
Package ‘officer’
January 16, 2026

Type Package

Title Manipulation of Microsoft Word and PowerPoint Documents

Version 0.7.3

Description Access and manipulate 'Microsoft Word', 'RTF' and 'Microsoft
PowerPoint' documents from R. The package focuses on tabular and
graphical reporting from R; it also provides two functions that let
users get document content into data objects. A set of functions lets
add and remove images, tables and paragraphs of text in new or
existing documents. The package does not require any installation of
Microsoft products to be able to write Microsoft files.

License MIT + file LICENSE

URL https://ardata-fr.github.io/officeverse/,

https://davidgohel.github.io/officer/

BugReports https://github.com/davidgohel/officer/issues

Imports cli, dplyr, graphics, grDevices, openssl, R6, ragg, stats,
tidyr, utils, uuid, xml2 (>= 1.1.0), zip (>= 2.1.0)

Suggests devEMF, doconv (>= 0.3.0), gdtools, ggplot2, knitr, magick,
rmarkdown, rsvg, testthat, withr

Encoding UTF-8

RoxygenNote 7.3.3

Collate 'core_properties.R' 'custom_properties.R' 'defunct.R'
'dev-utils.R' 'docx_add.R' 'docx_comments.R' 'docx_cursor.R'
'docx_part.R' 'docx_replace.R' 'docx_section.R'
'docx_settings.R' 'docx_styles.R' 'docx_utils_funs.R'
'empty_content.R' 'formatting_properties.R' 'fortify_docx.R'
'fortify_pptx.R' 'knitr_utils.R' 'officer.R' 'ooxml.R'
'ooxml_block_objects.R' 'ooxml_run_objects.R'
'openxml_content_type.R' 'openxml_document.R' 'pack_folder.R'
'ph_location.R' 'post-proc.R' 'ppt_class_dir_collection.R'
'ppt_classes.R' 'ppt_notes.R' 'ppt_ph_dedupe_layout.R'
'ppt_ph_manipulate.R' 'ppt_ph_rename_layout.R'
'ppt_ph_with_methods.R' 'pptx_informations.R'

1

https://ardata-fr.github.io/officeverse/
https://davidgohel.github.io/officer/
https://github.com/davidgohel/officer/issues

2 Contents

'pptx_layout_helper.R' 'pptx_matrix.R' 'utils.R'
'pptx_slide_manip.R' 'read_docx.R' 'docx_write.R'
'read_docx_styles.R' 'read_pptx.R' 'read_xlsx.R'
'relationship.R' 'rtf.R' 'shape_properties.R' 'shorcuts.R'
'docx_append_context.R' 'utils-xml.R' 'deprecated.R' 'zzz.R'

NeedsCompilation no

Author David Gohel [aut, cre],
Stefan Moog [aut],
Mark Heckmann [aut] (ORCID: <https://orcid.org/0000-0002-0736-7417>),
ArData [cph],
Frank Hangler [ctb] (function body_replace_all_text),
Liz Sander [ctb] (several documentation fixes),
Anton Victorson [ctb] (fixes xml structures),
Jon Calder [ctb] (update vignettes),
John Harrold [ctb] (function annotate_base),
John Muschelli [ctb] (google doc compatibility),
Bill Denney [ctb] (ORCID: <https://orcid.org/0000-0002-5759-428X>,

function as.matrix.rpptx),
Nikolai Beck [ctb] (set speaker notes for .pptx documents),
Greg Leleu [ctb] (fields functionality in ppt),
Majid Eismann [ctb],
Wahiduzzaman Khan [ctb] (vectorization of remove_slide),
Hongyuan Jia [ctb] (ORCID: <https://orcid.org/0000-0002-0075-8183>),
Michael Stackhouse [ctb]

Maintainer David Gohel <david.gohel@ardata.fr>

Repository CRAN

Date/Publication 2026-01-16 17:50:02 UTC

Contents
add_sheet . 5
add_slide . 6
annotate_base . 7
as.matrix.rpptx . 8
block_caption . 9
block_gg . 10
block_list . 11
block_pour_docx . 12
block_section . 13
block_table . 14
block_toc . 15
body_add_blocks . 15
body_add_break . 16
body_add_caption . 17
body_add_docx . 18
body_add_fpar . 19

https://orcid.org/0000-0002-0736-7417
https://orcid.org/0000-0002-5759-428X
https://orcid.org/0000-0002-0075-8183

Contents 3

body_add_gg . 20
body_add_img . 21
body_add_par . 23
body_add_plot . 23
body_add_table . 25
body_add_toc . 26
body_append_start_context . 27
body_bookmark . 29
body_comment . 29
body_end_block_section . 30
body_end_section_columns . 31
body_end_section_columns_landscape . 32
body_end_section_continuous . 33
body_end_section_landscape . 34
body_end_section_portrait . 34
body_import_docx . 35
body_remove . 37
body_replace_all_text . 38
body_replace_gg_at_bkm . 40
body_replace_text_at_bkm . 42
body_set_default_section . 43
change_styles . 46
color_scheme . 47
cursor_begin . 48
docx_bookmarks . 50
docx_comments . 51
docx_dim . 52
docx_set_character_style . 53
docx_set_paragraph_style . 54
docx_set_settings . 55
docx_show_chunk . 57
docx_summary . 58
doc_properties . 60
empty_content . 61
external_img . 61
floating_external_img . 63
fpar . 65
fp_border . 66
fp_cell . 68
fp_par . 70
fp_tab . 72
fp_tabs . 73
fp_text . 74
ftext . 76
hyperlink_ftext . 77
layout_dedupe_ph_labels . 78
layout_default . 79
layout_properties . 80

4 Contents

layout_rename_ph_labels . 81
layout_summary . 83
length.rdocx . 84
length.rpptx . 84
media_extract . 85
move_slide . 86
notes_location_label . 87
notes_location_type . 87
officer . 88
on_slide . 89
open_file . 90
page_mar . 91
page_size . 92
phs_with . 93
ph_hyperlink . 94
ph_location . 95
ph_location_fullsize . 97
ph_location_id . 98
ph_location_label . 99
ph_location_left . 100
ph_location_right . 101
ph_location_template . 102
ph_location_type . 103
ph_remove . 105
ph_slidelink . 107
ph_with . 108
plot_instr . 114
plot_layout_properties . 115
pptx_summary . 117
print.rdocx . 118
print.rpptx . 119
print.rtf . 120
prop_section . 121
prop_table . 126
read_docx . 127
read_pptx . 131
read_xlsx . 132
remove_slide . 132
rtf_add . 134
rtf_doc . 136
run_autonum . 137
run_bookmark . 138
run_columnbreak . 139
run_comment . 140
run_footnote . 141
run_footnoteref . 142
run_linebreak . 143
run_pagebreak . 143

add_sheet 5

run_reference . 144
run_tab . 145
run_wordtext . 146
run_word_field . 147
section_columns . 148
set_autonum_bookmark . 148
set_doc_properties . 149
set_notes . 150
sheet_select . 151
shortcuts . 152
slide_size . 152
slide_summary . 153
slide_visible<- . 154
sp_line . 155
sp_lineend . 156
styles_info . 157
table_colwidths . 158
table_conditional_formatting . 159
table_layout . 160
table_stylenames . 160
table_width . 161
unordered_list . 162

Index 163

add_sheet Add a sheet

Description

Add a sheet into an xlsx worksheet.

Usage

add_sheet(x, label)

Arguments

x rxlsx object

label sheet label

Examples

my_ws <- read_xlsx()
my_pres <- add_sheet(my_ws, label = "new sheet")

6 add_slide

add_slide Add a slide

Description

Add a slide into a pptx presentation.

Usage

add_slide(x, layout = NULL, master = NULL, ..., .dots = NULL)

Arguments

x an rpptx object.

layout slide layout name to use. Can be ommited of a default layout is set via layout_default().

master master layout name where layout is located. Only required in case of several
masters if layout is not unique.

... Key-value pairs of the form "short form location" = object passed to phs_with.
See section "Short forms" in phs_with for details, available short forms and
examples.

.dots List of key-value pairs of the form list("short form location" = object).
Alternative to See phs_with for details.

See Also

print.rpptx(), read_pptx(), layout_summary(), plot_layout_properties(), ph_with(),
phs_with(), layout_default()

Other functions to manipulate slides: move_slide(), on_slide(), remove_slide(), set_notes()

Examples

x <- read_pptx()

layout_summary(x) # available layouts

x <- add_slide(x, layout = "Two Content")

x <- layout_default(x, "Title Slide") # set default layout for `add_slide()`
x <- add_slide(x) # uses default layout

use `...` to fill placeholders when adding slide
x <- add_slide(

x,
layout = "Two Content",
`Title 1` = "A title",
dt = "Jan. 26, 2025",
`body[2]` = "Body 2",

annotate_base 7

left = "Left side",
`6` = "Footer"

)

annotate_base Placeholder parameters annotation

Description

generates a slide from each layout in the base document to identify the placeholder indexes, types,
names, master names and layout names.

This is to be used when need to know what parameters should be used with ph_location* calls.
The parameters are printed in their corresponding shapes.

Note that if there are duplicated ph_label, you should not use ph_location_label(). Hint: You
can dedupe labels using layout_dedupe_ph_labels().

Usage

annotate_base(path = NULL, output_file = "annotated_layout.pptx")

Arguments

path path to the pptx file to use as base document or NULL to use the officer default

output_file filename to store the annotated powerpoint file or NULL to suppress generation

Value

rpptx object of the annotated PowerPoint file

See Also

Other functions for reading presentation information: color_scheme(), doc_properties(), layout_properties(),
layout_summary(), length.rpptx(), plot_layout_properties(), slide_size(), slide_summary()

Examples

To generate an anotation of the default base document with officer:
annotate_base(output_file = tempfile(fileext = ".pptx"))

To generate an annotation of the base document 'mydoc.pptx' and place the
annotated output in 'mydoc_annotate.pptx'
annotate_base(path = 'mydoc.pptx', output_file='mydoc_annotate.pptx')

8 as.matrix.rpptx

as.matrix.rpptx PowerPoint table to matrix

Description

Convert the data in an a ’PowerPoint’ table to a matrix or all data to a list of matrices.

Usage

S3 method for class 'rpptx'
as.matrix(
x,
...,
slide_id = NA_integer_,
id = NA_character_,
span = c(NA_character_, "fill")

)

Arguments

x The rpptx object to convert (as created by read_pptx())

... Ignored

slide_id The slide number to load from (NA indicates first slide with a table, NULL
indicates all slides and all tables)

id The table ID to load from (ignored it is.null(slide_id), NA indicates to load
the first table from the slide_id)

span How should col_span/row_span values be handled? NA means to leave the value
as NA, and "fill" means to fill matrix cells with the value.

Value

A matrix with the data, or if slide_id=NULL, a list of matrices

Examples

library(officer)
pptx_file <- system.file(package="officer", "doc_examples", "example.pptx")
z <- read_pptx(pptx_file)
as.matrix(z, slide_id = NULL)

block_caption 9

block_caption Caption block

Description

Create a representation of a caption that can be used for cross reference.

Usage

block_caption(label, style = NULL, autonum = NULL)

Arguments

label a scalar character representing label to display

style paragraph style name

autonum an object generated with function run_autonum

See Also

Other block functions for reporting: block_gg(), block_list(), block_pour_docx(), block_section(),
block_table(), block_toc(), fpar(), plot_instr(), unordered_list()

Examples

library(officer)

run_num <- run_autonum(seq_id = "tab", pre_label = "tab. ",
bkm = "mtcars_table")

caption <- block_caption("mtcars table",
style = "Normal",
autonum = run_num

)

doc_1 <- read_docx()
doc_1 <- body_add(doc_1, "A title", style = "heading 1")
doc_1 <- body_add(doc_1, "Hello world!", style = "Normal")
doc_1 <- body_add(doc_1, caption)
doc_1 <- body_add(doc_1, mtcars, style = "table_template")

print(doc_1, target = tempfile(fileext = ".docx"))

10 block_gg

block_gg ’ggplot’ block

Description

A simple wrapper to add a ’ggplot’ object as a png in a document. It produces an object of class
’block_gg’ with a corresponding method to_wml() that can be used to convert the object to a
WordML string.

Usage

block_gg(
value,
fp_p = fp_par(),
width = 6,
height = 5,
res = 300,
scale = 1,
unit = "in"

)

Arguments

value ’ggplot’ object

fp_p paragraph formatting properties, see fp_par()

width, height image size in units expressed by the unit argument. Defaults to "in"ches.

res resolution of the png image in ppi

scale Multiplicative scaling factor, same as in ggsave

unit One of the following units in which the width and height arguments are ex-
pressed: "in", "cm" or "mm".

See Also

Other block functions for reporting: block_caption(), block_list(), block_pour_docx(), block_section(),
block_table(), block_toc(), fpar(), plot_instr(), unordered_list()

Examples

library(officer)
if (require("ggplot2")) {

set.seed(2)
doc <- read_docx()

z <- body_append_start_context(doc)

for (i in seq_len(3)) {

block_list 11

df <- data.frame(x = runif(10), y = runif(10))
gg <- ggplot(df, aes(x = x, y = y)) + geom_point()

write_elements_to_context(
context = z,
block_gg(

value = gg
)

)
}

doc <- body_append_stop_context(z)

print(doc, target = tempfile(fileext = ".docx"))
}

block_list List of blocks

Description

A list of blocks can be used to gather several blocks (paragraphs, tables, ...) into a single object.
The result can be added into a Word document or a PowerPoint presentation.

Usage

block_list(...)

Arguments

... a list of blocks. When output is only for Word, objects of class external_img()
can also be used in fpar construction to mix text and images in a single para-
graph. Supported objects are: block_caption(), block_pour_docx(), block_section(),
block_table(), block_toc(), fpar(), plot_instr().

See Also

ph_with(), body_add_blocks(), fpar()

Other block functions for reporting: block_caption(), block_gg(), block_pour_docx(), block_section(),
block_table(), block_toc(), fpar(), plot_instr(), unordered_list()

Examples

block list ------

img.file <- file.path(R.home("doc"), "html", "logo.jpg")
fpt_blue_bold <- fp_text(color = "#006699", bold = TRUE)
fpt_red_italic <- fp_text(color = "#C32900", italic = TRUE)

12 block_pour_docx

This can be only be used in a MS word output as pptx does
not support paragraphs made of text and images.
(actually it can be used but image will not appear in the
pptx output)
value <- block_list(

fpar(ftext("hello world", fpt_blue_bold)),
fpar(ftext("hello", fpt_blue_bold), " ",

ftext("world", fpt_red_italic)),
fpar(

ftext("hello world", fpt_red_italic),
external_img(

src = img.file, height = 1.06, width = 1.39)))
value

doc <- read_docx()
doc <- body_add(doc, value)
print(doc, target = tempfile(fileext = ".docx"))

value <- block_list(
fpar(ftext("hello world", fpt_blue_bold)),
fpar(ftext("hello", fpt_blue_bold), " ",

ftext("world", fpt_red_italic)),
fpar(

ftext("blah blah blah", fpt_red_italic)))
value

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(doc, value, location = ph_location_type(type = "body"))
print(doc, target = tempfile(fileext = ".pptx"))

block_pour_docx External Word document placeholder

Description

Pour the content of a docx file in the resulting docx from an ’R Markdown’ document.

Usage

block_pour_docx(file)

Arguments

file external docx file path

block_section 13

See Also

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_section(),
block_table(), block_toc(), fpar(), plot_instr(), unordered_list()

Examples

library(officer)
docx <- tempfile(fileext = ".docx")
doc <- read_docx()
doc <- body_add(doc, iris[1:20,], style = "table_template")
print(doc, target = docx)

target <- tempfile(fileext = ".docx")
doc_1 <- read_docx()
doc_1 <- body_add(doc_1, block_pour_docx(docx))
print(doc_1, target = target)

block_section Section for ’Word’

Description

Create a representation of a section.

A section affects preceding paragraphs or tables; i.e. a section starts at the end of the previous
section (or the beginning of the document if no preceding section exists), and stops where the
section is declared.

When a new landscape section is needed, it is recommended to add a block_section with type =
"continuous", to add the content to be appened in the new section and finally to add a block_section
with page_size = page_size(orient = "landscape").

Usage

block_section(property)

Arguments

property section properties defined with function prop_section

See Also

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_table(), block_toc(), fpar(), plot_instr(), unordered_list()

14 block_table

Examples

ps <- prop_section(
page_size = page_size(orient = "landscape"),
page_margins = page_mar(top = 2),
type = "continuous"

)
block_section(ps)

block_table Table block

Description

Create a representation of a table

Usage

block_table(x, header = TRUE, properties = prop_table(), alignment = NULL)

Arguments

x a data.frame to add as a table

header display header if TRUE

properties table properties, see prop_table(). Table properties are not handled identically
between Word and PowerPoint output format. They are fully supported with
Word but for PowerPoint (which does not handle as many things as Word for
tables), only conditional formatting properties are supported.

alignment alignment for each columns, ’l’ for left, ’r’ for right and ’c’ for center. Default
to NULL.

See Also

prop_table()

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_section(), block_toc(), fpar(), plot_instr(), unordered_list()

Examples

block_table(x = head(iris))

block_table(x = mtcars, header = TRUE,
properties = prop_table(
tcf = table_conditional_formatting(

first_row = TRUE, first_column = TRUE)
))

block_toc 15

block_toc Table of content for ’Word’

Description

Create a representation of a table of content for Word documents.

Usage

block_toc(level = 3, style = NULL, seq_id = NULL, separator = ";")

Arguments

level max title level of the table

style optional. If not NULL, its value is used as style in the document that will be
used to build entries of the TOC.

seq_id optional. If not NULL, its value is used as sequence identifier in the document
that will be used to build entries of the TOC. See also run_autonum() to specify
a sequence identifier.

separator unused, no effect

See Also

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_section(), block_table(), fpar(), plot_instr(), unordered_list()

Examples

block_toc(level = 2)
block_toc(style = "Table Caption")

body_add_blocks Add a list of blocks into a ’Word’ document

Description

Add a list of blocks produced by block_list() into into an rdocx object.

Usage

body_add_blocks(x, blocks, pos = "after")

16 body_add_break

Arguments

x an rdocx object

blocks set of blocks to be used as footnote content returned by function block_list().

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

See Also

Other functions for adding content: body_add_break(), body_add_caption(), body_add_docx(),
body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

library(officer)

img.file <- file.path(R.home("doc"), "html", "logo.jpg")

bl <- block_list(
fpar(ftext("hello", shortcuts$fp_bold(color = "red"))),
fpar(
ftext("hello world", shortcuts$fp_bold()),
external_img(src = img.file, height = 1.06, width = 1.39),
fp_p = fp_par(text.align = "center")

)
)

doc_1 <- read_docx()
doc_1 <- body_add_blocks(doc_1, blocks = bl)
print(doc_1, target = tempfile(fileext = ".docx"))

body_add_break Add a page break in a ’Word’ document

Description

Add a page break into an rdocx object

Usage

body_add_break(x, pos = "after")

Arguments

x an rdocx object

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

body_add_caption 17

See Also

Other functions for adding content: body_add_blocks(), body_add_caption(), body_add_docx(),
body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

doc <- read_docx()
doc <- body_add_break(doc)
print(doc, target = tempfile(fileext = ".docx"))

body_add_caption Add Word caption in a ’Word’ document

Description

Add a Word caption into an rdocx object.

Usage

body_add_caption(x, value, pos = "after")

Arguments

x an rdocx object

value an object returned by block_caption()

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_docx(),
body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

doc <- read_docx()

if (capabilities(what = "png")) {
doc <- body_add_plot(doc,
value = plot_instr(

code = {
barplot(1:5, col = 2:6)

}
),
style = "centered"

)

18 body_add_docx

}
run_num <- run_autonum(

seq_id = "fig", pre_label = "Figure ",
bkm = "barplot"

)
caption <- block_caption("a barplot",

style = "Normal",
autonum = run_num

)
doc <- body_add_caption(doc, caption)
print(doc, target = tempfile(fileext = ".docx"))

body_add_docx Add an external docx in a ’Word’ document

Description

Add content of a docx into an rdocx object.

The function is using a ’Microsoft Word’ feature: when the document will be edited, the content of
the file will be inserted in the main document.

This feature is unlikely to work as expected if the resulting document is edited by another software.
You can use function body_import_docx() to import the content as an alternative.

The file is added when the method print() that produces the final Word file is called, so don’t
remove file defined with src before.

Usage

body_add_docx(x, src, pos = "after")

Arguments

x an rdocx object

src docx filename, the path of the file must not contain any ’&’ and the basename
must not contain any space.

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

body_add_fpar 19

Examples

file1 <- tempfile(fileext = ".docx")
file2 <- tempfile(fileext = ".docx")
file3 <- tempfile(fileext = ".docx")
x <- read_docx()
x <- body_add_par(x, "hello world 1", style = "Normal")
print(x, target = file1)

x <- read_docx()
x <- body_add_par(x, "hello world 2", style = "Normal")
print(x, target = file2)

x <- read_docx(path = file1)
x <- body_add_break(x)
x <- body_add_docx(x, src = file2)
print(x, target = file3)

body_add_fpar Add fpar in a ’Word’ document

Description

Add an fpar() (a formatted paragraph) into an rdocx object.

Usage

body_add_fpar(x, value, style = NULL, pos = "after")

Arguments

x a docx device

value a character

style paragraph style. If NULL, paragraph settings from fpar will be used. If not
NULL, it must be a paragraph style name (located in the template provided as
read_docx(path = ...)); in that case, paragraph settings from fpar will be
ignored.

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

See Also

fpar()

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

20 body_add_gg

Examples

bold_face <- shortcuts$fp_bold(font.size = 30)
bold_redface <- update(bold_face, color = "red")
fpar_ <- fpar(

ftext("Hello ", prop = bold_face),
ftext("World", prop = bold_redface),
ftext(", how are you?", prop = bold_face)

)
doc <- read_docx()
doc <- body_add_fpar(doc, fpar_)

print(doc, target = tempfile(fileext = ".docx"))

a way of using fpar to center an image in a Word doc ----
rlogo <- file.path(R.home("doc"), "html", "logo.jpg")
img_in_par <- fpar(

external_img(src = rlogo, height = 1.06 / 2, width = 1.39 / 2),
hyperlink_ftext(
href = "https://cran.r-project.org/index.html",
text = "cran", prop = bold_redface

),
fp_p = fp_par(text.align = "center")

)

doc <- read_docx()
doc <- body_add_fpar(doc, img_in_par)
print(doc, target = tempfile(fileext = ".docx"))

body_add_gg Add a ’ggplot’ in a ’Word’ document

Description

Add a ggplot as a png image into an rdocx object.

Usage

body_add_gg(
x,
value,
width = 6,
height = 5,
res = 300,
style = "Normal",
scale = 1,
pos = "after",
unit = "in",
...

)

body_add_img 21

Arguments

x an rdocx object

value ggplot object

width, height plot size in units expressed by the unit argument. Defaults to a width of 6 and a
height of 5 "in"ches.

res resolution of the png image in ppi

style paragraph style

scale Multiplicative scaling factor, same as in ggsave

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

unit One of the following units in which the width and height arguments are ex-
pressed: "in", "cm" or "mm".

... Arguments to be passed to png function.

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_img(), body_add_par(), body_add_plot(),
body_add_table(), body_add_toc(), body_append_start_context(), body_import_docx()

Examples

if (require("ggplot2")) {
doc <- read_docx()

gg_plot <- ggplot(data = iris) +
geom_point(mapping = aes(Sepal.Length, Petal.Length))

if (capabilities(what = "png")) {
doc <- body_add_gg(doc, value = gg_plot, style = "centered")

Set the unit in which the width and height arguments are expressed
doc <- body_add_gg(doc, value = gg_plot, style = "centered", unit = "cm")

}

print(doc, target = tempfile(fileext = ".docx"))
}

body_add_img Add an image in a ’Word’ document

Description

Add an image into an rdocx object.

22 body_add_img

Usage

body_add_img(x, src, style = NULL, width, height, pos = "after", unit = "in")

Arguments

x an rdocx object

src image filename, the basename of the file must not contain any blank.

style paragraph style

width, height image size in units expressed by the unit argument. Defaults to "in"ches.

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

unit One of the following units in which the width and height arguments are ex-
pressed: "in", "cm" or "mm".

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_par(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

library(officer)

doc <- read_docx()

img.file <- file.path(R.home("doc"), "html", "logo.jpg")
if (file.exists(img.file)) {

doc <- body_add_img(x = doc, src = img.file, height = 1.06, width = 1.39)

Set the unit in which the width and height arguments are expressed
doc <- body_add_img(
x = doc,
src = img.file,
height = 2.69,
width = 3.53,
unit = "cm"

)
}

print(doc, target = tempfile(fileext = ".docx"))

body_add_par 23

body_add_par Add paragraphs of text in a ’Word’ document

Description

Add a paragraph of text into an rdocx object

Usage

body_add_par(x, value, style = NULL, pos = "after")

Arguments

x a docx device

value a character

style paragraph style name

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_plot(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

doc <- read_docx()
doc <- body_add_par(doc, "A title", style = "heading 1")
doc <- body_add_par(doc, "Hello world!", style = "Normal")
doc <- body_add_par(doc, "centered text", style = "centered")

print(doc, target = tempfile(fileext = ".docx"))

body_add_plot Add plot in a ’Word’ document

Description

Add a plot as a png image into an rdocx object.

24 body_add_plot

Usage

body_add_plot(
x,
value,
width = 6,
height = 5,
res = 300,
style = "Normal",
pos = "after",
unit = "in",
...

)

Arguments

x an rdocx object

value plot instructions, see plot_instr().

width, height plot size in units expressed by the unit argument. Defaults to a width of 6 and a
height of 5 "in"ches.

res resolution of the png image in ppi

style paragraph style

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

unit One of the following units in which the width and height arguments are ex-
pressed: "in", "cm" or "mm".

... Arguments to be passed to png function.

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_table(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

doc <- read_docx()

if (capabilities(what = "png")) {
p <- plot_instr(

code = {
barplot(1:5, col = 2:6)

}
)

doc <- body_add_plot(doc, value = p, style = "centered")

Set the unit in which the width and height arguments are expressed
doc <- body_add_plot(doc, value = p, style = "centered", unit = "cm")

body_add_table 25

}

print(doc, target = tempfile(fileext = ".docx"))

body_add_table Add table in a ’Word’ document

Description

Add a table into an rdocx object.

Usage

body_add_table(
x,
value,
style = NULL,
pos = "after",
header = TRUE,
alignment = NULL,
align_table = "center",
stylenames = table_stylenames(),
first_row = TRUE,
first_column = FALSE,
last_row = FALSE,
last_column = FALSE,
no_hband = FALSE,
no_vband = TRUE

)

Arguments

x a docx device

value a data.frame to add as a table

style table style

pos where to add the new element relative to the cursor, one of after", "before", "on".

header display header if TRUE

alignment columns alignement, argument length must match with columns length, values
must be "l" (left), "r" (right) or "c" (center).

align_table table alignment within document, value must be "left", "center" or "right"

stylenames columns styles defined by table_stylenames()

first_row Specifies that the first column conditional formatting should be applied. Details
for this and other conditional formatting options can be found at http://officeopenxml.com/WPtblLook.php.

first_column Specifies that the first column conditional formatting should be applied.

26 body_add_toc

last_row Specifies that the first column conditional formatting should be applied.

last_column Specifies that the first column conditional formatting should be applied.

no_hband Specifies that the first column conditional formatting should be applied.

no_vband Specifies that the first column conditional formatting should be applied.

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(),
body_add_toc(), body_append_start_context(), body_import_docx()

Examples

doc <- read_docx()
doc <- body_add_table(doc, iris, style = "table_template")

print(doc, target = tempfile(fileext = ".docx"))

body_add_toc Add table of content in a ’Word’ document

Description

Add a table of content into an rdocx object. The TOC will be generated by Word, if the document
is not edited with Word (i.e. Libre Office) the TOC will not be generated.

Usage

body_add_toc(x, level = 3, pos = "after", style = NULL, separator = ";")

Arguments

x an rdocx object

level max title level of the table

pos where to add the new element relative to the cursor, one of "after", "before",
"on".

style optional. style in the document that will be used to build entries of the TOC.

separator unused, no effect

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(),
body_add_table(), body_append_start_context(), body_import_docx()

body_append_start_context 27

Examples

doc <- read_docx()
doc <- body_add_toc(doc)

print(doc, target = tempfile(fileext = ".docx"))

body_append_start_context

Fast Append context to a Word document

Description

This function is used to append content to a Word document in a fast way.

It does not use the XML tree of the document neither the cursor that is responsible for increasing
the performance of Word document generation when looping over a large number of elements.

This function must be used with the write_elements_to_context() and body_append_stop_context()
functions:

1. body_append_start_context() creates a context and returns a list with the context and the
file connection.

2. write_elements_to_context() writes the elements to the context file connection.

3. body_append_stop_context() closes the file connection and replaces the XML in the doc-
ument with the new XML.

Usage

body_append_start_context(x, additional_ns = character())

write_elements_to_context(context, ...)

body_append_stop_context(context)

Arguments

x an rdocx object

additional_ns a named character vector of additional XML namespaces to be added to the root
node of the document. The names of the vector are the namespace prefixes and
the values are the namespace URIs.
This argument is useful when the elements to be added to the document require
additional namespaces that are not already present in the document and not part
of the xml generated by to_wml(). Simple users are not expected to use this
argument. It is mainly intended for developers of officer extensions.

context the context object created by body_append_start_context().

... elements to be written to the context. These can be paragraphs, tables, images,
etc. The elements should have an associated to_wml() method that converts
them to WML format.

28 body_append_start_context

Value

body_append_start_context() returns a list representing the context that contains:

• doc: the original document object

• file_con: the file connection to the context

• file_path: the path to the context file

• final_str: the final XML string to be appended to the document later when calling body_append_stop_context().

This object should not be modified by the user but instead passed to write_elements_to_context()
and body_append_stop_context().

write_elements_to_context() returns the context object.

body_append_stop_context() returns the rdocx object with the cursor position set to the end of
the document.

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(),
body_add_table(), body_add_toc(), body_import_docx()

Examples

library(officer)

doc <- read_docx()
doc <- body_add_par(doc, value = "blah blah blah", style = "Normal")

z <- body_append_start_context(doc)

for (i in seq_len(50)) {
write_elements_to_context(
context = z,
fpar(

"Hello World, ",
i,
fp_p = fp_par(word_style = "heading 1")

),
fpar(run_pagebreak())

)
}
doc <- body_append_stop_context(z)

print(doc, target = tempfile(fileext = ".docx"))

body_bookmark 29

body_bookmark Add bookmark in a ’Word’ document

Description

Add a bookmark at the cursor location. The bookmark is added on the first run of text in the current
paragraph.

Usage

body_bookmark(x, id)

Arguments

x an rdocx object

id bookmark name

Examples

cursor_bookmark ----

doc <- read_docx()
doc <- body_add_par(doc, "centered text", style = "centered")
doc <- body_bookmark(doc, "text_to_replace")

body_comment Add comment in a ’Word’ document

Description

Add a comment at the cursor location. The comment is added on the first run of text in the current
paragraph.

Usage

body_comment(x, cmt = ftext(""), author = "", date = "", initials = "")

Arguments

x an rdocx object

cmt a set of blocks to be used as comment content returned by function block_list().

author comment author.

date comment date

initials comment initials

30 body_end_block_section

Examples

doc <- read_docx()
doc <- body_add_par(doc, "Paragraph")
doc <- body_comment(doc, block_list("This is a comment."))
docx_file <- print(doc, target = tempfile(fileext = ".docx"))
docx_comments(read_docx(docx_file))

body_end_block_section

Add any section

Description

Add a section to the document. You can define any section with a block_section object. All other
body_end_section_* are specialized, this one is highly flexible but it’s up to the user to define the
section properties.

Usage

body_end_block_section(x, value)

Arguments

x an rdocx object

value a block_section object

Illustrations

See Also

Other functions for Word sections: body_end_section_columns(), body_end_section_columns_landscape(),
body_end_section_continuous(), body_end_section_landscape(), body_end_section_portrait(),
body_set_default_section()

Examples

library(officer)
str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 20)
str1 <- paste(str1, collapse = " ")

ps <- prop_section(
page_size = page_size(orient = "landscape"),
page_margins = page_mar(top = 2),
type = "continuous"

)

body_end_section_columns 31

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")

doc_1 <- body_end_block_section(doc_1, block_section(ps))

doc_1 <- body_add_par(doc_1, value = str1, style = "centered")

print(doc_1, target = tempfile(fileext = ".docx"))

body_end_section_columns

Add multi columns section

Description

A section with multiple columns is added to the document.

You may prefer to use body_end_block_section() that is more flexible.

Usage

body_end_section_columns(x, widths = c(2.5, 2.5), space = 0.25, sep = FALSE)

Arguments

x an rdocx object
widths columns widths in inches. If 3 values, 3 columns will be produced.
space space in inches between columns.
sep if TRUE a line is separating columns.

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns_landscape(),
body_end_section_continuous(), body_end_section_landscape(), body_end_section_portrait(),
body_set_default_section()

Examples

str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 5)
str1 <- paste(str1, collapse = " ")

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_end_section_columns(doc_1)
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
print(doc_1, target = tempfile(fileext = ".docx"))

32 body_end_section_columns_landscape

body_end_section_columns_landscape

Add a landscape multi columns section

Description

A landscape section with multiple columns is added to the document.

Usage

body_end_section_columns_landscape(
x,
widths = c(2.5, 2.5),
space = 0.25,
sep = FALSE,
w = 16838/1440,
h = 11906/1440

)

Arguments

x an rdocx object

widths columns widths in inches. If 3 values, 3 columns will be produced.

space space in inches between columns.

sep if TRUE a line is separating columns.

w, h page width, page height (in inches)

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns(),
body_end_section_continuous(), body_end_section_landscape(), body_end_section_portrait(),
body_set_default_section()

Examples

str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 5)
str1 <- paste(str1, collapse = " ")

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_end_section_columns_landscape(doc_1, widths = c(6, 2))
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
print(doc_1, target = tempfile(fileext = ".docx"))

body_end_section_continuous 33

body_end_section_continuous

Add continuous section

Description

Section break starts the new section on the same page. This type of section break is often used to
change the number of columns without starting a new page.

Usage

body_end_section_continuous(x)

Arguments

x an rdocx object

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns(),
body_end_section_columns_landscape(), body_end_section_landscape(), body_end_section_portrait(),
body_set_default_section()

Examples

str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 5)
str1 <- paste(str1, collapse = " ")
str2 <- "Aenean venenatis varius elit et fermentum vivamus vehicula."
str2 <- rep(str2, 5)
str2 <- paste(str2, collapse = " ")

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = "Default section", style = "heading 1")
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_add_par(doc_1, value = str2, style = "Normal")
doc_1 <- body_end_section_continuous(doc_1)

print(doc_1, target = tempfile(fileext = ".docx"))

34 body_end_section_portrait

body_end_section_landscape

Add landscape section

Description

A section with landscape orientation is added to the document.

Usage

body_end_section_landscape(x, w = 16838/1440, h = 11906/1440)

Arguments

x an rdocx object

w, h page width, page height (in inches)

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns(),
body_end_section_columns_landscape(), body_end_section_continuous(), body_end_section_portrait(),
body_set_default_section()

Examples

str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 5)
str1 <- paste(str1, collapse = " ")

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_end_section_landscape(doc_1)

print(doc_1, target = tempfile(fileext = ".docx"))

body_end_section_portrait

Add portrait section

Description

A section with portrait orientation is added to the document.

Usage

body_end_section_portrait(x, w = 16838/1440, h = 11906/1440)

body_import_docx 35

Arguments

x an rdocx object

w, h page width, page height (in inches)

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns(),
body_end_section_columns_landscape(), body_end_section_continuous(), body_end_section_landscape(),
body_set_default_section()

Examples

str1 <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit."
str1 <- rep(str1, 5)
str1 <- paste(str1, collapse = " ")

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
doc_1 <- body_end_section_portrait(doc_1)
doc_1 <- body_add_par(doc_1, value = str1, style = "Normal")
print(doc_1, target = tempfile(fileext = ".docx"))

body_import_docx Import an external docx in a ’Word’ document

Description

Import body content and footnotes of a Word document into an rdocx object.

The function is similar to body_add_docx() but instead of adding the content as an external object,
the document is read and all its content is appended to the target document.

Usage

body_import_docx(
x,
src,
par_style_mapping = list(),
run_style_mapping = list(),
tbl_style_mapping = list(),
prepend_chunks_on_styles = list()

)

36 body_import_docx

Arguments

x an rdocx object

src path to docx file to import
par_style_mapping, run_style_mapping, tbl_style_mapping

Named lists describing how to remap styles from the source document (src) to
styles available in the target document x. For each list entry, the name of the
element is the target style (in x), and the value is a character vector of style
names from the source document that should be replaced by this target style.

• par_style_mapping: applies to paragraph styles.
• run_style_mapping: applies to character (run) styles.
• tbl_style_mapping: applies to table styles.

Examples:

par_style_mapping = list(
"Normal" = c("List Paragraph", "Body Text"),
"heading 1" = "Heading 1"

)
run_style_mapping = list(
"Emphasis" = c("Emphasis", "Italic")

)
tbl_style_mapping = list(
"Normal Table" = c("Light Shading")

)

Use styles_info() to inspect available styles and verify their names.
prepend_chunks_on_styles

A named list of run chunks to prepend to runs with specific styles. The names of
the list are paragraph style names and the values run chunks to prepend. The first
motivation for this argument is to allow prepending of runs in paragraphs with a
defined style, for example to add a run_autonum() with all image captions.

Details

The following operations are performed when importing a document:

• Numberings are copied from the source document to the target document.

• Styles are not copied. If styles in the source document do not exist in the target document, the
style specified in the par_style_mapping, run_style_mapping and tbl_style_mapping
arguments will be used instead. If no mapping is provided, the default style will be used and
a warning is emitted.

See Also

Other functions for adding content: body_add_blocks(), body_add_break(), body_add_caption(),
body_add_docx(), body_add_fpar(), body_add_gg(), body_add_img(), body_add_par(), body_add_plot(),
body_add_table(), body_add_toc(), body_append_start_context()

body_remove 37

Examples

library(officer)

example file from the package
file_input <- system.file(

package = "officer",
"doc_examples/example.docx"

)

create a new rdocx document
x <- read_docx()

import content from file_input
x <- body_import_docx(

x = x,
src = file_input,
style mapping for paragraphs and tables
par_style_mapping = list(
"Normal" = c("List Paragraph")

),
tbl_style_mapping = list(

"Normal Table" = "Light Shading"
)

)

Create temporary file
tf <- tempfile(fileext = ".docx")
write to file
print(x, target = tf)

body_remove Remove an element in a ’Word’ document

Description

Remove element pointed by cursor from a ’Word’ document.

Usage

body_remove(x)

Arguments

x an rdocx object

38 body_replace_all_text

Examples

library(officer)

str1 <- rep("Lorem ipsum dolor sit amet, consectetur adipiscing elit. ", 20)
str1 <- paste(str1, collapse = "")

str2 <- "Drop that text"

str3 <- rep("Aenean venenatis varius elit et fermentum vivamus vehicula. ", 20)
str3 <- paste(str3, collapse = "")

my_doc <- read_docx()
my_doc <- body_add_par(my_doc, value = str1, style = "Normal")
my_doc <- body_add_par(my_doc, value = str2, style = "centered")
my_doc <- body_add_par(my_doc, value = str3, style = "Normal")

new_doc_file <- print(my_doc,
target = tempfile(fileext = ".docx")

)

my_doc <- read_docx(path = new_doc_file)
my_doc <- cursor_reach(my_doc, keyword = "that text")
my_doc <- body_remove(my_doc)

print(my_doc, target = tempfile(fileext = ".docx"))

body_replace_all_text Replace text anywhere in the document

Description

Replace text anywhere in the document, or at a cursor.

Replace all occurrences of old_value with new_value. This method uses grepl()/gsub() for pat-
tern matching; you may supply arguments as required (and therefore use regex() features) using
the optional ... argument.

Note that by default, grepl/gsub will use fixed=FALSE, which means that old_value and new_value
will be interepreted as regular expressions.

Chunking of text
Note that the behind-the-scenes representation of text in a Word document is frequently not what
you might expect! Sometimes a paragraph of text is broken up (or "chunked") into several "runs,"
as a result of style changes, pauses in text entry, later revisions and edits, etc. If you have not
styled the text, and have entered it in an "all-at-once" fashion, e.g. by pasting it or by outputing
it programmatically into your Word document, then this will likely not be a problem. If you are
working with a manually-edited document, however, this can lead to unexpected failures to find
text.

You can use the officer function docx_show_chunk() to show how the paragraph of text at the cur-
rent cursor has been chunked into runs, and what text is in each chunk. This can help troubleshoot
unexpected failures to find text.

body_replace_all_text 39

Usage

body_replace_all_text(
x,
old_value,
new_value,
only_at_cursor = FALSE,
warn = TRUE,
...

)

headers_replace_all_text(
x,
old_value,
new_value,
only_at_cursor = FALSE,
warn = TRUE,
...

)

footers_replace_all_text(
x,
old_value,
new_value,
only_at_cursor = FALSE,
warn = TRUE,
...

)

Arguments

x a docx device

old_value the value to replace

new_value the value to replace it with

only_at_cursor if TRUE, only search-and-replace at the current cursor; if FALSE (default), search-
and-replace in the entire document (this can be slow on large documents!)

warn warn if old_value could not be found.

... optional arguments to grepl/gsub (e.g. fixed=TRUE)

header_replace_all_text

Replacements will be performed in each header of all sections.

Replacements will be performed in each footer of all sections.

Author(s)

Frank Hangler, <frank@plotandscatter.com>

40 body_replace_gg_at_bkm

See Also

grepl(), regex(), docx_show_chunk()

Examples

library(officer)

doc <- read_docx()
doc <- body_add_par(doc, "Placeholder one")
doc <- body_add_par(doc, "Placeholder two")

Show text chunk at cursor
docx_show_chunk(doc) # Output is 'Placeholder two'

Simple search-and-replace at current cursor, with regex turned off
doc <- body_replace_all_text(

doc,
old_value = "Placeholder",
new_value = "new",
only_at_cursor = TRUE,
fixed = TRUE

)
docx_show_chunk(doc) # Output is 'new two'

Do the same, but in the entire document and ignoring case
doc <- body_replace_all_text(

doc,
old_value = "placeholder",
new_value = "new",
only_at_cursor = FALSE,
ignore.case = TRUE

)
doc <- cursor_backward(doc)
docx_show_chunk(doc) # Output is 'new one'

Use regex : replace all words starting with "n" with the word "example"
doc <- body_replace_all_text(doc, "\\bn.*?\\b", "example")
docx_show_chunk(doc) # Output is 'example one'

body_replace_gg_at_bkm

Add plots at bookmark location in a ’Word’ document

Description

Use these functions if you want to replace a paragraph containing a bookmark with a ’ggplot’ or a
base plot.

body_replace_gg_at_bkm 41

Usage

body_replace_gg_at_bkm(
x,
bookmark,
value,
width = 6,
height = 5,
res = 300,
style = "Normal",
scale = 1,
keep = FALSE,
...

)

body_replace_plot_at_bkm(
x,
bookmark,
value,
width = 6,
height = 5,
res = 300,
style = "Normal",
keep = FALSE,
...

)

Arguments

x an rdocx object

bookmark bookmark id

value a ggplot object for body_replace_gg_at_bkm() or a set plot instructions body_replace_plot_at_bkm(),
see plot_instr().

width, height plot size in units expressed by the unit argument. Defaults to a width of 6 and a
height of 5 "in"ches.

res resolution of the png image in ppi

style paragraph style

scale Multiplicative scaling factor, same as in ggsave

keep Should the bookmark be preserved? Defaults to FALSE, i.e.the bookmark will be
lost as a side effect.

... Arguments to be passed to png function.

Examples

library(officer)

if (require("ggplot2")) {

42 body_replace_text_at_bkm

gg_plot <- ggplot(data = iris) +
geom_point(mapping = aes(Sepal.Length, Petal.Length))

doc <- read_docx()
doc <- body_add_par(doc, "insert_plot_here")
doc <- body_bookmark(doc, "plot")
doc <- body_replace_gg_at_bkm(doc, bookmark = "plot", value = gg_plot)
print(doc, target = tempfile(fileext = ".docx"))

}
doc <- read_docx()
doc <- body_add_par(doc, "insert_plot_here")
doc <- body_bookmark(doc, "plot")
if (capabilities(what = "png")) {

doc <- body_replace_plot_at_bkm(
doc,
bookmark = "plot",
value = plot_instr(

code = {
barplot(1:5, col = 2:6)

}
)

)
}
print(doc, target = tempfile(fileext = ".docx"))

body_replace_text_at_bkm

Replace text at a bookmark location

Description

Replace text content enclosed in a bookmark with different text. A bookmark will be considered
as valid if enclosing words within a paragraph; i.e., a bookmark along two or more paragraphs is
invalid, a bookmark set on a whole paragraph is also invalid, but bookmarking few words inside a
paragraph is valid.

Usage

body_replace_text_at_bkm(x, bookmark, value)

body_replace_img_at_bkm(x, bookmark, value)

headers_replace_text_at_bkm(x, bookmark, value)

headers_replace_img_at_bkm(x, bookmark, value)

footers_replace_text_at_bkm(x, bookmark, value)

footers_replace_img_at_bkm(x, bookmark, value)

body_set_default_section 43

Arguments

x a docx device

bookmark bookmark id

value the replacement string, of type character

Examples

library(officer)

doc <- read_docx()
doc <- body_add_par(doc, "a paragraph to replace", style = "centered")
doc <- body_bookmark(doc, "text_to_replace")
doc <- body_replace_text_at_bkm(doc, "text_to_replace", "new text")

demo usage of bookmark and images ----
template <- system.file(package = "officer", "doc_examples/example.docx")

img.file <- file.path(R.home("doc"), "html", "logo.jpg")

doc <- read_docx(path = template)
doc <- headers_replace_img_at_bkm(

x = doc,
bookmark = "bmk_header",
value = external_img(src = img.file, width = .53, height = .7)

)
doc <- footers_replace_img_at_bkm(

x = doc,
bookmark = "bmk_footer",
value = external_img(src = img.file, width = .53, height = .7)

)
print(doc, target = tempfile(fileext = ".docx"))

body_set_default_section

Define Default Section

Description

Define default section of the document. You can define section propeerties (page size, orientation,
...) with a prop_section object.

Usage

body_set_default_section(x, value)

44 body_set_default_section

Arguments

x an rdocx object

value a prop_section object

Illustrations

See Also

Other functions for Word sections: body_end_block_section(), body_end_section_columns(),
body_end_section_columns_landscape(), body_end_section_continuous(), body_end_section_landscape(),
body_end_section_portrait()

Examples

Example 1: Setting page layout properties ----
This example demonstrates how to configure the default section
properties for page orientation, type, and margins

Define custom section properties
- Landscape orientation for wide tables
- Continuous section (no page break)
- Custom margins: top=1.5", bottom=0.75", left/right=2"
default_sect_properties <- prop_section(

page_size = page_size(orient = "landscape"),
type = "continuous",
page_margins = page_mar(bottom = .75, top = 1.5, right = 2, left = 2)

)

Create a new document
doc_1 <- read_docx()

Add a wide table that benefits from landscape orientation
doc_1 <- body_add_par(doc_1, "Motor Trend Car Road Tests", style = "heading 1")
doc_1 <- body_add_table(doc_1, value = mtcars[1:10,], style = "table_template")

Add some text content
doc_1 <- body_add_par(doc_1, "Sample Text Content", style = "heading 2")
doc_1 <- body_add_par(doc_1, value = paste(rep(letters, 40), collapse = " "))

Apply the section properties to the entire document
This must be called at the end, after all content is added
doc_1 <- body_set_default_section(doc_1, default_sect_properties)

Save the document
print(doc_1, target = tempfile(fileext = ".docx"))

Example 2: Adding headers and footers ----
This example shows how to create a document with:

body_set_default_section 45

- A header containing the R logo
- A footer with the current date and page numbers

Get the path to R logo
img_path <- file.path(R.home("doc"), "html", "logo.jpg")

Create header content with the R logo
The logo is positioned on the right side with specific dimensions
header_content <- block_list(

fpar(
external_img(src = img_path, height = 0.5, width = 0.5),
fp_p = fp_par(text.align = "right")

)
)

Create footer content with date and page numbers
Format: "Document generated on: [Date] | Page [X]"
footer_content <- block_list(

fpar(
"Document generated on: ",
run_word_field(field = "Date \\@ \"MMMM d, yyyy\""),
" | Page ",
run_word_field(field = "PAGE"),
fp_p = fp_par(text.align = "center")

)
)

Define section properties that include header and footer
The header and footer will appear on all pages
sect_with_hf <- prop_section(

page_size = page_size(orient = "portrait", width = 8.3, height = 11.7),
page_margins = page_mar(

bottom = 1,
top = 1,
right = 1,
left = 1,
header = 0.5,
footer = 0.5

),
type = "continuous",
header_default = header_content,
footer_default = footer_content

)

Create a new document with content
doc_2 <- read_docx()

Add a title page
doc_2 <- body_add_par(doc_2, "Annual Report 2024", style = "heading 1")
doc_2 <- body_add_par(

doc_2,
"Company Performance Analysis",
style = "heading 2"

46 change_styles

)

Add some sections with content
doc_2 <- body_add_par(doc_2, "Executive Summary", style = "heading 2")
doc_2 <- body_add_par(

doc_2,
"This report provides a comprehensive analysis of company performance metrics."

)

Add a table
doc_2 <- body_add_par(doc_2, "Key Metrics", style = "heading 2")
summary_data <- data.frame(

Metric = c("Revenue", "Profit", "Growth"),
Q1 = c(1.2, 0.3, 12),
Q2 = c(1.5, 0.4, 15),
Q3 = c(1.8, 0.5, 18),
Q4 = c(2.1, 0.6, 20)

)
doc_2 <- body_add_table(doc_2, value = summary_data, style = "table_template")

Add a plot
doc_2 <- body_add_par(doc_2, "Revenue Trend", style = "heading 2")
revenue_plot <- plot_instr({

quarters <- paste0("Q", 1:4)
revenue <- c(1.2, 1.5, 1.8, 2.1)
barplot(
revenue,
names.arg = quarters,
col = "#4472C4",
border = NA,
main = "Quarterly Revenue (Millions)",
ylab = "Revenue ($M)",
xlab = "Quarter"

)
})
doc_2 <- body_add_plot(doc_2, revenue_plot, width = 5, height = 4)

Apply section properties with header and footer
The header (with R logo) and footer (with date and page number)
will appear on all pages
doc_2 <- body_set_default_section(doc_2, sect_with_hf)

Save the document
output_file <- tempfile(fileext = ".docx")
print(doc_2, target = output_file)

change_styles Replace styles in a ’Word’ Document

color_scheme 47

Description

Replace styles with others in a ’Word’ document. This function can be used for paragraph, run/character
and table styles.

Usage

change_styles(x, mapstyles)

Arguments

x an rdocx object

mapstyles a named list, names are the replacement style, content (as a character vector) are
the styles to be replaced. Use styles_info() to display available styles.

Examples

creating a sample docx so that we can illustrate how
to change styles
doc_1 <- read_docx()

doc_1 <- body_add_par(doc_1, "A title", style = "heading 1")
doc_1 <- body_add_par(doc_1, "Another title", style = "heading 2")
doc_1 <- body_add_par(doc_1, "Hello world!", style = "Normal")
file <- print(doc_1, target = tempfile(fileext = ".docx"))

now we can illustrate how
to change styles with `change_styles`
doc_2 <- read_docx(path = file)
mapstyles <- list(

"centered" = c("Normal", "heading 2"),
"strong" = "Default Paragraph Font"

)
doc_2 <- change_styles(doc_2, mapstyles = mapstyles)
print(doc_2, target = tempfile(fileext = ".docx"))

color_scheme Color scheme of a PowerPoint file

Description

Get the color scheme of a ’PowerPoint’ master layout into a data.frame.

Usage

color_scheme(x)

Arguments

x an rpptx object

48 cursor_begin

See Also

Other functions for reading presentation information: annotate_base(), doc_properties(), layout_properties(),
layout_summary(), length.rpptx(), plot_layout_properties(), slide_size(), slide_summary()

Examples

x <- read_pptx()
color_scheme (x = x)

cursor_begin Set cursor in a ’Word’ document

Description

A set of functions is available to manipulate the position of a virtual cursor. This cursor will be used
when inserting, deleting or updating elements in the document.

Usage

cursor_begin(x)

cursor_bookmark(x, id)

cursor_end(x)

cursor_reach_index(x, index)

cursor_reach(x, keyword, fixed = FALSE)

cursor_reach_test(x, keyword)

cursor_forward(x)

cursor_backward(x)

Arguments

x a docx device

id bookmark id

index element index in the document

keyword keyword to look for as a regular expression

fixed logical. If TRUE, pattern is a string to be matched as is.

cursor_begin

Set the cursor at the beginning of the document, on the first element of the document (usually a
paragraph or a table).

cursor_begin 49

cursor_bookmark

Set the cursor at a bookmark that has previously been set.

cursor_end

Set the cursor at the end of the document, on the last element of the document.

cursor_reach_index

Set the cursor at a specific index position in the document.

cursor_reach

Set the cursor on the first element of the document that contains text specified in argument keyword.
The argument keyword is a regexpr pattern.

cursor_reach_test

Test if an expression has a match in the document that contains text specified in argument keyword.
The argument keyword is a regexpr pattern.

cursor_forward

Move the cursor forward, it increments the cursor in the document.

cursor_backward

Move the cursor backward, it decrements the cursor in the document.

Examples

library(officer)

create a template ----
doc <- read_docx()
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "Hello text to replace")
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "blah blah blah")
doc <- body_add_par(doc, "Hello text to replace")
doc <- body_add_par(doc, "blah blah blah")
template_file <- print(

x = doc,
target = tempfile(fileext = ".docx")

)

replace all pars containing "to replace" ----
doc <- read_docx(path = template_file)

50 docx_bookmarks

while (cursor_reach_test(doc, "to replace")) {
doc <- cursor_reach(doc, "to replace")

doc <- body_add_fpar(
x = doc,
pos = "on",
value = fpar(

"Here is a link: ",
hyperlink_ftext(

text = "yopyop",
href = "https://cran.r-project.org/"

)
)

)
}

doc <- cursor_end(doc)
doc <- body_add_par(doc, "Yap yap yap yap...")

result_file <- print(
x = doc,
target = tempfile(fileext = ".docx")

)

cursor_bookmark ----

doc <- read_docx()
doc <- body_add_par(doc, "centered text", style = "centered")
doc <- body_bookmark(doc, "text_to_replace")
doc <- body_add_par(doc, "A title", style = "heading 1")
doc <- body_add_par(doc, "Hello world!", style = "Normal")
doc <- cursor_bookmark(doc, "text_to_replace")
doc <- body_add_table(doc, value = iris, style = "table_template")

print(doc, target = tempfile(fileext = ".docx"))

docx_bookmarks List Word bookmarks

Description

List bookmarks id that can be found in a ’Word’ document.

Usage

docx_bookmarks(x)

Arguments

x an rdocx object

docx_comments 51

See Also

Other functions for Word document informations: doc_properties(), docx_dim(), length.rdocx(),
set_doc_properties(), styles_info()

Examples

library(officer)

doc_1 <- read_docx()
doc_1 <- body_add_par(doc_1, "centered text", style = "centered")
doc_1 <- body_bookmark(doc_1, "text_to_replace_1")
doc_1 <- body_add_par(doc_1, "centered text", style = "centered")
doc_1 <- body_bookmark(doc_1, "text_to_replace_2")

docx_bookmarks(doc_1)

docx_bookmarks(read_docx())

docx_comments Get comments in a Word document as a data.frame

Description

return a data.frame representing the comments in a Word document.

Usage

docx_comments(x)

Arguments

x an rdocx object

Details

Each row of the returned data frame contains data for one comment. The columns contain the
following information:

• "comment_id" - unique comment id

• "author" - name of the comment author

• "initials" - initials of the comment author

• "date" - timestamp of the comment

• "text" - a list column of characters containing the comment text. Elements can be vectors of
length > 1 if a comment contains multiple paragraphs, blocks or runs or of length 0 if the
comment is empty.

52 docx_dim

• "para_id" - a list column of characters containing the parent paragraph IDs. Elememts can be
vectors of length > 1 if a comment spans multiple paragraphs or of length 0 if the comment
has no parent paragraph.

• "commented_text" - a list column of characters containing the commented text. Elements can
be vectors of length > 1 if a comment spans multiple paragraphs or runs or of length 0 if the
commented text is empty.

Examples

library(officer)

bl <- block_list(
fpar("Comment multiple words."),
fpar("Second line")

)

a_par <- fpar(
"This paragraph contains",
run_comment(
cmt = bl,
run = ftext("a comment."),
author = "Author Me",
date = "2023-06-01"

)
)

doc <- read_docx()
doc <- body_add_fpar(doc, value = a_par, style = "Normal")

docx_file <- print(doc, target = tempfile(fileext = ".docx"))

docx_comments(read_docx(docx_file))

docx_dim ’Word’ page layout

Description

Get page width, page height and margins (in inches). The return values are those corresponding to
the section where the cursor is.

Usage

docx_dim(x)

Arguments

x an rdocx object

docx_set_character_style 53

See Also

Other functions for Word document informations: doc_properties(), docx_bookmarks(), length.rdocx(),
set_doc_properties(), styles_info()

Examples

docx_dim(read_docx())

docx_set_character_style

Add character style in a Word document

Description

The function lets you add or modify Word character styles.

Usage

docx_set_character_style(
x,
style_id,
style_name,
base_on,
fp_t = fp_text_lite()

)

Arguments

x an rdocx object

style_id a unique style identifier for Word.

style_name a unique label associated with the style identifier. This label is the name of the
style when Word edit the document.

base_on the character style name used as base style

fp_t Text formatting properties, see fp_text().

Examples

library(officer)
doc <- read_docx()

doc <- docx_set_character_style(
doc,
style_id = "newcharstyle",
style_name = "label for char style",
base_on = "Default Paragraph Font",
fp_text_lite(
shading.color = "red",

54 docx_set_paragraph_style

color = "white")
)
paragraph <- fpar(

run_wordtext("hello",
style_id = "newcharstyle"))

doc <- body_add_fpar(doc, value = paragraph)
docx_file <- print(doc, target = tempfile(fileext = ".docx"))
docx_file

docx_set_paragraph_style

Add or replace paragraph style in a Word document

Description

The function lets you add or replace a Word paragraph style.

Usage

docx_set_paragraph_style(
x,
style_id,
style_name,
base_on = "Normal",
fp_p = fp_par(),
fp_t = NULL

)

Arguments

x an rdocx object

style_id a unique style identifier for Word.

style_name a unique label associated with the style identifier. This label is the name of the
style when Word edit the document.

base_on the style name used as base style

fp_p paragraph formatting properties, see fp_par().

fp_t default text formatting properties. This is used as text formatting properties,
see fp_text(). If NULL (default), the paragraph will used the default text
formatting properties (defined by the base_on argument).

docx_set_settings 55

Examples

library(officer)

doc <- read_docx()

doc <- docx_set_paragraph_style(
doc,
style_id = "rightaligned",
style_name = "Explicit label",
fp_p = fp_par(text.align = "right", padding = 20),
fp_t = fp_text_lite(
bold = TRUE,
shading.color = "#FD34F0",
color = "white")

)

doc <- body_add_par(doc,
value = "This is a test",
style = "Explicit label")

docx_file <- print(doc, target = tempfile(fileext = ".docx"))
docx_file

docx_set_settings Set ’Microsoft Word’ Document Settings

Description

Set various settings of a ’Microsoft Word’ document generated with ’officer’. Options include:

• zoom factor (default view in Word),

• default tab stop,

• hyphenation zone,

• decimal symbol,

• list separator (see details below),

• compatibility mode,

• even and odd headers management (see details below),

• and auto hyphenation activation.

Usage

docx_set_settings(
x,
zoom = 1,
default_tab_stop = 0.5,
hyphenation_zone = 0.25,

56 docx_set_settings

decimal_symbol = ".",
list_separator = ";",
compatibility_mode = "15",
even_and_odd_headers = FALSE,
auto_hyphenation = FALSE,
unit = "in"

)

Arguments

x an rdocx object

zoom zoom factor, default is 1 (100%)
default_tab_stop

default tab stop in inches, default is 0.5
hyphenation_zone

hyphenation zone in inches, default is 0.25

decimal_symbol decimal symbol, default is "."

list_separator list separator, default is ";". Sets the separator used by Word for lists (see de-
tails).

compatibility_mode

compatibility mode, default is "15"
even_and_odd_headers

whether to use different headers for even and odd pages, default is FALSE.
Enables the "Different Odd and Even Pages" feature in ’Microsoft Word’.

auto_hyphenation

whether to enable auto hyphenation, default is FALSE.

unit unit for default_tab_stop and hyphenation_zone, one of "in", "cm", "mm".

Details

• even_and_odd_headers: If TRUE, ’Microsoft Word’ will use different headers for odd and
even pages ("Different Odd & Even Pages" feature in Word). This is useful for professional
documents or reports that require alternating page layouts.

• list_separator: Sets the character used by ’Microsoft Word’ to separate items in lists (for
example, when inserting tables or lists in Word). This parameter affects how ’Microsoft Word’
handles data import/export (CSV, etc.) and can be adapted to language or local conventions
(e.g., ";" for French, "," for English).

See Also

read_docx()

Examples

library(officer)

txt_lorem <- rep(

docx_show_chunk 57

"Purus lectus eros metus turpis mattis platea praesent sed. ",
50

)
txt_lorem <- paste0(txt_lorem, collapse = "")

header_first <- block_list(fpar(ftext("text for first page header")))
header_even <- block_list(fpar(ftext("text for even page header")))
header_default <- block_list(fpar(ftext("text for default page header")))
footer_first <- block_list(fpar(ftext("text for first page footer")))
footer_even <- block_list(fpar(ftext("text for even page footer")))
footer_default <- block_list(fpar(ftext("text for default page footer")))

ps <- prop_section(
header_default = header_default,
footer_default = footer_default,
header_first = header_first,
footer_first = footer_first,
header_even = header_even,
footer_even = footer_even

)

x <- read_docx()

x <- docx_set_settings(
x = x,
zoom = 2,
list_separator = ",",
even_and_odd_headers = TRUE

)

for (i in 1:20) {
x <- body_add_par(x, value = txt_lorem)

}
x <- body_set_default_section(

x,
value = ps

)
print(x, target = tempfile(fileext = ".docx"))

docx_show_chunk Show underlying text tag structure

Description

Show the structure of text tags at the current cursor. This is most useful when trying to troubleshoot
search-and-replace functionality using body_replace_all_text().

Usage

docx_show_chunk(x)

58 docx_summary

Arguments

x a docx device

See Also

body_replace_all_text()

docx_summary Get Word content in a data.frame

Description

read content of a Word document and return a data.frame representing the document.

Usage

docx_summary(x, preserve = FALSE, remove_fields = FALSE, detailed = FALSE)

Arguments

x an rdocx object

preserve If FALSE (default), text in table cells is collapsed into a single line. If TRUE, line
breaks in table cells are preserved as a "\n" character. This feature is adapted
from docxtractr::docx_extract_tbl() published under a MIT licensed in
the ’docxtractr’ package by Bob Rudis.

remove_fields if TRUE, prevent field codes from appearing in the returned data.frame.

detailed Should run-level information be included in the dataframe? Defaults to FALSE.
If TRUE, the dataframe contains detailed information about each run (text for-
matting, images, hyperlinks, etc.) instead of collapsing content at the paragraph
level. When FALSE, run-level information such as images, hyperlinks, and text
formatting is not available since data is aggregated at the paragraph level.

Value

A data.frame with the following columns depending on the value of detailed:

When detailed = FALSE (default), the data.frame contains:

• doc_index: Document element index (integer).

• content_type: Type of content: "paragraph" or "table cell" (character).

• style_name: Name of the paragraph style (character).

• text: Collapsed text content of the paragraph or cell (character).

• table_index: Index of the table (integer). NA for non-table content.

• row_id: Row position in table (integer). NA for non-table content.

• cell_id: Cell position in table row (integer). NA for non-table content.

https://github.com/hrbrmstr/docxtractr/blob/master/LICENSE

docx_summary 59

• is_header: Whether the row is a table header (logical). NA for non-table content.

• row_span: Number of rows spanned by the cell (integer). 0 for merged cells. NA for non-table
content.

• col_span: Number of columns spanned by the cell (character). NA for non-table content.

• table_stylename: Name of the table style (character). NA for non-table content.

When detailed = TRUE, the data.frame contains additional run-level information:

• run_index: Index of the run within the paragraph (integer).

• run_content_index: Index of content element within the run (integer).

• run_content_text: Text content of the run element (character).

• image_path: Path to embedded image stored in the temporary directory associated with the
rdocx object (character). Images should be copied to a permanent location before closing the
R session if needed.

• field_code: Field code content (character).

• footnote_text: Footnote text content (character).

• link: Hyperlink URL (character).

• link_to_bookmark: Internal bookmark anchor name for hyperlinks (character).

• bookmark_start: Names of the bookmarks starting on this paragraph (values are concate-
nated with ’|’).

• character_stylename: Name of the character/run style (character).

• sz: Font size in half-points (integer).

• sz_cs: Complex script font size in half-points (integer).

• font_family_ascii: Font family for ASCII characters (character).

• font_family_eastasia: Font family for East Asian characters (character).

• font_family_hansi: Font family for high ANSI characters (character).

• font_family_cs: Font family for complex script characters (character).

• bold: Whether the run is bold (logical).

• italic: Whether the run is italic (logical).

• underline: Whether the run is underlined (logical).

• color: Text color in hexadecimal format (character).

• shading: Shading pattern (character).

• shading_color: Shading foreground color (character).

• shading_fill: Shading background fill color (character).

• keep_with_next: Whether paragraph should stay with next (logical).

• align: Paragraph alignment (character).

• level: Numbering level (integer). NA if not a numbered list.

• num_id: Numbering definition ID (integer). NA if not a numbered list.

60 doc_properties

Note

Documents included with body_add_docx() will not be accessible in the results.

Examples

library(officer)

example_docx <- system.file(
package = "officer",
"doc_examples/example.docx"

)
doc <- read_docx(example_docx)

docx_summary(doc)

docx_summary(doc, detailed = TRUE)

doc_properties Read document properties

Description

Read Word or PowerPoint document properties and get results in a data.frame.

Usage

doc_properties(x)

Arguments

x an rdocx or rpptx object

Value

a data.frame

See Also

Other functions for Word document informations: docx_bookmarks(), docx_dim(), length.rdocx(),
set_doc_properties(), styles_info()

Other functions for reading presentation information: annotate_base(), color_scheme(), layout_properties(),
layout_summary(), length.rpptx(), plot_layout_properties(), slide_size(), slide_summary()

Examples

x <- read_docx()
doc_properties(x)

empty_content 61

empty_content Empty block for ’PowerPoint’

Description

Create an empty object to include as an empty placeholder shape in a presentation. This comes in
handy when presentation are updated through R, but a user still wants to add some comments in this
new content.

Empty content also works with layout fields (slide number and date) to preserve them: they are
included on the slide and keep being updated by PowerPoint, i.e. update to the when the slide
number when the slide moves in the deck, update to the date.

Usage

empty_content()

See Also

ph_with(), body_add_blocks()

Examples

fileout <- tempfile(fileext = ".pptx")
doc <- read_pptx()
doc <- add_slide(doc, layout = "Two Content",

master = "Office Theme")
doc <- ph_with(x = doc, value = empty_content(),
location = ph_location_type(type = "title"))

doc <- add_slide(doc, "Title and Content")
add slide number as a computer field
doc <- ph_with(

x = doc, value = empty_content(),
location = ph_location_type(type = "sldNum"))

print(doc, target = fileout)

external_img External image

Description

Wraps an image in an object that can then be embedded in a PowerPoint slide or within a Word
paragraph.

The image is added as a shape in PowerPoint (it is not possible to mix text and images in a Power-
Point form). With a Word document, the image will be added inside a paragraph.

62 external_img

Usage

external_img(
src,
width = 0.5,
height = 0.2,
unit = "in",
guess_size = FALSE,
alt = ""

)

Arguments

src image file path

width, height size of the image file. It can be ignored if parameter guess_size=TRUE, see
parameter guess_size.

unit unit for width and height, one of "in", "cm", "mm".

guess_size If package ’magick’ is installed, this option can be used (set it to TRUE). The
images will be read and width and height will be guessed.

alt alternative text for images

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

ph_with, body_add, fpar

Other run functions for reporting: floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

wrap r logo with external_img ----
srcfile <- file.path(R.home("doc"), "html", "logo.jpg")
extimg <- external_img(

src = srcfile, height = 1.06 / 2,
width = 1.39 / 2

)

pptx example ----
doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(

x = doc, value = extimg,
location = ph_location_type(type = "body"),

floating_external_img 63

use_loc_size = FALSE
)
print(doc, target = tempfile(fileext = ".pptx"))

fp_t <- fp_text(font.size = 20, color = "red")
an_fpar <- fpar(extimg, ftext(" is cool!", fp_t))

docx example ----
x <- read_docx()
x <- body_add(x, an_fpar)
print(x, target = tempfile(fileext = ".docx"))

floating_external_img Floating external image

Description

Wraps an image in an object that can be embedded as a floating image in a ’Word’ document.
Unlike external_img(), which creates inline images, this function creates floating images that
can be positioned anywhere on the page and allow text wrapping around them.

Usage

floating_external_img(
src,
width = 0.5,
height = 0.2,
pos_x = 0,
pos_y = 0,
pos_h_from = "margin",
pos_v_from = "margin",
wrap_type = "square",
wrap_side = "bothSides",
wrap_dist_top = 0,
wrap_dist_bottom = 0,
wrap_dist_left = 0.125,
wrap_dist_right = 0.125,
unit = "in",
guess_size = FALSE,
alt = ""

)

Arguments

src image file path

width, height size of the image file. It can be ignored if parameter guess_size=TRUE, see
parameter guess_size.

64 floating_external_img

pos_x, pos_y horizontal and vertical position of the image relative to the anchor point

pos_h_from horizontal positioning reference point, one of "margin", "page", "column", "char-
acter"

pos_v_from vertical positioning reference point, one of "margin", "page", "paragraph", "line"

wrap_type text wrapping type, one of "square", "topAndBottom", "through", "tight", "none"

wrap_side which side text wraps around, one of "bothSides", "left", "right", "largest"
wrap_dist_top, wrap_dist_bottom, wrap_dist_left, wrap_dist_right

distance between image and text (in inches)

unit unit for width, height, pos_x and pos_y, one of "in", "cm", "mm".

guess_size If package ’magick’ is installed, this option can be used (set it to TRUE). The
images will be read and width and height will be guessed.

alt alternative text for images

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

external_img, body_add, fpar, rtf_doc, rtf_add

Other run functions for reporting: external_img(), ftext(), hyperlink_ftext(), run_autonum(),
run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

library(officer)
srcfile <- file.path(R.home("doc"), "html", "logo.jpg")
floatimg <- floating_external_img(

src = srcfile, height = 1.06 / 2, width = 1.39 / 2,
pos_x = 0, pos_y = 0,
pos_h_from = "margin", pos_v_from = "margin"

)

text <- paste0(
" is a floating image in a ",
paste0(rep("very ", 30), collapse = ""),
" long text!"

)

docx example ----
x <- read_docx()
fp_t <- fp_text(font.size = 20, color = "red")
an_fpar <- fpar(floatimg, ftext(text, fp_t))
x <- body_add_fpar(x, an_fpar)
print(x, target = tempfile(fileext = ".docx"))

fpar 65

rtf example ----
rtf_doc <- rtf_doc()
rtf_doc <- rtf_add(rtf_doc, an_fpar)
print(rtf_doc, target = tempfile(fileext = ".rtf"))

fpar Formatted paragraph

Description

Create a paragraph representation by concatenating formatted text or images. The result can be in-
serted in a Word document or a PowerPoint presentation and can also be inserted in a block_list()
call.

All its arguments will be concatenated to create a paragraph where chunks of text and images are
associated with formatting properties.

fpar() supports ftext(), external_img(), run_*() functions (i.e. run_autonum(), run_word_field())
when output is Word, and simple strings.

Default text and paragraph formatting properties can also be modified with function update().

Usage

fpar(
...,
fp_p = fp_par(word_style = NA_character_),
fp_t = fp_text_lite(),
values = NULL

)

S3 method for class 'fpar'
update(object, fp_p = NULL, fp_t = NULL, ...)

Arguments

... cot objects (ftext(), external_img())

fp_p paragraph formatting properties, see fp_par()

fp_t default text formatting properties. This is used as text formatting properties
when simple text is provided as argument, see fp_text().

values a list of cot objects. If provided, argument ... will be ignored.

object fpar object

See Also

block_list(), body_add_fpar(), ph_with()

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_section(), block_table(), block_toc(), plot_instr(), unordered_list()

66 fp_border

Examples

fpar(ftext("hello", shortcuts$fp_bold()))

mix text and image -----
img.file <- file.path(R.home("doc"), "html", "logo.jpg")

bold_face <- shortcuts$fp_bold(font.size = 12)
bold_redface <- update(bold_face, color = "red")
fpar_1 <- fpar(

"Hello World, ",
ftext("how ", prop = bold_redface),
external_img(src = img.file, height = 1.06/2, width = 1.39/2),
ftext(" you?", prop = bold_face))

fpar_1

img_in_par <- fpar(
external_img(src = img.file, height = 1.06/2, width = 1.39/2),
fp_p = fp_par(text.align = "center"))

fp_border Border properties object

Description

create a border properties object.

Usage

fp_border(color = "black", style = "solid", width = 1)

S3 method for class 'fp_border'
update(object, color, style, width, ...)

Arguments

color border color - single character value (e.g. "#000000" or "black")

style border style - single character value : See Details for supported border styles.

width border width - an integer value : 0>= value

object fp_border object

... further arguments - not used

Details

For Word output the following border styles are supported:

• "none" or "nil" - No Border

• "solid" or "single" - Single Line Border

fp_border 67

• "thick" - Single Line Border

• "double" - Double Line Border

• "dotted" - Dotted Line Border

• "dashed" - Dashed Line Border

• "dotDash" - Dot Dash Line Border

• "dotDotDash" - Dot Dot Dash Line Border

• "triple" - Triple Line Border

• "thinThickSmallGap" - Thin, Thick Line Border

• "thickThinSmallGap" - Thick, Thin Line Border

• "thinThickThinSmallGap" - Thin, Thick, Thin Line Border

• "thinThickMediumGap" - Thin, Thick Line Border

• "thickThinMediumGap" - Thick, Thin Line Border

• "thinThickThinMediumGap" - Thin, Thick, Thin Line Border

• "thinThickLargeGap" - Thin, Thick Line Border

• "thickThinLargeGap" - Thick, Thin Line Border

• "thinThickThinLargeGap" - Thin, Thick, Thin Line Border

• "wave" - Wavy Line Border

• "doubleWave" - Double Wave Line Border

• "dashSmallGap" - Dashed Line Border

• "dashDotStroked" - Dash Dot Strokes Line Border

• "threeDEmboss" or "ridge" - 3D Embossed Line Border

• "threeDEngrave" or "groove" - 3D Engraved Line Border

• "outset" - Outset Line Border

• "inset" - Inset Line Border

For HTML output only a limited amount of border styles are supported:

• "none" or "nil" - No Border

• "solid" or "single" - Single Line Border

• "double" - Double Line Border

• "dotted" - Dotted Line Border

• "dashed" - Dashed Line Border

• "threeDEmboss" or "ridge" - 3D Embossed Line Border

• "threeDEngrave" or "groove" - 3D Engraved Line Border

• "outset" - Outset Line Border

• "inset" - Inset Line Border

Non-supported Word border styles will default to "solid".

68 fp_cell

See Also

Other functions for defining formatting properties: fp_cell(), fp_par(), fp_tab(), fp_tabs(),
fp_text()

Examples

fp_border()
fp_border(color = "orange", style = "solid", width = 1)
fp_border(color = "gray", style = "dotted", width = 1)

modify object ------
border <- fp_border()
update(border, style = "dotted", width = 3)

fp_cell Cell formatting properties

Description

Create a fp_cell object that describes cell formatting properties.

Usage

fp_cell(
border = fp_border(width = 0),
border.bottom,
border.left,
border.top,
border.right,
vertical.align = "center",
margin = 0,
margin.bottom,
margin.top,
margin.left,
margin.right,
background.color = "transparent",
text.direction = "lrtb",
rowspan = 1,
colspan = 1

)

S3 method for class 'fp_cell'
format(x, type = "wml", ...)

S3 method for class 'fp_cell'
print(x, ...)

fp_cell 69

S3 method for class 'fp_cell'
update(
object,
border,
border.bottom,
border.left,
border.top,
border.right,
vertical.align,
margin = 0,
margin.bottom,
margin.top,
margin.left,
margin.right,
background.color,
text.direction,
rowspan = 1,
colspan = 1,
...

)

Arguments

border shortcut for all borders.
border.bottom, border.left, border.top, border.right

fp_border() for borders.

vertical.align cell content vertical alignment - a single character value, expected value is one
of "center" or "top" or "bottom"

margin shortcut for all margins.
margin.bottom, margin.top, margin.left, margin.right

cell margins - 0 or positive integer value.
background.color

cell background color - a single character value specifying a valid color (e.g.
"#000000" or "black").

text.direction cell text rotation - a single character value, expected value is one of "lrtb", "tbrl",
"btlr".

rowspan specify how many rows the cell is spanned over

colspan specify how many columns the cell is spanned over

x, object fp_cell object

type output type - one of ’wml’, ’pml’, ’html’, ’rtf’.

... further arguments - not used

See Also

Other functions for defining formatting properties: fp_border(), fp_par(), fp_tab(), fp_tabs(),
fp_text()

70 fp_par

Examples

obj <- fp_cell(margin = 1)
update(obj, margin.bottom = 5)

fp_par Paragraph formatting properties

Description

Create a fp_par object that describes paragraph formatting properties.

Function fp_par_lite() is generating properties with only entries for the parameters users pro-
vided. The undefined properties will inherit from the default settings.

Usage

fp_par(
text.align = "left",
padding = 0,
line_spacing = 1,
border = fp_border(width = 0),
padding.bottom,
padding.top,
padding.left,
padding.right,
border.bottom,
border.left,
border.top,
border.right,
shading.color = "transparent",
keep_with_next = FALSE,
tabs = NULL,
word_style = "Normal"

)

fp_par_lite(
text.align = NA,
padding = NA,
line_spacing = NA,
border = FALSE,
padding.bottom = NA,
padding.top = NA,
padding.left = NA,
padding.right = NA,
border.bottom = FALSE,
border.left = FALSE,
border.top = FALSE,

fp_par 71

border.right = FALSE,
shading.color = NA,
keep_with_next = NA,
tabs = FALSE,
word_style = NA

)

S3 method for class 'fp_par'
print(x, ...)

S3 method for class 'fp_par'
update(
object,
text.align,
padding,
border,
padding.bottom,
padding.top,
padding.left,
padding.right,
border.bottom,
border.left,
border.top,
border.right,
shading.color,
keep_with_next,
word_style,
...

)

Arguments

text.align text alignment - a single character value, expected value is one of ’left’, ’right’,
’center’, ’justify’.

padding paragraph paddings - 0 or positive integer value. Argument padding overwrites
arguments padding.bottom, padding.top, padding.left, padding.right.

line_spacing line spacing, 1 is single line spacing, 2 is double line spacing.

border shortcut for all borders.
padding.bottom, padding.top, padding.left, padding.right

paragraph paddings - 0 or positive integer value.

border.bottom, border.left, border.top, border.right
fp_border() for borders. overwrite other border properties.

shading.color shading color - a single character value specifying a valid color (e.g. "#000000"
or "black").

keep_with_next a scalar logical. Specifies that the paragraph (or at least part of it) should be
rendered on the same page as the next paragraph when possible.

72 fp_tab

tabs NULL (default) for no tabulation marks setting or an object returned by fp_tabs().
Note this can only have effect with Word or RTF outputs.

word_style Word paragraph style name

x, object fp_par object

... further arguments - not used

Value

a fp_par object

See Also

fpar

Other functions for defining formatting properties: fp_border(), fp_cell(), fp_tab(), fp_tabs(),
fp_text()

Examples

fp_par(text.align = "center", padding = 5)
obj <- fp_par(text.align = "center", padding = 1)
update(obj, padding.bottom = 5)

fp_tab Tabulation mark properties object

Description

create a tabulation mark properties setting object for Word or RTF. Results can be used as arguments
of fp_tabs().

Once tabulation marks settings are defined, tabulation marks can be added with run_tab() inside
a call to fpar() or with \t within ’flextable’ content.

Usage

fp_tab(pos, style = "decimal")

Arguments

pos Specifies the position of the tab stop (in inches).

style style of the tab. Possible values are: "decimal", "left", "right" or "center".

See Also

Other functions for defining formatting properties: fp_border(), fp_cell(), fp_par(), fp_tabs(),
fp_text()

fp_tabs 73

Examples

fp_tab(pos = 0.4, style = "decimal")
fp_tab(pos = 1, style = "right")

fp_tabs Tabs properties object

Description

create a set of tabulation mark properties object for Word or RTF. Results can be used as arguments
tabs of fp_par() and will only have effects in Word or RTF outputs.

Once a set of tabulation marks settings is defined, tabulation marks can be added with run_tab()
inside a call to fpar() or with \t within ’flextable’ content.

Usage

fp_tabs(...)

Arguments

... fp_tab objects

See Also

Other functions for defining formatting properties: fp_border(), fp_cell(), fp_par(), fp_tab(),
fp_text()

Examples

z <- fp_tabs(
fp_tab(pos = 0.4, style = "decimal"),
fp_tab(pos = 1, style = "decimal")

)
fpar(

run_tab(), ftext("88."),
run_tab(), ftext("987.45"),
fp_p = fp_par(
tabs = z

)
)

74 fp_text

fp_text Text formatting properties

Description

Create an fp_text object that describes text formatting properties.

Function fp_text_lite() is generating properties with only entries for the parameters users pro-
vided. The undefined properties will inherit from the default settings.

Usage

fp_text(
color = "black",
font.size = 10,
bold = FALSE,
italic = FALSE,
underlined = FALSE,
strike = FALSE,
font.family = "Arial",
cs.family = NULL,
eastasia.family = NULL,
hansi.family = NULL,
vertical.align = "baseline",
shading.color = "transparent"

)

fp_text_lite(
color = NA,
font.size = NA,
font.family = NA,
cs.family = NA,
eastasia.family = NA,
hansi.family = NA,
bold = NA,
italic = NA,
underlined = NA,
strike = NA,
vertical.align = "baseline",
shading.color = NA

)

S3 method for class 'fp_text'
format(x, type = "wml", ...)

S3 method for class 'fp_text'
print(x, ...)

fp_text 75

S3 method for class 'fp_text'
update(
object,
color,
font.size,
bold,
italic,
underlined,
strike,
font.family,
cs.family,
eastasia.family,
hansi.family,
vertical.align,
shading.color,
...

)

Arguments

color font color - a single character value specifying a valid color (e.g. "#000000" or
"black").

font.size font size (in point) - 0 or positive integer value.
bold is bold
italic is italic
underlined is underlined
strike is strikethrough
font.family single character value. Specifies the font to be used to format characters in the

Unicode range (U+0000-U+007F).
cs.family optional font to be used to format characters in a complex script Unicode range.

For example, Arabic text might be displayed using the "Arial Unicode MS" font.
eastasia.family

optional font to be used to format characters in an East Asian Unicode range.
For example, Japanese text might be displayed using the "MS Mincho" font.

hansi.family optional. Specifies the font to be used to format characters in a Unicode range
which does not fall into one of the other categories.

vertical.align single character value specifying font vertical alignments. Expected value is one
of the following : default 'baseline' or 'subscript' or 'superscript'

shading.color shading color - a single character value specifying a valid color (e.g. "#000000"
or "black").

x fp_text object
type output type - one of ’wml’, ’pml’, ’html’, ’rtf’.
... further arguments - not used
object fp_text object to modify
format format type, wml for MS word, pml for MS PowerPoint and html.

76 ftext

Value

a fp_text object

See Also

ftext(), fpar()

Other functions for defining formatting properties: fp_border(), fp_cell(), fp_par(), fp_tab(),
fp_tabs()

Examples

fp_text()
fp_text(color = "red")
fp_text(bold = TRUE, shading.color = "yellow")
print(fp_text(color = "red", font.size = 12))

ftext Formatted chunk of text

Description

Format a chunk of text with text formatting properties (bold, color, ...). The function allows you to
create pieces of text formatted the way you want.

Usage

ftext(text, prop = NULL)

Arguments

text text value, a single character value

prop formatting text properties returned by fp_text. It also can be NULL in which
case, no formatting is defined (the default is applied).

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

fp_text

Other run functions for reporting: external_img(), floating_external_img(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

hyperlink_ftext 77

Examples

ftext("hello", fp_text())

properties1 <- fp_text(color = "red")
properties2 <- fp_text(bold = TRUE, shading.color = "yellow")
ftext1 <- ftext("hello", properties1)
ftext2 <- ftext("World", properties2)
paragraph <- fpar(ftext1, " ", ftext2)

x <- read_docx()
x <- body_add(x, paragraph)
print(x, target = tempfile(fileext = ".docx"))

hyperlink_ftext Formatted chunk of text with hyperlink

Description

Format a chunk of text with text formatting properties (bold, color, ...), the chunk is associated with
an hyperlink.

Usage

hyperlink_ftext(text, prop = NULL, href)

Arguments

text text value, a single character value

prop formatting text properties returned by fp_text. It also can be NULL in which
case, no formatting is defined (the default is applied).

href URL value

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), run_autonum(),
run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

78 layout_dedupe_ph_labels

Examples

ft <- fp_text(font.size = 12, bold = TRUE)
hyperlink_ftext(

href = "https://cran.r-project.org/index.html",
text = "some text", prop = ft

)

layout_dedupe_ph_labels

Detect and handle duplicate placeholder labels

Description

PowerPoint does not enforce unique placeholder labels in a layout. Selecting a placeholder via its la-
bel using ph_location_label will throw an error, if the label is not unique. layout_dedupe_ph_labels
helps to detect, rename, or delete duplicate placholder labels.

Usage

layout_dedupe_ph_labels(x, action = "detect", print_info = FALSE)

Arguments

x An rpptx object.

action Action to perform on duplicate placeholder labels. One of:

• detect (default) = show info on dupes only, make no changes
• rename = create unique labels. Labels are renamed by appending a sequen-

tial number separated by dot to duplicate labels. For example, c("title",
"title") becomes c("title.1", "title.2").

• delete = only keep one of the placeholders with a duplicate label

print_info Print action information (e.g. renamed placeholders) to console? Default is
FALSE. Always TRUE for action detect.

Value

A rpptx object (with modified placeholder labels).

Examples

x <- read_pptx()
layout_dedupe_ph_labels(x)

file <- system.file("doc_examples", "ph_dupes.pptx", package = "officer")
x <- read_pptx(file)
layout_dedupe_ph_labels(x)
layout_dedupe_ph_labels(x, "rename", print_info = TRUE)

layout_default 79

layout_default Default layout for new slides

Description

Set or remove the default layout used when calling add_slide().

Usage

layout_default(x, layout = NULL, master = NULL, as_list = FALSE)

Arguments

x An rpptx object.

layout Layout name. If NULL (default), removes the default layout.

master Name of master. Only required if layout name is not unique across masters.

as_list If TRUE, return a list with layout and master instead of the rpptx object.

Value

The rpptx object.

See Also

add_slide()

Examples

set and remove the default layout
x <- read_pptx()
layout_default(x) # no defaults
x <- layout_default(x, "Title and Content") # set default
layout_default(x)
x <- add_slide(x) # new slide with default layout
x <- layout_default(x, NULL) # remove default
layout_default(x) # no defaults

use when repeatedly adding slides with same layout
x <- read_pptx()
x <- layout_default(x, "Title and Content")
x <- add_slide(x, title = "1. Slide", body = "Some content")
x <- add_slide(x, title = "2. Slide", body = "Some more content")
x <- add_slide(x, title = "3. Slide", body = "Even more content")

80 layout_properties

layout_properties Slide layout properties

Description

Detailed information about the placeholders on the slide layouts (label, position, etc.). See Value
section below for more info.

Usage

layout_properties(x, layout = NULL, master = NULL)

Arguments

x an rpptx object

layout slide layout name. If NULL, returns all layouts.

master master layout name where layout is located. If NULL, returns all masters.

Value

Returns a data frame with one row per placeholder and the following columns:

• master_name: Name of master (a .pptx file may have more than one)

• name: Name of layout

• type: Placeholder type

• type_idx: Running index for phs of the same type. Ordering by ph position (top -> bottom,
left -> right)

• id: A unique placeholder id (assigned by PowerPoint automatically, starts at 2, potentially
non-consecutive)

• ph_label: Placeholder label (can be set by the user in PowerPoint)

• ph: Placholder XML fragment (usually not needed)

• offx,offy: placeholder’s distance from left and top edge (in inch)

• cx,cy: width and height of placeholder (in inch)

• rotation: rotation in degrees

• fld_id is generally stored as a hexadecimal or GUID value

• fld_type: a unique identifier for a particular field

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_summary(), length.rpptx(), plot_layout_properties(), slide_size(), slide_summary()

layout_rename_ph_labels 81

Examples

library(officer)

x <- read_pptx()
layout_properties(x = x, layout = "Title Slide", master = "Office Theme")
layout_properties(x = x, master = "Office Theme")
layout_properties(x = x, layout = "Two Content")
layout_properties(x = x)

layout_rename_ph_labels

Change ph labels in a layout

Description

There are two versions of the function. The first takes a set of key-value pairs to rename the ph
labels. The second uses a right hand side (rhs) assignment to specify the new ph labels. See section
Details.

NB: You can also rename ph labels directly in PowerPoint. Open the master template view (Alt +
F10) and go to Home > Arrange > Selection Pane.

Usage

layout_rename_ph_labels(x, layout, master = NULL, ..., .dots = NULL)

layout_rename_ph_labels(x, layout, master = NULL, id = NULL) <- value

Arguments

x An rpptx object.

layout Layout name or index. Index is the row index of layout_summary().

master Name of master. Only required if the layout name is not unique across masters.

... Comma separated list of key-value pairs to rename phs. Either reference a ph via
its label ("old label" = "new label") or its unique id ("id" = "new label").

.dots Provide a named list or vector of key-value pairs to rename phs (list("old label"
= "new label").

id Unique placeholder id (see column id in layout_properties() or plot_layout_properties()).

value Not relevant for user. A pure technical necessity for rhs assignments.

82 layout_rename_ph_labels

Details

• Note the difference between the terms id and index. Both can be found in the output of
layout_properties(). The unique ph id is found in column id. The index refers to the
index of the data frame row.

• In a right hand side (rhs) label assignment (<- new_labels), there are two ways to optionally
specify a subset of phs to rename. In both cases, the length of the rhs vector (the new labels)
must match the length of the id or index:

1. use the id argument to specify ph ids to rename: layout_rename_ph_labels(..., id
= 2:3) <- new_labels

2. use an index in squared brackets: layout_rename_ph_labels(...)[1:2] <- new_labels

Value

Vector of renamed ph labels.

Examples

x <- read_pptx()

INFO -------------

Returns layout's ph_labels by default in same order as layout_properties()
layout_rename_ph_labels(x, "Comparison")
layout_properties(x, "Comparison")$ph_label

BASICS -----------
#
HINT: run `plot_layout_properties(x, "Comparison")` to see how labels change

rename using key-value pairs: 'old label' = 'new label' or 'id' = 'new label'
layout_rename_ph_labels(x, "Comparison", "Title 1" = "LABEL MATCHED") # label matching
layout_rename_ph_labels(x, "Comparison", "3" = "ID MATCHED") # id matching
layout_rename_ph_labels(

x,
"Comparison",
"Date Placeholder 6" = "DATE",
"8" = "FOOTER"

) # label, id

rename using a named list and the .dots arg
renames <- list("Content Placeholder 3" = "CONTENT_1", "6" = "CONTENT_2")
layout_rename_ph_labels(x, "Comparison", .dots = renames)

rename via rhs assignment and optional index (not id!)
layout_rename_ph_labels(x, "Comparison") <- LETTERS[1:8]
layout_rename_ph_labels(x, "Comparison")[1:3] <- paste("CHANGED", 1:3)

rename via rhs assignment and ph id (not index)
layout_rename_ph_labels(x, "Comparison", id = c(2, 4)) <- paste("ID =", c(2, 4))

layout_summary 83

MORE ------------

make all labels lower case
labels <- layout_rename_ph_labels(x, "Comparison")
layout_rename_ph_labels(x, "Comparison") <- tolower(labels)

rename all labels to type [type_idx]
lp <- layout_properties(x, "Comparison")
layout_rename_ph_labels(x, "Comparison") <- paste0(

lp$type,
" [",
lp$type_idx,
"]"

)

rename duplicated placeholders (see also `layout_dedupe_ph_labels()`)
file <- system.file("doc_examples", "ph_dupes.pptx", package = "officer")
x <- read_pptx(file)
lp <- layout_properties(x, "2-dupes")
idx <- which(lp$ph_label == "Content 7") # exists twice
layout_rename_ph_labels(x, "2-dupes")[idx] <- paste("DUPLICATE", seq_along(idx))

warning: in case of duped labels only the first occurrence is renamed
x <- read_pptx(file)
layout_rename_ph_labels(x, "2-dupes", "Content 7" = "new label")

layout_summary Presentation layouts summary

Description

Get information about slide layouts and master layouts into a data.frame. This function returns a
data.frame containing all layout and master names.

Usage

layout_summary(x)

Arguments

x an rpptx object

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_properties(), length.rpptx(), plot_layout_properties(), slide_size(), slide_summary()

84 length.rpptx

Examples

my_pres <- read_pptx()
layout_summary (x = my_pres)

length.rdocx Number of blocks inside an rdocx object

Description

Return the number of blocks inside an rdocx object. This number also include the default section
definition of a Word document - default Word section is an uninvisible element.

Usage

S3 method for class 'rdocx'
length(x)

Arguments

x an rdocx object

See Also

Other functions for Word document informations: doc_properties(), docx_bookmarks(), docx_dim(),
set_doc_properties(), styles_info()

Examples

how many elements are there in an new document produced
with the default template.
length(read_docx())

length.rpptx Number of slides

Description

Function length will return the number of slides.

Usage

S3 method for class 'rpptx'
length(x)

Arguments

x an rpptx object

media_extract 85

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_properties(), layout_summary(), plot_layout_properties(), slide_size(), slide_summary()

Examples

my_pres <- read_pptx()
my_pres <- add_slide(my_pres, "Title and Content")
my_pres <- add_slide(my_pres, "Title and Content")
length(my_pres)

media_extract Extract media from a document object

Description

Extract files from a rpptx object.

Usage

media_extract(x, path, target)

Arguments

x an rpptx object

path media path, should be a relative path

target target file

Examples

example_pptx <- system.file(package = "officer",
"doc_examples/example.pptx")

doc <- read_pptx(example_pptx)
content <- pptx_summary(doc)
image_row <- content[content$content_type %in% "image",]
media_file <- image_row$media_file
png_file <- tempfile(fileext = ".png")
media_extract(doc, path = media_file, target = png_file)

86 move_slide

move_slide Move a slide

Description

Move a slide in a pptx presentation.

Usage

move_slide(x, index = NULL, to)

Arguments

x an rpptx object

index slide index or a vector of slide indices to remove, default to current slide posi-
tion.

to new slide index.

Note

cursor is set on the last slide.

See Also

read_pptx()

Other functions to manipulate slides: add_slide(), on_slide(), remove_slide(), set_notes()

Examples

library(officer)

x <- read_pptx()
x <- add_slide(x, "Title and Content")
x <- ph_with(x, "Hello world 1", location = ph_location_type())
x <- add_slide(x, "Title and Content")
x <- ph_with(x, "Hello world 2", location = ph_location_type())
x <- move_slide(x, index = 1, to = 2)

notes_location_label 87

notes_location_label Location of a named placeholder for notes

Description

The function will use the label of a placeholder to find the corresponding location in the slide notes.

Usage

notes_location_label(ph_label, ...)

Arguments

ph_label placeholder label of the used notes master

... unused arguments

notes_location_type Location of a placeholder for notes

Description

The function will use the type name of the placeholder (e.g. body, hdr), to find the corresponding
location.

Usage

notes_location_type(type = "body", ...)

Arguments

type placeholder label of the used notes master

... unused arguments

88 officer

officer Manipulate Microsoft Word and PowerPoint Documents with ’officer’

Description

The officer package facilitates access to and manipulation of ’Microsoft Word’ and ’Microsoft Pow-
erPoint’ documents from R. It also supports the writing of ’RTF’ documents.

Examples of usage are:

• Create Word documents with tables, titles, TOC and graphics

• Importation of Word and PowerPoint files into data objects

• Write updated content back to a PowerPoint presentation

• Clinical reporting automation

• Production of reports from a shiny application

To start with officer, read about read_docx(), read_pptx() or rtf_doc().

The package is also providing several objects that can be printed in ’R Markdown’ documents for
advanced Word or PowerPoint reporting as run_autonum() and block_caption().

Get Word content in a data.frame

While officer allows you to generate Word and PowerPoint documents, an important feature is
also the ability to read the content of existing Word documents. Use docx_summary() to extract
document content as a structured data.frame, making it easy to analyze and process Word files
programmatically.

Copy an officer object

’officer’ objects of class rdocx or rpptx use R6 classes with reference semantics. Assignment
does NOT create a copy:

pptx1 <- read_pptx()
pptx2 <- pptx1 # pptx2 is a reference to pptx1, not a copy!

If you need independent documents (e.g., in loops), read the template each time:

for (i in 1:10) {
doc <- read_docx("template.docx") # Read fresh each iteration
... modify doc ...
print(doc, target = paste0("output_", i, ".docx"))

}

on_slide 89

Author(s)

Maintainer: David Gohel <david.gohel@ardata.fr>

Authors:

• Stefan Moog <moogs@gmx.de>

• Mark Heckmann <heckmann.mark@gmail.com> (ORCID)

Other contributors:

• ArData [copyright holder]

• Frank Hangler <frank@plotandscatter.com> (function body_replace_all_text) [contribu-
tor]

• Liz Sander <lsander@civisanalytics.com> (several documentation fixes) [contributor]

• Anton Victorson <anton@victorson.se> (fixes xml structures) [contributor]

• Jon Calder <jonmcalder@gmail.com> (update vignettes) [contributor]

• John Harrold <john.m.harrold@gmail.com> (function annotate_base) [contributor]

• John Muschelli <muschellij2@gmail.com> (google doc compatibility) [contributor]

• Bill Denney <wdenney@humanpredictions.com> (ORCID) (function as.matrix.rpptx) [con-
tributor]

• Nikolai Beck <beck.nikolai@gmail.com> (set speaker notes for .pptx documents) [contrib-
utor]

• Greg Leleu <gregoire.leleu@gmail.com> (fields functionality in ppt) [contributor]

• Majid Eismann [contributor]

• Wahiduzzaman Khan (vectorization of remove_slide) [contributor]

• Hongyuan Jia <hongyuanjia@cqust.edu.cn> (ORCID) [contributor]

• Michael Stackhouse <mike.stackhouse@atorusresearch.com> [contributor]

See Also

The user documentation: https://ardata-fr.github.io/officeverse/ and manuals https:
//davidgohel.github.io/officer/

on_slide Change current slide

Description

Change current slide index of an rpptx object.

Usage

on_slide(x, index)

https://orcid.org/0000-0002-0736-7417
https://orcid.org/0000-0002-5759-428X
https://orcid.org/0000-0002-0075-8183
https://ardata-fr.github.io/officeverse/
https://davidgohel.github.io/officer/
https://davidgohel.github.io/officer/

90 open_file

Arguments

x an rpptx object

index slide index

See Also

read_pptx(), ph_with()

Other functions to manipulate slides: add_slide(), move_slide(), remove_slide(), set_notes()

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- add_slide(doc, "Title and Content")
doc <- add_slide(doc, "Title and Content")
doc <- on_slide(doc, index = 1)
doc <- ph_with(

x = doc,
"First title",
location = ph_location_type(type = "title")

)
doc <- on_slide(doc, index = 3)
doc <- ph_with(

x = doc,
"Third title",
location = ph_location_type(type = "title")

)

file <- tempfile(fileext = ".pptx")
print(doc, target = file)

open_file Opens a file locally

Description

Opening a file locally requires a compatible application to be installed (e.g., MS Office or LibreOf-
fice for .pptx or .docx files).

Usage

open_file(path)

Arguments

path File path.

page_mar 91

Details

NB: Function is a small wrapper around utils::browseURL() to have a more suitable function
name.

Examples

x <- read_pptx()
x <- add_slide(x, "Title Slide", ctrTitle = "My Title")
file <- print(x, tempfile(fileext = ".pptx"))
Not run:
open_file(file)
End(Not run)

page_mar Page margins object

Description

Define margins for each page of a section.

The function creates a representation of the dimensions of a page. The dimensions are defined by
length, width and orientation. If the orientation is in landscape mode then the length becomes the
width and the width becomes the length.

Usage

page_mar(
bottom = 1417/1440,
top = 1417/1440,
right = 1417/1440,
left = 1417/1440,
header = 708/1440,
footer = 708/1440,
gutter = 0/1440

)

Arguments

bottom, top distance (in inches) between the bottom/top of the text margin and the bot-
tom/top of the page. The text is placed at the greater of the value of this
attribute and the extent of the header/footer text. A negative value indicates
that the content should be measured from the bottom/top of the page regard-
less of the footer/header, and so will overlap the footer/header. For example,
header=-0.5, bottom=1 means that the footer must start one inch from the
bottom of the page and the main document text must start a half inch from the
bottom of the page. In this case, the text and footer overlap since bottom is
negative.

92 page_size

left, right distance (in inches) from the left/right edge of the page to the left/right edge of
the text.

header distance (in inches) from the top edge of the page to the top edge of the header.

footer distance (in inches) from the bottom edge of the page to the bottom edge of the
footer.

gutter page gutter (in inches).

See Also

Other functions for section definition: page_size(), prop_section(), section_columns()

Examples

page_mar()

page_size Page size object

Description

The function creates a representation of the dimensions of a page. The dimensions are defined by
length, width and orientation. If the orientation is in landscape mode then the length becomes the
width and the width becomes the length.

Usage

page_size(
width = 11906/1440,
height = 16838/1440,
orient = "portrait",
unit = "in"

)

Arguments

width, height page width, page height, default to A4 format If NULL the value will be ignored
and Word will use the default value.

orient page orientation, either ’landscape’, either ’portrait’.

unit unit for width and height, one of "in", "cm", "mm".

See Also

Other functions for section definition: page_mar(), prop_section(), section_columns()

Examples

page_size(orient = "landscape")

phs_with 93

phs_with Fill multiple placeholders using key value syntax

Description

A sibling of ph_with that fills mutiple placeholders at once. Placeholder locations are specfied
using the short form syntax. The location and corresponding object are passed as key value pairs
(phs_with("short form location" = object)). Under the hood, ph_with is called for each pair.
Note that phs_with does not cover all options from the ph_location_* family and is also less
customization. It is a covenience wrapper for the most common use cases. The implemented short
forms are listed in section "Short forms".

Usage

phs_with(x, ..., .dots = NULL, .slide_idx = NULL)

Arguments

x A rpptx object.

... Key-value pairs of the form "short form location" = object. If the short
form is an integer or a string with blanks, you must wrap it in quotes or back-
ticks.

.dots List of key-value pairs "short form location" = object. Alternative to

.slide_idx Numeric indexes of slides to process. NULL (default) processes the current slide
only. Use keyword all for all slides.

Short forms

The following short forms are implemented and can be used as the parameter in the function call.
The corresponding function from the ph_location_* family (called under the hood) is displayed
on the right.

Short form Description Location function
"left" Keyword string ph_location_left()
"right" Keyword string ph_location_right()
"fullsize" Keyword string ph_location_fullsize()
"body [1]" String: type + index in brackets (1 if omitted) ph_location_type("body", 1)
"my_label" Any string not matching a keyword or type ph_location_label("my_label")
1 Length 1 integer ph_location_id(1)

See Also

ph_with(), add_slide()

94 ph_hyperlink

Examples

library(officer)

use key-value format to fill phs
x <- read_pptx()
x <- add_slide(x, "Two Content")
x <- phs_with(

x,
`Title 1` = "A title", # ph label
dt = Sys.Date(), # ph type
`body[2]` = "Body 2", # ph type + type index
left = "Left side", # ph keyword
`6` = "Footer" # ph index

)

reuse ph content via the .dots arg
x <- read_pptx()
my_ph_list <- list(`6` = "Footer", dt = Sys.Date())
x <- add_slide(x, "Two Content")
x <- phs_with(

x,
`Title 1` = "Title A",
`body[2]` = "Body A",
.dots = my_ph_list

)
x <- add_slide(x, "Two Content")
x <- phs_with(

x,
`Title 1` = "Title B",
`body[2]` = "Body B",
.dots = my_ph_list

)

use the .slide_idx arg to select which slide(s) to process
x <- read_pptx()
x <- add_slide(x, "Two Content")
x <- add_slide(x, "Two Content")
x <- phs_with(x, `6` = "Footer", dt = Sys.Date(), .slide_idx = 1:2)

run to open temp pptx file locally
\dontrun{
print(x, preview = TRUE)
}

ph_hyperlink Hyperlink a placeholder

Description

Add hyperlink to a placeholder in the current slide.

ph_location 95

Usage

ph_hyperlink(x, type = "body", id = 1, id_chr = NULL, ph_label = NULL, href)

Arguments

x an rpptx object

type placeholder type

id placeholder index (integer) for a duplicated type. This is to be used when a
placeholder type is not unique in the layout of the current slide, e.g. two place-
holders with type ’body’. To add onto the first, use id = 1 and id = 2 for the
second one. Values can be read from slide_summary().

id_chr deprecated.

ph_label label associated to the placeholder. Use column ph_label of result returned by
slide_summary(). If used, type and id are ignored.

href hyperlink (do not forget http or https prefix)

See Also

ph_with()

Other functions for placeholders manipulation: ph_remove(), ph_slidelink()

Examples

fileout <- tempfile(fileext = ".pptx")
loc_manual <- ph_location(bg = "red", newlabel = "mytitle")
doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(x = doc, "Un titre 1", location = loc_manual)
slide_summary(doc) # read column ph_label here
doc <- ph_hyperlink(

x = doc, ph_label = "mytitle",
href = "https://cran.r-project.org"

)

print(doc, target = fileout)

ph_location Location for a placeholder from scratch

Description

The function will return a list that complies with expected format for argument location of func-
tion ph_with().

96 ph_location

Usage

ph_location(
left = 1,
top = 1,
width = 4,
height = 3,
newlabel = "",
bg = NULL,
rotation = NULL,
ln = NULL,
geom = NULL,
...

)

Arguments

left, top, width, height
place holder coordinates in inches.

newlabel a label for the placeholder. See section details.

bg background color

rotation rotation angle

ln a sp_line() object specifying the outline style.

geom shape geometry, see http://www.datypic.com/sc/ooxml/t-a_ST_ShapeType.html

... unused arguments

Details

The location of the bounding box associated to a placeholder within a slide is specified with the left
top coordinate, the width and the height. These are defined in inches:

left left coordinate of the bounding box

top top coordinate of the bounding box

width width of the bounding box

height height of the bounding box

In addition to these attributes, a label can be associated with the shape. Shapes, text boxes, images
and other objects will be identified with that label in the Selection Pane of PowerPoint. This label
can then be reused by other functions such as ph_location_label(). It can be set with argument
newlabel.

See Also

Other functions for placeholder location: ph_location_fullsize(), ph_location_id(), ph_location_label(),
ph_location_left(), ph_location_right(), ph_location_template(), ph_location_type()

ph_location_fullsize 97

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(

doc,
"Hello world",
location = ph_location(width = 4, height = 3, newlabel = "hello")

)
print(doc, target = tempfile(fileext = ".pptx"))

Set geometry and outline
doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
loc <- ph_location(

left = 1,
top = 1,
width = 4,
height = 3,
bg = "steelblue",
ln = sp_line(color = "red", lwd = 2.5),
geom = "trapezoid"

)
doc <- ph_with(doc, "", loc = loc)
print(doc, target = tempfile(fileext = ".pptx"))

ph_location_fullsize Location of a full size element

Description

The function will return the location corresponding to a full size display.

Usage

ph_location_fullsize(newlabel = "", ...)

Arguments

newlabel a label to associate with the placeholder.

... unused arguments

See Also

Other functions for placeholder location: ph_location(), ph_location_id(), ph_location_label(),
ph_location_left(), ph_location_right(), ph_location_template(), ph_location_type()

98 ph_location_id

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(doc, "Hello world", location = ph_location_fullsize())
print(doc, target = tempfile(fileext = ".pptx"))

ph_location_id Location of a placeholder based on its id

Description

Each placeholder has an id (a low integer value). The ids are unique across a single layout. The
function uses the placeholder’s id to reference it. Different from a ph label, the id is auto-assigned
by PowerPoint and cannot be modified by the user. Use layout_properties() (column id) and
plot_layout_properties() (upper right corner, in green) to find a placeholder’s id.

Usage

ph_location_id(id, newlabel = NULL, ...)

Arguments

id placeholder id.

newlabel a new label to associate with the placeholder.

... not used.

Details

The location of the bounding box associated to a placeholder within a slide is specified with the left
top coordinate, the width and the height. These are defined in inches:

left left coordinate of the bounding box

top top coordinate of the bounding box

width width of the bounding box

height height of the bounding box

In addition to these attributes, a label can be associated with the shape. Shapes, text boxes, images
and other objects will be identified with that label in the Selection Pane of PowerPoint. This label
can then be reused by other functions such as ph_location_label(). It can be set with argument
newlabel.

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_label(),
ph_location_left(), ph_location_right(), ph_location_template(), ph_location_type()

ph_location_label 99

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Comparison")
plot_layout_properties(doc, "Comparison")

doc <- ph_with(doc, "The Title", location = ph_location_id(id = 2)) # title
doc <- ph_with(doc, "Left Header", location = ph_location_id(id = 3)) # left header
doc <- ph_with(doc, "Left Content", location = ph_location_id(id = 4)) # left content
doc <- ph_with(doc, "The Footer", location = ph_location_id(id = 8)) # footer

file <- tempfile(fileext = ".pptx")
print(doc, file)

file.show(file) # may not work on your system

ph_location_label Location of a named placeholder

Description

The function will use the label of a placeholder to find the corresponding location.

Usage

ph_location_label(ph_label, newlabel = NULL, ...)

Arguments

ph_label placeholder label of the used layout. It can be read in PowerPoint or with func-
tion layout_properties() in column ph_label.

newlabel a label to associate with the placeholder.
... unused arguments

Details

The location of the bounding box associated to a placeholder within a slide is specified with the left
top coordinate, the width and the height. These are defined in inches:

left left coordinate of the bounding box
top top coordinate of the bounding box
width width of the bounding box
height height of the bounding box

In addition to these attributes, a label can be associated with the shape. Shapes, text boxes, images
and other objects will be identified with that label in the Selection Pane of PowerPoint. This label
can then be reused by other functions such as ph_location_label(). It can be set with argument
newlabel.

100 ph_location_left

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_id(),
ph_location_left(), ph_location_right(), ph_location_template(), ph_location_type()

Examples

library(officer)

ph_location_label demo ----

doc <- read_pptx()
doc <- add_slide(doc, layout = "Title and Content")

all ph_label can be read here
layout_properties(doc, layout = "Title and Content")

doc <- ph_with(
doc,
head(iris),
location = ph_location_label(ph_label = "Content Placeholder 2")

)
doc <- ph_with(

doc,
format(Sys.Date()),
location = ph_location_label(ph_label = "Date Placeholder 3")

)
doc <- ph_with(

doc,
"This is a title",
location = ph_location_label(ph_label = "Title 1")

)

print(doc, target = tempfile(fileext = ".pptx"))

ph_location_left Location of a left body element

Description

The function will return the location corresponding to a left bounding box. The function assume
the layout ’Two Content’ is existing. This is an helper function, if you don’t have a layout named
’Two Content’, use ph_location_type() and set arguments to your specific needs.

Usage

ph_location_left(newlabel = NULL, ...)

ph_location_right 101

Arguments

newlabel a label to associate with the placeholder.

... unused arguments

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_id(),
ph_location_label(), ph_location_right(), ph_location_template(), ph_location_type()

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(doc, "Hello left", location = ph_location_left())
doc <- ph_with(doc, "Hello right", location = ph_location_right())
print(doc, target = tempfile(fileext = ".pptx"))

ph_location_right Location of a right body element

Description

The function will return the location corresponding to a right bounding box. The function assume
the layout ’Two Content’ is existing. This is an helper function, if you don’t have a layout named
’Two Content’, use ph_location_type() and set arguments to your specific needs.

Usage

ph_location_right(newlabel = NULL, ...)

Arguments

newlabel a label to associate with the placeholder.

... unused arguments

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_id(),
ph_location_label(), ph_location_left(), ph_location_template(), ph_location_type()

102 ph_location_template

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(doc, "Hello left", location = ph_location_left())
doc <- ph_with(doc, "Hello right", location = ph_location_right())
print(doc, target = tempfile(fileext = ".pptx"))

ph_location_template Location for a placeholder based on a template

Description

The function will return a list that complies with expected format for argument location of func-
tion ph_with(). A placeholder will be used as template and its positions will be updated with
values left, top, width, height.

Usage

ph_location_template(
left = 1,
top = 1,
width = 4,
height = 3,
newlabel = "",
type = NULL,
id = 1,
...

)

Arguments

left, top, width, height
place holder coordinates in inches.

newlabel a label for the placeholder. See section details.

type placeholder type to look for in the slide layout, one of ’body’, ’title’, ’ctrTitle’,
’subTitle’, ’dt’, ’ftr’, ’sldNum’. It will be used as a template placeholder.

id index of the placeholder template. If two body placeholder, there can be two
different index: 1 and 2 for the first and second body placeholders defined in the
layout.

... unused arguments

ph_location_type 103

Details

The location of the bounding box associated to a placeholder within a slide is specified with the left
top coordinate, the width and the height. These are defined in inches:

left left coordinate of the bounding box

top top coordinate of the bounding box

width width of the bounding box

height height of the bounding box

In addition to these attributes, a label can be associated with the shape. Shapes, text boxes, images
and other objects will be identified with that label in the Selection Pane of PowerPoint. This label
can then be reused by other functions such as ph_location_label(). It can be set with argument
newlabel.

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_id(),
ph_location_label(), ph_location_left(), ph_location_right(), ph_location_type()

Examples

library(officer)

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(doc, "Title", location = ph_location_type(type = "title"))
doc <- ph_with(

doc,
"Hello world",
location = ph_location_template(top = 4, type = "title")

)
print(doc, target = tempfile(fileext = ".pptx"))

ph_location_type Location of a placeholder based on a type

Description

The function will use the type name of the placeholder (e.g. body, title), the layout name and few
other criterias to find the corresponding location.

104 ph_location_type

Usage

ph_location_type(
type = "body",
type_idx = NULL,
position_right = TRUE,
position_top = TRUE,
newlabel = NULL,
id = NULL,
...

)

Arguments

type placeholder type to look for in the slide layout, one of ’body’, ’title’, ’ctrTitle’,
’subTitle’, ’dt’, ’ftr’, ’sldNum’.

type_idx Type index of the placeholder. If there is more than one placeholder of a type
(e.g., body), the type index can be supplied to uniquely identify a ph. The index
is a running number starting at 1. It is assigned by placeholder position (top
-> bottom, left -> right). See plot_layout_properties() for details. If idx
argument is used, position_right and position_top are ignored.

position_right the parameter is used when a selection with above parameters does not provide
a unique position (for example layout ’Two Content’ contains two element of
type ’body’). If TRUE, the element the most on the right side will be selected,
otherwise the element the most on the left side will be selected.

position_top same than position_right but applied to top versus bottom.

newlabel a label to associate with the placeholder.

id (DEPRECATED, use type_idx instead) Index of the placeholder. If two body
placeholder, there can be two different index: 1 and 2 for the first and second
body placeholders defined in the layout. If this argument is used, position_right
and position_top will be ignored.

... unused arguments

Details

The location of the bounding box associated to a placeholder within a slide is specified with the left
top coordinate, the width and the height. These are defined in inches:

left left coordinate of the bounding box

top top coordinate of the bounding box

width width of the bounding box

height height of the bounding box

In addition to these attributes, a label can be associated with the shape. Shapes, text boxes, images
and other objects will be identified with that label in the Selection Pane of PowerPoint. This label
can then be reused by other functions such as ph_location_label(). It can be set with argument
newlabel.

ph_remove 105

See Also

Other functions for placeholder location: ph_location(), ph_location_fullsize(), ph_location_id(),
ph_location_label(), ph_location_left(), ph_location_right(), ph_location_template()

Examples

library(officer)

ph_location_type demo ----

loc_title <- ph_location_type(type = "title")
loc_footer <- ph_location_type(type = "ftr")
loc_dt <- ph_location_type(type = "dt")
loc_slidenum <- ph_location_type(type = "sldNum")
loc_body <- ph_location_type(type = "body")

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(x = doc, "Un titre", location = loc_title)
doc <- ph_with(x = doc, "pied de page", location = loc_footer)
doc <- ph_with(x = doc, format(Sys.Date()), location = loc_dt)
doc <- ph_with(x = doc, "slide 1", location = loc_slidenum)
doc <- ph_with(x = doc, letters[1:10], location = loc_body)

loc_subtitle <- ph_location_type(type = "subTitle")
loc_ctrtitle <- ph_location_type(type = "ctrTitle")
doc <- add_slide(doc, layout = "Title Slide")
doc <- ph_with(x = doc, "Un sous titre", location = loc_subtitle)
doc <- ph_with(x = doc, "Un titre", location = loc_ctrtitle)

fileout <- tempfile(fileext = ".pptx")
print(doc, target = fileout)

ph_remove Remove a shape

Description

Remove a shape in a slide.

Usage

ph_remove(x, type = "body", id = 1, ph_label = NULL, id_chr = NULL)

106 ph_remove

Arguments

x an rpptx object

type placeholder type

id placeholder index (integer) for a duplicated type. This is to be used when a
placeholder type is not unique in the layout of the current slide, e.g. two place-
holders with type ’body’. To add onto the first, use id = 1 and id = 2 for the
second one. Values can be read from slide_summary().

ph_label label associated to the placeholder. Use column ph_label of result returned by
slide_summary(). If used, type and id are ignored.

id_chr deprecated.

See Also

ph_with()

Other functions for placeholders manipulation: ph_hyperlink(), ph_slidelink()

Examples

fileout <- tempfile(fileext = ".pptx")
dummy_fun <- function(doc) {

doc <- add_slide(doc,
layout = "Two Content",
master = "Office Theme"

)
doc <- ph_with(

x = doc, value = "Un titre",
location = ph_location_type(type = "title")

)
doc <- ph_with(

x = doc, value = "Un corps 1",
location = ph_location_type(type = "body", id = 1)

)
doc <- ph_with(

x = doc, value = "Un corps 2",
location = ph_location_type(type = "body", id = 2)

)
doc

}
doc <- read_pptx()
for (i in 1:3) {

doc <- dummy_fun(doc)
}

doc <- on_slide(doc, index = 1)
doc <- ph_remove(x = doc, type = "title")

doc <- on_slide(doc, index = 2)
doc <- ph_remove(x = doc, type = "body", id = 2)

ph_slidelink 107

doc <- on_slide(doc, index = 3)
doc <- ph_remove(x = doc, type = "body", id = 1)

print(doc, target = fileout)

ph_slidelink Slide link to a placeholder

Description

Add slide link to a placeholder in the current slide.

Usage

ph_slidelink(
x,
type = "body",
id = 1,
id_chr = NULL,
ph_label = NULL,
slide_index

)

Arguments

x an rpptx object

type placeholder type

id placeholder index (integer) for a duplicated type. This is to be used when a
placeholder type is not unique in the layout of the current slide, e.g. two place-
holders with type ’body’. To add onto the first, use id = 1 and id = 2 for the
second one. Values can be read from slide_summary().

id_chr deprecated.

ph_label label associated to the placeholder. Use column ph_label of result returned by
slide_summary(). If used, type and id are ignored.

slide_index slide index to reach

See Also

ph_with()

Other functions for placeholders manipulation: ph_hyperlink(), ph_remove()

108 ph_with

Examples

fileout <- tempfile(fileext = ".pptx")
loc_title <- ph_location_type(type = "title")
doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(x = doc, "Un titre 1", location = loc_title)
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(x = doc, "Un titre 2", location = loc_title)
doc <- on_slide(doc, 1)
slide_summary(doc) # read column ph_label here
doc <- ph_slidelink(x = doc, ph_label = "Title 1", slide_index = 2)

print(doc, target = fileout)

ph_with Add objects on the current slide

Description

add an object into a new shape in the current slide. This function is able to add all supported outputs
to a presentation. See section Methods (by class) to see supported outputs.

Usage

ph_with(x, value, location, ...)

ph_with.character(x, value, location, ...)

ph_with.numeric(x, value, location, format_fun = format, ...)

ph_with.factor(x, value, location, ...)

ph_with.logical(x, value, location, format_fun = format, ...)

ph_with.Date(x, value, location, date_format = NULL, ...)

ph_with.block_list(x, value, location, level_list = integer(0), ...)

ph_with.unordered_list(x, value, location, ...)

ph_with.data.frame(
x,
value,
location,
header = TRUE,
tcf = table_conditional_formatting(),
alignment = NULL,

ph_with 109

...
)

ph_with.gg(x, value, location, res = 300, alt_text = "", scale = 1, ...)

ph_with.plot_instr(x, value, location, res = 300, ...)

ph_with.external_img(x, value, location, use_loc_size = TRUE, ...)

ph_with.fpar(x, value, location, ...)

ph_with.empty_content(x, value, location, ...)

ph_with.xml_document(x, value, location, ...)

Arguments

x an rpptx object

value object to add as a new shape. Supported objects are vectors, data.frame, graph-
ics, block of formatted paragraphs, unordered list of formatted paragraphs, pretty
tables with package flextable, editable graphics with package rvg, ’Microsoft’
charts with package mschart.

location a placeholder location object or a location short form. It will be used to specify
the location of the new shape. This location can be defined with a call to one of
the ph_location_* functions (see section "see also"). In ph_with(), several
location short forms can be used, as listed in section "Short forms".

... further arguments passed to or from other methods. When adding a ggplot
object or plot_instr, these arguments will be used by the png function.

format_fun format function for non character vectors

date_format A format string for dates (default "%Y-%m-%d"). See format arg in strftime()
for details. Set a global default via options(officer.date_format = ...).

level_list The list of levels for hierarchy structure as integer values. If used the object is
formated as an unordered list. If 1 and 2, item 1 level will be 1, item 2 level will
be 2.

header display header if TRUE

tcf conditional formatting settings defined by table_conditional_formatting()

alignment alignment for each columns, ’l’ for left, ’r’ for right and ’c’ for center. Default
to NULL.

res resolution of the png image in ppi

alt_text Alt-text for screen-readers. Defaults to "". If "" or NULL an alt text added with
ggplot2::labs(alt = ...) will be used if any.

scale Multiplicative scaling factor, same as in ggsave

use_loc_size if set to FALSE, external_img width and height will be used.

110 ph_with

Functions

• ph_with.character(): add a character vector to a new shape on the current slide, values will
be added as paragraphs.

• ph_with.numeric(): add a numeric vector to a new shape on the current slide, values will be
be first formatted then added as paragraphs.

• ph_with.factor(): add a factor vector to a new shape on the current slide, values will be be
converted as character and then added as paragraphs.

• ph_with.Date(): add a Date object vector to a new shape on the current slide, values will be
be first converted to character.

• ph_with.block_list(): add a block_list() made of fpar() to a new shape on the current
slide.

• ph_with.unordered_list(): add a unordered_list() made of fpar() to a new shape on
the current slide.

• ph_with.data.frame(): add a data.frame to a new shape on the current slide with function
block_table(). Use package ’flextable’ instead for more advanced formattings.

• ph_with.gg(): add a ggplot object to a new shape on the current slide. Use package ’rvg’ for
more advanced graphical features.

• ph_with.plot_instr(): add an R plot to a new shape on the current slide. Use package
’rvg’ for more advanced graphical features.

• ph_with.external_img(): add a external_img() to a new shape on the current slide.
When value is a external_img object, image will be copied into the PowerPoint presentation.
The width and height specified in call to external_img() will be ignored, their values will
be those of the location, unless use_loc_size is set to FALSE.

• ph_with.fpar(): add an fpar() to a new shape on the current slide as a single paragraph in
a block_list().

• ph_with.empty_content(): add an empty_content() to a new shape on the current slide.

• ph_with.xml_document(): add an xml_document object to a new shape on the current slide.
This function is to be used to add custom openxml code.

Short forms

The location argument of ph_with() either expects a location object as returned by the ph_location_*
functions or a corresponding location short form (string or numeric):

Location function Short form Description
ph_location_left() "left" Keyword string
ph_location_right() "right" Keyword string
ph_location_fullsize() "fullsize" Keyword string
ph_location_type("body", 1) "body [1]" String: type + index in brackets (1 if omitted)
ph_location_label("my_label") "my_label" Any string not matching a keyword or type
ph_location_id(1) 1 Length 1 integer
ph_location(0, 0, 4, 5) c(0,0,4,5) Length 4 numeric, optionally named, c(top=0, left=0, ...)

ph_with 111

Illustrations

See Also

Specify placeholder locations with ph_location_type, ph_location, ph_location_label, ph_location_left,
ph_location_right, ph_location_fullsize, ph_location_template. phs_with is a sibling of ph_with
that fills multiple placeholders at once. Use add_slide to add new slides.

Examples

this name will be used to print the file
change it to "youfile.pptx" to write the pptx
file in your working directory.
fileout <- tempfile(fileext = ".pptx")

doc_1 <- read_pptx()
sz <- slide_size(doc_1)

add text and a table ----
doc_1 <- add_slide(doc_1, layout = "Two Content", master = "Office Theme")
doc_1 <- ph_with(

x = doc_1,
value = c("Table cars"),
location = ph_location_type(type = "title")

)
doc_1 <- ph_with(

x = doc_1,
value = names(cars),
location = ph_location_left()

)
doc_1 <- ph_with(

x = doc_1,
value = cars,
location = ph_location_right()

)
doc_1 <- ph_with(

x = doc_1,
value = Sys.Date(),
location = ph_location_type("dt")

)

add a base plot ----
anyplot <- plot_instr(code = {

col <- c(
"#440154FF",
"#443A83FF",
"#31688EFF",
"#21908CFF",
"#35B779FF",
"#8FD744FF",
"#FDE725FF"

112 ph_with

)
barplot(1:7, col = col, yaxt = "n")

})

doc_1 <- add_slide(doc_1, "Title and Content")
doc_1 <- ph_with(

doc_1,
anyplot,
location = ph_location_fullsize(),
bg = "#006699"

)

add a ggplot2 plot ----
if (require("ggplot2")) {

doc_1 <- add_slide(doc_1, "Title and Content")
gg_plot <- ggplot(data = iris) +

geom_point(
mapping = aes(Sepal.Length, Petal.Length),
size = 3

) +
theme_minimal()

doc_1 <- ph_with(
x = doc_1,
value = gg_plot,
location = ph_location_type(type = "body"),
bg = "transparent"

)
doc_1 <- ph_with(

x = doc_1,
value = "graphic title",
location = ph_location_type(type = "title")

)
}

add a external images ----
doc_1 <- add_slide(doc_1, layout = "Title and Content", master = "Office Theme")
doc_1 <- ph_with(

x = doc_1,
value = empty_content(),
location = ph_location(

left = 0,
top = 0,
width = sz$width,
height = sz$height,
bg = "black"

)
)

svg_file <- file.path(R.home(component = "doc"), "html/Rlogo.svg")
if (require("rsvg")) {

doc_1 <- ph_with(
x = doc_1,
value = "External images",

ph_with 113

location = ph_location_type(type = "title")
)
doc_1 <- ph_with(

x = doc_1,
external_img(svg_file, 100 / 72, 76 / 72),
location = ph_location_right(),
use_loc_size = FALSE

)
doc_1 <- ph_with(

x = doc_1,
external_img(svg_file),
location = ph_location_left(),
use_loc_size = TRUE

)
}

add a block_list ----
dummy_text <- readLines(system.file(

package = "officer",
"doc_examples/text.txt"

))
fp_1 <- fp_text(bold = TRUE, color = "pink", font.size = 0)
fp_2 <- fp_text(bold = TRUE, font.size = 0)
fp_3 <- fp_text(italic = TRUE, color = "red", font.size = 0)
bl <- block_list(

fpar(ftext("hello world", fp_1)),
fpar(

ftext("hello", fp_2),
ftext("hello", fp_3)

),
dummy_text

)
doc_1 <- add_slide(doc_1, "Title and Content")
doc_1 <- ph_with(

x = doc_1,
value = bl,
location = ph_location_type(type = "body")

)

fpar ------
fpt <- fp_text(

bold = TRUE,
font.family = "Bradley Hand",
font.size = 150,
color = "#F5595B"

)
hw <- fpar(

ftext("hello ", fpt),
hyperlink_ftext(

href = "https://cran.r-project.org/index.html",
text = "cran",
prop = fpt

114 plot_instr

)
)
doc_1 <- add_slide(doc_1, "Title and Content")
doc_1 <- ph_with(

x = doc_1,
value = hw,
location = ph_location_type(type = "body")

)
unordered_list ----
ul <- unordered_list(

level_list = c(1, 2, 2, 3, 3, 1),
str_list = c("Level1", "Level2", "Level2", "Level3", "Level3", "Level1"),
style = fp_text(color = "red", font.size = 0)

)
doc_1 <- add_slide(doc_1, "Title and Content")
doc_1 <- ph_with(

x = doc_1,
value = ul,
location = ph_location_type()

)

print(doc_1, target = fileout)

Example using short-form locations ----
x <- read_pptx()
x <- add_slide(x, "Title Slide")
x <- ph_with(x, "A title", "Title 1") # label
x <- ph_with(x, "A subtitle", 3) # id
x <- ph_with(x, "A left text", "left") # keyword
x <- ph_with(x, Sys.Date(), "dt[1]") # type + index
x <- ph_with(x, "More content", c(5, .5, 5, 2)) # numeric vector (left, top, width, heigh)
\dontrun{
print(x, preview = TRUE) # opens file locally
}

plot_instr Wrap plot instructions for png plotting in Powerpoint or Word

Description

A simple wrapper to capture plot instructions that will be executed and copied in a document. It pro-
duces an object of class ’plot_instr’ with a corresponding method ph_with() and body_add_plot().

The function enable usage of any R plot with argument code. Wrap your code between curly
bracket if more than a single expression.

Usage

plot_instr(code)

plot_layout_properties 115

Arguments

code plotting instructions

See Also

ph_with(), body_add_plot()

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_section(), block_table(), block_toc(), fpar(), unordered_list()

Examples

plot_instr demo ----

anyplot <- plot_instr(code = {
barplot(1:5, col = 2:6)
})

doc <- read_docx()
doc <- body_add(doc, anyplot, width = 5, height = 4)
print(doc, target = tempfile(fileext = ".docx"))

doc <- read_pptx()
doc <- add_slide(doc, "Title and Content")
doc <- ph_with(

doc, anyplot,
location = ph_location_fullsize(),
bg = "#00000066", pointsize = 12)

print(doc, target = tempfile(fileext = ".pptx"))

plot_layout_properties

Slide layout properties plot

Description

Plot slide layout properties into corresponding placeholders. This can be useful to help visualize
placeholders locations and identifiers. All information in the plot stems from the layout_properties()
output. See Details section for more info.

Usage

plot_layout_properties(
x,
layout = NULL,
master = NULL,
slide_idx = NULL,
labels = TRUE,

116 plot_layout_properties

title = TRUE,
type = TRUE,
id = TRUE,
cex = c(labels = 0.5, type = 0.5, id = 0.5),
legend = FALSE

)

Arguments

x an rpptx object

layout slide layout name or numeric index (row index from layout_summary(). If
NULL (default), it plots the current slide’s layout or the default layout (if set and
there are not slides yet).

master master layout name where layout is located. Can be omitted if layout is unam-
biguous.

slide_idx Numeric slide index (default NULL) to specify which slide’s layout should be
plotted.

labels if TRUE (default), adds placeholder labels (centered in red).

title if TRUE (default), adds a title with the layout and master name (latter in square
brackets) at the top.

type if TRUE (default), adds the placeholder type and its index (in square brackets) in
the upper left corner (in blue).

id if TRUE (default), adds the placeholder’s unique id (see column id from layout_properties())
in the upper right corner (in green).

cex List or vector to specify font size for labels, type, and id. Default is c(labels
= .5, type = .5, id = .5). See graphics::text() for details on how cex
works. Matching by position and partial name matching is supported. A sin-
gle numeric value will apply to all three parameters.

legend Add a legend to the plot (default FALSE).

Details

The plot contains all relevant information to reference a placeholder via the ph_location_* func-
tion family:

• label: ph label (red, center) to be used in ph_location_label(). NB: The label can be
assigned by the user in PowerPoint.

• type[idx]: ph type + type index in brackets (blue, upper left) to be used in ph_location_type().
NB: The index is consecutive and is sorted by ph position (top -> bottom, left -> right).

• id: ph id (green, upper right) to be used in ph_location_id() (forthcoming). NB: The id is
set by PowerPoint automatically and lack a meaningful order.

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_properties(), layout_summary(), length.rpptx(), slide_size(), slide_summary()

pptx_summary 117

Examples

x <- read_pptx()

select layout explicitly
plot_layout_properties(x = x, layout = "Title Slide", master = "Office Theme")
plot_layout_properties(x = x, layout = "Title Slide") # no master needed if layout name unique
plot_layout_properties(x = x, layout = 1) # use layout index instead of name

plot default layout if one is set
x <- layout_default(x, "Title and Content")
plot_layout_properties(x)

plot current slide's layout (default if no layout is passed)
x <- add_slide(x, "Title Slide")
plot_layout_properties(x)

specify which slide's layout to plot by index
plot_layout_properties(x, slide_idx = 1)

change appearance: what to show, font size, legend etc.
plot_layout_properties(

x,
layout = "Two Content",
title = FALSE,
type = FALSE,
id = FALSE

)
plot_layout_properties(x, layout = 4, cex = c(labels = .8, id = .7, type = .7))
plot_layout_properties(x, 1, legend = TRUE)

pptx_summary PowerPoint content in a data.frame

Description

Read content of a PowerPoint document and return a dataset representing the document.

Usage

pptx_summary(x, preserve = FALSE)

Arguments

x an rpptx object

preserve If FALSE (default), text in table cells is collapsed into a single line. If TRUE, line
breaks in table cells are preserved as a "\n" character. This feature is adapted
from docxtractr::docx_extract_tbl() published under a MIT licensed in
the ’docxtractr’ package by Bob Rudis.

https://github.com/hrbrmstr/docxtractr/blob/master/LICENSE

118 print.rdocx

Examples

example_pptx <- system.file(package = "officer",
"doc_examples/example.pptx")

doc <- read_pptx(example_pptx)
pptx_summary(doc)
pptx_summary(example_pptx)

print.rdocx Write a ’Word’ File

Description

print.rdocx() is the essential output function for creating Word files with officer. It takes an
rdocx object (created with read_docx() and populated with content) and writes it to disk as a
.docx file.

This function performs all necessary post-processing operations before writing the file.

The function is typically called at the end of your document creation workflow, after all content has
been added with body_add_*() functions.

Usage

S3 method for class 'rdocx'
print(
x,
target = NULL,
copy_header_refs = FALSE,
copy_footer_refs = FALSE,
preview = FALSE,
...

)

Arguments

x an rdocx object created with read_docx()

target path to the .docx file to write. The file will be created or overwritten if it already
exists. If NULL and preview = FALSE, the function returns NULL without writing
a file.

copy_header_refs, copy_footer_refs
logical, default is FALSE. If TRUE, copy the references to the header and footer
in each section of the body of the document. This parameter is experimental and
may change in a future version.

preview Save x to a temporary file and open it (default FALSE). When TRUE, the document
is saved to a temporary location and opened with the system’s default application
for .docx files, useful for quick previewing during development.

... unused

print.rpptx 119

Value

The full path to the created .docx file (invisibly). This allows chaining operations or capturing the
output path for further use.

See Also

Create a ’Word’ document object with read_docx(), add content with functions body_add_par(),
body_add_plot(), body_add_table(), change settings with docx_set_settings(), set proper-
ties with set_doc_properties(), read ’Word’ styles with styles_info().

Examples

library(officer)

This example demonstrates how to create
an small document -----

Create a new Word document
doc <- read_docx()
doc <- body_add_par(doc, "hello world")
Save the document
output_file <- print(doc, target = tempfile(fileext = ".docx"))

preview mode: save to temp file and open locally ----
Not run:
print(doc, preview = TRUE)

print.rpptx Write a ’PowerPoint’ file.

Description

Create a ’PowerPoint’ file from an rpptx object (created by read_pptx()).

Usage

S3 method for class 'rpptx'
print(x, target = NULL, preview = FALSE, ...)

Arguments

x an rpptx object.

target path to the .pptx file to write. If target is NULL (default), the rpptx object is
printed to the console.

preview Save x to a temporary file and open it (default FALSE).

... unused.

120 print.rtf

Value

If preview is TRUE, returns the temp file path invisibly.

See Also

read_pptx()

Examples

write an rpptx object to a .pptx file ----
file <- tempfile(fileext = ".pptx")
x <- read_pptx() # empty presentation, has no slides yet
print(x, target = file)

preview mode: save to temp file and open locally ----
Not run:
print(x, preview = TRUE)

End(Not run)

print.rtf Write an ’RTF’ File

Description

Write the RTF object and its content to a file.

Usage

S3 method for class 'rtf'
print(x, target = NULL, ...)

Arguments

x an ’rtf’ object created with rtf_doc()

target path to the RTF file to write

... unused

See Also

rtf_doc()

Examples

write a rdocx object in a rtf file ----
doc <- rtf_doc()
print(doc, target = tempfile(fileext = ".rtf"))

prop_section 121

prop_section Section properties

Description

A section is a grouping of blocks (ie. paragraphs and tables) that have a set of properties that define
pages on which the text will appear.

A Section properties object stores information about page composition, such as page size, page
orientation, borders and margins.

Important: When creating multiple sections in a document, it is strongly recommended to use
the same page_margins object for all sections to avoid unwanted page breaks. Changing page
margins between sections can cause Word to insert automatic page breaks, even when using type =
"continuous". To ensure consistent behavior, create a single page_mar() object and reuse it across
all prop_section() calls. See the examples in body_end_block_section() which demonstrate
this best practice.

Usage

prop_section(
page_size = NULL,
page_margins = NULL,
type = "continuous",
section_columns = NULL,
header_default = NULL,
header_even = NULL,
header_first = NULL,
footer_default = NULL,
footer_even = NULL,
footer_first = NULL

)

Arguments

page_size page dimensions, an object generated with function page_size.

page_margins page margins, an object generated with function page_mar. It is recommended
to use the same margins object across all sections to prevent unintended page
breaks.

type Section type. It defines how the contents of the section will be placed relative
to the previous section. Available types are "continuous" (begins the section
on the next paragraph), "evenPage" (begins on the next even-numbered page),
"nextColumn" (begins on the next column on the page), "nextPage" (begins on
the following page), "oddPage" (begins on the next odd-numbered page).

section_columns

section columns, an object generated with function section_columns. Use NULL
(default value) for no content.

122 prop_section

header_default content as a block_list() for the default page header. Use NULL (default
value) for no content.

header_even content as a block_list() for the even page header. Use NULL (default value)
for no content.

header_first content as a block_list() for the first page header. Use NULL (default value)
for no content.

footer_default content as a block_list() for the default page footer. Use NULL (default
value) for no content.

footer_even content as a block_list() for the even page footer. Use NULL (default value)
for no content.

footer_first content as a block_list() for the default page footer. Use NULL (default
value) for no content.

Illustrations

See Also

block_section

Other functions for section definition: page_mar(), page_size(), section_columns()

Examples

library(officer)

Example 1: Mixing different section layouts ----
This example demonstrates how to create a document with multiple sections,
each with different page orientations and column layouts

Define a landscape section with single column
This is useful for wide tables or charts
landscape_one_column <- block_section(

prop_section(
page_size = page_size(orient = "landscape"),
type = "continuous"

)
)

Define a landscape section with two columns
Useful for text-heavy content in landscape mode (e.g., newsletters)
landscape_two_columns <- block_section(

prop_section(
page_size = page_size(orient = "landscape"),
type = "continuous",
section_columns = section_columns(widths = c(4.75, 4.75))

)
)

prop_section 123

Create a new document
doc_1 <- read_docx()

Section 1: Landscape single column for wide table ----
Add a title for the first section
doc_1 <- body_add_par(doc_1, "Wide Table Section", style = "heading 1")
doc_1 <- body_add_par(

doc_1,
"This table is displayed in landscape orientation to accommodate all columns."

)

Add a wide table with multiple columns
doc_1 <- body_add_table(doc_1, value = mtcars[1:10,], style = "table_template")

End the landscape single-column section
doc_1 <- body_end_block_section(doc_1, value = landscape_one_column)

Section 2: Landscape two columns for text content ----
Add a title for the two-column section
doc_1 <- body_add_par(doc_1, "Two-Column Text Section", style = "heading 1")
doc_1 <- body_add_par(

doc_1,
"The following text flows across two columns in landscape orientation."

)

Add text content that will flow across two columns
doc_1 <- body_add_par(doc_1, value = paste(rep(letters, 50), collapse = " "))

End the landscape two-column section
doc_1 <- body_end_block_section(doc_1, value = landscape_two_columns)

Section 3: Return to portrait orientation ----
After ending the previous sections, we're back to portrait (default)
doc_1 <- body_add_par(doc_1, "Portrait Table Section", style = "heading 1")
doc_1 <- body_add_par(

doc_1,
"This section returns to portrait orientation with a taller table."

)

Add a longer table in portrait orientation
doc_1 <- body_add_table(doc_1, value = mtcars[1:25,], style = "table_template")

Save the document
output_file_1 <- tempfile(fileext = ".docx")
print(doc_1, target = output_file_1)

Example 2: Different headers and footers (first, even, odd pages) ----
This example demonstrates the complete header/footer system with:
- Different header/footer for the first page
- Different header/footer for even pages (left-side pages in duplex printing)
- Default header/footer for odd pages (right-side pages)

124 prop_section

Create sample text to generate multiple pages
lorem_text <- paste(

rep("Purus lectus eros metus turpis mattis platea praesent sed. ", 50),
collapse = ""

)

Define content for FIRST page header
Typically used for title pages or cover pages
header_first <- block_list(

fpar(
ftext(

"First Page Header - Title Page",
fp_text_lite(bold = TRUE, color = "#4472C4", font.size = 14)

),
fp_p = fp_par(

text.align = "center",
padding.bottom = 12,
border.bottom = fp_border(color = "#4472C4", width = 2)

)
)

)

Define content for EVEN pages header (left-side pages when printed)
In duplex printing, this appears on the left side
header_even <- block_list(

fpar(
ftext("Chapter Title", fp_text_lite(italic = TRUE, font.size = 10)),
fp_p = fp_par(text.align = "left")

)
)

Define content for DEFAULT pages header (odd pages/right-side)
In duplex printing, this appears on the right side
header_default <- block_list(

fpar(
ftext("Document Title", fp_text_lite(italic = TRUE, font.size = 10)),
fp_p = fp_par(text.align = "right")

)
)

Define content for FIRST page footer
footer_first <- block_list(

fpar(
ftext(

"Company Name - Confidential",
fp_text_lite(font.size = 9, color = "#666666")

),
fp_p = fp_par(text.align = "center")

)
)

Define content for EVEN pages footer (includes page number on left)
footer_even <- block_list(

prop_section 125

fpar(
run_word_field(field = "PAGE", prop = fp_text_lite(font.size = 9)),
ftext(" | Document Name", fp_text_lite(font.size = 9)),
fp_p = fp_par(

text.align = "left",
padding.top = 6,
border.top = fp_border(color = "#CCCCCC", width = 1)

)
)

)

Define content for DEFAULT pages footer (includes page number on right)
footer_default <- block_list(

fpar(
ftext("Document Name | ", fp_text_lite(font.size = 9)),
run_word_field(field = "PAGE", prop = fp_text_lite(font.size = 9)),
fp_p = fp_par(

text.align = "right",
padding.top = 6,
border.top = fp_border(color = "#CCCCCC", width = 1)

)
)

)

Create section properties with all header/footer variants
When all three are defined (first, even, default), Word will use:
- header_first/footer_first for page 1
- header_even/footer_even for pages 2, 4, 6, etc.
- header_default/footer_default for pages 3, 5, 7, etc.
section_with_all_hf <- prop_section(

header_default = header_default,
footer_default = footer_default,
header_first = header_first,
footer_first = footer_first,
header_even = header_even,
footer_even = footer_even

)

Create a new document
doc_2 <- read_docx()

Add enough content to create multiple pages
This will demonstrate how the different headers/footers appear
for (i in 1:20) {

doc_2 <- body_add_par(doc_2, paste0("Paragraph ", i, ": ", lorem_text))
}

Apply the section properties with all header/footer configurations
doc_2 <- body_set_default_section(doc_2, value = section_with_all_hf)

Save the document
Open this document and scroll through pages to see:
- Page 1: Special first page header/footer

126 prop_table

- Page 2: Even page header/footer with page number on left
- Page 3: Odd page (default) header/footer with page number on right
- And so on...
output_file_2 <- tempfile(fileext = ".docx")
print(doc_2, target = output_file_2)

prop_table Table properties

Description

Define table properties such as fixed or autofit layout, table width in the document, eventually
column widths.

Usage

prop_table(
style = NA_character_,
layout = table_layout(),
width = table_width(),
stylenames = table_stylenames(),
colwidths = table_colwidths(),
tcf = table_conditional_formatting(),
align = "center",
word_title = NULL,
word_description = NULL

)

Arguments

style table style to be used to format table

layout layout defined by table_layout(),

width table width in the document defined by table_width()

stylenames columns styles defined by table_stylenames()

colwidths column widths defined by table_colwidths()

tcf conditional formatting settings defined by table_conditional_formatting()

align table alignment (one of left, center or right)

word_title alternative text for Word table (used as title of the table)
word_description

alternative text for Word table (used as description of the table)

See Also

Other functions for table definition: table_colwidths(), table_conditional_formatting(),
table_layout(), table_stylenames(), table_width()

read_docx 127

Examples

prop_table()
to_wml(prop_table())

read_docx Create a ’Word’ document object

Description

read_docx() is the starting point for creating Word documents from R. It creates an R object
representing a Word document that can be manipulated programmatically. When called without
arguments, it creates an empty document based on a default template. When provided with a path,
it reads an existing Word document (.docx) or template (.dotx) file.

Once created, you can:

• Add content from R: Insert text, formatted paragraphs (fpar()), tables (body_add_table()),
plots (body_add_plot()), images, page breaks, table of contents, and more using the body_add_*()
family of functions.

• Read and inspect content: Use docx_summary() to extract and analyze the document’s con-
tent, structure, and formatting as a data frame.

• Write to file: Save the document to disk using print(x, target = "path/to/file.docx").

Usage

read_docx(path = NULL)

Arguments

path path to the docx file to use as base document. dotx file are supported.

Value

an object of class rdocx.

styles

The template file (specified via path or the default template) determines the available paragraph
styles, character styles, and table styles in your document. These styles control the appearance of
headings, body text, tables, and other elements.

When you use functions like body_add_par(style = "heading 2"), the style name must exist in
the template. You can:

• Use styles_info() to list all available styles in your document
• Create a custom template in Word with your organization’s styles and branding
• Use the default template for standard documents

The document layout (page size, margins, headers and footer content, orientation) also comes from
the template and can be modified using body_set_default_section() or by adding section breaks
with body_end_section_continuous() and related functions.

128 read_docx

Illustrations

See Also

Save a ’Word’ document object to a file with print.rdocx(), add content with functions body_add_par(),
body_add_plot(), body_add_table(), change settings with docx_set_settings(), set proper-
ties with set_doc_properties(), read ’Word’ styles with styles_info().

Examples

library(officer)

This example demonstrates how to create
an empty document -----

Create a new Word document
doc <- read_docx()
Save the document
output_file <- print(doc, target = tempfile(fileext = ".docx"))

This example demonstrates how to create a document
with text, formatted paragraphs, tables, and plots ----
organized in sections

Create a new Word document
doc <- read_docx()

Add main title
doc <- body_add_par(doc, "Annual Sales Report", style = "heading 1")

Add introduction with formatted text using fpar
intro_text <- fpar(

"This report presents the ",
ftext(
"quarterly sales analysis",
fp_text_lite(bold = TRUE, color = "#C32900")

),
" for the fiscal year. The following sections provide detailed insights ",
"into our performance metrics and trends."

)
doc <- body_add_fpar(doc, intro_text)

Section 1: Sales Data ----
doc <- body_add_par(doc, "Sales Performance", style = "heading 2")

Add descriptive text
doc <- body_add_par(

doc,
"The table below summarizes sales data across different product categories:"

)

read_docx 129

Create and add a data frame as a table
sales_data <- data.frame(

Quarter = c("Q1", "Q2", "Q3", "Q4"),
Revenue = c(125000, 142000, 156000, 178000),
Units = c(1250, 1420, 1560, 1780),
Growth = c("5%", "13.6%", "9.9%", "14.1%"),
stringsAsFactors = FALSE

)
doc <- body_add_table(doc, value = sales_data, style = "table_template")

Add commentary with multiple formatted text elements
comment <- fpar(

"Key finding: ",
ftext(
"Q4 showed the strongest performance",
fp_text_lite(bold = TRUE, font.size = 11)

),
" with a ",
ftext("14.1% growth rate", fp_text_lite(color = "#006699", bold = TRUE)),
" compared to the previous quarter."

)
doc <- body_add_fpar(doc, comment)

Section 2: Visualizations ----
doc <- body_add_par(doc, "Revenue Trends", style = "heading 2")

Add explanatory text
doc <- body_add_par(

doc,
"Figure 1 illustrates the quarterly revenue progression throughout the year."

)

Create a plot showing revenue trends
revenue_plot <- plot_instr({

quarters <- c("Q1", "Q2", "Q3", "Q4")
revenue <- c(125000, 142000, 156000, 178000)
barplot(

revenue,
names.arg = quarters,
col = "#4472C4",
border = NA,
main = "Quarterly Revenue",
ylab = "Revenue ($)",
xlab = "Quarter",
ylim = c(0, 200000)

)
grid(nx = NA, ny = NULL, col = "gray90", lty = 1)

})
doc <- body_add_plot(doc, revenue_plot, width = 6, height = 4)

Add another section with a different plot
doc <- body_add_par(doc, "Sales Distribution Analysis", style = "heading 2")

130 read_docx

Add context for the second plot
analysis_intro <- fpar(

"The distribution analysis below shows the ",
ftext("variability in daily sales", fp_text_lite(italic = TRUE)),
" across all quarters. This helps identify patterns and outliers in our sales data."

)
doc <- body_add_fpar(doc, analysis_intro)

Create a density plot
distribution_plot <- plot_instr({

Simulate daily sales data
set.seed(123)
daily_sales <- c(
rnorm(90, mean = 1400, sd = 200), # Q1-Q3
rnorm(30, mean = 2000, sd = 250) # Q4 (higher mean)

)
plot(

density(daily_sales),
main = "Distribution of Daily Sales",
xlab = "Daily Sales (Units)",
ylab = "Density",
col = "#C32900",
lwd = 2

)
polygon(density(daily_sales), col = rgb(0.76, 0.16, 0, 0.2), border = NA)
abline(v = mean(daily_sales), col = "#006699", lwd = 2, lty = 2)
legend("topright", legend = "Mean", col = "#006699", lty = 2, lwd = 2)

})
doc <- body_add_plot(doc, distribution_plot, width = 6, height = 4)

Add concluding remarks
doc <- body_add_par(doc, "Conclusion", style = "heading 2")
conclusion <- fpar(

"The analysis demonstrates ",
ftext("consistent growth", fp_text_lite(bold = TRUE, color = "#006699")),
" throughout the year, with particularly strong performance in Q4. ",
"This trend suggests effective market strategies and increasing customer demand."

)
doc <- body_add_fpar(doc, conclusion)

Save the document
comprehensive_file <- print(doc, target = tempfile(fileext = ".docx"))
Using a custom template ----
This example shows how to start from an existing template
instead of creating a blank document

Get the path to a landscape template included in the package
template <- system.file(package = "officer", "doc_examples", "landscape.docx")

Create a document based on the template
The document will inherit the template's styles and page settings
doc_2 <- read_docx(path = template)

read_pptx 131

Add a section with a table
doc_2 <- body_add_par(doc_2, "Motor Trend Car Data", style = "heading 2")
doc_2 <- body_add_table(doc_2, value = head(mtcars))

Add a section with a plot
doc_2 <- body_add_par(doc_2, "Sales Distribution", style = "heading 2")
doc_2 <- body_add_plot(doc_2, distribution_plot)

Save the document
docx_file_output <- print(doc_2, target = tempfile(fileext = ".docx"))

read_pptx Create a ’PowerPoint’ document object

Description

Read and import a pptx file as an R object representing the document.
The function is called read_pptx because it allows you to initialize an object of class rpptx from
an existing PowerPoint file. Content will be added to the existing presentation. By default, an empty
document is used.

Usage

read_pptx(path = NULL)

Arguments

path path to the pptx file to use as base document. potx file are supported.

master layouts and slide layouts

read_pptx() uses a PowerPoint file as the initial document. This is the original PowerPoint doc-
ument where all slide layouts, placeholders for shapes and styles come from. Major points to be
aware of are:

• Slide layouts are relative to a master layout. A document can contain one or more master
layouts; a master layout can contain one or more slide layouts.

• A slide layout inherits design properties from its master layout but some properties can be
overwritten.

• Designs and formatting properties of layouts and shapes (placeholders in a layout) are defined
within the initial document. There is no R function to modify these values - they must be
defined in the initial document.

See Also

print.rpptx(), add_slide(), plot_layout_properties(), ph_with()

Examples

read_pptx()

132 remove_slide

read_xlsx Create an ’Excel’ document object

Description

Read and import an xlsx file as an R object representing the document. This function is experimen-
tal.

Usage

read_xlsx(path = NULL)

S3 method for class 'rxlsx'
length(x)

S3 method for class 'rxlsx'
print(x, target = NULL, ...)

Arguments

path path to the xlsx file to use as base document.

x an rxlsx object

target path to the xlsx file to write

... unused

Examples

read_xlsx()
x <- read_xlsx()
print(x, target = tempfile(fileext = ".xlsx"))

remove_slide Remove slide(s)

Description

Remove one or more slides from a pptx presentation.

Usage

remove_slide(x, index = NULL, rm_images = FALSE)

remove_slide 133

Arguments

x an rpptx object

index slide index or a vector of slide indices to remove, default to current slide posi-
tion.

rm_images unused anymore.

Note

cursor is set on the last slide.

See Also

read_pptx(), ph_with(), ph_remove()

Other functions to manipulate slides: add_slide(), move_slide(), on_slide(), set_notes()

Examples

library(officer)

x <- read_pptx()
x <- add_slide(x, "Title and Content")
x <- remove_slide(x)

Remove multiple slides at once
x <- read_pptx()
x <- add_slide(x, "Title and Content")
x <- add_slide(

x,
layout = "Two Content",
`Title 1` = "A title",
dt = "Jan. 26, 2025",
`body[2]` = "Body 2",
left = "Left side",
`6` = "Footer"

)
x <- add_slide(

x,
layout = "Two Content",
`Title 1` = "A title",
dt = "Jan. 26, 2025",
`body[2]` = "Body 2",
left = "Left side",
`6` = "Footer"

)
x <- add_slide(x, "Title and Content")
x <- remove_slide(x, index = c(2, 4))
pptx_file <- print(x, target = tempfile(fileext = ".pptx"))
pptx_file

134 rtf_add

rtf_add Add content into an RTF document

Description

This function add ’officer’ objects into an RTF document. Values are added as new paragraphs. See
section ’Methods (by class)’ that list supported objects.

Usage

rtf_add(x, value, ...)

S3 method for class 'block_section'
rtf_add(x, value, ...)

S3 method for class 'character'
rtf_add(x, value, ...)

S3 method for class 'factor'
rtf_add(x, value, ...)

S3 method for class 'double'
rtf_add(x, value, formatter = formatC, ...)

S3 method for class 'fpar'
rtf_add(x, value, ...)

S3 method for class 'block_list'
rtf_add(x, value, ...)

S3 method for class 'gg'
rtf_add(
x,
value,
width = 6,
height = 5,
res = 300,
scale = 1,
ppr = fp_par(text.align = "center"),
...

)

S3 method for class 'plot_instr'
rtf_add(
x,
value,
width = 6,

rtf_add 135

height = 5,
res = 300,
scale = 1,
ppr = fp_par(text.align = "center"),
...

)

Arguments

x rtf object, created by rtf_doc().

value object to add in the document. Supported objects are vectors, graphics, block of
formatted paragraphs. Use package ’flextable’ to add tables.

... further arguments passed to or from other methods. When adding a ggplot
object or plot_instr, these arguments will be used by png function. See section
’Methods’ to see what arguments can be used.

formatter function used to format the numerical values

width height in inches

height height in inches

res resolution of the png image in ppi

scale Multiplicative scaling factor, same as in ggsave

ppr fp_par() to apply to paragraph.

Methods (by class)

• rtf_add(block_section): add a new section definition

• rtf_add(character): add characters as new paragraphs

• rtf_add(factor): add a factor vector as new paragraphs

• rtf_add(double): add a double vector as new paragraphs

• rtf_add(fpar): add an fpar()

• rtf_add(block_list): add an block_list()

• rtf_add(gg): add a ggplot2

• rtf_add(plot_instr): add a plot_instr() object

Examples

library(officer)

def_text <- fp_text_lite(color = "#006699", bold = TRUE)
center_par <- fp_par(text.align = "center", padding = 3)

doc <- rtf_doc(
normal_par = fp_par(line_spacing = 1.4, padding = 3)

)

doc <- rtf_add(

136 rtf_doc

x = doc,
value = fpar(

ftext("how are you?", prop = def_text),
fp_p = fp_par(text.align = "center")

)
)

a_paragraph <- fpar(
ftext("Here is a date: ", prop = def_text),
run_word_field(field = "Date \\@ \"MMMM d yyyy\""),
fp_p = center_par

)
doc <- rtf_add(

x = doc,
value = block_list(

a_paragraph,
a_paragraph,
a_paragraph

)
)

if (require("ggplot2")) {
gg <- gg_plot <- ggplot(data = iris) +

geom_point(mapping = aes(Sepal.Length, Petal.Length))
doc <- rtf_add(doc, gg, width = 3, height = 4, ppr = center_par)

}
anyplot <- plot_instr(code = {

barplot(1:5, col = 2:6)
})
doc <- rtf_add(doc, anyplot, width = 5, height = 4, ppr = center_par)

print(doc, target = tempfile(fileext = ".rtf"))

rtf_doc Create an RTF document object

Description

Creation of the object representing an RTF document which can then receive contents with the
rtf_add() function and be written to a file with the print(x, target="doc.rtf") function.

Usage

rtf_doc(
def_sec = prop_section(),
normal_par = fp_par(),
normal_chunk = fp_text(font.family = "Arial", font.size = 11)

)

run_autonum 137

Arguments

def_sec a block_section object used to defined default section.

normal_par an object generated by fp_par()

normal_chunk an object generated by fp_text()

Value

an object of class rtf representing an empty RTF document.

See Also

read_docx(), print.rtf(), rtf_add()

Examples

rtf_doc(normal_par = fp_par(padding = 3))

run_autonum Auto number

Description

Create an autonumbered chunk, i.e. a string representation of a sequence, each item will be num-
bered. These runs can also be bookmarked and be used later for cross references.

Usage

run_autonum(
seq_id = "table",
pre_label = "Table ",
post_label = ": ",
bkm = NULL,
bkm_all = FALSE,
prop = NULL,
start_at = NULL,
tnd = 0,
tns = "-"

)

Arguments

seq_id sequence identifier
pre_label, post_label

text to add before and after number

bkm bookmark id to associate with autonumber run. If NULL, no bookmark is added.
Value can only be made of alpha numeric characters, ’:’, -’ and ’_’.

138 run_bookmark

bkm_all if TRUE, the bookmark will be set on the whole string, if FALSE, the bookmark
will be set on the number only. Default to FALSE. As an effect when a reference
to this bookmark is used, the text can be like "Table 1" or "1" (pre_label is not
included in the referenced text).

prop formatting text properties returned by fp_text.

start_at If not NULL, it must be a positive integer, it specifies the new number to use, at
which number the auto numbering will restart.

tnd title number depth, a positive integer (only applies if positive) that specify the
depth (or heading of level depth) to use for prefixing the caption number with
this last reference number. For example, setting tnd=2 will generate numbered
captions like ’4.3-2’ (figure 2 of chapter 4.3).

tns separator to use between title number and table number. Default is "-".

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Other Word computed fields: run_reference(), run_word_field()

Examples

run_autonum()
run_autonum(seq_id = "fig", pre_label = "fig. ")
run_autonum(seq_id = "tab", pre_label = "Table ", bkm = "anytable")
run_autonum(

seq_id = "tab", pre_label = "Table ", bkm = "anytable",
tnd = 2, tns = " "

)

run_bookmark Bookmark for ’Word’

Description

Add a bookmark on a run object.

Usage

run_bookmark(bkm, run)

run_columnbreak 139

Arguments

bkm bookmark id to associate with run. Value can only be made of alpha numeric
characters, ’-’ and ’_’.

run a run object, made with a call to one of the "run functions for reporting".

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

ft <- fp_text(font.size = 12, bold = TRUE)
run_bookmark("par1", ftext("some text", ft))

run_columnbreak Column break for ’Word’

Description

Create a representation of a column break.

Usage

run_columnbreak()

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_comment(), run_footnote(), run_footnoteref(), run_linebreak(),
run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

run_columnbreak()

140 run_comment

run_comment Comment for ’Word’

Description

Add a comment on a run object.

Usage

run_comment(
cmt,
run = ftext(""),
author = "",
date = "",
initials = "",
prop = NULL

)

Arguments

cmt a set of blocks to be used as comment content returned by function block_list().
the "run functions for reporting".

run a run object, made with a call to one of

author comment author.

date comment date

initials comment initials

prop formatting text properties returned by fp_text_lite() or fp_text(). It also
can be NULL in which case, no formatting is defined (the default is applied).

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

fp_bold <- fp_text_lite(bold = TRUE)
fp_red <- fp_text_lite(color = "red")

bl <- block_list(
fpar(ftext("Comment multiple words.", fp_bold)),
fpar(
ftext("Second line.", fp_red)

)
)

run_footnote 141

comment1 <- run_comment(
cmt = bl,
run = ftext("with a comment"),
author = "Author Me",
date = Sys.Date(),
initials = "AM"

)
par1 <- fpar("A paragraph ", comment1)

bl <- block_list(
fpar(ftext("Comment a paragraph."))

)

comment2 <- run_comment(
cmt = bl, run = ftext("A commented paragraph"),
author = "Author You",
date = Sys.Date(),
initials = "AY"

)
par2 <- fpar(comment2)

doc <- read_docx()
doc <- body_add_fpar(doc, value = par1, style = "Normal")
doc <- body_add_fpar(doc, value = par2, style = "Normal")

print(doc, target = tempfile(fileext = ".docx"))

run_footnote Footnote for ’Word’

Description

Wraps a footnote in an object that can then be inserted as a run/chunk with fpar() or within an R
Markdown document.

Usage

run_footnote(x, prop = NULL)

Arguments

x a set of blocks to be used as footnote content returned by function block_list().

prop formatting text properties returned by fp_text_lite() or fp_text(). It also
can be NULL in which case, no formatting is defined (the default is applied).

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

142 run_footnoteref

Examples

library(officer)

fp_bold <- fp_text_lite(bold = TRUE)
fp_refnote <- fp_text_lite(vertical.align = "superscript")

img.file <- file.path(R.home("doc"), "html", "logo.jpg")
bl <- block_list(

fpar(ftext("hello", fp_bold)),
fpar(
ftext("hello world", fp_bold),
external_img(src = img.file, height = 1.06, width = 1.39)

)
)

a_par <- fpar(
"this paragraph contains a note ",
run_footnote(x = bl, prop = fp_refnote),
"."

)

doc <- read_docx()
doc <- body_add_fpar(doc, value = a_par, style = "Normal")

print(doc, target = tempfile(fileext = ".docx"))

run_footnoteref Word footnote reference

Description

Wraps a footnote reference in an object that can then be inserted as a run/chunk with fpar() or
within an R Markdown document.

Usage

run_footnoteref(prop = NULL)

Arguments

prop formatting text properties returned by fp_text_lite() or fp_text(). It also
can be NULL in which case, no formatting is defined (the default is applied).

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_linebreak(),
run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

run_linebreak 143

Examples

run_footnoteref()
to_wml(run_footnoteref())

run_linebreak Page break for ’Word’

Description

Object representing a line break for a Word document. The result must be used within a call to fpar.

Usage

run_linebreak()

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_pagebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

fp_t <- fp_text(font.size = 12, bold = TRUE)
an_fpar <- fpar("let's add a line break", run_linebreak(), ftext("and blah blah!", fp_t))

x <- read_docx()
x <- body_add(x, an_fpar)
print(x, target = tempfile(fileext = ".docx"))

run_pagebreak Page break for ’Word’

Description

Object representing a page break for a Word document.

Usage

run_pagebreak()

144 run_reference

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_reference(), run_tab(), run_word_field(), run_wordtext()

Examples

fp_t <- fp_text(font.size = 12, bold = TRUE)
an_fpar <- fpar("let's add a break page", run_pagebreak(), ftext("and blah blah!", fp_t))

x <- read_docx()
x <- body_add(x, an_fpar)
print(x, target = tempfile(fileext = ".docx"))

run_reference Cross reference

Description

Create a representation of a reference

Usage

run_reference(id, prop = NULL)

Arguments

id reference id, a string

prop formatting text properties returned by fp_text.

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_tab(), run_word_field(), run_wordtext()

Other Word computed fields: run_autonum(), run_word_field()

run_tab 145

Examples

run_reference("a_ref")

run_tab Tab for ’Word’

Description

Object representing a tab in a Word document. The result must be used within a call to fpar. It will
only have effects in Word output.

Tabulation marks settings can be defined with fp_tabs() in paragraph settings defined with fp_par().

Usage

run_tab()

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_word_field(), run_wordtext()

Examples

z <- fp_tabs(
fp_tab(pos = 0.5, style = "decimal"),
fp_tab(pos = 1.5, style = "decimal")

)
par1 <- fpar(

run_tab(), ftext("88."),
run_tab(), ftext("987.45"),
fp_p = fp_par(
tabs = z

)
)
par2 <- fpar(

run_tab(), ftext("8."),
run_tab(), ftext("670987.45"),
fp_p = fp_par(

tabs = z
)

)

146 run_wordtext

x <- read_docx()
x <- body_add(x, par1)
x <- body_add(x, par2)
print(x, target = tempfile(fileext = ".docx"))

run_wordtext Word chunk of text with a style

Description

Format a chunk of text associated with a ’Word’ character style. The style is defined with its unique
identifer.

Usage

run_wordtext(text, style_id = NULL)

Arguments

text text value, a single character value

style_id ’Word’ unique style identifier associated with the style to use.

See Also

ftext()

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_word_field()

Examples

run1 <- run_wordtext("hello", "DefaultParagraphFont")
paragraph <- fpar(run1)

x <- read_docx()
x <- body_add_fpar(x, paragraph)
print(x, target = tempfile(fileext = ".docx"))

run_word_field 147

run_word_field ’Word’ computed field

Description

Create a ’Word’ computed field.

Usage

run_word_field(field, prop = NULL, seqfield = NULL)

run_seqfield(field, prop = NULL, seqfield = NULL)

Arguments

field Value for a "Word Computed Field" as a string.

prop formatting text properties returned by fp_text.

seqfield deprecated in favor of field.

usage

You can use this function in conjunction with fpar to create paragraphs consisting of differently
formatted text parts. You can also use this function as an r chunk in an R Markdown document
made with package officedown.

Note

In the previous version, this function was called run_seqfield but the name was wrong and should
have been run_word_field.

See Also

Other run functions for reporting: external_img(), floating_external_img(), ftext(), hyperlink_ftext(),
run_autonum(), run_bookmark(), run_columnbreak(), run_comment(), run_footnote(), run_footnoteref(),
run_linebreak(), run_pagebreak(), run_reference(), run_tab(), run_wordtext()

Other Word computed fields: run_autonum(), run_reference()

Examples

run_word_field(field = "PAGE * MERGEFORMAT")
run_word_field(field = "Date \\@ \"MMMM d yyyy\"")

148 set_autonum_bookmark

section_columns Section columns

Description

The function creates a representation of the columns of a section.

Usage

section_columns(widths = c(2.5, 2.5), space = 0.25, sep = FALSE)

Arguments

widths columns widths in inches. If 3 values, 3 columns will be produced.

space space in inches between columns.

sep if TRUE a line is separating columns.

See Also

Other functions for section definition: page_mar(), page_size(), prop_section()

Examples

section_columns()

set_autonum_bookmark Update bookmark of an autonumber run

Description

This function lets recycling a object made by run_autonum() by changing the bookmark value.
This is useful to avoid calling run_autonum() several times because of many tables.

Usage

set_autonum_bookmark(x, bkm = NULL)

Arguments

x an object of class run_autonum()

bkm bookmark id to associate with autonumber run. Value can only be made of alpha
numeric characters, ’:’, -’ and ’_’.

See Also

run_autonum()

set_doc_properties 149

Examples

z <- run_autonum(
seq_id = "tab", pre_label = "Table ",
bkm = "anytable"

)
set_autonum_bookmark(z, bkm = "anothertable")

set_doc_properties Set document properties

Description

set Word or PowerPoint document properties. These are not visible in the document but are available
as metadata of the document.

Any character property can be added as a document property. It provides an easy way to insert
arbitrary fields. Given the challenges that can be encountered with find-and-replace in word with
officer, the use of document fields and quick text fields provides a much more robust approach to
automatic document generation from R.

Usage

set_doc_properties(
x,
title = NULL,
subject = NULL,
creator = NULL,
description = NULL,
created = NULL,
hyperlink_base = NULL,
...,
values = NULL

)

Arguments

x an rdocx or rpptx object
title, subject, creator, description

text fields

created a date object

hyperlink_base a string specifying the base URL for relative hyperlinks in the document (only
for rdocx).

... named arguments (names are field names), each element is a single character
value specifying value associated with the corresponding field name. These
pairs of key-value are added as custom properties. If a value is NULL or NA, the
corresponding field is set to ” in the document properties.

150 set_notes

values a named list (names are field names), each element is a single character value
specifying value associated with the corresponding field name. If values is
provided, argument ... will be ignored.

Note

The "last modified" and "last modified by" fields will be automatically be updated when the file is
written.

See Also

Other functions for Word document informations: doc_properties(), docx_bookmarks(), docx_dim(),
length.rdocx(), styles_info()

Examples

x <- read_docx()
x <- set_doc_properties(x, title = "title",

subject = "document subject", creator = "Me me me",
description = "this document is empty",
created = Sys.time(),
yoyo = "yok yok",
glop = "pas glop")

x <- doc_properties(x)

set_notes Set notes for current slide

Description

Set speaker notes for the current slide in a pptx presentation.

Usage

set_notes(x, value, location, ...)

S3 method for class 'character'
set_notes(x, value, location, ...)

S3 method for class 'block_list'
set_notes(x, value, location, ...)

Arguments

x an rpptx object
value text to be added to notes
location a placeholder location object. It will be used to specify the location of the new

shape. This location can be defined with a call to one of the notes_ph functions.
See section "see also".

... further arguments passed to or from other methods.

sheet_select 151

Methods (by class)

• set_notes(character): add a character vector to a place holder in the notes on the current
slide, values will be added as paragraphs.

• set_notes(block_list): add a block_list() to a place holder in the notes on the current
slide.

See Also

print.rpptx(), read_pptx(), add_slide(), notes_location_label(), notes_location_type()

Other functions to manipulate slides: add_slide(), move_slide(), on_slide(), remove_slide()

Examples

this name will be used to print the file
change it to "youfile.pptx" to write the pptx
file in your working directory.
fileout <- tempfile(fileext = ".pptx")
fpt_blue_bold <- fp_text_lite(color = "#006699", bold = TRUE)
doc <- read_pptx()
add a slide with some text ----
doc <- add_slide(doc, layout = "Title and Content")
doc <- ph_with(x = doc, value = "Slide Title 1",

location = ph_location_type(type = "title"))
set speaker notes for the slide ----
doc <- set_notes(doc, value = "This text will only be visible for the speaker.",

location = notes_location_type("body"))

add a slide with some text ----
doc <- add_slide(doc, layout = "Title and Content")
doc <- ph_with(x = doc, value = "Slide Title 2",

location = ph_location_type(type = "title"))
bl <- block_list(

fpar(ftext("hello world", fpt_blue_bold)),
fpar(ftext("Turlututu chapeau pointu", fpt_blue_bold))

)
doc <- set_notes(doc, value = bl,

location = notes_location_type("body"))

print(doc, target = fileout)

sheet_select Select sheet

Description

Set a particular sheet selected when workbook will be edited.

152 slide_size

Usage

sheet_select(x, sheet)

Arguments

x rxlsx object

sheet sheet name

Examples

my_ws <- read_xlsx()
my_pres <- add_sheet(my_ws, label = "new sheet")
my_pres <- sheet_select(my_ws, sheet = "new sheet")
print(my_ws, target = tempfile(fileext = ".xlsx"))

shortcuts shortcuts for formatting properties

Description

Shortcuts for fp_text(), fp_par(), fp_cell() and fp_border().

Usage

shortcuts

Examples

shortcuts$fp_bold()
shortcuts$fp_italic()
shortcuts$b_null()

slide_size Slides width and height

Description

Get the width and height of slides in inches as a named vector.

Usage

slide_size(x)

Arguments

x an rpptx object

slide_summary 153

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_properties(), layout_summary(), length.rpptx(), plot_layout_properties(), slide_summary()

Examples

my_pres <- read_pptx()
my_pres <- add_slide(my_pres,

layout = "Two Content", master = "Office Theme")
slide_size(my_pres)

slide_summary Slide content in a data.frame

Description

Get content and positions of current slide into a data.frame. Data for any tables, images, or para-
graphs are imported into the resulting data.frame.

Usage

slide_summary(x, index = NULL)

Arguments

x an rpptx object
index slide index

Note

The column id of the result is not to be used by users. This is a technical string id whose value
will be used by office when the document will be rendered. This is not related to argument index
required by functions ph_with().

See Also

Other functions for reading presentation information: annotate_base(), color_scheme(), doc_properties(),
layout_properties(), layout_summary(), length.rpptx(), plot_layout_properties(), slide_size()

Examples

my_pres <- read_pptx()
my_pres <- add_slide(my_pres, "Title and Content")
my_pres <- ph_with(my_pres, format(Sys.Date()),

location = ph_location_type(type="dt"))
my_pres <- add_slide(my_pres, "Title and Content")
my_pres <- ph_with(my_pres, iris[1:2,],

location = ph_location_type(type="body"))
slide_summary(my_pres)
slide_summary(my_pres, index = 1)

154 slide_visible<-

slide_visible<- Get or set slide visibility

Description

PPTX slides can be visible or hidden. This function gets or sets the visibility of slides.

Usage

slide_visible(x) <- value

slide_visible(x, hide = NULL, show = NULL)

Arguments

x An rpptx object.

value Boolean vector with slide visibilities.

hide, show Indexes of slides to hide or show.

Value

Boolean vector with slide visibilities or rpptx object if changes are made to the object.

Examples

path <- system.file("doc_examples/example.pptx", package = "officer")
x <- read_pptx(path)

slide_visible(x) # get slide visibilities

x <- slide_visible(x, hide = 1:2) # hide slides 1 and 2
x <- slide_visible(x, show = 1:2) # make slides 1 and 2 visible
x <- slide_visible(x, show = 1:2, hide = 3)

slide_visible(x) <- FALSE # hide all slides
slide_visible(x) <- c(TRUE, FALSE, TRUE) # set each slide separately
slide_visible(x) <- c(TRUE, FALSE) # warns that rhs values are recycled

slide_visible(x)[2] <- TRUE # set 2nd slide to visible
slide_visible(x)[c(1, 3)] <- FALSE # 1st and 3rd slide
slide_visible(x)[c(1, 3)] <- c(FALSE, FALSE) # identical

sp_line 155

sp_line Line properties

Description

Create a sp_line object that describes line properties.

Usage

sp_line(
color = "transparent",
lwd = 1,
lty = "solid",
linecmpd = "sng",
lineend = "rnd",
linejoin = "round",
headend = sp_lineend(type = "none"),
tailend = sp_lineend(type = "none")

)

S3 method for class 'sp_line'
print(x, ...)

S3 method for class 'sp_line'
update(
object,
color,
lwd,
lty,
linecmpd,
lineend,
linejoin,
headend,
tailend,
...

)

Arguments

color line color - a single character value specifying a valid color (e.g. "#000000" or
"black").

lwd line width (in point) - 0 or positive integer value.

lty single character value specifying the line type. Expected value is one of the
following : default 'solid' or 'dot' or 'dash' or 'lgDash' or 'dashDot' or
'lgDashDot' or 'lgDashDotDot' or 'sysDash' or 'sysDot' or 'sysDashDot'
or 'sysDashDotDot'.

156 sp_lineend

linecmpd single character value specifying the compound line type. Expected value is
one of the following : default 'sng' or 'dbl' or 'tri' or 'thinThick' or
'thickThin'

lineend single character value specifying the line end style Expected value is one of the
following : default 'rnd' or 'sq' or 'flat'

linejoin single character value specifying the line join style Expected value is one of the
following : default 'round' or 'bevel' or 'miter'

headend a sp_lineend object specifying line head end style
tailend a sp_lineend object specifying line tail end style
x, object sp_line object
... further arguments - not used

Value

a sp_line object

See Also

sp_lineend

Other functions for defining shape properties: sp_lineend()

Examples

library(officer)

sp_line()
sp_line(color = "red", lwd = 2)
sp_line(lty = "dot", linecmpd = "dbl")
print(sp_line(color = "red", lwd = 2))
obj <- sp_line(color = "red", lwd = 2)
update(obj, linecmpd = "dbl")

sp_lineend Line end properties

Description

Create a sp_lineend object that describes line end properties.

Usage

sp_lineend(type = "none", width = "med", length = "med")

S3 method for class 'sp_lineend'
print(x, ...)

S3 method for class 'sp_lineend'
update(object, type, width, length, ...)

styles_info 157

Arguments

type single character value specifying the line end type. Expected value is one of
the following : default 'none' or 'triangle' or 'stealth' or 'diamond' or
'oval' or 'arrow'

width single character value specifying the line end width Expected value is one of the
following : default 'sm' or 'med' or 'lg'

length single character value specifying the line end length Expected value is one of
the following : default 'sm' or 'med' or 'lg'

x, object sp_lineend object

... further arguments - not used

Value

a sp_lineend object

See Also

sp_line

Other functions for defining shape properties: sp_line()

Examples

library(officer)

sp_lineend()
sp_lineend(type = "triangle")
sp_lineend(type = "arrow", width = "lg", length = "lg")
print(sp_lineend(type = "triangle", width = "lg"))
obj <- sp_lineend(type = "triangle", width = "lg")
update(obj, type = "arrow")

styles_info Read ’Word’ styles

Description

Read Word styles and get results in a data.frame.

Usage

styles_info(
x,
type = c("paragraph", "character", "table", "numbering"),
is_default = c(TRUE, FALSE)

)

158 table_colwidths

Arguments

x an rdocx object

type, is_default
subsets for types (i.e. paragraph) and default style (when is_default is TRUE
or FALSE)

See Also

Other functions for Word document informations: doc_properties(), docx_bookmarks(), docx_dim(),
length.rdocx(), set_doc_properties()

Examples

x <- read_docx()
styles_info(x)
styles_info(x, type = "paragraph", is_default = TRUE)

table_colwidths Column widths of a table

Description

The function defines the size of each column of a table.

Usage

table_colwidths(widths = NULL)

Arguments

widths Column widths expressed in inches.

See Also

Other functions for table definition: prop_table(), table_conditional_formatting(), table_layout(),
table_stylenames(), table_width()

table_conditional_formatting 159

table_conditional_formatting

Table conditional formatting

Description

Tables can be conditionally formatted based on few properties as whether the content is in the first
row, last row, first column, or last column, or whether the rows or columns are to be banded.

Usage

table_conditional_formatting(
first_row = TRUE,
first_column = FALSE,
last_row = FALSE,
last_column = FALSE,
no_hband = FALSE,
no_vband = TRUE

)

Arguments

first_row, last_row
apply or remove formatting from the first or last row in the table.

first_column, last_column
apply or remove formatting from the first or last column in the table.

no_hband, no_vband
don’t display odd and even rows or columns with alternating shading for ease of
reading.

Note

You must define a format for first_row, first_column and other properties if you need to use them.
The format is defined in a docx template.

See Also

Other functions for table definition: prop_table(), table_colwidths(), table_layout(), table_stylenames(),
table_width()

Examples

table_conditional_formatting(first_row = TRUE, first_column = TRUE)

160 table_stylenames

table_layout Algorithm for table layout

Description

When a table is displayed in a document, it can either be displayed using a fixed width or autofit
layout algorithm:

• fixed: uses fixed widths for columns. The width of the table is not changed regardless of the
contents of the cells.

• autofit: uses the contents of each cell and the table width to determine the final column widths.

Usage

table_layout(type = "autofit")

Arguments

type ’autofit’ or ’fixed’ algorithm. Default to ’autofit’.

See Also

Other functions for table definition: prop_table(), table_colwidths(), table_conditional_formatting(),
table_stylenames(), table_width()

table_stylenames Paragraph styles for columns

Description

The function defines the paragraph styles for columns.

Usage

table_stylenames(stylenames = list())

Arguments

stylenames a named character vector, names are column names, values are paragraph styles
associated with each column. If a column is not specified, default value ’Nor-
mal’ is used. Another form is as a named list, the list names are the styles and
the contents are column names to be formatted with the corresponding style.

See Also

Other functions for table definition: prop_table(), table_colwidths(), table_conditional_formatting(),
table_layout(), table_width()

table_width 161

Examples

library(officer)

stylenames <- c(
vs = "centered", am = "centered",
gear = "centered", carb = "centered"

)

doc_1 <- read_docx()
doc_1 <- body_add_table(doc_1,

value = mtcars, style = "table_template",
stylenames = table_stylenames(stylenames = stylenames)

)

print(doc_1, target = tempfile(fileext = ".docx"))

stylenames <- list(
"centered" = c("vs", "am", "gear", "carb")

)

doc_2 <- read_docx()
doc_2 <- body_add_table(doc_2,

value = mtcars, style = "table_template",
stylenames = table_stylenames(stylenames = stylenames)

)

print(doc_2, target = tempfile(fileext = ".docx"))

table_width Preferred width for a table

Description

Define the preferred width for a table.

Usage

table_width(width = 1, unit = "pct")

Arguments

width value of the preferred width of the table.

unit unit of the width. Possible values are ’in’ (inches) and ’pct’ (percent)

Word

All widths in a table are considered preferred because widths of columns can conflict and the table
layout rules can require a preference to be overridden.

162 unordered_list

See Also

Other functions for table definition: prop_table(), table_colwidths(), table_conditional_formatting(),
table_layout(), table_stylenames()

unordered_list Unordered list

Description

unordered list of text for PowerPoint presentations. Each text is associated with a hierarchy level.

Usage

unordered_list(str_list = character(0), level_list = integer(0), style = NULL)

Arguments

str_list list of strings to be included in the object

level_list list of levels for hierarchy structure. Use 0 for ’no bullet’, 1 for level 1, 2 for
level 2 and so on.

style text style, a fp_text object list or a single fp_text objects. Use fp_text(font.size
= 0, ...) to inherit from default sizes of the presentation.

See Also

ph_with()

Other block functions for reporting: block_caption(), block_gg(), block_list(), block_pour_docx(),
block_section(), block_table(), block_toc(), fpar(), plot_instr()

Examples

unordered_list(
level_list = c(1, 2, 2, 3, 3, 1),
str_list = c("Level1", "Level2", "Level2", "Level3", "Level3", "Level1"),
style = fp_text(color = "red", font.size = 0)

)

unordered_list(
level_list = c(1, 2, 1),
str_list = c("Level1", "Level2", "Level1"),
style = list(
fp_text(color = "red", font.size = 0),
fp_text(color = "pink", font.size = 0),
fp_text(color = "orange", font.size = 0)

)
)

Index

∗ Word computed fields
run_autonum, 137
run_reference, 144
run_word_field, 147

∗ block functions for reporting
block_caption, 9
block_gg, 10
block_list, 11
block_pour_docx, 12
block_section, 13
block_table, 14
block_toc, 15
fpar, 65
plot_instr, 114
unordered_list, 162

∗ functions for Word document
informations

doc_properties, 60
docx_bookmarks, 50
docx_dim, 52
length.rdocx, 84
set_doc_properties, 149
styles_info, 157

∗ functions for Word sections
body_end_block_section, 30
body_end_section_columns, 31
body_end_section_columns_landscape,

32
body_end_section_continuous, 33
body_end_section_landscape, 34
body_end_section_portrait, 34
body_set_default_section, 43

∗ functions for adding content
body_add_blocks, 15
body_add_break, 16
body_add_caption, 17
body_add_docx, 18
body_add_fpar, 19
body_add_gg, 20

body_add_img, 21
body_add_par, 23
body_add_plot, 23
body_add_table, 25
body_add_toc, 26
body_append_start_context, 27
body_import_docx, 35

∗ functions for defining formatting
properties

fp_border, 66
fp_cell, 68
fp_par, 70
fp_tab, 72
fp_tabs, 73
fp_text, 74

∗ functions for defining shape properties
sp_line, 155
sp_lineend, 156

∗ functions for placeholder location
ph_location, 95
ph_location_fullsize, 97
ph_location_id, 98
ph_location_label, 99
ph_location_left, 100
ph_location_right, 101
ph_location_template, 102
ph_location_type, 103

∗ functions for placeholders manipulation
ph_hyperlink, 94
ph_remove, 105
ph_slidelink, 107

∗ functions for reading presentation
information

annotate_base, 7
color_scheme, 47
doc_properties, 60
layout_properties, 80
layout_summary, 83
length.rpptx, 84

163

164 INDEX

plot_layout_properties, 115
slide_size, 152
slide_summary, 153

∗ functions for section definition
page_mar, 91
page_size, 92
prop_section, 121
section_columns, 148

∗ functions for table definition
prop_table, 126
table_colwidths, 158
table_conditional_formatting, 159
table_layout, 160
table_stylenames, 160
table_width, 161

∗ run functions for reporting
external_img, 61
floating_external_img, 63
ftext, 76
hyperlink_ftext, 77
run_autonum, 137
run_bookmark, 138
run_columnbreak, 139
run_comment, 140
run_footnote, 141
run_footnoteref, 142
run_linebreak, 143
run_pagebreak, 143
run_reference, 144
run_tab, 145
run_word_field, 147
run_wordtext, 146

∗ slide_manipulation
add_slide, 6
move_slide, 86
on_slide, 89
remove_slide, 132
set_notes, 150

add_sheet, 5
add_slide, 6, 86, 90, 111, 133, 151
add_slide(), 79, 93, 131, 151
annotate_base, 7, 48, 60, 80, 83, 85, 116, 153
as.matrix.rpptx, 8

block_caption, 9, 10, 11, 13–15, 65, 115, 162
block_caption(), 11, 17, 88
block_gg, 9, 10, 11, 13–15, 65, 115, 162
block_list, 9, 10, 11, 13–15, 65, 115, 162

block_list(), 15, 16, 29, 65, 110, 122, 135,
140, 141, 151

block_pour_docx, 9–11, 12, 13–15, 65, 115,
162

block_pour_docx(), 11
block_section, 9–11, 13, 13, 14, 15, 30, 65,

115, 122, 137, 162
block_section(), 11
block_table, 9–11, 13, 14, 15, 65, 115, 162
block_table(), 11, 110
block_toc, 9–11, 13, 14, 15, 65, 115, 162
block_toc(), 11
body_add, 62, 64
body_add_blocks, 15, 17–19, 21–24, 26, 28,

36
body_add_blocks(), 11, 61
body_add_break, 16, 16, 17–19, 21–24, 26,

28, 36
body_add_caption, 16, 17, 17, 18, 19, 21–24,

26, 28, 36
body_add_docx, 16, 17, 18, 19, 21–24, 26, 28,

36
body_add_docx(), 35, 60
body_add_fpar, 16–18, 19, 21–24, 26, 28, 36
body_add_fpar(), 65
body_add_gg, 16–19, 20, 22–24, 26, 28, 36
body_add_img, 16–19, 21, 21, 23, 24, 26, 28,

36
body_add_par, 16–19, 21, 22, 23, 24, 26, 28,

36
body_add_par(), 119, 128
body_add_plot, 16–19, 21–23, 23, 26, 28, 36
body_add_plot(), 114, 115, 119, 127, 128
body_add_table, 16–19, 21–24, 25, 26, 28, 36
body_add_table(), 119, 127, 128
body_add_toc, 16–19, 21–24, 26, 26, 28, 36
body_append_start_context, 16–19, 21–24,

26, 27, 36
body_append_stop_context

(body_append_start_context), 27
body_bookmark, 29
body_comment, 29
body_end_block_section, 30, 31–35, 44
body_end_block_section(), 31, 121
body_end_section_columns, 30, 31, 32–35,

44
body_end_section_columns_landscape, 30,

31, 32, 33–35, 44

INDEX 165

body_end_section_continuous, 30–32, 33,
34, 35, 44

body_end_section_continuous(), 127
body_end_section_landscape, 30–33, 34,

35, 44
body_end_section_portrait, 30–34, 34, 44
body_import_docx, 16–19, 21–24, 26, 28, 35
body_import_docx(), 18
body_remove, 37
body_replace_all_text, 38
body_replace_all_text(), 57, 58
body_replace_gg_at_bkm, 40
body_replace_img_at_bkm

(body_replace_text_at_bkm), 42
body_replace_plot_at_bkm

(body_replace_gg_at_bkm), 40
body_replace_text_at_bkm, 42
body_set_default_section, 30–35, 43
body_set_default_section(), 127

change_styles, 46
color_scheme, 7, 47, 60, 80, 83, 85, 116, 153
cursor_backward (cursor_begin), 48
cursor_begin, 48
cursor_bookmark (cursor_begin), 48
cursor_end (cursor_begin), 48
cursor_forward (cursor_begin), 48
cursor_reach (cursor_begin), 48
cursor_reach_index (cursor_begin), 48
cursor_reach_test (cursor_begin), 48

doc_properties, 7, 48, 51, 53, 60, 80, 83–85,
116, 150, 153, 158

docx_bookmarks, 50, 53, 60, 84, 150, 158
docx_comments, 51
docx_dim, 51, 52, 60, 84, 150, 158
docx_set_character_style, 53
docx_set_paragraph_style, 54
docx_set_settings, 55
docx_set_settings(), 119, 128
docx_show_chunk, 57
docx_show_chunk(), 38, 40
docx_summary, 58
docx_summary(), 88, 127

empty_content, 61
empty_content(), 110
external_img, 61, 64, 76, 77, 138–147
external_img(), 11, 63, 65, 110

floating_external_img, 62, 63, 76, 77,
138–147

footers_replace_all_text
(body_replace_all_text), 38

footers_replace_img_at_bkm
(body_replace_text_at_bkm), 42

footers_replace_text_at_bkm
(body_replace_text_at_bkm), 42

format.fp_cell (fp_cell), 68
format.fp_text (fp_text), 74
fp_border, 66, 69, 72, 73, 76
fp_border(), 69, 71, 152
fp_cell, 68, 68, 72, 73, 76
fp_cell(), 152
fp_par, 68, 69, 70, 72, 73, 76
fp_par(), 10, 54, 65, 73, 135, 137, 145, 152
fp_par_lite (fp_par), 70
fp_tab, 68, 69, 72, 72, 73, 76
fp_tabs, 68, 69, 72, 73, 76
fp_tabs(), 72, 145
fp_text, 68, 69, 72, 73, 74, 76, 77, 138, 144,

147
fp_text(), 53, 54, 65, 137, 140–142, 152
fp_text_lite (fp_text), 74
fp_text_lite(), 140–142
fpar, 9–11, 13–15, 62, 64, 65, 72, 76, 77, 115,

138, 139, 143–145, 147, 162
fpar(), 11, 19, 72, 73, 76, 110, 127, 135, 141,

142
ftext, 62, 64, 76, 77, 138–147
ftext(), 65, 76, 146

graphics::text(), 116
grepl(), 38, 40
gsub(), 38

headers_replace_all_text
(body_replace_all_text), 38

headers_replace_img_at_bkm
(body_replace_text_at_bkm), 42

headers_replace_text_at_bkm
(body_replace_text_at_bkm), 42

hyperlink_ftext, 62, 64, 76, 77, 138–147

layout_dedupe_ph_labels, 78, 78
layout_dedupe_ph_labels(), 7
layout_default, 79
layout_default(), 6

166 INDEX

layout_properties, 7, 48, 60, 80, 83, 85,
116, 153

layout_properties(), 81, 82, 98, 99, 115,
116

layout_rename_ph_labels, 81
layout_rename_ph_labels<-

(layout_rename_ph_labels), 81
layout_summary, 7, 48, 60, 80, 83, 85, 116,

153
layout_summary(), 6, 81, 116
length.rdocx, 51, 53, 60, 84, 150, 158
length.rpptx, 7, 48, 60, 80, 83, 84, 116, 153
length.rxlsx (read_xlsx), 132

media_extract, 85
move_slide, 6, 86, 90, 133, 151

notes_location_label, 87
notes_location_label(), 151
notes_location_type, 87
notes_location_type(), 151

officer, 88
officer-package (officer), 88
on_slide, 6, 86, 89, 133, 151
open_file, 90

page_mar, 91, 92, 121, 122, 148
page_size, 92, 92, 121, 122, 148
ph_hyperlink, 94, 106, 107
ph_location, 95, 97, 98, 100, 101, 103, 105,

111
ph_location_fullsize, 96, 97, 98, 100, 101,

103, 105, 111
ph_location_id, 96, 97, 98, 100, 101, 103,

105
ph_location_label, 78, 96–98, 99, 101, 103,

105, 111
ph_location_label(), 116
ph_location_left, 96–98, 100, 100, 101,

103, 105, 111
ph_location_right, 96–98, 100, 101, 101,

103, 105, 111
ph_location_template, 96–98, 100, 101,

102, 105, 111
ph_location_type, 96–98, 100, 101, 103,

103, 111
ph_location_type(), 100, 101, 116
ph_remove, 95, 105, 107

ph_remove(), 133
ph_slidelink, 95, 106, 107
ph_with, 62, 93, 108
ph_with(), 6, 11, 61, 65, 90, 93, 95, 102, 106,

107, 114, 115, 131, 133, 153, 162
phs_with, 6, 93, 111
phs_with(), 6
plot_instr, 9–11, 13–15, 65, 114, 135, 162
plot_instr(), 11, 24, 135
plot_layout_properties, 7, 48, 60, 80, 83,

85, 115, 153
plot_layout_properties(), 6, 81, 98, 104,

131
pptx_summary, 117
print.fp_cell (fp_cell), 68
print.fp_par (fp_par), 70
print.fp_text (fp_text), 74
print.rdocx, 118
print.rdocx(), 128
print.rpptx, 119
print.rpptx(), 6, 131, 151
print.rtf, 120
print.rtf(), 137
print.rxlsx (read_xlsx), 132
print.sp_line (sp_line), 155
print.sp_lineend (sp_lineend), 156
prop_section, 13, 43, 44, 92, 121, 148
prop_table, 126, 158–160, 162
prop_table(), 14

read_docx, 127
read_docx(), 56, 88, 118, 119, 137
read_pptx, 131
read_pptx(), 6, 8, 86, 88, 90, 119, 120, 133,

151
read_xlsx, 132
regex(), 38, 40
remove_slide, 6, 86, 90, 132, 151
rtf_add, 64, 134
rtf_add(), 136, 137
rtf_doc, 64, 136
rtf_doc(), 88, 120, 135
run_autonum, 9, 62, 64, 76, 77, 137, 139–147
run_autonum(), 15, 36, 65, 88, 148
run_bookmark, 62, 64, 76, 77, 138, 138,

139–147
run_columnbreak, 62, 64, 76, 77, 138, 139,

139, 140–147

INDEX 167

run_comment, 62, 64, 76, 77, 138, 139, 140,
141–147

run_footnote, 62, 64, 76, 77, 138–140, 141,
142–147

run_footnoteref, 62, 64, 76, 77, 138–141,
142, 143–147

run_linebreak, 62, 64, 76, 77, 138–142, 143,
144–147

run_pagebreak, 62, 64, 76, 77, 138–143, 143,
144–147

run_reference, 62, 64, 76, 77, 138–144, 144,
145–147

run_seqfield (run_word_field), 147
run_tab, 62, 64, 76, 77, 138–144, 145, 146,

147
run_tab(), 72, 73
run_word_field, 62, 64, 76, 77, 138–146, 147
run_word_field(), 65
run_wordtext, 62, 64, 76, 77, 138–145, 146,

147

section_columns, 92, 121, 122, 148
set_autonum_bookmark, 148
set_doc_properties, 51, 53, 60, 84, 149, 158
set_doc_properties(), 119, 128
set_notes, 6, 86, 90, 133, 150
sheet_select, 151
shortcuts, 152
slide_size, 7, 48, 60, 80, 83, 85, 116, 152,

153
slide_summary, 7, 48, 60, 80, 83, 85, 116,

153, 153
slide_summary(), 95, 106, 107
slide_visible (slide_visible<-), 154
slide_visible<-, 154
sp_line, 155, 157
sp_line(), 96
sp_lineend, 156, 156
strftime(), 109
styles_info, 51, 53, 60, 84, 150, 157
styles_info(), 36, 47, 119, 127, 128

table_colwidths, 126, 158, 159, 160, 162
table_colwidths(), 126
table_conditional_formatting, 126, 158,

159, 160, 162
table_conditional_formatting(), 109,

126
table_layout, 126, 158–160, 160, 162

table_layout(), 126
table_stylenames, 126, 158–160, 160, 162
table_stylenames(), 25, 126
table_width, 126, 158–160, 161
table_width(), 126
to_wml(), 10

unordered_list, 9–11, 13–15, 65, 115, 162
unordered_list(), 110
update.fp_border (fp_border), 66
update.fp_cell (fp_cell), 68
update.fp_par (fp_par), 70
update.fp_text (fp_text), 74
update.fpar (fpar), 65
update.sp_line (sp_line), 155
update.sp_lineend (sp_lineend), 156
utils::browseURL(), 91

write_elements_to_context
(body_append_start_context), 27

	add_sheet
	add_slide
	annotate_base
	as.matrix.rpptx
	block_caption
	block_gg
	block_list
	block_pour_docx
	block_section
	block_table
	block_toc
	body_add_blocks
	body_add_break
	body_add_caption
	body_add_docx
	body_add_fpar
	body_add_gg
	body_add_img
	body_add_par
	body_add_plot
	body_add_table
	body_add_toc
	body_append_start_context
	body_bookmark
	body_comment
	body_end_block_section
	body_end_section_columns
	body_end_section_columns_landscape
	body_end_section_continuous
	body_end_section_landscape
	body_end_section_portrait
	body_import_docx
	body_remove
	body_replace_all_text
	body_replace_gg_at_bkm
	body_replace_text_at_bkm
	body_set_default_section
	change_styles
	color_scheme
	cursor_begin
	docx_bookmarks
	docx_comments
	docx_dim
	docx_set_character_style
	docx_set_paragraph_style
	docx_set_settings
	docx_show_chunk
	docx_summary
	doc_properties
	empty_content
	external_img
	floating_external_img
	fpar
	fp_border
	fp_cell
	fp_par
	fp_tab
	fp_tabs
	fp_text
	ftext
	hyperlink_ftext
	layout_dedupe_ph_labels
	layout_default
	layout_properties
	layout_rename_ph_labels
	layout_summary
	length.rdocx
	length.rpptx
	media_extract
	move_slide
	notes_location_label
	notes_location_type
	officer
	on_slide
	open_file
	page_mar
	page_size
	phs_with
	ph_hyperlink
	ph_location
	ph_location_fullsize
	ph_location_id
	ph_location_label
	ph_location_left
	ph_location_right
	ph_location_template
	ph_location_type
	ph_remove
	ph_slidelink
	ph_with
	plot_instr
	plot_layout_properties
	pptx_summary
	print.rdocx
	print.rpptx
	print.rtf
	prop_section
	prop_table
	read_docx
	read_pptx
	read_xlsx
	remove_slide
	rtf_add
	rtf_doc
	run_autonum
	run_bookmark
	run_columnbreak
	run_comment
	run_footnote
	run_footnoteref
	run_linebreak
	run_pagebreak
	run_reference
	run_tab
	run_wordtext
	run_word_field
	section_columns
	set_autonum_bookmark
	set_doc_properties
	set_notes
	sheet_select
	shortcuts
	slide_size
	slide_summary
	slide_visible<-
	sp_line
	sp_lineend
	styles_info
	table_colwidths
	table_conditional_formatting
	table_layout
	table_stylenames
	table_width
	unordered_list
	Index

