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2 flipn

flipn Generate All Sign-Flips of n Elements

Description

Generates all 2™ vectors of length n consisting of the elements -1 and 1.

Usage
flipn(n)

Arguments

n Number of elements.

Details

Adapted from the "bincombinations" function in the e1071 R package.

Value

Matrix of dimension n by 2™ where each column contains a unique sign-flip vector.

Warning

For large n this function will consume a lot of memory and may even crash R.

Note

Used for exact tests in np.loc. test and np.reg. test.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.7-0. https://CRAN.R-project.org/package=e1071

Examples

flipn(2)
flipn(3)


https://CRAN.R-project.org/package=e1071
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mcse Monte Carlo Standard Errors for Tests

Description

This function calculates Monte Carlo standard errors for (non-exact) nonparametric tests. The MC-
SEs can be used to determine (i) the accuracy of a test for a given number of resamples, or (ii) the
number of resamples needed to achieve a test with a given accuracy.

Usage

mcse(R, delta, conf.level = 0.95, sig.level = 0.05,
alternative = c("two.sided”, "one.sided"))

Arguments
R Number of resamples (positive integer).
delta Accuracy of the approximation (number between 0 and 1).
conf.level Confidence level for the approximation (number between 0 and 1).
sig.level Significance level of the test (number between 0 and 1).
alternative Alternative hypothesis (two-sided or one-sided).

Details

Note: either R or delta must be provided.

Let F'(x) denote the distribution function for the full permutation distribution, and let G(x) denote
the approximation obtained from R resamples. The Monte Carlo standard error is given by

o(z) = VF@)L - F)/R

which is the standard deviation of G(z).

A symmetric confidence interval for F'(x) can be approximated as
G(x) +/ = Co(x)

where C' is some quantile of the standard normal distribution. Note that the critical value C' corre-
sponds to the confidence level (conf.level) of the approximation.

Let o denote the significance level (sig. level) for a one-sided test (« is one-half the significance
level for two-sided tests). Define a to be the value of the test statistic such that F'(a) = .

The parameter 0 (delta) quantifies the accuracy of the approximation, such that
|G(a) —a] < ad

with a given confidence, which is controlled by the conf.level argument.
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Value
mcse Monte Carlo standard error.
R Number of resamples.
delta Accuracy of approximation.
conf.level Confidence level.
sig.level Significance level.
alternative Alternative hypothesis.

Note

This function is only relevant for non-exact tests. For exact tests, F'(x) = G(z) so the Monte Carlo
standard error is zero.
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for loca-
tion, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2),
el457. doi: 10.1002/wics.1457

See Also

np.cor.test, np.loc.test, np.reg. test

Examples

#itxoxf## - EXAMPLE 1 Hithxcxox

# get the Monte Carlo standard error and the

# accuracy (i.e., delta) for given R = 10000

# using the default two-sided alternative hypothesis,
# the default confidence level (conf.level = 0.95),

# and the default significance level (sig.level = 0.05)

mcse(R = 10000)

# se = 0.0016

# delta = 0.1224

HHHExxx EXAMPLE 2 b x %

# get the Monte Carlo standard error and the

# number of resamples (i.e., R) for given delta = 0.01

# using a one-sided alternative hypothesis,
# the default confidence level (conf.level = 0.95),
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# and the default significance level (sig.level = 0.05)
mcse(delta = 0.1, alternative = "one.sided")

# se = 0.0026
# R = 7299

np.aov.test Nonparametric One-Way and RM ANOVA Tests

Description
Assuming a one-way (fixed effects) ANOVA model of the form
Yij=n+7;+e
or a one-way repeated measures ANOVA model of the form
Yij=p+Bi+7+e€;

this function implements permutation tests of Hy : (Vj)7; = 7 versus Hy : (3j)7; # 7. Note that
(1 is the overall mean/median ignoring block and group, 53; is the i-th subject’s block effect, 7; is
the j-th group’s treatment effect, and ¢;; is an error term with mean/median zero.

Usage

np.aov.test(x, groups, blocks = NULL,
var.equal = FALSE, median.test = FALSE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)

Arguments

X Numeric vector (or matrix) of data values (see Details).

groups Factor vector giving the treatment group for each element/row of x.

blocks Factor vector giving the block identification for each element/row of x.

var.equal Logical indicating whether to treat the k group’s variances as being equal.

median. test Logical indicating whether the location test is for the median. Default is FALSE,
i.e., p is the mean.

R Number of resamples for the permutation test (positive integer).

parallel Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)
to use two cores. To make use of all available cores, use the code c1 = makeCluster(detectCores()).

perm.dist Logical indicating if the permutation distribution should be returned.

na.rm If TRUE (default), the arguments x and groups (and blocks if provided) are

passed to the na.omit function to remove cases with missing data.
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Details

One-way ANOVA: the input x should be of length N = Z?Zl n; where n; is size of j-th group.

RM ANOVA: the input x should be of length N = nk where n is number of blocks and k is number
of groups.

For multivariate models, the input x should be a matrix with N rows and m columns, where each
column has N = Z?:l n; or N = nk observations.

Value
statistic Test statistic value.
p.value p-value for testing Hy : (Vj)7; = 7.
perm.dist Permutation distribution of statistic.
repeated Repeated-measures ANOVA?
var.equal Assuming equal variances?
median. test Testing the median?
R Number of resamples.
method Method used for permutation test. See Examples.
ngroups Number of groups = nlevels(group)
nblocks Number of blocks = nlevels(blocks) (if applicable)
Note

For the one-way ANOVA, the number of elements of the exact (i.e., fully enumerated) permutation
distribuion is given by the multinomial coefficient:

N!
n1!n2! . ~nk!

which will be quite large (much larger than typcailly choices for R) for any non-trivial sample sizes.
Consequently, exact tests are **not** implemented by this function.
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2019a). Statistical nonparametric mapping: Multivariate permutation tests for lo-
cation, correlation, and regression problems in neuroimaging. WIREs Computational Statistics,
11(2), e1457. doi: 10.1002/wics.1457

Helwig, N. E. (2019b). Robust nonparametric tests of general linear model coefficients: A compari-
son of permutation methods and test statistics. Neurolmage, 201, 116030. doi: 10.1016/j.neuroimage.2019.116030

See Also

plot.np.aov.test S3 plotting method for visualizing the results



np.aov.test

Examples

oo ONE-WAY ANOVA b ok

# data generation design

N <- 90

k <- 3

g <- factor(rep(LETTERS[1:k], each = N/k))
tau <- c(-1/2, 0, 1/2)

sd <- c(1/2, 1, 2)

# generate data
set.seed(0)
x <- rnorm(N, mean = taulgl, sd = sd[gl)

# mean test with unequal variances (robust W statistic)
set.seed(1)
np.aov.test(x, g)

# mean test with equal variances (classic F statistic)
set.seed(1)
np.aov.test(x, g, var.equal = TRUE)

# median test with unequal variances (robust Kruskal-Wallis statistic)
set.seed(1)

np.aov.test(x, g, median.test = TRUE)

# median test with equal variances (classic Kruskal-Wallis test)
set.seed(1)

np.aov.test(x, g, var.equal = TRUE, median.test = TRUE)

# Kruskal-Wallis test (asymptotic p-value)

kruskal.test(x, g)

## Not run:

#iHbxxxfH##  REPEATED MEASURES ANOVA  #HbxxxdHH#

# data generation design

N <- 90

k <-3

n <- 30

g <- factor(rep(LETTERS[1:k], each = N/k))

b <- factor(rep(paste@(”sub”, 1:n), times = k),

levels = paste@("sub”, 1:n))
tau <- c(-1/2, 0, 1/2)
sd <- c(1/2, 1, 2)

# generate random block effects
set.seed(773)
beta <- runif(30, -1, 1)
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# generate data
set.seed(0)
x <= rnorm(N, mean = taul[g] + betalb], sd = sd[gl)

# mean test with unequal variances (robust W statistic)
set.seed(1)
np.aov.test(x, g, b)

# mean test with equal variances (classic F statistic)
set.seed(1)
np.aov.test(x, g, b, var.equal = TRUE)

# median test with unequal variances (robust Friedman statistic)
set.seed(1)
np.aov.test(x, g, b, median.test = TRUE)

# median test with equal variances (classic Friedman test)
set.seed(1)
np.aov.test(x, g, b, var.equal = TRUE, median.test = TRUE)

# Friedman test (asymptotic p-value)
friedman.test(x, g, b)

## End(Not run)

np.boot Nonparametric Bootstrap Resampling

Description

Nonparametric bootstrap resampling for univariate and multivariate statistics. Computes bootstrap
estimates of the standard error, bias, and covariance. Also computes five different types of bootstrap
confidence intervals: normal approximation interval, basic (reverse percentile) interval, percentile
interval, studentized (bootstrap-¢) interval, and bias-corrected and accelerated (BCa) interval.

Usage
np.boot(x, statistic, ..., R = 9999, level = c(0.9, 0.95, 0.99),
method = c("norm”, "basic”, "perc", "stud", "bca")[-41,
sdfun = NULL, sdrep = 99, jackknife = NULL,
parallel = FALSE, cl = NULL, boot.dist = TRUE)
Arguments
X vector of data (for univariate data), data frame (for basic multivariate data), or
vector of row indices (for advanced multivariate data). See examples.
statistic function that takes in x (and possibly additional arguments passed using . ..)

and returns a vector containing the statistic(s). See examples.

additional named arguments for the statistic function.
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R number of bootstrap replicates

level desired confidence level(s) for the computed intervals. Default computes 90%,
95%, and 99% confidence intervals.

method method(s) for computing confidence intervals. Partial matching is allowed. Any
subset of allowable methods is permitted (default computes all intervals except
studentized). Set method = NULL to produce no confidence intervals.

sdfun function for computing the standard deviation of statistic. Should produce a
vector the same length as the output of statistic. Only applicable if "stud”
%in% method. If NULL, an inner bootstrap is used to estimate the standard devia-
tion.

sdrep number of bootstrap replicates for the inner bootstrap used to estimate the stan-
dard deviation of statistic. Only applicable if "stud” %in% method and sdfun
= NULL. Larger values produce more accurate estimates (see Note).

jackknife function that takes in x (and possibly additional arguments passed using . . .)
and returns a vector containing the jackknife statistic(s). Should produce a vec-
tor the same length as the output of statistic. Only applicable if "bca” %in%
method. If NULL, the jackknife function is defined as the statistic function (de-
fault). See the last example for a case when statistic and jackknife are
different.

parallel Logical indicating if the parallel package should be used for parallel com-
puting (of the bootstrap distribution). Defaults to FALSE, which implements
sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)
to use two cores. To make use of all available cores, use the code c1 = makeCluster (detectCores()).

boot.dist Logical indicating if the bootstrap distribution should be returned (see Note).

Details

The first three intervals (normal, basic, and percentile) are only first-order accurate, whereas the
last two intervals (studentized and BCa) are both second-order accurate. Thus, the results from the
studentized and BCa intervals tend to provide more accurate coverage rates.

Unless the standard deviation function for the studentized interval is input via the sdfun argument,
the studentized interval can be quite computationally costly. This is because an inner bootstrap is
needed to estimate the standard deviation of the statistic for each (outer) bootstrap replicate—and
you may want to increase the default number of inner bootstrap replicates (see Note).

The efficiency of the BCa interval will depend on the sample size n and the computational complex-
ity of the (jackknife) statistic estimate. Assuming that n is not too large and the jackknife statistic
is not too difficult to compute, the BCa interval can be computed reasonably quickly—especially in
comparison the studentized interval with an inner bootstrap.

Computational details of the various confidence intervals are described in Efron and Tibshirani
(1994) and in Davison and Hinkley (1997). For a useful and concise discussion of the various
intervals, see Carpenter and Bithell (2000).
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Value
t0 Observed statistic, computed using statistic(x, ...)
se Bootstrap estimate of the standard error.
bias Bootstrap estimate of the bias.
cov Bootstrap estimate of the covariance (for multivariate statistics).
normal Normal approximation confidence interval(s).
basic Basic (reverse percentile) confidence interval(s).
percent Percentile confidence interval(s).
student Studentized (bootstrap-f) confidence interval(s).
bca Bias-corrected and accelerated (BCa) confidence interval(s).
z0 Bias-correction factor(s). Only provided if bca %in% method.
acc Acceleration factor(s). Only provided if bca %in% method.
boot.dist Bootstrap distribution of statistic(s). Only provided if boot.dist = TRUE.
statistic Statistic function (same as input).
R Number of bootstrap replicates (same as input).
level Confidence level (same as input).
sdfun Standard deviation function for statistic (same as input).
sdrep Number of inner bootstrap replicates (same as input).
jackknife Jackknife function (same as input).
Note

Ifboot.dist = TRUE, the output boot . dist will be a matrix of dimension R by length(statistic(x,
...)) if the statistic is multivariate. Otherwise the bootstrap distribution will be a vector of length
R.

For the "stud” method, the default of sdrep = 99 may produce a crude estimate of the standard
deviation of the statistic(s). For more accurate estimates, the value of sdrep may need to be set
substantially larger, e.g., sdrep = 999.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Carpenter, J., & Bithell, J. (2000). Bootstrap confidence intervals: when, which, what? A practical
guide for medical statisticians. Statistics in Medicine, 19(9), 1141-1164. doi: 10.1002/(SICI)1097-
0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge
University Press. doi: 10.1017/CB09780511802843

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Boostrap. Chapman & Hall/CRC. doi:
10.1201/9780429246593
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Examples

R x UNIVARIATE DATA o
### Example 1: univariate statistic (median)

# generate 100 standard normal observations
set.seed(1)

n <- 100

x <= rnorm(n)

# nonparametric bootstrap
npbs <- np.boot(x = x, statistic = median)
npbs

### Example 2: multivariate statistic (quartiles)

# generate 100 standard normal observations
set.seed(1)

n <- 100

X <= rnorm(n)

# nonparametric bootstrap

npbs <- np.boot(x = x, statistic = quantile,
probs = c(0.25, 0.5, 0.75))

npbs

## Not run:

HHHEHHE ., x MULTIVARIATE DATA HHHEHE o x

### Example 1: univariate statistic (correlation)

## Generate bivariate data with population var = 1 and cor = 0.5
# correlation matrix square root (with rho = 0.5)

rho <- 9.5

val <- c(sqrt(1 + rho), sqrt(1 - rho))

corsqrt <- matrix(c(val[1], -val[2], val), 2, 2) / sqrt(2)
# generate 100 bivariate observations (with rho = 0.5)

n <- 100

set.seed(1)

data <- cbind(rnorm(n), rnorm(n)) %*% corsqrt

## Method A: x = data frame; statistic of x

# define statistic function
statfun <- function(data) cor(datal,1], datal,2])

11
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# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = data, statistic = statfun)
npbs

## Method B: x = 1:n; statistic of datalix,] with data passed via ...

# define statistic function
statfun <- function(ix, data) cor(datalix,1], datal[ix,2])

# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs

### Example 2: multivariate statistic (variances and covariance)
## Generate bivariate data with population var = 1 and cor = 0.5

# correlation matrix square root (with rho = 0.5)

rho <- 9.5

val <- c(sqrt(1 + rho), sqrt(1 - rho))

corsqrt <- matrix(c(vall1], -vall[2], val), 2, 2) / sqrt(2)

# generate 100 bivariate observations (with rho = 0.5)
n <- 100

set.seed(1)

data <- cbind(rnorm(n), rnorm(n)) %*% corsqrt

## Method A: x = data frame; statistic of x

# define statistic function
statfun <- function(data) {
cmat <- cov(data)
1tri <- lower.tri(cmat, diag = TRUE)
cvec <- cmat[ltri]
names(cvec) <- c("var(x1)", "cov(x1,x2)", "var(x2)")
cvec

# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = data, statistic = statfun)
npbs

## Method B: x = 1:n; statistic of datalix,] with data passed via ...

# define statistic function

statfun <- function(ix, data) {
cmat <- cov(datal[ix,])
1tri <- lower.tri(cmat, diag = TRUE)
cvec <- cmat[ltril]
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names(cvec) <- c("var(x1)", "cov(x1,x2)", "var(x2)")
cvec

# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs

HHHHHHE ., x REGRESSION HHHHHHE % x
### Example 1: bootstrap cases
## Generate bivariate data with E(y|x) =1 + 2 x x

# generate 100 observations

n <- 100

set.seed(1)

x <- seq(@, 1, length.out = n)

y <=1+ 2 % x + rnorm(n)

data <- data.frame(x = x, y = y)

## Method A: x = data frame; statistic of x

# define statistic function
statfun <- function(data) {

Im(y ~ x, data = data)$coefficients
3

# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = data, statistic = statfun)
npbs

## Method B: x = 1:n; statistic of datalix,] with data passed via ...

# define statistic function
statfun <- function(ix, data) {

Im(y ~ x, data = data[ix,])$coefficients
3

# nonparametric bootstrap

set.seed(2)

npbs <- np.boot(x = 1:n, statistic = statfun, data = data)
npbs

### Example 2: bootstrap residuals

# generate 100 observations
n <- 100
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set.seed(1)

x <- seq(@, 1, length.out = n)
y <=1+ 2 % x + rnorm(n)

data <- data.frame(x = x, y =y)

# prepare data
mod® <- Im(y ~ x, data = data)
df <- data.frame(x = x, y =y, fit = mod@$fitted.values, resid = mod@$residuals)

# define statistic function

statfun <- function(ix, data) {
data$y <- data$fit + data$resid[ix]
Im(y ~ x, data = data)$coefficients

3

# define jackknife function
jackfun <- function(ix, data){

Im(y ~ x, data = datalix,])$coefficients
}

# nonparametric bootstrap
npbs <- np.boot(x = 1:n, statistic = statfun, data = df, jackknife = jackfun)
npbs

## End(Not run)

np.cdf.test Nonparametric Distribution Tests

Description

Peforms one- or two-sample nonparametric (randomization) tests of cumulative distribution func-
tions. Implements Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov test statistics.

Usage

np.cdf.test(x, y = NULL,
method = c("AD", "CVM", "KS"),
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)

Arguments
X Numeric vector (or matrix) of data values.
y One-sample: name of distribution family with "p" and "r" components (see
Note). Two-sample: numeric vector (or matrix) of data values.
method Test statistic to use: AD = Anderson-Darling, CVM = Cramer-Von Mises, KS =

Kolmogorov-Smirnov
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R Number of resamples for the permutation test (positive integer).

parallel Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and cl = NULL, then the cluster is defined as makeCluster(2L)
to use two cores. To make use of all available cores, use the code c1 = makeCluster(detectCores()).

perm.dist Logical indicating if the permutation distribution should be returned.

na.rm If TRUE (default), the arguments x and groups (and blocks if provided) are
passed to the na.omit function to remove cases with missing data.

Details

One-sample statistics:

AD w? = [w(@)(Fu(z) — Fo(x))*dFy(z) with w(z) = [Fo(z)(1 — Fo(@))] !
CVM w? = [w(z)(F,(z) — Fy(z))*dFy(x) with w(z) =1
KS w? = sup, (F,(z) — Fy(x))?

where F,(z) is the empirical cumulative distribution function (estimated by ecdf) and Fj is the
null hypothesized distribution (specified by the y argument).

Two-sample statistics:

D = [w(2)(Fa(e) - Fy(2)2dBRo(2) with w(z) = [Fo(:)(1 — Fy(2))]
CUM w? = [w(z)(Fy(z) — Fy(2))%dFy(z) with w(z) = 1
Ks w? = sup, (Fy(2) — Fy(2))?

where F, and F), are the groupwise ECDF functions (estimated by applying ecdf separately to x
and y) and Fj is the joint ECDF (estimated by applying ecdf to z = c(x,y) ).

Value
statistic Test statistic value.
p.value p-value for testing Hy : F, = Fyor Hy : I, = .
perm.dist Permutation distribution of statistic.
method Method used for permutation test. See Examples.
R Number of resamples.

exact Exact permutation test? See Note.
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Note

For one-sample tests, the y argument should satisfy:
paste("p"”, y) gives the name of a function specifying the CDF
paste("r", y) gives the name of a function sampling from the distribution

If y = NULL, the default sets y = "norm”, which tests the null hypothesis that x follows a standard
normal distribution. See the examples for how to test a user-specified distribution.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Anderson, T. W. and Darling., D. A. (1952). Asymptotic theory of certain "goodness of fit" criteria
based on stochastic processes. Annals of Mathematical Statistics, 23(2), 193-212. doi:10.1214/
aoms/1177729437

Anderson, T. W., and Darling, D. A. (1954). A test of goodness of fit. Journal of the American
Statistical Association, 49(268), 765-769. doi:10.1080/01621459.1954.10501232

Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises criterion. Annals
of Mathematical Statistics, 33(3) 1148-1159. doi:10.1214/aoms/1177704477

Cramer, H. (1928). On the composition of elementary errors: First paper: Mathematical deductions.
Scandinavian Actuarial Journal, 1928(1), 13-74. doi:10.1080/03461238.1928.10416862

Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale
dell’Istituto Italiano degli Attuari 4, 83-91.

Kolmogorov, A. N. (1941). Confidence limits for an unknown distribution function. Annals of
Mathematical Statistics 12(4), 461-483. doi:10.1214/aoms/1177731684

Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. Annals of
Mathematical Statistics 19(2) 279-281. doi:10.1214/aoms/1177730256

von Mises, R. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer.

See Also

plot.np.cdf.test S3 plotting method for visualizing the results

Examples

oo ONE SAMPLE  ##HboxoxdHHE

## generate standard normal data
n <- 100

set.seed(0)

X <= rnorm(n)

## Example 1: Fn = norm, FQ = norm
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https://doi.org/10.1080/03461238.1928.10416862
https://doi.org/10.1214/aoms/1177731684
https://doi.org/10.1214/aoms/1177730256

np.cdf.test

# Anderson-Darling test of H@: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm”)

## Not run:

# Cramer-von Mises test of HOQ: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm”, method = "CVM")

# Kolmogorov-Smirnov test of H@: Fx = pnorm
set.seed(1)
np.cdf.test(x, y = "norm”, method = "KS")

## Example 2: Fn = norm, FO = t3

# user-defined distribution (Student's t with df = 3)
pt3 <- function(q) pt(q, df
rt3 <- function(n) rt(n, df

# Anderson-Darling test of HO: Fx = t3
set.seed(1)
np.cdf.test(x, y = "t3")

# Cramer-von Mises test of HO: Fx = t3
set.seed(1)

np.cdf.test(x, y = "t3", method = "CVM")

# Kolmogorov-Smirnov test of H@: Fx = t3
set.seed(1)
np.cdf.test(x, y = "t3", method = "KS")

oo TWO SAMPLE  #HbxoxdHH#

# generate N(@, 1) and N(2/3, 1) data
m <- 25

n <- 25

set.seed(0)

X <= rnorm(m)

y <= rnorm(n, mean = 2/3)

# Anderson-Darling test of HOQ: Fx = Fy
set.seed(1)

np.cdf.test(x, y)

# Cramer-von Mises test of HOQ: Fx = Fy

set.seed(1)
np.cdf.test(x, y, method = "CVM")

# Kolmogorov-Smirnov test of H@: Fx = Fy

3) # cdf = paste("p”,
3) # sim = paste("r",

y)
y)

17
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set.seed(1)

np.cor.test

np.cdf.test(x, y, method = "KS")

## End(Not run)

np.cor.test

Nonparametric Tests of Correlation Coefficients

Description

Denoting the Pearson product-moment correlation coefficient as

p=Couv(X,Y)/\/Var(X)Var(Y)

this function implements permutation tests of Hy : p = pg where py is the user-specified null value.
Can also implement tests of partial correlations, semi-partial (or part) correlations, and indepen-

dence.

Usage

np.cor.test(x, y, z = NULL,

Arguments

alternative

rho

independent

partial

R
parallel

alternative = c("two.sided”, "less"”, "greater"),

= 0, independent = FALSE, partial = TRUE,

R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)

X vector (n by 1).
Y vector (n by 1).

Optional Z matrix (n by q). If provided, the partial (or semi-partial if partial
= FALSE) correlation is calculated between x and y controlling for z.

Alternative hypothesis. Must be either "two.sided" (Hy : p # po), "less" (H; :
p < po), or "greater" (Hy : p > pp).
Null hypothesis value pg. Defaults to zero.

If FALSE (default), the null hypothesis is Hy : p = pg. Otherwise, the null hyth-
pothesis is that X and Y are independent, i.e., Hy : Fxy (z,y) = Fx () Fy (y).

Only applicable if z is provided. If TRUE (default), the partial correlation be-
tween x and y controlling for z is tested. Otherwise the semi-partial correlation
is tested. See Details.

Number of resamples for the permutation test (positive integer).

Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.
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cl

perm.dist

na.rm

Details
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Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)

to use two cores. To make use of all available cores, use the code c1 = makeCluster(detectCores()).

Logical indicating if the permutation distribution should be returned.

If TRUE (default), the arguments x and y (and z if provided) are passed to the
na.omit function to remove cases with missing data.

Default use of this function tests the Pearson correlation between X and Y using the studentized
test statistic proposed by DiCiccio and Romano (2017). If independent = TRUE, the classic (unstu-
dentized) test statistic is used to test the null hypothesis of independence.

If Z is provided, the partial or semi-partial correlation between X and Y controlling for Z is tested.
For the semi-partial correlation, the effect of Z is partialled out of X.

Value

statistic
p.value
perm.dist
alternative
null.value
independent
R

exact

estimate

Note

Test statistic value.

p-value for testing Hy : p = pg or Hy : Fxy (z,y) = Fx(z)Fy (y).
Permutation distribution of statistic.

Alternative hypothesis.

Null hypothesis value for p.

Independence test?

Number of resamples.

Exact permutation test? See Note.

Sample estimate of correlation coefficient p.

The permutation test will be exact when the requested number of resamples R is greater than

factorial(n) minus one. In this case, the permutation distribution perm.dist contains all factorial(n)

possible values of the test statistic.

If z = NULL, the result will be the same as using np.reg. test with method = "perm”.

If z is supplied and partial = TRUE, the result will be the same as using np.reg. test with method
= "KC" and homosced = FALSE.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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See Also

plot.np.cor.test S3 plotting method for visualizing the results

Examples

# generate data

rho <- 0.5

val <- c(sqrt(1 + rho), sqrt(1 - rho))

corsqrt <- matrix(c(vall1], -val[2], val), 2, 2) / sqrt(2)
set.seed(1)

n<-10

z <= cbind(rnorm(n), rnorm(n)) %*% corsqrt

x <- z[,1]

y <- z[,2]

# test HO: rho = @
set.seed(0)
np.cor.test(x, y)

# test HO: X and Y are independent
set.seed(0)
np.cor.test(x, y, independent = TRUE)

np.1lm.test Nonparametric Tests of Linear Model Terms

Description

Performs type III sums-of-squares tests of linear model terms or coefficients.

Usage

np.1lm.test(formula, data, ..., anova.test = TRUE,
method = "perm”, homosced = FALSE, lambda = 0,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
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Arguments

formula
data

anova. test

method
homosced

lambda
R
parallel

cl

perm.dist
na.rm

Details
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Model formula as used by the 1m function.
Optional data frame containing variables used in formula.

Additional arguments passed to the 1m function, e.g., weights, of fset, contrasts,
etc.

If TRUE (default), returns tests of model terms (like anova. 1m but using type III
SS). Otherwise returns type III SS tests of individual coefficients (like summary . 1m)

Permutation method: perm, flip, or both. See np.reg. test for further details.

Are the € terms homoscedastic? If FALSE (default), a robust Wald test statistic is
used. Otherwise the classic F’ test statistic is used.

Scalar or vector of ridge parameter(s). Defaults to vector of zeros.

Number of resamples for the permutation test (positive integer).

Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.

Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)

to use two cores. To make use of all available cores, use the code c1 = makeCluster (detectCores()).

Logical indicating if the permutation distribution should be returned.

If TRUE (default), the arguments x and y are passed to the na.omit function to
remove cases with missing data.

The recommended default of method = "perm"” is equivalent to using Manly’s (1986) permutation
method separately for each of the model terms. Assuming that the random seed is set the same
for each variable’s test, equivalent results could be obtained from repeated calls to np.reg. test
where a different term/coefficient is tested each time (see Example 2). This implementation is more
efficient than repeated calls to np.reg. test because this function computes all of the type III SS
tests simultaneously for each permutation.

Value

statistic
p.value
perm.dist
method
homosced
lambda

R

exact

coefficients

se.coef

signif.table

anova. test

Test statistic values (one for each term or coefficient).
p-values for testing Hy : 5; = 0.

Permutation distribution of statistic.

Method used for permutation test. See Examples.
Homoscedastic errors?

Ridge parameters.

Number of resamples.

Exact permutation test? See Note.

Least squares estimates of intercept and slope coefficients.
Standard errors of estimated coefficients.

Data frame with type III tests of model terms of coefficients.
Testing terms (TRUE) or coefficients (FALSE).
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Note

The "perm" method should be sufficient for most applications. Note that the "flip" and "both"
methods require adding an additional (symmetry) assumption, which should be avoided unless one
is reasonably certain the error distribution is symmetric. See np.reg. test or the below references
(Helwig, 2019a,b) for details.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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See Also

plot.np.1lm.test S3 plotting method for visualizing the results

Examples

### Example 1: anova.test and homosced options

# data generation design

n <- 90

z <- factor(rep(LETTERS[1:3], times = 30))
x <- seq(-1, 1, length.out = n)

tau <- c(-1, 0, 1)

# generate data

set.seed(0)

y <= taulz] + 2 x x + rnorm(n)

data <- data.frame(x = x, y =y, z = z)

# test of model terms (heteroscedastic)
set.seed(1)
np.lm.test(y ~ x + z, data = data)

# test of coefficients (heteroscedastic)
set.seed(1)


https://doi.org/10.1002/wics.1457
https://doi.org/10.1016/j.neuroimage.2019.116030
https://doi.org/10.1007/BF02515450

np.loc.test 23

np.lm.test(y ~ x + z, data = data, anova.test = FALSE)

# test of model terms (homoscedastic)
set.seed(1)
np.1lm.test(y ~ x + z, data = data, homosced = TRUE)

# test of coefficients (homoscedastic)
set.seed(1)
np.1lm.test(y ~ x + z, data = data, homosced = TRUE, anova.test = FALSE)

### Example 2: equivalence with np.reg.test()

# type III tests of all coefficients
set.seed(1)
mod.1lm <- np.lm.test(y ~ x + z, data = data, anova.test = FALSE)

# make design matrix
xmat <- model.matrix(y ~ x + z, data = data)[,-1]

# test effect of x given zB and zC
set.seed(1)
mod.x <- np.reg.test(x = xmat[,1], y =y, z = xmat[,2:3], method = "MA")

# test effect of zB given x and zC
set.seed(1)

mod.zB <- np.reg.test(x = xmat[,2], v =y, z = xmat[,c(1,3)], method = "MA")
# test effect of zC given x and zB

set.seed(1)

mod.zC <- np.reg.test(x = xmat[,3], y =y, z = xmat[,1:2], method = "MA")

# compare np.lm.test() and np.reg.test() results --- identical!

mod.reg <- data.frame(terms = colnames(xmat), df = rep(1, 3),
statistic = c(mod.x$stat, mod.zB$stat, mod.zC$stat),
p.value = c(mod.x$p.valu, mod.zB$p.valu, mod.zC$p.valu))
mod. lm$signif.table
mod.reg

np.loc.test Nonparametric Tests of Location Parameters

Description

Performs one and two sample nonparametric (randomization) tests of location parameters, i.e.,
means and medians. Implements univariate and multivariate tests using eight different test statistics:
Student’s one-sample t-test, Johnson’s modified t-test, Wilcoxon’s Signed Rank test, Fisher’s Sign
test, Student’s two-sample t-test, Welch’s t-test, Wilcoxon’s Rank Sum test (i.e., Mann-Whitney’s
U test), and a studentized Wilcoxon test for unequal variances.
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Usage

np.loc.test(x, y = NULL,
alternative = c("two.sided”, "less", "greater"),
mu = @, paired = FALSE, var.equal = FALSE,
median.test = FALSE, symmetric = TRUE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)

Arguments
X Numeric vector (or matrix) of data values.
y Optional numeric vector (or matrix) of data values.
alternative Alternative hypothesis. Must be either "two.sided" (Hy : & # o), "less" (Hy :
W< o), or "greater" (Hy : p > po).
mu Null hypothesis value 1. Defaults to zero.
paired Logical indicating whether you want a paired location test.
var.equal Logical indicating whether to treat the two variances as being equal.

median.test Logical indicating whether the location test is for the median. Default is FALSE,

i.e., u is the mean.

symmetric Logical indicating if the distribution of x should be assumed to be symmetric
around p. Only used for one (or paired) sample tests.

R Number of resamples for the permutation test (positive integer).

parallel Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.

cl Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)
to use two cores. To make use of all available cores, use the code c1 = makeCluster(detectCores()).

perm.dist Logical indicating if the permutation distribution should be returned.

na.rm If TRUE (default), the arguments x (and y if provided) are passed to the na.omit
function to remove cases with missing data.

Details

One sample  p is the mean (or median) of X
Paired 1 1s the mean (or median) of X — Y
Two sample  u is the mean difference F(X) — E(Y)

or the median of the differences X — Y

For one (or paired) sample tests, the different test statistics can be obtained using

median.test =F median.test=T
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symmetric =F Johnson t test
symmetric =T Studentt test

Fisher sign test
Wilcoxon signed rank test

For two sample tests, the different test statistics can be obtained using

median.test =F median.test=T
var.equal =F Welch t test Studentized Wilcoxon test
var.equal =T Student t test Wilcoxon rank sum test

median.test

Value
statistic Test statistic value.
p.value p-value for testing Hy : 1 = .
perm.dist Permutation distribution of statistic.
alternative Alternative hypothesis.
null.value Null hypothesis value for .
var.equal Assuming equal variances? Only for two sample tests.

Testing the median?

symmetric Assuming symmetry? Only for one sample and paired tests.

R Number of resamples.

exact Exact permutation test? See Note.

estimate Estimate of parameter .

univariate Univariate test statistic value for j-th variable (for multivariate input).
adj.p.value Adjusted p-value for testing significance of j-th variable (for multivariate input).
method Method used for permutation test. See Details.

Multivariate Tests

If the input x (and possibly y) is a matrix with m > 1 columns, the multivariate test statistic is
defined as

alternative statistic

two.sided max (abs(univariate))
less min(univariate)
greater max(univariate)

The global null hypothesis (across all m variables) is tested by comparing the observed statistic
to the permutation distribution perm.dist. This produces the p.value for testing the global null
hypothesis.

The local null hypothesis (separately for each variable) is tested by comparing the univariate test
statistic to perm.dist. This produces the adjusted p-values (adj.p.values), which control the
familywise Type I error rate across the m tests.
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Note

For one sample (or paired) tests, the permutation test will be exact when the requested number of
resamples R is greater than 2*n minus one. In this case, the permutation distribution perm.dist
contains all 2*n possible values of the test statistic.

For two sample tests, the permutation test will be exact when the requested number of resamples R
is greater than choose (N, n) minus one, where m = length(x), n = length(y), and N=m+ n. In
this case, the permutation distribution perm.dist contains all choose(N, n) possible values of the
test statistic.
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Nathaniel E. Helwig <helwig@umn.edu>
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plot.np.loc.test S3 plotting method for visualizing the results
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Examples

oo A UNIVARIATE  ##HHEHP oo -
H#HboxoxdH#H# ONE SAMPLE  ##HbxoxxdHHE

# generate data
set.seed(1)

n<-10

x <= rnorm(n, mean = 0.5)

# one sample t-test
set.seed(0)
np.loc.test(x)

# Johnson t-test
set.seed(0)
np.loc.test(x, symmetric = FALSE)

# Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, median.test = TRUE)

# Fisher sign test
set.seed(0)
np.loc.test(x, median.test = TRUE, symmetric = FALSE)

#iHbAxxfH#H# PAIRED SAMPLE  #HHb % dH#

# generate data
set.seed(1)

n<-10

x <= rnorm(n, mean = 0.5)
y <= rnorm(n)

# paired t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE)

# paired Johnson t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE, symmetric = FALSE)

# paired Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test

TRUE)

# paired Fisher sign test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE, symmetric = FALSE)
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#iHbxoxfH#HE TWO SAMPLE  #HHPxxx

# generate data
set.seed(1)

m<-7

n<-38

X <= rnorm(m, mean = 0.5)
y <= rnorm(n)

# Welch t-test
set.seed(0)
np.loc.test(x, y)

# Student t-test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE)

# Studentized Wilcoxon test
set.seed(Q)

np.loc.test(x, y, median.test = TRUE)

# Wilcoxon rank sum test
set.seed(0)

np.loc.test(x, y, var.equal = TRUE, median.test = TRUE)

## Not run:
HHHHHHE ., koo HEHEE MULTIVARIATE
#it#xxx##H4# ONE SAMPLE  #Hbxxxitit#

# generate data

set.seed(1)

n<-10

x <= cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))

# multivariate one sample t-test
set.seed(0)

ptest <- np.loc.test(x)

ptest

ptest$univariate
ptest$adj.p.values

P ok o i

#ixxxf## PAIRED SAMPLE  ##Hbxxxdf#ti#t

# generate data
set.seed(1)
n <- 10

np.loc.test
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x <= cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
y <= matrix(rnorm(n * 3), nrow = n, ncol = 3)

# multivariate paired t-test

set.seed(Q)

ptest <- np.loc.test(x, y, paired = TRUE)
ptest

ptest$univariate

ptest$adj.p.values

#HboxoxfH#H# TWO SAMPLE  ##Hbxxx

# generate data
set.seed(1)
m<-7
n<-38
x <= cbind(rnorm(m, mean = 0.5),
rnorm(m, mean = 1),
rnorm(m, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)

# multivariate Welch t-test
set.seed(0)

ptest <- np.loc.test(x, y)
ptest

ptest$univariate
ptest$adj.p.values

## End(Not run)

np.reg.test Nonparametric Tests of Regression Coefficients

Description

Assuming a linear model of the form
Y=a+Xp+e¢€

or
Y=a+XB+Zy+e¢

this function implements permutation tests of Hy : § = [y where [y is the user-specified null
vector.
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Usage

np.reg.test(

Arguments

X

y
z

method
beta

homosced

lambda
R
parallel

cl

perm.dist

na.rm

Details

np.reg.test

X, ¥, z = NULL, method = NULL,

beta = NULL, homosced = FALSE, lambda = @,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)

Matrix of predictor variables (n by p).

Response vector or matrix (n by m).

Optional matrix of nuisance variables (n by q).

Permutation method. See Details.

Null hypothesis value for 5 (p by m). Defaults to matrix of zeros.

Are the ¢ terms homoscedastic? If FALSE (default), a robust Wald test statistic is
used. Otherwise the classic F' test statistic is used.

Scalar or vector of ridge parameter(s). Defaults to vector of zeros.
Number of resamples for the permutation test (positive integer).

Logical indicating if the parallel package should be used for parallel com-
puting (of the permutation distribution). Defaults to FALSE, which implements
sequential computing.

Cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(2L)
to use two cores. To make use of all available cores, use the code c1 = makeCluster(detectCores()).

Logical indicating if the permutation distribution should be returned.

If TRUE (default), the arguments x and y (and z if provided) are passed to the
na.omit function to remove cases with missing data.

With no nuisance variables in the model (i.e., z = NULL), there are three possible options for the
method argument:

Method Model

perm PY =a+XB+e¢
flip SY =a+XB+e€
both PSY =a+ XB+e¢

where P is a permutation matrix and S is a sign-flipping matrix.

With nuisance variables in the model, there are eight possible options for the method argument:

Method Name Model

HJ

Huh-Jhun PQR)YY =a+QR.XB+e€

KC Kennedy-Cade PR.)Y =a+ R, X[ +c¢
SW Still-White PR.Y =a+ XB+c¢
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TB ter Braak (PR, + Hp)Y =a+ X8+ Zy+e
FL Freedman-Lane (PR, + H,)Y =a+ X8+ Zy+e
MA Manly PY =a+XB+Zy+e

0S O’Gorman-Smith Y =a+ PR, XB+ Zy+e¢

DS Draper-Stoneman Y =a+ PXS+ Zv +e€

where P is permutation matrix and @ is defined as R, = QQ’ with Q'Q = I.

Note that H, is the hat matrix for the nuisance variable design matrix, and R, = [ — H, is the
corresponding residual forming matrix. Similarly, H,, and R,, are the hat and residual forming
matrices for the full model including the predictor and nuisance variables.

Value
statistic Test statistic value.
p.value p-value for testing Hy : 8 = [y.
perm.dist Permutation distribution of statistic.
method Permutation method.
null.value Null hypothesis value for 5.
homosced Homoscedastic errors?
lambda Ridge parameters.
R Number of resamples.
exact Exact permutation test? See Note.
coefficients  Least squares estimates of «, (3, and -y (if applicable).
univariate Univariate test statistic value for j-th variable (for multivariate inputs).
adj.p.value Adjusted p-value for testing significance of j-th variable (for multivariate in-

puts).

Multivariate Tests

If the input y is a matrix with m > 1 columns, the multivariate test statistic is defined as statistic
=max(univariate) given that the univariate test statistics are non-negative.

The global null hypothesis (across all m variables) is tested by comparing the observed statistic
to the permutation distribution perm.dist. This produces the p.value for testing the global null
hypothesis.

The local null hypothesis (separately for each variable) is tested by comparing the univariate test
statistic to perm.dist. This produces the adjusted p-values (adj.p.values), which control the
familywise Type I error rate across the m tests.

Note

If method = "flip”, the permutation test will be exact when the requested number of resamples R
is greater than 2*n minus one. In this case, the permutation distribution perm.dist contains all 2*n
possible values of the test statistic.
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If method = "both"”, the permutation test will be exact when the requested number of resamples
R is greater than factorial(n) * (2*n) minus one. In this case, the permutation distribution
perm.dist contains all factorial(n) * (2*n) possible values of the test statistic.

If method = "HJ", the permutation test will be exact when the requested number of resamples R is
greater than factorial(n-g-1) minus one. In this case, the permutation distribution perm.dist
contains all factorial(n-q-1) possible values of the test statistic.

Otherwise the permutation test will be exact when the requested number of resamples R is greater
than factorial(n) minus one. In this case, the permutation distribution perm.dist contains all
factorial(n) possible values of the test statistic.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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ter Braak, C. J. F. (1992). Permutation versus bootstrap significance tests in multiple regression and
ANOVA. In K. H. Jockel, G. Rothe, & W. Sendler (Eds.), Bootstrapping and related techniques.
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See Also

plot.np.reg.test S3 plotting method for visualizing the results

Examples

HHEHHE ook A UNIVARIATE  ##HEEHP OO o -
#ixxxf## TEST ALL COEFFICIENTS  ##Hbxxxff##

# generate data

set.seed(1)

n <- 10

x <= cbind(rnorm(n), rnorm(n))
y <= rnorm(n)

# Wald test (method = "perm”)
set.seed(0)
np.reg.test(x, y)

# F test (method = "perm")
set.seed(0)
np.reg.test(x, y, homosced = TRUE)

#ioocfi## TEST SUBSET OF COEFFICIENTS  #Hbxkxitf#

# generate data
set.seed(1)

n <- 10

X <= rnorm(n)

z <- rnorm(n)

y <- 3+ 2 % z + rnorm(n)

# Wald test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z)

# F test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z, homosced = TRUE)
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## Not run:
HHHHHHE xR R x ok ###E## MULTIVARIATE R K xx
#it#xxx#4#4#  TEST ALL COEFFICIENTS  ###txxxi##

# generate data

set.seed(1)

n<-10

x <= cbind(rnorm(n), rnorm(n))

y <= matrix(rnorm(n * 3), nrow = n, ncol = 3)

# multivariate Wald test (method = "perm")
set.seed(0)
np.reg.test(x, y)

# multivariate F test (method = "perm")
set.seed(0)
np.reg.test(x, y, homosced = TRUE)

#iooxf## TEST SUBSET OF COEFFICIENTS  #Hbxkx#tf#

# generate data

set.seed(1)

n<-10

X <= rnorm(n)

z <= rnorm(n)

y <= cbind(1 + 3 * z + rnorm(n),
2+ 2 * z + rnorm(n),
3+ 1 % z + rnorm(n))

# multivariate Wald test (method = "HJ")
set.seed(0)
np.reg.test(x, y, z)

# multivariate F test (method = "HJ")

set.seed(0)
np.reg.test(x, y, z, homosced = TRUE)

## End(Not run)

permn Generate All Permutations of n Elements

Description

Generates all n! vectors of length n consisting of permutations of the integers 1 to n.
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Usage

permn(n)

Arguments

n Number of elements.

Details

Adapted from the "permutations” function in the e1071 R package.

Value

Matrix of dimension n by n! where each column contains a unique permutation vector.

Warning

For large n this function will consume a lot of memory and may even crash R.

Note

Used for exact tests in np.cor.test and np.reg. test.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2018). e1071: Misc Func-
tions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R
package version 1.7-0. https://CRAN.R-project.org/package=e1071

Examples

permn(2)
permn(3)


https://CRAN.R-project.org/package=e1071
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plot Plots Permutation Distribution for Nonparametric Tests

Description

non

plot methods for object classes "np.cor.test”, "np.loc.test”, and "np.reg.test"

Usage

## S3 method for class 'np.aov.test'

plot(x, alpha = .05, col = "grey”, col.rr = "red",
col.stat = "black”, lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott"”, border = NA, box = TRUE, ...)

## S3 method for class 'np.cdf.test'

plot(x, alpha = 0.05, col = "grey”, col.rr = "red”,
col.stat = "black”, lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott"”, border = NA, box = TRUE, ...)

## S3 method for class 'np.cor.test'

plot(x, alpha = 0.05, col = "grey”, col.rr = "red”,
col.stat = "black”, lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott"”, border = NA, box = TRUE, ...)

## S3 method for class 'np.loc.test'

plot(x, alpha = 0.05, col = "grey”, col.rr = "red”,
col.stat = "black”, lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott”, border = NA, box = TRUE, ...)

## S3 method for class 'np.lm.test'

plot(x, which = 1, alpha = 0.05, col = "grey"”, col.rr = "red",
col.stat = "black”, lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott”, border = NA, box = TRUE, SQRT = TRUE, ...)

## S3 method for class 'np.reg.test'

plot(x, alpha = 0.05, col = "grey”, col.rr = "red”,
col.stat = "black”, 1lty.stat = 2, lwd.stat = 2,
xlab = "Test Statistic”, main = "Permutation Distribution”,
breaks = "scott”, border = NA, box = TRUE, SQRT = TRUE, ...)



plot

Arguments

X

which
alpha
col
col.rr
col.stat
lty.stat
lwd.stat
xlab
main
breaks
border
box

SQRT

Details

37

an object of class "np.aov.test" output by the np.aov. test function, "np.cdf.test"
output by the np.cdf.test function, "np.cor.test" output by the np.cor.test
function, "np.loc.test" output by the np.loc. test function, "np.Im.test" output
by the np.1m. test function, or "np.reg.test" output by the np.reg. test func-
tion

which term to plot

significance level of the nonparametric test
color for plotting the non-rejection region
color for plotting the rejection region

color for plotting the observed test statistic
line type for plotting the observed test statistic
line width for plotting the observed test statistic
x-axis label for the plot

title for the plot

defines the breaks of the histogram (see hist)
color of the border around the bars

should a box be drawn around the plot?

for regression tests, should the permutation distribution (and test statistic) be
plotted on the square-root scale?

additional arguments to be passed to hist

Plots a histogram of the permutation distribution and the observed test statistic. The argument
’alpha’ controls the rejection region of the nonparametric test, which is plotted using a separate
color (default is red).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for loca-
tion, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2),
el457. doi: 10.1002/wics.1457

See Also

np.aov. test for information on nonparametric ANOVA tests

np.aov. test for information on nonparametric distribution tests

np.cor.test for information on nonparametric correlation tests



38 plot

np.loc. test for information on nonparametric location tests
np.1lm. test for information on nonparametric linear model tests

np.reg. test for information on nonparametric regression tests

Examples

HHEHHE oo #EAEFE np.cor.test  #HEEHEROOoook B

# generate data

rho <- 0.5

val <- c(sqrt(1 + rho), sqrt(1 - rho))

corsqrt <- matrix(c(vall1], -val[2], val), 2, 2) / sqrt(2)
set.seed(1)

n <- 50

z <= cbind(rnorm(n), rnorm(n)) %*% corsqrt

x <- z[,1]

y <= z[,2]

# test HO: rho = @
set.seed(0)
test <- np.cor.test(x, y)

# plot results
plot(test)

A ooocoxx A np.loc. test  #HEHHb ook o i

# generate data
set.seed(1)

n <- 50

x <= rnorm(n, mean = 0.5)

# one sample t-test
set.seed(0)
test <- np.loc.test(x)

# plot results
plot(test)

HIHHHE OO np.reg.test b R i

# generate data

set.seed(1)

n <- 50

x <= cbind(rnorm(n), rnorm(n))
beta <- c(0.25, 0.5)

y <- X %*% beta + rnorm(n)

# Wald test (method = "perm”)
set.seed(0)
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test <- np.reg.test(x, y)

# plot results
plot(test)
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StartupMessage Startup Message for nptest

Description

Prints the startup message when nptest is loaded. Not intended to be called by the user.

Details

The ‘nptest’ ascii start-up message was created using the taag software.

References

https://patorjk.com/software/taag/
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