Package ‘neuroim?2’

January 14, 2026
Type Package

Title Data Structures for Brain Imaging Data

Version 0.8.5

LinkingTo Rcpp, ReppArmadillo, ReppParallel

Author Bradley R Buchsbaum [aut, cre, cph]

Maintainer Bradley R Buchsbaum <brad.buchsbaum@gmail.com>

Description A collection of data structures and methods for handling volumetric
brain imaging data, with a focus on functional magnetic resonance imaging (fMRI). Provides ef-
ficient
representations for three-dimensional and four-
dimensional neuroimaging data through sparse and dense array
implementations, memory-mapped file access for large datasets, and
spatial transformation capabilities. Implements methods for image resampling,
spatial filtering, region of interest analysis, and connected component labeling. General introduc-
tion
to fMRI analysis can be found in Poldrack et al. (2024, * * Handbook of func-
tional MRI data analysis",
<ISBN:9781108795760>).

License MIT + file LICENSE
Encoding UTF-8
VignetteBuilder knitr, rmarkdown
Depends R (>=4.3.0), Matrix

Collate 'RcppExports.R' 'all_generic.R' 'all_class.R'
'SparseNeuroVec-validity.R' 'afni_io.R' 'array_like.R' 'axis.R’
'big_neurovec.R' 'binary_io.R' 'cgb.R' 'cgb_nuisance.R’
'clustered_neurovec.R' 'clustervol.R' 'common.R' 'conncomp.R'
'downsample.R' 'file_format.R' 'filebacked_neurovec.R'
'globals.R' 'index_vol.R' 'mapped_neurovec.R' 'meta_info.R'
'meta_info_api.R' 'neuro_obj.R' 'neurohypervec.R' neuroim.R’
'neuroslice.R' 'neurospace.R' 'neurovec.R' 'neurovecseq.R'
'neurovol.R' 'nifti_extensions.R' 'nifti_io.R' 'niml_io.R'

'ops.R' 'palettes.R' "plot-helpers.R' 'plot-montage.R’
'plot-ortho.R' 'plot-overlay.R' 'read_image.R' 'resample.R’

1

'resample_to.R' 'roi.R' 'searchlight.R' 'simulate.R’
'sparse_neurovec.R' 'spat_filter.R' 'theme.R' 'zzz.R'

RoxygenNote 7.3.3

Imports purrr, assertthat, mmap, Rcpp, ReppParallel, RNifti, dbscan,
stringr, methods, bigstatsr, RNiftyReg, future.apply, deflist,
crayon, ggplot2, magrittr, grid

Suggests testthat, covr, knitr, roxygen2, rmarkdown, Gmedian, R.utils,
spelling, xmlI2

URL https://github.com/bbuchsbaum/neuroimz2,
https://bbuchsbaum.github.io/neuroim2/

BugReports https://github.com/bbuchsbaum/neuroim2/issues
Language en-US

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-14 20:30:02 UTC

Contents

neuroim2-package L
AbstractSparseNeuroVec-class
add_dim e
anatomical_axes e e e
annotate_orientation L. ..o e e
Arith,NeuroVec,NeuroVol-method
Arith,NeuroVolLNeuroVec-method
Arith, ROIVol,LROIVol-method
Arith-methods
ArrayLike3D-class Lo
ArrayLiked4D-class
ArrayLikeSD-class Lo
AS . L e e e
as-ClusteredNeuroVol-DenseNeuroVol
ASAAITAY .+« v v v e e e e e e e e e e e e e e e
as.array,ClusteredNeuroVol-method
as.array,SparseNeuroVol-method
asdense e
as.dense,ClusteredNeuroVol-method
as.list,FileBackedNeuroVec-method
as.logical,NeuroVol-method
asimask ... L. L
as.mask,NeuroVol,missing-method
ASIMALTIX e e e e e e e e e e
as.matrix,ClusteredNeuroVec-method
as.numeric,SparseNeuroVol-method

Contents

https://github.com/bbuchsbaum/neuroim2
https://bbuchsbaum.github.io/neuroim2/
https://github.com/bbuchsbaum/neuroim2/issues

Contents

3
ASTASIET e e e e e e e e e e e e e e e e e e 24
ASSPATSE « « v v e 24
as.sparse,DenseNeuroVec,LogicalNeuroVol-method 25
as.vector,SparseNeuroVol-method oL 26
AS_MNMAD + . v v v v e 26
as_nifti_ header e 27
AXES v v e e e e e e e e e e e e e e e 28
AXISSet-Class e e e e e 29
AxisSetlD-class e e e e 29
AxisSet2D-class e 30
AxisSet3D-class e e e e 30
AxisSetdD-class e e e e e e e e e 31
AxisSetSD-class e e e 31
BigNeuroVec e 32
BigNeuroVec-class e 33
bilateral_filter e 34
bilateral_filter_ 4d 35
BinaryReader 36
BinaryReader-class 38
BinaryWriter e 38
BinaryWriter-class L 39
bounds L e e e e e e e 39
centroid e e e e 40
centroids L. L L e 41
cgb_filter e e e 42
cgb_make_graph 44
cgb_smooth 46
cgb_smooth_loro 47
close,BinaryReader-method 47
ClusteredNeuroVec e e 48
ClusteredNeuroVec-class i i e e 50
ClusteredNeuroVol-class it 50
clustered_searchlight 52
cluster_searchlight_series 53
ColumnReader e 55
ColumnReader-class e e 55
Compare-methods 56
CONCAL v i it i e e e e e e e e e e e e 56
COMMN_COMP . v v v v v v e 58
conn_comp_3D 60
COOTdS e e 61
coords,IndexLookupVol-method, 62
coord_to_grid e e e 63
coord_to_IndeXo s 64
createNIfTIHeader i 65
cuboid_TOl e 65
data_file e e 66

data_file_matches e 67

Contents

data_reader L e 68
data_reader, NIFTIMetalnfo-method 69
DenseNeuroVec-class e 70
DenseNeuroVol-class e e e 71
dim,ClusteredNeuroVec-method 72
dim_of e e 73
downsample 74
drop . . . e e 75
drop,NeuroVec-method 76
drop_dim 76
ecode_NAME o e e e 77
embed_kernel e e e 78
EXIENSION e e e e 79
EXIENSIONS v v v e i e e e e e e e e e e e e e e 79
extractor3d L. e e e e e e e 80
extractordd L e e e 80
FileBackedNeuroVec 82
FileBackedNeuroVec-class 83
FileFormat-class 84
FileFormat-operations 85
FileMetalnfo-class e 85
FileSource-class e e e 86
file_matches e 86
findAnatomy3D 87
gaussian_blur L. e e e 88
get_afni_attributeo L. 89
grid_to_coord e 90
grid_to_grid 91
grid_to_index e e e 92
guided_filter L 93
has_extensions e 94
header_file e 95
header_file_matches 96
IMAZE . . . o o o e e 97
IndexLookupVol-class e 97
index_to_coord e e e e 99
index_to_grid L. e 100
INdiCES e e e e e 101
indices,IndexLookupVol-method 102
INVETSE_LrANS . . v v v v ot e e e e e e e e e e e e e e 103
Kernel e 104
Kernel-class e e e e 104
labels,ClusteredNeuroVec-method, 105
laplace_enhance L 105
length,ClusteredNeuroVec-method 106
HNEAr_acCesS v v o e e e e e e e 107
linear_access,DenseNeuroVol,numeric-method 108

list_afni_attributes e e 109

Contents

5
load_data,MappedNeuroVecSource-method 110
LogicalNeuroVol-class 111
lookup e 112
lookup,IndexLookupVol,numeric-method, . 113
make_time_weights L. 114
mapf . . . e 115
MappedNeuroVec-class 116
MappedNeuroVecSource-class 118
mapToColors 119
map_values e e e e 120
mask . . .o e e e e 121
matricized_acCess e e e e e e e e e e e e e e e 123
matrixToQuatern 124
Metalnfo e e 125
Metalnfo-class e e e e e 127
meta_info e 128
NamedAxis-class e 129
ndim e e e e e 129
ndim,AxisSet-method 130
neuro-downsample L e e 130
NEUIO-OPS « ¢« v v v v v e e e e e e e e e e e e e e e 131
NEUro-resample e e e e e e e 131
NeuroBucket-class e 131
NeuroHyperVec o e 131
NeuroHyperVec-class e 132
NeuroObj-class e e 134
NeuroSlice e 135
NeuroSlice-class e 136
NeuroSpace e e e 137
NeuroSpace-class L e 139
NeuroVec-class e 140
NeuroVecSeq o i e e 142
NeuroVecSeq-class e 144
NeuroVecSource e 145
NeuroVecSource-class e 145
NeuroVol e e e e 146
NeuroVol-class e e 146
NeuroVolSource e 147
NiftiExtension e e e e e e e 147
NiftiExtension-class 148
NiftiExtensionCodes e 149
NiftiExtensionList-class 150
NIFTIMetalnfo e 151
None e e e e 152
NullAXiS o e e e e 153
numericOrMatrix-class e e e e 153
num_clusters e e 153

OrientationList2D e 154

Contents

OrientationList3D e e 155
OFIgIN L e 155
parse_afni_extension e 156
PArse_EXtenSION e e e e e e e e e e 157
Partition L e e e e e e e 158
patch_set e e 159
patch_set,NeuroVol,numeric,missing-method 160
PEIM_MAL o i e e e e e e e e e e e e e e e e 160
perm_mat,AxisSet2D-method oL oL 161
perm_mat,AxisSet3D-methodo 162
plot,NeuroSlice-method 162
plot_montage e e e e e e 164
plot_ortho L 165
plot_overlay L 166
prepare_confounds L. e 167
quaternToMatrix 168
random_searchlight 169
read_elements,BinaryReader,numeric-method 169
read_header 170
read_image e 171
read_meta_info L e 172
TeAd_VEC o e e 173
read_vol L e 174
read_vol liSt L 175
TEOTIENE o o o e e e e e e e e 175
resample oL L e e e e 176
resampled_searchlight 178
resample_to 179
TESOIVE_CMAP . . . o . v v o e e et e e e e e e e e e e e e e e e 180
ROI-class e 181
ROICoords e 181
ROICoords-class e e e e 182
ROIVec e e e 182
ROIVec-class e 183
ROIVecWindow-class e e e e e 183
ROIVol . . . e e e e 184
ROIVol-class e 185
ROIVolWindow-class e e e e 185
scale . .. e e 186
scale_fill_ neuro e 186
scale_SErieS e, 187
searchlight e 188
searchlight-methods 189
searchlight_coords 189
searchlight_shape_functions 190
SETICS & v v v e e e e e e e e e e e e 191
series,NeuroHyperVec,ANY-method 193

SETIES_TOL . v v v v o o e e e e, 194

Contents

Index

7
show,NamedAxis-method 195
simulate_fmri oL e 197
SHICE . . . e e e e 199
SIICES . . . e e e e 200
SPACE & v v e e e e e e e e e e e e e e e e e 201
SPACING e e e 202
SparseNeuroVec-class 203
SparseNeuroVecSource-class L 204
SparseNeuroVol-class e e 205
spatial-filter 206
spherical_roi 207
spherical_roi_set e e e 208
split_blocks 209
split_clusters 210
split_fill 213
split_reduce L e e e e 214
split_scale 215
SQUATE_TOL . .+« v v v v v v e e e e e e e e e e e e e e e e 216
SIAP_EXIeNSION oo e e e e e 217
SUD_VECIOT o o v i e e e e e e e e e e e e 218
Summary-methods 219
theme neuro L e 220
TIME . . . e e e 221
TIMEAXIS o o e e e e 221
LrANS . . . o o e e e e e e e e e e e e e e e e e e 221
ValuES e e e e 222
VECIOTS & v v v v v e 223
vec_from_vols e 225
VOIS . o e e e e e 226
VOXEIS . . e e e 227
which_dim e 228
write_elements L e e e e e e 228
WIIEE_VEC . o o v o o o o o e e e e e e e 229
WIItE_VOL . . . L e e 231
[,AbstractSparseNeuroVec,numeric,numeric, ANY-method 232
[,DenseNeuroVol,numeric,missing, ANY-method 233
[[LNeuroVec,numeric-method 234
[[,NeuroVecSeq,numeric-method 235
[[,SparseNeuroVec,numeric-method, 235

8 AbstractSparseNeuro Vec-class

neuroim2-package neuroim2: neuroimaging data structures for analysis

Description

The neuroim?2 package provides tools and functions for analyzing and manipulating neuroimaging
data. It supports various neuroimaging formats and offers a range of analysis techniques.

Main functions

* read_vol: Read neuroimaging volumes
* write_vol: Write neuroimaging volumes
* NeuroVol: Create NeuroVol objects

* NeuroVec: Create NeuroVec objects

Author(s)

Maintainer: Bradley R Buchsbaum <brad.buchsbaum@gmail.com> [copyright holder]

See Also
Useful links:
* https://github.com/bbuchsbaum/neuroim?2

e https://bbuchsbaum.github.io/neuroim2/
» Report bugs at https://github.com/bbuchsbaum/neuroim2/issues

AbstractSparseNeuroVec-class
AbstractSparseNeuroVec Class

Description

An abstract base class for sparse four-dimensional brain image representations. This class provides
the foundation for efficient storage and manipulation of large, sparse neuroimaging data.

Details

The AbstractSparseNeuroVec class serves as a template for implementing various sparse represen-
tations of 4D brain images. It combines the spatial properties of NeuroVec with the efficiency of
sparse data structures.

https://github.com/bbuchsbaum/neuroim2
https://bbuchsbaum.github.io/neuroim2/
https://github.com/bbuchsbaum/neuroim2/issues

add_dim 9

Slots

mask An object of class LogicalNeuroVol defining the sparse domain of the brain image. This
mask indicates which voxels contain non-zero data.

map An object of class IndexLookupVol used to map between spatial coordinates and index/row
coordinates in the sparse representation.
Subclasses
Concrete implementations of this abstract class should provide specific data storage mechanisms
and methods for efficient access and manipulation of sparse 4D brain image data.
See Also

NeuroVec-class for the parent class. LogicalNeuroVol-class for the mask representation. IndexLookupVol-class
for the spatial-to-index mapping.

add_dim Add a Dimension to an Object

Description

This function adds a new dimension to a given object, such as a matrix or an array.

Usage
add_dim(x, n)

S4 method for signature 'NeuroSpace,numeric'
add_dim(x, n)

Arguments

X The NeuroSpace object

n Numeric value specifying the size of the new dimension
Value

An object of the same class as x with the new dimension added.

Examples

Create a NeuroSpace object
x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))

Add a new dimension with size 10
x1 <- add_dim(x, 10)

10 anatomical axes

Check the new dimension
ndim(x1) ==
dim(x1)[4] == 10

anatomical_axes Pre-defined anatomical axes

Description

These constants define standard anatomical axes used in neuroimaging. Each axis has a defined
direction vector in 3D space.

Usage
LEFT_RIGHT
RIGHT_LEFT
ANT_POST
POST_ANT

INF_SUP

SUP_INF

Format

An object of class NamedAxis of length 1.
An object of class NamedAxis of length 1.
An object of class NamedAxis of length 1.
An object of class NamedAxis of length 1.
An object of class NamedAxis of length 1.

An object of class NamedAxis of length 1.

annotate_orientation 11

annotate_orientation Add L/R and A/P/S/I annotations (optional)

Description

Add L/R and A/P/S/I annotations (optional)

Usage
annotate_orientation(
plane = c("axial”, "coronal”, "sagittal"),
dims,

gp = grid::gpar(col = "white", cex = 0.9, fontface = "bold")
)

Arguments
plane "axial", "coronal", or "sagittal"
dims c(nrow, ncol) of the slice matrix
gp grid::gpar style

Value

A ggplot2 layer with annotation_custom grobs

Arith,NeuroVec,NeuroVol-method
Arithmetic Operations for NeuroVec and NeuroVol

Description

This function performs arithmetic operations on a NeuroVec object and a NeuroVol object.

Usage

S4 method for signature 'NeuroVec,NeuroVol'
Arith(el, e2)

Arguments
el A NeuroVec object.
e2 A Neuro Vol object.
Value

A DenseNeuroVec object resulting from the arithmetic operation.

12 Arith,ROI'Vol,ROIVol-method

Arith,NeuroVol,NeuroVec-method
Arithmetic Operations for NeuroVol and NeuroVec

Description

This function performs arithmetic operations on a NeuroVol object and a NeuroVec object.

Usage

S4 method for signature 'NeuroVol,NeuroVec'
Arith(el, e2)

Arguments
el A Neuro Vol object.
e2 A NeuroVec object.
Value

A DenseNeuroVec object resulting from the arithmetic operation.

Arith,R0IVol,ROIVol-method
This function performs arithmetic operations on two ROIVol objects.

Description

This function performs arithmetic operations on two ROIVol objects.

Usage

S4 method for signature 'ROIVol,ROIVol'
Arith(el, e2)

Arguments
el An ROIVol object.
e2 An ROI'Vol object.
Value

An ROIVol object resulting from the arithmetic operation.

Arith-methods 13

Arith-methods Arithmetic Operations

Description

Methods for performing arithmetic operations on neuroimaging objects

This method performs arithmetic operations between two ROIVol objects (e1 and e2) using a
generic arithmetic function. The dimensions of both objects are checked for compatibility before
performing the operation.

Perform an arithmetic operation between two DenseNeuroVec objects. The input DenseNeuroVec
objects must have the same dimensions and NeuroSpace objects. The method computes the ele-
mentwise arithmetic operation and returns a new DenseNeuroVec object.

Perform an arithmetic operation between a SparseNeuro Vol object and a NeuroVol object. The input
SparseNeuroVol and NeuroVol objects must have the same dimensions. The method performs the
arithmetic operation on the non-zero values of the SparseNeuroVol and the corresponding values of
the NeuroVol. The result is returned as a new DenseNeuro Vol object.

Perform an arithmetic operation between a NeuroVol object and a SparseNeuroVol object. The input
NeuroVol and SparseNeuroVol objects must have the same dimensions. The method performs the
arithmetic operation on the values of the NeuroVol and the non-zero values of the SparseNeuroVol.
The result is returned as a new DenseNeuroVol object.

Perform an arithmetic operation between two NeuroVec objects. The input NeuroVec objects must
have the same dimensions. The method performs the arithmetic operation on the elements of the
NeuroVec objects. The result is returned as a new DenseNeuroVec object.

Usage
S4 method for signature 'SparseNeuroVol,SparseNeuroVol'
Arith(el, e2)

S4 method for signature 'DenseNeuroVol,DenseNeuroVol'
Arith(el, e2)

S4 method for signature 'DenseNeuroVec,DenseNeuroVec'
Arith(el, e2)

S4 method for signature 'SparseNeuroVol,NeuroVol'
Arith(el, e2)

S4 method for signature 'NeuroVol,SparseNeuroVol'
Arith(el, e2)

S4 method for signature 'SparseNeuroVec,SparseNeuroVec'
Arith(el, e2)

S4 method for signature 'NeuroVec,NeuroVec'
Arith(el, e2)

14 ArrayLike5D-class

Arguments
el A NeuroVec object.
e2 A NeuroVec object.
Value

A SparseNeuroVol object representing the result of the arithmetic operation.
An ROIVol object containing the result of the arithmetic operation between e1 and e2.
A DenseNeuroVec object representing the result of the arithmetic operation.
A DenseNeuroVol object representing the result of the arithmetic operation.
A DenseNeuroVol object representing the result of the arithmetic operation.

A DenseNeuroVec object representing the result of the arithmetic operation.

ArraylLike3D-class ArrayLike3D Class

Description

A virtual class for representing three-dimensional array-like objects. It provides a common interface
for 3D array operations.

ArraylLike4D-class ArrayLike4D Class

Description

A virtual class for representing four-dimensional array-like objects. It is intended to serve as a base
class for 4D array representations.

ArrayLike5D-class ArrayLike5D Class

Description

A virtual class for representing five-dimensional array-like objects. This class serves as an interface
for objects that mimic 5D arrays.

as 15
as conversion from NeuroVol to LogicalNeuroVol

Description

This function provides a method to coerce an object of class ROIVec to amatrix.

This function provides a method to coerce an object of class ROIVol to a DenseNeuroVol.
Arguments

from An object of class ROIVol to be coerced to a DenseNeuroVol.
Value

A matrix obtained by coercing the ROIVec object.

A DenseNeuroVol object obtained by coercing the ROIVol object.

as-ClusteredNeuroVol-DenseNeuroVol
Convert ClusteredNeuroVol to DenseNeuroVol

Description

This method converts a ClusteredNeuroVol into an equivalent DenseNeuro Vol object.
Arguments

from A ClusteredNeuroVol object to be converted
Details

Convert a ClusteredNeuroVol Object to a DenseNeuroVol Object
Value

A DenseNeuroVol object
See Also

ClusteredNeuroVol, DenseNeuroVol

16 as.array,ClusteredNeuro Vol-method

Examples

Create a clustered volume

mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))
clusters <- rep(1:5, length.out=sum(mask))

cvol <- ClusteredNeuroVol(mask, clusters)

Convert to DenseNeuroVol
dvol <- as(cvol, "DenseNeuroVol")

as.array Generic as.array Method

Description

Coerces an object to a base array using S4 dispatch when available.

Usage
as.array(x, ...)
Arguments
X An object to be coerced to an array.
Additional arguments passed to methods.
Value

An array representation of the input x.

as.array,ClusteredNeuroVol-method
Convert ClusteredNeuroVol to a base array

Description
Ensures that clustered volumes dispatch through the ‘as.array® S4 generic and return dense arrays
of cluster labels aligned to the underlying space.

Usage

S4 method for signature 'ClusteredNeuroVol'
as.array(x, ...)

as.array,SparseNeuro Vol-method 17

Arguments
X A ‘ClusteredNeuroVol* instance.
Additional arguments (currently ignored).
Value

A dense array of cluster ids.

as.array, SparseNeuroVol-method
Convert SparseNeuroVol to a base array

Description

Provides an ‘as.array‘ S4 method so sparse volumes can be coerced with the same syntax used for
dense objects.

Usage
S4 method for signature 'SparseNeuroVol'
as.array(x, ...)

Arguments
X A ‘SparseNeuroVol* instance.

Additional arguments (currently ignored).

Value

A dense array with voxel values at their spatial locations and zeros elsewhere.

as.dense Convert to dense representation

Description

Convert to dense representation

Usage

as.dense(x)

Arguments

X the object to densify

18 as.dense,ClusteredNeuro Vol-method

Value

A dense representation of the input object.

Examples

Create a sparse representation

space <- NeuroSpace(c(10,10,10,4), c(1,1,1))

mask <- array(runif(10*10x10) > 0.8, c(10,10,10)) # ~20% of voxels active

data <- matrix(rnorm(sum(mask) * 4), 4, sum(mask)) # Random data for active voxels
sparse_vec <- SparseNeuroVec(data, space, mask)

Convert to dense representation

dense_vec <- as.dense(sparse_vec)

The dense representation has the same dimensions but stores all voxels
identical(dim(sparse_vec), dim(dense_vec))

as.dense,ClusteredNeuroVol-method
Coerce SparseNeuroVol to DenseNeuroVol

Description

Convert a sparse volumetric image to a dense representation with the same spatial geometry. Non-
zero values stored in the sparse vector are placed at their corresponding linear indices in the dense
array; all other voxels are 0.

This function provides a method to coerce an object of class ROIVol to a DenseNeuroVol using the
as.dense method.
Usage

S4 method for signature 'ClusteredNeuroVol'
as.dense(x)

S4 method for signature 'SparseNeuroVol'
as.dense(x)

S4 method for signature 'ROIVol'
as.dense(x)

S4 method for signature 'SparseNeuroVec'
as.dense(x)

Arguments

X An object of class ROIVol to be coerced to a DenseNeuroVol.

as.list,FileBackedNeuro Vec-method 19

Value

A NeuroVol object representing the dense version of the clustered volume.

A DenseNeuro Vol with identical spatial dimensions and values expanded from the sparse represen-
tation.

A DenseNeuroVol object obtained by coercing the ROIVol object.

as.list,FileBackedNeuroVec-method
Convert FileBackedNeuroVec to List

Description

Converts a FileBackedNeuroVec object to a list of DenseNeuroVol objects.

convert SparseNeuro Vec to list of DenseNeuroVol

Usage

S4 method for signature 'FileBackedNeuroVec'
as.list(x)

S4 method for signature 'NeuroVec'
as.list(x)

S4 method for signature 'SparseNeuroVec'

as.list(x)

Arguments

X the object

Details

This method creates a deferred list, where each element is a DenseNeuroVol object representing a
single volume from the FileBackedNeuroVec.

Value

A list of DenseNeuroVol objects

20 as.mask

as.logical,NeuroVol-method
as.logical

Description

Convert NeuroVol to LogicalNeuroVol

Usage

S4 method for signature 'NeuroVol'
as.logical(x)

S4 method for signature 'ROIVol'
as.logical(x)

Arguments

X the object

Details

the image values will be converted to using R base function as. logical and wrapped in LogicalNeuroVol

Value

an instance of LogicalNeuroVol

as.mask Convert to a LogicalNeuroVol

Description

Convert to a LogicalNeuroVol

Usage

as.mask(x, indices)

Arguments

X the object to binarize

indices the indices to set to TRUE

as.mask,Neuro Vol, missing-method 21

Value

A LogicalNeuroVol object with TRUE values at the specified indices.

Examples

Create a simple 3D volume with random values
space <- NeuroSpace(c(10,10,10), spacing=c(1,1,1))
vol <- NeuroVol(array(runif(1000), c(10,10,10)), space)

Create a mask by thresholding (values > @.5 become TRUE)
mask1l <- as.mask(vol > 0.5)

Create a mask by specifying indices
indices <- which(vol > 0.8) # get indices of high values
mask2 <- as.mask(vol, indices)

Both masks are LogicalNeuroVol objects
identical(class(mask1), class(mask2))

as.mask,NeuroVol,missing-method
Convert NeuroVol to a mask

Description

This method converts a NeuroVol object to a mask by setting all positive values to TRUE and all
non-positive values to FALSE.

This method converts a NeuroVol object to a mask by setting the specified indices to TRUE and the
remaining elements to FALSE.
Usage

S4 method for signature 'NeuroVol,missing'’
as.mask(x)

S4 method for signature 'NeuroVol,numeric'
as.mask(x, indices)

Arguments
X A Neuro Vol object to convert to a mask.
indices A numeric vector containing the indices of the input NeuroVol that should be
set to TRUE in the resulting mask.
Value

A LogicalNeuroVol object representing the mask created from the input NeuroVol.

A LogicalNeuroVol object representing the mask created from the input NeuroVol with specified
indices.

22 as.matrix,ClusteredNeuro Vec-method

as.matrix Generic as.matrix Method

Description

Coerces an object to a matrix.

Usage
as.matrix(x, ...)
Arguments
X An object to be coerced to a matrix.
Additional arguments passed to methods.
Value

A matrix representation of the input x.

as.matrix,ClusteredNeuroVec-method
convert a NeuroVec to a matrix

Description

convert a NeuroVec to a matrix
convert a ROIVec to a matrix

Convert to Matrix

Usage

S4 method for signature 'ClusteredNeuroVec
as.matrix(x, by = c("cluster”, "voxel"))

S4 method for signature 'MappedNeuroVec'
as.matrix(x)

S4 method for signature 'NeuroVec'
as.matrix(x)

S4 method for signature 'DenseNeuroVec
as.matrix(x)

S4 method for signature 'ROIVec'

as.numeric,SparseNeuro Vol-method 23

as.matrix(x)

S4 method for signature 'SparseNeuroVec'

as.matrix(x, ...)
Arguments
X The object to convert to a matrix
by For ClusteredNeuroVec: controls the conversion target. Defaults to "cluster” to

return a TxK matrix of cluster time-series. "voxel" is reserved for future use.

Additional arguments

Value

A matrix representation of the object

as.numeric,SparseNeuroVol-method
Convert SparseNeuroVol to numeric

Description

Convert SparseNeuroVol to numeric

Usage

S4 method for signature 'SparseNeuroVol'
as.numeric(x)

S4 method for signature 'ROIVol'
as.numeric(x)

Arguments

X the object to convert

Value

A numeric vector of length nrow(x@coords)

24 as.sparse

as.raster Generic Method for Converting Objects to Raster Format

Description

Converts an object to a raster (bitmap) representation.

Arguments
X An object to be converted.
Additional arguments passed to the conversion methods.
Value

A raster object representing x.

as.sparse Convert to from dense to sparse representation

Description

Convert to from dense to sparse representation

Usage
as.sparse(x, mask, ...)
Arguments
X the object to make sparse, e.g. DenseNeuroVol or DenseNeuroVec
mask the elements to retain
additional arguments
Details

mask can be an integer vector of 1D indices or a mask volume of class LogicalNeuroVol

Value

A sparse representation of the input object, containing only the elements specified by mask.

as.sparse,DenseNeuro Vec,LogicalNeuro Vol-method 25

Examples

bvol <-

NeuroVol(array(runif (24%24x24), c(24,24,24)), NeuroSpace(c(24,24,24), c(1,1,1)))

indmask <- sort(sample(1:(24*24x24), 100))

svol <-

mask <-

sum(mask) == 100

as.sparse(bvol, indmask)

LogicalNeuroVol(runif(length(indmask)), space=space(bvol), indices=indmask)

as.sparse,DenseNeuroVec,LogicalNeuroVol-method
Convert DenseNeuroVec to sparse representation using mask

Description

This method converts a DenseNeuroVec object to a sparse representation using a given LogicalNeu-
roVol mask.

This method converts a DenseNeuroVec object to a sparse representation using a given numeric
mask.

Usage
##

as.

##

as.

#i#

as.

##

as.

#it

as.

S4 method
sparse(x,

S4 method
sparse(x,

S4 method
sparse(x,

S4 method
sparse(x,

S4 method
sparse(x)

Arguments

X

mask

Value

for signature
mask)

for signature
mask)

for signature
mask)

for signature
mask)

for signature

'DenseNeuroVec,LogicalNeuroVol'

'DenseNeuroVec, numeric'

'DenseNeuroVol,LogicalNeuroVol'

'DenseNeuroVol, numeric'

"ROIVol, ANY'

A DenseNeuroVec object to convert to a sparse representation.

A numeric vector representing the mask to apply during conversion.

A SparseNeuroVec object resulting from the conversion.

A SparseNeuroVec object resulting from the conversion.

26 as_mmap

as.vector, SparseNeuroVol-method
Convert SparseNeuroVol to a base vector

Description

Supplies an ‘as.vector‘ S4 method that flattens sparse volumes to a dense vector, keeping the same
voxel ordering as ‘as.array".

Usage
S4 method for signature 'SparseNeuroVol'
as.vector(x, mode = "any")
Arguments
X A ‘SparseNeuroVol‘ instance.
mode Optional coercion mode (see [base::as.vector]).
Value

A vector of length ‘prod(dim(x))‘.

as_mmap Convert a NeuroVec to a memory-mapped representation

Description

Generic for converting neuroimaging vectors to a memory-mapped MappedNeuroVec on disk (when
possible).

Methods for the as_mmap generic, which convert various neuroimaging vector types to a MappedNeuroVec
backed by an on-disk NIfTI file.

Usage
as_mmap(x, file = NULL, ...)

S4 method for signature 'MappedNeuroVec'
as_mmap(x, file = NULL, ...)

S4 method for signature 'FileBackedNeuroVec'
as_mmap(x, file = NULL, ...)

S4 method for signature 'NeuroVec'
as_mmap(x, file = NULL, data_type = "FLOAT", overwrite = FALSE, ...)

as_nifti_header 27

S4 method for signature 'SparseNeuroVec'

as_mmap(x, file = NULL, data_type = "FLOAT", overwrite = FALSE, ...)
Arguments
X A neuroimaging vector (NeuroVec, MappedNeuroVec, or FileBackedNeuroVec).
file Optional output file name. If NULL, a temporary file with extension .nii is
created.

Additional arguments passed to methods (e.g. data_type, overwrite).

data_type Character string specifying the output data type for the NIfTT file. Should be one
of: "BINARY", "UBYTE", "SHORT", "INT", "FLOAT", "DOUBLE". Default
is "FLOAT".
overwrite Logical; if TRUE, overwrite an existing file at the specified path. Default is
FALSE.
Value

A MappedNeuroVec (or x itself if already memory-mapped).

A MappedNeuroVec (or x itself if it is already memory-mapped).

as_nifti_header Construct a Minimal NIfTI-1 Header from a NeuroVol

Description

Given a NeuroVol object (or similar), this function builds a basic NIfTI-1 header structure, pop-
ulating essential fields such as dim, pixdim, datatype, the affine transform, and the quaternion
parameters.

Usage

as_nifti_header(
vol,
file_name,
oneFile = TRUE,
data_type = "FLOAT",
extensions = NULL

)
Arguments
vol A NeuroVol (or 3D array-like) specifying dimensions, spacing, and affine trans-
form.
file_name A character string for the file name (used within the header but not necessarily

to write data).

28 axes

oneFile Logical; if TRUE, sets the NIfTI magic to "n+1", implying a single-file format
(.nii). If FALSE, uses "ni1" (header+image).

data_type Character specifying the data representation, e.g. "FLOAT”, "DOUBLE". The
internal code picks an integer NIfTI code.

extensions Optional NiftiExtensionList-class objectorlistof NiftiExtension-class
objects to include in the header.

Details

This is a convenience function that calls createNIfTIHeader first, then updates the fields (dimen-
sions, pixdim, orientation, etc.) based on the vol argument. The voxel offset is set to 352 bytes
(or larger if extensions are provided), and the quaternion is derived from the transform matrix via
matrixToQuatern.

Note: This function primarily sets up a minimal header suitable for writing standard single-file
NIfTI-1. If you need a more comprehensive or advanced usage, consider manually editing the
returned list.

Value

A list representing the NIfTI-1 header fields, containing elements like dimensions, pixdim,
datatype, gform, quaternion, gfac, extensions, etc. This can be passed to other functions
that write or manipulate the header.

See Also

createNIfTIHeader for the base constructor of an empty NIfTI header. NiftiExtension for
creating extensions.

axes Extract Image Axes

Description

Extract Image Axes
Usage
axes(x)

S4 method for signature 'NeuroSpace'
axes(x)

Arguments

X an object with a set of axes

AxisSet-class

Value

An object representing the axes of x.

Examples

x <- NeuroSpace(c(10,10,10), spacing=c(1,1,1))

29

class(axes(x)) == "AxisSet3D"
AxisSet-class AxisSet
Description

Virtual base class representing an ordered set of named axes.

Slots

ndim the number of axes (or dimensions)

AxisSet1D-class AxisSetlD

Description

A one-dimensional axis set

Slots

i the first axis

30 AxisSet3D-class

AxisSet2D-class AxisSet2D

Description

A two-dimensional axis set representing an ordered pair of named axes.

Slots

i The first axis, inherited from AxisSet1D

j The second axis, of class "NamedAxis"

See Also

AxisSet1D-class, AxisSet3D-class

Examples
Create an AxisSet2D object
axisl <- new("NamedAxis", axis = "x", direction = 1)
axis2 <- new("NamedAxis", axis = "y", direction = 1)

axisSet2D <- new("AxisSet2D", i = axisl, j = axis2, ndim = 2L)

AxisSet3D-class AxisSet3D Class

Description

A class representing a three-dimensional axis set, extending the AxisSet2D class with an additional
third axis.

Slots

k A NamedAxis object representing the third axis.

See Also

AxisSet2D-class, NamedAxis-class

Examples

Create NamedAxis objects for each dimension

x_axis <- new("”NamedAxis", axis = "x", direction = 1)
y_axis <- new("NamedAxis", axis = "y", direction = 1)
z_axis <- new("NamedAxis", axis = "z", direction = 1)

Create an AxisSet3D object
axis_set_3d <- new("AxisSet3D", i = x_axis, j = y_axis, k = z_axis, ndim = 3L)

AxisSet4D-class 31

AxisSet4D-class AxisSet4D Class

Description

A class representing a four-dimensional axis set, extending the AxisSet3D class with an additional
fourth axis.

Slots

1 A NamedAxis object representing the fourth axis.

See Also

AxisSet3D-class, NamedAxis-class

Examples

Create NamedAxis objects for each dimension

x_axis <- new("”NamedAxis”, axis = "x", direction = 1)
y_axis <- new("”NamedAxis"”, axis = "y", direction = 1)
z_axis <- new("”NamedAxis", axis = "z", direction = 1)
t_axis <- new("NamedAxis", axis = "t", direction = 1)

Create an AxisSet4D object
axis_set_4d <- new("AxisSet4D", i = x_axis, j = y_axis, k = z_axis,
1 = t_axis, ndim = 4L)

AxisSet5D-class AxisSet5D Class

Description

A class representing a five-dimensional axis set, extending the AxisSet4D class with an additional
fifth axis.

Slots

m A NamedAxis object representing the fifth axis.

See Also

AxisSet4D-class, NamedAxis-class

32 BigNeuroVec

Examples

Create NamedAxis objects for each dimension

x_axis <- new("”NamedAxis", axis = "x", direction = 1)
y_axis <- new("NamedAxis", axis = "y", direction = 1)
z_axis <- new("NamedAxis", axis = "z", direction = 1)
t_axis <- new("NamedAxis"”, axis = "t", direction = 1)
v_axis <- new("”NamedAxis"”, axis = "v", direction = 1)

Create an AxisSet5D object
axis_set_5d <- new("AxisSet5D"”, i = x_axis, j = y_axis, k = z_axis,
1 = t_axis, m = v_axis, ndim = 5L)

BigNeuroVec Create a Memory-Mapped Neuroimaging Vector

Description

Creates a BigNeuroVec object, which represents a large neuroimaging vector using memory-mapped
file storage. This allows working with neuroimaging data that is too large to fit in memory.

Usage

BigNeuroVec(
data,
space,
mask,
label = "",
type = c("double”, "float"”, "integer"),
backingfile = tempfile()

)

Arguments
data The input data to be stored
space A NeuroSpace object defining the spatial properties
mask A logical mask indicating which voxels contain data
label Optional character string label for the vector
type Storage type, one of "double", "float", or "integer"

backingfile Path to the file used for memory mapping (defaults to tempfile())

Value

A new BigNeuroVec object that provides memory-efficient access to large neuroimaging data through
memory mapping. The object contains the spatial properties, mask, and memory-mapped data stor-
age.

BigNeuro Vec-class 33

Examples

Load an example 4D brain image
example_file <- system.file("extdata"”, "global_mask_v4.nii", package = "neuroim2")
example_4d_image <- read_vec(example_file)

Create a mask (e.g., selecting voxels with values > 0)
mask <- array(as.vector(example_4d_imagel[,,,1]) > 0,
dim = dim(example_4d_image)[1:3])

if(requireNamespace("bigstatsr”, quietly = TRUE)) {
Create a BigNeuroVec with memory mapping
big_vec <- BigNeuroVec(data = example_4d_image@.Data,
space = space(example_4d_image),
mask = mask,
label = "Example BigNeuroVec")
print(big_vec)
3

BigNeuroVec-class BigNeuroVec Class

Description

A class representing a sparse four-dimensional brain image backed by a disk-based big matrix.
BigNeuroVec objects are designed for efficient handling of large-scale brain imaging data that ex-
ceeds available memory.

Details

BigNeuroVec leverages file-backed storage to manage large 4D neuroimaging datasets that would

typically exceed available RAM. It combines the sparse representation framework of AbstractSparseNeuroVec

with the disk-based storage capabilities of FBM, allowing for out-of-core computations on massive
datasets.
Slots

data Aninstance of class FBM from the bigstatsr package, containing time-series data. The FBM
(File-Backed Big Matrix) is a matrix-like structure stored on disk, enabling efficient handling
of large-scale data.

Inheritance

BigNeuroVec inherits from:

* NeuroVec: Base class for 4D brain images
* AbstractSparseNeuroVec: Provides sparse representation framework

* ArraylLike4D: Interface for 4D array-like operations

34 bilateral filter

See Also

AbstractSparseNeuroVec-class for the parent sparse representation class. NeuroVec-class for
the base 4D brain image class. FBM for details on File-Backed Big Matrix objects.

bilateral_filter Apply a bilateral filter to a volumetric image

Description
This function smooths a volumetric image (3D brain MRI data) using a bilateral filter. The bilateral
filter considers both spatial closeness and intensity similarity for smoothing.

Usage

bilateral_filter(vol, mask, spatial_sigma = 2, intensity_sigma = 1, window = 1)

Arguments
vol A NeuroVol object representing the image volume to be smoothed.
mask An optional LogicalNeuroVol object representing the image mask that defines
the region where the filtering is applied. If not provided, the entire volume is
considered.

spatial_sigma A numeric value specifying the standard deviation of the spatial Gaussian kernel
(default is 2).

intensity_sigma

A numeric value specifying the standard deviation of the intensity Gaussian ker-
nel (default is 25).

window An integer specifying the number of voxels around the center voxel to include
on each side. For example, window=1 for a 3x3x3 kernel (default is 1).
Value

A smoothed image of class NeuroVol.

Examples

brain_mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Apply bilateral filtering to the brain volume
filtered_vol <- bilateral_filter(brain_mask, brain_mask, spatial_sigma = 2,
intensity_sigma = 25, window = 1)

bilateral_filter_4d 35

bilateral_filter_4d Apply a 4D bilateral filter to a NeuroVec

Description

This function applies a full 4D bilateral filter to a NeuroVec, smoothing jointly across space (x, y, z)
and time (t). The filter uses spatial, temporal, and intensity kernels to preserve edges while reducing
noise, leveraging a parallel C++ backend for performance.

Usage

bilateral_filter_4d(
vec,
mask,
spatial_sigma = 2,
intensity_sigma = 1,
temporal_sigma = 1,
spatial_window ,
temporal_window = 1,
temporal_spacing = 1

)
Arguments
vec A NeuroVec object (4D image).
mask An optional LogicalNeuroVol or NeuroVol specifying the spatial region to pro-

cess. If omitted, the entire spatial extent is processed.

spatial_sigma Numeric; standard deviation of the spatial Gaussian (default 2).
intensity_sigma
Numeric; standard deviation of the intensity Gaussian (default 1).
temporal_sigma Numeric; standard deviation of the temporal Gaussian (default 1).
spatial_window Integer; half-width of the spatial window in voxels (default 1), e.g., 1 => 3x3x3
spatial neighborhood.
temporal_window
Integer; half-width of the temporal window in frames (default 1), e.g., 1 =>3
timepoints (t-1, t, t+1).
temporal_spacing

Numeric; spacing of the temporal dimension (e.g., TR in seconds). Default is 1.
This sets the temporal scale used for the temporal kernel.

Details

Parameter guidance and units: - spatial_sigma: Measured in physical units (millimeters). Distances
are computed using spacing(vec)[1:3], so choose spatial_sigma relative to voxel size. As a
rule of thumb, set it to about 1-2 voxel sizes (e.g., 2-4 mm for 2 mm isotropic data) for moderate

36 BinaryReader

smoothing. - intensity_sigma: Dimensionless multiplier of the global intensity standard deviation.
Internally, the filter uses exp(-(d)"2 / (2 * (intensity_sigma * sigma_I)*2)), where sigma_I is the
standard deviation of all finite voxel intensities within the mask across time. Start with 1.0 for
moderate smoothing; use 0.5-0.8 to preserve more edges, or 1.5-2.0 for stronger smoothing. -
temporal_sigma: Measured in temporal_spacing units (e.g., seconds). Typical values are 0.5-2 x
TR. Larger values blend more across time.

Choosing the neighborhood window sizes: - spatial_window controls the discrete spatial support. A
common choice is ceiling(2 x spatial_sigma / min(spacing(vec)[1:31)), which covers ~95
- temporal_window similarly can be set to ceiling(2 * temporal_sigma / temporal_spacing).

Quick presets (typical fMRI with 2-3 mm voxels and TR~2s): - Light: spatial_sigma = 1 x min(spacing),
intensity_sigma = 0.8, temporal_sigma = 0.5 x TR, windows = 1 - Moderate (default-ish): spa-
tial_sigma = 1.5 x min(spacing), intensity_sigma = 1.0, temporal_sigma = 1 x TR, windows = 1-2

- Strong: spatial_sigma = 2 x min(spacing), intensity_sigma = 1.5, temporal_sigma = 1.5 x TR,
windows =2

Tip: If your time axis has known TR, pass it via temporal_spacing. For NIfTTI inputs, you can get
TR via:

hdr <- read_header(nifti_path)

tr <- hdr@header$pixdim[5]

out <- bilateral_filter_4d(vec, mask, temporal_spacing = tr)
Value

A NeuroVec with filtered data.

See Also

bilateral_filter, NeuroVec-class, NeuroVol-class

Examples
vec <- read_vec(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

out <- bilateral_filter_4d(vec, mask,
spatial_sigma = 2, intensity_sigma = 1,
temporal_sigma = 1, spatial_window = 1,
temporal_window = 1, temporal_spacing = 1)

BinaryReader Create Binary Reader Object

Description

Create a new instance of the BinaryReader class for reading bulk binary data.

BinaryReader 37

Usage
BinaryReader (
input,
byte_offset,
data_type,
bytes_per_element,
endian = .Platform$endian,
signed = TRUE
)
Arguments
input Character string (file name) or connection object to read from

byte_offset Integer specifying bytes to skip at start of input
data_type Character string specifying R data type ("integer’, *double’, etc.)

bytes_per_element
Integer specifying bytes per data element (e.g., 4 or 8)

endian Character string specifying endianness ("big’ or ’little’, default: platform-specific)
signed Logical indicating if data type is signed (default: TRUE)
Value

An object of class BinaryReader

See Also

BinaryWriter for writing binary data

Examples

Create a temporary binary file
tmp <- tempfile()
writeBin(rnorm(100), tmp, size = 8)

Read from existing connection with offset
con <- file(tmp, "rb")
reader <- BinaryReader(con, byte_offset=0,
data_type = "DOUBLE", bytes_per_element = 8L)
close(reader)

Clean up
unlink(tmp)

38 BinaryWriter

BinaryReader-class BinaryReader Class

Description

Class supporting reading of bulk binary data from a connection

Slots

input The binary input connection
byte_offset The number of bytes to skip at the start of input
data_type The data type of the binary elements

bytes_per_element The number of bytes in each data element (e.g. 4 or 8 for floating point
numbers)

endian The endianness of the binary input connection

signed Logical indicating whether the data type is signed

BinaryWriter Create Binary Writer Object

Description

Create a new instance of the BinaryWriter class for writing bulk binary data.

Usage

BinaryWriter(
output,
byte_offset,
data_type,
bytes_per_element,
endian = .Platform$endian

Arguments

output Character string (file name) or connection object to write to
byte_offset Integer specifying bytes to skip at start of output

data_type Character string specifying R data type ("integer’, *double’, etc.)
bytes_per_element
Integer specifying bytes per data element (e.g., 4 or 8)

endian Character string specifying endianness ("big’ or ’little’, default: platform-specific)

Binary Writer-class 39

Value

An object of class BinaryWriter

See Also

BinaryReader for reading binary data
Examples

tmp <- tempfile()
Write to existing connection with offset
con <- file(tmp, "wb")
writer <- BinaryWriter(con, byte_offset = 100L,
data_type = "integer"”, bytes_per_element = 4L)
unlink(tmp)

BinaryWriter-class BinaryWriter Class

Description

This class supports writing of bulk binary data to a connection

Slots

output The binary output connection
byte_offset The number of bytes to skip at the start of input
data_type The data type of the binary elements

bytes_per_element The number of bytes in each data element (e.g. 4 or 8 for floating point
numbers)

endian The endianness of the binary output connection

bounds Extract Spatial Bounds of an Image

Description

This function extracts the spatial bounds (origin + dim * spacing) of an image represented by the
input object.

40 centroid

Usage
bounds (x)

S4 method for signature 'NeuroSpace'
bounds (x)

Arguments

X The object with the ‘bounds* property, typically an image.

Value

A numeric matrix with two columns specifying the min (column 1) and max (column 2) bounds of
each dimension of x.

Examples

bspace <- NeuroSpace(c(10, 10, 10), c(2, 2, 2))
b <- bounds(bspace)

nrow(b) == ndim(bspace)

ncol(b) == 2

centroid return the centroid of an object

Description

return the centroid of an object

Usage

centroid(x, ...)

S4 method for signature 'NeuroSpace'
centroid(x)

S4 method for signature 'ROICoords'

centroid(x)
Arguments
X an object with a centroid
extra args
Value

A numeric vector giving the centroid of x.

centroids

Examples

bspace <- NeuroSpace(c(10,10,10), c(2,2,2))
centroid(bspace)

41

centroids Return a matrix of centroids of an object

Description

Return a matrix of centroids of an object

Usage

centroids(x, ...)

S4 method for signature 'ClusteredNeuroVec'
centroids(x, type = c("center_of_mass"”, "medoid"))

S4 method for signature 'ClusteredNeuroVol'

centroids(x, type = c("center_of_mass"”, "medoid"))
Arguments
X an object with multiple centroids (e.g. a ClusteredNeuroVol)
extra args
type the type of center of mass: one of "center_of_mass" or "medoid"
Details

For ‘type = "center_of_mass"‘, returns arithmetic mean coordinates; for
most central point.
Value

A numeric matrix where each row represents the coordinates of a centroid.

A matrix of coordinates where each row represents the centroid of a cluster.

"medoid"‘, returns the

42

cgb_filter

cgb_filter

Correlation-guided bilateral filtering (convenience wrapper)

Description

High-level interface that builds a correlation-guided bilateral (CGB) graph with sensible defaults
(similar to the bilateral filter interface) and immediately applies it to smooth the data.

Usage

cgb_filter(
runs,

mask = NULL,
spatial_sigma

:2’

window = NULL,
corr_map = c("power”, "exp", "soft"),

corr_param = 2,

topk = 16L,

passes = 1L,

lambda = 1,
leave_one_out = FALSE,
run_weights = NULL,
add_self = TRUE,
time_weights = NULL,
confounds = NULL,
robust = c("none"”, "huber"”, "tukey"),
robust_c = 1.345,
return_graph = FALSE

Arguments

runs

mask

spatial_sigma

A NeuroVec or a list of NeuroVec.

Optional LogicalNeuroVol/NeuroVol or logical array for spatial masking. De-
faults to in-mask voxels.

Spatial Gaussian sigma in mm. Used both for weighting and, when window is
NULL, to auto-choose the neighborhood size.

window Integer half-width of the cubic neighborhood. If NULL, it is computed as ceiling(2
* spatial_sigma / min(spacing)) and at least 1.

corr_map Mapping from pooled correlation to affinity; one of "power”, "exp”, or "soft".
Defaults to "power".

corr_param Parameter for corr_map (gamma/tau/r0 respectively).

topk Keep strongest k neighbors (0 keeps all). Defaults to 16.

passes Number of smoothing passes (>=1). Defaults to 1.

lambda Blend factor in [0,1] per pass. Defaults to 1 (pure diffusion).

cgb_filter 43

leave_one_out If TRUE and multiple runs are supplied, builds LORO graphs and returns a list of
smoothed runs.

run_weights Optional numeric weights per run for Fisher-z pooling.
add_self Logical; add a tiny self-edge before normalization.

time_weights Optional list (or single vector) of per-run time weights.

confounds Optional list (or single matrix) of per-run confounds.
robust One of "none"”, "huber”, or "tukey".
robust_c Tuning constant for robust weights.

return_graph Logical; if TRUE, also return the graph(s) alongside the smoothed data.

Details

This is a convenience front-end to cgb_make_graph and cgb_smooth with a bilateral-like inter-
face: - If window is NULL, it is chosen as ceiling(2 * spatial_sigma / min(spacing)) (at least
1). Larger windows allow correlations over more distant neighbors, at the cost of extra compute
and memory. - spatial_sigma (in mm) controls how quickly spatial weights fall with distance.
Small values emphasize very local structure; larger values mix information over a wider spatial
footprint. - corr_map and corr_param set how pooled correlations are turned into edge weights:
* "power"”: a(r) = r*gamma for r > @. Larger gamma (e.g., 3-4) strongly emphasizes high correla-
tions and produces more edge-preserving, patchy smoothing; smaller values (e.g., 1-2) behave more
like standard correlation-weighted smoothing. * "exp”: Gaussian on 1 - r with scale tau. Small
tau keeps only very similar time-series; larger tau makes the filter closer to a spatial Gaussian
while still respecting sign. * "soft"”: a(r) =max(r - r@, 0). Increasing ro@ discards more weak
correlations and tends to sharpen edges but can make the result more piecewise-constant. - topk
limits each voxel to at most k strongest neighbors. Smaller topk yields sparser, more anisotropic
graphs (cheaper but sometimes less smooth); larger topk increases mixing and memory. - passes
and lambda control diffusion strength. With lambda = 1, each pass applies pure graph diffusion;
multiple passes compound smoothing. Choosing 1ambda < 1 blends each pass with the identity and
can prevent over-smoothing when using more passes. - Setting leave_one_out = TRUE for multi-
run inputs builds a separate graph for each run that excludes its own correlations, which reduces
information leakage in cross-validation or decoding workflows. - time_weights, confounds, and
robust/robust_c adjust how time-points contribute to the correlation estimates. Down- weighting
high-motion/high-DVARS frames (via make_time_weights and robust != "none") will typically
yield smoother, less noisy graphs but can also reduce effective temporal degrees of freedom. - Use
return_graph = TRUE when you plan to reuse the constructed graph(s) with cgb_smooth or inspect
their sparsity pattern.

Value

If leave_one_out=FALSE, a smoothed NeuroVec. If leave_one_out=TRUE, a list of smoothed
NeuroVec. When return_graph=TRUE, returns a list with elements result and graph (single
object or lists accordingly).

Examples

vec <- read_vec(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

44 cgb_make_graph

Auto window from spatial_sigma and spacing, single pass
out <- cgb_filter(vec, mask, spatial_sigma = 3, window = NULL, topk = 16)

Stronger diffusion with two passes and lambda < 1
out2 <- cgb_filter(vec, mask, spatial_sigma = 4, window = NULL,
passes = 2, lambda = 0.7)

cgb_make_graph Build a correlation-guided bilateral (CGB) graph

Description

Computes a sparse row-stochastic graph whose weights combine spatial proximity and pooled local
time-series correlations. Supports optional censoring weights, nuisance regression via weighted
QR projectors, leave-one-run-out graph construction, and robust down-weighting of high-DVARS

volumes.
Usage
cgb_make_graph(
runs,
mask = NULL,

window = 1L,
spatial_sigma = 2,
corr_map = c("power",
corr_param = 2,

topk = 16L,
leave_one_out = FALSE,
run_weights = NULL,
add_self = TRUE,
time_weights = NULL,
confounds = NULL,

n

exp", "soft"),

robust = c("none”, "huber”, "tukey"),
robust_c = 1.345
)
Arguments
runs A NeuroVec or a list of NeuroVec objects (typically one per run).
mask Optional LogicalNeuroVol/NeuroVol or logical array defining in-mask voxels.
Defaults to all in-mask voxels.
window Integer half-width of the cubic spatial neighborhood (e.g., 1 yields a 3x3x3 win-
dow).

spatial_sigma Spatial Gaussian sigma in mm.

cgb_make_graph 45

corr_map Mapping from pooled correlation to affinity; one of "power”, "exp”, or "soft".
The "power” and "soft"” mappings rectify negative correlations, whereas "exp”
preserves them (useful for sharpening more than smoothing).

corr_param Parameter for the chosen corr_map (gamma, tau, or 10 respectively).

topk Keep the strongest k neighbors after masking (0 keeps all).

leave_one_out Logical; if TRUE and multiple runs are provided, returns a list of graphs where
run u excludes its own correlations.

run_weights Optional numeric weights per run used in Fisher-z pooling. Defaults to n; — 3
(usable frames minus three) when omitted.

add_self Logical; always inject a tiny self-edge before normalization.

time_weights Optional list (or single vector) of per-run time weights w; € [0, 1] applied be-
fore correlation estimation. An intercept is always included so correlations are
computed on weighted, demeaned series.

confounds Optional list (or single matrix) of per-run confound regressors to project out
prior to correlation estimation.
robust One of "none”, "huber”, or "tukey"; when not "none” an additional DVARS-
style reweighting is applied.
robust_c Tuning constant for the robust weights (Huber/Tukey).
Details

Graph construction overview: - Neighborhood: For each in-mask voxel i, consider a cubic spatial
window of half-width window (i.e., (2*window+1)"3 candidates). Candidates outside the mask or
bounds are ignored. - Spatial kernel: For a candidate j at physical distance d_ij (mm), assign a spa-
tial weight w_s = exp(-d_ij*2 / (2 * spatial_sigma”2)). Distances use spacing(spatial_space).
- Correlation pooling: Compute Pearson correlation r_k(i,j) within each run k (optionally after nui-
sance projection/weights), transform to Fisher-z, pool across runs with weights wy, (default nj, — 3),
then back-transform to r_pool via tanh. - Correlation-to-affinity mapping (corr_map): * "power”
(mode=0): a(r) = r"\gamma for r>0 else 0. Parameter = gamma. * "exp" (mode=1): a(r) = exp(-
(1 -2/ (2 * tau2)). Parameter = tau. * "soft” (mode=2): a(r) = max(r - 10, 0). Parameter =
10. - Combined weight: w_ij = w_s(i,j) * a(r_pool(i,j)). If topk > 9, keep the strongest topk neigh-
bors. Optionally inject a small self-edge when add_self=TRUE. Finally, row-normalize to obtain a
stochastic W.

Parameter guidance: - spatial_sigma is in mm. A typical choice is 1-2x the voxel size (e.g.,
2-4 mm for 2 mm isotropic). Larger values increase spatial mixing. - window controls support;
a good rule is ceiling(2 * spatial_sigma / min(spacing)). - corr_map: use "power" with
corr_param = 2 for robust smoothing; "exp"” with tau ~ @.5-1.5 retains sign information; "soft"
with r@ ~ @.1-0. 3 thresholds weak correlations. - topk: 8-32 is a practical range; higher values
densify the graph and increase compute/memory. - leave_one_out: for multi-run inputs, enabling
this prevents a run from using its own correlations when building its graph (mitigates leakage).

Nuisance/time weights/robust options: - If confounds/time_weights specified (or robust != "none"),
per-run weighted QR projectors are used; correlations are computed on the projected, weighted se-
ries. Robust options add DVARS-like down-weighting. - If the only request is an implicit intercept
(no actual confounds, no time weights, no robust), the baseline builder is used for identical results.

Output and usage: - Returns CSR arrays (row_ptr, col_ind, val) that define a row-stochastic
matrix W over masked voxels. Apply with cgb_smooth. - Complexity scales with number of

46 cgb_smooth

masked voxels times neighborhood size (limited by topk). Memory proportional to number of
retained edges.

Value

A list containing row_ptr, col_ind, val, dims3d, and mask_idx, or (if leave_one_out=TRUE) a
list of such graphs.

Examples
vec <- read_vec(system.file("extdata”, "global_mask_v4.nii"”, package = "neuroim2"))
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Build a graph with spatial sigma in mm and keep 16 neighbors
G <- cgb_make_graph(vec, mask, spatial_sigma = 3, window = 2, topk = 16)
Smooth with one pass (pure diffusion)

sm <- cgb_smooth(vec, G, passes = 1, lambda = 1)
cgb_smooth Apply a precomputed CGB graph to volumetric data
Description

Apply a precomputed CGB graph to volumetric data

Usage

cgb_smooth(x, graph, passes = 1L, lambda = 1)

Arguments
X A NeuroVec (4D) or NeuroVol (3D).
graph Graph list returned by cgb_make_graph.
passes Number of smoothing passes (>=1). Each pass multiplies by W; if lambda <1 a
simple diffusion blend (1 - 1ambda)I + lambda W is applied per pass.
lambda Blend factor in [0, 1] controlling diffusion strength.
Value

Smoothed object of the same class as x.

cgb_smooth_loro

47

cgb_smooth_loro Leave-one-run-out smoothing helper

Description

Leave-one-run-out smoothing helper

Usage

cgb_smooth_loro(runs, graphs, passes = 1L, lambda = 1)

Arguments
runs List of NeuroVec objects (one per run).
graphs List of graphs returned by cgb_make_graph(. .., leave_one_out=TRUE).

passes, lambda See cgb_smooth.

Value

A list of smoothed NeuroVec objects, one per run.

close,BinaryReader-method
Close a BinaryReader or BinaryWriter

Description

Closes the underlying connection associated with a BinaryReader or BinaryWriter object.

should be called when you’re done with the reader/writer to free system resources.

Usage

S4 method for signature 'BinaryReader'
close(con)

S4 method for signature 'BinaryWriter'
close(con)

Arguments

con The BinaryReader or BinaryWriter object to close.

Value

Invisibly returns NULL, called for its side effect of closing the connection.

This

48 ClusteredNeuro Vec
Examples
Create a temporary file and write some data
tmp <- tempfile()
writer <- BinaryWriter(tmp, byte_offset = oL,
data_type = "DOUBLE", bytes_per_element = 8L)
write_elements(writer, rnorm(100))
close(writer)
Read the data back
reader <- BinaryReader(tmp, byte_offset = oL,
data_type = "DOUBLE", bytes_per_element = 8L)
data <- read_elements(reader, 100)
close(reader)
Clean up
unlink(tmp)
ClusteredNeuroVec ClusteredNeuroVec: Cluster-aware 4D neuroimaging data
Description

‘ClusteredNeuroVec* creates a 4D array-like object where voxels are grouped into clusters, with
one time-series per cluster. All voxels within a cluster share the same time-series, making it ideal
for parcellated analyses (e.g., Schaefer-Yeo parcellations).

Usage
ClusteredNeuroVec(x, cvol, FUN = mean, weights = NULL, label = "")
Arguments
X Either a ‘NeuroVec* object to be reduced by clusters, or a pre-computed numeric
matrix of cluster time-series (T x K, where T=time points, K=clusters)
cvol A ‘ClusteredNeuroVol‘ object defining the cluster assignments
FUN Reduction function to aggregate voxels within clusters (default: mean). Com-
mon choices include mean, median, or custom functions.
weights Optional numeric vector of per-voxel weights for weighted aggregation. Must
have length equal to the number of non-zero voxels in the mask.
label Optional character label for the object (default: "")

ClusteredNeuro Vec 49

Details

This class implements array-like 4D access while storing data efficiently as a TxK matrix instead
of the full voxel x time representation. Each cluster’s time-series is computed by applying the
aggregation function (FUN) to all voxels within that cluster.

The object supports standard NeuroVec operations:

* Indexing: x[,,,t] to extract 3D volumes at time t
* Series extraction: series(x, i, j, k) for time-series at voxel (i,j,k)

* Matrix conversion: as.matrix(x) to get the TxK cluster matrix

Single-voxel clusters are handled efficiently without aggregation overhead.

Value
A ClusteredNeuroVec object containing:

cvol The input ClusteredNeuroVol defining cluster structure

ts A TxK matrix of cluster time-series (T=timepoints, K=clusters)
cl_map Integer vector mapping linear voxel indices to cluster IDs
label Character label for the object

See Also

ClusteredNeuroVol for creating cluster assignments, cluster_searchlight_series for cluster-
based searchlight analysis, series for extracting time-series

Examples

Create synthetic 4D data (10x10x10 volume, 20 timepoints)
sp4 <- NeuroSpace(c(10,10,10,20), c(1,1,1))

arr <- array(rnorm(10x10x10%x20), dim=c(10,10,10,20))

vec <- NeuroVec(arr, sp4)

Create a mask covering the central region
sp3 <- NeuroSpace(c(10,10,10), c(1,1,1))
mask_arr <- array(FALSE, dim=c(10,10,10))
mask_arr[3:8, 3:8, 3:8] <- TRUE

mask <- LogicalNeuroVol(mask_arr, sp3)

Assign voxels to 5 random clusters

n_voxels <- sum(mask_arr)

clusters <- sample(1:5, n_voxels, replace=TRUE)
cvol <- ClusteredNeuroVol(mask, clusters)

Create clustered representation
cv <- ClusteredNeuroVec(vec, cvol)

Access like a regular NeuroVec
vol_t1 <- cv[,,,1] # 3D volume at time 1
ts <- series(cv, 5, 5, 5) # time-series at voxel (5,5,5)

50 ClusteredNeuro Vol-class

Get cluster time-series matrix
cluster_matrix <- as.matrix(cv) # T x K matrix
dim(cluster_matrix) # 20 x 5

ClusteredNeuroVec-class
ClusteredNeuroVec Class

Description

A class representing a 4D neuroimaging dataset where voxels are grouped into clusters. Each cluster
has a single time-series that is shared by all voxels within that cluster.

Slots

cvol A ClusteredNeuroVol object defining cluster assignments
ts A numeric matrix of dimensions T x K (time points x clusters)
cl_map An integer vector mapping each voxel to its cluster ID (0 for outside mask)

label A character string label for the object

ClusteredNeuroVol-class
ClusteredNeuroVol Class

Description

This class represents a three-dimensional brain image divided into N disjoint partitions or clusters.
It extends the SparseNeuroVol class to provide efficient storage and manipulation of clustered
neuroimaging data.

Construct a ClusteredNeuroVol instance

Usage
ClusteredNeuroVol (mask, clusters, label_map = NULL, label = "")
Arguments
mask an instance of class LogicalNeuroVol
clusters a vector of clusters ids with length equal to number of nonzero voxels in mask
mask
label_map an optional 1ist that maps from cluster id to a cluster label, e.g. (1 -> "FFA", 2
->"PPA")

label an optional character string used to label of the volume

ClusteredNeuro Vol-class 51

Details

The ClusteredNeuroVol class is designed for efficient representation and manipulation of brain
images with distinct, non-overlapping regions or clusters. It combines the memory efficiency of
sparse representations with additional structures for managing cluster information.

The use case of ClusteredNeuroVol is to store volumetric data that has been clustered into discrete
sets of voxels, each of which has an associated id. For example, this class can be used to represent
parcellated neuroimaging volumes.

Value

ClusteredNeuroVol instance

Slots

mask A LogicalNeuroVol object representing the logical mask indicating the spatial domain of
the set of clusters.

clusters An integer vector representing the cluster number for each voxel in the mask.
label_map A named list where each element represents a cluster and its name.

cluster_map An environment object that maps from cluster id to the set of 1D spatial indices
belonging to that cluster.
Methods
This class inherits methods from the SparseNeuroVol class. Additional methods specific to cluster
operations may be available.
Usage
ClusteredNeuro Vol objects are particularly useful for:

» Representing parcellated brain images
* Storing results of clustering algorithms applied to neuroimaging data

* Efficient manipulation and analysis of region-based neuroimaging data

See Also

SparseNeuroVol-class for the parent sparse volume class. LogicalNeuroVol-class for the
mask representation.

Examples

Create a simple clustered brain volume
dim <- c(1eL, 1oL, 1eL)
mask_data <- array(rep(c(TRUE, FALSE), 500), dim)
mask <- new("LogicalNeuroVol", .Data = mask_data,
space = NeuroSpace(dim = dim, origin = c(0,0,0), spacing = c(1,1,1)))

clusters <- as.integer(runif(sum(mask_data)) * 5)+1

52

label_map <- list("Cluster1” = 1, "Cluster2” = 2, "Cluster3" = 3,

"Cluster4” = 4, "Cluster5” = 5)
cluster_map <- list()
for (i in 1:5) {
cluster_map[[as.character(i)]] <- which(clusters == i)

}

clustered_vol <- ClusteredNeuroVol(
mask = mask,
clusters = clusters,
label_map = label_map)

Create a simple space and volume

space <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
vol_data <- array(rnorm(163), dim = c(16, 16, 16))

vol <- NeuroVol(vol_data, space)

Create a binary mask (e.g., values > 0)
mask_data <- vol_data > 0
mask_vol <- LogicalNeuroVol(mask_data, space)

Get coordinates of masked voxels
mask_idx <- which(mask_data)
coords <- index_to_coord(mask_vol, mask_idx)

Cluster the coordinates into 10 groups
set.seed(123) # for reproducibility
kmeans_result <- kmeans(coords, centers = 10)

Create the clustered volume
clustered_vol <- ClusteredNeuroVol(mask_vol, kmeans_result$cluster)

Print information about the clusters
print(clustered_vol)

clustered_searchlight

clustered_searchlight Create a clustered searchlight iterator

Description

This function generates a searchlight iterator that iterates over successive spatial clusters in an im-
age volume. It allows for the exploration of spatially clustered regions within the provided mask
by using either a pre-defined clustered volume or performing k-means clustering to generate the

clusters.

Usage

clustered_searchlight(mask, cvol = NULL, csize = NULL)

cluster_searchlight_series 53

Arguments
mask A NeuroVol object representing the brain mask.
cvol An optional ClusteredNeuroVol instance representing pre-defined clusters within
the mask. If provided, the ’csize’ parameter is ignored.
csize An optional integer specifying the number of clusters to be generated using k-
means clustering (ignored if cvol is provided).
Value

A deferred_list object containing ROIVol objects, each representing a clustered region within
the image volume.

Examples

Load an example brain mask
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2"))

Generate a clustered searchlight iterator with 5 clusters
clust_searchlight <- clustered_searchlight(mask, csize = 5)

cluster_searchlight_series
Cluster-centroid searchlight over cluster time-series

Description

Iterate over clusters by their centroids and, for each seed cluster, return the time-series of the K
nearest clusters (or those within a radius). This enables searchlight analysis at the cluster level
rather than individual voxels.

Usage

cluster_searchlight_series(x, cvol = NULL, k = 10L, radius = NULL, label = "")
Arguments

X A ‘ClusteredNeuroVec* object or a ‘NeuroVec* plus ‘cvol*

cvol A ‘ClusteredNeuroVol‘ (required if ‘x* is a ‘NeuroVec*)

k Integer, number of nearest clusters including the seed (default: 10). Will be

capped at the total number of clusters if specified value exceeds it.
radius Numeric distance in mm. If given, use all clusters within this radius instead of

k-nearest neighbors. Cannot be used together with k.

label Optional character label for the returned windows

54 cluster_searchlight_series

Details
The function creates a searchlight around each cluster’s centroid, selecting either:

* The k nearest clusters (when k is specified)

* All clusters within a given radius (when radius is specified)

This is particularly useful for cluster-level connectivity analyses or when working with parcellated
data where voxel-level searchlights would be redundant.

Value
A list of ROIVec objects, one per cluster, where each ROI'Vec contains:

values A TxN matrix where T is the number of timepoints and N is the number of neighboring
clusters (including the seed itself)

coords The centroid coordinates of the neighboring clusters

The seed cluster’s time-series is always the first column in each ROI'Vec.

See Also

ClusteredNeuroVec for creating clustered neuroimaging vectors, searchlight for voxel-level
searchlight analysis, ROIVec for the structure of returned windows

Examples

Create synthetic 4D data (8x8x8 volume, 10 timepoints)
sp4 <- NeuroSpace(c(8,8,8,10), c(1,1,1))

arr <- array(rnorm(8*8x8%10), dim=c(8,8,8,10))

vec <- NeuroVec(arr, sp4)

Create a mask covering most of the volume
sp3 <- NeuroSpace(c(8,8,8), c(1,1,1))
mask_arr <- array(FALSE, dim=c(8,8,8))
mask_arr[2:7, 2:7, 2:7] <- TRUE

mask <- LogicalNeuroVol(mask_arr, sp3)

Assign voxels to 10 clusters

n_voxels <- sum(mask_arr)

clusters <- sample(1:10, n_voxels, replace=TRUE)
cvol <- ClusteredNeuroVol(mask, clusters)

Create clustered representation
cv <- ClusteredNeuroVec(vec, cvol)

Get cluster searchlight with 3 nearest neighbors
windows <- cluster_searchlight_series(cv, k = 3)
length(windows) # 10 windows (one per cluster)

Check first window
roil <- windows[[1]]
dim(values(roil)) # 10 x 3 (timepoints x neighbors)

ColumnReader 55

Use radius-based neighborhoods (5mm radius)
windows_radius <- cluster_searchlight_series(cv, radius = 5)
Each window may have different number of neighbors

ColumnReader Create Column Reader Object

Description

Create a new instance of the ColumnReader class for reading column-oriented data.

Usage

ColumnReader(nrow, ncol, reader)

Arguments

nrow Integer specifying number of rows in data

ncol Integer specifying number of columns in data

reader Function that takes column indices and returns matrix
Value

An object of class ColumnReader

Examples

reader_func <- function(cols) {
matrix(rnorm(100 * length(cols)), 100, length(cols))
3

col_reader <- ColumnReader(nrow = 100L, ncol = 10L, reader = reader_func)

ColumnReader-class ColumnReader

Description

A class that supports reading of data from a matrix-like storage format, such as a file or a database,
in a column-wise manner.

Slots

nrow An integer representing the number of rows in the matrix-like storage.
ncol An integer representing the number of columns in the matrix-like storage.

reader A function that takes a set of column indices as input and returns a matrix containing
the requested columns from the storage.

56

concat

Compare-methods Comparison Operations

Description

Methods for comparing neuroimaging objects

This method compares two NeuroVec objects (e1 and e2) using a generic comparison function. The
dimensions of both objects are checked for compatibility before performing the comparison.

Usage

S4 method for signature 'SparseNeuroVol,numeric'
Compare(el, e2)

S4 method for signature 'numeric,SparseNeuroVol'
Compare(el, e2)

S4 method for signature 'NeuroVec,NeuroVec'
Compare(el, e2)

Arguments
el A NeuroVec object to be compared.
e2 A NeuroVec object to be compared.
Value

The result of the comparison between the SparseNeuroVol object’s data and the numeric value.

The result of the comparison between e1 and e2.

concat Concatenate two objects in the time dimension

Description

Concatenate two objects in the time dimension

Usage

concat(x, y, ...)

S4 method for signature 'NeuroVec,NeuroVol'
concat(x, y, ...)

S4 method for signature 'NeuroVol,NeuroVec'

concat 57

concat(x, y, ...)

S4 method for signature 'NeuroVec,NeuroVec'
concat(x, y, ...)

S4 method for signature 'ROIVec,ROIVec'
concat(x, vy, ...)

S4 method for signature 'DenseNeuroVol,missing'
concat(x, y, ...)

S4 method for signature 'DenseNeuroVol,DenseNeuroVol'
concat(x, y, ...)

S4 method for signature 'AbstractSparseNeuroVec,missing'
concat(x, y, ...)

S4 method for signature 'SparseNeuroVec,SparseNeuroVec'

concat(x, y, ...)
Arguments
X the first object, typically NeuroVol or NeuroVec
y the second object, typically NeuroVol or NeuroVec

additional objects

Details
The x and y images must have compatible dimensions. A NeuroVol can be concatenated to NeuroVec,
and vice versa. See examples.

Value

A temporally concatenated object.

Note

dimensions of x and y must be equal

Examples

bv1l <- NeuroVol(rep(1,1000), NeuroSpace(c(10,10,10), c(1,1,1)))
bv2 <- NeuroVol(rep(2,1000), NeuroSpace(c(10,10,10), c(1,1,1)))
bv3 <- concat(bv1,bv2)

inherits(bv3, "NeuroVec")

bv4 <- concat(bv3, bvl)
dim(bv4)[4] == 3

bv5 <- concat(bvl, bv3)
dim(bv4)[4] ==

58 conn_comp

bvé <- concat(bv4,bv5)
dim(bv6)[4] ==

conn_comp Connected components

Description

Find connected components in an image. This function identifies and labels spatially connected
regions in neuroimaging data, supporting both binary masks and thresholded volumes.

Usage

conn_comp(x, ...)

S4 method for signature 'NeuroVol'
conn_comp(
X,
threshold = 0,
cluster_table = TRUE,
local_maxima = TRUE,
local_maxima_dist = 15,

)
Arguments
X the image object
additional arguments including:
¢ threshold - numeric value defining lower intensity bound for image mask
* cluster_table - logical indicating whether to return cluster statistics
* local_maxima - logical indicating whether to compute local maxima
¢ Jocal_maxima_dist - minimum distance between local maxima
* connect - connectivity pattern ("26-connect”, "18-connect”, or "6-connect")
threshold threshold defining lower intensity bound for image mask

cluster_table return cluster_table

local_maxima return table of local maxima
local_maxima_dist
the distance used to define minum distance between local maxima

conn_comp

Value

A list containing:

* index - A ClusteredNeuroVol object with cluster labels
* size - A NeuroVol object with cluster sizes

» voxels - A list of cluster voxel coordinates

* cluster_table - (optional) Data frame with cluster statistics

* local_maxima - (optional) Matrix of local maxima coordinates

An object representing the connected components of x.

Examples

Create a simple 3D volume with two distinct regions
space <- NeuroSpace(c(10,10,10), c(1,1,1))
vol_data <- array(@, c(10,10,10))

Create first cluster in corner (2x2x2)
vol_datal[1:2, 1:2, 1:2] <- 1

Create second cluster in opposite corner (2x2x2)
vol_data[8:9, 8:9, 8:9] <- 1

Create NeuroVol object
vol <- NeuroVol(vol_data, space)

Find connected components with default 26-connectivity
Returns components above threshold @
comps <- conn_comp(vol, threshold=0)

Access results
max(comps$index) == 2 # Should have 2 clusters
all(comps$size >= 0) # All clusters should have >= @

Get cluster statistics
comps <- conn_comp(vol, threshold=0, cluster_table=TRUE)
cluster_table contains: index, x, y, z, N (size), Area, value

Find local maxima within clusters

comps <- conn_comp(vol, threshold=0, local_maxima=TRUE,
local_maxima_dist=2)

local_maxima contains: index, x, y, z, value

60 conn_comp_3D

conn_comp_3D Extract Connected Components from a 3D Binary Mask

Description

Identifies and labels connected components in a 3D binary mask using a two-pass algorithm. The
function supports different connectivity constraints and returns both component indices and their

sizes.
Usage

conn_comp_3D(mask, connect = c("26-connect”, "18-connect”, "6-connect”))
Arguments

mask A 3D logical array representing the binary mask

connect A character string specifying the connectivity constraint. One of "26-connect"

(default), "18-connect", or "6-connect"

Details

The function implements an efficient two-pass connected component labeling algorithm:
* First pass: Assigns provisional labels and builds an equivalence table using a union-find data
structure for label resolution

» Second pass: Resolves label conflicts and assigns final component labels

The connectivity options determine which voxels are considered adjacent:

* 6-connect: Only face-adjacent voxels (1 step along each axis)
* 18-connect: Face and edge-adjacent voxels
* 26-connect: Face, edge, and vertex-adjacent voxels (all neighbors in a 3x3x3 cube)

Time complexity is O(n) where n is the number of voxels in the mask, with additional O(k) space
for the union-find data structure where k is the number of provisional labels.

Value

A list with the following components:

index A 3D array of integers. Each non-zero value represents the cluster index of the
connected component for that voxel. Zero values indicate background.

size A 3D array of integers. Each non-zero value represents the size (number of vox-
els) of the connected component that the voxel belongs to. Zero values indicate
background.

coords 61

References

Rosenfeld, A., & Pfaltz, J. L. (1966). Sequential operations in digital picture processing. Journal of
the ACM, 13(4), 471-494.

See Also

array for creating 3D arrays, ClusteredNeuroVol for working with clustered neuroimaging data

Examples

Create a simple 3D binary mask with two disconnected components
mask <- array(FALSE, c(4, 4, 4))

mask[1:2, 1:2, 1:2] <- TRUE # First component

mask[3:4, 3:4, 3:4] <- TRUE # Second component

Extract components using different connectivity patterns
comps <- conn_comp_3D(mask, connect = "6-connect”)

Number of components
max_comps <- max(comps$index)
cat("Found”, max_comps, "components\n")

Size of each component
unique_sizes <- unique(comps$size[comps$size > 0])

cat("Component sizes:", paste(unique_sizes, collapse=", "), "\n")

Try with different connectivity

comps_26 <- conn_comp_3D(mask, connect = "26-connect”)
cat("Number of components with 26-connectivity:", max(comps_26%$index), "\n")
coords Extract coordinates from an object
Description

This function extracts the coordinates from an input object.

Usage

coords(x, ...)

Arguments

X The object to extract coordinates from.

Additional arguments (not used in the generic function).

62

Value

coords,IndexLookup Vol-method

A numeric matrix or vector containing the coordinates of x.

Examples

Create a NeuroSpace object with 3mm voxels
space <- NeuroSpace(c(10,10,10), spacing=c(3,3,3))

Create ROI coordinates in voxel space
coords <- matrix(c(1,1,1, 2,2,2), ncol=3, byrow=TRUE)
roi_coords <- ROICoords(coords)

Get coordinates in voxel space
vox_coords <- coords(roi_coords)
First coordinate is (1,1,1)

Get coordinates

cds <- coords(roi_coords)

nrow(cds) ==

coords, IndexLookupVol-method

Extract Coordinates from an IndexLookupVol Object

Description

Extracts the coordinates from an IndexLookupVol object based on a given index.

Usage
S4 method for signature 'IndexLookupVol'
coords(x, i)
S4 method for signature 'ROIVol'
coords(x, real = FALSE)
S4 method for signature 'ROICoords'
coords(x, real = FALSE)
S4 method for signature 'AbstractSparseNeuroVec'
coords(x, i)
Arguments
X An IndexLookupVol object to extract coordinates from
i The index into the lookup volume

real if TRUE, return coordinates in real world units

coord_to_grid 63

Value

A matrix of coordinates

Examples

space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(o, @, 9))
ilv <- IndexLookupVol(space, c(1:100))
coords(ilv, 1) # Extract coordinates for index 1

coord_to_grid convert n-dimensional real world coordinates to grid coordinates

Description

convert n-dimensional real world coordinates to grid coordinates

Usage

coord_to_grid(x, coords)

S4 method for signature 'NeuroSpace,matrix'
coord_to_grid(x, coords)

S4 method for signature 'NeuroSpace,numeric'
coord_to_grid(x, coords)

S4 method for signature 'NeuroVol,matrix'
coord_to_grid(x, coords)

S4 method for signature 'NeuroVol,numeric'
coord_to_grid(x, coords)

Arguments

X the object

coords a matrix of real world coordinates
Value

A numeric matrix of grid coordinates.

64 coord_to_index

Examples

Create a simple 3D volume

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))
coords <- matrix(c(.5,.5,.5, 1.5,1.5,1.5), ncol=3, byrow=TRUE)

grid <- coord_to_grid(bvol, coords)

world <- grid_to_coord(bvol, grid)

all.equal(coords, world)

coord_to_index convert n-dimensional real world coordinates to 1D indices

Description

convert n-dimensional real world coordinates to 1D indices
Usage
coord_to_index(x, coords)

S4 method for signature 'NeuroSpace,matrix’
coord_to_index(x, coords)

S4 method for signature 'NeuroSpace,numeric'
coord_to_index(x, coords)

S4 method for signature 'NeuroVol,matrix'
coord_to_index(x, coords)

Arguments

X the object

coords a matrix of real world coordinates
Value

An integer vector of 1D indices corresponding to coords.

Examples

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))
coords <- matrix(c(.5,.5,.5, 1.5,1.5,1.5), ncol=3, byrow=TRUE)

idx <- coord_to_index(bvol, coords)

coords2 <- index_to_coord(bvol, idx)

all.equal(coords, coords2)

createNIfTIHeader 65

createNIfTIHeader Create an Empty NIfTI-1 Header List

Description
Initializes a list of fields following the NIfTI-1 specification with default or placeholder values.
Users typically call this internally via as_nifti_header rather than using directly.

Usage

createNIfTIHeader(oneFile = TRUE, file_name = NULL)

Arguments
oneFile Logical; if TRUE, magic is set to "n+1" indicating a single-file (.nii) approach.
Otherwise set to "ni1".
file_name Optional character string to store in the header, usually referencing the intended
output file name.
Details

This function sets up the skeleton of a NIfTI-1 header, including fields for diminfo, pixdim,

gform_code, magic, etc. Most fields are initialized to zero, empty characters, or standard place-

holders. The oneFile argument controls whether "n+1" or "ni1" is used for the magic field.
Value

A named list containing approximately 30 fields that comprise the NIfTI-1 header structure. Many

of these are placeholders until filled by downstream usage.

See Also

as_nifti_header for populating the returned header with actual data from a NeuroVol.

cuboid_roi Create A Cuboid Region of Interest

Description

Create A Cuboid Region of Interest

Usage

cuboid_roi(bvol, centroid, surround, fill = NULL, nonzero = FALSE)

66 data_file

Arguments
bvol an NeuroVol or NeuroSpace instance
centroid the center of the cube in voxel coordinates
surround the number of voxels on either side of the central voxel. A vector of length 3.
fill optional value(s) to assign to data slot.
nonzero keep only nonzero elements from bvol. If bvol is A NeuroSpace then this
argument is ignored.
Value

An instance of class ROIVol representing the cuboid region of interest, containing the coordinates
and values of voxels within the specified region.

Examples

sp1 <- NeuroSpace(c(10,10,10), c(1,1,1))
cube <- cuboid_roi(spl, c(5,5,5), 3)

vox <- coords(cube)

cube2 <- cuboid_roi(sp1, c(5,5,5), 3, fill=5)

data_file Generic function to get the name of the data file, given a file name and
a FileFormat instance.

Description

Derives the data file name from a given file name based on the FileFormat specifications.

Usage

data_file(x, file_name)
S4 method for signature 'FileFormat,character'

data_file(x, file_name)

Arguments

X A FileFormat object specifying the format requirements

file_name A character string specifying the file name to derive the data file name from

data_file_matches 67

Details
The function performs the following steps:

1. If the input file_name already matches the data file format, it returns the file_name as is.

2. If the file_name matches the header file format, it constructs and returns the corresponding
data file name.

3. If the file_name doesn’t match either format, it throws an error.

Value

The correct data file name as a character string.

A character string representing the data file name

See Also

header_file, strip_extension for related file name manipulation

Examples

fmt <- new("FileFormat”, header_extension = "hdr"”, data_extension = "img")
data_file(fmt, "brain_scan.img") # Returns "brain_scan.img"
data_file(fmt, "brain_scan.hdr") # Also Returns "brain_scan.img"

data_file_matches Generic function to test whether a file name conforms to the given a
FileFormat instance. Will test for match to data file only

Description

Validates whether a file name conforms to the data file format specification.

Usage

data_file_matches(x, file_name)

S4 method for signature 'FileFormat,character’
data_file_matches(x, file_name)

Arguments

X A FileFormat object specifying the format requirements

file_name A character string specifying the file name to validate

68 data_reader

Details

The function performs case-sensitive pattern matching to verify that the file name ends with the
specified data extension. The match is performed using a regular expression that ensures the exten-
sion appears at the end of the file name.

Value

TRUE for match, FALSE otherwise.

See Also

file_matches, header_file_matches for related file format validation

Examples

fmt <- new("FileFormat"”, header_extension = "hdr"”, data_extension = "img")
data_file_matches(fmt, "brain_scan.img") # TRUE
data_file_matches(fmt, "brain_scan.hdr") # FALSE
data_file_matches(fmt, "brain.img.gz") # FALSE

data_reader Create a Data Reader

Description
Creates a data reader for accessing neuroimaging data from various file formats. The reader provides
a unified interface for reading data regardless of the underlying format.

Usage

data_reader(x, offset)

Arguments
X An object containing metadata required to create the reader (e.g., file path, for-
mat info)
offset Numeric. Byte offset where data reading should begin. Default is 0.
Details

Create a Data Reader for Neuroimaging Data

The data_reader function is a generic that creates appropriate readers for different neuroimaging
formats. It handles:

 File format detection and validation

data_reader,NIFTIMetalnfo-method 69

* Endianness configuration

* Data type conversion

* Compression handling (e.g., gzip)
* Proper byte alignment

Value

A BinaryReader object configured for the specific data format

See Also

read_header for reading headers, BinaryReader for reading binary data

Examples

Create reader for NIFTI file
meta <- read_header(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))
reader <- data_reader(meta, offset = @)

Read first 100 voxels
data <- read_elements(reader, 100)

data_reader ,NIFTIMetaInfo-method
Create Data Reader for AFNI Format

Description

Create Data Reader for AFNI Format

Usage
S4 method for signature 'NIFTIMetalnfo'
data_reader(x, offset = @)

S4 method for signature 'AFNIMetalnfo'
data_reader(x, offset = 0)

Arguments
X AFNIMetalnfo object
offset Numeric byte offset
Value

BinaryReader object

DenseNeuro Vec-class

DenseNeuroVec-class DenseNeuroVec Class

Description

A class representing a four-dimensional brain image, backed by a dense array. This class is designed
for neuroimaging data where most voxels contain non-zero values.

This function constructs a DenseNeuroVec object, which represents a dense four-dimensional brain
image. It handles various input data formats and ensures proper dimensionality.

Usage
DenseNeuroVec(data, space, label = "none")
Arguments
data The image data. This can be:
* A 4-dimensional array
* A 2-dimensional matrix (either nvoxels x ntime-points or ntime-points X
nvoxels)
¢ A vector (which will be reshaped to match the space dimensions)
space A NeuroSpace object defining the spatial properties of the image.
label A character string providing a label for the DenseNeuroVec object. Default is
an empty string.
Details

DenseNeuroVec objects store their data in a dense array format, which is efficient for operations
that require frequent access to all voxels. This class inherits from both NeuroVec and array classes,
combining spatial information with array-based storage.

The function performs several operations based on the input data type:
 For matrix input: It determines the correct orientation (voxels x time or time x voxels) and
reshapes accordingly. If necessary, it adds a 4th dimension to the space object.
* For vector input: It reshapes the data to match the dimensions specified in the space object.
* For array input: It ensures the dimensions match those specified in the space object.

Note that the label parameter is currently not used in the object creation, but is included for potential
future use or consistency with other constructors.

Value

A concrete instance of the DenseNeuroVec class.

DenseNeuro Vol-class 71

Validity
A DenseNeuroVec object is considered valid if:

* The underlying data is a four-dimensional array.

See Also

NeuroVec-class for the parent class. SparseNeuroVec-class for a sparse representation alterna-
tive.

NeuroVec-class for the parent class. SparseNeuroVec-class for the sparse version of 4D brain
images. NeuroSpace-class for details on spatial properties.

Examples

Create a simple 4D brain image

data <- array(rnorm(64x64x32%10), dim = c(64, 64, 32, 10))

space <- NeuroSpace(dim = c(64, 64, 32,10), origin = c(@, 0, @), spacing = c(3, 3, 4))
dense_vec <- new("DenseNeuroVec"”, .Data = data, space = space)

Access dimensions
dim(dense_vec)

Extract a single 3D volume
first_volume <- dense_vec[[1]]

Create a simple 4D brain image

dim <- c(64, 64, 32, 10) # 64x64x32 volume with 10 time points
data <- array(rnorm(prod(dim)), dim)

space <- NeuroSpace(dim, spacing = c(3, 3, 4))

Create a DenseNeuroVec object
dense_vec <- DenseNeuroVec(data = data, space = space, label = "Example")
print(dense_vec)

Create from a matrix (voxels x time)

mat_data <- matrix(rnorm(prod(dim)), nrow = prod(dim[1:3]), ncol = dim[4])
dense_vec_mat <- DenseNeuroVec(data = mat_data, space = space)
print(dense_vec_mat)

DenseNeuroVol-class DenseNeuroVol Class

Description

Represents a three-dimensional brain image backed by a dense array. This class combines the
spatial properties of NeuroVol with the data storage capabilities of an array.

Construct a DenseNeuroVol instance

72 dim,ClusteredNeuro Vec-method

Usage

DenseNeuroVol(data, space, label = "", indices = NULL)
Arguments

data a three-dimensional array

space an instance of class NeuroSpace

label a character string

indices an optional 1-d index vector
Details

DenseNeuroVol objects are used for 3D brain images where most or all voxels contain meaningful
data. They provide efficient access to individual voxel values and are suitable for operations that
require frequent random access to voxel data.

Value

DenseNeuroVol instance

See Also

NeuroVol-class, SparseNeuroVol-class

Examples

Create a simple 3D brain volume

vol_data <- array(rnorm(64x64x64), c(64, 64, 64))

vol_space <- NeuroSpace(dim=c(64L, 64L, 64L), origin=c(@, 0, @), spacing=c(1, 1, 1))
brain_vol <- new("DenseNeuroVol"”, .Data=vol_data, space=vol_space)

dim,ClusteredNeuroVec-method
Get Dimensions of FileMetalnfo Object

Description

Get Dimensions of FileMetalnfo Object

dim of NeuroObj object

dim_of 73

Usage

S4 method for signature 'ClusteredNeuroVec
dim(x)

S4 method for signature 'FileMetalnfo'
dim(x)

S4 method for signature 'NeuroObj'
dim(x)

S4 method for signature 'NeuroSpace'
dim(x)

S4 method for signature 'ROIVol'
dim(x)

S4 method for signature 'ROICoords'
dim(x)

Arguments

X the object

Value

A numeric vector of length 2 containing the dimensions of the ROICoords object.

dim_of Get the length of a given dimension of an object

Description

This function returns the length of a given axis (dimension) of an object. The axis can be specified
using its position or name.

Usage
dim_of(x, axis)
S4 method for signature 'NeuroSpace,NamedAxis'
dim_of(x, axis)

Arguments

X The NeuroSpace object

axis The NamedAxis to query

74 downsample

Value

An integer representing the length of the specified axis of x.

Examples

x <- NeuroSpace(c(10,10,10), spacing=c(1,1,1))
stopifnot(dim_of (x, x@axes@i) == 10)

downsample Downsample an Image

Description

This function downsamples a neuroimaging object, reducing its spatial resolution while preserving
the temporal dimension.

Usage
downsample(x, ...)

S4 method for signature 'DenseNeuroVec'
downsample(x, spacing = NULL, factor = NULL, outdim = NULL, method = "box")

S4 method for signature 'NeuroVec'

downsample(x, spacing = NULL, factor = NULL, outdim = NULL, method = "box")
S4 method for signature 'DenseNeuroVol'
downsample(x, spacing = NULL, factor = NULL, outdim = NULL, method = "box")

S4 method for signature 'NeuroVol'
downsample(x, spacing = NULL, factor = NULL, outdim = NULL, method = "box")

Arguments
X A DenseNeuroVol object to downsample
Additional arguments passed to specific downsample methods.
spacing Target voxel spacing (numeric vector of length 3)
factor Downsampling factor (single value or vector of length 3, between 0 and 1)
outdim Target output dimensions (numeric vector of length 3)
method Downsampling method (currently only "box" for box averaging)
Value

An object of the same class as x, downsampled according to the specified parameters.

drop

Examples

Create a sample 4D image
data <- array(rnorm(64x64x32%10), dim

75

= c(64, 64, 32, 10))

space <- NeuroSpace(dim = c(64, 64, 32, 10),

origin =
spacing = c(2, 2,
nvec <- DenseNeuroVec(data, space)

Downsample by factor
nvec_down1 <- downsample(nvec, factor

Downsample to target spacing

C(@, 0, 0),

2))

=0.5)

nvec_down2 <- downsample(nvec, spacing = c(4, 4, 4))

Downsample to target dimensions
nvec_down3 <- downsample(nvec, outdim

Create a sample 3D volume

data <- array(rnorm(64*64%32), dim =

space <- NeuroSpace(dim =
origin =
spacing = c(2, 2,

vol <- DenseNeuroVol(data, space)

Downsample
vol_downl <-

by factor
downsample(vol, factor =

Downsample
vol_down2 <-

to target spacing

Downsample
vol_down3 <-

to target dimensions
downsample(vol, outdim =

downsample(vol, spacing =

= c(32, 32, 16))

c(64, 64, 32))
c(64, 64, 32),
c(o, o, 0),

2))

0.5)

c(4, 4, 4)

c(32, 32, 16))

drop

Generic Drop Method

Description

Provides a mechanism to remove dimensions or elements from an object.

Usage
drop(x)

Arguments

X An object.

76 drop_dim

Value

An object of the same class as x with reduced dimensions or elements.

drop,NeuroVec-method Drop a dimension

Description

Drop a dimension

Usage
S4 method for signature 'NeuroVec'
drop(x)

Arguments

X the object to drop a dimension from

Value

An object of the same class as x with reduced dimensions or elements.

drop_dim Drop a Dimension from an Object

Description

This function removes a specified dimension from a given object, such as a matrix or an array.

Usage

drop_dim(x, dimnum)

S4 method for signature 'AxisSet2D,numeric’
drop_dim(x, dimnum)

S4 method for signature 'AxisSet2D,missing'
drop_dim(x, dimnum)

S4 method for signature 'AxisSet3D,numeric’
drop_dim(x, dimnum)

S4 method for signature 'AxisSet3D,missing'
drop_dim(x, dimnum)

ecode_name 77

S4 method for signature 'NeuroSpace,numeric'
drop_dim(x, dimnum)

S4 method for signature 'NeuroSpace,missing'
drop_dim(x)

Arguments

X An AxisSet3D object

dimnum Numeric index of dimension to drop (optional)
Value

An object of the same class as x with the specified dimension removed.

Examples

Create a NeuroSpace object with dimensions (10, 10, 10)
x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))

Drop the first dimension
x1 <= drop_dim(x, 1)

Check the new dimensions
ndim(x1) == 2
dim(x1)[1] == 10

ecode_name Get Extension Code Name

Description

Returns the name associated with a NIfTI extension code.

Usage

ecode_name (ecode)

Arguments

ecode Integer extension code.

Value

Character string with the extension name, or "unknown" if not found.

78 embed_kernel

Examples

ecode_name(4L) # Returns "AFNI"
ecode_name(6L) # Returns "comment”
ecode_name(999L) # Returns "unknown”

embed_kernel Generic function to position kernel in a position in image space

Description

Generic function to position kernel in a position in image space
Usage
embed_kernel(x, sp, center_voxel, ...)

S4 method for signature 'Kernel,NeuroSpace,numeric'
embed_kernel(x, sp, center_voxel, weight = 1)

Arguments
X the kernel object
sp the space to embed the kernel

center_voxel the voxel marking the center of the kernel in the embedded space
extra args

weight multiply kernel weights by this value

Value

An object representing the embedded kernel in the specified space.

Examples

Create a 3D Gaussian kernel with dimensions 3x3x3 and voxel size 1x1x1
kern <- Kernel(kerndim = c¢(3,3,3), vdim = c(1,1,1), FUN = dnorm, sd = 1)

Create a NeuroSpace object to embed the kernel in
space <- NeuroSpace(c(10,10,10), c(1,1,1))

Embed the kernel at the center of the space (position 5,5,5)
embedded_kern <- embed_kernel(kern, space, c(5,5,5))

The result is a SparseNeuroVol with kernel weights centered at (5,5,5)
We can also scale the kernel weights by using the weight parameter
embedded_kern_scaled <- embed_kernel(kern, space, c(5,5,5), weight = 2)

extension 79

The scaled kernel has weights twice as large as the original

max(values(embedded_kern_scaled)) == 2 x max(values(embedded_kern))
extension Get Extension by Code
Description

Retrieve extensions with a specific extension code from a list.

Usage

extension(x, ecode)

S4 method for signature 'NiftiExtensionList,numeric’
extension(x, ecode)

Arguments
X A NiftiExtensionList-class object.
ecode Integer extension code to filter by.
Value

A NiftiExtensionList-class containing only extensions with the specified code.

extensions Get Extensions from an Object

Description

Generic function to retrieve NIfTI extensions from various object types.

Usage
extensions(x, ...)
Arguments
X An object potentially containing extensions.
Additional arguments (currently unused).
Value

A NiftiExtensionList-class object, or NULL if no extensions.

80 extractordd

extractor3d Array-like access for 3-dimensional data structures

Description
This generic function provides array-like access for 3-dimensional data structures. It allows for
flexible indexing and subsetting of 3D arrays or array-like objects.

Usage
S4 method for signature 'ArraylLike3D,numeric,missing,ANY'

X[i’ jy ky ey drOp = TRUE]

S4 method for signature 'ArraylLike3D,matrix,missing,ANY'
x[i, j, k, ..., drop = TRUE]

S4 method for signature 'ArraylLike3D,missing,missing,ANY'
x[i, j, k, ..., drop = TRUE]

S4 method for signature 'ArraylLike3D,missing,numeric,ANY'

x[i, j, k, ..., drop = TRUE]
Arguments
X The 3-dimensional object to be accessed.
i First index or dimension.
j Second index or dimension.
k Third index or dimension.

Additional arguments passed to methods.

drop Logical. If TRUE, the result is coerced to the lowest possible dimension.

Value

A subset of the input object, with dimensions depending on the indexing and the ‘drop‘ parameter.

extractor4d Array-like access for 4-dimensional data structures

Description

This generic function provides array-like access for 4-dimensional data structures. It allows for
flexible indexing and subsetting of 4D arrays or array-like objects.

Provides array-like access to ClusteredNeuroVec objects, supporting extraction patterns like x[,,,t]
to get 3D volumes at specific time points.

extractor4d

Usage

S4 method for
X[i’ j! k’ m7

S4 method for
x[i, 3, k, m,

S4 method for
x[i, j, k, m,

S4 method for
X[i’ jl k! m7

S4 method for
x[i, j, k, m,

S4 method for
X[i, j’ k! m7

S4 method for
x[i, 3, k, m,

S4 method for
X[i, j’ k! m7

S4 method for

x[i, j, k, m, ., drop = TRUE]
Arguments

X The 4-dimensional object to be accessed.

i First index or dimension.

j Second index or dimension.

k Third index or dimension.

m Fourth index or dimension.

Additional arguments passed to methods.

drop Logical. If TRUE, the result is coerced to the lowest possible dimension.

Value

signature 'ArraylLike4D,matrix,missing,ANY'

., drop = TRUE]

signature 'ArraylLike4D,numeric,numeric,ANY’

., drop = TRUE]

signature 'ArraylLike4D,numeric,missing,ANY'

., drop = TRUE]

signature 'ArraylLike4D,integer,missing,ANY'

., drop = TRUE]

signature 'ArraylLike4D,missing,missing,ANY'

., drop = TRUE]

signature 'ArraylLike4D,missing,numeric,ANY'’

., drop = TRUE]

signature 'ClusteredNeuroVec,missing,missing, ANY'

., drop = TRUE]

signature 'ClusteredNeuroVec,missing,missing, ANY'

., drop = TRUE]

signature 'ClusteredNeuroVec,numeric,numeric,ANY'

81

A subset of the input object, with dimensions depending on the indexing and the ‘drop‘ parameter.

82 FileBackedNeuro Vec

FileBackedNeuroVec Create a File-Backed Neuroimaging Vector

Description

Constructs a FileBackedNeuroVec instance, which represents a file-backed neuroimaging vector
object. This constructor provides memory-efficient access to large neuroimaging datasets by keep-
ing the data on disk until needed.

Usage

FileBackedNeuroVec(file_name, label = basename(file_name))

Arguments
file_name A character string specifying the path to the neuroimaging file. Supported for-
mats include NIFTI (.nii) and ANALYZE (.hdr/.img).
label Optional character string providing a label for the vector
Details

Create a FileBackedNeuroVec Object

The function performs the following operations:

* Reads the header information from the specified file
* Validates the dimensionality (must be 4D data)
* Creates a NeuroSpace object with appropriate metadata

* Initializes the file-backed vector with minimal memory footprint

Value

A new instance of class FileBackedNeuroVec.

See Also

NeuroSpace for spatial metadata management, read_header for header information extraction,
sub_vector for data access methods

Examples

Create a file-backed vector from a NIFTI file
fbvec <- FileBackedNeuroVec(system.file("extdata"”, "global_mask_v4.nii"”, package = "neuroim2"))

Access specific volumes without loading entire dataset
first_vol <- sub_vector(fbvec, 1)

FileBackedNeuro Vec-class 83

FileBackedNeuroVec-class
FileBackedNeuroVec Class

Description

A class representing a four-dimensional brain image that uses on-demand loading through memory-
mapped file access. This approach enables efficient handling of large-scale brain imaging data by
loading only the required portions of the data into memory when needed.

The FileBackedNeuroVec class represents a memory-efficient vector of neuroimaging data that is
stored on disk rather than in memory. This is particularly useful for large datasets where memory
constraints are a concern.

Details

FileBackedNeuroVec objects provide a memory-efficient solution for working with large 4D neu-
roimaging datasets. By utilizing memory-mapped file access, this class allows users to work with
datasets that exceed available RAM, only loading the necessary data segments into memory as they
are accessed.

Slots

meta An instance of class FileMetaInfo containing file metadata such as file path, format, and
other associated information.

Inheritance
FileBackedNeuroVec inherits from:

* NeuroVec: Base class for 4D brain images

* ArraylLike4D: Interface for 4D array-like operations

Memory Management

Data is read from disk on-demand, reducing memory usage compared to in-memory storage. The
trade-off is slightly slower access times due to disk I/O operations.

See Also

NeuroVec-class for the base 4D brain image class. FileMetaInfo-class for details on file meta-
data representation.

FileBackedNeuroVec for creating instances of this class

84 FileFormat-class

Examples

Load example 4D image file included with package
file_path <- system.file("extdata”, "global_mask_v4.nii", package = "neuroim2")
fbvec <- FileBackedNeuroVec(file_path)

Get dimensions of the image
dim(fbvec)

Extract first volume
voll <- sub_vector(fbvec, 1)

Extract multiple volumes
vols <- sub_vector(fbvec, 1:2)

FileFormat-class FileFormat Class

Description

This class represents a neuroimaging file format descriptor, containing information about the file
format, encoding, and extensions for both header and data components.

Slots

file_format A character string specifying the name of the file format (e.g., "NIfTI").

"

header_encoding A character string specifying the file encoding of the header file (e.g., "raw
for binary, "gzip" for gz compressed).

"

header_extension A character string specifying the file extension for the header file (e.g., "nii
for NIfTI single files).

data_encoding A character string specifying the file encoding for the data file.

data_extension A character string specifying the file extension for the data file (e.g., "nii" for
NIfTI single files).

Examples

Create a FileFormat object for NIfTI format

nifti_format <- new("FileFormat”,
file_format = "NIfTI",
header_encoding = "raw”,
header_extension = "nii”,
data_encoding = "raw”,

data_extension = "nii”

FileFormat-operations 85

FileFormat-operations File Format Operations for Neuroimaging Data

Description

A collection of methods for handling neuroimaging file formats with separate header and data files
(e.g., ANALYZE, NIFTI). These methods provide functionality for file name validation, extension
handling, and file path manipulation.

File Format Structure

Neuroimaging formats often use paired files:

* A header file (e.g., *.hdr’) containing metadata
* A data file (e.g., ’.img’) containing the actual image data

Common Operations

 Validating file names against format specifications
* Converting between header and data file names
» Checking file existence and compatibility

FileMetaInfo-class FileMetalnfo Class

Description

This class extends Metalnfo to include file-specific metadata for neuroimaging data files.
This class extends FileMetalnfo with NIfTI-specific metadata.
This class extends FileMetalnfo with AFNI-specific metadata.

Slots

header_file A character string specifying the name of the file containing meta information.
data_file A character string specifying the name of the file containing image data.
descriptor A FileFormat object describing the image file format.

endian A character string specifying the byte order of data (’little’ or "big’).

data_offset A numeric value indicating the number of bytes preceding the start of image data in
the data file.

bytes_per_element An integer specifying the number of bytes per data element.
intercept A numeric vector of constant values added to image data (one per sub-image).
slope A numeric vector of multipliers for image data (one per sub-image).

header A list of format-specific attributes.

nifti_header A list of attributes specific to the NIfTTI file format.

afni_header A list of attributes specific to the AFNI file format.

86 file_matches

See Also

MetaInfo-class, NIFTIMetaInfo-class, AFNIMetaInfo-class
FileMetaInfo-class

FileMetaInfo-class

FileSource-class FileSource Class

Description

Base class for representing a data source for images. The purpose of this class is to provide a layer
in between low level 10 and image loading functionality.

Slots

meta_info An object of class FileMetalnfo containing meta information for the data source.

file_matches Generic function to test whether a file name conforms to the given
FileFormat instance. Will test for match to either header file or data
file
Description

Validates whether a file name conforms to the specified FileFormat and verifies the existence of
both header and data files.

Usage

file_matches(x, file_name)

S4 method for signature 'FileFormat,character'
file_matches(x, file_name)

Arguments
X A FileFormat object specifying the format requirements
file_name A character string specifying the file name to validate
Details

The function performs the following validation steps:

1. Checks if the file name matches either the header or data format
2. Verifies the existence of the corresponding paired file
3. Returns FALSE if either check fails

File names are validated using case-sensitive extension matching.

findAnatomy3D

Value

TRUE for match, FALSE otherwise.

87

A logical value: TRUE if the file matches the format and both header and data files exist, FALSE

otherwise

See Also

header_file_matches, data_file_matches for individual file type checking

Examples

Create a FileFormat for NIFTI format

fmt <- new("FileFormat”,
file_format = "NIFTI",

" n

header_encoding = "raw",
header_extension = "nii”,
data_encoding = "raw",
data_extension = "nii")

Create temporary file
tmp <- tempfile("brainscan”, fileext =
file.create(tmp)

Check if files exist and match format

file_matches(fmt, tmp)

Clean up
unlink(tmp)

" nii")

findAnatomy3D Find 3D anatomical orientation from axis abbreviations

Description

Creates a 3D anatomical orientation from axis abbreviations.

Usage

findAnatomy3D(axis1 = "L", axis2 = "P", axis3 = "I")

Arguments
axis1 Character string for first axis (default: "L" for Left)
axis2 Character string for second axis (default: "P" for Posterior)

axis3 Character string for third axis (default: "I" for Inferior)

88 gaussian_blur

Value

An AxisSet3D object representing the anatomical orientation

Examples

Create orientation with default LPI axes
orient <- findAnatomy3D()

Create orientation with custom axes
orient <- findAnatomy3D("R", "A", "S")

gaussian_blur Gaussian Blur for Volumetric Images

Description

This function applies an isotropic discrete Gaussian kernel to smooth a volumetric image (3D brain
MRI data). The blurring is performed within a specified image mask, with customizable kernel
parameters.

Usage

gaussian_blur(vol, mask, sigma = 2, window = 1)

Arguments
vol A NeuroVol object representing the image volume to be smoothed.
mask An optional LogicalNeuroVol object representing the image mask. This mask
defines the region where the blurring is applied. If not provided, the entire vol-
ume is processed.
sigma A numeric value specifying the standard deviation of the Gaussian kernel. De-
fault is 2.
window An integer specifying the kernel size. It represents the number of voxels to
include on each side of the center voxel. For example, window=1 results in a
3x3x3 kernel. Default is 1.
Details

The function uses a C++ implementation for efficient Gaussian blurring. The blurring is applied
only to voxels within the specified mask (or the entire volume if no mask is provided). The kernel
size is determined by the *window’ parameter, and its shape by the ’sigma’ parameter.

Value

A NeuroVol object representing the smoothed image.

References

Gaussian blur: https://en.wikipedia.org/wiki/Gaussian_blur

get_afni_attribute 89

See Also

NeuroVol-class, LogicalNeuroVol-class, bilateral_filter

Examples

Load a sample brain mask
brain_mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Apply Gaussian blurring to the brain volume
blurred_vol <- gaussian_blur(brain_mask, brain_mask, sigma = 2, window = 1)

View a slice of the original and blurred volumes
image (brain_mask[,,12])
image(blurred_vol[,,12])

get_afni_attribute Get AFNI Attribute from Extension

Description

Extracts a specific attribute value from a parsed AFNI extension.

Usage

get_afni_attribute(ext, attr_name)

Arguments
ext A NiftiExtension-class object with ecode = 4, or an xml_document from
parse_afni_extension.
attr_name Character string specifying the attribute name to retrieve (e.g., "HISTORY_NOTE",
"BRICK_LABS").
Value

The attribute value, or NULL if not found. The type depends on the attribute’s ni_type in the XML.

Examples

Not run:
Get the history note from an AFNI extension
history <- get_afni_attribute(afni_ext, "HISTORY_NOTE")

End(Not run)

90 grid_to_coord

grid_to_coord Generic function to convert N-dimensional grid coordinates to real
world coordinates

Description

Generic function to convert N-dimensional grid coordinates to real world coordinates

Usage

grid_to_coord(x, coords)

S4 method for signature 'NeuroSpace,matrix’
grid_to_coord(x, coords)

S4 method for signature 'NeuroSpace,matrix'
grid_to_coord(x, coords)

S4 method for signature 'NeuroSpace,numeric'
grid_to_coord(x, coords)

S4 method for signature 'NeuroVol,matrix'
grid_to_coord(x, coords)

Arguments

X the object

coords a matrix of grid coordinates
Value

A numeric matrix of real-world coordinates.

Examples

Create a simple 3D volume

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))
grid_coords <- matrix(c(1.5,1.5,1.5, 5.5,5.5,5.5), ncol=3, byrow=TRUE)
world <- grid_to_coord(bvol, grid_coords)

grid <- coord_to_grid(bvol, world)

all.equal(grid_coords, grid)

grid_to_grid

grid_to_grid Generic function to convert voxel coordinates in the reference space
(LPI) to native array space.

Description

Generic function to convert voxel coordinates in the reference space (LPI) to native array space.

Usage
grid_to_grid(x, vox)

S4 method for signature 'NeuroSpace,matrix’
grid_to_grid(x, vox)

S4 method for signature 'matrix,matrix’
grid_to_grid(x, vox)

Arguments

X the object

VOX a matrix of LPI voxel coordinates
Value

A numeric matrix of native voxel coordinates.

Examples

Create a simple 3D volume in LPI orientation
space <- NeuroSpace(c(10,10,10), c(2,2,2))

Create a reoriented space in RAS orientation
space_ras <- reorient(space, c("R", "A", "S"))

Convert coordinates between orientations
voxel_coords <- t(matrix(c(1,1,1)))

new_coords <- grid_to_grid(space_ras, voxel_coords)
print(new_coords)

92 grid_to_index

grid_to_index Generic function to convert N-dimensional grid coordinates to 1D in-
dices

Description

Converts 2D grid coordinates to linear indices for a NeuroSlice object.
Usage
grid_to_index(x, coords)

S4 method for signature 'NeuroSlice,matrix'’
grid_to_index(x, coords)

S4 method for signature 'NeuroSlice,numeric'
grid_to_index(x, coords)

S4 method for signature 'NeuroSpace,matrix’
grid_to_index(x, coords)

S4 method for signature 'NeuroSpace,numeric'
grid_to_index(x, coords)

S4 method for signature 'NeuroVol,matrix’
grid_to_index(x, coords)

S4 method for signature 'NeuroVol,numeric'
grid_to_index(x, coords)

Arguments
X A NeuroSlice object
coords Either a numeric vector of length 2 or a matrix with 2 columns, representing
(x,y) coordinates in the slice grid
Details

Convert Grid Coordinates to Linear Indices

Value

An integer vector of 1D indices corresponding to coords.

See Also

index_to_grid for the inverse operation

guided._filter 93

Examples

Create a 2D space (10x10)
space_2d <- NeuroSpace(c(10,10), c(1,1))

Convert 2D grid coordinates to linear indices

coords_2d <- matrix(c(1,1, 2,2), ncol=2, byrow=TRUE)

idx_2d <- grid_to_index(space_2d, coords_2d)

First coordinate (1,1) maps to index 1

Second coordinate (2,2) maps to index 12 (= 2 + (2-1)*10)

Create a 3D space (10x10x10)
space_3d <- NeuroSpace(c(10,10,10), c(1,1,1))

Convert 3D grid coordinates to linear indices
coords_3d <- matrix(c(1,1,1, 2,2,2), ncol=3, byrow=TRUE)
idx_3d <- grid_to_index(space_3d, coords_3d)

Single coordinate can also be converted
idx <- grid_to_index(space_3d, c(1,1,1))

slice_space <- NeuroSpace(c(10, 10))
slice_data <- matrix(1:100, 10, 10)
slice <- NeuroSlice(slice_data, slice_space)

Convert single coordinate
idx <- grid_to_index(slice, c(5, 5))

Convert multiple coordinates
coords <- matrix(c(1,1, 2,2, 3,3), ncol=2, byrow=TRUE)
indices <- grid_to_index(slice, coords)

guided_filter Edge-Preserving Guided Filter for Volumetric Images

Description

This function applies a guided filter to a volumetric image (3D brain MRI data) to perform edge-
preserving smoothing. The guided filter smooths the image while preserving edges, providing a
balance between noise reduction and structural preservation.

Usage

guided_filter(vol, radius = 4, epsilon = 0.7"2)

Arguments

vol A NeuroVol object representing the image volume to be filtered.

radius An integer specifying the spatial radius of the filter. Default is 4.

94 has_extensions

epsilon A numeric value specifying the regularization parameter. It controls the degree
of smoothing and edge preservation. Default is 0.49 (0.7/2).
Details

The guided filter operates by computing local linear models between the guidance image (which
is the same as the input image in this implementation) and the output. The ’radius’ parameter
determines the size of the local neighborhood, while *epsilon’ controls the smoothness of the filter.

The implementation uses box blur operations for efficiency, which approximates the behavior of the
original guided filter algorithm.

Value

A NeuroVol object representing the filtered image.

References

He, K., Sun, J., & Tang, X. (2013). Guided Image Filtering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(6), 1397-1409.

See Also

gaussian_blur, bilateral_filter, NeuroVol-class

Examples

Load an example brain volume
brain_vol <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Apply guided filtering to the brain volume
filtered_vol <- guided_filter(brain_vol, radius = 4, epsilon = 0.49)

Visualize a slice of the original and filtered volumes
oldpar <- par(mfrow = c(1, 2))

image(brain_vol[,,12], main = "Original”)
image(filtered_vol[,,12], main = "Filtered")
par(oldpar)
has_extensions Check if Extensions are Present
Description

Tests whether an object has any NIfTI extensions.

header _file 95
Usage
has_extensions(x)

S4 method for signature 'NiftiExtensionList'
has_extensions(x)

S4 method for signature 'list'
has_extensions(x)

Arguments

X An object to test.

Value

Logical indicating whether extensions are present.

header_file Generic function to get the name of the header file, given a file name
and a FileFormat instance.

Description

Derives the header file name from a given file name based on the FileFormat specifications.
Usage
header_file(x, file_name)

S4 method for signature 'FileFormat,character'’
header_file(x, file_name)

Arguments

X A FileFormat object specifying the format requirements

file_name A character string specifying the file name to derive the header file name from
Details

The function performs the following steps:

1. If the input file_name already matches the header file format, it returns the file_name as is.

2. If the file_name matches the data file format, it constructs and returns the corresponding header
file name.

3. If the file_name doesn’t match either format, it throws an error.

96 header_file_matches

Value

The correct header file name as a character string.

A character string representing the header file name

See Also

data_file, strip_extension for related file name manipulation

Examples

fmt <- new("FileFormat"”, header_extension = "hdr", data_extension = "img")
header_file(fmt, "brain_scan.hdr"”) # Returns "brain_scan.hdr"
header_file(fmt, "brain_scan.img") # Returns "brain_scan.hdr”

header_file_matches Generic function to test whether a file name conforms to the given
FileFormat instance. Will test for match to header file only

Description

Validates whether a file name conforms to the header file format specification.
Usage
header_file_matches(x, file_name)

S4 method for signature 'FileFormat,character'
header_file_matches(x, file_name)

Arguments
X A FileFormat object specifying the format requirements
file_name A character string specifying the file name to validate
Details

The function performs case-sensitive pattern matching to verify that the file name ends with the
specified header extension. The match is performed using a regular expression that ensures the
extension appears at the end of the file name.

Value

TRUE for match, FALSE otherwise.
A logical value: TRUE if the file name matches the header format, FALSE otherwise

image

See Also

file_matches, data_file_matches for related file format validation

Examples

fmt <- new("FileFormat”, header_extension = "hdr"”, data_extension = "img")
header_file_matches(fmt, "brain_scan.hdr"”) # TRUE
header_file_matches(fmt, "brain_scan.img") # FALSE
header_file_matches(fmt, "brain.hdr.gz") # FALSE

97

image Generic Image Method for Creating Visual Representations

Description

Creates a visual representation (or image) from an object.

Arguments
X An object to be rendered as an image.
Additional arguments passed to methods.
Value

An image object representing X.

IndexLookupVol-class IndexLookupVol Class

Description

A three-dimensional brain image class that serves as a map between 1D grid indices and a table
of values. This class is primarily used in conjunction with the SparseNeuroVec class to efficiently

represent and access sparse neuroimaging data.

The IndexLookupVol class provides efficient indexing and coordinate lookup functionality for 3D
neuroimaging data. It maintains a mapping between linear indices and 3D coordinates, optimizing

memory usage and access speed for sparse volumes.

Creates an IndexLookupVol object, which provides efficient bidirectional mapping between linear
indices and 3D coordinates in a neuroimaging volume. This is particularly useful for working with

masked or sparse brain volumes.

98 IndexLookupVol-class

Usage

IndexLookupVol(space, indices)

Arguments
space A NeuroSpace object defining the 3D space dimensions, spacing, and orienta-
tion.
indices An integer vector containing the linear indices of the voxels to include in the
lookup volume. These should be 1-based indices within the range of the space.
Details

The IndexLookupVol class extends NeuroVol and provides a mechanism for efficient lookup and
mapping of sparse 3D neuroimaging data. It stores only the indices of non-zero voxels and their
corresponding mappings, allowing for memory-efficient representation of large, sparse brain im-
ages.

Create an IndexLookupVol Object

Value
An object of class IndexLookupVol containing:

* A mapping between linear indices and sparse positions
* The original space information

* The subset of included voxel indices

Slots

space A NeuroSpace object representing the 3D space of the brain image.
indices An integer vector containing the 1D indices of the non-zero voxels in the grid.

map An integer vector containing the mapping between the 1D indices and the table of values.

Methods
This class inherits methods from NeuroVol. Additional methods specific to index lookup and map-
ping operations may be available.

Implementation Details
The class uses an integer mapping array for O(1) lookups between linear indices and their corre-
sponding positions in the sparse representation.

See Also

SparseNeuroVec-class for the primary class that utilizes IndexLookupVol. NeuroVol-class for
the base volumetric image class.
IndexLookupVol for creating instances of this class

coords for coordinate lookup, 1ookup for index mapping, NeuroSpace for space representation

index_to_coord 99

Examples

Create a NeuroSpace object
space <- NeuroSpace(dim = c(2L, 2L, 2L), origin = c(@, @, @), spacing = c(1, 1, 1))

Create a 3D mask
mask <- array(c(TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE), dim = c(2, 2, 2))

Create indices and map for the IndexLookupVol
indices <- which(mask)
map <- seq_along(indices)

Create an IndexLookupVol object
ilv <- IndexLookupVol(space = space, indices = as.integer(indices))

Access the indices
print(ilv@indices)

Access the map
print(ilv@map)

Create a 64x64x64 space
space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(0, 0, @))

Create a lookup volume with random indices
indices <- sample(1:262144, 10000) # Select 10000 random voxels
ilv <- IndexLookupVol(space, indices)

Look up coordinates for specific indices
coords <- coords(ilv, indices[1:10])

index_to_coord convert 1d indices to n-dimensional real world coordinates

Description

convert 1d indices to n-dimensional real world coordinates

Usage

index_to_coord(x, idx)

S4 method for signature 'NeuroSpace,numeric'
index_to_coord(x, idx)

S4 method for signature 'NeuroSpace,integer'
index_to_coord(x, idx)

100

S4 method for signature 'NeuroVol,integer'
index_to_coord(x, idx)

S4 method for signature 'NeuroVec,integer'
index_to_coord(x, idx)

Arguments

X the object

idx the 1D indices
Value

A numeric matrix of real-world coordinates.

Examples

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))
idx <- 1:10

g <- index_to_coord(bvol, idx)

idx2 <- coord_to_index(bvol, g)

all.equal(idx, idx2)

index_to_grid

index_to_grid Convert 1d indices to n-dimensional grid coordinates

Description

Converts linear indices to 2D grid coordinates for a NeuroSlice object.

Usage

index_to_grid(x, idx)

S4 method for signature 'NeuroSlice,numeric'
index_to_grid(x, idx)

S4 method for signature 'NeuroSpace,numeric'
index_to_grid(x, idx)

S4 method for signature 'NeuroVec,index'
index_to_grid(x, idx)

S4 method for signature 'NeuroVec,integer'
index_to_grid(x, idx)

S4 method for signature 'NeuroVol,index'

indices 101

index_to_grid(x, idx)

S4 method for signature 'NeuroVol,integer'
index_to_grid(x, idx)

Arguments

X A NeuroSlice object

idx Integer vector of linear indices to convert
Details

Convert Linear Indices to Grid Coordinates

Value

A numeric matrix of grid coordinates.

See Also

grid_to_index for the inverse operation

Examples

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))
idx <- 1:10

g <- index_to_grid(bvol, idx)

bvol[g]

slice_space <- NeuroSpace(c(10, 10))
slice_data <- matrix(1:100, 10, 10)
slice <- NeuroSlice(slice_data, slice_space)

Convert single index
coords <- index_to_grid(slice, 55)

Convert multiple indices
indices <- c¢(1, 25, 50, 75, 100)
coords_mat <- index_to_grid(slice, indices)

indices Extract indices

Description

Extract indices

102 indices,IndexLookup Vol-method

Usage

indices(x)

Arguments

X the object to extract indices

Value

A vector of indices from x.

Examples

Create a NeuroSpace object with 3mm voxels
space <- NeuroSpace(c(10,10,10), spacing=c(3,3,3))

Create ROI coordinates in voxel space
coords <- matrix(c(1,1,1, 2,2,2), ncol=3, byrow=TRUE)

Create ROI volume
roi_vol <- ROIVol(space, coords, data=c(1,2))

Get linear indices of ROI voxels
idx <- indices(roi_vol)
These indices can be used to index into a 3D array of size 10x10x10

indices, IndexLookupVol-method
Get Indices from an IndexLookupVol Object

Description

Retrieves the vector of indices that are included in the lookup volume.

Usage
S4 method for signature 'IndexLookupVol'

indices(x)

S4 method for signature 'ROIVol'
indices(x)

S4 method for signature 'ROIVol'
indices(x)

S4 method for signature 'ROIVec'
indices(x)

inverse_trans

S4 method for signature 'AbstractSparseNeuroVec'
indices(x)
Arguments

X An IndexLookupVol object

Value

the indices of the lookup volume

Examples

space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(0, 0, @))
ilv <- IndexLookupVol(space, c(1:100))
idx <- indices(ilv) # Get included indices

103

inverse_trans Extract inverse image coordinate transformation

Description

Extract inverse image coordinate transformation

Usage

inverse_trans(x)

S4 method for signature 'NeuroSpace'
inverse_trans(x)
Arguments

X an object

Value

A numeric 4x4 matrix that maps from real-world coordinates back to grid coordinates.

Examples

bspace <- NeuroSpace(c(10,10,10), c(2,2,2))
itrans <- inverse_trans(bspace)
identical(trans(bspace) %*% inverse_trans(bspace), diag(4))

104 Kernel-class

Kernel Create a Kernel object from a function of distance from kernel center

Description

This function creates a Kernel object using a kernel function (FUN) that takes the distance from the
center of the kernel as its first argument.

Usage
Kernel(kerndim, vdim, FUN = dnorm, ...)
Arguments
kerndim A numeric vector representing the dimensions in voxels of the kernel.
vdim A numeric vector representing the dimensions of the voxels in real units.
FUN The kernel function taking its first argument representing the distance from the
center of the kernel (default: dnorm).
Additional parameters to the kernel function, FUN.
Value

A Kernel object with the specified dimensions, voxel dimensions, and kernel function.

Examples

kdim <- c(3, 3, 3)
vdim <- c(1, 1, 1)
k <- Kernel(kerndim = kdim, vdim = vdim, FUN = dnorm, sd = 1)

Kernel-class Kernel

Description

A class representing an image kernel for image processing, such as convolution or filtering opera-
tions in brain images.

Slots

width A numeric value representing the width of the kernel in voxels. The width is typically an
odd number to maintain symmetry.

weights A numeric vector containing the weights associated with each voxel in the kernel.

voxels A matrix containing the relative voxel coordinates of the kernel. Each row represents a
voxel coordinate as (X, y,).

coords A matrix containing the relative real-world coordinates of the kernel, corresponding to the
voxel coordinates.

labels,ClusteredNeuro Vec-method 105

labels, ClusteredNeuroVec-method
Get Labels from ClusteredNeuroVec

Description

Get Labels from ClusteredNeuroVec

Usage
S4 method for signature 'ClusteredNeuroVec'
labels(object)

Arguments

object A ClusteredNeuroVec object

laplace_enhance Laplacian Enhancement Filter for Volumetric Images

Description

This function applies a multi-layer Laplacian enhancement filter to a volumetric image (3D brain
MRI data). The filter enhances details while preserving edges using a non-local means approach
with multiple scales.

Usage

laplace_enhance(
vol,
mask,
k =2,
patch_size = 3,
search_radius = 2,
h=29.7,
mapping_params = NULL,
use_normalization_free = TRUE

)
Arguments
vol A NeuroVol object representing the image volume to be enhanced.
mask A LogicalNeuroVol object specifying the region to process. If not provided,

the entire volume will be processed.

k An integer specifying the number of layers in the decomposition (default is 2).

106 length,ClusteredNeuro Vec-method

patch_size An integer specifying the size of patches for non-local means. Must be odd
(default is 3).

search_radius An integer specifying the radius of the search window (default is 2).

h A numeric value controlling the filtering strength. Higher values mean more
smoothing (default is 0.7).

mapping_params An optional list of parameters for the enhancement mappings.

use_normalization_free
Logical indicating whether to use normalization-free weights (default is TRUE).

Value

A NeuroVol object representing the enhanced image.

length,ClusteredNeuroVec-method
Get length of NeuroVec object

Description

Returns the number of time points (4th dimension) in a NeuroVec object. This represents the tem-
poral dimension of the neuroimaging data.

Returns the total number of time points across all vectors in the sequence

Usage

S4 method for signature 'ClusteredNeuroVec'
length(x)

S4 method for signature 'NeuroVec'
length(x)

S4 method for signature 'NeuroVecSeq'
length(x)

S4 method for signature 'ROIVol'
length(x)

S4 method for signature 'ROICoords'
length(x)

Arguments

X A NeuroVecSeq object

linear_access 107

Value

Integer length (total number of time points)

An integer representing the number of coordinates in the ROICoords object.

linear_access Extract values from an array-like object using linear indexing.

Description

This function extracts the values of the elements in an array-like object using linear indexing. Linear
indexing is a way of indexing an array by a single index that is computed from multiple indices using

a formula.
Usage

linear_access(x, i, ...)
Arguments

X a data source.

i a vector of indices.

additional arguments to be passed to methods.

Value

A vector containing the values at the specified linear indices of x.

Examples

Create a sparse neuroimaging vector

bspace <- NeuroSpace(c(10,10,10,100), c(1,1,1))
mask <- array(rnorm(10x10x10) > .5, c(10,10,10))
mat <- matrix(rnorm(sum(mask)), 100, sum(mask))
svec <- SparseNeuroVec(mat, bspace, mask)

Extract values using linear indices

Get values from first timepoint at voxels 1,2,3
indices <- ¢(1,2,3)

vals <- linear_access(svec, indices)

Get values from multiple timepoints and voxels

First voxel at timepoint 1, second voxel at timepoint 2
indices <- c(1, 1000 + 2) # 1000 = prod(10,10,10)

vals <- linear_access(svec, indices)

108 linear_access,DenseNeuro Vol,numeric-method

linear_access,DenseNeuroVol, numeric-method
Linear Access Method for FileBackedNeuroVec

Description

Internal method providing linear access to memory-mapped data.

Provides linear access to the data across all vectors in the sequence.

Usage
S4 method for signature 'DenseNeuroVol,numeric'

linear_access(x, i)

S4 method for signature 'DenseNeuroVec,numeric'
linear_access(x, i)

S4 method for signature 'DenseNeuroVol,integer'
linear_access(x, i)

S4 method for signature 'DenseNeuroVec,integer'
linear_access(x, i)

S4 method for signature 'FileBackedNeuroVec,numeric'
linear_access(x, i)

S4 method for signature 'MappedNeuroVec,numeric'
linear_access(x, i)

S4 method for signature 'NeuroHyperVec,ANY'
linear_access(x, i, ...)

S4 method for signature 'NeuroVecSeq,numeric'
linear_access(x, i)

S4 method for signature 'SparseNeuroVol,numeric'
linear_access(x, i)

S4 method for signature 'AbstractSparseNeuroVec,numeric'
linear_access(x, i)

Arguments
X A NeuroVecSeq object
i Numeric vector of indices for linear access

Additional arguments (not used)

list_afni_attributes 109

Value

Numeric vector of accessed values

Examples

Create a small NeuroVec and save it

nvec <- NeuroVec(matrix(1:32, 8, 4), NeuroSpace(c(2,2,2,4)))
tmp <- tempfile(fileext = ".nii")

write_vec(nvec, tmp)

Load as FileBackedNeuroVec and access values
fbvec <- FileBackedNeuroVec(tmp)
values <- linear_access(fbvec, 1:10)

Clean up
unlink(tmp)

list_afni_attributes List AFNI Attributes in Extension

Description

Returns a character vector of all attribute names in an AFNI extension.

Usage

list_afni_attributes(ext)

Arguments
ext A NiftiExtension-class object with ecode = 4, or an xml_document from
parse_afni_extension.
Value

Character vector of attribute names.

Examples

Not run:

List all attributes in an AFNI extension
attrs <- list_afni_attributes(afni_ext)
print(attrs)

End(Not run)

110

load_data,MappedNeuro VecSource-method

load_data,MappedNeuroVecSource-method
Load image data from a NeuroVecSource object

Description

This function loads the image data from a NeuroVecSource object, handling various dimensionali-
ties and applying any necessary transformations.

Usage
S4 method for signature 'MappedNeuroVecSource'
load_data(x)
S4 method for signature 'NeuroVecSource'
load_data(x)
S4 method for signature 'NeuroVolSource'
load_data(x)
S4 method for signature 'SparseNeuroVecSource'
load_data(x)
Arguments
X The NeuroVecSource object containing the image metadata and file information.
Details

This method performs the following steps: 1. Validates the dimensionality of the metadata. 2.
Reads the image data using RNifti. 3. Handles 5D arrays by dropping the 4th dimension if it has
length 1. 4. Applies slope scaling if present in the metadata. 5. Constructs a NeuroSpace object
with appropriate dimensions and spatial information. 6. Creates and returns a DenseNeuroVec
object, handling both 3D and 4D input arrays.

Value

a DenseNeuroVec object

Note

This method currently only supports NIfTI file format through RNifti.

See Also

NeuroVecSource, DenseNeuroVec, NeuroSpace

LogicalNeuroVol-class 111

LogicalNeuroVol-class LogicalNeuroVol Class

Description

This class represents a three-dimensional brain image where all values are either TRUE or FALSE.
It is particularly useful for creating and managing binary masks for brain images.

This function constructs a LogicalNeuroVol instance.

Usage
LogicalNeuroVol(data, space, label = "", indices = NULL)
Arguments
data A three-dimensional array, a 1D vector with length equal to prod(dim(space)),
or a set of indices where elements are TRUE.
space An instance of class NeuroSpace.
label A character string.
indices An optional 1-d index vector.
Details

The LogicalNeuroVol class extends the DenseNeuroVol class, inheriting its spatial properties and
array-based storage. However, it constrains the values to be logical (TRUE or FALSE), making
it ideal for representing binary masks, regions of interest (ROIs), or segmentation results in neu-
roimaging analyses.

Value

A LogicalNeuroVol instance.

Slots

.Data A logical array containing the binary volume data.

space A NeuroSpace object defining the spatial properties of the volume.

Methods

This class inherits methods from DenseNeuroVol. Additional methods specific to logical operations
may be available.

See Also

DenseNeuroVol-class for the parent class. NeuroVol-class for the base volumetric image class.

112 lookup

Examples

Create a simple logical brain volume (e.g., a mask)

dim <- c(64L, 64L, 64L)

mask_data <- array(sample(c(TRUE, FALSE), prod(dim), replace = TRUE), dim)
mask_space <- NeuroSpace(dim = dim, origin = c(@, @, @), spacing = c(1, 1, 1))
brain_mask <- new("”LogicalNeuroVol”, .Data = mask_data, space = mask_space)

Check the proportion of TRUE voxels
true_proportion <- sum(brain_mask) / prod(dim(brain_mask))
print(paste("Proportion of TRUE voxels:", true_proportion))

Load an example brain mask
brain_mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Convert the brain mask to a LogicalNeuroVol
logical_vol <- LogicalNeuroVol(brain_mask, space(brain_mask))

lookup Index Lookup operation

Description

Index Lookup operation

Usage
lookup(x, i, ...)
Arguments
X the object to query
i the index to lookup
additional arguments
Value

The value(s) at the specified index/indices of x.

Examples

Create a 64x64x64 space
space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(o, @, 0))

Create a lookup volume with first 100 indices
ilv <- IndexLookupVol(space, 1:100)

Look up values for indices 1, 2, and 3

lookup,IndexLookup Vol,numeric-method

Returns their positions in the sparse representation
lookup(ilv, c(1, 2, 3))

Look up values outside the included indices
Returns @ for indices not in the lookup volume
lookup(ilv, c(101, 102))

113

lookup, IndexLookupVol, numeric-method
Lookup Values in an IndexLookupVol Object

Description

Performs a lookup operation on an IndexLookupVol object.

Usage

S4 method for signature 'IndexLookupVol,numeric'
lookup(x, i)

[

S4 method for signature 'AbstractSparseNeuroVec,numeric
lookup(x, i)

Arguments

X An IndexLookupVol object

i A numeric vector of indices to look up
Value

the values of the lookup volume

Examples

space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(o, @, 0))
ilv <- IndexLookupVol(space, c(1:100))
lookup(ilv, c(1, 2, 3)) # Look up values for indices 1, 2, and 3

114 make_time_weights
make_time_weights Build smooth time weights from motion/outlier metrics
Description

Creates per-time-point weights w; € [0, 1] by smoothly combining framewise displacement (FD),
DVARS, and spike/outlier scores. Each series is transformed through a soft logistic ramp so that
values beyond the specified thresholds receive progressively lower weights instead of hard 0/1 de-

cisions.
Usage
make_time_weights(
fd = NULL,
dvars = NULL,
spike = NULL,
fd_thr = 0.5,
dvars_z = 2.5,
spike_z = 5,
fd_soft = 0.1,
dvars_soft = 0.25,
combine = c("min”, "prod")
)
Arguments
fd Optional numeric vector of framewise displacement values.
dvars Optional numeric vector of DVARS values.
spike Optional numeric vector with spike/outlier magnitudes.
fd_thr Threshold (in mm) where FD weights start to drop (default 0.5).
dvars_z Z-threshold applied to the standardized DVARS series (default 2.5).
spike_z Z-threshold applied to the standardized spike series (default 5).
fd_soft Logistic softness (in mm) controlling the slope around fd_thr.
dvars_soft Logistic softness for the DVARS z-scores.
combine Either "min" (take the minimum weight per TR) or "prod” (multiply all weights).
Value

Numeric vector of weights in [0, 1] with length equal to the provided series. At least one of fd,
dvars, or spike must be supplied.

mapf 115

mapf Apply a function to an object.

Description

This function applies a function to an object, with additional arguments passed to the function
using the ... argument. The mapping object specifies how the function is to be applied, and can
take many different forms, depending on the object and function used. The return value depends on
the function used.

Usage

mapf(x, m, ...)

S4 method for signature 'NeuroVol,Kernel'
mapf (x, m, mask = NULL)

Arguments
X the object that is mapped.
m the mapping object.
additional arguments to be passed to the function.
mask restrict application of kernel to masked area
Value

The result of applying the mapping function to x.

Examples

Create a simple 3D volume
bspace <- NeuroSpace(c(10,10,10), c(1,1,1))
vol <- NeuroVol(array(rnorm(10*10%10), c(10,10,10)), bspace)

Create a 3x3x3 mean smoothing kernel
kern <- Kernel(c(3,3,3), vdim=c(3,3,3))

Apply the kernel to smooth the volume
smoothed_vol <- mapf(vol, kern)

116 MappedNeuro Vec-class

MappedNeuroVec-class MappedNeuroVec Class

Description
A class representing a four-dimensional brain image backed by a memory-mapped file. This class
provides efficient access to large brain images without loading the entire dataset into memory.

The MappedNeuroVec class provides memory-efficient access to large neuroimaging datasets through
memory mapping. This allows processing of datasets larger than available RAM by keeping data
on disk and only loading requested portions into memory.

Creates a MappedNeuroVec object that provides efficient, memory-mapped access to large neu-
roimaging datasets. This allows processing of data larger than available RAM by keeping it on disk
and only loading requested portions into memory.

Usage

MappedNeuroVec(file_name, label = basename(file_name))

Arguments
file_name Character string specifying the path to the neuroimaging file. Supported formats
include NIFTI (.nii) and ANALYZE (.hdr/.img).
label Optional character string providing a label for the vector
Details

MappedNeuroVec objects use memory-mapped files to store and access large 4D brain images
efficiently. This approach allows for rapid access to specific portions of the data without requiring
the entire dataset to be loaded into memory at once.

Create a Memory-Mapped Neuroimaging Vector

The function implements several key features:

* Zero-copy access to file data

* Automatic memory management
* Support for large datasets

» Efficient random access

* Proper cleanup on object deletion
Memory mapping is particularly useful when:

* Working with large datasets
* Only portions of data are needed at once
* Random access is required

* Multiple processes need to share data

MappedNeuro Vec-class 117

Value
A new MappedNeuroVec object providing:

* Memory-mapped access to the data
* Spatial and temporal indexing
* Efficient data extraction

* Automatic memory management

Slots

filemap An object of class mmap representing the memory-mapped file containing the brain image
data.

offset An integer representing the byte offset within the memory-mapped file where the brain
image data starts.

Methods

This class inherits methods from NeuroVec and implements the ArraylLike4D interface. Additional
methods specific to memory-mapped operations may be available.

Implementation Details

The class uses the mmap package to establish a memory mapping between the file and memory
space. Key features include:

* Zero-copy access to file data

* Automatic memory management

* Support for large datasets

¢ Efficient random access

See Also
NeuroVec-class for the parent class. mmap for details on memory-mapped file objects.

MappedNeuroVec for creating instances of this class

mmap for memory mapping details

Examples

Create a MappedNeuroVec object (pseudo-code)
file_path <- system.file("extdata”, "global_mask_v4.nii", package = "neuroim2")
mapped_vec <- MappedNeuroVec(file_path)

Access a subset of the data

subset <- mapped_vec[,,, 1:2]

Create mapped vector from NIFTI file
mvec <- MappedNeuroVec(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

118 MappedNeuro VecSource-class

Extract first volume
voll <- mvec[[1]1]

Get dimensions
dim(mvec)

Access specific timepoint
timepoint <- mvec[, , , 2]

MappedNeuroVecSource-class
MappedNeuroVecSource Class

Description

A class used to produce a MappedNeuroVec instance. It encapsulates the necessary information to
create a memory-mapped representation of a 4D neuroimaging dataset.

Creates a MappedNeuroVecSource object that manages the memory mapping between a neuroimag-
ing file and memory space. This is typically used internally by MappedNeuroVec but can be created
directly for custom access patterns.

Usage

MappedNeuroVecSource(file_name)

Arguments
file_name Character string specifying the path to the neuroimaging file. Supported formats
include NIFTI (.nii) and ANALYZE (.hdr/.img).
Details

MappedNeuroVecSource acts as a factory for MappedNeuroVec objects. While it doesn’t have any
additional slots beyond its parent class, it specifies the intent to create a memory-mapped represen-
tation of the neuroimaging data. This class is typically used in data loading pipelines where large
datasets need to be accessed efficiently without loading the entire dataset into memory.

Create a Memory-Mapped Source for Neuroimaging Data

The function performs several important checks:

Validates file existence and permissions
* Reads and validates header information

* Ensures proper dimensionality (>= 3D)

Verifies file format compatibility

mapToColors 119

Value
A new MappedNeuroVecSource object containing:

¢ Meta information about the dataset
¢ File format details

¢ Dimensional information

Inheritance
MappedNeuroVecSource inherits from:

* NeuroVecSource: Base class for NeuroVec source objects

See Also

MappedNeuroVec for the main user interface, read_header for header reading details

Examples

Create a MappedNeuroVecSource
mapped_source <- new("MappedNeuroVecSource")

Create source from NIFTI file
source <- MappedNeuroVecSource(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Check dimensions
dim(source@meta_info)

View header information
str(source@meta_info)

mapToColors Map intensity values to colors

Description

Convert intensity values (e.g., a 2D slice) into a color representation for plotting and overlays.

Usage

mapToColors(
imslice,
col = heat.colors(128, alpha = 1),
zero_col = "#00000000",
alpha = 1,

120 map_values

irange = range(imslice),
threshold = c(@, 0)

)
Arguments
imslice A numeric vector or array of intensities.
col A vector of colors used as a lookup table.
zero_col Color used for exactly-zero intensities (defaults to transparent).
alpha Global alpha multiplier applied to all colors when alpha < 1.
irange Intensity range used to normalize values before mapping to col.
threshold Optional length-2 numeric vector. If diff (threshold) > 0, values within [threshold[1],
threshold[2]] are set to transparent.
Value

If alpha ==1, returns a character vector/array of colors. If alpha <1, returns an array with an
added RGBA channel (last dimension length 4).

map_values Map Values from One Set to Another Using a User-supplied Lookup
Table

Description

This function maps values from one set to another using a lookup table provided by the user.

Usage

map_values(x, lookup)

S4 method for signature 'NeuroVol,list'
map_values(x, lookup)

S4 method for signature 'NeuroVol,matrix’
map_values(x, lookup)

Arguments
X The object from which values will be mapped.
lookup The lookup table. The first column is the "key" and the second column is the
"value".
Value

An object of the same class as x, in which the original values have been replaced with the lookup
table values.

mask 121

Examples

x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))
vol <- NeuroVol(sample(1:10, 10 * 10 * 10, replace = TRUE), x)

Lookup table is a list

lookup <- lapply(1:10, function(i) i * 10)
names (lookup) <- 1:10

ovol <- map_values(vol, lookup)

Lookup table is a matrix. The first column is the key, and the second column is the value
names (lookup) <- 1:1length(lookup)

lookup.mat <- chind(as.numeric(names(lookup)), unlist(lookup))

ovol2 <- map_values(vol, lookup.mat)

all.equal(as.vector(ovol?2), as.vector(ovol))

mask Extract Mask from Neuroimaging Object

Description

Generic function to extract or generate a mask from neuroimaging objects. For sparse objects with
a @mask slot, returns the stored mask. For dense objects, returns a filled mask (all TRUE values)
indicating all voxels contain valid data.

Usage
mask (x)

S4 method for signature 'ClusteredNeuroVol'
mask (x)

S4 method for signature 'FileBackedNeuroVec'
mask (x)

S4 method for signature 'MappedNeuroVec'
mask (x)

S4 method for signature 'NeuroHyperVec'
mask (x)

S4 method for signature 'NeuroSlice'
mask (x)

S4 method for signature 'DenseNeuroVec'
mask (x)

S4 method for signature 'DenseNeuroVol'

122 mask

mask(x)

S4 method for signature 'LogicalNeuroVol'
mask (x)

S4 method for signature 'AbstractSparseNeuroVec'
mask (x)

S4 method for signature 'SparseNeuroVecSource'
mask (x)

Arguments

X A neuroimaging object (NeuroVol, NeuroVec, or derived classes)

Details

The behavior depends on the class of the input object:

* For sparse objects (SparseNeuroVec, ClusteredNeuroVol, etc.): Returns the stored @mask slot

* For dense objects (DenseNeuroVol, DenseNeuroVec, etc.): Returns a LogicalNeuroVol with
all TRUE values

* For ROI objects: Not implemented (use coords () instead)

Value

A LogicalNeuroVol object representing the mask

Examples

Create a dense volume
vol <- NeuroVol(array(rnorm(64~3), c(64,64,64)), NeuroSpace(c(64,64,64)))
m <- mask(vol) # Returns all TRUE mask

Create a sparse vector with explicit mask

mask_array <- array(runif(643) > 0.5, c(64,64,64))

mask_vol <- LogicalNeuroVol(mask_array, NeuroSpace(c(64,64,64)))

Data must be a matrix (time x masked voxels)

sparse_data <- matrix(rnorm(sum(mask_array) * 10), nrow = 10, ncol = sum(mask_array))
svec <- SparseNeuroVec(sparse_data, NeuroSpace(c(64,64,64,10)), mask_vol)

m2 <- mask(svec) # Returns the stored mask

matricized_access 123

matricized_access Extract values from a 4D tensor using a matrix of time-space indices.

Description

This function efficiently extracts values from a 4D tensor (typically neuroimaging data) using a
matrix of indices where each row contains a time index in column 1 and a spatial index in column
2. The spatial index refers to the position in the flattened spatial dimensions (x,y,z). This is primarily
used internally by the series() method to efficiently access time series data for specific voxels.

Usage

matricized_access(x, i, ...)

S4 method for signature 'SparseNeuroVec,matrix'
matricized_access(x, i)

S4 method for signature 'SparseNeuroVec,integer'
matricized_access(x, i)

S4 method for signature 'SparseNeuroVec,numeric'
matricized_access(x, i)

S4 method for signature 'BigNeuroVec,matrix'
matricized_access(x, i)

S4 method for signature 'BigNeuroVec,integer'
matricized_access(x, i)

S4 method for signature 'BigNeuroVec,numeric'
matricized_access(x, i)

Arguments
X a data source, typically a SparseNeuroVec object containing 4D neuroimaging
data
i Either:

* A matrix with 2 columns: [time_indeX, space_index] specifying which val-
ues to extract

* A numeric vector of spatial indices to extract all timepoints for those loca-
tions

additional arguments to be passed to methods.

124 matrixToQuatern

Value

When 1i is a matrix, returns a numeric vector of values at the specified time-space coordinates.
When i is a vector, returns a matrix where each column contains the full time series for each spatial
index.

Examples

Create a sparse 4D neuroimaging vector
bspace <- NeuroSpace(c(10,10,10,100), c(1,1,1))
mask <- array(rnorm(10x10x10) > .5, c(10,10,10))
mat <- matrix(rnorm(sum(mask)), 100, sum(mask))
svec <- SparseNeuroVec(mat, bspace, mask)

Extract specific timepoint-voxel pairs

Get value at timepoint 1, voxel 1 and timepoint 2, voxel 2
idx_mat <- matrix(c(1,1, 2,2), ncol=2, byrow=TRUE)

vals <- matricized_access(svec, idx_mat)

Get full time series for voxels 1 and 2
ts_mat <- matricized_access(svec, c(1,2))
Each column in ts_mat contains the full time series for that voxel

matrixToQuatern Convert a Transformation Matrix to a Quaternion Representation

Description

Extracts the rotation and scaling components from a 3x3 (or 4x4) transformation matrix, normalizes
them, and computes the corresponding quaternion parameters and a sign factor (‘gqfac‘) indicating
whether the determinant is negative.

Usage
matrixToQuatern(mat)
Arguments
mat A numeric matrix with at least the top-left 3x3 portion containing rotation/scaling.
Often a 4x4 affine transform, but only the 3x3 top-left submatrix is used in prac-
tice.
Details

This function first checks and corrects for zero-length axes in the upper-left corner of the matrix,
then normalizes each column to extract the pure rotation. If the determinant of the rotation sub-
matrix is negative, the qfac is set to -1, and the third column is negated. Finally, the quaternion
parameters (a, b, ¢, d) are computed following standard NIfTI-1 conventions for representing the
rotation in 3D.

Metalnfo 125

Value
A named list with two elements:

quaternion A numeric vector of length 3, (b, ¢, d), which—together with a derived internally—represents
the rotation.

gfac Either +1 or -1, indicating whether the determinant of the rotation submatrix is positive or
negative, respectively.
References

- Cox RW. *Analysis of Functional Neurolmages* (AFNI) and NIfTI-1 quaternion conventions.
https://afni.nimh.nih.gov

See Also
quaternToMatrix for the inverse operation, converting quaternion parameters back to a transform
matrix.
MetaInfo Create Neuroimaging Metadata Object
Description

Creates a Metalnfo object containing essential metadata for neuroimaging data, including dimen-
sions, spacing, orientation, and data type information.

Usage

MetaInfo(
Dim,
spacing,
origin = rep(@, length(spacing)),
data_type = "FLOAT",
label = "",
spatial_axes = OrientationList3D$AXIAL_LPI,
additional_axes = NullAxis

)
Arguments
Dim Integer vector. Image dimensions (e.g., c(64, 64, 32) for 3D).
spacing Numeric vector. Voxel dimensions in mm.
origin Numeric vector. Coordinate origin. Default is zero vector.
data_type Character. Data type (e.g., "FLOAT", "SHORT"). Default is "FLOAT".
label Character. Image label(s). Default is "".

spatial_axes Object. Spatial orientation. Default is OrientationList3D$AXIAL_LPL
additional_axes
Object. Non-spatial axes. Default is NullAxis.

https://afni.nimh.nih.gov

126 Metalnfo

Details

Create Metalnfo Object

The Metalnfo object is fundamental for:

* Spatial interpretation of image data
 Data type handling and conversion
* Memory allocation and mapping

* File I/O operations
Input validation ensures:

* Dimensions are positive integers
* Spacing values are positive
* Origin coordinates are finite

* Data type is supported

Value

A Metalnfo object

See Also

NIFTIMetaInfo, AFNIMetaInfo

Examples

Create metadata for 3D structural MRI
meta <- MetalInfo(

Dim = c(256, 256, 180),

spacing = c(1, 1, 1),

data_type = "FLOAT",

label = "T1w"
)

Get image dimensions
dim(meta)

Get transformation matrix
trans(meta)

Metalnfo-class 127

MetaInfo-class Metalnfo Class

Description

This class encapsulates meta information for neuroimaging data types, including spatial and tem-
poral characteristics, data type, and labeling.

Details

The Metalnfo class provides a structured way to store and access essential metadata for neuroimag-
ing data. This includes information about the data type, spatial and temporal dimensions, voxel
spacing, and coordinate system origin.

Slots

data_type A character string specifying the data type code (e.g., "FLOAT", "INT").
dims A numeric vector representing image dimensions.
spatial_axes An AxisSet3D object representing image axes for spatial dimensions (X, y, z).

additional_axes An AxisSet object representing axes for dimensions beyond spatial (e.g., time,
color band, direction).

spacing A numeric vector representing voxel dimensions in real-world units.
origin A numeric vector representing the coordinate origin.

label A character vector containing name(s) of images or data series.

See Also

FileMetaInfo-class, AxisSet3D-class, AxisSet-class

Examples

Create a Metalnfo object

meta_info <- new("Metalnfo”,
data_type = "FLOAT",
dims = c(64, 64, 32, 100),
spatial_axes = new("AxisSet3D"),
additional_axes = new("AxisSet"),
spacing = c(3, 3, 4),
origin = c(0, 0, 0),
label = "fMRI_runi1")

128 meta_info

meta_info Lightweight metadata for neuroimaging files

Description

‘meta_info() provides a simple, CRAN-friendly way to retrieve essential image metadata without
teaching S4 details up front. It accepts a file path or a ‘FileMetalnfo* object and returns a normalized
list containing common fields like dimensions, spacing, origin, and transform.

The function does not read image data; it only parses header information.

Usage

meta_info(x)

S4 method for signature 'FileMetalnfo'
meta_info(x)

S4 method for signature 'character'
meta_info(x)

Arguments

ne

X A character file path (e.g., ‘"image.nii.gz" ‘) or an object of class FileMetaInfo.

Details

Summarize Image Metadata

Value
A named list with the following elements:

* ‘dim‘ Integer vector of image dimensions.

* ‘spacing‘ Numeric voxel spacing (mm).

* ‘origin‘ Numeric coordinate origin.

* ‘trans‘ 4x4 transformation matrix mapping grid to world (mm).

e ‘path‘ Data file path.

* ‘filename‘ Basename of ‘path‘.

» ‘format‘ File format label (e.g., "NIFTI", "AFNI").

» ‘dtype‘ Storage data type label.

* ‘bytes_per_element‘ Bytes per element.

* ‘nvox‘ Number of voxels in the spatial volume (prod of first 3 dims).
* ‘nvol‘ Number of volumes (4th dim if present, else 1).

* ‘size_bytes‘ Approximate uncompressed size in bytes (‘nvox * nvol * bytes_per_element*).

 ‘time_step‘ Time step (TR in seconds) if available for NIfTI, else ‘NA_real_‘.

NamedAxis-class 129

See Also

read_header, trans, FileMetaInfo, NIFTIMetaInfo

Examples

f <- system.file("extdata”, "global_mask_v4.nii", package = "neuroim2")
mi <- meta_info(f)

mi$dim

mi$spacing

mi$origin

mi$filename

4x4 transform

mi$trans

NamedAxis-class NamedAxis

Description

This class represents an axis with a name attribute

Slots

axis the name of the axis

direction of axis (-1,+1)

ndim Extract the number of dimensions of an object

Description

Extract the number of dimensions of an object

Usage
ndim(x, ...)

S4 method for signature 'ClusteredNeuroVec'
ndim(x)

S4 method for signature 'NeuroObj'
ndim(x)

S4 method for signature 'NeuroSpace'
ndim(x)

130 neuro-downsample

Arguments
X n-dimensional object
additional arguments
Value

An integer representing the number of dimensions in x.

Examples

x = NeuroSpace(c(10,10,10), spacing=c(1,1,1))

ndim(x) ==
x = NeuroSpace(c(10,10,10,3), spacing=c(1,1,1))
ndim(x) == 4
ndim,AxisSet-method Get number of dimensions in axis set
Description

Get number of dimensions in axis set

Usage
S4 method for signature 'AxisSet'
ndim(x, ...)
Arguments
X An AxisSet object
Additional arguments (not used)
Value

An integer representing the number of dimensions in x.

neuro-downsample Downsampling Methods for Neuroimaging Objects

Description

Methods for downsampling neuroimaging objects to lower spatial resolution

neuro-ops 131

neuro-ops Arithmetic and Comparison Operations for Neuroimaging Objects

Description

Methods for performing arithmetic and comparison operations on neuroimaging objects

neuro-resample Resampling Methods for Neuroimaging Objects

Description

Methods for resampling neuroimaging objects to different spaces and dimensions

NeuroBucket-class NeuroBucket

Description

a four-dimensional image that consists of a sequence of labeled image volumes backed by a list

Slots

labels the names of the sub-volumes contained in the bucket

data alist of NeuroVol instances with names corresponding to volume labels

NeuroHyperVec Constructor for NeuroHyperVec class

Description

Constructor for NeuroHyperVec class

Usage

NeuroHyperVec(data, space, mask)

Arguments
data A matrix or three-dimensional array containing the data.
space A NeuroSpace object defining the spatial dimensions.

mask A mask volume (array, vector, or LogicalNeuroVol).

132 NeuroHyper Vec-class

Value

A new NeuroHyperVec object.

See Also

NeuroSpace, LogicalNeuroVol

Examples

Create a 5D space (10x10x10 spatial, 2 trials, 2 features)
space <- NeuroSpace(c(10,10,10,2,2))

Create a mask for the spatial dimensions

space3d <- NeuroSpace(c(10,10,10))

mask_data <- array(TRUE, dim=c(10,10,10)) # All voxels active
mask <- LogicalNeuroVol(mask_data, space3d)

Create data in the format expected by NeuroHyperVec:

3D array with dimensions [features x trials x voxels]

n_features <- 2

n_trials <- 2

n_voxels <- sum(mask_data) # 1000 voxels

data_array <- array(rnorm(n_features * n_trials * n_voxels),
dim = c(n_features, n_trials, n_voxels))

Create the NeuroHyperVec object
hvec <- NeuroHyperVec(data_array, space, mask)

NeuroHyperVec-class NeuroHyperVec Class

Description

A class representing a five-dimensional brain image, where the first three dimensions are spatial,
the fourth dimension is typically time or trials, and the fifth dimension represents features within a
trial.

The NeuroHyperVec class provides an efficient container for five-dimensional neuroimaging data
where spatial dimensions are sparse. It is particularly suited for analyses involving multiple features
per trial/timepoint, such as basis functions, spectral components, or multi-modal measurements.

Usage

S4 method for signature 'NeuroHyperVec,ANY,ANY,ANY'
x[i, j, k, 1, m, ..., drop = TRUE]

NeuroHyper Vec-class 133

Arguments
X The NeuroHyperVec object
i,j,k,1,m Indices for each dimension
Additional arguments (not used)
drop Whether to drop dimensions of length 1
Details

Five-Dimensional Sparse Neuroimaging Data Container

The class organizes data in a 5D structure:

* Dimensions 1-3: Spatial coordinates (x, y, z)
* Dimension 4: Trials or timepoints

* Dimension 5: Features or measurements
Data is stored internally as a three-dimensional array for efficiency:

¢ Dimensions 1: Features (dimension 5)
¢ Dimensions 2: Trials (dimension 4)

* Dimensions 3: Voxels (flattened spatial)
Key features:

* Memory-efficient sparse storage of spatial dimensions
* Fast access to feature vectors and time series
* Flexible indexing across all dimensions

* Maintains spatial relationships and metadata

Slots

mask An object of class LogicalNeuroVol defining the sparse spatial domain of the brain image.
data A 3D array with dimensions [features x trials x voxels] containing the neuroimaging data.

space A NeuroSpace object representing the dimensions and voxel spacing of the neuroimaging
data.

lookup_map An integer vector for O(1) spatial index lookups.

mask A LogicalNeuroVol object defining the spatial mask.

data A three-dimensional array with dimensions [features X trials x voxels] containing the data.
space A NeuroSpace object defining the 5D space.

lookup_map An integer vector for O(1) spatial index lookups.

See Also

NeuroVec, LogicalNeuroVol, NeuroSpace

134 NeuroObj-class

Examples

Create a simple 5D dataset (10x10x10 spatial, 5 trials, 3 features)
dims <- c(10, 10, 10)
space <- NeuroSpace(c(dims, 5, 3))

Create a sparse mask (20% of voxels)
mask_data <- array(runif(prod(dims)) < 0.2, dims)
mask <- LogicalNeuroVol(mask_data, NeuroSpace(dims))

Generate random data for active voxels
n_voxels <- sum(mask_data)
data <- array(rnorm(3 * 5 * n_voxels), dim = c(3, 5, n_voxels)) # [features x trials x voxels]

Create NeuroHyperVec object
hvec <- NeuroHyperVec(data, space, mask)

Access operations
Get data for specific voxel across all trials/features
series(hvec, 5, 5, 5)

Extract a 3D volume for specific trial and feature
hvecl,,,2,1]

NeuroObj-class NeuroObj Class

Description

Base class for all neuroimaging data objects with a Cartesian spatial representation. This class
provides a foundation for more specific neuroimaging data structures.

Slots

space An object of class NeuroSpace representing the geometry of the image object.

See Also

NeuroSpace-class, NeuroSlice-class, NeuroVol-class

NeuroSlice 135

NeuroSlice NeuroSlice: 2D Neuroimaging Data Container

Description

Creates a NeuroSlice object representing a two-dimensional slice of neuroimaging data with asso-
ciated spatial information. This class is particularly useful for working with individual slices from
volumetric neuroimaging data or for visualizing 2D cross-sections.

Usage

NeuroSlice(data, space, indices = NULL)

Arguments
data A vector or matrix containing the slice data values.
space An object of class NeuroSpace defining the spatial properties (dimensions, spac-
ing, origin) of the slice.
indices Optional integer vector. When data is provided as a 1D vector, indices spec-
ifies the linear indices where the data values should be placed in the 2D slice.
Useful for creating sparse slices. Default is NULL.
Details

Two-Dimensional Neuroimaging Data Slice

Value

A new object of class NeuroSlice.

Input Validation
The function performs several validation checks:

¢ Verifies that space is 2-dimensional
* Ensures data dimensions are compatible with space

* Validates indices when provided for sparse initialization

Data Handling
The function supports two initialization modes:

¢ Dense mode (indices = NULL):
— Data is reshaped if necessary to match space dimensions
— Dimensions must match exactly after reshaping
¢ Sparse mode (indices provided):
— Creates a zero-initialized matrix matching space dimensions
— Places data values at specified indices

136 NeuroSlice-class

See Also

NeuroSpace for defining spatial properties, NeuroVol for 3D volumetric data, plot for visualization

methods

Examples

Create a 64x64 slice space
slice_space <- NeuroSpace(c(64, 64), spacing = c(2, 2))

Example 1: Dense slice from matrix
slice_data <- matrix(rnorm(64x64), 64, 64)
dense_slice <- NeuroSlice(slice_data, slice_space)

Example 2: Dense slice from vector
vec_data <- rnorm(64%64)
vec_slice <- NeuroSlice(vec_data, slice_space)

Example 3: Sparse slice with specific values

n_points <- 100

sparse_data <- rnorm(n_points)

sparse_indices <- sample(1:(64%64), n_points)

sparse_slice <- NeuroSlice(sparse_data, slice_space, indices = sparse_indices)

NeuroSlice-class NeuroSlice Class

Description

Represents a two-dimensional brain image slice. This class extends both the array class for data

storage and the NeuroObj class for spatial information.

Details

NeuroSlice objects are typically used to represent individual slices of 3D brain volumes or 2D
projections of 3D data. They inherit the spatial properties from NeuroObj and the data storage

capabilities from array.

See Also

NeuroObj-class, NeuroVol-class

Examples

Create a simple 2D brain slice

slice_data <- matrix(rnorm(64x64), 64, 64)

slice_space <- NeuroSpace(dim=c(64L, 64L), origin=c(@, @), spacing=c(1, 1))
brain_slice <- new("NeuroSlice”, .Data=slice_data, space=slice_space)

NeuroSpace 137

NeuroSpace NeuroSpace: Spatial Reference System for Neuroimaging Data

Description

The NeuroSpace class defines the spatial properties and coordinate system of neuroimaging data.

It encapsulates all information needed to map between voxel indices and real-world coordinates,

including dimensions, voxel spacing, origin, axis orientation, and coordinate transformations.
Usage

NeuroSpace(dim, spacing = NULL, origin = NULL, axes = NULL, trans = NULL)

Arguments
dim An integer vector specifying the dimensions of the image grid. Must be positive.
spacing A numeric vector specifying the physical size of each voxel (typically in mil-
limeters). Must be positive. If NULL, defaults to ones.
origin A numeric vector specifying the real-world coordinates of the first voxel. If
NULL, defaults to zeros.
axes An AxisSet object defining the orientation and ordering of the coordinate axes.
If NULL, defaults to standard neurological convention (Left-Posterior-Inferior
for 3D).
trans A transformation matrix mapping voxel indices to world coordinates. If NULL,
constructed from spacing and origin.
Details

Spatial Reference System for Neuroimaging Data

Value

A new NeuroSpace object

Coordinate Systems

NeuroSpace manages two coordinate systems:

* Voxel coordinates: Zero-based indices into the image grid

* World coordinates: Real-world coordinates (typically in millimeters)
The transformation between these systems is defined by:

* Voxel spacing (physical size of voxels)
* Origin (world coordinates of first voxel)

* Axis orientation (how image axes map to anatomical directions)

138 NeuroSpace

Validation

The constructor performs extensive validation:

* All dimensions must be positive integers
* All spacing values must be positive
* Origin and spacing must have matching lengths

¢ Transformation matrix must be invertible

References

For details on neuroimaging coordinate systems:

* Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in
the human brain. Nature Reviews Neuroscience, 3(3), 243-249.

e Evans, A. C,, et al. (1993). 3D statistical neuroanatomical models from 305 MRI volumes.
Nuclear Science Symposium and Medical Imaging Conference.

See Also

AxisSet for axis orientation specification, coord_to_index for coordinate conversion, index_to_coord
for inverse coordinate conversion, NeuroObj for objects using NeuroSpace

Examples

Create a standard 3D space (64x64x40 voxels, 2mm isotropic)
space_3d <- NeuroSpace(

dim = c(64L, 64L, 40L),

spacing = c(2, 2, 2),

origin = c(-90, -126, -72)

)

Check properties

dim(space_3d) # Image dimensions
spacing(space_3d) # Voxel sizes
origin(space_3d) # World-space origin

Create a 2D slice space

space_2d <- NeuroSpace(
dim = c(128L, 128L),
spacing = c(1.5, 1.5),
origin = c(-96, -96)

)

Convert between coordinate systems

world_coords <- c(0, @, @)

vox_idx <- coord_to_index(space_3d, world_coords)
back_to_world <- index_to_coord(space_3d, vox_idx)

NeuroSpace-class 139

NeuroSpace-class NeuroSpace Class

Description

The NeuroSpace class represents the geometric properties of a brain image, including its dimen-
sions, origin, spacing, axes, and coordinate transformations. It provides a comprehensive frame-
work for handling spatial information in neuroimaging data analysis.

Slots

dim An integer vector representing the grid dimensions of the image.
origin A numeric vector representing the coordinates of the spatial origin.
spacing A numeric vector representing the dimensions (in mm) of the grid units (voxels).

axes A named AxisSet object representing the set of spatial axes in the untransformed native grid
space.

trans A matrix representing an affine transformation that converts grid coordinates to real-world
coordinates.

inverse A matrix representing an inverse transformation that converts real-world coordinates to
grid coordinates.

Validity
A NeuroSpace object is considered valid if:

* The length of the dim slot is equal to the lengths of the spacing, origin, and number of axes
in the axes slots.

* The dim slot contains only non-negative values.

Methods

The following methods are available for NeuroSpace objects:

* dim: Get the dimensions of the space.

» origin: Get or set the origin of the space.

* spacing: Get or set the spacing of the space.
* axes: Get the axes of the space.

* trans: Apply the affine transformation to coordinates.

Usage

The NeuroSpace class is fundamental in representing and manipulating the spatial properties of
neuroimaging data. It is used extensively throughout the package for operations that require spatial
information, such as image registration, resampling, and coordinate transformations.

140 NeuroVec-class

References

For more information on spatial transformations in neuroimaging: Brett, M., Johnsrude, I. S., &
Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews
Neuroscience, 3(3), 243-249.

See Also

AxisSet-class for details on the axis set representation. NeuroVol-class and NeuroVec-class
for classes that use NeuroSpace.

Examples

Create a NeuroSpace object

space <- NeuroSpace(dim = c(64L, 64L, 64L),
origin = c(0, 0, 0),
spacing = c(1, 1, 1))

Get the dimensions
dim(space)

NeuroVec-class NeuroVec Class

Description

This S4 class represents a four-dimensional brain image, which is used to store and process time
series neuroimaging data such as fMRI or 4D functional connectivity maps. The class extends the
basic functionality of NeuroObj.

The NeuroVec class represents a vectorized form of neuroimaging data, supporting both in-memory
and file-backed data modes. It provides efficient data storage and access methods and integrates with
the spatial reference system provided by NeuroSpace.

Usage

NeuroVec(data, space = NULL, mask = NULL, label = "")
Arguments

data The image data. This can be:

* A matrix (voxels X time points)
* A 4D array
* A list of NeuroVol objects

If a list of Neuro Vol objects is provided, the geometric space (NeuroSpace) will
be inferred from the constituent volumes, which must all be identical.

NeuroVec-class

space

mask

label

Details

141

An optional NeuroSpace object defining the spatial properties of the image. Not
required if data is a list of NeuroVol objects.

An optional logical array specifying which voxels to include. If provided, a
SparseNeuro Vec object will be created.

A character string providing a label for the NeuroVec object. Default is an empty
string.

NeuroVec objects are designed to handle 4D neuroimaging data, where the first three dimensions
represent spatial coordinates, and the fourth dimension typically represents time or another series
dimension. This structure is particularly useful for storing and analyzing functional MRI data, time
series of brain states, or multiple 3D volumes in a single object.

The function performs several operations:

* If data is a list of NeuroVol objects, it combines them into a single 4D array.

* It checks that the dimensions of data match the provided space.

* Depending on whether a mask is provided, it creates either a DenseNeuroVec or a SparseNeu-

roVec object.

Value

A concrete instance of the NeuroVec class:

* If mask is provided: a SparseNeuroVec object

* Otherwise: a DenseNeuroVec object

Slots

space A NeuroSpace object defining the spatial properties of the image.

label A character string providing a label for the NeuroVec object.

Methods

Methods specific to NeuroVec objects may include operations for time series analysis, 4D data
manipulation, and extraction of 3D volumes or time courses.

Usage

To create a NeuroVec object, use the constructor function NeuroVec (). This function should handle
the appropriate initialization of the 4D data structure and associated spatial information.

See Also

NeuroObj-class for the parent class. DenseNeuroVec-class and SparseNeuroVec-class for
specific implementations.

NeuroSpace for spatial information, sub_vector for subsetting routines, and index_to_coord for
coordinate conversion. DenseNeuroVec-class, SparseNeuroVec-class for the specific NeuroVec
types. NeuroVol-class for 3D volumetric data.

142 NeuroVecSeq

Examples

Load an example 4D brain image
example_4d_image <- read_vec(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Create a NeuroVec object

neuro_vec <- NeuroVec(data = array(rnorm(64*64%*32x10), dim = c(64, 64, 32, 10)),
space = NeuroSpace(dim = c(64, 64, 32,10),
origin = c(0, 0, 0),
spacing = c(3, 3, 4)))

dim(neuro_vec)

Extract a single 3D volume (e.g., the first time point)
first_volume <- neuro_vec[[1]]

Load an example 4D brain image
example_file <- system.file("extdata”, "global_mask_v4.nii", package = "neuroim2")
example_4d_image <- read_vec(example_file)

Create a DenseNeuroVec object

dense_vec <- NeuroVec(data = example_4d_image@.Data,
space = space(example_4d_image))

print(dense_vec)

Create a SparseNeuroVec object with a mask
mask <- array(runif(prod(dim(example_4d_image)[1:31)) > 0.5,
dim = dim(example_4d_image)[1:3])
sparse_vec <- NeuroVec(data = example_4d_image@.Data,
space = space(example_4d_image),
mask = mask)
print(sparse_vec)

NeuroVecSeq NeuroVecSeq: A Container for Sequential NeuroVec Objects

Description

The NeuroVecSeq class provides a container for managing a sequence of NeuroVec objects, partic-
ularly useful for handling time series or multi-session neuroimaging data where each segment may
have different lengths.

Constructs a NeuroVecSeq object to represent a variable-length sequence of NeuroVec objects. This
is particularly useful for managing time series data where different segments may have different
lengths.

Usage

NeuroVecSeq(...)

NeuroVecSeq

Arguments

One or more instances of type NeuroVec.

Details
NeuroVecSeq objects store:
* A list of NeuroVec objects, each potentially with different time dimensions

* The lengths of each constituent NeuroVec

* A combined NeuroSpace object representing the total space
The class provides methods for:

* Accessing individual time points across all vectors
* Extracting subsequences
» Computing statistics across the sequence

* Linear access to the underlying data
The function performs several validations:

* Ensures all inputs are NeuroVec objects
* Verifies spatial compatibility

» Combines spatial information appropriately

Value
A NeuroVecSeq object containing:
* The provided NeuroVec objects

» Associated space information

* Length information for each vector

Methods

[[Extract a single volume at a specified time point
length Get the total number of time points
sub_vector Extract a subsequence of volumes

linear_access Access data linearly across all vectors

See Also

NeuroVec for the base vector class, NeuroSpace for spatial information

143

144 NeuroVecSeq-class

Examples

Create some example NeuroVec objects
vl <- NeuroVec(array(@, c(5, 5, 5, 2)),

space = NeuroSpace(dim = c(5, 5, 5, 2)))
v2 <- NeuroVec(array(1, c(5, 5, 5, 4)),

space = NeuroSpace(dim = c(5, 5, 5, 4)))
v3 <- NeuroVec(array(2, c(5, 5, 5, 6)),

space = NeuroSpace(dim = c¢(5, 5, 5, 6)))

Combine them into a sequence
vs <- NeuroVecSeq(v1l, v2, v3)

Access properties
length(vs) # Total time points
vs[[5]] # Get the 5th volume

Extract a subsequence
sub_seq <- sub_vector(vs, 1:5)

Create sample vectors
vl <- NeuroVec(array(0, c(5, 5, 5, 2)),

space = NeuroSpace(dim = c(5, 5, 5, 2)))
v2 <- NeuroVec(array(@, c(5, 5, 5, 4)),

space = NeuroSpace(dim = c(5, 5, 5, 4)))

Combine into sequence
vs <- NeuroVecSeq(v1l, v2)
print(vs)

NeuroVecSeq-class NeuroVecSeq Class

Description

A concatenated sequence of NeuroVec instances.

Slots

vecs The sequences of NeuroVec instances

lens The number of volumes in each NeuroVec sequence

NeuroVecSource 145

NeuroVecSource NeuroVecSource

Description
This function constructs a NeuroVecSource object, which represents the source of a four-dimensional
brain image.

Usage

NeuroVecSource(file_name, indices = NULL, mask = NULL)

Arguments
file_name The name of the 4-dimensional image file.
indices An optional integer vector specifying the subset of volume indices to load. If
not provided, all volumes will be loaded.
mask An optional logical array or NeuroVol object defining the subset of voxels to
load. If provided, a SparseNeuroVecSource object will be created.
Details

If a mask is supplied, it should be a LogicalNeuroVol or NeuroVol instance. If the latter, then the
mask will be defined by nonzero elements of the volume.

Value

An instance of the NeuroVecSource class.

NeuroVecSource-class NeuroVecSource Class

Description

A class used to produce a NeuroVec instance.

Slots

indices An integer vector representing the indices of the volumes to be loaded.

See Also

FileSource-class, NeuroVec-class

146 NeuroVol-class

NeuroVol NeuroVol: 3D Neuroimaging Volume Class

Description

The NeuroVol class encapsulates 3D volumetric neuroimaging data. It provides methods for access-
ing slices, performing spatial transformations, and integrating with the spatial reference provided
by NeuroSpace.

Usage
NeuroVol (data, space, label = "", indices = NULL)
Arguments
data A 3D array containing the volumetric data.
space An object of class NeuroSpace defining the spatial properties.
label A character string providing a label for the volume (default: "").
indices An optional vector of indices for sparse representation (default: NULL).
Value

A NeuroVol object.

Examples

bspace <- NeuroSpace(c(64,64,64), spacing=c(1,1,1))
dat <- array(rnorm(64x64%64), c(64,64,64))
bvol <- NeuroVol(dat,bspace, label="test")

NeuroVol-class NeuroVol Class

Description

Base class for representing 3D volumetric neuroimaging data. This class extends NeuroObj to
provide a foundation for various types of 3D brain images.

Details

NeuroVol serves as an abstract base class for more specific 3D neuroimaging data structures. It
inherits spatial properties from NeuroObj but does not specify a particular data storage method.

See Also

NeuroObj-class, DenseNeuroVol-class

NeuroVolSource 147

NeuroVolSource Constructor for NeuroVolSource

Description

Constructor for NeuroVolSource

Usage

NeuroVolSource(input, index = 1)

Arguments

input the input file name

index the image subvolume index
Value

a new instance of type NeuroVolSource

NiftiExtension Create a NIfTI Extension

Description
Constructor function for creating a Nif tiExtension-class object with proper padding to ensure
the size is a multiple of 16 bytes.

Usage

NiftiExtension(ecode, data)

Arguments
ecode Integer extension code. See NiftiExtensionCodes for known codes. Common
values: 4 (AFNI), 6 (comment), 32 (CIFTI).
data The extension data. Can be:
* A character string (will be converted to raw with null terminator)
¢ A raw vector (used as-is)
Details

The function automatically handles padding to ensure the total extension size (esize) is a multiple
of 16 bytes, as required by the NIfTI specification. The esize includes the 8-byte header (esize +
ecode fields).

148

Value

A NiftiExtension-class object.

See Also

NiftiExtension-class, NiftiExtensionCodes

Examples

Create a comment extension

ext <- NiftiExtension(ecode = 6L, data = "This is a comment")
ext@ecode

ext@esize

Create an AFNI extension with XML data

NiftiExtension-class

afni_xml <- '<?xml version="1.0"?><AFNI_attributes></AFNI_attributes>'

afni_ext <- NiftiExtension(ecode = 4L, data = afni_xml)

NiftiExtension-class NiftiExtension Class

Description

Represents a single NIfTI header extension block. NIfTI extensions allow additional metadata to

be stored with the image file.

Usage
S4 method for signature 'NiftiExtension'
show(object)

Arguments

object A NiftiExtension object.

Details
NIfTI-1.1 extensions follow this structure:
* Bytes 0-3: esize (int32) - total extension size, must be multiple of 16

* Bytes 4-7: ecode (int32) - extension code identifying format

* Bytes 8-(esize-1): edata - the actual extension data

Extensions are chained sequentially after the NIfTI header (byte 352) until the vox_offset is reached.

NiftiExtensionCodes 149

Slots

ecode An integer extension code identifying the type of extension. See NiftiExtensionCodes
for known codes.

esize Aninteger giving the total size of the extension in bytes, including the 8-byte header (esize
+ ecode). Must be a multiple of 16.

edata A raw vector containing the extension data (length = esize - 8).

See Also

NiftiExtensionCodes for registered extension codes. NiftiExtensionList-class for a collec-
tion of extensions. parse_extension for parsing extension data.

Examples

Create a simple comment extension
comment_text <- "This is a test comment”
ext <- NiftiExtension(ecode = 6L, data = comment_text)

Access the extension code
ext@ecode

NiftiExtensionCodes Known NIfTI Extension Codes

Description

A named integer vector of registered NIfTI extension codes. These codes identify the format/type
of extension data.

Usage

NiftiExtensionCodes

Format

Named integer vector where names describe the extension type:

ignore 0 - Unknown/private format (not recommended)
DICOM 2 - DICOM format (attribute tags and values)
AFNI 4 - AFNI group (ASCII XML attributes)
comment 6 - Plain text comment

XCEDE 8 - XCEDE format

jimdiminfo 10 - JIM dimension info

workflow_fwds 12 - Workflow forwards

150 NiftiExtensionList-class

FreeSurfer 14 - FreeSurfer format
pypickle 16 - Python pickle

MiIND_ident 18 - MiND identifier

b_value 20 - B-value (diffusion)
spherical_direction 22 - Spherical direction
DT_component 24 - DT component
SHC_degreeorder 26 - SHC degree order
voxbo 28 - VoxBo format

Caret 30 - Caret format

CIFTI 32 - CIFTI format
variable_frame_timing 34 - Variable frame timing
eval 38 - Eval

MATLAB 40 - MATLAB format
Quantiphyse 42 - Quantiphyse

MRS 44 - MRS NIfTI

Examples

Get the code for AFNI extensions
NiftiExtensionCodes["AFNI"] # Returns 4

Get the name for a code
names(NiftiExtensionCodes)[NiftiExtensionCodes == 4] # Returns "AFNI"

NiftiExtensionList-class
NiftiExtensionList Class

Description
A validated list containing zero or more NiftiExtension-class objects. This class ensures type
safety when working with collections of NIfTT extensions.
Usage
S4 method for signature 'NiftiExtensionList'
show(object)
Arguments

object A NiftiExtensionList object.

NIFTIMetalnfo 151

Details

The class extends list and enforces that all elements must be NiftiExtension objects. This
provides a clean container for managing multiple extensions attached to a NIfTI file.

See Also

NiftiExtension-class for individual extension objects. extensions for accessing extensions
from image objects.

Examples

Create an empty extension list
ext_list <- new("NiftiExtensionList")

Create a list with extensions

extl <- NiftiExtension(ecode = 6L, data = "Comment 1")
ext2 <- NiftiExtension(ecode = 6L, data = "Comment 2")
ext_list <- new("NiftiExtensionList”, list(extl, ext2))

NIFTIMetaInfo Create NIFTI Format Metadata Object

Description
Creates a NIFTIMetalnfo object containing format-specific metadata for NIFTI format neuroimag-
ing files.

Usage

NIFTIMetaInfo(descriptor, nifti_header)

Arguments

descriptor NIFTIFormat object specifying file format details

nifti_header List containing NIFTT header information

Details

Create NIFTIMetalnfo Object
The NIFTIMetalnfo object extends Metalnfo with NIFTI-specific features:

* NIFTI header fields (gform, sform matrices)
* Data scaling (slope, intercept)
* File organization (separate vs. single file)

 Orientation information

152

Validation ensures:

e Valid NIFTI format
¢ Consistent dimensions
¢ Valid transformation matrices

* Proper data scaling

Value

A NIFTIMetalnfo object

See Also

Metalnfo

Examples

Read NIFTI header

None

header <- read_header(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Create format descriptor
fmt <- new("NIFTIFormat”,
file_format = "NIFTI",

header_encoding = "raw",
header_extension = "nii”,
data_encoding = "raw”,
data_extension = "nii”

Create metadata
meta <- NIFTIMetalnfo(fmt, header@header)

Check dimensions
dim(meta)

None Pre-defined null axis

Description

Pre-defined null axis

Usage

None

Format

An object of class NamedAxis of length 1.

NullAxis

153

NullAxis Pre-defined null axis set

Description

Pre-defined null axis set

Usage
NullAxis

Format

An object of class AxisSet of length 1.

numericOrMatrix-class numericOrMatrix Union

Description

A class union that includes both numeric vectors and matrices.

num_clusters Number of Clusters

Description

This function returns the number of clusters in a ClusteredNeuroVol object.

Usage

num_clusters(x)

S4 method for signature 'ClusteredNeuroVec'
num_clusters(x)

S4 method for signature 'ClusteredNeuroVol'
num_clusters(x)

Arguments

X A ClusteredNeuroVol object.

154 OrientationList2D

Value

An integer representing the number of clusters in x.

An integer representing the number of clusters in the input object.

Examples

Create a simple 3D volume and mask

space <- NeuroSpace(c(16, 16, 16), spacing = c(1, 1, 1))
vol_data <- array(rnorm(16*3), dim = c(16, 16, 16))
mask_vol <- LogicalNeuroVol(vol_data > @, space)

Get coordinates of masked voxels for clustering
mask_idx <- which(mask_vol)
coords <- index_to_coord(mask_vol, mask_idx)

Cluster the coordinates into 10 groups using k-means
set.seed(123) # for reproducibility
kmeans_result <- kmeans(coords, centers = 10)

Create a clustered volume
clustered_vol <- ClusteredNeuroVol(mask_vol, kmeans_result$cluster)

Get the number of clusters
n_clusters <- num_clusters(clustered_vol)

n_clusters == 10
OrientationList2D Pre-defined 2D orientation configurations
Description

A list of standard 2D anatomical orientations used in neuroimaging. Each orientation defines a pair
of anatomical axes.

Usage

OrientationList2D

Format

An object of class 1list of length 24.

OrientationList3D 155

OrientationlList3D Pre-defined 3D orientation configurations

Description

A list of standard 3D anatomical orientations used in neuroimaging. Each orientation defines a
triplet of anatomical axes.

Usage

OrientationlList3D

Format

An object of class 1ist of length 48.

origin Extract Image Origin

Description

Extract Image Origin
Usage
origin(x)

S4 method for signature 'NeuroSpace'
origin(x)

S4 method for signature 'NeuroVol'
origin(x)

S4 method for signature 'NeuroVec'
origin(x)

Arguments

X an object with an origin

Value

A numeric vector giving the origin of x.

156 parse_afni_extension

Examples

bspace <- NeuroSpace(c(10,10,10), c(2,2,2))
stopifnot(origin(bspace) == ¢(0,0,0))

parse_afni_extension Parse AFNI Extension

Description

Parses an AFNI extension (ecode = 4) containing XML-formatted attributes.

Usage

parse_afni_extension(ext, as_xml = TRUE)

Arguments
ext A NiftiExtension-class object with ecode = 4.
as_xml Logical; if TRUE (default) and xml2 is available, returns an xml_document ob-
ject. Otherwise returns the raw XML string.
Details

AFNI stores dataset attributes in an XML format within the NIfTI extension. The XML contains
elements like HISTORY_NOTE, volume labels, tagged points, and other AFNI-specific metadata.

Value

If as_xml = TRUE and xml2 is available, returns an xml_document. Otherwise returns a character
string containing the XML.

See Also

get_afni_attribute for extracting specific AFNI attributes.

Examples

Not run:

Read a NIfTI file with AFNI extension
hdr <- read_nifti_header("afni_file.nii")
afni_ext <- hdr$extensions[[1]]

parsed <- parse_afni_extension(afni_ext)

End(Not run)

parse_extension 157

parse_extension Parse NIfTI Extension Data

Description

Parses the raw data in a NIfTI extension based on its extension code. Provides specialized parsing
for known extension types.

Usage
parse_extension(ext, ...)
Arguments
ext A NiftiExtension-class object.
Additional arguments passed to type-specific parsers.
Value

Parsed data in an appropriate format:

* ecode 4 (AFNI): An XML document (if xml2 available) or character string
* ecode 6 (comment): Character string

* Other codes: Raw vector (unchanged)

See Also

parse_afni_extension for AFNI-specific parsing.

Examples

Parse a comment extension
ext <- NiftiExtension(ecode = 6L, data = "Test comment")
parse_extension(ext) # Returns "Test comment”

158 partition

partition Partition an image into a set of disjoint clusters

Description

This function partitions an image into a set of disjoint clusters using k-means clustering.
Usage
partition(x, k, ...)

S4 method for signature 'LogicalNeuroVol,integer'
partition(x, k)

S4 method for signature 'LogicalNeuroVol,numeric'
partition(x, k)

S4 method for signature 'DenseNeuroVol,numeric'
partition(x, k)

Arguments
X the image to partition, represented as a 3D array.
k the number of clusters to form.
additional arguments passed to the kmeans function.
Value

a 3D array where each voxel is assigned to a cluster.

See Also

kmeans

Examples

Load an example 3D image
library(neuroim2)
img <- read_vol(system.file("extdata”, "global_mask_v4.nii", package = "neuroim2"))

Partition the image into 5 clusters using default options
clusters <- partition(img, 5)

patch_set

159

patch_set

Generate a set of coordinate "patches" of fixed size from an image

object.

Description

Generate a set of coordinate "patches" of fixed size from an image object.

Usage
patch_set(x, dims, mask, ...)
Arguments
X the object to extract patches from
dims a vector indicating the dimensions of the patches
mask mask indicating the valid patch area
additional args
Value

A list of coordinate patches, each representing a fixed-size region of the input object.

Examples

Create a simple 3D volume
space <- NeuroSpace(c(10,10,10), spacing=c(1,1,1))
vol <- NeuroVol(array(rnorm(1000), c(10,10,10)), space)

Create a mask with some active voxels
mask <- LogicalNeuroVol(vol > @, space)

Extract 3x3x3 patches centered at each active voxel
patches <- patch_set(vol, dims=c(3,3,3), mask=mask)

Access the first patch
patchl <- patches[[1]1]
dim(patch1) # Should be c(27) (flattened 3x3x3 patch)

160 perm_mat

patch_set,NeuroVol,numeric,missing-method
Create a patch set from a NeuroVol object

Description

This function creates a patch set from a NeuroVol object given specified dimensions

This function creates a patch set from a NeuroVol object given specified dimensions and a mask.

Usage

S4 method for signature 'NeuroVol,numeric,missing'’
patch_set(x, dims, mask, ...)

S4 method for signature 'NeuroVol,numeric,LogicalNeuroVol'

patch_set(x, dims, mask, ...)
Arguments
X a NeuroVol object
dims the dimensions of the patch
mask the mask defining the valid patch centers

additional args

Value

A deferred list of patches.
A deferred list of patches.

perm_mat Extract permutation matrix associated with an image

Description
A permutation matrix defines how the native voxel coordinates can be transformed to standard (LPI)
orientation.

Usage

perm_mat(x, ...)

S4 method for signature 'NeuroSpace'
perm_mat(x, ...)

perm_mat,AxisSet2D-method 161

Arguments
X A NeuroSpace object
Additional arguments (not used)
Details

a permutation matrix can be used to convert between cardinal image orientations. For example,
if an image is stored in "RPI" (Right-Posterior-Inferior) format, a coordinate in this space can be
converted to LPI (Left-Posterior-Inferior) by multiplying a coordinate vector by the permutation
matrix.

Value

A numeric N x N matrix representing the permutation transform, where N is the dimensionality of

the image.
A numeric N x N matrix representing the permutation transform, where N is the dimensionality of
the image.
Examples
fname <- system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2")

vol <- read_vol(fname)
pmat <- perm_mat(space(vol))

vox <- ¢(12,12,8)
pvox <- vox %*% perm_mat(space(vol))

stopifnot(all(pvox == c(-12,12,8)))

perm_mat,AxisSet2D-method
Get permutation matrix from axis set

Description

Get permutation matrix from axis set

Usage
S4 method for signature 'AxisSet2D'
perm_mat(x, ...)

Arguments
X An AxisSet2D object

Additional arguments (not used)

162 plot,NeuroSlice-method

Value

A matrix representing the axis directions

perm_mat,AxisSet3D-method
Get permutation matrix from axis set

Description

Get permutation matrix from axis set

Usage
S4 method for signature 'AxisSet3D'
perm_mat(x, ...)

Arguments
X An AxisSet3D object

Additional arguments (not used)

Value

A matrix representing the axis directions

plot,NeuroSlice-method
Plot a NeuroSlice

Description

Plot a NeuroSlice

plot a NeuroVol

Usage

S4 method for signature 'NeuroSlice'
plot(
X,
cmap = gray(seq(@, 1, length.out = 255)),
irange = range(x, na.rm = TRUE),
legend = TRUE
)

S4 method for signature 'NeuroVol'

plot,NeuroSlice-method

plot(
X’
cmap = gray(seq(@, 1, length.out = 255)),

zlevels = unique(round(seq(1, dim(x)[3], length.out = 6))),

irange = range(x, na.rm = TRUE),
thresh = c(0, 0),

163

alpha = 1,
bgvol = NULL,
bgcmap = gray(seq(@, 1, length.out = 255)),
legend = TRUE
)
Arguments
X the object to display
cmap a color map consisting of a vector of colors in hex format (e.g. gray(n=255))
irange the intensity range indicating the low and high values of the color scale.
legend Logical indicating whether to display the color legend. Defaults to TRUE.
zlevels the series of slice indices to display.
thresh a 2-element vector indicating the lower and upper transparency thresholds.
alpha the level of alpha transparency
bgvol a background volume that serves as an image underlay (currently ignored).
bgcmap a color map for backround layer consisting of a vector of colors in hex format
(e.g. gray(n=255))
Details

The plot method uses ggplot?2 to create a raster visualization of the slice data. The intensity values

are mapped to colors using the specified colormap and range.

when ‘x‘ is a NeuroSlice object, the plot method returns a ggplot2 object containing the raster
visualization of the slice data. The plot can be further customized using standard ggplot2 functions.

Value

a ggplot2 object

Examples

Create example slice

slice_space <- NeuroSpace(c(100, 100))
slice_data <- matrix(rnorm(100x100), 100, 100)
slice <- NeuroSlice(slice_data, slice_space)

Basic plot
plot(slice)

164 plot_montage

dat <- matrix(rnorm(100%100), 100, 100)
slice <- NeuroSlice(dat, NeuroSpace(c(100,100)))

plot(slice)

plot_montage Plot a montage of axial (or any-plane) slices using facetting

Description

This avoids extra dependencies by using a single ggplot with facets and a shared colorbar. Supply a
list of slice objects or a volume + indices.

Usage

plot_montage(
X,
zlevels = NULL,
along = 3L,
cmap = "grays",
range = c("robust”, "data"),
probs = c(0.02, 0.98),
ncol = 6L,
downsample = 1L,
title = NULL,

subtitle = NULL,
caption = NULL

)
Arguments
X Either a 3D volume object accepted by ‘slice()* or a list of slices.
zlevels Integer indices of slices to plot (if ‘x‘ is a volume).
along Axis along which to slice (1 = sagittal, 2 = coronal, 3 = axial).
cmap Palette name or vector (see [resolve_cmap()]).
range "robust" (quantile-based) or "data" (min/max).
probs Quantiles for ‘range="robust"".
ncol Number of columns in the facet layout.
downsample Integer decimation for speed.

title, subtitle, caption
Optional ggplot labels.

plot_ortho

165

plot_ortho

Orthogonal three-plane view with optional crosshairs

Description

Creates axial, coronal, and sagittal panels at a given coordinate with harmonized aesthetics. Returns
(invisibly) the three ggplot objects after printing them in a single row using base grid (no extra deps).

Usage
plot_ortho(
vol,
coord = NULL,
unit = c("index”, "mm"),
cmap = "grays”,
range = c("robust”, "data"),
probs = c(0.02, 0.98),
crosshair = TRUE,
annotate = TRUE,
downsample = 1L
)
Arguments
vol A 3D volume handled by ‘slice()*.
coord Length-3 coordinate of the target point. Interpreted as voxel indices by default;
set ‘unit = "mm"‘ to convert using ‘coord_to_grid()‘ if available in your envi-
ronment.
unit "index" or "mm".
cmap Palette for the slices.
range "robust" or "data" for intensity limits shared by all panels.
probs Quantiles for robust range.
crosshair Logical; draw crosshair lines.
annotate Logical; add orientation glyphs.
downsample Integer decimation for speed.

166

plot_overlay

plot_overlay Composite an overlay map on a structural background

Description

Works without extra packages by colorizing both layers to rasters and stacking them as grobs. Great
for statistical maps over T1/T2 backgrounds.

Usage

plot_overlay(
bgvol,
overlay,
zlevels = NULL,
along = 3L,
bg_cmap = "grays”,
ov_cmap = "inferno”,
bg_range = c("robust”, "data"),
ov_range = c("robust”, "data"),

probs = c(0.02, 0.98),
ov_thresh = 0,
ov_alpha = 0.7,

ncol = 3L,

title = NULL,

subtitle = NULL,
caption = NULL

)
Arguments
bgvol Background 3D volume.
overlay Overlay 3D volume (same dims as bgvol).
zlevels Slices to plot (indices along the z/3rd axis by default).
along Axis for slicing (1 sagittal, 2 coronal, 3 axial).
bg_cmap Background palette (e.g., "grays").
ov_cmap Overlay palette (e.g., "inferno").

bg_range, ov_range

probs Quantiles for robust scaling.

ov_thresh Numeric threshold; values with Ivl < thresh become transparent.
ov_alpha Global alpha for overlay (0..1).

ncol Number of columns in the facet layout.

"robust" or "data" for background/overlay scaling.

title, subtitle, caption

Optional labels.

prepare_confounds 167

prepare_confounds Prepare weighted nuisance projectors for each run

Description

Converts per-run confound matrices and time weights into orthonormal projectors that can be con-
sumed directly by the C++ graph builder. Each run produces Q; (columns spanning the weighted
confound space) and /wy, (per-time-point square-root weights). Supplying a NULL confound matrix
yields a zero-column projector, enabling pure time-weighting without regression.

Usage

prepare_confounds(
confounds,
time_weights = NULL,
run_lengths,
include_intercept = TRUE,
center_cols = TRUE,
scale_cols = FALSE

Arguments

confounds List of matrices (1} X py), or a single matrix reused for all runs. Each row
corresponds to a time point.

time_weights Optional list of numeric vectors (length 7}) or a single vector reused for every
run. If NULL, unit weights are used.

run_lengths Integer vector with the number of time points per run. Required when any run
has both confounds=NULL and time_weights=NULL.

include_intercept
Logical; prepend a column of ones before QR (default TRUE).

center_cols Logical; center each confound column before weighting (default TRUE).
scale_cols Logical; scale columns to unit variance before weighting (default FALSE).
Value

A list with elements Q_list (list of matrices) and sqrtw_list (list of numeric vectors). Each entry
has the same length as run_lengths.

168 quaternToMatrix

quaternToMatrix Convert Quaternion Parameters to a Transformation Matrix

Description

Given a quaternion (b, c, d), a scalar offset (origin), voxel step sizes, and the gfac sign, recon-
structs a 4x4 affine matrix representing rotation, scaling, and translation as used in NIfTI-1.

Usage

quaternToMatrix(quat, origin, stepSize, gfac)

Arguments
quat A numeric vector of length 3 containing the quaternion parameters (b, ¢, d). The
scalar part a is computed internally.
origin A numeric vector of length 3 specifying the translation components (often the
real-space origin or offset).
stepSize A numeric vector of length 3 giving the voxel dimensions along each axis (e.g.,
(dx, dy, dz)).
gfac Either +1 or -1, indicating the sign from the determinant check in matrixToQuatern.
Details

This function uses the quaternion formalism common in neuroimaging, adding the offset (transla-
tion) into the 4th column, and applying the voxel sizes along each axis. If gfac is -1, the z scale
is negated. The resulting 4x4 matrix is typically used as an affine transform for voxel-to-world
coordinate mapping.

Value
A 4x4 numeric affine transformation matrix. The top-left 3x3 submatrix encodes rotation and scal-
ing, and the 4th column encodes translation.

See Also

matrixToQuatern for converting a matrix back to quaternion form.

random_searchlight 169

random_searchlight Create a spherical random searchlight iterator

Description
This function generates a spherical random searchlight iterator for analyzing local neighborhoods
of voxels within a given radius in a brain mask.

Usage

random_searchlight(mask, radius, nonzero = TRUE)

Arguments
mask A NeuroVol object representing the brain mask.
radius A numeric value specifying the radius of the searchlight sphere in voxel units.
nonzero Logical; if TRUE (default) discard zero-valued voxels in the mask when forming
each searchlight.
Value

A list of ROIVolWindow objects, each representing a spherical searchlight region.

Examples

Create a simple brain mask

mask_data <- array(TRUE, c(10, 10, 10))

mask_datal[1, 1, 1] <- FALSE

mask <- LogicalNeuroVol(mask_data, NeuroSpace(c(10,10,10)))

Generate random searchlight iterator with a radius of 2 voxels

searchlights <- random_searchlight(mask, radius = 6)

read_elements,BinaryReader,numeric-method
Read Elements from Binary Reader

Description

Read a specified number of elements from a BinaryReader object.

170 read_header

Usage

S4 method for signature 'BinaryReader,numeric'’
read_elements(x, num_elements)

Arguments

X Object of class BinaryReader

num_elements Integer specifying number of elements to read

Value

Numeric vector of read elements

Examples

Create a temporary binary file with some test data
tmp <- tempfile()

con <- file(tmp, "wb")

test_data <- rnorm(100)

writeBin(test_data, con, size = 8)

close(con)

Create reader and read the data
reader <- BinaryReader(tmp, byte_offset = oL,
data_type = "DOUBLE", bytes_per_element = 8L)
data <- read_elements(reader, 100)
close(reader)

Clean up
unlink(tmp)

read_header read header information of an image file

Description

read header information of an image file

Usage

read_header(file_name)

Arguments

file_name the name of the file to read

read_image 171

Value

an instance of class FileMetaInfo

Examples
hdr <- read_header(system.file("extdata”, "global_mask_v4.nii"”, package = "neuroim2"))
dim(hdr) # image dimensions
hdr@header$pixdim[5] # TR in seconds
read_image read_image
Description

Convenience wrapper that inspects the file metadata and dispatches to read_vol for 3D data or
read_vec for 4D data.

Usage
read_image(
file_name,
type = c("auto”, "vol", "vec"),
index = 1,
indices = NULL,
mask = NULL,
mode = c("normal”, "mmap"”, "bigvec”, "filebacked")
)
Arguments
file_name Character vector of file paths.
type One of "auto”, "vol”, or "vec” to override dispatch.
index Volume index to use when returning a NeuroVol or when you want to load a
subset of volumes while still returning a NeuroVec.
indices Optional vector of indices passed through to read_vec.
mask Optional mask passed to read_vec.
mode IO mode forwarded to read_vec.
Value

A NeuroVol when the input is effectively 3D (or when type = "vol"), otherwise a NeuroVec/NeuroVecSeq.

Examples

vol <- read_image(system.file("extdata"”, "global_mask2.nii.gz", package = "neuroim2"))
vec <- read_image(system.file("extdata"”, "global_mask_v4.nii", package = "neuroim2"))

172 read_meta_info

read_meta_info Generic function to read image meta info given a file

Description

Reads meta information from image files based on their format (NIFTT or AFNI).
Usage
read_meta_info(x, file_name)

S4 method for signature 'NIFTIFormat'
read_meta_info(x, file_name)

S4 method for signature 'AFNIFormat'
read_meta_info(x, file_name)

Arguments

X A FileFormat object (either NIFTIFormat or AFNIFormat)

file_name A character string specifying the file name to read meta information from
Details

These methods use format-specific functions to read the header information and create the appropri-
ate meta information object. The ‘.read_meta_info‘ helper function is used internally to streamline
the process for both formats.

Value

A list containing the meta information read from the file.

An object of class NIFTIMetalnfo or AFNIMetalnfo, depending on the input format

Examples

Create a NIFTI format descriptor
fmt <- new("NIFTIFormat”,
file_format = "NIFTI",

header_encoding = "raw"”,
header_extension = "nii”,
data_encoding = "raw",
data_extension = "nii")

Read metadata from a NIFTI file

fname <- system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2")
meta <- read_meta_info(fmt, fname)

read_vec 173

Access metadata properties

dim(meta) # Image dimensions
trans(meta) # Transformation matrix
read_vec read_vec
Description

Loads a neuroimaging volume from one or more files, with support for various input formats and
memory management strategies.

Usage
read_vec(
file_name,
indices = NULL,
mask = NULL,
mode = c(”"normal”, "mmap”, "bigvec”, "filebacked")
)
Arguments
file_name The name(s) of the file(s) to load. If multiple files are specified, they are loaded
and concatenated along the time dimension.
indices The indices of the sub-volumes to load (e.g. if the file is 4-dimensional). Only
supported in "normal" mode.
mask A logical mask defining which spatial elements to load. Required for "bigvec"
mode and optional for other modes.
mode The 10 mode which is one of: * "normal": Standard in-memory loading *
"mmap": Memory-mapped access (more memory efficient) * "bigvec": Opti-
mized for large datasets with masking * "filebacked": File-backed storage with
on-demand loading
Details

This function supports multiple file formats: * .nii: Standard NIfTT format * .nii.gz: Compressed
NIfTI (not supported in mmap mode)

Memory management modes: * "normal": Loads entire dataset into memory. Best for smaller
datasets or when memory is not a constraint. * "mmap": Memory-maps the file, providing efficient
access for large files without loading entirely into memory. Not available for compressed files. *
"bigvec": Optimized for large datasets where only a subset of voxels are of interest. Requires a
mask to specify which voxels to load. * "filebacked": Similar to mmap but with more flexible
caching strategies.

174 read_vol

Value

An NeuroVec object representing the loaded volume(s).

Note

* Memory-mapping (.mmap mode) is not supported for gzipped files * For .Iv.h5 and .h5 files, the
indices and mask parameters are ignored * The bigvec mode requires a mask to be specified * When
loading multiple files, they must have compatible dimensions

Examples

Load a single NIfTI file
img <- read_vec(system.file("extdata”, "global_mask_v4.nii”, package="neuroim2"))

Memory-mapped loading for large files
big_img <- read_vec(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"), mode="mmap")

Load masked data for memory efficiency

mask <- as.logical(big_img[[1]1])

masked_data <- read_vec(system.file("extdata"”, "global_mask_v4.nii", package="neuroim2"),
mask=mask, mode="bigvec")

read_vol Load an image volume from a file

Description

Load an image volume from a file

Usage

read_vol(file_name, index = 1)

Arguments

file_name the name of the file to load

index the index of the volume (e.g. if the file is 4-dimensional)
Value

an instance of the class DenseNeuroVol

read_vol _list 175

Examples
fname <- system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2")
X <- read_vol(fname)
print(dim(x))
space(x)
read_vol_list read_vol_list
Description

This function loads a list of image volumes and returns a Neuro Vec object.

Usage

read_vol_list(file_names, mask = NULL)

Arguments

file_names A list of file names to load.

mask An optional mask defining the subset of voxels to load.
Value

An instance of the NeuroVec class.

reorient Remap the grid-to-world coordinates mapping of an image.

Description

Remap the grid-to-world coordinates mapping of an image.

Usage

reorient(x, orient)

S4 method for signature 'NeuroSpace,character'’
reorient(x, orient)
Arguments

X the object

orient the orientation code indicating the "remapped" axes.

176 resample

Details

When x is a NeuroSpace object, the orient argument should be a character vector of length 3
specifying the desired anatomical orientation using single-letter codes. Each letter represents an
anatomical direction:

* First position: "R" (Right) or "L" (Left)
 Second position: "A" (Anterior) or "P" (Posterior)
* Third position: "S" (Superior) or "I" (Inferior)
For example, c("R", "A", "S") specifies Right-Anterior-Superior orientation, while c("L", "P",

"I") specifies Left-Posterior-Inferior orientation. The orientation codes determine how the voxel
grid coordinates map to real-world anatomical space.

Value

A reoriented version of x.

Examples

Create a NeuroSpace object in LPI (Left-Posterior-Inferior) orientation
space <- NeuroSpace(c(64, 64, 40), c(2, 2, 2))

Reorient to RAS (Right-Anterior-Superior) orientation
Use individual axis codes: "R" for Right, "A" for Anterior, "S" for Superior
space_ras <- reorient(space, c("R", "A", "S"))

The transformation matrix will be updated to reflect the new orientation
Original and reoriented spaces will have different coordinate mappings
coords <- c(32, 32, 20)

orig_world <- grid_to_coord(space, coords)

new_world <- grid_to_coord(space_ras, coords)

resample Resample an Image to Match the Space of Another Image

Description

This function resamples a source image to match the spatial properties (dimensions, resolution, and
orientation) of a target image.

This method resamples a NeuroVol object (source) to match the dimensions and orientation of a
NeuroSpace object (target).

This method preserves discrete cluster labels and label mappings when resampling clustered vol-
umes to a new space.

resample 177
Usage
resample(source, target, ...)

S4 method for signature 'NeuroVol,NeuroVol'
resample(source, target, interpolation = 3L)

S4 method for signature 'NeuroVol,NeuroSpace'
resample(source, target, interpolation = 3L)

S4 method for signature 'ClusteredNeuroVol,NeuroSpace'
resample(source, target, interpolation = QL)

S4 method for signature 'ClusteredNeuroVol,NeuroVol'
resample(source, target, interpolation = QL)

Arguments
source A NeuroVol object representing the source volume to be resampled.
target A NeuroSpace object representing the target space to match the dimensions and

orientation of the source volume.

Additional arguments passed to the resampling function, such as interpolation
method, boundary handling, or other resampling options.

interpolation A single integer specifying the type of interpolation to be applied to the final
resampled image. May be O (nearest neighbor), 1 (trilinear), or 3 (cubic spline).
No other values are valid.

Value

An object representing the resampled source image, with the same spatial properties as target.

See Also

NeuroVol for the base volume class

Examples

img <- read_vol(system.file("extdata”, "global_mask_v4.nii"”, package = "neuroim2"))
rspace <- space(img)

newtrans4X3 <- trans(img)[1:4, 1:3]
newtrans4X3 <- newtrans4X3 * c(.5,.5,.5,1)
newtrans <- cbind(newtrans4X3, c(space(img)@origin,1))

rspace <- NeuroSpace(rspace@dim*2, rspace@spacing/2, origin=rspace@origin, trans=trans(img))

rvol <- resample(img, rspace)

178 resampled_searchlight

Create source and target volumes
src_vol <- read_vol(system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2"))
targ_vol <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Resample source to match target
resampled <- resample(src_vol, targ_vol, interpolation=1)

resampled_searchlight Create a resampled searchlight iterator

Description

This function generates a resampled searchlight iterator by sampling regions from within a brain
mask. By default it builds spherical searchlights, but users can provide a custom shape_fun to
return ellipsoids, cubes, or arbitrary irregular searchlight shapes. Centers are drawn with replace-
ment, so the same voxel (and its neighborhood) may appear multiple times. Each searchlight can
also draw its radius from a user-specified set of radii.

Usage
resampled_searchlight(
mask,
radius = 8,
iter = 100,

shape_fun = NULL,
nonzero = TRUE

bootstrap_searchlight(mask, radius = 8, iter = 100)

Arguments

mask A NeuroVol object representing the brain mask.

radius A numeric scalar or vector specifying candidate radii (in voxel units) for the
searchlight sphere. If a vector is supplied, a radius is sampled uniformly (with
replacement) for each searchlight. All radii must be positive. Default is 8.

iter An integer specifying the total number of searchlights to sample (with replace-
ment). Default is 100.

shape_fun Either NULL (default spherical kernel), a character keyword ("sphere”, "ellipsoid”,

"cube", "blobby"), or a custom function. Custom functions are called as shape_fun(mask,
center, radius, iter, nonzero) and must return either a ROIVolWindow or

an n x 3 integer matrix of voxel coordinates. This enables anisotropic or irregu-

lar searchlights.

resample_to 179

nonzero Logical; if TRUE (default), the generated searchlight is intersected with the non-
zero voxels of mask. Applies to both the default sphere and any shape_fun that
returns coordinates.

Details

Searchlight centers are sampled with replacement, so the same center (and its surrounding voxels)
can be selected multiple times. When multiple radii are provided, each searchlight independently
samples one radius from the supplied values. Supplying shape_fun lets you draw non-spherical
searchlights (e.g., ellipsoids, cubes, blobby deformations, or task-specific kernels). Built-in short-
cuts are available via shape_fun = "ellipsoid”, "cube”, and "blobby"; "sphere” or NULL uses
the default spherical kernel.

Value

A deferred_list object containing ROIVolWindow objects, each representing a sampled search-
light region drawn from within the mask.

Examples

Load an example brain mask
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Generate a resampled searchlight iterator with radii drawn from {4,6,8%}
searchlights <- resampled_searchlight(mask, radius = c(4, 6, 8))

Use a custom shape: random ellipsoid scaled along each axis
ellipsoid_fun <- function(mask, center, radius, iter, nonzero) {
scales <- runif(3, 0.5, 1.5) # axis-wise stretch/compress
vox <- spherical_roi(mask, center, radius, nonzero = FALSE)@coords
ctr_mat <- matrix(center, nrow(vox), 3, byrow = TRUE)
keep <- rowSums(((vox - ctr_mat) * scales)”2) <= radius*2
vox[keep, , drop = FALSE]
3
ellip_searchlights <- resampled_searchlight(mask, radius = c(4, 6),
iter = 50, shape_fun = ellipsoid_fun)

Or use built-in named shapes
ellip_builtin <- resampled_searchlight(mask, radius = 6, shape_fun = "ellipsoid")
cube_builtin <- resampled_searchlight(mask, radius = 6, shape_fun = "cube")

resample_to Resample an image with readable method names

Description

A convenience front-end to [resample()] that accepts human-friendly method names and an engine
switch. Internally delegates to the S4 ‘resample(source, target, interpolation = 0/1/3)‘ methods.

180 resolve_cmap

Usage
resample_to(
source,
target,
method = c("nearest”, "linear"”, "cubic"),

engine = c("internal”),

)
Arguments
source A ‘NeuroVol‘ (source image)
target A ‘NeuroVol* or ‘NeuroSpace‘ to match
method Interpolation method: ‘"nearest"*, ‘"linear"*, or ‘"cubic""
engine Resampling engine. For now only ‘"internal"‘ is supported.
Reserved for future options
Value

A ‘NeuroVol‘ in the target space

Examples

non

img <- read_vol(system.file("extdata"”,"global_mask_v4.nii", package="neuroim2"))
sp <- space(img)
sp2 <- NeuroSpace(sp@dim*2, sp@spacing/2, origin=sp@origin, trans=trans(img))

r1 <- resample_to(img, sp2, method = "linear")
resolve_cmap Neuroimaging color palettes and helpers
Description

Lightweight, perceptually-uniform color tools with safe fallbacks.

Usage
resolve_cmap(name = "grays"”, n = 256)
Arguments
name Palette name (e.g., "grays", "viridis", "inferno", "magma", "plasma", "turbo",
"cividis"). Case-insensitive. If you pass a vector of colors, it’s returned un-
changed.

n Number of colors to generate.

ROlI-class

Value

A character vector of hex colors.

181

ROI-class ROI

Description

Base marker class for a region of interest (ROI)

ROICoords Create ROI Coordinates Object

Description

Creates an ROICoords object from a matrix of coordinates representing points in 3D space.

Usage

ROICoords(coords)

Arguments

coords A matrix with 3 columns representing (X, y, z) coordinates

Details

ROI Coordinates

Value

An ROICoords object

Examples

coords <- matrix(c(1,2,3, 4,5,6), ncol=3, byrow=TRUE)
roi_coords <- ROICoords(coords)

182 ROI'Vec

ROICoords-class ROICoords

Description

A class representing a region of interest (ROI) in a brain image, defined by a set of coordinates.
This class stores the geometric space of the image and the coordinates of the voxels within the ROI.

Slots

space An instance of class NeuroSpace representing the geometric space of the image data.

coords A matrix containing the coordinates of the voxels within the ROI. Each row represents a
coordinate as, e.g. (i, j, k).

ROIVec Create an instance of class ROIVec

Description

This function constructs an instance of the ROIVec class, which represents a region of interest (ROI)
in a 4D volume. The class stores the NeuroSpace object, voxel coordinates, and data values for the
ROL.

Usage

ROIVec(vspace, coords, data = matrix(1, nrow = 1, ncol = nrow(coords)))

Arguments
vspace An instance of class NeuroSpace with four dimensions, which represents the
dimensions, voxel spacing, and time points of the 4D volume.
coords A 3-column matrix of voxel coordinates for the region of interest.
data The matrix of data values associated with the region of interest, with each row
representing a voxel and each column representing a time point. By default, it
is a matrix with a number of rows equal to the number of rows in the ‘coords’
matrix and a single column filled with ones.
Value

An instance of class ROIVec, containing the NeuroSpace object, voxel coordinates, and data values
for the region of interest.

ROIVec-class 183

Examples

Create a NeuroSpace object
vspace <- NeuroSpace(dim = c(5, 5, 5, 10), spacing = c(1, 1, 1))

Define voxel coordinates for the ROI
coords <- matrix(c(1, 2, 3, 2, 2, 2, 3, 3, 3), ncol = 3)

Create a data matrix for the ROI
data <- matrix(rnorm(30), nrow = 10, ncol = 3)

Create a ROIVec object
roi_vec <- ROIVec(vspace, coords, data)

ROIVec-class ROIVec

Description

A class representing a vector-valued volumetric region of interest (ROI) in a brain image.

Slots

coords A matrix containing the 3D coordinates of the voxels within the ROI. Each row represents
a voxel coordinate as (X, y, z).

.Data A matrix containing the data values associated with each voxel in the ROI. Each row cor-
responds to a unique vector value, and the number of rows should match the number of rows
in the coords matrix.

Validity

An object of class ROIVec is considered valid if: - The coords slot is a matrix with 3 columns. -
The .Data slot is a matrix. - The number of rows in the .Data matrix is equal to the number of
rows in the coords matrix.

ROIVecWindow-class ROIVecWindow

Description

A class representing a spatially windowed, vector-valued volumetric region of interest (ROI) in a
brain image.

184 ROIVol

Slots

coords A matrix containing the 3D coordinates of the voxels within the ROI. Each row represents
a voxel coordinate as (X, y, z).

.Data A matrix containing the data values associated with each voxel in the ROI. Each row cor-
responds to a unique vector value, and the number of rows should match the number of rows
in the coords matrix.

parent_index An integer representing the 1D index of the center voxel in the parent space.

center_index An integer representing the location in the coordinate matrix of the center voxel
in the window.

Validity

An object of class ROIVecWindow is considered valid if: - The coords slot is a matrix with 3
columns. - The .Data slot is a matrix. - The number of rows in the .Data matrix is equal to the
number of rows in the coords matrix.

ROIVol Create ROI Volume Object

Description

Creates an ROIVol object representing a set of values at specific 3D coordinates within a spatial
reference system.

Usage

ROIVol(space, coords, data)

Arguments

space A NeuroSpace object defining the spatial reference
coords A matrix with 3 columns representing (X,y,z) coordinates

data A numeric vector of values corresponding to each coordinate

Details

ROI Volume

Value

An ROIVol object

ROIVol-class 185

Examples

space <- NeuroSpace(c(64,64,64))

coords <- matrix(c(1,2,3, 4,5,6), ncol=3, byrow=TRUE)
data <- c(1.5, 2.5)

roi_vol <- ROIVol(space, coords, data)

ROIVol-class ROIVol

Description

A class representing a volumetric region of interest (ROI) in a brain image, defined by a set of
coordinates and associated data values.

Slots
coords A matrix containing the 3D coordinates of the voxels within the ROI. Each row represents
a voxel coordinate as (X, y, z).

.Data A numeric vector containing the data values associated with each voxel in the ROI. The
length of this vector should match the number of rows in the coords matrix.

Validity

An object of class ROIVol is considered valid if: - The coords slot is a matrix with 3 columns. -
The .Data slot is a numeric vector. - The length of the .Data vector is equal to the number of rows
in the coords matrix.

ROIVolWindow-class ROIVolWindow

Description

A class representing a spatially windowed volumetric region of interest (ROI) in a brain image,
derived from a larger parent ROI.

Slots

parent_index An integer representing the 1D index of the center voxel in the parent space.
center_index An integer representing the location in the coordinate matrix of the center voxel
in the window.

coords A matrix containing the 3D coordinates of the voxels within the ROI. Each row represents
a voxel coordinate as (X, y, z).

.Data A numeric vector containing the data values associated with each voxel in the ROI. The
length of this vector should match the number of rows in the coords matrix.

186 scale_fill_neuro

Validity

An object of class ROIVolWindow is considered valid if: - The coords slot is a matrix with 3
columns. - The .Data slot is a numeric vector. - The length of the .Data vector is equal to the
number of rows in the coords matrix.

scale Generic Scale Method

Description

Scales an object by (typically) subtracting the mean and dividing by the standard deviation.

Usage
scale(x, ...)
Arguments
X The object to be scaled.
Additional arguments for scaling methods.
Value

An object of the same class as x, scaled by the specified method.

scale_fill_neuro A ggplot2 fill scale with neuroimaging-friendly defaults

Description

A ggplot2 fill scale with neuroimaging-friendly defaults

Usage
scale_fill_neuro(
cmap = "grays",
range = c("robust”, "data"),

probs = c(0.02, 0.98),
limits = NULL,

na.value = "transparent”,
guide = "colorbar”

scale_series 187

Arguments
cmap Palette name or vector of colors. See [resolve_cmap()].
range Either "robust" (quantiles) or "data" (min/max) to determine the default scale
limits when ‘limits‘ is not provided.
probs Two-length numeric vector of quantiles for ‘range="robust"*.
limits Optional numeric limits (min, max). Overrides ‘range‘.
na.value Color for NA.
guide Legend guide (default "colorbar").
Value

A ggplot2 scale object.

scale_series Generic functions to scale (center and/or normalize by standard devi-
ation) each series of a 4D image That is, if the 4th dimension is 'time’
each series is a 1D time series.

Description
Generic functions to scale (center and/or normalize by standard deviation) each series of a 4D image
That is, if the 4th dimension is "time’ each series is a 1D time series.

Usage

scale_series(x, center, scale)

S4 method for signature 'NeuroVec,logical,missing'’
scale_series(x, center, scale)

S4 method for signature 'NeuroVec,logical,logical'’
scale_series(x, center, scale)

S4 method for signature 'NeuroVec,missing,logical’
scale_series(x, center, scale)

S4 method for signature 'NeuroVec,missing,missing’
scale_series(x, center, scale)

Arguments
X a four dimensional image
center a logical value indicating whether series should be centered
scale a logical value indicating whether series should be divided by standard devia-

tion

188 searchlight

Value

An object of the same class as x, with each time series centered and/or scaled.

Examples

bvec <- NeuroVec(array(rnorm(24*24x24x24), c(24,24,24,24)), NeuroSpace(c(24,24,24,24), c(1,1,1)))
res <- scale_series(bvec, TRUE, TRUE)

searchlight Create an exhaustive searchlight iterator

Description

This function generates an exhaustive searchlight iterator that returns either voxel coordinates or
ROIVolWindow objects for each searchlight sphere within the provided mask. The iterator visits
every non-zero voxel in the mask as a potential center voxel.

Usage

searchlight(mask, radius, eager = FALSE, nonzero = FALSE, cores = 0)

Arguments
mask A NeuroVol object representing the brain mask.
radius A numeric value specifying the radius (in mm) of the spherical searchlight.
eager A logical value specifying whether to eagerly compute the searchlight ROIs.
Default is FALSE, which uses lazy evaluation.
nonzero A logical value indicating whether to include only coordinates with nonzero
values in the supplied mask. Default is FALSE.
cores An integer specifying the number of cores to use for parallel computation. De-
fault is 0, which uses a single core.
Value

A deferred_list object containing either matrices of integer-valued voxel coordinates or ROIVolWindow
objects, each representing a searchlight region.

Examples

Load an example brain mask
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2"))

Generate an exhaustive searchlight iterator with a radius of 6 mm

searchlights <- searchlight(mask, radius = 6, eager = FALSE)

searchlight-methods 189

searchlight-methods Searchlight Analysis Methods

Description

Methods for performing searchlight analyses on neuroimaging data

searchlight_coords Create an exhaustive searchlight iterator for voxel coordinates using
spherical_roi

Description

This function generates an exhaustive searchlight iterator that returns voxel coordinates for each
searchlight sphere within the provided mask, using ‘spherical_roi‘ for neighborhood computation.
The iterator visits every non-zero voxel in the mask as a potential center voxel.

Usage

searchlight_coords(mask, radius, nonzero = FALSE, cores = 0)

Arguments
mask A NeuroVol object representing the brain mask.
radius A numeric value specifying the radius (in mm) of the spherical searchlight.
nonzero A logical value indicating whether to include only coordinates with nonzero
values in the supplied mask. Default is FALSE.
cores An integer specifying the number of cores to use for parallel computation. De-
fault is 0, which uses a single core.
Value

A deferred_list object containing matrices of integer-valued voxel coordinates, each represent-
ing a searchlight region.

Examples

Load an example brain mask
mask <- read_vol(system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2"))

Generate an exhaustive searchlight iterator with a radius of 6 mm

searchlights <- searchlight_coords(mask, radius = 6)

190 searchlight_shape_functions

searchlight_shape_functions
Convenience shape generators for resampled_searchlight()

Description

Helpers that return ready-to-use shape_fun callbacks for resampled_searchlight(), covering a
few sensible non-spherical defaults.

Usage

ellipsoid_shape(scales = c(1, 1, 1), jitter = 0)
cube_shape()

blobby_shape(drop = 0.3, edge_fraction = 0.7)

Arguments
scales Length-3 positive numeric vector scaling the x/y/z axes relative to a sphere (for
ellipsoid_shape). Values >1 stretch; <1 compress.
jitter Non-negative numeric; standard deviation of multiplicative Gaussian noise ap-
plied to scales each draw (ellipsoid).
drop Numeric in [0,1]; probability of dropping a voxel (blobby).

edge_fraction Numericin (0,1]; fraction of farthest voxels (by Euclidean distance from the cen-
ter, in voxel units) considered "edge" and eligible for random dropping (blobby).
Details

Each returned function has signature function(mask, center, radius, iter, nonzero) and should
return an n X 3 integer coordinate matrix. The coordinates are later converted to a ROIVolWindow
internally.

Value

A function suitable for the shape_fun argument of resampled_searchlight().

Examples

mask <- read_vol(system.file("extdata”, "global_mask_v4.nii", package="neuroim2"))

Ellipsoid stretched along z with modest per-iteration jitter
sl_ellip <- resampled_searchlight(mask, radius = 6,
shape_fun = ellipsoid_shape(scales = c(1, 1, 1.4),
jitter = 0.1))

Simple axis-aligned cube (Chebyshev ball)

series 191

sl_cube <- resampled_searchlight(mask, radius = 5, shape_fun = "cube")

Blobby sphere with 40% dropout on boundary voxels
sl_blob <- resampled_searchlight(mask, radius = 6,
shape_fun = blobby_shape(drop = 0.4, edge_fraction = 0.6))

series Extract one or more series from object

Description

This function extracts time series data from specific voxel coordinates in a 4D neuroimaging object.
It supports multiple ways of specifying the coordinates:

e Linear indices (1D)
¢ Grid coordinates (3D matrix)

* Individual x,y,z coordinates

Usage

series(x, i, ...)

S4 method for signature 'ClusteredNeuroVec,numeric'
series(x, i, j, k, ...)

S4 method for signature 'NeuroVec,matrix’
series(x, 1)

S4 method for signature 'NeuroVec,matrix'
series_roi(x, i)

S4 method for signature 'NeuroVec,ROICoords'
series(x, 1)

S4 method for signature 'NeuroVec,ROICoords'
series_roi(x, i)

S4 method for signature 'NeuroVec,lLogicalNeuroVol'
series(x, 1)

S4 method for signature 'NeuroVec,NeuroVol'
series(x, 1)

S4 method for signature 'NeuroVec,LogicalNeuroVol'
series_roi(x, i)

192 series

S4 method for signature 'NeuroVec,integer'
series(x, i, j, k, drop = TRUE)

S4 method for signature 'DenseNeuroVec,integer'
series(x, i, j, k, drop = TRUE)

S4 method for signature 'NeuroVec,numeric'
series(x, i, j, k, drop = TRUE)

S4 method for signature 'NeuroVec,numeric'
series_roi(x, i, j, k, drop = TRUE)

S4 method for signature 'NeuroVecSeq,integer'
series(x, i, j, k, drop = TRUE)

S4 method for signature 'NeuroVecSeq,numeric'
series(x, i, j, k, drop = TRUE)

S4 method for signature 'NeuroVecSeq,matrix'
series(x, i)

S4 method for signature 'NeuroVecSeq,matrix'
series_roi(x, i)

S4 method for signature 'AbstractSparseNeuroVec,ROICoords'
series(x, i)

S4 method for signature 'AbstractSparseNeuroVec,matrix'
series(x, 1)

S4 method for signature 'AbstractSparseNeuroVec,numeric'
series(x, i, j, k)

S4 method for signature 'AbstractSparseNeuroVec,integer'
series(x, i, j, k, drop = TRUE)

Arguments

X A NeuroVecSeq object

i A matrix of ROI coordinates (n x 3)

additional arguments

j second dimension index

k third dimension index

drop whether to drop dimension of length 1
Value

A list or array containing the extracted series.

series,NeuroHyperVec,ANY-method 193

A matrix where each column represents a voxel’s time series

A ROIVec object containing the time series for the specified ROI

See Also

series_roi

Examples

Create a simple 4D neuroimaging vector (10x10x10 volume with 20 timepoints)
space <- NeuroSpace(c(10,10,10,20), c(1,1,1))
vec <- NeuroVec(array(rnorm(10*10%*10%x20), c(10,10,10,20)), space)

Extract time series using linear indices
ts1 <- series(vec, 1:10) # Get time series for first 10 voxels

Extract time series using 3D coordinates
coords <- matrix(c(1,1,1, 2,2,2, 3,3,3), ncol=3, byrow=TRUE)
ts2 <- series(vec, coords) # Get time series for 3 specific voxel locations

Extract single time series using x,y,z coordinates
ts3 <- series(vec, 5, 5, 5) # Get time series from middle voxel

series,NeuroHyperVec, ANY-method
Series method for NeuroHyperVec

Description

Series method for NeuroHyperVec

Usage
S4 method for signature 'NeuroHyperVec,ANY'
series(x, i, j, k, ...)
Arguments
X The NeuroHyperVec object
i first index
j second index
k third index

Additional arguments (not used)

194 series_roi

Details

when x is a NeuroHyperVec object, the series method returns a 2D array with dimensions [features
X trials]

Value

A 2D array with dimensions [features X trials]

series_roi Extract time series from specific voxel coordinates and return as ROl
object

Description

Extracts time series data from a NeuroVec object at specified voxel coordinates and returns it as an
ROI object.

Usage
series_roi(x, i, ...)
Arguments
X The NeuroVec object
i Numeric index for the first dimension
Additional arguments
Value

A ROIVec object containing the time series data for the specified coordinates.

See Also

series

Examples

Create a simple 4D neuroimaging vector
space <- NeuroSpace(c(10,10,10,20), c(1,1,1))
vec <- NeuroVec(array(rnorm(10x10%x10%20), c(10,10,10,20)), space)

Extract time series for first 100 voxels as ROI
roil <- series_roi(vec, 1:100)

Extract time series using 3D coordinates
coords <- matrix(c(1,1,1, 2,2,2, 3,3,3), ncol=3, byrow=TRUE)
roi2 <- series_roi(vec, coords)

show,NamedAxis-method 195

show,NamedAxis-method Show method for NamedAxis objects

Description

Show method for NamedAxis objects

Show method for ClusteredNeuroVec

Usage

S4 method for signature 'NamedAxis'
show(object)

S4 method for signature 'AxisSetiD'
show(object)

S4 method for signature 'AxisSet2D'
show(object)

S4 method for signature 'AxisSet3D'
show(object)

S4 method for signature 'AxisSet4D'
show(object)

S4 method for signature 'ClusteredNeuroVec'
show(object)

S4 method for signature 'ClusteredNeuroVol'
show(object)

S4 method for signature 'IndexLookupVol'
show(object)

S4 method for signature 'MappedNeuroVec'
show(object)

S4 method for signature 'FileMetalnfo'
show(object)
S4 method for signature 'NeuroHyperVec'
show(object)

S4 method for signature 'NeuroSlice'
show(object)

196 show,NamedAxis-method

S4 method for signature 'NeuroSpace'
show(object)

S4 method for signature 'NeuroVecSource'
show(object)

S4 method for signature 'NeuroVec'
show(object)

S4 method for signature 'DenseNeuroVec'
show(object)

S4 method for signature 'NeuroVecSeq'
show(object)

S4 method for signature 'NeuroVecSeq'
show(object)

S4 method for signature 'NeuroVol'
show(object)

S4 method for signature 'SparseNeuroVol'
show(object)

S4 method for signature 'Kernel'
show(object)

S4 method for signature 'ROIVol'
show(object)

S4 method for signature 'ROICoords'
show(object)

S4 method for signature 'ROIVec'
show(object)

S4 method for signature 'SparseNeuroVec
show(object)

Arguments

object A NamedAxis object

Value

Invisibly returns NULL, called for its side effect of displaying the object.

simulate_fmri 197

simulate_fmri Simulate fMRI Data

Description

Generates synthetic 4D fMRI data with realistic spatiotemporal properties including temporal auto-
correlation, spatial smoothness, heteroscedasticity, and optional global signal fluctuations and latent
components.

Usage

simulate_fmri(
mask,
n_time,
TR = 2,
spatial_fwhm = 6,
ar_mean = 0.45,
ar_sd = 0.08,
noise_sd = 1,
hetero_fwhm = 20,
hetero_strength = 0.6,
global_amp = 0.
global_rho = 0.
n_factors = 4,
factor_fwhm = 12,
factor_rho = 0.8,
seed = NULL,
return_centered = TRUE

2,
85,

)
Arguments
mask A NeuroVol object defining the brain mask region. Can be binary or continuous
(non-zero values define the mask).
n_time Integer specifying the number of time points to simulate.
TR Numeric value for the repetition time in seconds (default = 2.0). Currently used

only for metadata.

spatial_fwhm Numeric value specifying the spatial smoothness in mm (full width at half max-
imum) applied to each timepoint (default = 6).

ar_mean Numeric value for the mean of the AR(1) coefficient distribution across voxels
(default = 0.45).
ar_sd Numeric value for the standard deviation of the AR(1) coefficient distribution

(default = 0.08).

noise_sd Numeric value for the baseline noise standard deviation (default = 1.0).

198

hetero_fwhm

hetero_strength

global_amp

global_rho

n_factors

factor_fwhm

factor_rho

seed

return_centered

Details

simulate_fmri

Numeric value for the spatial scale (FWHM in mm) of the heteroscedasticity
field (default = 20).

Numeric value controlling the strength of spatial heteroscedasticity on log scale
(default = 0.6).

Numeric value for the amplitude of global signal fluctuations as a fraction of
median noise (default = 0.2). Set to 0 to disable.

Numeric value for the AR(1) coefficient of global signal (default = 0.85).

Integer specifying the number of latent spatial components (default = 4). Set to
0 to disable.

Numeric value for the spatial smoothness (FWHM in mm) of latent component
maps (default = 12).

Numeric value for the AR(1) coefficient of latent component time courses (de-
fault = 0.8).

Integer seed for random number generation (default = NULL for no seed).

Logical indicating whether to center each voxel’s time series to mean zero (de-
fault = TRUE).

The simulation combines several realistic features:

* Voxel-wise AR(1) temporal autocorrelation with spatial variation

 Spatial smoothing applied to innovations for realistic spatial correlation

» Heteroscedastic noise with smooth spatial modulation

* Optional low-frequency global signal fluctuations

* Optional latent spatial components resembling resting-state networks

The spatial smoothing uses the package’s optimized gaussian_blur function for efficiency.

Value

A NeuroVec object containing the simulated 4D fMRI data.

References

Welvaert, M., & Rosseel, Y. (2013). On the definition of signal-to-noise ratio and contrast-to-noise
ratio for fMRI data. PloS one, 8(11), e77089.

Examples

Create a simple spherical mask
dims <- c(32, 32, 20)
mask_array <- array(FALSE, dims)
center <- dims / 2

for (i in 1:dims[1]) {

slice

for (j in 1:dims[2]) {
for (k in 1:dims[3]) {
if (sum(((c(i,j,k) - center) / (dims/3))*2) <= 1) {
mask_array[i, j,k] <- TRUE

b
3
3
}

mask <- NeuroVol(mask_array, NeuroSpace(dims, c(3,3,3)))

Simulate 100 time points
sim_data <- simulate_fmri(mask, n_time = 100, seed = 42)

Check dimensions
dim(sim_data) # Should be c(32, 32, 20, 100)

199

slice

Extract image slice

Description

Extract a 2D slice from an image volume

Usage

slice(x, zlevel, along, orientation, ...)

S4 method for signature 'NeuroVol,numeric,numeric,missing'’
slice(x, zlevel, along, orientation)

S4 method for signature 'NeuroVol,numeric,NeuroSpace,AxisSet3D'
slice(x, zlevel, along, orientation)

Arguments
X
zlevel
along

orientation

Value

the object

coordinate (in voxel units) along the sliced axis
the axis along which to slice

the target orientation of the 2D slice

additional arguments

A 2D slice from the image volume.

200 slices

slices Extract an ordered series of 2D slices from a 3D or 4D object

Description
This function extracts an ordered series of 2D slices from a 3D or 4D object. The returned slices
are in the order they appear in the original object.

Usage

slices(x, ...)

S4 method for signature 'NeuroVol'

slices(x)
Arguments
X A NeuroVol object
Additional arguments to be passed to the underlying methods
Value

A list of 2D matrices, each containing a slice from the input x.

A deflist object containing functions that return 2D slices of the volume along the z-axis. The length
of the deflist equals the number of slices in the z dimension.

Examples

Create a simple 3D volume
space <- NeuroSpace(c(10,10,10), c(1,1,1))
vol <- NeuroVol(array(rnorm(10*10%10), c(10,10,10)), space)

Get all slices along the z-axis
slc <- slices(vol)

Number of slices equals the z dimension
length(slc) == dim(vol)[3]

Each slice is a 2D matrix
dim(slc[[1]1]1) == c(10,10)

space 201

space Extract Geometric Properties of an Image

Description

This function retrieves the geometric properties of a given image, such as dimensions and voxel
size.

Retrieves the NeuroSpace object associated with an IndexLookup Vol object.
Usage
space(x, ...)

S4 method for signature 'ClusteredNeuroVec'
space(x)

S4 method for signature 'IndexLookupVol'
space(x)

S4 method for signature 'ROICoords'
space(x)

S4 method for signature 'NeuroObj'
space(x)

S4 method for signature 'NeuroSpace'’

space(x)
Arguments
X An IndexLookupVol object
Additional arguments, if needed.
Value

A NeuroSpace object representing the geometric space of x.

Examples

Create a NeuroSpace object with dimensions (10, 10, 10) and voxel size (1, 1, 1)
x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))

Create a NeuroVol object with random data and the specified NeuroSpace
vol <- NeuroVol(rnorm(10 * 10 * 10), x)

Retrieve the geometric properties of the NeuroVol object
identical(x, space(vol))

202

space <- NeuroSpace(c(64, 64, 64), c(1, 1, 1), c(o, 0, 0))
ilv <- IndexLookupVol(space, c(1:100))
space(ilv) # Get the associated NeuroSpace object

spacing

spacing Extract Voxel Dimensions of an Image

Description

This function extracts the voxel dimensions of an image represented by the input object.

Usage
spacing(x)

S4 method for signature 'ROICoords'
spacing(x)

S4 method for signature 'NeuroObj'
spacing(x)

S4 method for signature 'NeuroSpace'’

spacing(x)

Arguments

X The object representing the image.

Value

A numeric vector specifying the voxel dimensions of x.

Examples

bspace <- NeuroSpace(c(10, 10, 10), c(2, 2, 2))
all.equal(spacing(bspace), c(2, 2, 2))

SparseNeuro Vec-class 203

SparseNeuroVec-class SparseNeuroVec Class

Description

A class representing a sparse four-dimensional brain image, optimized for efficient storage and
access of large, sparse neuroimaging data.

Constructs a SparseNeuroVec object for efficient representation and manipulation of sparse neu-
roimaging data with many zero or missing values.

Usage
SparseNeuroVec(data, space, mask, label = "")
Arguments
data A matrix or a 4-D array containing the neuroimaging data. The dimensions of
the data should be consistent with the dimensions of the provided NeuroSpace
object and mask.
space A NeuroSpace object representing the dimensions and voxel spacing of the neu-
roimaging data.
mask A 3D array, 1D vector of type logical, or an instance of type LogicalNeuroVol,
which specifies the locations of the non-zero values in the data.
label Optional character string providing a label for the vector
Details

SparseNeuroVec objects store data in a compressed format, where only non-zero values are retained.
This approach significantly reduces memory usage for sparse brain images. The class leverages the
mask and mapping from its parent class AbstractSparseNeuroVec to efficiently manage the spatial
structure of the data.

Value

A SparseNeuroVec object, containing the sparse neuroimaging data, mask, and associated Neu-
roSpace information.

Slots

data A matrix where each column represents a non-zero vector spanning the fourth dimension
(e.g., time series for each voxel). Rows correspond to voxels in the sparse domain defined by
the mask.

204 SparseNeuro VecSource-class

Inheritance
SparseNeuroVec inherits from:

* NeuroVec: Base class for 4D brain images
* AbstractSparseNeuroVec: Provides sparse representation framework

* ArraylLike4D: Interface for 4D array-like operations

See Also

AbstractSparseNeuroVec-class for the parent sparse representation class. NeuroVec-class for
the base 4D brain image class.

Examples

Create a sparse 4D brain image

mask <- LogicalNeuroVol(array(runif(64x64x32) > 0.7, c(64,64,32)), NeuroSpace(c(64,64,32)))
data <- matrix(rnorm(sum(mask) * 100), nrow=sum(mask), ncol=100)

sparse_vec <- SparseNeuroVec(data=data, mask=mask, space=NeuroSpace(dim=c(64,64,32,100)))

Access a subset of the data
subset <- sparse_vec[,,, 1:10]

bspace <- NeuroSpace(c(10,10,10,100), c(1,1,1))
mask <- array(rnorm(10x10x10) > .5, c(10,10,10))
mat <- matrix(rnorm(sum(mask)), 100, sum(mask))
svec <- SparseNeuroVec(mat, bspace, mask)
length(indices(svec)) == sum(mask)

SparseNeuroVecSource-class
SparseNeuroVecSource Class

Description
A class used to produce a SparseNeuroVec instance. It encapsulates the necessary information to
create a sparse representation of a 4D neuroimaging dataset.

Details

SparseNeuroVecSource acts as a factory for SparseNeuroVec objects. It holds the spatial mask
that determines which voxels will be included in the sparse representation. This class is typically
used in data loading or preprocessing pipelines where the sparse structure of the data is known or
determined before the full dataset is loaded.

Slots

mask An object of class LogicalNeuroVol representing the subset of voxels that will be stored in
memory. This mask defines the sparse structure of the resulting SparseNeuroVec.

SparseNeuro Vol-class 205

Inheritance
SparseNeuroVecSource inherits from:

* NeuroVecSource: Base class for NeuroVec source objects

See Also

SparseNeuroVec-class for the resulting sparse 4D neuroimaging data class. LogicalNeuroVol-class
for the mask representation.

Examples

Create a simple mask
mask_data <- array(runif(64x64x32) > 0.7, dim = c(64, 64, 32))
mask <- LogicalNeuroVol(mask_data, space = NeuroSpace(dim = c(64, 64, 32)))

Create a SparseNeuroVecSource
sparse_source <- new("SparseNeuroVecSource”, mask = mask)

SparseNeuroVol-class SparseNeuroVol Class

Description

This class represents a three-dimensional brain image using a sparse data representation. It is par-
ticularly useful for large brain images with a high proportion of zero or missing values, offering
efficient storage and processing.

Construct a SparseNeuroVol instance

Usage
SparseNeuroVol(data, space, indices = NULL, label = "")
Arguments
data a numeric vector or ROI'Vol
space an instance of class NeuroSpace
indices a index vector indicating the 1-d coordinates of the data values
label a character string
Details

The SparseNeuro Vol class extends the NeuroVol class and implements the ArrayLike3D interface.
It uses a sparseVector from the Matrix package to store the image data, which allows for memory-
efficient representation of sparse 3D neuroimaging data.

Image data is backed by Matrix: : sparseVector.

206 spatial-filter

Value

SparseNeuroVol instance

Slots

data A sparseVector object from the Matrix package, storing the image volume data in a sparse
format.

References

Bates, D., & Maechler, M. (2019). Matrix: Sparse and Dense Matrix Classes and Methods. R
package version 1.2-18. https://CRAN.R-project.org/package=Matrix

See Also

NeuroVol-class for the base volumetric image class. DenseNeuroVol-class for a dense repre-
sentation of 3D brain images.

Examples

Create a sparse 3D brain image
dim <- c(64L, 64L, 64L)
space <- NeuroSpace(dim = dim, origin = c(@, @, @), spacing = c(1, 1, 1))
sparse_data <- Matrix::sparseVector(x = c(1, 2, 3),

i = c(100, 1000, 10000),

length = prod(dim))
sparse_vol <- new("SparseNeuroVol", space = space, data = sparse_data)
sparse_vol[1000] ==

data <- 1:10

indices <- seq(1,1000, length.out=10)

bspace <- NeuroSpace(c(64,64,64), spacing=c(1,1,1))
sparsevol <- SparseNeuroVol(data,bspace,indices=indices)
densevol <- NeuroVol(data,bspace,indices=indices)

sum(sparsevol) == sum(densevol)
spatial-filter Spatial Filtering Methods for Neuroimaging Data
Description

Methods for applying spatial filters to neuroimaging data

spherical_roi 207

spherical_roi Create a Spherical Region of Interest

Description

Creates a Spherical ROI based on a centroid.

Usage
spherical_roi(
bvol,
centroid,
radius,
fill = NULL,
nonzero = FALSE,
use_cpp = TRUE
)
Arguments
bvol an NeuroVol or NeuroSpace instance
centroid the center of the sphere in positive-coordinate (i,j,k) voxel space.
radius the radius in real units (e.g. millimeters) of the spherical ROI
fill optional value(s) to store as data
nonzero if TRUE, keep only nonzero elements from bvol
use_cpp whether to use compiled c++ code
Value

an instance of class ROIVol

See Also

[spherical_roi_set()] for efficiently creating many spherical ROIs, [series_roi()] and [coords()] for
extracting time series and coordinates from ROIs, and the vignette: vignette("regionOfInterest”,
package = "neuroim2").

Examples

sp1 <- NeuroSpace(c(10,10,10), c(1,2,3))

create an ROI centered around the integer-valued positive voxel coordinate: i=5, j=5, k=5
cube <- spherical_roi(sp1, c(5,5,5), 3.5)

vox <- coords(cube)

cds <- coords(cube, real=TRUE)

fill in ROI with value of 6

cubel <- spherical_roi(spl, c(5,5,5), 3.5, fill=6)

all(cubel == 6)

208 spherical_roi_set

Create multiple spherical ROIs at once (preferred):
centers <- rbind(c(5,5,5), <(3,3,3), c(7,7,7))
vols <- spherical_roi_set(bvol = sp1,
centroids = centers, radius = 3.5, fill = 1)
length(vols) # 3

Equivalent, less efficient lapply variant:
vols2 <- lapply(seq_len(nrow(centers)), function(i) {
spherical_roi(sp1, centers[i,], radius = 3.5, fill = 1)

bl

create an ROI centered around the real-valued coordinates: x=5, y=5, z=5
vox <- coord_to_grid(sp1, c(5, 5, 5))
cube <- spherical_roi(spl, vox, 3.5)

spherical_roi_set Create Multiple Spherical Regions of Interest

Description

This function generates multiple spherical ROIs simultaneously, centered at the provided voxel
coordinates. It is more efficient than calling spherical_roi multiple times when you need to
create many ROIs.

Usage

spherical_roi_set(bvol, centroids, radius, fill = NULL, nonzero = FALSE)

Arguments
bvol A NeuroVol or NeuroSpace instance
centroids A matrix of voxel coordinates where each row represents a centroid (i,j,k)
radius The radius in real units (e.g. millimeters) of the spherical ROIs
fill Optional value(s) to store as data. If provided, must be either a single value or a
vector with length equal to the number of ROIs
nonzero If TRUE, keep only nonzero elements from bvol
Value

A list of ROIVolWindow objects, one for each centroid

split_blocks 209

Examples

Create a NeuroSpace object
sp1 <- NeuroSpace(c(10,10,10), c(1,2,3))

Create multiple ROIs centered at different voxel coordinates
centroids <- matrix(c(5,5,5, 3,3,3, 7,7,7), ncol=3, byrow=TRUE)
rois <- spherical_roi_set(sp1, centroids, 3.5)

Create ROIs with specific fill values
rois <- spherical_roi_set(sp1, centroids, 3.5, fill=c(1,2,3))

split_blocks Cut a vector-valued object into a list of sub-blocks

Description

Splits a vector-valued object into a list of sub-blocks defined by a vector of indices.

Usage

split_blocks(x, indices, ...)

S4 method for signature 'NeuroVec,integer'
split_blocks(x, indices, ...)

S4 method for signature 'NeuroVec,factor'
split_blocks(x, indices, ...)

S4 method for signature 'NeuroVec,factor'

split_blocks(x, indices, ...)
Arguments
X a vector-valued object
indices a vector of indices defining the sub-blocks. Must match the length of the input
vector.

additional arguments

Value

A list of sub-blocks, where each sub-block contains the elements from x corresponding to the
matching indices.

210 split_clusters

Examples

Create a 4D neuroimaging vector with 20 timepoints
space <- NeuroSpace(c(10,10,10,20), c(1,1,1))
vec <- NeuroVec(array(rnorm(10x10%x10%20), c(10,10,10,20)), space)

Split into 4 blocks by assigning timepoints to blocks 1-4 repeatedly
block_indices <- rep(1:4, length.out=20)
blocks <- split_blocks(vec, block_indices)

split_clusters Cut an object into a list of spatial or spatiotemporal clusters

Description

This function cuts an object into a list of sub-objects based on a vector of cluster indices. The
resulting list contains each of the clusters as separate objects.

These methods split a NeuroVec object into multiple ROIVec objects based on cluster assignments.

Usage

split_clusters(x, clusters, ...)

S4 method for signature 'NeuroVec,ClusteredNeuroVol'
split_clusters(x, clusters, ...)

S4 method for signature 'NeuroVec,integer'
split_clusters(x, clusters, ...)

S4 method for signature 'NeuroVol,ClusteredNeuroVol'
split_clusters(x, clusters)

S4 method for signature 'NeuroVol,integer'
split_clusters(x, clusters)

S4 method for signature 'NeuroVol,numeric'
split_clusters(x, clusters)

S4 method for signature 'ClusteredNeuroVol,missing'’
split_clusters(x, clusters)

S4 method for signature 'NeuroVec,integer'
split_clusters(x, clusters, ...)

S4 method for signature 'NeuroVec,numeric'
split_clusters(x, clusters, ...)

split_clusters 211

S4 method for signature 'NeuroVec,ClusteredNeuroVol'

split_clusters(x, clusters, ...)
Arguments
X A NeuroVec object to be split.
clusters Either a ClusteredNeuroVol object or an integer vector of cluster assignments.

Additional arguments to be passed to methods.

Details
There are two methods for splitting clusters:

* Using a ClusteredNeuro Vol object: This method uses the pre-defined clusters in the Clustered-
NeuroVol object.

 Using an integer vector: This method allows for custom cluster assignments.

methods return a deflist, which is a lazy-loading list of ROIVec objects.

Value

A list of sub-objects, where each sub-object corresponds to a unique cluster index.

A deflist (lazy-loading list) of ROIVec objects, where each element corresponds to a cluster.

See Also

NeuroVec-class, ClusteredNeuroVol-class, ROIVec-class

Examples

Create a synthetic 3D volume and its NeuroSpace

space <- NeuroSpace(c(10, 10, 10,4))

vol_data <- array(rnorm(10 * 10 * 10 *x 4), dim = c(10, 10, 10,4))
neuro_vec <- NeuroVec(vol_data, space)

Create a binary mask (e.g., select voxels with values > 0)
mask_data <- as.logical(neuro_vec[[1]] > .5)
mask_vol <- LogicalNeuroVol(mask_data, NeuroSpace(c(10, 10, 10)))

Extract indices and coordinates for the masked voxels
mask_idx <- which(mask_data)
coords <- index_to_coord(mask_vol, mask_idx)

Perform k-means clustering on the coordinates (e.g., 3 clusters)
set.seed(123) # for reproducibility

k_res <- kmeans(coords, centers = 3)

Create a ClusteredNeuroVol using the mask and k-means cluster assignments
clustered_vol <- ClusteredNeuroVol(mask_vol, k_res$cluster)

Split the NeuroVec by clusters using the ClusteredNeuroVol method

212 split_clusters

split_result_clust <- split_clusters(neuro_vec, clustered_vol)

Calculate and print the mean value for each cluster
means_clust <- sapply(split_result_clust, function(x) mean(values(x)))
print(means_clust)

Alternatively, create an integer vector of cluster assignments:
cluster_assignments <- numeric(prod(dim(space)[1:3]))
cluster_assignments[mask_idx] <- k_res$cluster

split_result_int <- split_clusters(neuro_vec, as.integer(cluster_assignments))

Verify that both splitting methods yield the same cluster means
means_int <- sapply(split_result_int, function(x) mean(values(x)))
print(all.equal(sort(means_clust), sort(means_int)))

Create a simple example space and data

space <- NeuroSpace(c(10, 10, 10,4))

data <- array(rnorm(1000%4), dim = c(10, 10, 10,4))
vec <- NeuroVec(data, space)

Create a mask for clustering (e.g., values > 0)
mask <- vec[,,,1]1 > @
mask_vol <- LogicalNeuroVol(as.array(mask), NeuroSpace(c(10, 10, 10)))

Get coordinates of masked voxels for clustering
mask_idx <- which(mask)
coords <- index_to_coord(mask_vol, mask_idx)

Perform clustering on the coordinates (3 clusters for example)
set.seed(123) # for reproducibility
kmeans_result <- kmeans(coords, centers = 3)

Create a ClusteredNeuroVol
clustered_vol <- ClusteredNeuroVol(mask_vol, kmeans_result$cluster)

Split the NeuroVec by clusters
split_result <- split_clusters(vec, clustered_vol)

Calculate mean value for each cluster
cluster_means <- sapply(split_result, function(x) mean(values(x)))
print(cluster_means)

Alternative: using integer cluster assignments

cluster_indices <- numeric(prod(dim(space)[1:3]1))
cluster_indices[mask_idx] <- kmeans_result$cluster

split_result2 <- split_clusters(vec, as.integer(cluster_indices))

Verify both methods give same results
cluster_means2 <- sapply(split_result2, function(x) mean(values(x)))
print(all.equal(sort(cluster_means), sort(cluster_means2)))

split_fill 213

split_fill Fill Disjoint Sets of Values with the Output of a Function

Description

This function splits an object into disjoint sets of values based on a factor, applies a specified
function to each set, and returns a new object with the original values replaced by the function’s
output.

Usage
split_fill(x, fac, FUN)

S4 method for signature 'NeuroVol,factor,function’
split_fill(x, fac, FUN)

Arguments

X The object to split.

fac The factor to split by.

FUN The function used to summarize the sets.
Details

The FUN function can either return a scalar for each input vector or a vector equal to the length of the
input vector. If it returns a scalar, every voxel in the set will be filled with that value in the output
vector.

Value

An object of the same class as x, with values replaced by the output of FUN.

Examples

Summarize with mean -- FUN returns a scalar
x <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))

vol <- NeuroVol(rnorm(10 * 10 * 10), x)

fac <- factor(rep(1:10, length.out=1000))
ovol.mean <- split_fill(vol, fac, mean)
identical(dim(ovol.mean), dim(vol))
length(unique(as.vector(ovol.mean))) == 10

Transform by reversing vector -- FUN returns a vector
ovol2 <- split_fill(vol, fac, rev)

214 split_reduce

split_reduce Summarize Subsets of an Object by Splitting by Row and Applying a
Summary Function

Description

This function summarizes subsets of a numeric matrix or matrix-like object by first splitting the
object by row and then applying a summary function.

Usage

split_reduce(x, fac, FUN)

S4 method for signature 'matrix,integer,function’
split_reduce(x, fac, FUN)

S4 method for signature 'matrix,factor,missing'’
split_reduce(x, fac)

S4 method for signature 'matrix,factor,function'
split_reduce(x, fac, FUN)
S4 method for signature 'NeuroVec,factor,function’
split_reduce(x, fac, FUN)

S4 method for signature 'NeuroVec,factor,missing'
split_reduce(x, fac, FUN)

Arguments
X A numeric matrix or matrix-like object.
fac A factor to define subsets of the object.
FUN The summary function to apply to each subset. If not provided, the mean of each
sub-matrix column is computed.
Details

If "TFUN’ is supplied, it must take a vector and return a single scalar value. If it returns more than
one value, an error will occur.

If ’x’ is a NeuroVec instance, voxels (dimensions 1:3) are treated as columns and time-series (di-
mension 4) as rows. The summary function is then applied to groups of voxels. However, if the
goal is to apply a function to groups of time-points.

Value

A matrix (or matrix-like object) containing the summarized values after applying FUN.

split_scale 215

Examples

mat = matrix(rnorm(100x100), 100, 100)

fac = factor(sample(1:3, nrow(mat), replace=TRUE))
Compute column means of each sub-matrix

ms <- split_reduce(mat, fac)
all.equal(row.names(ms), levels(fac))

Compute column medians of each sub-matrix
ms <- split_reduce(mat, fac, median)

Compute time-series means grouped over voxels.

Here, 'length(fac)' must equal the number of voxels: 'prod(dim(bvec)[1:31)'

bvec <- NeuroVec(array(rnorm(24*24x24x24), c(24,24,24,24)), NeuroSpace(c(24,24,24,24), c(1,1,1)))
fac <- factor(sample(1:3, prod(dim(bvec)[1:3]), replace=TRUE))

ms <- split_reduce(bvec, fac)

ms2 <- split_reduce(bvec, fac, mean)

all.equal(row.names(ms), levels(fac))

all.equal(ms, ms2)

split_scale Center and/or Scale Row-subsets of a Matrix or Matrix-like Object

Description

This function centers and/or scales the row-subsets of a numeric matrix or matrix-like object.

Usage

split_scale(x, f, center, scale)

S4 method for signature 'matrix,factor,logical,logical’
split_scale(x, f, center = TRUE, scale = TRUE)

S4 method for signature 'matrix,factor,missing,missing'’
split_scale(x, f)

S4 method for signature 'DenseNeuroVec,factor,missing,missing’
split_scale(x, f)

S4 method for signature 'DenseNeuroVec,factor,logical,missing’
split_scale(x, f, center)

S4 method for signature 'DenseNeuroVec,factor,logical,logical’
split_scale(x, f, center, scale)

216 square_roi

Arguments
X A numeric matrix or matrix-like object.
f The splitting object, typically a factor or a set of integer indices. Must be equal
to the number of rows in the matrix.
center Should values within each submatrix be centered? If TRUE, the mean is re-
moved from each column of the submatrix.
scale Should values be scaled? If TRUE, the vector is divided by the standard devia-
tion for each column of the submatrix.
Value

An object of the same class as x, with row-subsets centered and/or scaled according to f.

Examples

M <- matrix(rnorm(1000), 10, 100)
fac <- factor(rep(1:2, each=5))
Ms <- split_scale(M, fac)

Correctly centered
all(abs(apply(Ms[fac == 1,1, 2, mean)) < .000001)
all(abs(apply(Ms[fac == 2,], 2, mean)) < .000001)

Correctly scaled
all.equal(apply(Ms[fac == 1,1, 2, sd), rep(1, ncol(Ms)))
all.equal(apply(Ms[fac == 2,1, 2, sd), rep(1, ncol(Ms)))

square_roi Create a square region of interest

Description
This function creates a square region of interest (ROI) in a 3D volume, where the z-dimension is
fixed at one voxel coordinate. The ROI is defined within a given NeuroVol or NeuroSpace instance.
Usage

square_roi(bvol, centroid, surround, fill = NULL, nonzero = FALSE, fixdim = 3)

Arguments
bvol A NeuroVol or NeuroSpace instance representing the 3D volume or space.
centroid A numeric vector of length 3, representing the center of the square ROI in voxel
coordinates.
surround A non-negative integer specifying the number of voxels on either side of the

central voxel.

strip_extension

fill

nonzero

fixdim

Value

217

An optional value or values to assign to the data slot of the resulting ROL. If not
provided, no data will be assigned.

A logical value indicating whether to keep only nonzero elements from bvol. If
bvol is a NeuroSpace instance, this argument is ignored.

A logical value indicating whether the fixed dimension is the third, or z, dimen-
sion. Default is TRUE.

An instance of class ROIVol representing the square ROI.

Examples

sp1 <- NeuroSpace(c(10, 10, 10), c(1, 1, 1))
square <- square_roi(spl, c(5, 5, 5), 1)

vox <- coords(square)

a3 X 3 X 1 grid

nrow(vox) == 9

strip_extension

Generic function to strip extension from file name, given a FileFormat
instance.

Description

Removes the file extension from a given file name based on the FileFormat specifications.

Usage

strip_extension(x, file_name)

S4 method for signature 'FileFormat,character'’
strip_extension(x, file_name)

Arguments

X

file_name

Details

A FileFormat object specifying the format requirements

A character string specifying the file name to strip the extension from

The function performs the following steps:

1. If the file_name matches the header file format, it removes the header extension.

2. If the file_name matches the data file format, it removes the data extension.

3. If the file_name doesn’t match either format, it throws an error.

218 sub_vector

Value

A character string file_name without its extension.

A character string representing the file name without the extension

See Also

header_file, data_file for related file name manipulation

Examples

Create a FileFormat for NIFTI files

fmt <- new("FileFormat"”,
header_extension = "nii”,
data_extension = "nii”

Strip extension from a NIFTI file
strip_extension(fmt, "brain_scan.nii”) # Returns "brain_scan”

sub_vector Generic function to extract a sub-vector from a NeuroVec object.

Description

Extracts a subset of volumes from a file-backed neuroimaging vector and returns them as a dense
(in-memory) vector.

Extracts a subsequence of volumes from a NeuroVecSeq object.
Usage
sub_vector(x, i, ...)

S4 method for signature 'FileBackedNeuroVec,numeric'
sub_vector(x, i)

S4 method for signature 'NeuroVec,numeric'
sub_vector(x, i)

S4 method for signature 'NeuroVecSeq,numeric'
sub_vector(x, i)

S4 method for signature 'NeuroVecSeq,numeric'
sub_vector(x, i)

S4 method for signature 'SparseNeuroVec,numeric'
sub_vector(x, i)

Summary-methods 219

Arguments
X A NeuroVecSeq object
i Numeric vector of indices specifying the time points to extract
additional arguments
Details

This method efficiently reads only the requested volumes from disk, converting them to an in-
memory representation. The spatial metadata is preserved but adjusted to reflect the new number of
volumes.

Memory usage is proportional to the number of volumes requested, not the size of the full dataset.

Value

A NeuroVec object that is a sub-sequence of the supplied object.

A NeuroVecSeq object containing the extracted subsequence

Examples

bvec <- NeuroVec(array(rnorm(24x24x24%24), c(24,24,24,24)), NeuroSpace(c(24,24,24,24), c(1,1,1)))
vec <- sub_vector(bvec,1:2)
all.equal(2, dim(vec)[4])

vec <- sub_vector(bvec, c(1,3,5,7))
all.equal(4, dim(vec)[4])

mask <- LogicalNeuroVol(rep(TRUE, 24%*24%x24), NeuroSpace(c(24,24,24), c(1,1,1)))
svec <- SparseNeuroVec(array(rnorm(24x24%x24%24), c(24,24,24,24)),
NeuroSpace(c(24,24,24,24), c(1,1,1)), mask)

vec <- sub_vector(svec, c(1,3,5))

all.equal(3, dim(vec)[4])

Summary-methods Summary Methods for Neuroimaging Objects

Description
Methods for the Summary group generic (e.g., sum, min, max, range, prod, any, all) applied to
neuroimaging data objects.

Usage

S4 method for signature 'SparseNeuroVec'
Summary(x, ..., na.rm = FALSE)

S4 method for signature 'SparseNeuroVol'
Summary(x, ..., na.rm = FALSE)

220 theme_neuro

S4 method for signature 'DenseNeuroVol'
Summary(x, ..., na.rm = FALSE)

S4 method for signature 'DenseNeuroVol'

Summary(x, ..., na.rm = FALSE)
Arguments
X A neuroimaging object (SparseNeuroVec, SparseNeuroVol, or DenseNeuroVol)

Additional arguments passed to methods

na.rm Logical indicating whether to remove NA values before computation

Value

The result of the summary operation

Examples

Create a simple volume

vol <- DenseNeuroVol(array(1:27, c(3,3,3)),
NeuroSpace(c(3L,3L,3L), c(1,1,1)))

sum(vol)

range(vol)

theme_neuro A minimal, publication-friendly theme for image slices

Description

Quiet axes, thin panel border, no grid, generous margins, slim legend.

Usage

theme_neuro(base_size = 10, base_family = "")
Arguments

base_size Base font size.

base_family Base font family.

TIME

221

TIME Time axis

Description

Represents the temporal dimension in neuroimaging data

Usage

TIME

Format

An object of class NamedAxis of length 1.

TimeAxis Time axis set

Description

A one-dimensional axis set representing time

Usage

TimeAxis

Format

An object of class AxisSet1D of length 1.

trans Extract image coordinate transformation

Description

Extract image coordinate transformation

Get transformation matrix

222 values

Usage

trans(x)

S4 method for signature 'Metalnfo’
trans(x)

S4 method for signature 'NeuroObj
trans(x)

S4 method for signature 'NeuroSpace'
trans(x)
Arguments

X an object with a transformation

Details

This function returns a transformation that can be used to go from "grid coordinates" to "real world
coordinates" in millimeters. see NeuroSpace

Value

A numeric 4x4 matrix that maps from grid coordinates to real-world coordinates.

Examples

bspace <- NeuroSpace(c(10,10,10), c(2,2,2))
trans(bspace)
all.equal(dim(trans(bspace)), c(4,4))

values Extract Data Values of an Object

Description

Extract Data Values of an Object
Usage
values(x, ...)

S4 method for signature 'ClusteredNeuroVec'
values(x)

S4 method for signature 'DenseNeuroVol'
values(x)

vectors 223

S4 method for signature 'SparseNeuroVol'
values(x)

S4 method for signature 'ROIVol'
values(x, ...)

S4 method for signature 'ROIVec'
values(x, ...)
Arguments

X the object to get values from

additional arguments

Value

A vector or array containing the values extracted from x.

Examples

x <- NeuroSpace(c(10,10,10), c(1,1,1))
vol <- NeuroVol(rnorm(1@ * 10 * 10), x)
values(vol)

vectors Extract an ordered list of 1D vectors.

Description

This function extracts an ordered list of 1D vectors from an object that supplies vector data. The
subset argument specifies the subset of vectors to extract, and can be a vector of indices or a logical
vector. The return value is a list containing the extracted vectors in the same order as the specified
indices.

Usage
vectors(x, subset, ...)

S4 method for signature 'NeuroVec,missing'’
vectors(x)

S4 method for signature 'DenseNeuroVec,missing'’
vectors(x)

S4 method for signature 'NeuroVec,numeric'
vectors(x, subset)

224

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x)

S4 method for signature
vectors(x)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x, subset)

S4 method for signature
vectors(x, subset)

S4 method for signature 'SparseNeuroVec,missing'

vectors(x, nonzero = FALSE)

A list containing the extracted vectors from x in the same order as subset.

'NeuroVec, logical'

'NeuroVecSeq,missing'

'"NeuroVecSeq, numeric'

'"NeuroVecSeq, logical'

'ROIVec,missing'

'matrix,missing’

'ROIVec, integer'

'matrix, integer’

'matrix,numeric’

'ROIVec,numeric’

'ROIVec,logical’

Arguments
X the object that supplies the vector data.
subset the subset of vectors to extract.
additional arguments to be passed to methods.
nonzero only include nonzero vectors in output list
Value

vectors

vec_from_vols 225

A deflist object where each element is a function that returns the time series for a voxel. The length
of the deflist equals the total number of voxels.

Examples

file_name <- system.file("extdata”, "global_mask_v4.nii", package="neuroim2")
vec <- read_vec(file_name)
v <- vectors(vec)

mean(v[[1]1D)

vec_from_vols Create NeuroVec from list of NeuroVol objects

Description

Factory function to create a NeuroVec object from a list of NeuroVol objects. This is a convenience
wrapper around the NeuroVec constructor that combines multiple 3D volumes into a single 4D
NeuroVec.

Usage

vec_from_vols(vols, mask = NULL)

Arguments
vols A list of NeuroVol objects. All volumes must have identical spatial dimensions.
mask An optional logical array or LogicalNeuroVol object defining the subset of
voxels to include. If provided, a SparseNeuroVec will be created.
Value

A NeuroVec object (either DenseNeuroVec or SparseNeuroVec depending on whether a mask is
provided).

See Also

NeuroVec, NeuroVol

Examples

Create a simple NeuroVec from list of volumes
spc <- NeuroSpace(c(10, 10, 10))

vol1l <- NeuroVol(rnorm(10x10%10), spc)

vol2 <- NeuroVol(rnorm(10x10%10), spc)

vec <- vec_from_vols(list(voll, vol2))
print(dim(vec)) # Should be c(10, 10, 10, 2)

226 vols

vols Extract an ordered series of 3D volumes.

Description

This function extracts an ordered series of 3D volumes from an object that supplies volume data.
The indices argument specifies the subset of volumes to extract, and can be a vector of indices or
a logical vector. The return value is a list containing the extracted volumes in the same order as the
specified indices.

Usage
vols(x, indices, ...)

S4 method for signature 'NeuroVec,numeric'
vols(x, indices)

S4 method for signature 'NeuroVec,missing'

vols(x)
Arguments
X the object that supplies the volume data.
indices the subset of volumes to extract.
additional arguments to be passed to methods.
Value

A list containing the extracted 3D volumes from x in the same order as indices.

Examples

vec <- read_vec(system.file("extdata”, "global_mask_v4.nii"”, package="neuroim2"))
vs <- vols(vec)
length(vs) == dim(vec)[4]

vs <- vols(vec, indices=1:3)
length(vs) ==

voxels 227

voxels extract voxel coordinates

Description

extract voxel coordinates

Usage
voxels(x, ...)

S4 method for signature 'Kernel'
voxels(x, center_voxel = NULL)

Arguments
X the object to extract voxels from
additional arguments to function

center_voxel the absolute location of the center of the voxel, default is (0,0,0)

Value

A matrix or vector representing voxel coordinates from x.

Examples

Create a 3D kernel with dimensions 3x3x3 and voxel size 1x1x1
kern <- Kernel(kerndim = ¢(3,3,3), vdim = c(1,1,1))

Get voxel coordinates centered at origin (0,0,0)

vox <- voxels(kern)

Returns a matrix where each row is a voxel coordinate
relative to the kernel center

Get voxel coordinates centered at specific point (5,5,5)
vox_centered <- voxels(kern, center_voxel = c(5,5,5))
Returns coordinates shifted to be centered at (5,5,5)

228 write_elements

which_dim Find Dimensions of a Given Axis

Description
This function returns the dimension of the specified axis for a given object, such as a matrix or an
array.

Usage
which_dim(x, axis)

S4 method for signature 'NeuroSpace,NamedAxis'
which_dim(x, axis)

Arguments
X The NeuroSpace object
axis The NamedAxis to find
Value

An integer representing the dimension index of the specified axis for the object x.

Examples

x <- NeuroSpace(c(10,10,10), spacing=c(1,1,1))
which_dim(x, x@axes@j) ==

write_elements Write a sequence of elements from an input source

Description

Write a sequence of elements from an input source

Usage

write_elements(x, els)

S4 method for signature 'BinaryWriter,numeric'
write_elements(x, els)
Arguments

X the output channel

els the elements to write

write_vec 229

Value

Invisibly returns NULL after writing the elements.

Examples

Create a temporary binary file for writing
tmp <- tempfile()
writer <- BinaryWriter(tmp, byte_offset = oL,
data_type = "DOUBLE", bytes_per_element = 8L)

Write some random data
data <- rnorm(100)
write_elements(writer, data)
close(writer)

Read back the data to verify
reader <- BinaryReader(tmp, byte_offset = oL,
data_type = "double”, bytes_per_element = 8L)
read_data <- read_elements(reader, 100)
close(reader)

Verify data was written correctly
all.equal(data, read_data)

Clean up
unlink(tmp)

Create a temporary binary file for writing
tmp <- tempfile()
writer <- BinaryWriter(tmp, byte_offset = oL,
data_type = "DOUBLE", bytes_per_element = 8L)
Write some data
write_elements(writer, rnorm(100))
close(writer)

Clean up
unlink(tmp)

write_vec Write a 4d image vector to disk

Description

Write a 4d image vector to disk

230 write_vec
Usage
write_vec(x, file_name, format, data_type, ...)
S4 method for signature 'ROIVec,character,missing,missing'
write_vec(x, file_name)
S4 method for signature 'NeuroVec,character,missing,missing'’
write_vec(x, file_name)
S4 method for signature 'NeuroVec,character,character,missing’
write_vec(
X y
file_name,
format,
nbit = FALSE,
compression = 5,
chunk_dim = c(10, 10, 10, dim(x)[41)
)
S4 method for signature 'NeuroVec,character,missing,character’
write_vec(x, file_name, data_type)
S4 method for signature 'ROIVec,character,missing,missing'
write_vec(x, file_name)
S4 method for signature 'NeuroVec,character,missing,missing'’
write_vec(x, file_name)
S4 method for signature 'NeuroVec,character,character,missing’
write_vec(
X,
file_name,
format,
nbit = FALSE,
compression = 5,
chunk_dim = c(10, 10, 10, dim(x)[41)
)
S4 method for signature 'NeuroVec,character,missing,character'’
write_vec(x, file_name, data_type)
Arguments
X an image object, typically a NeuroVec instance.
file_name output file name.
format file format string. Since "NIFTI" is the only currently supported format, this

parameter can be safely ignored and omitted.

write_vol

data_type

nbit
compression

chunk_dim

Value

231

the numeric data type. If specified should be a character vector of: "BINARY",
"UBYTE", "SHORT", "INT", "FLOAT", "DOUBLE". Otherwise output format
will be inferred from R the datatype of the image.

extra args
set nbit compression
compression level 1 to 9

the dimensions of each chunk

Invisibly returns NULL after writing the vector to disk.

Examples

bvec <- NeuroVec(array(@, c(10,10,10,10)), NeuroSpace(c(10,10,10,10), c(1,1,1)))

Create temporary files
tmpl <- tempfile(fileext = ".nii"

Write vectors to temporary files
write_vec(bvec, tmpl)

Clean up
unlink(tmp1)

write_vol

Write a 3d image volume to disk

Description

Write a 3d image volume to disk

Usage

write_vol(x,

S4 method
write_vol(x,

S4 method
write_vol(x,

S4 method
write_vol(x,

S4 method

file_name, format, data_type)

for signature 'NeuroVol,character,missing,missing'’
file_name)

for signature 'ClusteredNeuroVol,character,missing,missing'’
file_name)

for signature 'NeuroVol,character,character,missing'’
file_name, format)

for signature 'ROIVol,character,character,missing’

232 [AbstractSparseNeuro Vec,numeric,numeric, AN Y-method

write_vol(x, file_name, format)

S4 method for signature 'NeuroVol,character,missing,character'’
write_vol(x, file_name, data_type)

Arguments
X an image object, typically a NeuroVol instance.
file_name output file name
format file format string. Since "NIFTI" is the only currently supported format, this
parameter can be safely ignored and omitted.
data_type output data type, If specified should be a character vector of: "BINARY",
"UBYTE", "SHORT", "INT", "FLOAT", "DOUBLE". Otherwise output format
will be inferred from R the datatype of the image.
Details

The output format will be inferred from file extension.

The output format will be inferred from file extension. write_vol(x, "out.nii") outputs a NIFTI
file. write_vol(x, "out.nii.gz") outputs a gzipped NIFTI file.

No other file output formats are currently supported.

Value

Invisibly returns NULL after writing the volume to disk.

Examples

bvol <- NeuroVol(array(@, c(10,10,10)), NeuroSpace(c(10,10,10), c(1,1,1)))

tmp1 <- tempfile(fileext = ".nii"
write_vol(bvol, tmpl)
unlink(tmp1)

[,AbstractSparseNeuroVec,numeric,numeric,ANY-method
Extractor Method for AbstractSparseNeuroVec

Description

Extracts a subset of data from a sparse four-dimensional brain image based on provided indices.

Usage

S4 method for signature 'AbstractSparseNeuroVec,numeric,numeric,ANY'
x[i, j, k, m, ..., drop = TRUE]

[,DenseNeuro Vol,numeric,missing, AN Y-method

Arguments

X

drop

Value

An object of class AbstractSparseNeuroVec

Numeric vector specifying the indices for the first dimension
Numeric vector specifying the indices for the second dimension
Numeric vector specifying the indices for the third dimension (optional)

Numeric vector specifying the indices for the fourth dimension (optional)

Additional arguments passed to methods

233

Logical indicating whether to drop dimensions of length one (default: TRUE)

An array containing the extracted subset

[,DenseNeuroVol,numeric,missing, ANY-method

Extract or replace parts of an object

Description

Extract or replace parts of an object

Usage

S4 method
x[i, 3, k,

S4 method
X[i, j’ k!

S4 method
x[i, 3, k,

S4 method
x[i, j, k,

S4 method
x[i, 3, ...,

S4 method
x[i, j, k,

for signature 'DenseNeuroVol,numeric,missing,ANY'
., drop = TRUE]

for signature 'DenseNeuroVol,integer,missing,ANY'
., drop = TRUE]

for signature 'NeuroVol,ROIVol,missing,ANY'
., drop = TRUE]

for signature 'DenseNeuroVol,R0IVol,missing,ANY'
., drop = TRUE]

for signature 'ROIVol,numeric,missing,ANY'
drop = TRUE]

for signature 'ROIVol,logical,missing,ANY'
., drop = TRUE]

234 [[,Neuro Vec,numeric-method

Arguments
X The object to extract from
i Index specifying elements to extract
j Second index (if applicable)
k Third index for 3D objects (if applicable)
Additional arguments passed to methods
drop Whether to drop dimensions of length 1
Value

A subset of the input object, with dimensions depending on the indexing and the ‘drop‘ parameter.

[[,NeuroVec,numeric-method

[l

Description

This function extracts a single volume from a NeuroVec object.

Usage

S4 method for signature 'NeuroVec,numeric'

x[[i]1]

Arguments

X The NeuroVec object.

i The volume index to extract.

Value

a DenseNeuro Vol object

[[,NeuroVecSeq,numeric-method 235

[[,NeuroVecSeq, numeric-method
Extract Element from NeuroVecSeq

Description

Extracts a single volume from a NeuroVecSeq object at the specified time point.

Usage
S4 method for signature 'NeuroVecSeq,numeric'
x[[i]]

Arguments

X A NeuroVecSeq object

i Numeric index specifying the time point to extract

Value

A NeuroVol object representing the extracted volume

[[,SparseNeuroVec,numeric-method

[l
Description
(L
Usage
S4 method for signature 'SparseNeuroVec,numeric'
x[[i]1]
Arguments
X the object
i the volume index
Value

a SparseNeuro Vol object

Index

+ datasets (L,DenseNeuroVol,numeric,missing, ANY-method),
anatomical_axes, 10 233
NiftiExtensionCodes, 149 [,DenseNeuroVol,integer,missing, ANY-method
None, 152 (L,DenseNeuroVol,numeric,missing, ANY-method),
NullAxis, 153 233
OrientationList2D, 154 [,DenseNeuroVol,numeric,missing,ANY-method,
OrientationList3D, 155 233
TIME, 221 [,NeuroHyperVec,ANY, ANY,ANY-method
TimeAxis, 221 (NeuroHyperVec-class), 132
L [,NeuroVol,R0ICoords,missing, ANY-method
([,DenseNeuroVol,numeric,missing,ANY-method), ([,DenseNeuroVol,numeric,missing, ANY-method),
233 233
[,AbstractSparseNeuroVec,numeric,numeric, ANY-heN@odoVol,ROIVol ,missing, ANY-method
232 (L,DenseNeuroVol,numeric,missing, ANY-method),
[,ArrayLike3D,matrix,missing, ANY-method 233
(extractor3d), 80 [,RO0ICoords,numeric,missing, ANY-method
[,ArrayLike3D,missing,missing, ANY-method ([,DenseNeuroVol,numeric,missing, ANY-method),
(extractor3d), 80 233
[,ArrayLike3D,missing,numeric, ANY-method [,R0IVol,R0OICoords,missing, ANY-method
(extractor3d), 80 (L,DenseNeuroVol,numeric,missing,ANY-method),
[,ArrayLike3D,numeric,missing, ANY-method 233
(extractor3d), 80 [,ROIVol,R0OICoords,numeric,ANY-method
[,ArrayLike4D, integer,missing, ANY-method (L,DenseNeuroVol,numeric,missing, ANY-method),
(extractor4d), 80 233
[,ArrayLike4D,matrix,missing, ANY-method [,RO0IVol,logical,missing,ANY-method
(extractor4d), 80 (L,DenseNeuroVol,numeric,missing, ANY-method),
[,ArrayLike4D,missing,missing, ANY-method 233
(extractor4d), 80 [,RO0IVol,logical,numeric,ANY-method
[,ArrayLike4D,missing,numeric, ANY-method (L,DenseNeuroVol,numeric,missing, ANY-method),
(extractor4d), 80 233
[,ArrayLike4D,numeric,missing, ANY-method [,RO0IVol,matrix,missing, ANY-method
(extractor4d), 80 (L,DenseNeuroVol,numeric,missing, ANY-method),
[,ArrayLike4D,numeric,numeric, ANY-method 233
(extractor4d), 80 [,ROIVol,matrix,numeric,ANY-method
[,ClusteredNeuroVec,missing,missing, ANY-method (L,DenseNeuroVol,numeric,missing, ANY-method),
(extractor4d), 80 233
[,ClusteredNeuroVec,numeric,numeric,ANY-methof,R0OIVol,missing, missing, ANY-method
(extractor4d), 80 ([,DenseNeuroVol,numeric,missing, ANY-method),
[,DenseNeuroVol,R0IVol,missing, ANY-method 233

236

INDEX

[,ROIVol,missing,numeric,ANY-method

233
[,ROIVol,numeric,missing, ANY-method

233
[,ROIVol,numeric,numeric,ANY-method

237

ArraylLike4D-class, 14
(L,DenseNeuroVol,numeric,missing, ANY-methgtike5D-class, 14

as,

15

as-ClusteredNeuroVol-DenseNeuroVol, 15
(L,DenseNeuroVol,numeric,missing, ANY-mgthedhy, 16

as
as

.array,ClusteredNeuroVol-method, 16
.array, SparseNeuroVol-method, 17

(L,DenseNeuroVol,numeric,missing, ANY-mgthedhe, 17

233
[,SparseNeuroVol,numeric,numeric, ANY-method

as
as

.dense,ClusteredNeuroVol-method, 18
.dense,R0OIVol-method

([’DenseNeur°V°1’numeric’miSSing’ANY'methOd)’(as.dense,ClusteredNeuroVol—methodL

233
[.NeuroHyperVec (NeuroHyperVec-class),
132
[[,NeuroVec,numeric-method, 234
[[,NeuroVecSeq, numeric-method, 235
[[,SparseNeuroVec, numeric-method, 235

AbstractSparseNeuroVec, 33, 203, 204

AbstractSparseNeuroVec-class, 8

add_dim, 9

add_dim,NeuroSpace, numeric-method
(add_dim), 9

AFNIMetalnfo, 126, 172

AFNIMetalInfo-class
(FileMetaInfo-class), 85

anatomical_axes, 10

annotate_orientation, 11

ANT_POST (anatomical_axes), 10

Arith,DenseNeuroVec,DenseNeuroVec-method
(Arith-methods), 13

Arith,DenseNeuroVol,DenseNeuroVol-method
(Arith-methods), 13

Arith,NeuroVec,NeuroVec-method
(Arith-methods), 13

Arith,NeuroVec,NeuroVol-method, 11

Arith,NeuroVol,NeuroVec-method, 12

Arith,NeuroVol, SparseNeuroVol-method
(Arith-methods), 13

Arith,R0IVol,ROIVol-method, 12

Arith,SparseNeuroVec, SparseNeuroVec-method
(Arith-methods), 13

Arith,SparseNeuroVol,NeuroVol-method
(Arith-methods), 13

Arith,SparseNeuroVol, SparseNeuroVol-method
(Arith-methods), 13

Arith-methods, 13

array, 61

ArrayLike3D-class, 14

as

as.

as.
as.

as.

as.

as.
as.

as.
as.
as.

as.
as.

as

as.

as.

18

.dense, SparseNeuroVec-method
(as.dense,ClusteredNeuroVol-method),
18

dense, SparseNeuroVol-method
(as.dense,ClusteredNeuroVol-method),
18

list,FileBackedNeuroVec-method, 19

list,NeuroVec-method
(as.list,FileBackedNeuroVec-method),
19

list, SparseNeuroVec-method
(as.list,FileBackedNeuroVec-method),
19

logical
(as.logical,NeuroVol-method),
20

logical,NeuroVol-method, 20

logical,ROIVol-method
(as.logical,NeuroVol-method),
20

mask, 20

mask,NeuroVol,missing-method, 21

mask,NeuroVol,numeric-method
(as.mask,NeuroVol,missing-method),
21

matrix, 22

matrix,ClusteredNeuroVec-method, 22

.matrix,DenseNeuroVec-method
(as.matrix,ClusteredNeuroVec-method),
22

matrix,MappedNeuroVec-method
(as.matrix,ClusteredNeuroVec-method),
22

matrix,NeuroVec-method
(as.matrix,ClusteredNeuroVec-method),
22

238 INDEX

as.matrix,R0IVec-method BigNeuroVec-class, 33
(as.matrix,ClusteredNeuroVec-method), bilateral_filter, 34, 36, 89, 94
22 bilateral_filter_4d, 35
as.matrix, SparseNeuroVec-method BinaryReader, 36, 36, 37, 39, 69, 169, 170
(as.matrix,ClusteredNeuroVec-method), BinaryReader-class, 38
22 BinaryWriter, 37, 38, 38, 39
as.numeric,ROIVol-method BinaryWriter-class, 39
(as.numeric, SparseNeuroVol-method), plobby_shape
23 (searchlight_shape_functions),
as.numeric,SparseNeuroVol-method, 23 190
as.raster, 24 bootstrap_searchlight
as.sparse, 24 (resampled_searchlight), 178
as.sparse,DenseNeuroVec, LogicalNeuroVol-methogeunds, 39
25 bounds,NeuroSpace-method (bounds), 39

as.sparse,DenseNeuroVec, numeric-method
gzs.sparse,DenseNeuroVec,LoglcalNeuroggkzm%Eg?Q6
. centroid,NeuroSpace-method (centroid),
as.sparse,DenseNeuroVol,LogicalNeuroVol-method
gzs.sparse,DenseNeuroVec,LoglcalNeuro%%%Em%EQQQGICOOrds_method(Centroid),40
. centroids, 41
as.sparse,DenseNeuroVol, numeric-method

) ceftroids ClusteredNeuroVec-method
(as.sparse,DenseNeuroVec,LogicalNeuroVol-meth dé .
- PCéntroids), 41

centroids,ClusteredNeuroVol-method
as.sparse,R0IVol, ANY-method ’

. centroids), 41
gzs.sparse,DenseNeuroVec,LoglcalNeurozg%_¥?EQég?42

as.vector,SparseNeuroVol-method, 26 cgb_make_graph, 44, 46
cgb_smooth, 46, 47
as_mmap, 26, 26

as_mmap, FileBackedNeuroVec-method cgb_smo9th_1oro,47
close,BinaryReader-method, 47
(as_mmap), 26

as_mmap ,MappedNeuroVec-method close,Blnaryertgr—method
(as_mmap), 26 (close,BinaryReader-method), 47
as_mmap, NeuroVec-method (as_mmap), 26 cluster_searchlight_series, 49, 53

as_mmap, SparseNeuroVec-method clustered_searchlight, 52
(as_mmap), 26 ClusteredNeuroVec, 48, 54

as_mmap-methods (as_mmap), 26 ClusteredNeuroVec-class, 50

as_nifti_header, 27, 65 ClusteredNeuroVol, 15,49-51, 61

axes, 28, 139 ClusteredNeuroVol

axes,NeuroSpace-method (axes), 28 (ClusteredNeuroVol-class), 50

AxisSet, 127, 137-139 ClusteredNeuroVol-class, 50

AxisSet-class, 29 coerce,ClusteredNeuroVol,DenseNeuroVol-method
AxisSet1D-class, 29 (as-ClusteredNeuroVol-DenseNeuroVol),
AxisSet2D-class, 30 15

AxisSet3D, 127 ColumnReader, 55, 55

AxisSet3D-class, 30 ColumnReader-class, 55

AxisSet4D-class, 31 Compare,NeuroVec,NeuroVec-method
AxisSet5D-class, 31 (Compare-methods), 56

Compare,numeric,SparseNeuroVol-method
BigNeuroVec, 32 (Compare-methods), 56

INDEX

Compare, SparseNeuroVol , numeric-method
(Compare-methods), 56
Compare-methods, 56
concat, 56
concat,AbstractSparseNeuroVec,missing-method
(concat), 56
concat,DenseNeuroVol,DenseNeuroVol-method
(concat), 56
concat,DenseNeuroVol,missing-method
(concat), 56
concat,NeuroVec,NeuroVec-method
(concat), 56
concat,NeuroVec,NeuroVol-method
(concat), 56
concat,NeuroVol,NeuroVec-method
(concat), 56
concat,R0IVec,ROIVec-method (concat), 56
concat, SparseNeuroVec, SparseNeuroVec-method
(concat), 56
conn_comp, 58
conn_comp,NeuroVol-method (conn_comp),
58
conn_comp_3D, 60
coord_to_grid, 63
coord_to_grid,NeuroSpace,matrix-method
(coord_to_grid), 63
coord_to_grid,NeuroSpace, numeric-method
(coord_to_grid), 63
coord_to_grid,NeuroVol,matrix-method
(coord_to_grid), 63
coord_to_grid,NeuroVol, numeric-method
(coord_to_grid), 63
coord_to_index, 64, 138
coord_to_index,NeuroSpace,matrix-method
(coord_to_index), 64
coord_to_index,NeuroSpace,numeric-method
(coord_to_index), 64
coord_to_index,NeuroVol,matrix-method
(coord_to_index), 64
coords, 61, 98
coords,AbstractSparseNeuroVec-method
(coords, IndexLookupVol-method),
62
coords, IndexLookupVol-method, 62
coords,R0ICoords-method
(coords, IndexLookupVol-method),
62
coords,R0IVol-method

239

(coords, IndexLookupVol-method),
62

createNIfTIHeader, 28, 65

cube_shape
(searchlight_shape_functions),
190

cuboid_roi, 65

data_file, 66, 96, 218

data_file,FileFormat,character-method
(data_file), 66

data_file_matches, 67, 87, 97

data_file_matches,FileFormat, character-method
(data_file_matches), 67

data_reader, 68

data_reader,AFNIMetaInfo-method
(data_reader,NIFTIMetaInfo-method),
69

data_reader,NIFTIMetaInfo-method, 69

DenseNeuroVec, 70, 110, 141

DenseNeuroVec (DenseNeuroVec-class), 70

DenseNeuroVec-class, 70

DenseNeuroVol, 15, 19,71, 72,111, 174

DenseNeuroVol (DenseNeuroVol-class), 71

DenseNeuroVol-class, 71

dim, 139

dim,ClusteredNeuroVec-method, 72

dim,FileMetalnfo-method
(dim,ClusteredNeuroVec-method),
72

dim,NeuroObj-method
(dim,ClusteredNeuroVec-method),
72

dim,NeuroSpace-method
(dim,ClusteredNeuroVec-method),
72

dim,ROICoords-method
(dim,ClusteredNeuroVec-method),
72

dim,ROIVol-method
(dim,ClusteredNeuroVec-method),
72

dim_of, 73

dim_of,NeuroSpace,NamedAxis-method
(dim_of), 73

downsample, 74

downsample,DenseNeuroVec-method
(downsample), 74

240

downsample,DenseNeuroVol-method
(downsample), 74
downsample,NeuroVec-method
(downsample), 74
downsample,NeuroVol-method
(downsample), 74
drop, 75
drop,NeuroVec-method, 76
drop_dim, 76
drop_dim,AxisSet2D,missing-method
(drop_dim), 76
drop_dim,AxisSet2D, numeric-method
(drop_dim), 76
drop_dim,AxisSet3D,missing-method
(drop_dim), 76
drop_dim,AxisSet3D, numeric-method
(drop_dim), 76
drop_dim,NeuroSpace,missing-method
(drop_dim), 76
drop_dim,NeuroSpace, numeric-method
(drop_dim), 76

ecode_name, 77

ellipsoid_shape
(searchlight_shape_functions),
190

embed_kernel, 78

INDEX

gaussian_blur, 88, 94, 198
get_afni_attribute, 89, 156
grid_to_coord, 90
grid_to_coord,NeuroSpace,matrix-method
(grid_to_coord), 90
grid_to_coord,NeuroSpace, numeric-method
(grid_to_coord), 90
grid_to_coord,NeuroVol,matrix-method
(grid_to_coord), 90
grid_to_grid, 91
grid_to_grid,matrix,matrix-method
(grid_to_grid), 91
grid_to_grid,NeuroSpace,matrix-method
(grid_to_grid), 91
grid_to_index, 92, 101
grid_to_index,NeuroSlice,matrix-method
(grid_to_index), 92
grid_to_index,NeuroSlice,numeric-method
(grid_to_index), 92
grid_to_index,NeuroSpace,matrix-method
(grid_to_index), 92
grid_to_index,NeuroSpace,numeric-method
(grid_to_index), 92
grid_to_index,NeuroVol,matrix-method
(grid_to_index), 92
grid_to_index,NeuroVol,numeric-method
(grid_to_index), 92

embed_kernel,Kernel,NeuroSpace, numeric-methodguided_filter, 93

(embed_kernel), 78
extension, 79

extension,NiftiExtensionlList,numeric-method

(extension), 79
extensions, 79, 151
extractor3d, 80
extractor4d, 80

FBM, 34
file_matches, 68, 86, 97
file_matches,FileFormat,character-method
(file_matches), 86
FileBackedNeuroVec, 82, 82, 83
FileBackedNeuroVec-class, 83
FileFormat, 66, 67, 85, 86, 95, 96, 172, 217
FileFormat-class, 84
FileFormat-operations, 85
FileMetalInfo, 83, 86, 128, 129, 171
FileMetaInfo-class, 85
FileSource-class, 86
findAnatomy3D, 87

has_extensions, 94

has_extensions,list-method
(has_extensions), 94

has_extensions,NiftiExtensionList-method
(has_extensions), 94

header_file, 67,95, 218

header_file,FileFormat, character-method
(header_file), 95

header_file_matches, 68, 87, 96

header_file_matches,FileFormat, character-method

(header_file_matches), 96

image, 97

index_to_coord, 99, 138, 141

index_to_coord,NeuroSpace, integer-method
(index_to_coord), 99

index_to_coord,NeuroSpace, numeric-method
(index_to_coord), 99

index_to_coord,NeuroVec, integer-method
(index_to_coord), 99

INDEX

index_to_coord,NeuroVol, integer-method
(index_to_coord), 99

index_to_grid, 92, 100

index_to_grid,NeuroSlice,numeric-method
(index_to_grid), 100

index_to_grid,NeuroSpace, numeric-method
(index_to_grid), 100

index_to_grid,NeuroVec, index-method
(index_to_grid), 100

index_to_grid,NeuroVec,integer-method
(index_to_grid), 100

index_to_grid,NeuroVol, index-method
(index_to_grid), 100

index_to_grid,NeuroVol,integer-method
(index_to_grid), 100

IndexLookupVol, 9, 62, 97, 98, 103, 113, 201

IndexLookupVol (IndexLookupVol-class),
97

IndexLookupVol-class, 97

indices, 101

indices,AbstractSparseNeuroVec-method
(indices, IndexLookupVol-method),
102

indices, IndexLookupVol-method, 102

indices,R0IVec-method
(indices, IndexLookupVol-method),
102

indices,R0IVol-method
(indices, IndexLookupVol-method),
102

INF_SUP (anatomical_axes), 10

inverse_trans, 103

inverse_trans,NeuroSpace-method
(inverse_trans), 103

Kernel, 104
Kernel-class, 104
kmeans, 158

labels,ClusteredNeuroVec-method, 105

laplace_enhance, 105

LEFT_RIGHT (anatomical_axes), 10

length, ClusteredNeuroVec-method, 106

length,NeuroVec-method
(length,ClusteredNeuroVec-method),
106

length,NeuroVecSeq-method
(length,ClusteredNeuroVec-method),
106

241

length,RO0ICoords-method
(length,ClusteredNeuroVec-method),
106

length,ROIVol-method
(length,ClusteredNeuroVec-method),
106

linear_access, 107

linear_access,AbstractSparseNeuroVec, numeric-method
(linear_access,DenseNeuroVol, numeric-method),
108

linear_access,DenseNeuroVec, integer-method
(linear_access,DenseNeuroVol, numeric-method),
108

linear_access,DenseNeuroVec, numeric-method
(linear_access,DenseNeuroVol,numeric-method),
108

linear_access,DenseNeuroVol, integer-method
(linear_access,DenseNeuroVol,numeric-method),
108

linear_access,DenseNeuroVol, numeric-method,
108

linear_access,FileBackedNeuroVec, numeric-method
(linear_access,DenseNeuroVol,numeric-method),
108

linear_access,MappedNeuroVec, numeric-method
(linear_access,DenseNeuroVol, numeric-method),
108

linear_access,NeuroHyperVec,ANY-method
(linear_access,DenseNeuroVol, numeric-method),
108

linear_access,NeuroVecSeq, numeric-method
(linear_access,DenseNeuroVol, numeric-method),
108

linear_access, SparseNeuroVol, numeric-method
(linear_access,DenseNeuroVol, numeric-method),
108

list_afni_attributes, 109

load_data,MappedNeuroVecSource-method,
110

load_data,NeuroVecSource-method
(load_data,MappedNeuroVecSource-method),
110

load_data,NeuroVolSource-method
(load_data,MappedNeuroVecSource-method),
110

load_data, SparseNeuroVecSource-method
(load_data,MappedNeuroVecSource-method),
110

242

LogicalNeuroVol, 9, 15, 20, 34, 35, 42, 44,
50, 51,88,105,111,122,131-133,
145,203, 204, 225

LogicalNeuroVol
(LogicalNeuroVol-class), 111

LogicalNeuroVol-class, 111

lookup, 98, 112

lookup, AbstractSparseNeuroVec, numeric-method

INDEX

matricized_access,BigNeuroVec,matrix-method
(matricized_access), 123
matricized_access,BigNeuroVec, numeric-method
(matricized_access), 123
matricized_access, SparseNeuroVec, integer-method
(matricized_access), 123
matricized_access,SparseNeuroVec,matrix-method
(matricized_access), 123

(lookup, IndexLookupVol,numeric-methodmatricized_access, SparseNeuroVec,numeric-method

113
lookup, IndexLookupVol, numeric-method,
113

make_time_weights, 114
map_values, 120
map_values,NeuroVol,list-method
(map_values), 120
map_values,NeuroVol,matrix-method
(map_values), 120
mapf, 115
mapf,NeuroVol,Kernel-method (mapf), 115
MappedNeuroVec, 26, 27, 116119
MappedNeuroVec (MappedNeuroVec-class),
116
MappedNeuroVec-class, 116
MappedNeuroVecSource, 118, 119
MappedNeuroVecSource
(MappedNeuroVecSource-class),
118
MappedNeuroVecSource-class, 118
mapToColors, 119
mask, 121
mask,AbstractSparseNeuroVec-method
(mask), 121
mask,ClusteredNeuroVol-method (mask),
121
mask,DenseNeuroVec-method (mask), 121
mask ,DenseNeuroVol-method (mask), 121
mask, FileBackedNeuroVec-method (mask),
121
mask,LogicalNeuroVol-method (mask), 121
mask ,MappedNeuroVec-method (mask), 121
mask ,NeuroHyperVec-method (mask), 121
mask ,NeuroSlice-method (mask), 121
mask, SparseNeuroVecSource-method
(mask), 121
matricized_access, 123

matricized_access,BigNeuroVec, integer-method

(matricized_access), 123

(matricized_access), 123
matrixToQuatern, 28, 124, 168
meta_info, 128
meta_info,character-method (meta_info),

128
meta_info,FileMetaInfo-method

(meta_info), 128
MetalInfo, 125, 152
MetalInfo-class, 127
mmap, 117

NamedAxis-class, 129

ndim, 129

ndim,AxisSet-method, 130

ndim,ClusteredNeuroVec-method (ndim),
129

ndim,NeuroObj-method (ndim), 129

ndim,NeuroSpace-method (ndim), 129

neuro-downsample, 130

neuro-ops, 131

neuro-resample, 131

NeuroBucket-class, 131

NeuroHyperVec, 131, 132

NeuroHyperVec-class, 132

neuroim?2 (neuroim2-package), 8

neuroim2-package, 8

NeuroObj, 136, 138, 140, 146

NeuroObj-class, 134

NeuroSlice, 135, 135

NeuroSlice-class, 136

NeuroSpace, 70, 72, 82,98, 110, 111,
131-137,137, 140, 141, 143, 146,
182, 184, 201, 203, 205, 222

NeuroSpace-class, 139

NeuroVec, 8, 33, 35, 36, 42, 44, 46, 47, 70, 83,
117,133,141, 143-145, 171, 174,
175, 198, 204, 225

NeuroVec (NeuroVec-class), 140

NeuroVec-class, 140

NeuroVecSeq, 142, 171

INDEX

NeuroVecSeqg-class, 144

NeuroVecSource, 110, 119, 145, 145, 205

NeuroVecSource-class, 145

NeuroVol, 8, 15, 19, 27, 34, 35, 46, 53,71, 88,
93, 94,98, 105, 106, 131, 136, 140,
145,146, 169, 171, 177, 178, 188
189, 197, 205, 225, 232

NeuroVol-class, 146

NeuroVolSource, 147

NiftiExtension, 28, 147, 148

NiftiExtension-class, 148

NiftiExtensionCodes, /147-149, 149

NiftiExtensionList, /150

NiftiExtensionList-class, 150

NIFTIMetalnfo, 126, 129, 151,172

NIFTIMetaInfo-class
(FileMetaInfo-class), 85

None, 152

NullAxis, 153

num_clusters, 153

num_clusters,ClusteredNeuroVec-method
(num_clusters), 153

num_clusters,ClusteredNeuroVol-method
(num_clusters), 153

numericOrMatrix-class, 153

OrientationlList2D, 154
OrientationList3D, 155
origin, 139, 155
origin,NeuroSpace-method (origin), 155
origin,NeuroVec-method (origin), 155
origin,NeuroVol-method (origin), 155

parse_afni_extension, 89, 109, 156, 157
parse_extension, 149, 157

partition, 158
partition,DenseNeuroVol,numeric-method

243

perm_mat,AxisSet2D-method, 161

perm_mat,AxisSet3D-method, 162

perm_mat,NeuroSpace-method (perm_mat),
160

plot, 136

plot,NeuroSlice,ANY-method
(plot,NeuroSlice-method), 162

plot,NeuroSlice-method, 162

plot,NeuroVol,ANY-method
(plot,NeuroSlice-method), 162

plot,NeuroVol-method
(plot,NeuroSlice-method), 162

plot_montage, 164

plot_ortho, 165

plot_overlay, 166

POST_ANT (anatomical_axes), 10

prepare_confounds, 167

quaternToMatrix, 125, 168

random_searchlight, 169

read_elements,BinaryReader,numeric-method,

169
read_header, 69, 82, 119, 129, 170
read_image, 171
read_meta_info, 172
read_meta_info,AFNIFormat-method

(read_meta_info), 172
read_meta_info,NIFTIFormat-method

(read_meta_info), 172
read_vec, 171,173
read_vol, 8, 171, 174
read_vol_list, 175
reorient, 175
reorient,NeuroSpace, character-method

(reorient), 175
resample, 176

(partition), 158
partition,LogicalNeuroVol, integer-method

(partition), 158
partition,LogicalNeuroVol,numeric-method

(partition), 158 resample,NeuroVol,NeuroSpace-method
patch_set, 159 (resample), 176
patch_set,NeuroVol,numeric,lLogicalNeuroVol-metésample,NeuroVol,NeuroVol-method

(patch_set,NeuroVol,numeric,missing-method), (resample), 176

160 resample_to, 179
patch_set,NeuroVol,numeric,missing-method, resampled_searchlight, 178

160 resolve_cmap, 180
perm_mat, 160 RIGHT_LEFT (anatomical_axes), 10

resample,ClusteredNeuroVol,NeuroSpace-method
(resample), 176

resample,ClusteredNeuroVol,NeuroVol-method
(resample), 176

244

ROI-class, 181
ROICoords, /181, 181
ROICoords-class, 182
ROIVec, 22, 54, 182, 182
ROIVec-class, 183
ROIVecWindow-class, 183
ROIVol, 184, 184
ROIVol-class, 185
ROIVolWindow, 169, 178, 179, 188
ROIVolWindow-class, 185

scale, 186
scale_fill_neuro, 186
scale_series, 187

scale_series,NeuroVec,logical,logical-method

(scale_series), 187

scale_series,NeuroVec,logical,missing-method

(scale_series), 187

scale_series,NeuroVec,missing,logical-method

(scale_series), 187

scale_series,NeuroVec,missing,missing-method

(scale_series), 187
searchlight, 54, 188
searchlight-methods, 189
searchlight_coords, 189
searchlight_shape_functions, 190
series, 49, 191, 194

series,AbstractSparseNeuroVec, integer-method

(series), 191

series,AbstractSparseNeuroVec,matrix-method

(series), 191

INDEX

series,NeuroVec,numeric-method
(series), 191
series,NeuroVec,ROICoords-method
(series), 191
series,NeuroVecSeq, integer-method
(series), 191
series,NeuroVecSeq,matrix-method
(series), 191
series,NeuroVecSeq, numeric-method
(series), 191
series_roi, 193, 194

series_roi,NeuroVec,LogicalNeuroVol-method

(series), 191
series_roi,NeuroVec,matrix-method
(series), 191
series_roi,NeuroVec,numeric-method
(series), 191
series_roi,NeuroVec,ROICoords-method
(series), 191
series_roi,NeuroVecSeq,matrix-method
(series), 191
show, AxisSet1D-method
(show,NamedAxis-method), 195
show, AxisSet2D-method
(show,NamedAxis-method), 195
show, AxisSet3D-method
(show,NamedAxis-method), 195
show, AxisSet4D-method
(show,NamedAxis-method), 195
show, ClusteredNeuroVec-method
(show,NamedAxis-method), 195

series,AbstractSparseNeuroVec,numeric-method show,ClusteredNeuroVol-method

(series), 191

(show,NamedAxis-method), 195

series,AbstractSparseNeuroVec,ROICoords-methoghow, DenseNeuroVec-method

(series), 191
series,ClusteredNeuroVec, numeric-method
(series), 191
series,DenseNeuroVec, integer-method
(series), 191
series,NeuroHyperVec, ANY-method, 193
series,NeuroVec, integer-method
(series), 191
series,NeuroVec,LogicalNeuroVol-method
(series), 191
series,NeuroVec,matrix-method (series),
191
series,NeuroVec,NeuroVol-method
(series), 191

(show,NamedAxis-method), 195
show,FileMetaInfo-method
(show,NamedAxis-method), 195
show, IndexLookupVol-method
(show,NamedAxis-method), 195
show,Kernel-method
(show,NamedAxis-method), 195
show, MappedNeuroVec-method
(show,NamedAxis-method), 195
show, NamedAxis-method, 195
show, NeuroHyperVec-method
(show,NamedAxis-method), 195
show,NeuroSlice-method
(show,NamedAxis-method), 195

INDEX

show, NeuroSpace-method
(show,NamedAxis-method), 195
show, NeuroVec-method
(show,NamedAxis-method), 195
show,NeuroVecSeqg-method
(show,NamedAxis-method), 195
show, NeuroVecSource-method
(show,NamedAxis-method), 195
show,NeuroVol-method
(show,NamedAxis-method), 195
show,NiftiExtension-method
(NiftiExtension-class), 148
show,NiftiExtensionList-method
(NiftiExtensionList-class), 150
show,ROICoords-method
(show,NamedAxis-method), 195
show,ROIVec-method
(show,NamedAxis-method), 195
show,ROIVol-method
(show,NamedAxis-method), 195
show, SparseNeuroVec-method
(show,NamedAxis-method), 195
show, SparseNeuroVol-method
(show,NamedAxis-method), 195
simulate_fmri, 197
slice, 199

245

SparseNeuroVol, 50, 51, 205, 206

SparseNeuroVol (SparseNeuroVol-class),
205

SparseNeuroVol-class, 205

spatial-filter, 206

spherical_roi, 207

spherical_roi_set, 208

split_blocks, 209

split_blocks,NeuroVec, factor-method
(split_blocks), 209

split_blocks,NeuroVec,integer-method
(split_blocks), 209

split_clusters, 210

split_clusters,ClusteredNeuroVol,missing-method
(split_clusters), 210

split_clusters,NeuroVec,ClusteredNeuroVol-method
(split_clusters), 210

split_clusters,NeuroVec, integer-method
(split_clusters), 210

split_clusters,NeuroVec,numeric-method
(split_clusters), 210

split_clusters,NeuroVol,ClusteredNeuroVol-method
(split_clusters), 210

split_clusters,NeuroVol,integer-method
(split_clusters), 210

split_clusters,NeuroVol,numeric-method

slice,NeuroVol,numeric,NeuroSpace,AxisSet3D-method (split_clusters), 210

(slice), 199

split_fill, 213

slice,NeuroVol,numeric,numeric,missing-methodsplit_fill,NeuroVol, factor,function-method

(slice), 199
slices, 200
slices,NeuroVol-method (slices), 200
space, 201
space,ClusteredNeuroVec-method (space),

201
space, IndexLookupVol-method (space), 201
space,NeuroObj-method (space), 201
space, NeuroSpace-method (space), 201
space,ROICoords-method (space), 201
spacing, 139, 202
spacing,NeuroObj-method (spacing), 202
spacing,NeuroSpace-method (spacing), 202
spacing,R0ICoords-method (spacing), 202
SparseNeuroVec, 97, 141, 204
SparseNeuroVec (SparseNeuroVec-class),

203
SparseNeuroVec-class, 203
SparseNeuroVecSource-class, 204

(split_fill), 213
split_reduce, 214
split_reduce,matrix, factor, function-method
(split_reduce), 214
split_reduce,matrix, factor,missing-method
(split_reduce), 214
split_reduce,matrix,integer, function-method
(split_reduce), 214
split_reduce,NeuroVec, factor, function-method
(split_reduce), 214
split_reduce,NeuroVec, factor,missing-method
(split_reduce), 214
split_scale, 215

split_scale,DenseNeuroVec, factor,logical,logical-method

(split_scale), 215

split_scale,DenseNeuroVec, factor,logical,missing-method

(split_scale), 215

split_scale,DenseNeuroVec, factor,missing,missing-method

(split_scale), 215

246

INDEX

split_scale,matrix,factor,logical,logical-methedtors,matrix,integer-method

(split_scale), 215

(vectors), 223

split_scale,matrix,factor,missing,missing-methedtors,matrix,missing-method

(split_scale), 215
square_roi, 216
strip_extension, 67, 96, 217
strip_extension,FileFormat, character-method
(strip_extension), 217
sub_vector, 82, 141,218

sub_vector,FileBackedNeuroVec,numeric-method

(sub_vector), 218

sub_vector,NeuroVec,numeric-method
(sub_vector), 218

sub_vector,NeuroVecSeq, numeric-method
(sub_vector), 218

sub_vector, SparseNeuroVec, numeric-method
(sub_vector), 218

Summary,DenseNeuroVol-method
(Summary-methods), 219

Summary, SparseNeuroVec-method
(Summary-methods), 219

Summary, SparseNeuroVol-method
(Summary-methods), 219

Summary-methods, 219

SUP_INF (anatomical_axes), 10

theme_neuro, 220

TIME, 221

TimeAxis, 221

trans, 129, 139, 221
trans,MetaInfo-method (trans), 221
trans,NeuroObj-method (trans), 221
trans,NeuroSpace-method (trans), 221
trans,NIFTIMetaInfo-method (trans), 221

values, 222

values,ClusteredNeuroVec-method
(values), 222

values,DenseNeuroVol-method (values),
222

values,ROIVec-method (values), 222

values,ROIVol-method (values), 222

values, SparseNeuroVol-method (values),
222

vec_from_vols, 225

vectors, 223

vectors,DenseNeuroVec,missing-method
(vectors), 223

(vectors), 223
vectors,matrix,numeric-method
(vectors), 223
vectors,NeuroVec, logical-method
(vectors), 223
vectors,NeuroVec,missing-method
(vectors), 223
vectors,NeuroVec, numeric-method
(vectors), 223
vectors,NeuroVecSeq, logical-method
(vectors), 223
vectors,NeuroVecSeq,missing-method
(vectors), 223
vectors,NeuroVecSeq, numeric-method
(vectors), 223
vectors,ROIVec,integer-method
(vectors), 223
vectors,R0IVec,logical-method
(vectors), 223
vectors,ROIVec,missing-method
(vectors), 223
vectors,R0IVec, numeric-method
(vectors), 223
vectors, SparseNeuroVec,missing-method
(vectors), 223
vols, 226
vols,NeuroVec,missing-method (vols), 226
vols,NeuroVec,numeric-method (vols), 226
voxels, 227
voxels,Kernel-method (voxels), 227

which_dim, 228

which_dim,NeuroSpace,NamedAxis-method
(which_dim), 228

write_elements, 228

write_elements,BinaryWriter,numeric-method
(write_elements), 228

write_vec, 229

write_vec,NeuroVec,character,character,missing-method

(write_vec), 229

write_vec,NeuroVec,character,missing,character,ANY-method

(write_vec), 229

write_vec,NeuroVec,character,missing,character-method

(write_vec), 229

write_vec,NeuroVec,character,missing,missing-method

(write_vec), 229

INDEX 247

write_vec,ROIVec,character,missing,missing-method
(write_vec), 229
write_vol, 8, 231
write_vol,ClusteredNeuroVol,character,missing,missing-method
(write_vol), 231
write_vol,NeuroVol,character,character,missing-method
(write_vol), 231
write_vol,NeuroVol,character,missing,character-method
(write_vol), 231
write_vol,NeuroVol,character,missing,missing-method
(write_vol), 231
write_vol,R0IVol,character,character,missing-method
(write_vol), 231

	neuroim2-package
	AbstractSparseNeuroVec-class
	add_dim
	anatomical_axes
	annotate_orientation
	Arith,NeuroVec,NeuroVol-method
	Arith,NeuroVol,NeuroVec-method
	Arith,ROIVol,ROIVol-method
	Arith-methods
	ArrayLike3D-class
	ArrayLike4D-class
	ArrayLike5D-class
	as
	as-ClusteredNeuroVol-DenseNeuroVol
	as.array
	as.array,ClusteredNeuroVol-method
	as.array,SparseNeuroVol-method
	as.dense
	as.dense,ClusteredNeuroVol-method
	as.list,FileBackedNeuroVec-method
	as.logical,NeuroVol-method
	as.mask
	as.mask,NeuroVol,missing-method
	as.matrix
	as.matrix,ClusteredNeuroVec-method
	as.numeric,SparseNeuroVol-method
	as.raster
	as.sparse
	as.sparse,DenseNeuroVec,LogicalNeuroVol-method
	as.vector,SparseNeuroVol-method
	as_mmap
	as_nifti_header
	axes
	AxisSet-class
	AxisSet1D-class
	AxisSet2D-class
	AxisSet3D-class
	AxisSet4D-class
	AxisSet5D-class
	BigNeuroVec
	BigNeuroVec-class
	bilateral_filter
	bilateral_filter_4d
	BinaryReader
	BinaryReader-class
	BinaryWriter
	BinaryWriter-class
	bounds
	centroid
	centroids
	cgb_filter
	cgb_make_graph
	cgb_smooth
	cgb_smooth_loro
	close,BinaryReader-method
	ClusteredNeuroVec
	ClusteredNeuroVec-class
	ClusteredNeuroVol-class
	clustered_searchlight
	cluster_searchlight_series
	ColumnReader
	ColumnReader-class
	Compare-methods
	concat
	conn_comp
	conn_comp_3D
	coords
	coords,IndexLookupVol-method
	coord_to_grid
	coord_to_index
	createNIfTIHeader
	cuboid_roi
	data_file
	data_file_matches
	data_reader
	data_reader,NIFTIMetaInfo-method
	DenseNeuroVec-class
	DenseNeuroVol-class
	dim,ClusteredNeuroVec-method
	dim_of
	downsample
	drop
	drop,NeuroVec-method
	drop_dim
	ecode_name
	embed_kernel
	extension
	extensions
	extractor3d
	extractor4d
	FileBackedNeuroVec
	FileBackedNeuroVec-class
	FileFormat-class
	FileFormat-operations
	FileMetaInfo-class
	FileSource-class
	file_matches
	findAnatomy3D
	gaussian_blur
	get_afni_attribute
	grid_to_coord
	grid_to_grid
	grid_to_index
	guided_filter
	has_extensions
	header_file
	header_file_matches
	image
	IndexLookupVol-class
	index_to_coord
	index_to_grid
	indices
	indices,IndexLookupVol-method
	inverse_trans
	Kernel
	Kernel-class
	labels,ClusteredNeuroVec-method
	laplace_enhance
	length,ClusteredNeuroVec-method
	linear_access
	linear_access,DenseNeuroVol,numeric-method
	list_afni_attributes
	load_data,MappedNeuroVecSource-method
	LogicalNeuroVol-class
	lookup
	lookup,IndexLookupVol,numeric-method
	make_time_weights
	mapf
	MappedNeuroVec-class
	MappedNeuroVecSource-class
	mapToColors
	map_values
	mask
	matricized_access
	matrixToQuatern
	MetaInfo
	MetaInfo-class
	meta_info
	NamedAxis-class
	ndim
	ndim,AxisSet-method
	neuro-downsample
	neuro-ops
	neuro-resample
	NeuroBucket-class
	NeuroHyperVec
	NeuroHyperVec-class
	NeuroObj-class
	NeuroSlice
	NeuroSlice-class
	NeuroSpace
	NeuroSpace-class
	NeuroVec-class
	NeuroVecSeq
	NeuroVecSeq-class
	NeuroVecSource
	NeuroVecSource-class
	NeuroVol
	NeuroVol-class
	NeuroVolSource
	NiftiExtension
	NiftiExtension-class
	NiftiExtensionCodes
	NiftiExtensionList-class
	NIFTIMetaInfo
	None
	NullAxis
	numericOrMatrix-class
	num_clusters
	OrientationList2D
	OrientationList3D
	origin
	parse_afni_extension
	parse_extension
	partition
	patch_set
	patch_set,NeuroVol,numeric,missing-method
	perm_mat
	perm_mat,AxisSet2D-method
	perm_mat,AxisSet3D-method
	plot,NeuroSlice-method
	plot_montage
	plot_ortho
	plot_overlay
	prepare_confounds
	quaternToMatrix
	random_searchlight
	read_elements,BinaryReader,numeric-method
	read_header
	read_image
	read_meta_info
	read_vec
	read_vol
	read_vol_list
	reorient
	resample
	resampled_searchlight
	resample_to
	resolve_cmap
	ROI-class
	ROICoords
	ROICoords-class
	ROIVec
	ROIVec-class
	ROIVecWindow-class
	ROIVol
	ROIVol-class
	ROIVolWindow-class
	scale
	scale_fill_neuro
	scale_series
	searchlight
	searchlight-methods
	searchlight_coords
	searchlight_shape_functions
	series
	series,NeuroHyperVec,ANY-method
	series_roi
	show,NamedAxis-method
	simulate_fmri
	slice
	slices
	space
	spacing
	SparseNeuroVec-class
	SparseNeuroVecSource-class
	SparseNeuroVol-class
	spatial-filter
	spherical_roi
	spherical_roi_set
	split_blocks
	split_clusters
	split_fill
	split_reduce
	split_scale
	square_roi
	strip_extension
	sub_vector
	Summary-methods
	theme_neuro
	TIME
	TimeAxis
	trans
	values
	vectors
	vec_from_vols
	vols
	voxels
	which_dim
	write_elements
	write_vec
	write_vol
	[,AbstractSparseNeuroVec,numeric,numeric,ANY-method
	[,DenseNeuroVol,numeric,missing,ANY-method
	[[,NeuroVec,numeric-method
	[[,NeuroVecSeq,numeric-method
	[[,SparseNeuroVec,numeric-method
	Index

