_offset = 0,
col_offset = 0,
file_type = "png”,

units = "in",
dpi = 300,
)
Arguments
wb A workbook object
sheet A name or index of a worksheet
dims Worksheet dimension, single cell ("A1") or cell range ("A1:D4")
width Width of figure. Defaults to 6 in.
height Height of figure . Defaults to 4 in.

row_offset, col_offset
Offset for column and row

file_type File type of image
units Units of width and height. Can be "in", "cm” or "px"
dpi Image resolution

additional arguments

See Also

wb_add_chart_xml () wb_add_drawing() wb_add_image () wb_add_mschart()

wb_add_slicer 145

Examples

if (requireNamespace("ggplot2"”) && interactive()) {
Create a new workbook
wb <- wb_workbook ()

Add a worksheet
wb$add_worksheet("”Sheet 1", grid_lines = FALSE)

create plot objects

require(ggplot2)

pl <- ggplot(mtcars, aes(x = mpg, fill = as.factor(gear))) +
ggtitle("Distribution of Gas Mileage") +
geom_density(alpha = 0.5)

p2 <- ggplot(Orange, aes(x = age, y = circumference, color = Tree)) +
geom_point() + geom_line()

Insert currently displayed plot to sheet 1, row 1, column 1
print(p1) # plot needs to be showing
wb$add_plot(1, width = 5, height = 3.5, file_type = "png"”, units = "in")

Insert plot 2
print(p2)
wb$add_plot(1, dims = "J2", width = 16, height = 10, file_type = "png"”, units = "cm")

3

wb_add_slicer Add a slicer/timeline to a pivot table

Description

Add a slicer/timeline to a previously created pivot table. This function is still experimental and
might be changed/improved in upcoming releases.

Usage
wb_add_slicer(
wb,
X ’
dims = "A1",

sheet = current_sheet(),
pivot_table,

slicer,

params

wb_remove_slicer(wb, sheet = current_sheet())

146 wb_add_slicer

wb_add_timeline(
wb,
X,
dims = "A1",
sheet = current_sheet(),
pivot_table,
timeline,
params

)

wb_remove_timeline(wb, sheet = current_sheet())

Arguments
wb A Workbook object containing a worksheet.
X A data. frame that inherits the wb_data class.
dims The worksheet cell where the pivot table is placed
sheet A worksheet
pivot_table The name of a pivot table

slicer, timeline
A variable used as slicer/timeline for the pivot table

params A list of parameters to modify pivot table creation. See Details for available
options.

Details

This assumes that the slicer/timeline variable initialization has happened before. Unfortunately, it
is unlikely that we can guarantee this for loaded workbooks, and we strictly discourage users from
attempting this. If the variable has not been initialized properly, this may cause the spreadsheet
software to crash. Although it is documented that slicers should use "TimelineStyleLight[1-6]" and
"TimelineStyleDark[1-6]" they use slicer styles.

Possible params arguments for slicers are listed below.

* edit_as: "twoCell" to place the slicer into the cells
e column_count: integer used as column count
* sort_order: "descending" / "ascending"

* choose: select variables in the form of a named logical vector like c(agegp = 'x > "25-34"")
for the esoph dataset.

* locked_position
e start_item

e hide_no_data_items
Possible params arguments for timelines are listed below.

* beg_date/end_date: dates when the timeline should begin or end

* choose_beg/choose_end: dates when the selection should begin or end

wb_add_slicer 147

* scroll_position
¢ show_selection_label
¢ show_time_level

¢ show_horizontal_scrollbar
Possible common params:

* caption: string used for a caption
* style: "SlicerStyleLight[1-6]", "SlicerStyleDark[1-6]" only for slicer "SlicerStyleOther[1-2]"
* level: the granularity of the slicer (for timeline 0 = year, 1 = quarter, 2 = month)

* show_caption: logical if caption should be shown or not

Removing works on the spreadsheet level. Therefore all slicers/timelines are removed from a work-
sheet. At the moment the drawing reference remains on the spreadsheet. Therefore spreadsheet
software that does not handle slicers/timelines will still show the drawing.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(), wb_add_data_table(),
wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),wb_add_thread(),wb_freeze_pane(),
wb_merge_cells()

Examples

prepare data
df <- data.frame(
AirPassengers = c(AirPassengers),
time = seq(from = as.Date("”1949-01-01"), to = as.Date("1960-12-01"), by = "month"),
letters = letters[1:4],
stringsAsFactors = FALSE
)

create workbook

wb <- wb_workbook()$
add_worksheet ("pivot")$
add_worksheet("data")$
add_data(x = df)

get pivot table data source
df <- wb_data(wb, sheet = "data")

create pivot table
wb$add_pivot_table(
df,
sheet = "pivot”,

148

rows = "time",

cols = "letters”,

data = "AirPassengers”,
pivot_table = "airpassengers”,

params = list(
compact = FALSE, outline = FALSE, compact_data = FALSE,
row_grand_totals = FALSE, col_grand_totals = FALSE)
)

add slicer
wb$add_slicer(

df,

dims = "E1:17",

sheet = "pivot”,

slicer = "letters”,

pivot_table = "airpassengers”,

params = list(choose = c(letters = 'x %in% c("a", "b")"'))
)

add timeline
wb$add_timeline(
df,
dims = "E9:I14",
sheet = "pivot”,
timeline = "time",
pivot_table = "airpassengers”,
params = list(
beg_date = as.Date("”1954-01-01"),
end_date = as.Date("1961-01-01"),
choose_beg = as.Date("1957-01-01"),
choose_end = as.Date("1958-01-01"),
level = 0,
style = "TimeSlicerStylelLight2"

whb_add_sparklines

wb_add_sparklines Add sparklines to a worksheet

Description

Add sparklines to a worksheet

Usage

wb_add_sparklines(wb, sheet = current_sheet(), sparklines)

wb_add_style

Arguments

wb A wbWorkbook

sheet sheet to add the sparklines to

sparklines sparklines object created with create_sparklines()
See Also

create_sparklines()

Examples

sl <- create_sparklines(”Sheet 1", dims = "A3:K3", sqref = "L3")
wb <- wb_workbook ()

wb <- wb_add_worksheet (wb)

wb <- wb_add_data(wb, x = mtcars)

wb <- wb_add_sparklines(wb, sparklines = sl)

149

wb_add_style Set the default style in a workbook

Description

wb wrapper to add style to workbook

Usage
wb_add_style(wb, style = NULL, style_name = NULL)

Arguments
wb A workbook
style style xml character, created by a create_x* () function.
style_name style name used optional argument

Value

The wbWorkbook object, invisibly.

See Also

e create_border()

e create_cell_style()
e create_dxfs_style()
e create_fill()

e create_font()

e create_numfmt ()

Other workbook styling functions: base_font-wb, wb_add_dxfs_style(), wb_base_colors

150 wb_add_thread

Examples

yellow_f <- wb_color(hex "FF9C6500")
yellow_b <- wb_color(hex = "FFFFEB9C")

yellow <- create_dxfs_style(font_color = yellow_f, bg_fill = yellow_b)
wb <- wb_workbook ()
wb <- wb_add_style(wb, yellow)

wb_add_thread Add threaded comments to a cell in a worksheet

Description

These functions allow adding thread comments to spreadsheets. This is not yet supported by all
spreadsheet software. A threaded comment must be tied to a person created by wb_add_person().

Usage
wb_add_thread(
wb,
sheet = current_sheet(),
dims = "A1",
comment = NULL,
person_id,

reply = FALSE,
resolve = FALSE
)

wb_get_thread(wb, sheet = current_sheet(), dims = NULL)

Arguments
wb A workbook
sheet A worksheet
dims A cell
comment The text to add, a character vector.
person_id the person Id this should be added. The default is getOption("openxlsx2.thread_id")
if set.
reply Is the comment a reply? (default FALSE)
resolve Should the comment be resolved? (default FALSE)
Details

If a threaded comment is added, it needs a person attached to it. The default is to create a person
with provider id "None". Other providers are possible with specific values for id and user_id. If
you require the following, create a workbook via spreadsheet software load it and get the values
with wb_get_person()

wb_add_worksheet 151

See Also

wb_add_comment () person-wb

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_freeze_pane(),
wb_merge_cells()

Examples

wb <- wb_workbook ()$add_worksheet ()
Add a person to the workbook.
wb$add_person(name = "someone who likes to edit workbooks™)

pid <- wb$get_person(name = "someone who likes to edit workbooks"”)$id

write a comment to a thread, reply to one and solve some

wb <- wb_add_thread(wb, dims = "A1", comment = "wow it works!"”, person_id = pid)
wb <- wb_add_thread(wb, dims = "A2", comment = "indeed"”, person_id = pid, resolve = TRUE)
wb <- wb_add_thread(wb, dims = "A1", comment = "so cool”, person_id = pid, reply = TRUE)
wb_add_worksheet Add a worksheet to a workbook
Description

Add a worksheet to a wbWorkbook is the first step to build a workbook. With the function, you can
also set the sheet view with zoom, set headers and footers as well as other features. See the function
arguments.

Usage

wb_add_worksheet (
wb,
sheet = next_sheet(),
grid_lines = TRUE,
row_col_headers = TRUE,
tab_color = NULL,
zoom = 100,
header = NULL,
footer = NULL,
odd_header = header,
odd_footer = footer,
even_header = header,
even_footer = footer,
first_header = header,
first_footer = footer,
visible = c("true", "false"”, "hidden", "visible"”, "veryhidden"),

152 wb_add_worksheet

has_drawing = FALSE,

paper_size = getOption("openxlsx2.paperSize"”, default = 9),

orientation = getOption("openxlsx2.orientation”, default = "portrait”),

hdpi = getOption("openxlsx2.hdpi”, default = getOption("openxlsx2.dpi”, default = 300)),
vdpi = getOption("openxlsx2.vdpi”, default = getOption("openxlsx2.dpi”, default = 300)),

Arguments
wb A wbWorkbook object to attach the new worksheet
sheet A name for the new worksheet
grid_lines A logical. If FALSE, the worksheet grid lines will be hidden.

row_col_headers
A logical. If FALSE, the worksheet colname and rowname will be hidden.

tab_color Color of the sheet tab. A wb_color(), a valid color (belonging to grDevices: :colors())
or a valid hex color beginning with "#".

zoom The sheet zoom level, a numeric between 10 and 400 as a percentage. (A zoom
value smaller than 10 will default to 10.)

header, odd_header, even_header, first_header, footer, odd_footer,

even_footer, first_footer
Character vector of length 3 corresponding to positions left, center, right. header
and footer are used to default additional arguments. Setting even, odd, or
first, overrides header/footer. Use NA to skip a position.

visible If FALSE, sheet is hidden else visible.
has_drawing If TRUE prepare a drawing output (TODO does this work?)

paper_size An integer corresponding to a paper size. See wb_page_setup () for details.
orientation One of "portrait" or "landscape”
hdpi, vdpi Horizontal and vertical DPI. Can be set with options(”openxlsx2.dpi” =X),

options("openxlsx2.hdpi” = X) or options("openxlsx2.vdpi” =X)

Additional arguments

Details

Headers and footers can contain special tags

e &[Page] Page number

* &[Pages] Number of pages
¢ &[Date] Current date

¢ &[Time] Current time

* &[Path] File path

» &[File] File name

¢ &[Tab] Worksheet name

wb_add_worksheet 153

Value

The wbWorkbook object, invisibly.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(),wb_base_colors,wb_clone_worksheet(),wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Examples

Create a new workbook
wb <- wb_workbook ()

Add a worksheet

wb$add_worksheet("”Sheet 1")

No grid lines

wb$add_worksheet("”Sheet 2", grid_lines = FALSE)

A red tab color

wb$add_worksheet ("Sheet 3", tab_color = wb_color("red"))

All options combined with a zoom of 40%

wb$add_worksheet ("Sheet 4", grid_lines = FALSE, tab_color = wb_color(hex = "#4F81BD"), zoom = 40)

Headers and Footers

wb$add_worksheet ("Sheet 5",
header = c("ODD HEAD LEFT"”, "ODD HEAD CENTER"”, "ODD HEAD RIGHT"),
footer = c("0ODD FOOT RIGHT”, "ODD FOOT CENTER", "ODD FOOT RIGHT"),
even_header = c("EVEN HEAD LEFT"”, "EVEN HEAD CENTER", "EVEN HEAD RIGHT"),
even_footer = c("EVEN FOOT RIGHT", "EVEN FOOT CENTER", "EVEN FOOT RIGHT"),
first_header = c("TOP", "OF FIRST"”, "PAGE"),
first_footer = c("BOTTOM", "OF FIRST"”, "PAGE")

)

wb$add_worksheet ("Sheet 6",
header = c("&[Date]”, "ALL HEAD CENTER 2", "&[Page] / &[Pages]"),
footer = c("&[Path]&[File]”, NA, "&[Tabl"),
first_header = c(NA, "Center Header of First Page”, NA),
first_footer = c(NA, "Center Footer of First Page", NA)

)

wb$add_worksheet ("Sheet 7",
header = c("ALL HEAD LEFT 2", "ALL HEAD CENTER 2", "ALL HEAD RIGHT 2"),
footer = c("ALL FOOT RIGHT 2", "ALL FOOT CENTER 2", "ALL FOOT RIGHT 2")
)

wb$add_worksheet ("Sheet 8",
first_header = c("FIRST ONLY L”, NA, "FIRST ONLY R"),
first_footer = c(”FIRST ONLY L”, NA, "FIRST ONLY R")
)

Need data on worksheet to see all headers and footers

154 wb_base_colors

wb$add_data(sheet = 5, 1:400)
wb$add_data(sheet = 6, 1:400)
wb$add_data(sheet = 7, 1:400)
wb$add_data(sheet = 8, 1:400)
wb_base_colors Set the default colors in a workbook

Description

Modify / get the default colors of the workbook.

Usage

wb_set_base_colors(wb, theme = "Office", ...)

wb_get_base_colors(wb, xml = FALSE, plot = TRUE)

Arguments
wb A workbook object
theme a predefined color theme
optional parameters
xml Logical if xml string should be returned
plot Logical if a barplot of the colors should be returned
Details

Theme must be any of the following: "Aspect", "Blue", "Blue II", "Blue Green", "Blue Warm",
"Greyscale", "Green", "Green Yellow", "Marquee", "Median", "Office", "Office 2007 - 2010", "Of-
fice 2013 - 2022", "Orange", "Orange Red", "Paper”, "Red", "Red Orange", "Red Violet", "Slip-
stream", "Violet", "Violet IT", "Yellow", "Yellow Orange"

See Also

Other workbook styling functions: base_font-wb, wb_add_dxfs_style(), wb_add_style()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(),wb_add_worksheet(),wb_clone_worksheet (), wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Examples

wb <- wb_workbook ()
wb$get_base_colors()
wb$set_base_colors(theme
wb$set_base_colors(theme
wb$get_base_colours()

3
"Violet II")

whb_cell_style 155

wb_cell_style Apply styling to a cell region

Description

Setting a style across only impacts cells that are not yet part of a workbook. The effect is similar
to setting the cell style for all cells in a row independently, though much quicker and less memory
consuming.

Usage

wb_get_cell_style(wb, sheet = current_sheet(), dims)

wb_set_cell_style(wb, sheet = current_sheet(), dims, style)

wb_set_cell_style_across(

wb,
sheet = current_sheet(),
style,
cols = NULL,
rows = NULL
)
Arguments
wb A wbWorkbook object
sheet sheet
dims A cell range in the worksheet
style A style or a cell with a certain style
cols The columns the style will be applied to, either "A:D" or 1:4
rows The rows the style will be applied to
Value

A named vector with cell style index positions

See Also

Other styles: wb_add_border (), wb_add_cell_style(),wb_add_fill(),wb_add_font(),wb_add_named_style(),
wb_add_numfmt ()

156

Examples

set
wb <-

add_

get

a style in b1
wb_workbook () $add_worksheet () $
numfmt(dims = "B1", numfmt = "#,0")

style from bl to assign it to al

numfmt <- wb$get_cell_style(dims = "B1")

assign style to al
wh$set_cell_style(dims = "A1", style = numfmt)

set
wh <-
wb <-
wb <-
wh <-

style across a workbook

wb_workbook ()

wb_add_worksheet (wb)

wb_add_fill(wb, dims = "C3", color = wb_color("yellow"))
wb_set_cell_style_across(wb, style = "C3"”, cols = "C:D", rows = 3:4)

wb_clean_sheet

wb_clean_sheet Remove all values in a worksheet

Description

Remove content of a worksheet completely, or a region if specifying dims.

Usage

wb_clean_sheet(

wb,

sheet = current_sheet(),
dims = NULL,

numbers = TRUE,
characters = TRUE,
styles = TRUE,
merged_cells = TRUE,
hyperlinks = TRUE

)
Arguments
wb A Workbook object
sheet sheet to clean
dims spreadsheet dimensions (optional)
numbers remove all numbers
characters remove all characters
styles remove all styles

merged_cells remove all merged_cells

hyperlinks remove all hyperlinks

wb_clone_sheet_style 157

Value

A Workbook object

wb_clone_sheet_style Apply styling from a sheet to another within a workbook

Description

This function can be used to apply styling from a cell range, and apply it to another cell range.

Usage

wb_clone_sheet_style(wb, from = current_sheet(), to)

Arguments
wb A workbook
from sheet we select the style from
to sheet to apply the style to
wb_clone_worksheet Create copies of a worksheet within a workbook
Description

Create a copy of a worksheet in the same wbWorkbook object.

Cloning is possible only to a limited extent. References to sheet names in formulas, charts, pivot
tables, etc. may not be updated. Some elements like named ranges and slicers cannot be cloned yet.

Cloning from another workbook is still an experimental feature and might not work reliably. Cloning
data, media, charts and tables should work. Slicers and pivot tables as well as everything everything
relying on dxfs styles (e.g. custom table styles and conditional formatting) is currently not imple-
mented. Formula references are not updated to reflect interactions between workbooks.

Usage

wb_clone_worksheet(wb, old = current_sheet(), new = next_sheet(), from = NULL)

Arguments
wb A wbWorkbook object
old Name of existing worksheet to copy
new Name of the new worksheet to create

from (optional) Workbook to clone old from

158 wb_color

Value

The wbWorkbook object, invisibly.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer (), wb_add_worksheet(),wb_base_colors, wb_copy_cells(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Examples

Create a new workbook
wb <- wb_workbook ()

Add worksheets

wb$add_worksheet("”Sheet 1")
wb$clone_worksheet(”Sheet 1", new = "Sheet 2")
Take advantage of waiver functions
wb$clone_worksheet(old = "Sheet 1")

cloning from another workbook

create a workbook

wb <- wb_workbook()$

add_worksheet ("NOT_SUM")$
add_data(x = head(iris))$
add_fill(dims = "A1:B2", color = wb_color("yellow"))$
add_border(dims = "B2:C3")

we will clone this styled chart into another workbook
fl <- system.file("extdata”, "oxlsx2_sheet.xlsx", package = "openxlsx2")
wb_from <- wb_load(fl)

clone styles and shared strings
wb$clone_worksheet(old = "SUM", new = "SUM", from = wb_from)

wb_color Helper to create a color

Description

Creates a wbColour object.

wb_color

Usage
wb_color(
name = NULL,
auto = NULL,
indexed = NULL,
hex = NULL,
theme = NULL,
tint = NULL,
format = c("ARGB"”, "RGBA")
)
Arguments
name A name of a color known to R either as name or RGB/ARGB/RGBA value.
auto A boolean.
indexed An indexed color value. This color has to be provided by the workbook.
hex A rgb color a RGB/ARGB/RGBA hex value with or without leading "#".
theme A zero based index referencing a value in the theme.
tint A tint value applied. Range from -1 (dark) to 1 (light).
format A colour format, one of ARGB (default) or RGBA.
Details

159

The format of the hex color representation can be either RGB, ARGB, or RGBA. These hex formats
differ only in a way how they encode the transparency value alpha, ARGB expecting the alpha
value before the RGB values (default in spreadsheets), RGBA expects the alpha value after the
RGB values (default in R), and RGB is not encoding transparency at all. If the colors some from
functions such as adjustcolor that provide color in the RGBA format, it is necessary to specify

the format = "RGBA" when calling the wb_color () function.

Value

a wbColour object

See Also

wb_get_base_colors() grDevices::colors()

160 wb_comment

wb_comment Helper to create a comment object

Description

Creates a wbComment object. Use with wb_add_comment () to add to a worksheet location.

Usage
wb_comment (
text = NULL,
style = NULL,

visible = FALSE,
author = getOption("openxlsx2.creator”),

width = 2,
height = 4
)
Arguments
text Comment text. Character vector or a fmt_txt () string.
style A Style object or list of style objects the same length as comment vector.
visible Is comment visible? Default: FALSE.
author Author of comment. A string. By default, will look at options("openxlsx2.creator™).
Otherwise, will check the system username.
width Textbox integer width in number of cells
height Textbox integer height in number of cells
Value

A wbComment object

Examples

wb <- wb_workbook ()
wb$add_worksheet("”Sheet 1")

write comment without author
cl <- wb_comment(text = "this is a comment”, author = "", visible = TRUE)
wb$add_comment(dims = "B10", comment = c1)

Write another comment with author information
c2 <- wb_comment(text = "this is another comment”, author = "Marco Polo")
wb$add_comment(sheet = 1, dims = "C10", comment = c2)

write a styled comment with system author
s1 <- create_font(b = "true"”, color = wb_color(hex = "FFFFQQ00"), sz = "12")

wb_copy_cells 161

s2 <- create_font(color = wb_color(hex = "FFQ00000"), sz = "9")
c3 <- wb_comment(text = c("This Part Bold red\n\n", "This part black"), style = c(s1, s2))

wb$add_comment(sheet = 1, dims = wb_dims(3, 6), comment = c3)

wb_copy_cells Copy cells around within a worksheet

Description

Copy cells around within a worksheet

Usage
wb_copy_cells(
wb,
sheet = current_sheet(),
dims = "A1",
data,

as_value = FALSE,
as_ref = FALSE,
transpose = FALSE,

Arguments

wb A workbook

sheet a worksheet

dims A cell where to place the copy

data A wb_data object containing cells to copy

as_value Should a copy of the value be written?

as_ref Should references to the cell be written?

transpose Should the data be written transposed?

additional arguments passed to add_data() if used with as_value

Value

the wbWorkbook invisibly

See Also
wb_data()

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet (), wb_add_data(),wb_add_data_table(), wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_freeze_pane(), wb_merge_cells(),wb_save(),wb_set_last_modified_by(), wb_workbook()

162 wb_data

Examples

wb <- wb_workbook()$
add_worksheet()$
add_data(x = mtcars)$
add_fill(dims = "A1:F1", color = wb_color("yellow"))

dat <- wb_data(wb, dims = "A1:D4", col_names = FALSE)
1:1 copy to M2
wb$
clone_worksheet(old = 1, new = "Clonel”)$
copy_cells(data = dat, dims = "M2")

wb_data Add the wb_data attribute to a data frame in a worksheet

Description

provide wb_data object as mschart input

Usage

wb_data(wb, sheet = current_sheet(), dims, ...)
S3 method for class 'wb_data'

x[
i,
3,
drop = !'((missing(j) && length(i) > 1) || (!missing(i) && length(j) > 1))

Arguments
wb a workbook
sheet a sheet in the workbook either name or index
dims the dimensions
additional arguments for wb_to_df (). Be aware that not every argument is
valid.
X X
i i
J J
drop drop
Value

A data frame of class wb_data.

wb_dims

See Also

163

wb_to_df () wb_add_mschart(), wb_add_pivot_table()

Examples

wb <- wb_workbook()
wb <- wb_add_worksheet (wb)
wb <- wb_add_data(wb, x = mtcars, dims = "B2")

wb_data(wb, 1, dims = "B2:E6")

wb_dims

Helper to specify the dims argument

Description

wb_dims() can be used to help provide the dims argument, in the wb_add_=* functions. It returns a
Al spreadsheet range ("A1:B1" or "A2"). It can be very useful as you can specify many parameters
that interact together In general, you must provide named arguments. wb_dims() will only ac-
cept unnamed arguments if they are rows, cols, for example wb_dims(1:4, 1:2), that will return

"Al:B4".

wb_dims () can also be used with an object (a data. frame or amatrix for example.) All parameters
are numeric unless stated otherwise.

Usage
wb_dims(..., select = NULL)
Arguments
construct dims arguments, from rows/cols vectors or objects that can be coerced
to data frame. x, rows, cols, from_row, from_col, from_dims row_names, and
col_names are accepted.
select A string, one of the followings. it improves the selection of various parts of
x One of "x", "data", "col_names", or "row_names". "data"” will only select
the data part, excluding row names and column names (default if cols or rows
are specified) "x" Includes the data, column and row names if they are present.
(default if none of rows and cols are provided) “col_names"” will only return
column names "row_names” Will only return row names.
Details

When using wb_dims() with an object, the default behavior is to select only the data / row or
columns in x If you need another behavior, use wb_dims () without supplying x.

* x An object (typically amatrix or a data.frame, but a vector is also accepted.)

164

wb_dims

e from_row/ from_col / from_dims the starting position of x (The dims returned will assume
that the top left corner of x is at from_row / from_col

* rows Optional Which row span in x should this apply to. If rows = 0, only column names will
be affected.

* cols arange of columns id in X, or one of the column names of x (length 1 only accepted for
column names of x.)

* row_names A logical, this is to let wo_dims () know that x has row names or not. If row_names
= TRUE, wb_dims () will increment from_col by 1.

* col_names wb_dims() assumes that if x has column names, then trying to find the dims.

wb_dims() tries to support most possible cases with row_names = TRUE and col_names = FALSE,
but it works best if x has named dimensions (data.frame, matrix), and those parameters are not
specified. data with column names, and without row names. as the code is more clean.

In the add_data() / add_font() example, if writing the data with row names

While it is possible to construct dimensions from decreasing rows and columns, the output will
always order the rows top to bottom. So wb_dims(rows =3:1, cols=3:1) will not result in
"C3:A1" and if passed to functions, it will return the same as "C1:A3".

Value

A dims string

Using wb_dims() without an x object

* rows / cols (if you want to specify a single one, use from_row / from_col)

e from_row / from_col the starting position of the dims (similar to start_row / start_col,
but with a clearer name.)

Using wb_dims () with an x object

wb_dims() with an object has 8 use-cases (they work with any position values of from_row /
from_col), from_col/from_row correspond to the coordinates at the top left of x including column
and row names if present.

These use cases are provided without from_row / from_col, but they work also with from_row /
from_col.

. provide the full grid with wb_dims (x = mtcars)

. provide the data grid wb_dims(x = mtcars, select = "data")

. provide the dims of column names wb_dims(x = mtcars, select = "col_names")

D AW N =

. provide the dims of a row span wb_dims(x =mtcars, rows = 1:10) selects the first 10 data
rows of mtcars (ignoring column names)

6. provide the dims of the data in a column span wb_dims(x =mtcars, cols = 1:5) select the
data first 5 columns of mtcars

7. provide a column span (including column names) wb_dims(x = mtcars, cols =4:7, select
="x") select the data columns 4, 5, 6, 7 of mtcars + column names

. provide the dims of row names wb_dims (x = mtcars, row_names = TRUE, select = "row_names")

wb_dims 165

8. provide the position of a single column by name wb_dims(x = mtcars, cols = "mpg").

9. provide a row span with a column. wb_dims(x = mtcars, cols = "mpg"”, rows = 5:22)

To reuse, a good trick is to create a wrapper function, so that styling can be performed seamlessly.

wb_dims_cars <- function(...) {

wb_dims(x = mtcars, from_row = 2, from_col = "B", ...)
}
using this function
wb_dims_cars() # full grid (data + column names)
wb_dims_cars(select = "data") # data only
wb_dims_cars(select = "col_names”) # select column names
wb_dims_cars(cols = "vs") # select the “vs™ column

It can be very useful to apply many rounds of styling sequentially.

Examples

Provide coordinates

wb_dims(1, 4)

wb_dims(rows = 1, cols = 4)

wb_dims(from_row = 4)

wb_dims(from_col 2)

wb_dims(from_col = "B")

wb_dims(1:4, 6:9, from_row = 5)

Provide vectors

wb_dims(1:10, c("A", "B", "C"))

wb_dims(rows = 1:10, cols = 1:10)

provide ~from_col™ / ~from_row”

wb_dims(rows = 1:10, cols = c("A", "B", "C"), from_row = 2)
wb_dims(rows = 1:10, cols = 1:10, from_col = 2)
wb_dims(rows = 1:10, cols = 1:10, from_dims = "B1")
or objects

wb_dims(x = mtcars, col_names = TRUE)

select all data

wb_dims(x = mtcars, select = "data")
column names of an object (with the special select = "col_names")
wb_dims(x = mtcars, select = "col_names")

dims of the column names of an object
wb_dims(x = mtcars, select = "col_names”, col_names = TRUE)

add formatting to “mtcars™ using “wb_dims() ----

wb <- wb_workbook ()

wb$add_worksheet("test wb_dims() with an object”)
dims_mtcars_and_col_names <- wb_dims(x = mtcars)
wb$add_data(x = mtcars, dims = dims_mtcars_and_col_names)

166 wb_freeze_pane

Put the font as Arial for the data

dims_mtcars_data <- wb_dims(x = mtcars, select = "data")

wb$add_font(dims = dims_mtcars_data, name = "Arial”)

Style col names as bold using the special “select = "col_names”™ with “x~ provided.
dims_column_names <- wb_dims(x = mtcars, select = "col_names")

wb$add_font(dims = dims_column_names, bold = TRUE, size = 13)

Finally, to add styling to column "cyl"” (the 4th column) (only the data)
there are many options, but here is the preferred one

if you know the column index, wb_dims(x = mtcars, cols = 4) also works.
dims_cyl <- wb_dims(x = mtcars, cols = "cyl")

wb$add_fill(dims = dims_cyl, color = wb_color("pink"))

Mark a full column as important(with the column name too)

wb_dims_vs <- wb_dims(x = mtcars, cols = "vs", select = "x")

wb$add_fill(dims = wb_dims_vs, fill = wb_color("yellow"))
wb$add_conditional_formatting(dims = wb_dims(x = mtcars, cols = "mpg"”), type = "dataBar")
wb_open(wb)

fix relative ranges

wb_dims(x = mtcars) # equal to none: A1:K33

wb_dims(x = mtcars, fix = "all"”) # A1:K33
wb_dims(x = mtcars, fix = "row") # A$1:K$33

wb_dims(x = mtcars, fix = "col"”) # $A1:$K33

wb_dims(x = mtcars, fix = c("col”, "row")) # $A1:K$33

wb_freeze_pane Freeze pane of a worksheet

Description

Add a Freeze pane in a worksheet.

Usage

wb_freeze_pane(
wb,
sheet = current_sheet(),
first_active_row = NULL,
first_active_col = NULL,
first_row = FALSE,
first_col = FALSE,

Arguments

wb A workbook object

wb_get_tables 167

sheet A name or index of a worksheet
first_active_row

Top row of active region
first_active_col

Furthest left column of active region

first_row If TRUE, freezes the first row (equivalent to first_active_row = 2)
first_col If TRUE, freezes the first column (equivalent to first_active_col = 2)

additional arguments

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_copy_cells(),wb_merge_cells(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),
wb_merge_cells()

Examples

Create a new workbook
wb <- wb_workbook("Kenshin™)

Add some worksheets

wb$add_worksheet("”Sheet 1")
wb$add_worksheet ("”Sheet 2")
wb$add_worksheet("”Sheet 3")
wb$add_worksheet("”Sheet 4")

Freeze Panes

wb$freeze_pane("Sheet 1", first_active_row = 5, first_active_col = 3)
wb$freeze_pane("Sheet 2", first_col = TRUE) ## shortcut to first_active_col = 2
wb$freeze_pane(3, first_row = TRUE) ## shortcut to first_active_row = 2

wb$freeze_pane(4, first_active_row = 1, first_active_col = "D")
wb_get_tables List tables in a worksheet
Description

List tables in a worksheet

Usage

wb_get_tables(wb, sheet = current_sheet())

168 wb_load

Arguments

wb A workbook object

sheet A name or index of a worksheet
Value

A character vector of table names on the specified sheet

Examples

wb <- wb_workbook ()

wb$add_worksheet(sheet = "Sheet 1")

wb$add_data_table(x = iris)

wb$add_data_table(x = mtcars, table_name = "mtcars”, start_col = 10)

wh$get_tables(sheet = "Sheet 1")

wb_load Load an existing .xlsx, .xIsm or .xlsb file

Description

wb_load() returns a wbWorkbook object conserving the content of the original input file, including
data, styles, media. This workbook can be modified, read from, and be written back into a xIsx file.

Usage
wb_load(file, sheet, data_only = FALSE, ...)
Arguments
file A path to an existing .xIsx, .xIsm or .xIsb file
sheet optional sheet parameter. if this is applied, only the selected sheet will be loaded.
This can be a numeric, a string or NULL.
data_only mode to import if only a data frame should be returned. This strips the woWorkbook
to a bare minimum.
additional arguments
Details

If a specific sheet is selected, the workbook will still contain sheets for all worksheets. The ar-
gument sheet and data_only are used internally by wb_to_df () to read from a file with minimal
changes. They are not specifically designed to create rudimentary but otherwise fully functional
workbooks. It is possible to import with wb_load(data_only = TRUE, sheet = NULL). In this way,
only a workbook framework is loaded without worksheets or data. This can be useful if only some
workbook properties are of interest.

wb_merge_cells 169

There are some internal arguments that can be passed to wb_load, which are used for development.
The debug argument allows debugging of x1sb files in particular. With calc_chain it is possible to
maintain the calculation chain. The calculation chain is used by spreadsheet software to determine
the order in which formulas are evaluated. Removing the calculation chain has no known effect.
The calculation chain is created the next time the worksheet is loaded into the spreadsheet. Keeping
the calculation chain could only shorten the loading time in said software. Unfortunately, if a cell
is added to the worksheet, the calculation chain may block the worksheet as the formulas will not
be evaluated again until each individual cell with a formula is selected in the spreadsheet software
and the Enter key is pressed manually. It is therefore strongly recommended not to activate this
function.

In rare cases, a warning is issued when loading an xIsx file that an xml namespace has been removed
from xml files. This refers to the internal structure of the loaded xIsx file. Certain xlIsx files created
by third-party applications contain a namespace (usually x). This namespace is not required for
the file to work in spreadsheet software and is not expected by openx1lsx2. It is therefore removed
when the file is loaded into a workbook. Removal is generally considered safe, but the feature is
still not commonly observed, hence the warning.

Initial support for binary openxml files (x1sb) has been added to the package. We parse the binary
file format into pseudo-openxml files that we can import. Therefore, once imported, it is possible to
interact with the file as if it had been provided in xIsx file format in the first place. This parsing into
pseudo xml files is of course slower than reading directly from the binary file. Our implementation
is also still missing some functions: some array formulas are not yet correct, conditional formatting
and data validation are not implemented, nor are pivot tables and slicers.

The loaded workbook provides a finalizer that will be invoked after the first gc () call and will cause
removal of a loaded temporary files. These files are not tracked across workbooks.

Value

A Workbook object.

Examples

load existing workbook
fl <- system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
wb <- wb_load(file = f1)

wb_merge_cells Merge cells within a worksheet

Description

Worksheet cell merging

170 wb_merge_cells

Usage
wb_merge_cells(
wb,
sheet = current_sheet(),
dims = NULL,

solve = FALSE,
direction = NULL,

)...

wb_unmerge_cells(wb, sheet = current_sheet(), dims = NULL, ...)
Arguments

wb A Workbook object

sheet A name or index of a worksheet

dims worksheet cells

solve logical if intersecting merges should be solved

direction direction in which to split the cell merging. Allows "row" or "col"

additional arguments

Details

If using the deprecated arguments rows and cols with a merged region must be rectangular, only
min and max of cols and rows are used.

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet (), wb_add_data(),wb_add_data_table(), wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(),wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_copy_cells(),wb_freeze_pane(),wb_save(),wb_set_last_modified_by(),wb_workbook()

Other worksheet content functions: col_widths-wb, filter-wb, grouping-wb, named_region-wb,
row_heights-wb, wb_add_conditional_formatting(),wb_add_data(),wb_add_data_table(),
wb_add_formula(), wb_add_hyperlink(),wb_add_pivot_table(),wb_add_slicer(),wb_add_thread(),
wb_freeze_pane()

Examples

Create a new workbook
wb <- wb_workbook () $add_worksheet ()

Merge cells: Row 2 column C to F (3:6)
wb <- wb_merge_cells(wb, dims = "C3:F6")

Merge cells:Rows 10 to 20 columns A to J (1:10)
wb <- wb_merge_cells(wb, dims = wb_dims(rows = 10:20, cols = 1:10))

wb_open 171

wb$add_worksheet ()

Intersecting merges

wb <- wb_merge_cells(wb, dims = wb_dims(cols = 1:10, rows = 1))
wb <- wb_merge_cells(wb, dims = wb_dims(cols = 5:10, rows = 2))
wb <- wb_merge_cells(wb, dims = wb_dims(cols = 1:10, rows = 12))

try(wb_merge_cells(wb, dims = "A1:A10"))

remove merged cells

removes any intersecting merges

wb <- wb_unmerge_cells(wb, dims = wb_dims(cols
wb <- wb_merge_cells(wb, dims = "A1:A10")

1, rows = 1))

or let us decide how to solve this
wb <- wb_merge_cells(wb, dims = "A1:A10", solve = TRUE)

wb_open Preview a workbook in a spreadsheet software

Description

You can also use the shorter wb$open() as a replacement. To open xIsx files, see x1_open().

Usage
wb_open(wb, interactive = NA, flush = FALSE)

Arguments
wb a wbWorkbook object
interactive If FALSE will throw a warning and not open the path. This can be manually set to
TRUE, otherwise when NA (default) uses the value returned from base: : interactive()
flush if the flush option should be used
wb_order Order worksheets in a workbook
Description

Get/set order of worksheets in a Workbook object

Usage
wb_get_order(wb)

wb_set_order(wb, sheets)

172 wb_page_setup

Arguments
wb A wbWorkbook object
sheets Sheet order

Details

This function does not reorder the worksheets within the workbook object, it simply shuffles the
order when writing to file.

Examples

setup a workbook with 3 worksheets

wb <- wb_workbook ()

wb$add_worksheet("”Sheet 1", grid_lines = FALSE)
wb$add_data_table(x = iris)

wb$add_worksheet("mtcars (Sheet 2)", grid_lines = FALSE)
wb$add_data(x = mtcars)

wb$add_worksheet("”Sheet 3", grid_lines = FALSE)
wb$add_data(x = Formaldehyde)

wb_get_order (wb)

wb$get_sheet_na

wb$set_order(c(1, 3, 2)) # switch position of sheets 2 & 3
wb$add_data(2, 'This is still the "mtcars” worksheet', start_col = 15)
wb_get_order(wb)

wb$get_sheet_names() ## ordering within workbook is not changed
wb$set_order(3:1)

wb_page_setup Set page margins, orientation and print scaling of a worksheet

Description

Set page margins, orientation and print scaling.

Usage

wb_set_page_setup(
wb,
sheet = current_sheet(),
black_and_white = NULL,
cell_comments = NULL,
copies = NULL,
draft = NULL,
errors = NULL,
first_page_number = NULL,

wb_page_setup

)

id = NULL,
page_order = NULL,
paper_height = NULL,
paper_width = NULL,
hdpi = NULL,

vdpi = NULL,

use_first_page_number = NULL,
use_printer_defaults = NULL,

orientation = NULL,

scale = NULL,
left = 0.7,
right = 0.7,
top = 0.75,
bottom = 0.75,
header = 0.3,
footer = 0.3

fit_to_width = FALSE,
fit_to_height = FALSE,
paper_size = NULL,
print_title_rows = NULL,
print_title_cols = NULL,
summary_row = NULL,
summary_col = NULL,
tab_color = NULL,

horizontal_centered = NULL,

vertical_centered = NULL,
print_headings = NULL,

wb_page_setup(

wb,
sheet = current_sheet(),
orientation = NULL,

scale = 100,
left = 0.7,
right = 0.7,
top = 0.75,
bottom = 0.75,
header = 0.3,
footer = 0.3,

fit_to_width = FALSE,
fit_to_height = FALSE,
paper_size = NULL,
print_title_rows = NULL,
print_title_cols = NULL,
summary_row = NULL,
summary_col = NULL,

173

174 wb_page_setup

)
Arguments
wb A workbook object
sheet A name or index of a worksheet

black_and_white
black and white mode

cell_comments show cell comments

copies Amount of copies
draft Draft mode
errors Show errors

first_page_number
The first page number

id id (unknown)
page_order Page order
paper_height, paper_width

paper size
hdpi, vdpi horizontal and vertical dpi

use_first_page_number
Number on first page
use_printer_defaults
Use printer defaults
orientation Page orientation. One of "portrait" or "landscape"

scale Print scaling. Numeric value between 10 and 400
left, right, top, bottom
Page margin in inches
header, footer Margin in inches
fit_to_width, fit_to_height
An integer that tells the spreadsheet software on how many pages the scaling
should fit. This does not actually scale the sheet.
paper_size See details. Default value is 9 (A4 paper).
print_title_rows, print_title_cols
Rows / columns to repeat at top of page when printing. Integer vector.

summary_row Location of summary rows in groupings. One of "Above" or "Below".
summary_col Location of summary columns in groupings. One of "Right" or "Left".
tab_color The tab color

horizontal_centered, vertical_centered
center print output vertical or horizontal

print_headings print headings

additional arguments

wb_page_setup 175

Details

When adding fitting to width and height manual adjustment of the scaling factor is required. Setting
fit_to_width and fit_to_height only tells spreadsheet software that the scaling was applied,
but not which scaling was applied.

wb_page_setup() provides a subset of wb_set_page_setup(). The former will soon become
deprecated.

paper_size is an integer corresponding to:

size "paper type"

1 Letter paper (8.5 in. by 11 in.)
Letter small paper (8.5 in. by 11 in.)
Tabloid paper (11 in. by 17 in.)
Ledger paper (17 in. by 11 in.)
Legal paper (8.5 in. by 14 in.)
Statement paper (5.5 in. by 8.5 in.)
Executive paper (7.25 in. by 10.5 in.)
A3 paper (297 mm by 420 mm)

9 A4 paper (210 mm by 297 mm)

10 A4 small paper (210 mm by 297 mm)
11 AS paper (148 mm by 210 mm)

12 B4 paper (250 mm by 353 mm)

13 BS5 paper (176 mm by 250 mm)

14 Folio paper (8.5 in. by 13 in.)

15 Quarto paper (215 mm by 275 mm)
16 Standard paper (10 in. by 14 in.)

17 Standard paper (11 in. by 17 in.)

18 Note paper (8.5 in. by 11 in.)

19 #9 envelope (3.875 in. by 8.875 in.)
20 #10 envelope (4.125 in. by 9.5 in.)
21 #11 envelope (4.5 in. by 10.375 in.)
22 #12 envelope (4.75 in. by 11 in.)

23 #l14 envelope (5 in. by 11.5in.)

24 Cpaper (17 in. by 22 in.)

25 D paper (22 in. by 34 in.)

26 E paper (34 in. by 44 in.)

27 DL envelope (110 mm by 220 mm)
28 CS5 envelope (162 mm by 229 mm)
29 C3envelope (324 mm by 458 mm)
30 C4envelope (229 mm by 324 mm)
31 C6 envelope (114 mm by 162 mm)
32 C65 envelope (114 mm by 229 mm)
33 B4 envelope (250 mm by 353 mm)
34 BS5 envelope (176 mm by 250 mm)
35 Bo6envelope (176 mm by 125 mm)
36 Italy envelope (110 mm by 230 mm)
37 Monarch envelope (3.875 in. by 7.5 in.)
38 6 3/4 envelope (3.625 in. by 6.5 in.)

[c BN ENe NNV, RN NS I \S]

176

39
40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
71
72
73
74
75
76
77
78
79
80
81
82
84
85
86
87
89
90
91

US standard fanfold (14.875 in. by 11 in.)
German standard fanfold (8.5 in. by 12 in.)
German legal fanfold (8.5 in. by 13 in.)

ISO B4 (250 mm by 353 mm)

Japanese double postcard (200 mm by 148 mm)
Standard paper (9 in. by 11 in.)

Standard paper (10 in. by 11 in.)

Standard paper (15 in. by 11 in.)

Invite envelope (220 mm by 220 mm)

Letter extra paper (9.275 in. by 12 in.)

Legal extra paper (9.275 in. by 15 in.)

Tabloid extra paper (11.69 in. by 18 in.)

A4 extra paper (236 mm by 322 mm)

Letter transverse paper (8.275 in. by 11 in.)

A4 transverse paper (210 mm by 297 mm)
Letter extra transverse paper (9.275 in. by 12 in.)
SuperA/SuperA/A4 paper (227 mm by 356 mm)
SuperB/SuperB/A3 paper (305 mm by 487 mm)
Letter plus paper (8.5 in. by 12.69 in.)

A4 plus paper (210 mm by 330 mm)

A5 transverse paper (148 mm by 210 mm)

JIS B5 transverse paper (182 mm by 257 mm)
A3 extra paper (322 mm by 445 mm)

A5 extra paper (174 mm by 235 mm)

ISO BS5 extra paper (201 mm by 276 mm)

A2 paper (420 mm by 594 mm)

A3 transverse paper (297 mm by 420 mm)

A3 extra transverse paper (322 mm by 445 mm)
Japanese Double Postcard (200 mm x 148 mm) 70=A6(105mm x 148mm)
Japanese Envelope Kaku #2

Japanese Envelope Kaku #3

Japanese Envelope Chou #3

Japanese Envelope Chou #4

Letter Rotated (11in x 8 1/2 11 in)

A3 Rotated (420 mm x 297 mm)

A4 Rotated (297 mm x 210 mm)

A5 Rotated (210 mm x 148 mm)

B4 (JIS) Rotated (364 mm x 257 mm)

B5 (JIS) Rotated (257 mm x 182 mm)

Japanese Postcard Rotated (148 mm x 100 mm)

wb_page_setup

Double Japanese Postcard Rotated (148 mm x 200 mm) 83 = A6 Rotated (148 mm x 105 mm)

Japanese Envelope Kaku #2 Rotated

Japanese Envelope Kaku #3 Rotated

Japanese Envelope Chou #3 Rotated

Japanese Envelope Chou #4 Rotated 88=B6(JIS)(128mm x 182mm)
B6 (JIS) Rotated (182 mm x 128 mm)

(12inx 11 in)

Japanese Envelope You #4

wb_page_setup 177

92 Japanese Envelope You #4 Rotated 93=PRC16K(146mm x 215mm) 94=PRC32K(97mm x 151mm)
95 PRC 32K(Big) (97 mm x 151 mm)

96 PRC Envelope #1 (102 mm x 165 mm)

97 PRC Envelope #2 (102 mm x 176 mm)

98 PRC Envelope #3 (125 mm x 176 mm)

99 PRC Envelope #4 (110 mm x 208 mm)

100 PRC Envelope #5 (110 mm x 220 mm)

101 PRC Envelope #6 (120 mm x 230 mm)

102 PRC Envelope #7 (160 mm x 230 mm)

103 PRC Envelope #8 (120 mm x 309 mm)

104 PRC Envelope #9 (229 mm x 324 mm)

105 PRC Envelope #10 (324 mm x 458 mm)

106 PRC 16K Rotated

107 PRC 32K Rotated

108 PRC 32K(Big) Rotated

109 PRC Envelope #1 Rotated (165 mm x 102 mm)
110 PRC Envelope #2 Rotated (176 mm x 102 mm)
111 PRC Envelope #3 Rotated (176 mm x 125 mm)
112 PRC Envelope #4 Rotated (208 mm x 110 mm)
113 PRC Envelope #5 Rotated (220 mm x 110 mm)
114 PRC Envelope #6 Rotated (230 mm x 120 mm)
115 PRC Envelope #7 Rotated (230 mm x 160 mm)
116 PRC Envelope #8 Rotated (309 mm x 120 mm)
117 PRC Envelope #9 Rotated (324 mm x 229 mm)
118 PRC Envelope #10 Rotated (458 mm x 324 mm)

Examples

wb <- wb_workbook ()

wb$add_worksheet ("S1")

wb$add_worksheet("S2")

wb$add_data_table(1, x = iris[1:30, 1)
wb$add_data_table(2, x = iris[1:30,], dims = c("C5"))

landscape page scaled to 50%
wb$set_page_setup(sheet = 1, orientation = "landscape”, scale = 50)

portrait page scales to 300% with ©.5in left and right margins
wh$set_page_setup(sheet = 2, orientation = "portrait”, scale = 300, left = 0.5, right =0.5)

print titles
wb$add_worksheet ("print_title_rows")
wb$add_worksheet ("print_title_cols")

wb$add_data("print_title_rows”, rbind(iris, iris, iris, iris))
wb$add_data("print_title_cols”, x = rbind(mtcars, mtcars, mtcars), row_names = TRUE)

wb$set_page_setup(sheet = "print_title_rows"”, print_title_rows = 1) ## first row
wb$set_page_setup(sheet = "print_title_cols”, print_title_cols = 1, print_title_rows = 1)

178 wb_protect

wb_protect Protect a workbook from modifications

Description

Protect or unprotect a workbook from modifications by the user in the graphical user interface.
Replaces an existing protection.

Usage

wb_protect(
wb,
protect = TRUE,
password = NULL,
lock_structure = FALSE,
lock_windows = FALSE,
type = 1,
file_sharing = FALSE,
username = unname(Sys.info()["user”]),
read_only_recommended = FALSE,

Arguments
wb A Workbook object
protect Whether to protect or unprotect the sheet (default TRUE)
password (optional) password required to unprotect the workbook

lock_structure Whether the workbook structure should be locked

lock_windows Whether the window position of the spreadsheet should be locked

type Lock type (see Details)

file_sharing Whether to enable a popup requesting the unlock password is prompted

username The username for the file_sharing popup
read_only_recommended

Whether or not a post unlock message appears stating that the workbook is rec-
ommended to be opened in read-only mode.

additional arguments

Details
Lock types:

* 1 xIsx with password (default)
* 2 xlsx recommends read-only
* 4 xIsx enforces read-only

¢ 8 xIsx is locked for annotation

wb_protect_worksheet 179

Examples

wb <- wb_workbook ()
wb$add_worksheet ("S1")
wb_protect(wb, protect = TRUE, password = "Password”, lock_structure = TRUE)

Remove the protection
wb_protect(wb, protect = FALSE)

wb <- wb_protect(

wb,

protect = TRUE,
password = "Password”,
lock_structure = TRUE,

type = 2L,

file_sharing = TRUE,
username = "Test”,
read_only_recommended = TRUE

wb_protect_worksheet Protect a worksheet from modifications

Description

Protect or unprotect a worksheet from modifications by the user in the graphical user interface.

Replaces an existing protection. Certain features require applying unlocking of initialized cells in
the worksheet and across columns and/or rows.

Usage

wb_protect_worksheet(

wb,
sheet =

current_sheet(),

protect = TRUE,
password = NULL,
properties = NULL

Arguments

wb

sheet
protect
password
properties

A workbook object

A name or index of a worksheet

Whether to protect or unprotect the sheet (default=TRUE)
(optional) password required to unprotect the worksheet

A character vector of properties to lock. Can be one or more of the following:
"selectLockedCells", "selectUnlockedCells”, "formatCells"”, "formatColumns”,
"formatRows"”, "insertColumns”, "insertRows"”, "insertHyperlinks", "deleteColumns”,
"deleteRows"”, "sort”, "autoFilter"”, "pivotTables”, "objects"”, "scenarios”

b} s

180 wb_remove_tables

Examples

wb <- wb_workbook ()
wb$add_worksheet("S1")
wb$add_data_table(1, x = iris[1:30, 1)

wb$protect_worksheet(

ns1n,
protect = TRUE,
properties = c("formatCells”, "formatColumns”, "insertColumns”, "deleteColumns")

)

Formatting cells / columns is allowed , but inserting / deleting columns is protected:
wb$protect_worksheet(
"S1",
protect = TRUE,
c(formatCells = FALSE, formatColumns = FALSE,
insertColumns = TRUE, deleteColumns = TRUE)
)

Remove the protection
wb$protect_worksheet("S1", protect = FALSE)

wb_remove_tables Remove a data table from a worksheet

Description

Remove tables in a workbook using its name.

Usage

wb_remove_tables(wb, sheet = current_sheet(), table, remove_data = TRUE)

Arguments
wb A Workbook object
sheet A name or index of a worksheet
table Name of table to remove. Use wb_get_tables() to view the tables present in

the worksheet.

remove_data Default TRUE. If FALSE, will only remove the data table attributes but will keep
the data in the worksheet.

Value

The wbWorkbook, invisibly

wb_remove_worksheet 181

Examples

wb <- wb_workbook ()

wb$add_worksheet(sheet = "Sheet 1")

wb$add_worksheet(sheet = "Sheet 2")

wb$add_data_table(sheet = "Sheet 1", x = iris, table_name = "iris")
wb$add_data_table(sheet = 1, x = mtcars, table_name = "mtcars”, start_col = 10)

delete worksheet removes table objects
wb <- wb_remove_worksheet(wb, sheet = 1)

wb$add_data_table(sheet
wb$add_data_table(sheet

iris, table_name = "iris")
mtcars, table_name = "mtcars”, start_col = 10)

1, x
1, x

wb_remove_tables() deletes table object and all data
wb_get_tables(wb, sheet = 1)

wb$remove_tables(sheet = 1, table = "iris")
wb$add_data_table(sheet = 1, x = iris, table_name = "iris")

wb_get_tables(wb, sheet = 1)
wb$remove_tables(sheet = 1, table = "iris")

wb_remove_worksheet Remove a worksheet from a workbook

Description

Remove a worksheet from a workbook

Usage

wb_remove_worksheet(wb, sheet = current_sheet())

Arguments

wb A wbWorkbook object

sheet The sheet name or index to remove
Value

The wbWorkbook object, invisibly.

Examples

load a workbook
wb <- wb_load(file = system.file("extdata”, "openxlsx2_example.xlsx"”, package = "openxlsx2"))

Remove sheet 2
wb <- wb_remove_worksheet(wb, 2)

182 wb_save

wb_save Save a workbook to file

Description

Save a workbook to file

Usage

wb_save(wb, file = NULL, overwrite = TRUE, path = NULL, flush = FALSE)

Arguments
wb A wbWorkbook object to write to file
file A path to save the workbook to
overwrite If FALSE, will not overwrite when file already exists.
path Deprecated argument. Please use file in new code.
flush Experimental, streams the worksheet file to disk
Details

When saving a wbWorkbook to a file, memory usage may spike depending on the worksheet size.
This happens because the entire XML structure is created in memory before writing to disk. The
memory required depends on worksheet size, as XML files consist of character data and include
additional overhead for validity checks.

The flush argument streams worksheet XML data directly to disk, avoiding the need to build the
full XML tree in memory. This reduces memory usage but skips some XML validity checks. It also
bypasses the pugixml functions that openxlsx2 uses, omitting certain preliminary sanity checks
before writing. As the name suggests, the output is simply flushed to disk.

By default, the utils::zip() function is used to create output files. This requires a working zip
utility to be available on the system. A valid zip program must be found either via Sys.which("zip")
or through the R_ZIPCMD environment variable.

On Windows, a suitable zip tool is typically provided by Rtools. If R_ZIPCMD is not set, openx1lsx?2
will automatically use the first detected Rtools installation. If no zip utility is available, bsdtar can
be used as an alternative. On Windows this is shipped as tar.exe; on Mac and Linux it is usually
available as bsdtar (often requiring installation of the archive package).

A further fallback—primarily for older Windows systems—is to point R_ZIPCMD to 7z.exe. This
approach has not been extensively tested and is not reliable with 7-Zip on macOS.

As an additional fallback, the zip package can be used. It is no longer listed in Imports and must
be installed separately if needed.

Value

the wbWorkbook object, invisibly

wb_set_bookview 183

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_copy_cells(),wb_freeze_pane(),wb_merge_cells(),wb_set_last_modified_by(), wb_workbook()

Examples
Create a new workbook and add a worksheet
wb <- wb_workbook(”"Creator of workbook™)
wb$add_worksheet(sheet = "My first worksheet")
Save workbook to working directory

wb_save(wb, file = temp_x1sx(), overwrite = TRUE)

do not use utils::zip, will try to use bsdtar
options("openxlsx2.no_utils_zip"” = TRUE)

if the above is set as well, do not use bsdtar
options("openxlsx2.no_bsdtar” = TRUE)

use 7zip on Windows this works, on Mac not
Sys.setenv("R_ZIPCMD" = "C:\Program Files\7-Zip\7z.exe")

if the last one is left blank the fallback is zip::zip
openxlsx2::write_xlsx(x = cars, temp_xlsx())

wb_set_bookview Get and Set the workbook position, size and filter

Description

Get and Set the workbook position, size and filter

Usage

wb_get_bookview(wb)
wb_remove_bookview(wb, view = NULL)

wb_set_bookview(
wb,
active_tab = NULL,
auto_filter_date_grouping = NULL,
first_sheet = NULL,
minimized = NULL,

184 wb_set_bookview

show_horizontal_scroll = NULL,
show_sheet_tabs = NULL,
show_vertical_scroll = NULL,
tab_ratio = NULL,

visibility = NULL,
window_height = NULL,
window_width = NULL,

x_window = NULL,

y_window = NULL,

view = 1L,
)
Arguments
wb A wbWorkbook object
view Which view to modify. Default is 1 (the first view).
active_tab activeTab

auto_filter_date_grouping
autoFilterDateGrouping

first_sheet The first sheet to be displayed
minimized minimized
show_horizontal_scroll

showHorizontalScroll
show_sheet_tabs

showSheetTabs
show_vertical_scroll

show VerticalScroll
tab_ratio tabRatio
visibility visibility

window_height windowHeight
window_width windowWidth
x_window xWindow
y_window yWindow

additional arguments

Value

A data frame with the bookview properties
The Workbook object
The Workbook object

wb_set_grid_lines 185

Examples

wb <- wb_workbook ()
wb <- wb_add_worksheet (wb)

set the first and second bookview (horizontal split)
wb <- wb_set_bookview(wb,
window_height = 17600, window_width = 15120,
X_window = 15120, y_window = 760)
wb <- wb_set_bookview(wb,
window_height = 17600, window_width = 15040,
Xx_window = @, y_window = 760, view = 2

)
wb_get_bookview(wb)

remove the first view

wb <- wb_remove_bookview(wb, view = 1)
wb_get_bookview(wb)
keep only the first view
wb <- wb_remove_bookview(wb, view = -1)
wb_get_bookview(wb)
wb_set_grid_lines Modify grid lines visibility in a worksheet

Description

Set worksheet grid lines to show or hide. You can also add / remove grid lines when creating a
worksheet with wb_add_worksheet(grid_lines = FALSE)

Usage

wb_set_grid_lines(wb, sheet = current_sheet(), show = FALSE, print = show)

wb_grid_lines(wb, sheet = current_sheet(), show = FALSE, print = show)

Arguments
wb A workbook object
sheet A name or index of a worksheet
show A logical. If FALSE, grid lines are hidden.

print A logical. If FALSE, grid lines are not printed.

186 wb_set_header_footer

Examples

wb <- wb_workbook()$add_worksheet () $add_worksheet ()
wb$get_sheet_names() ## list worksheets in workbook
wb$set_grid_lines(1, show = FALSE)
wb$set_grid_lines(”Sheet 2", show = FALSE)

wb_set_header_footer Set headers and footers of a worksheet

Description

Set document headers and footers. You can also do this when adding a worksheet with wb_add_worksheet ()
with the header, footer arguments and friends. These will show up when printing an xIsx file.

Usage

wb_set_header_footer(
wb,
sheet = current_sheet(),
header = NULL,
footer = NULL,
even_header = NULL,
even_footer = NULL,
first_header = NULL,
first_footer = NULL,
align_with_margins = NULL,
scale_with_doc = NULL,

)
Arguments
wb A Workbook object
sheet A name or index of a worksheet

header, even_header, first_header, footer, even_footer, first_footer
Character vector of length 3 corresponding to positions left, center, right. header
and footer are used to default additional arguments. Setting even, odd, or
first, overrides header/footer. Use NA to skip a position.
align_with_margins
Align header/footer with margins

scale_with_doc Scale header/footer with document

additional arguments

wb_set_header_footer 187

Details
Headers and footers can contain special tags

* &[Page] Page number

* &[Pages] Number of pages
¢ &[Date] Current date

¢ &[Time] Current time

o &[Path] File path

* &[File] File name

¢ &[Tab] Worksheet name

Examples

wb <- wb_workbook ()

Add example data

wb$add_worksheet("”S1")$add_data(x = 1:400)
wb$add_worksheet("”S2")$add_data(x = 1:400)
wb$add_worksheet ("”S3")$add_data(x = 3:400)
wb$add_worksheet("”S4")$add_data(x = 3:400)

wb$set_header_footer(
sheet = "S1",
header = c("ODD HEAD LEFT", "ODD HEAD CENTER", "ODD HEAD RIGHT"),
footer = c("ODD FOOT RIGHT", "ODD FOOT CENTER"”, "ODD FOOT RIGHT"),
even_header = c("EVEN HEAD LEFT"”, "EVEN HEAD CENTER", "EVEN HEAD RIGHT"),
even_footer = c("EVEN FOOT RIGHT"”, "EVEN FOOT CENTER", "EVEN FOOT RIGHT"),
first_header = c("TOP", "OF FIRST"”, "PAGE"),
first_footer = c(”"BOTTOM", "OF FIRST"”, "PAGE")

)

wb$set_header_footer(
sheet = 2,
header = c("&[Date]”, "ALL HEAD CENTER 2", "&[Page] / &[Pages]"),
footer = c("&[Path]&[File]"”, NA, "&[Tabl"),
first_header = c(NA, "Center Header of First Page”, NA),
first_footer = c(NA, "Center Footer of First Page", NA)

)

wb$set_header_footer(
sheet = 3,
header = c("ALL HEAD LEFT 2", "ALL HEAD CENTER 2", "ALL HEAD RIGHT 2"),
footer = c("ALL FOOT RIGHT 2", "ALL FOOT CENTER 2", "ALL FOOT RIGHT 2")
)

wb$set_header_footer(
sheet = 4,
first_header = c(”FIRST ONLY L”, NA, "FIRST ONLY R"),
first_footer = c("FIRST ONLY L”, NA, "FIRST ONLY R")

188 wb_set_last_modified_by

---- Updating the header ----
Variant a
this will keep the odd and even header / footer from the original header /
footerkeep the first header / footer and will set the first page header /
footer and will use the original header / footer for the missing element
wh$set_header_footer(

header = NA,

footer = NA,

even_header = NA,

even_footer = NA,

first_header = c("FIRST ONLY L", NA, "FIRST ONLY R"),

first_footer = c("FIRST ONLY L”, NA, "FIRST ONLY R")

)

Variant b
this will keep the first header / footer only and will use the missing
element from the original header / footer
wb$set_header_footer(
first_header = c("FIRST ONLY L", NA, "FIRST ONLY R"),
first_footer = c(”"FIRST ONLY L", NA, "FIRST ONLY R")
)

wb_set_last_modified_by
Modify author in the metadata of a workbook

Description

Just a wrapper of wb$set_last_modified_by()

Usage
wb_set_last_modified_by(wb, name, ...)
Arguments
wb A workbook object
name A string object with the name of the LastModifiedBy-User
additional arguments
See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet (), wb_add_data(),wb_add_data_table(), wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_copy_cells(), wb_freeze_pane(), wo_merge_cells(), wb_save(), wb_workbook ()

wb_set_sheetview

Examples

wb <- wb_workbook ()
wb_set_last_modified_by(wb, "test”)

189

wb_set_sheetview Modify the default view of a worksheet

Description

This helps set a worksheet’s appearance, such as the zoom, whether to show grid lines

Usage

wb_set_sheetview(
wb,
sheet = current_sheet(),
color_id = NULL,
default_grid_color = NULL,
right_to_left = NULL,
show_formulas = NULL,
show_grid_lines = NULL,
show_outline_symbols = NULL,
show_row_col_headers = NULL,
show_ruler = NULL,
show_white_space = NULL,
show_zeros = NULL,
tab_selected = NULL,
top_left_cell = NULL,
view = NULL,
window_protection = NULL,
workbook_view_id = NULL,
zoom_scale = NULL,
zoom_scale_normal = NULL,
zoom_scale_page_layout_view = NULL,
zoom_scale_sheet_layout_view = NULL,

)

Arguments
wb A Workbook object
sheet sheet

color_id, default_grid_color
Integer: A color, default is 64

right_to_left Logical: if TRUE column ordering is right to left

show_formulas Logical: if TRUE cell formulas are shown

190 wb_set_sheetview

show_grid_lines

Logical: if TRUE the worksheet grid is shown
show_outline_symbols

Logical: if TRUE outline symbols are shown
show_row_col_headers

Logical: if TRUE row and column headers are shown

show_ruler Logical: if TRUE a ruler is shown in page layout view
show_white_space
Logical: if TRUE margins are shown in page layout view

show_zeros Logical: if FALSE cells containing zero are shown blank if show_formulas =
FALSE

tab_selected Integer: zero vector indicating the selected tab
top_left_cell Cell: the cell shown in the top left corner / or top right with rightToLeft

view View: "normal", "pageBreakPreview" or "pageLayout"
window_protection
Logical: if TRUE the panes are protected
workbook_view_id
integer: Pointing to some other view inside the workbook
zoom_scale, zoom_scale_normal, zoom_scale_page_layout_view,
zoom_scale_sheet_layout_view
Integer: the zoom scale should be between 10 and 400. These are values for
current, normal etc.

additional arguments

Value

The wbWorkbook object, invisibly

Examples

wb <- wb_workbook () $add_worksheet ()

wb$set_sheetview(
zoom_scale = 75,
right_to_left = FALSE,
show_formulas = TRUE,
show_grid_lines = TRUE,
show_outline_symbols = FALSE,
show_row_col_headers = TRUE,
show_ruler = TRUE,
show_white_space = FALSE,
tab_selected = 1,
top_left_cell = "B1",
view = "normal”,
window_protection = TRUE

wb_to_df 191

wb_to_df Create a data frame from a Workbook

Description

Simple function to create a data.frame from a sheet in workbook. Simple as in it was simply
written down. read_x1sx() and wb_read() are just internal wrappers of wb_to_df () intended for
people coming from other packages.

Usage
wb_to_df(
file,
sheet,
start_row = NULL,
start_col = NULL,
row_names = FALSE,

col_names = TRUE,
skip_empty_rows = FALSE,
skip_empty_cols = FALSE,

skip_hidden_rows = FALSE,
skip_hidden_cols = FALSE,
rows = NULL,

cols = NULL,

detect_dates = TRUE,

na = "#N/A",
fill_merged_cells = FALSE,
dims,

show_formula = FALSE,
convert = TRUE,

types,

named_region,
keep_attributes = FALSE,
check_names = FALSE,
show_hyperlinks = FALSE,
apply_numfmts = FALSE,

)

read_x1sx(

file,

sheet,

start_row = NULL,
start_col = NULL,
row_names = FALSE,
col_names = TRUE,
skip_empty_rows = FALSE,

192 wb_to_df

skip_empty_cols = FALSE,
rows = NULL,

cols = NULL,

detect_dates = TRUE,
named_region,

na = "#N/A",
fill_merged_cells = FALSE,
check_names = FALSE,
show_hyperlinks = FALSE,

)

wb_read(
file,
sheet = 1,
start_row = NULL,

start_col = NULL,
row_names = FALSE,
col_names = TRUE,
skip_empty_rows = FALSE,
skip_empty_cols = FALSE,
rows = NULL,

cols = NULL,
detect_dates = TRUE,
named_region,

na = "NA",

check_names = FALSE,
show_hyperlinks = FALSE,

)
Arguments
file An xIsx file, wbWorkbook object or URL to xIsx file.
sheet Either sheet name or index. When missing the first sheet in the workbook is
selected.
start_row first row to begin looking for data.
start_col first column to begin looking for data.
row_names If TRUE, the first col of data will be used as row names.
col_names If TRUE, the first row of data will be used as column names.

skip_empty_rows

If TRUE, empty rows are skipped.
skip_empty_cols

If TRUE, empty columns are skipped.
skip_hidden_rows

If TRUE, hidden rows are skipped.

wb_to_df 193

skip_hidden_cols
If TRUE, hidden columns are skipped.

rows A numeric vector specifying which rows in the xlIsx file to read. If NULL, all rows
are read.
cols A numeric vector specifying which columns in the xIsx file to read. If NULL, all

columns are read.

detect_dates If TRUE, attempt to recognize dates and perform conversion.

na Defines values to be treated as NA. Can be a character vector of strings or a
named list: list(strings = ..., numbers = ...). Blank cells are always converted to
NA.

fill_merged_cells
If TRUE, the value in a merged cell is given to all cells within the merge.

dims Character string of type "A1:B2" as optional dimensions to be imported.
show_formula If TRUE, the underlying spreadsheet formulas are shown.
convert If TRUE, a conversion to dates and numerics is attempted.

types A named numeric indicating, the type of the data. Names must match the re-
turned data. See Details for more.

named_region Character string with a named_region (defined name or table). If no sheet is
selected, the first appearance will be selected. See wb_get_named_regions()

keep_attributes
If TRUE additional attributes are returned. (These are used internally to define a
cell type.)

check_names If TRUE then the names of the variables in the data frame are checked to ensure
that they are syntactically valid variable names.

show_hyperlinks
If TRUE instead of the displayed text, hyperlink targets are shown.

apply_numfmts If TRUE numeric formats are applied if detected.

additional arguments

Details

The returned data frame will have named rows matching the rows of the worksheet. With col_names
= FALSE the returned data frame will have column names matching the columns of the worksheet.
Otherwise the first row is selected as column name.

Depending if the R package hms is loaded, wb_to_df () returns hms variables or string variables in
the hh:mm: ss format.

The types argument can be a named numeric or a character string of the matching R variable type.
Either c(foo =1) or c(foo = "numeric").

* 0: character

* 1: numeric

* 2: Date
3: POSIXct (datetime)

194 wb_to_df

* 4: logical

If no type is specified, the column types are derived based on all cells in a column within the selected
data range, excluding potential column names. If keep_attr is TRUE, the derived column types can
be inspected as an attribute of the data frame.

wb_to_df () will not pick up formulas added to a workbook object via wb_add_formula(). This is
because only the formula is written and left to be evaluated when the file is opened in a spreadsheet
software. Opening, saving and closing the file in a spreadsheet software will resolve this.

Before release 1.15, datetime variables (in ’yyyy-mm-dd hh:mm:ss’ format) were imported using
the user’s local system timezone (Sys.timezone()). This behavior has been updated. Now, all
datetime variables are imported with the timezone set to "UTC". If automatic date detection and
conversion are enabled but the conversion is unsuccessful (for instance, in a column containing
a mix of data types like strings, numbers, and dates) dates might be displayed as a Unix times-
tamp. Usually they are converted to character for character columns. If date detection is dis-
abled, dates will show up as a spreadsheet date format. To convert these, you can use the functions
convert_date(), convert_datetime(), or convert_hms(). If types are specified, date detection
is disabled.

You can use wildcards for all available columns or rows in dims by using + and -. For example,
dims = "A-:+9" will read everything from the first row in column A through the last column in row
9. This makes it unnecessary to update dimensions when working with files whose sizes change
frequently.

The function to apply numeric formats was not extensively tested for numeric equality with spread-
sheet software. There might be differences and the function has limited support for builtin styles.

See Also

wb_get_named_regions(), openxlsx2

Examples

HHHHHHAREEE AR AR R

numerics, dates, missings, bool and string

example_file <- system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
wb1 <- wb_load(example_file)

import workbook
wb_to_df (wb1)

do not convert first row to column names
wb_to_df (wb1, col_names = FALSE)

do not try to identify dates in the data
wb_to_df (wb1, detect_dates = FALSE)

return the underlying spreadsheet formula instead of their values
wb_to_df (wb1, show_formula = TRUE)

read dimension without colNames
wb_to_df (wb1, dims = "A2:C5", col_names = FALSE)

wb_update_table 195

read selected cols
wb_to_df(wb1, cols = c("A:B", "G"))

read selected rows
wb_to_df (wb1, rows = c(2, 4, 6))

convert characters to numerics and date (logical too?)
wb_to_df (wb1, convert = FALSE)

erase empty rows from dataset
wb_to_df (wb1, skip_empty_rows = TRUE)

erase empty columns from dataset
wb_to_df (wb1, skip_empty_cols = TRUE)

convert first row to rownames
wb_to_df (wb1, sheet = 2, dims = "C6:G9"”, row_names = TRUE)

define type of the data.frame
wb_to_df (wb1, cols = c(2, 5), types = c("Var1” = @, "Var3" = 1))

start in row 5
wb_to_df (wb1, start_row = 5, col_names = FALSE)

na string
wb_to_df (wb1, na = "a")

read names from row two and data starting from row 4
wb_to_df(wb1, dims = "B2:C2,B4:C+")

S HHHHRHEHERHE AR R B RHRHEHRERHEHREHE R RHEARHHEEHERE SRR

Named regions

file_named_region <- system.file("extdata”, "namedRegions3.xlsx"”, package = "openxlsx2")
wb2 <- wb_load(file_named_region)

read dataset with named_region (returns global first)
wb_to_df (wb2, named_region = "MyRange”, col_names = FALSE)

read named_region from sheet
wb_to_df (wb2, named_region = "MyRange", sheet = 4, col_names = FALSE)

read_x1lsx() and wb_read()
example_file <- system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
read_xlsx(file = example_file)

df1 <- wb_read(file = example_file, sheet
df2 <- wb_read(file = example_file, sheet

1
1, rows = c(1, 3, 5), cols = 1:3)

wb_update_table Update a data table position in a worksheet

196 wb_workbook

Description

Update the position of a data table, possibly written using wb_add_data_table()

Usage

wb_update_table(wb, sheet = current_sheet(), dims = "A1"”, tabname)

Arguments
wb A workbook
sheet A worksheet
dims Cell range used for new data table.
tabname A table name
Details

Be aware that this function does not alter any filter. Excluding or adding rows does not make rows
appear nor will it hide them.

Examples

wb <- wb_workbook()$add_worksheet () $add_data_table(x = mtcars)
wb$update_table(tabname = "Tablel”, dims = "A1:J4")

wb_workbook Create a new Workbook object

Description

This function initializes and returns a wbWorkbook object, which is the core structure for building
and modifying openxml files (. x1sx) in openx1lsx2.

Usage

wb_workbook (
creator = NULL,
title = NULL,
subject = NULL,
category = NULL,
datetime_created = Sys.time(),
datetime_modified = NULL,
theme = NULL,
keywords = NULL,
comments = NULL,
manager = NULL,
company = NULL,

wb_workbook 197

Arguments

creator Creator of the workbook (your name). Defaults to login username or options(”openxlsx2.creator”)
if set.
title, subject, category, keywords, comments, manager, company
Workbook property, a string.
datetime_created
The time of the workbook is created
datetime_modified
The time of the workbook was last modified

theme Optional theme identified by string or number. See Details for options.

additional arguments

Details

You can define various metadata properties at creation, such as the creator, title, subject, and
timestamps. You can also specify a workbook theme.

The returned wb_workbook () object is an R6: :R6Class() instance. Once created, the standard
workflow is to immediately add a worksheet using wb_add_worksheet (). From there, you can
populate the sheet with data (wb_add_data()), or formulas (wb_add_formula()), and apply styling
or other elements.

non

theme can be one of "Atlas", "Badge", "Berlin", "Celestial", "Crop", "Depth", "Droplet", "Facet",
"Feathered", "Gallery", "Headlines", "Integral”, "Ion", "lon Boardroom", "LibreOffice", "Madi-
son", "Main Event", "Mesh", "Office 2007 - 2010 Theme", "Office 2013 - 2022 Theme", "Office
Theme", "Old Office Theme", "Organic", "Parallax", "Parcel", "Retrospect”, "Savon", "Slice", "Va-
por Trail", "View", "Wisp", "Wood Type"

Value

A wbWorkbook object

See Also

Other workbook wrappers: base_font-wb, col_widths-wb, creators-wb, grouping-wb, row_heights-wb,
wb_add_chartsheet(),wb_add_data(), wb_add_data_table(),wb_add_formula(), wb_add_hyperlink(),
wb_add_pivot_table(),wb_add_slicer(), wb_add_worksheet(),wb_base_colors, wb_clone_worksheet(),
wb_copy_cells(),wb_freeze_pane(),wb_merge_cells(),wb_save(),wb_set_last_modified_by()

Examples

Create a new workbook
wb <- wb_workbook ()

Set Workbook properties
wb <- wb_workbook(

creator = "Me",
title = "Expense Report”,
subject = "Expense Report - 2022 Q1",

category = "sales”

198 write_xIsx

)

Cloning a workbook
wb1 <- wb_workbook ()
wb2 <- wbl$clone(deep = TRUE)

write_x1lsx Write data to an xlsx file

Description

Write a data frame or list of data frames to an xIsx file.

Usage
write_xlsx(x, file, as_table = FALSE, ...)
Arguments
X An object or a list of objects that can be handled by wb_add_data() to write to
file.
file An optional xIsx file name. If no file is passed, the object is not written to disk
and only a workbook object is returned.
as_table If TRUE, will write as a data table, instead of data.

Arguments passed on to wb_workbook, wb_add_worksheet, wb_add_data_table,
wb_add_data, wb_freeze_pane, wb_set_col_widths, wb_save, wb_set_base_font

creator Creator of the workbook (your name). Defaults to login username or
options("openxlsx2.creator") if set.

sheet A name for the new worksheet

grid_lines A logical. If FALSE, the worksheet grid lines will be hidden.

tab_color Color of the sheet tab. A wb_color(), a valid color (belonging to
grDevices: :colors()) or a valid hex color beginning with "#".

zoom The sheet zoom level, a numeric between 10 and 400 as a percentage. (A
zoom value smaller than 10 will default to 10.)

total_row logical. With the default FALSE no total row is added.
start_col A vector specifying the starting column to write x to.
start_row A vector specifying the starting row to write x to.
col_names If TRUE, column names of x are written.

row_names If TRUE, the row names of x are written.

na Value used for replacing NA values from x. Default looks if options(”openxlsx2.na")
is set. Otherwise na_strings() uses the special #N/A value within the
workbook.

first_active_row Top row of active region
first_active_col Furthest left column of active region

write_xIsx 199

first_row If TRUE, freezes the first row (equivalent to first_active_row =
2)

first_col If TRUE, freezes the first column (equivalent to first_active_col
= 2)

widths Width to set cols to specified column width or "auto” for automatic
sizing. widths is recycled to the length of cols. openxlsx2 sets the default
width is 8.43, as this is the standard in some spreadsheet software. See
Details for general information on column widths.

overwrite If FALSE, will not overwrite when file already exists.
font_size Font size

font_color Font color

font_name Name of a font

Details

columns of x with class Date or POSIXt are automatically styled as dates and datetimes respectively.

Value

A workbook object

Examples

write to working directory
write_xlsx(iris, file = temp_xlsx(), col_names = TRUE)

write_xlsx(iris,
file = temp_x1lsx(),
col_names = TRUE

)

Lists elements are written to individual worksheets, using list names as sheet names if available
1 <- list("IRIS" = iris, "MTCARS" = mtcars, matrix(runif(1000), ncol = 5))
write_x1lsx(1l, temp_xlsx(), col_widths = c(NA, "auto”, "auto"))

different sheets can be given different parameters
write_x1lsx(l, temp_xlsx(),

start_col = c(1, 2, 3), start_row = 2,

as_table = c¢(TRUE, TRUE, FALSE), with_filter = c(TRUE, FALSE, FALSE)
)

specify column widths for multiple sheets

write_x1sx(l, temp_xlsx(), col_widths = 20)

write_xlsx(1l, temp_xlsx(), col_widths = 1list(100, 200, 300))

write_xlsx(l, temp_xlsx(), col_widths = list(rep(10, 5), rep(8, 11), rep(5, 5)))

set base font color to automatic so LibreOffice dark mode works as expected
write_x1sx(l, temp_xlsx(), font_color = wb_color(auto = TRUE))

200 x1_open

x1_open Open an xlsx file or a woWorkbook object

Description

This function tries to open a Microsoft Excel (xls/xlsx) file or, an wbWorkbook with the proper
application, in a portable manner.

On Windows it uses base: :shell.exec() (Windows only function) to determine the appropriate
program.

On Mac, (c) it uses system default handlers, given the file type.

On Linux, it searches (via which) for available xIs/x1sx reader applications (unless options('openxlsx2.excelApp')
is set to the app bin path), and if it finds anything, sets options('openxlsx2.excelApp') to the

program chosen by the user via a menu (if many are present, otherwise it will set the only available).

Currently searched for apps are Libreoffice/Openoffice (soffice bin), Gnumeric (gnumeric), Cal-

ligra Sheets (calligrasheets) and ONLYOFFICE (onlyoffice-desktopeditors).

Usage
x1_open(x, interactive = NA, flush = FALSE)
S3 method for class 'wbWorkbook'
x1_open(x, interactive = NA, flush = FALSE)
Default S3 method:
x1_open(x, interactive = NA, flush = FALSE)
Arguments
X A path to a spreadsheet file or wbWorkbook object. This can be any file type
that can be opened in the corresponding software.
interactive If FALSE will throw a warning and not open the path. This can be manually set to
TRUE, otherwise when NA (default) uses the value returned from base: :interactive()
flush If TRUE the flush argument of wb_save () will be used to create the output file.
Applies only to workbooks.
Examples

if (interactive()) {
xlsx_file <- system.file("extdata”, "openxlsx2_example.xlsx", package = "openxlsx2")
x1_open(xlsx_file)

(not yet saved) Workbook example

wb <- wb_workbook ()

x <- mtcars[1:6,]

wb$add_worksheet ("Cars")

wb$add_data("Cars”, x, start_col = 2, start_row = 3, row_names = TRUE)

xml_add_child

x1_open(wb)
3

201

xml_add_child append xml child to node

Description

append xml child to node

Usage

xml_add_child(xml_node, xml_child, level, pointer = FALSE,

Arguments
xml_node xml_node
xml_child xml_child
level optional level, if missing the first child is picked
pointer pointer
additional arguments passed to read_xml1()
Examples

xml_node <- "<a>"
xml_child <- "<c¢/>"

add child to first level node
xml_add_child(xml_node, xml_child)

add child to second level node as request
xml_node <- xml_add_child(xml_node, xml_child, level = c("b"))

add child to third level node as request
xml_node <- xml_add_child(xml_node, "<d/>", level = c("b", "c"))

202 xml_attr_ mod

xml_attr_mod adds or updates attribute(s) in existing xml node

Description

Needs xml node and named character vector as input. Modifies the arguments of each first child
found in the xml node and adds or updates the attribute vector.

Usage

xml_attr_mod(
xml_content,
xml_attributes,
escapes = FALSE,
declaration = FALSE,
remove_empty_attr = TRUE

Arguments

xml_content some valid xml_node
xml_attributes R vector of named attributes
escapes bool if escapes should be used

declaration bool if declaration should be imported
remove_empty_attr
bool remove empty attributes or ignore them

Details

"nn

If a named attribute in xml_attributesis "" remove the attribute from the node. If xml1_attributes
contains a named entry found in the xml node, it is updated else it is added as attribute.

Examples

add single node
xml_node <- "openxlsx2"
xml_attr <- c(qux = "quux")
"openxlsx2<b qux=\"quux\"/>"
xml_attr_mod(xml_node, xml_attr)

update node and add node
xml_node <- "openxlsx2"
xml_attr <- c(foo = "baz", qux = "quux")
"openxlsx2<b foo=\"baz\" qux=\"quux\"/>"
xml_attr_mod(xml_node, xml_attr)

remove node and add node

xml_node_create 203

xml_node <- "openxlsx2"
xml_attr <- c(foo = "", qux = "quux")

"openxlsx2<b qux=\"quux\"/>"
xml_attr_mod(xml_node, xml_attr)

xml_node_create create xml_node from R objects

Description

takes xml_name, xml_children and xml_attributes to create a new xml_node.

Usage

xml_node_create(
xml_name,
xml_children = NULL,
xml_attributes = NULL,
escapes = FALSE,
declaration = FALSE

Arguments

xml_name the name of the new xml_node
xml_children character vector children attached to the xml_node

xml_attributes named character vector of attributes for the xml_node

escapes bool if escapes should be used
declaration bool if declaration should be imported
Details

if xml_children or xml_attributes should be empty, use NULL

Examples

non

xml_name <- "a
Il<a/>ll
xml_node_create(xml_name)

xml_child <- "openxlsx”
"<a>openxlsx"
xml_node_create(xml_name, xml_children = xml_child)

xml_attr <- c(foo = "baz", qux = "quux")
""
xml_node_create(xml_name, xml_attributes = xml_attr)

204 xml _rm_child

"openxlsx"
xml_node_create(xml_name, xml_children = xml_child, xml_attributes = xml_attr)

xml_rm_child remove xml child to node

Description

remove xml child to node

Usage
xml_rm_child(xml_node, xml_child, level, which = @, pointer = FALSE, ...)
Arguments
xml_node xml_node
xml_child xml_child
level optional level, if missing the first child is picked
which optional index which node to remove, if multiple are available. Default disabled
all will be removed
pointer pointer
additional arguments passed to read_xml1()
Examples

xml_node <- "<a><c><d/></c><c/>"
xml_child <- "c"

xml_rm_child(xml_node, xml_child)
xml_rm_child(xml_node, xml_child, level = c("b"))

xml_rm_child(xml_node, "d", level = c("b", "c"))

Index

* comments
person-wb, 44
wb_add_comment, 109

* style creating functions
create_border, 13
create_cell_style, 14
create_colors_xml, 17
create_dxfs_style, 18
create_fill, 20
create_font, 21
create_numfmt, 24
create_tablestyle, 29

x styles
wb_add_border, 102
wb_add_cell_style, 105
wb_add_fill, 124
wb_add_font, 125
wb_add_named_style, 137
wb_add_numfmt, 138
wb_cell_style, 155

* workbook styling functions
base_font-wb, 7
wb_add_dxfs_style, 122
wb_add_style, 149
wb_base_colors, 154

* workbook wrappers
base_font-wb, 7
col_widths-wb, 9
creators-wb, 32
grouping-wb, 37
row_heights-wb, 50
wb_add_chartsheet, 107
wb_add_data, 113
wb_add_data_table, 116
wb_add_formula, 127
wb_add_hyperlink, 131
wb_add_pivot_table, 141
wb_add_slicer, 145
wb_add_worksheet, 151

wb_base_colors, 154
wb_clone_worksheet, 157
wb_copy_cells, 161
wb_freeze_pane, 166
wb_merge_cells, 169
wb_save, 182
wb_set_last_modified_by, 188
wb_workbook, 196

+ worksheet content functions
col_widths-wb, 9
filter-wb, 34
grouping-wb, 37
named_region-wb, 40
row_heights-wb, 50

wb_add_conditional_formatting, 110

wb_add_data, 113
wb_add_data_table, 116
wb_add_formula, 127
wb_add_hyperlink, 131
wb_add_pivot_table, 141
wb_add_slicer, 145
wb_add_thread, 150
wb_freeze_pane, 166
wb_merge_cells, 169

+.fmt_txt (fmt_txt), 35

.Deprecated, 43

[.wb_data (wb_data), 162

active_sheet-wb, 4
apply_numfmt, 5
as.character.fmt_txt (fmt_txt), 35
as_xml, 6

base::interactive(), 70, 171, 200
base_font-wb, 7

clean_worksheet_name, 8
col2int, 9
col_widths-wb, 9
convert_date, 11

206

convert_date(), 194
convert_datetime (convert_date), 11
convert_datetime(), 11, 194
convert_hms (convert_date), 11
convert_hms(), 194
convert_to_excel_date, 12
convert_to_excel_date(), 43
convertToExcelDate(), 43
create_border, 13, 16, 17, 19, 20, 22, 24, 31
create_border(), 103, 149
create_cell_style, 14, 14, 17, 19, 20, 22,
24, 31
create_cell_style(), 24, 139, 149
create_colors_xml, 14, 16, 17, 19, 20, 22,
24,31
create_colours_xml (create_colors_xml),
17
create_comment(), 43
create_dxfs_style, 14, 16, 17, 18, 20, 22,
24,31
create_dxfs_style(), 123, 149
create_fill, 14, 16, 17, 19, 20, 22, 24, 31
create_fill(), 149
create_font, /4, 16, 17, 19, 20, 21, 24, 31
create_font(), 37, 149
create_hyperlink, 23
create_hyperlink(), 132
create_numfmt, /4, 16, 17, 19, 20, 22, 24, 31
create_numfmt (), 16, 138, 149
create_pivottablestyle
(create_tablestyle), 29
create_shape, 25
create_sparklines, 27
create_sparklines(), 7149
create_tablestyle, 14, 16, 17, 19, 20, 22,
24,29
creators-wb, 32
current_sheet (waivers), 54

delete_data(), 42
dims_helper, 33
dims_to_rowcol (dims_helper), 33

filter-wb, 34
fmt_txt, 35
fmt_txt(), 21, 25, 109, 126, 160

grDevices::colors(), 17, 159
grDevices: :dev.copy(), 144

INDEX

grDevices: :palette(), 17
grouping-wb, 37

int2col, 39

na_strings (waivers), 54
na_strings(), 114, 118, 198
named_region-wb, 40
next_sheet (waivers), 54

openxlsx2, 194
openxlsx2-deprecated, 42
openxlsx2_options, 43

person-wb, 44
print.fmt_txt (fmt_txt), 35
print.pugi_xml, 45
properties-wb, 46
pugixml, 47

R6::R6Class(), 197

read_x1sx (wb_to_df), 191
read_xml, 48
remove_comment (), 42
row_heights-wb, 50
rowcol_to_dims (dims_helper), 33
rowcol_to_dims(), 33

sheet_names-wb, 51
sheet_visibility-wb, 52
styles_on_sheet, 53

temp_x1sx, 53
utils::zip(), 182
validate_dims (dims_helper), 33

waivers, 54
wb_add_border, 102, 106, 125, 127, 138, 140,
155
wb_add_border(), 14
wb_add_cell_style, 103, 105, 125, 127, 138,
140, 155
wb_add_cell_style(), 16, 137
wb_add_cell_style(wrap_text = TRUE), /0
wb_add_chart_xml, 108
wb_add_chart_xml (), 122, 134, 136, 144
wb_add_chartsheet, 8, 10, 32, 38, 50, 107,
115,119,129, 132, 143, 147, 153,

INDEX

154,158, 161, 167, 170, 183, 188,
197
wb_add_comment, 109
wb_add_comment (), 42,44, 151, 160
wb_add_conditional_formatting, 10, 34,
38,41, 50,110, 115,119, 129, 132,
143,147, 151, 167, 170
wb_add_creators (creators-wb), 32
wb_add_data, 8, 10, 32, 34, 38, 41, 50, 108,
113,113,119, 129, 132, 143, 147,
151,153, 154,158, 161, 167, 170,
183, 188, 197, 198
wb_add_data(), 12, 34,42, 115, 118, 197, 198
wb_add_data_table, 8, 10, 32, 34, 38, 41, 50,
108, 113,115,116, 129, 132, 143,
147,151, 153, 154, 158, 161, 167,
170, 183, 188, 197, 198
wb_add_data_table(), 34,42, 115, 118, 196
wb_add_data_validation, 119
wb_add_drawing, 121
wb_add_drawing(), 26, 108, 134, 144
wb_add_dxfs_style, 8, 122, 149, 154
wb_add_dxfs_style(), 19, 111
wb_add_fill, 103, 106, 124, 127, 138, 140,
155
wb_add_fill(), 20
wb_add_filter (filter-wb), 34
wb_add_font, 103, 106, 125, 125, 138, 140,
155
wb_add_font(), 22
wb_add_form_control, 130
wb_add_formula, 8, 10, 32, 34, 38, 41, 50,
108,113,115, 119,127,132, 143,
147,151, 153, 154, 158, 161, 167,
170, 183, 188, 197
wb_add_formula(), 23,42, 114, 118, 129,
194, 197
wb_add_hyperlink, 8, 10, 32, 34, 38, 41, 50,
108, 113,115,119, 129,131, 143,
147,151, 153, 154, 158, 161, 167,
170, 183, 188, 197
wb_add_hyperlink(), 23
wb_add_ignore_error, 132
wb_add_image, 133, 136
wb_add_image (), 108, 122, 144
wb_add_mips, 135
wb_add_mips(), 135
wb_add_mschart, 136

207

wb_add_mschart(), 108, 122, 134, 136, 144,

163
wb_add_named_region (named_region-wb),
40
wb_add_named_style, 103, 106, 125, 127,
137, 140, 155
wb_add_numfmt, 103, 106, 125, 127, 138, 138,
155

wb_add_numfmt (), 24
wb_add_page_break, 140
wb_add_person (person-wb), 44
wb_add_person(), 150
wb_add_pivot_table, 8, 10, 32, 34, 38, 41,
50,108, 113,115,119, 129, 132,
141, 147,151, 153, 154, 158, 161,
167,170, 183, 188, 197
wb_add_pivot_table(), 163
wb_add_plot, 136, 144
wb_add_plot(), 108, 122, 134
wb_add_slicer, 8, 10, 32, 34, 38, 41, 50, 108,
113,115,119, 129, 132, 143, 145,
151,153, 154, 158, 161, 167, 170,
183, 188, 197
wb_add_slicer(), 142
wb_add_sparklines, 148
wb_add_sparklines(), 27
wb_add_style, 8, 123, 149, 154
wb_add_style(), 19
wb_add_thread, 10, 34, 38,41, 50, 113, 115,
119,129, 132, 143, 147, 150, 167,
170
wb_add_thread(), 44, 45, 56, 109
wb_add_timeline (wb_add_slicer), 145
wb_add_worksheet, 8, 10, 32, 38, 50, 108,
115,119,129, 132, 143, 147, 151,
154,158, 161, 167, 170, 183, 188,
197, 198
wb_add_worksheet (), 140, 186, 197
wb_base_colors, 8, 10, 32, 38, 50, 108, 115,
119,123,129, 132, 143, 147, 149,
153,154, 158, 161, 167, 170, 183,
188, 197
wb_cell_style, 103, 106, 125, 127, 138, 140,
155
wb_clean_sheet, 156
wb_clean_sheet(), 42
wb_clone_sheet_style, 157
wb_clone_worksheet, 8, 10, 32, 38, 50, 108,

208

115,119,129, 132, 143, 147, 153
154,157, 161, 167, 170, 183, 188,
197
wb_color, 158
wb_color(), 13, 14,17, 21, 25, 36, 94, 103,
107,124, 126, 152, 198
wb_colour (wb_color), 158
wb_comment, 160
wb_comment (), 43, 109
wb_copy_cells, 8, 10, 32, 38, 50, 108, 115,
119,129, 132, 143, 147, 153, 154,
158,161, 167, 170, 183, 188, 197
wb_data, 141, 146, 161, 162
wb_data(), 136, 141, 143, 161
wb_dims, 163
wb_dims(), 33,41, 43
wb_freeze_pane, 8, 10, 32, 34, 38, 41, 50,
108, 113,115,119, 129, 132, 143,
147,151, 153, 154, 158, 161, 166,
170, 183, 188, 197, 198
wb_get_active_sheet (active_sheet-wb), 4
wb_get_active_sheet(), 54
wb_get_base_colors (wb_base_colors), 154
wb_get_base_colors(), 159
wb_get_base_colours (wb_base_colors),
154
wb_get_base_font (base_font-wb), 7
wb_get_base_font(), 7, I8
wb_get_bookview (wb_set_bookview), 183
wb_get_cell_style (wb_cell_style), 155
wb_get_comment (wb_add_comment), 109
wb_get_creators (creators-wb), 32
wb_get_mips (wb_add_mips), 135
wb_get_mips(), 135
wb_get_named_regions (named_region-wb),
40
wb_get_named_regions(), 193, 194
wb_get_order (wb_order), 171
wb_get_person (person-wb), 44
wb_get_person(), 150
wb_get_properties (properties-wb), 46
wb_get_selected (active_sheet-wb), 4
wb_get_sheet_names (sheet_names-wb), 51
wb_get_sheet_visibility
(sheet_visibility-wb), 52
wb_get_tables, 167
wb_get_tables(), 41, 180
wb_get_thread (wb_add_thread), 150

INDEX

wb_grid_lines (wb_set_grid_lines), 185

wb_grid_lines(), 43

wb_group_cols (grouping-wb), 37

wb_group_cols(), 10

wb_group_rows (grouping-wb), 37

wb_load, 168

wb_load(), 41, 54

wb_merge_cells, 8, 10, 32, 34, 38, 41, 50,
108, 113,115,119, 129, 132, 143,
147,151, 153, 154, 158, 161, 167,
169, 183, 188, 197

wb_open, 171

wb_order, 171

wb_page_setup, 172

wb_page_setup(), 152, 175

wb_protect, 178

wb_protect_worksheet, 179

wb_read (wb_to_df), 191

wb_remove_bookview (wb_set_bookview),
183

wb_remove_col_widths (col_widths-wb), 9

wb_remove_comment (wb_add_comment), 109

wb_remove_comment(), 42

wb_remove_conditional_formatting
(wb_add_conditional_formatting),
110

wb_remove_creators (creators-wb), 32

wb_remove_filter (filter-wb), 34

wb_remove_hyperlink (wb_add_hyperlink),
131

wb_remove_named_region
(named_region-wb), 40

wb_remove_named_region(), 129

wb_remove_row_heights (row_heights-wb),
50

wb_remove_slicer (wb_add_slicer), 145

wb_remove_tables, 180

wb_remove_timeline (wb_add_slicer), 145

wb_remove_worksheet, 181

wb_save, 8, 10, 32, 38, 50, 108, 115, 119, 129,
132, 143, 147, 153, 154, 158, 161,
167, 170, 182, 188, 197, 198

wb_save(), 200

wb_set_active_sheet (active_sheet-wb), 4

wb_set_base_colors (wb_base_colors), 154

wb_set_base_colors(), 17

wb_set_base_colours (wb_base_colors),
154

INDEX

wb_set_base_font, /98
wb_set_base_font (base_font-wb), 7
wb_set_bookview, 183
wb_set_cell_style (wb_cell_style), 155
wb_set_cell_style_across
(wb_cell_style), 155
wb_set_col_widths, /98
wb_set_col_widths (col_widths-wb), 9
wb_set_creators (creators-wb), 32
wb_set_grid_lines, 185
wb_set_grid_lines(), 43
wb_set_header_footer, 186
wb_set_last_modified_by, 8, 10, 32, 38, 50,
108, 115,119, 129, 132, 143, 147,
153, 154, 158, 161, 167, 170, 183,
188, 197
wb_set_order (wb_order), 171
wb_set_page_setup (wb_page_setup), 172
wb_set_page_setup(), 175
wb_set_properties (properties-wb), 46
wb_set_row_heights (row_heights-wb), 50
wb_set_selected (active_sheet-wb), 4
wb_set_sheet_names (sheet_names-wb), 51
wb_set_sheet_visibility
(sheet_visibility-wb), 52
wb_set_sheetview, 189
wb_to_df, 191
wb_to_df (), 163, 168
wb_ungroup_cols (grouping-wb), 37
wb_ungroup_rows (grouping-wb), 37
wb_unmerge_cells (wb_merge_cells), 169
wb_update_table, 195
wb_workbook, 8, 10, 32, 38, 50, 108, 115, 119,
129, 132, 143, 147, 153, 154, 158,
161, 167, 170, 183, 188, 196, 198
wb_workbook (), 44, 46, 47, 54, 60, 197
wbWorkbook, 50, 51,54, 151, 168, 171, 184,
192, 196, 200
write_comment(), 42
write_data(), 42
write_datatable(), 42
write_formula(), 42
write_xlsx, 198

x1_open, 200
x1_open(), 171
xml_add_child, 201
xml_attr (pugixml), 47
xml_attr_mod, 202

xml_node (pugixml), 47
xml_node_create, 203
xml_node_name (pugixml), 47
xml_rm_child, 204
xml_value (pugixml), 47

209

	active_sheet-wb
	apply_numfmt
	as_xml
	base_font-wb
	clean_worksheet_name
	col2int
	col_widths-wb
	convert_date
	convert_to_excel_date
	create_border
	create_cell_style
	create_colors_xml
	create_dxfs_style
	create_fill
	create_font
	create_hyperlink
	create_numfmt
	create_shape
	create_sparklines
	create_tablestyle
	creators-wb
	dims_helper
	filter-wb
	fmt_txt
	grouping-wb
	int2col
	named_region-wb
	openxlsx2-deprecated
	openxlsx2_options
	person-wb
	print.pugi_xml
	properties-wb
	pugixml
	read_xml
	row_heights-wb
	sheet_names-wb
	sheet_visibility-wb
	styles_on_sheet
	temp_xlsx
	waivers
	wbWorkbook
	wb_add_border
	wb_add_cell_style
	wb_add_chartsheet
	wb_add_chart_xml
	wb_add_comment
	wb_add_conditional_formatting
	wb_add_data
	wb_add_data_table
	wb_add_data_validation
	wb_add_drawing
	wb_add_dxfs_style
	wb_add_fill
	wb_add_font
	wb_add_formula
	wb_add_form_control
	wb_add_hyperlink
	wb_add_ignore_error
	wb_add_image
	wb_add_mips
	wb_add_mschart
	wb_add_named_style
	wb_add_numfmt
	wb_add_page_break
	wb_add_pivot_table
	wb_add_plot
	wb_add_slicer
	wb_add_sparklines
	wb_add_style
	wb_add_thread
	wb_add_worksheet
	wb_base_colors
	wb_cell_style
	wb_clean_sheet
	wb_clone_sheet_style
	wb_clone_worksheet
	wb_color
	wb_comment
	wb_copy_cells
	wb_data
	wb_dims
	wb_freeze_pane
	wb_get_tables
	wb_load
	wb_merge_cells
	wb_open
	wb_order
	wb_page_setup
	wb_protect
	wb_protect_worksheet
	wb_remove_tables
	wb_remove_worksheet
	wb_save
	wb_set_bookview
	wb_set_grid_lines
	wb_set_header_footer
	wb_set_last_modified_by
	wb_set_sheetview
	wb_to_df
	wb_update_table
	wb_workbook
	write_xlsx
	xl_open
	xml_add_child
	xml_attr_mod
	xml_node_create
	xml_rm_child
	Index

