

Package ‘mvgam’

January 21, 2026

Title Multivariate (Dynamic) Generalized Additive Models

Version 1.1.594

Date 2026-01-19

Description Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2023) <[doi:10.1111/2041-210X.13974](https://doi.org/10.1111/2041-210X.13974)>.

URL <https://github.com/nicholasjclark/mvgam>,

<https://nicholasjclark.github.io/mvgam/>

BugReports <https://github.com/nicholasjclark/mvgam/issues>

License MIT + file LICENSE

Depends R (>= 3.6.0)

Imports brms (>= 2.21.0), methods, mgcv (>= 1.8-13), insight (>= 0.19.1), marginaleffects (>= 0.29.0), Rcpp (>= 0.12.0), rstan (>= 2.29.0), posterior (>= 1.0.0), loo (>= 2.3.1), rstantools (>= 2.1.1), bayesplot (>= 1.5.0), ggplot2 (>= 3.5.0), mvnfast, purrr, dplyr, magrittr, rlang, generics, tibble (>= 3.0.0), patchwork (>= 1.2.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests scoringRules, matrixStats, cmdstanr (>= 0.5.0), tweedie, splines2, extraDistr, corpcor, wrswoR, ggrepel, ggpp, ggarrow, xts, lubridate, knitr, collapse, rmarkdown, rjags, coda, runjags, usethis, testthat, colorspace

Enhances gratia (>= 0.9.0), tidyverse

Additional_repositories <https://mc-stan.org/r-packages/>

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

NeedsCompilation yes

Author Nicholas J Clark [aut, cre] (ORCID:

[<https://orcid.org/0000-0001-7131-3301>](https://orcid.org/0000-0001-7131-3301)),

KANK Karunaratna [ctb] (ARMA parameterisations and factor models,

ORCID: [<https://orcid.org/0000-0002-8995-5502>](https://orcid.org/0000-0002-8995-5502)),

Sarah Heaps [ctb] (VARMA parameterisations, ORCID:

[<https://orcid.org/0000-0002-5543-037X>](https://orcid.org/0000-0002-5543-037X)),

Scott Pease [ctb] (broom enhancements, ORCID:

[<https://orcid.org/0009-0006-8977-9285>](https://orcid.org/0009-0006-8977-9285)),

Matthijs Hollanders [ctb] (ggplot visualizations, ORCID:

[<https://orcid.org/0000-0003-0796-1018>](https://orcid.org/0000-0003-0796-1018))

Maintainer Nicholas J Clark <nicholas.j.clark1214@gmail.com>

Repository CRAN

Date/Publication 2026-01-21 06:10:02 UTC

Contents

add_residuals.mvgam	4
all_neon_tick_data	5
augment.mvgam	5
code	7
conditional_effects.mvgam	8
dynamic	11
ensemble.mvgam_forecast	13
evaluate_mvgams	15
fevd.mvgam	19
fitted.mvgam	20
forecast.mvgam	22
formula.mvgam	25
get_mvgam_priors	26
GP	32
gratia_mvgam_enhancements	34
hindcast.mvgam	39
how_to_cite.mvgam	40
index-mvgam	42
irf.mvgam	43
jsdgam	45
lfo_cv.mvgam	55
logLik.mvgam	58
loo.mvgam	59
lv_correlations	62
mcmc_plot.mvgam	63
model.frame.mvgam	65
monotonic	65
mvgam	69
mvgam-class	85

mvgam_diagnostics	87
mvgam_draws	88
mvgam_families	91
mvgam_fevd-class	96
mvgam_forecast-class	97
mvgam_formulae	98
mvgam_irf-class	99
mvgam_marginaleffects	100
mvgam_residcor-class	104
mvgam_trends	105
mvgam_use_cases	106
ordinate.jsdgam	108
pairs.mvgam	110
plot.mvgam	111
plot.mvgam_fevd	114
plot.mvgam_irf	115
plot.mvgam_lfo	115
plot.mvgam_residcor	116
plot_mvgam_factors	117
plot_mvgam_forecasts	118
plot_mvgam_pterms	121
plot_mvgam_randomeffects	122
plot_mvgam_resids	123
plot_mvgam_series	124
plot_mvgam_smooth	126
plot_mvgam_trend	128
plot_mvgam_uncertainty	130
portal_data	131
posterior_epred.mvgam	131
posterior_linpred.mvgam	133
posterior_predict.mvgam	135
ppc.mvgam	137
pp_check.mvgam	139
predict.mvgam	142
print.mvgam	145
print.mvgam_summary	146
PW	147
residuals.mvgam	149
residual_cor.jsdgam	151
RW	153
score.mvgam_forecast	157
series_to_mvgam	160
sim_mvgam	161
stability.mvgam	163
summary.mvgam	167
summary.mvgam_fevd	169
summary.mvgam_forecast	170
summary.mvgam_irf	171

tidy.mvgam	171
update.mvgam	173
ZMVN	178
Index	182

add_residuals.mvgam *Calculate randomized quantile residuals for **mvgam** objects*

Description

Calculate randomized quantile residuals for **mvgam** objects

Usage

```
add_residuals(object, ...)

## S3 method for class 'mvgam'
add_residuals(object, ...)
```

Arguments

object	list object of class mvgam . See mvgam()
...	unused

Details

For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for inspecting model diagnostics. If the fitted model is appropriate then Dunn-Smyth residuals will be standard normal in distribution and no autocorrelation will be evident. When a particular observation is missing, the residual is calculated by comparing independent draws from the model's posterior distribution.

Value

A list object of class **mvgam** with residuals included in the 'resids' slot

all_neon_tick_data *NEON Amblyomma and Ixodes tick abundance survey data*

Description

A dataset containing timeseries of *Amblyomma americanum* and *Ixodes scapularis* nymph abundances at NEON sites

Usage

```
all_neon_tick_data
```

Format

A tibble/dataframe containing covariate information alongside the main fields of:

Year Year of sampling

epiWeek Epidemiological week of sampling

plot_ID NEON plot ID for survey location

siteID NEON site ID for survey location

amblyomma_americum Counts of *A. americanum* nymphs

ixodes_scapularis Counts of *I. scapularis* nymphs

Source

<https://www.neonscience.org/data>

augment.mvgam *Augment an mvgam object's data*

Description

Add fits and residuals to the data, implementing the generic `augment` from the package **broom**.

Usage

```
## S3 method for class 'mvgam'  
augment(x, robust = FALSE, probs = c(0.025, 0.975), ...)
```

Arguments

<code>x</code>	An object of class <code>mvgam</code> .
<code>robust</code>	If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead.
<code>probs</code>	The percentiles to be computed by the quantile function.
...	Unused, included for generic consistency only.

Details

A list is returned if `class(x$obs_data) == 'list'`, otherwise a tibble is returned, but the contents of either object is the same.

The arguments `robust` and `probs` are applied to both the fit and residuals calls (see [fitted.mvgam\(\)](#) and [residuals.mvgam\(\)](#) for details).

Value

A list or tibble (see details) combining:

- The data supplied to `mvgam()`.
- The outcome variable, named as `.observed`.
- The fitted backcasts, along with their variability and credible bounds.
- The residuals, along with their variability and credible bounds.

See Also

[residuals.mvgam](#), [fitted.mvgam](#)

Other tidiers: [tidy.mvgam\(\)](#)

Examples

```
## Not run:
set.seed(0)
dat <- sim_mvgam(
  T = 80,
  n_series = 3,
  mu = 2,
  trend_model = AR(p = 1),
  prop_missing = 0.1,
  prop_trend = 0.6
)
mod1 <- mvgam(
  formula = y ~ s(season, bs = 'cc', k = 6),
  data = dat$data_train,
  trend_model = AR(),
  family = poisson(),
  noncentred = TRUE,
  chains = 2,
  silent = 2
)
augment(mod1, robust = TRUE, probs = c(0.25, 0.75))

## End(Not run)
```

code	<i>Stan code and data objects for mvgam models</i>
------	---

Description

Generate Stan code and data objects for **mvgam** models

Usage

```
code(object)

## S3 method for class 'mvgam_prefit'
stancode(object, ...)

## S3 method for class 'mvgam'
stancode(object, ...)

## S3 method for class 'mvgam_prefit'
standata(object, ...)
```

Arguments

object	An object of class mvgam or mvgam_prefit , returned from a call to mvgam
...	ignored

Value

Either a character string containing the fully commented **Stan** code to fit a **mvgam** model or a named list containing the data objects needed to fit the model in Stan.

Examples

```
## Not run:
simdat <- sim_mvgam()
mod <- mvgam(y ~ s(season) +
  s(time, by = series),
  family = poisson(),
  data = simdat$data_train,
  run_model = FALSE)

# View Stan model code
stancode(mod)

# View Stan model data
sdata <- standata(mod)
str(sdata)

## End(Not run)
```

conditional_effects.mvgam

*Display conditional effects of predictors for **mvgam** models*

Description

Display conditional effects of one or more numeric and/or categorical predictors in models of class **mvgam** and **jsdgam**, including two-way interaction effects.

Usage

```
## S3 method for class 'mvgam'
conditional_effects(
  x,
  effects = NULL,
  type = "expected",
  points = FALSE,
  rug = FALSE,
  ...
)

## S3 method for class 'mvgam_conditional_effects'
plot(x, plot = TRUE, ask = FALSE, ...)

## S3 method for class 'mvgam_conditional_effects'
print(x, ...)
```

Arguments

<code>x</code>	Object of class mvgam , jsdgam or mvgam_conditional_effects
<code>effects</code>	An optional character vector naming effects (main effects or interactions) for which to compute conditional plots. Interactions are specified by a : between variable names. If <code>NULL</code> (the default), plots are generated for all main effects and two-way interactions estimated in the model. When specifying <code>effects</code> manually, <i>all</i> two-way interactions (including grouping variables) may be plotted even if not originally modeled.
<code>type</code>	character specifying the scale of predictions. When this has the value <code>link</code> the linear predictor is calculated on the link scale. If <code>expected</code> is used (the default), predictions reflect the expectation of the response (the mean) but ignore uncertainty in the observation process. When <code>response</code> is used, the predictions take uncertainty in the observation process into account to return predictions on the outcome scale. Two special cases are also allowed: type <code>latent_N</code> will return the estimated latent abundances from an N-mixture distribution, while type <code>detection</code> will return the estimated detection probability from an N-mixture distribution.

points	Logical. Indicates if the original data points should be added, but only if type == 'response'. Default is TRUE.
rug	Logical. Indicates if displays tick marks should be plotted on the axes to mark the distribution of raw data, but only if type == 'response'. Default is TRUE.
...	other arguments to pass to plot_predictions
plot	Logical; indicates if plots should be plotted directly in the active graphic device. Defaults to TRUE.
ask	Logical. Indicates if the user is prompted before a new page is plotted. Only used if plot is TRUE. Default is FALSE.

Details

This function acts as a wrapper to the more flexible [plot_predictions](#). When creating `conditional_effects` for a particular predictor (or interaction of two predictors), one has to choose the values of all other predictors to condition on. By default, the mean is used for continuous variables and the reference category is used for factors. Use [plot_predictions](#) to change these and create more bespoke conditional effects plots.

Value

`conditional_effects` returns an object of class `mvgam_conditional_effects` which is a named list with one slot per effect containing a [ggplot](#) object, which can be further customized using the `ggplot2` package. The corresponding `plot` method will draw these plots in the active graphic device.

Author(s)

Nicholas J Clark

See Also

[plot_predictions](#), [plot_slopes](#)

Examples

```
## Not run:
# Simulate some data
simdat <- sim_mvgam(
  family = poisson(),
  seasonality = 'hierarchical'
)

# Fit a model
mod <- mvgam(
  y ~ s(season, by = series, k = 5) + year:series,
  family = poisson(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)
```

```

# Plot all main effects on the response scale
conditional_effects(mod)

# Change the prediction interval to 70% using plot_predictions() argument
# 'conf_level'
conditional_effects(mod, conf_level = 0.7)

# Plot all main effects on the link scale
conditional_effects(mod, type = 'link')

# Works the same for smooth terms, including smooth interactions
set.seed(0)
dat <- mgcv:::gamSim(1, n = 200, scale = 2)
mod <- mvgam(
  y ~ te(x0, x1, k = 5) + s(x2, k = 6) + s(x3, k = 6),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
)
conditional_effects(mod)
conditional_effects(mod, conf_level = 0.5, type = 'link')

# ggplot objects can be modified and combined with the help of many
# additional packages. Here is an example using the patchwork package

# Simulate some nonlinear data
dat <- mgcv:::gamSim(1, n = 200, scale = 2)
mod <- mvgam(
  y ~ s(x1, bs = 'moi') + te(x0, x2),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
)

# Extract the list of ggplot conditional_effect plots
m <- plot(conditional_effects(mod), plot = FALSE)

# Add custom labels and arrange plots together using patchwork::wrap_plots()
library(patchwork)
library(ggplot2)
wrap_plots(
  m[[1]] + labs(title = 's(x1, bs = "moi")'),
  m[[2]] + labs(title = 'te(x0, x2)')
)
## End(Not run)

```

dynamic

*Defining dynamic coefficients in **mvgam** formulae*

Description

Set up time-varying (dynamic) coefficients for use in **mvgam** models. Currently, only low-rank Gaussian Process smooths are available for estimating the dynamics of the time-varying coefficient.

Usage

```
dynamic(variable, k, rho = 5, stationary = TRUE, scale = TRUE)
```

Arguments

variable	The variable that the dynamic smooth will be a function of
k	Optional number of basis functions for computing approximate GPs. If missing, k will be set as large as possible to accurately estimate the nonlinear function.
rho	Either a positive numeric stating the length scale to be used for approximating the squared exponential Gaussian Process smooth (see gp.smooth for details) or missing, in which case the length scale will be estimated by setting up a Hilbert space approximate GP.
stationary	Logical. If TRUE (the default) and rho is supplied, the latent Gaussian Process smooth will not have a linear trend component. If FALSE, a linear trend in the covariate is added to the Gaussian Process smooth. Leave at TRUE if you do not believe the coefficient is evolving with much trend, as the linear component of the basis functions can be hard to penalize to zero. This sometimes causes divergence issues in Stan. See gp.smooth for details. Ignored if rho is missing (in which case a Hilbert space approximate GP is used).
scale	Logical; If TRUE (the default) and rho is missing, predictors are scaled so that the maximum Euclidean distance between two points is 1. This often improves sampling speed and convergence. Scaling also affects the estimated length-scale parameters in that they resemble those of scaled predictors (not of the original predictors) if scale is TRUE.

Details

mvgam currently sets up dynamic coefficients as low-rank squared exponential Gaussian Process smooths via the call `s(time, by = variable, bs = "gp", m = c(2, rho, 2))`. These smooths, if specified with reasonable values for the length scale parameter, will give more realistic out of sample forecasts than standard splines such as thin plate or cubic. But the user must set the value for rho, as there is currently no support for estimating this value in `mgcv`. This may not be too big of a problem, as estimating latent length scales is often difficult anyway. The rho parameter should be thought of as a prior on the smoothness of the latent dynamic coefficient function (where higher values of rho lead to smoother functions with more temporal covariance structure). Values of k are set automatically to ensure enough basis functions are used to approximate the expected wiggliness of the underlying dynamic function (k will increase as rho decreases).

Value

a list object for internal usage in 'mvgam'

Author(s)

Nicholas J Clark

Examples

```
## Not run:
# Simulate a time-varying coefficient
# (as a Gaussian Process with length scale = 10)
set.seed(1111)
N <- 200

# A function to simulate from a squared exponential Gaussian Process
sim_gp <- function(N, c, alpha, rho) {
  Sigma <- alpha ^ 2 *
    exp(-0.5 * ((outer(1:N, 1:N, "-") / rho) ^ 2)) +
    diag(1e-9, N)
  c + mgcv::rmvnb(1, mu = rep(0, N), V = Sigma)
}

beta <- sim_gp(alpha = 0.75, rho = 10, c = 0.5, N = N)
plot(
  beta, type = 'l', lwd = 3, bty = 'l',
  xlab = 'Time', ylab = 'Coefficient', col = 'darkred'
)

# Simulate the predictor as a standard normal
predictor <- rnorm(N, sd = 1)

# Simulate a Gaussian outcome variable
out <- rnorm(N, mean = 4 + beta * predictor, sd = 0.25)
time <- seq_along(predictor)
plot(
  out, type = 'l', lwd = 3, bty = 'l',
  xlab = 'Time', ylab = 'Outcome', col = 'darkred'
)

# Gather into a data.frame and fit a dynamic coefficient model
data <- data.frame(out, predictor, time)

# Split into training and testing
data_train <- data[1:190, ]
data_test <- data[191:200, ]

# Fit a model using the dynamic function
mod <- mvgam(
  out ~
    # mis-specify the length scale slightly as this
    # won't be known in practice
```

```

    dynamic(predictor, rho = 8, stationary = TRUE),
    family = gaussian(),
    data = data_train,
    chains = 2,
    silent = 2
  )

# Inspect the summary
summary(mod)

# Plot the time-varying coefficient estimates
plot(mod, type = 'smooths')

# Extrapolate the coefficient forward in time
plot_mvgam_smooth(mod, smooth = 1, newdata = data)
abline(v = 190, lty = 'dashed', lwd = 2)

# Overlay the true simulated time-varying coefficient
lines(beta, lwd = 2.5, col = 'white')
lines(beta, lwd = 2)

## End(Not run)

```

ensemble.mvgam_forecast

*Combine forecasts from **mvgam** models into evenly weighted ensembles*

Description

Generate evenly weighted ensemble forecast distributions from `mvgam_forecast` objects.

Usage

```

ensemble(object, ...)

## S3 method for class 'mvgam_forecast'
ensemble(object, ..., ndraws = 5000)

```

Arguments

<code>object</code>	list object of class <code>mvgam_forecast</code> . See forecast.mvgam()
<code>...</code>	More <code>mvgam_forecast</code> objects.
<code>ndraws</code>	Positive integer specifying the number of draws to use from each forecast distribution for creating the ensemble. If some of the ensemble members have fewer draws than <code>ndraws</code> , their forecast distributions will be resampled with replacement to achieve the correct number of draws

Details

It is widely recognised in the forecasting literature that combining forecasts from different models often results in improved forecast accuracy. The simplest way to create an ensemble is to use evenly weighted combinations of forecasts from the different models. This is straightforward to do in a Bayesian setting with **mvgam** as the posterior MCMC draws contained in each `mvgam_forecast` object will already implicitly capture correlations among the temporal posterior predictions.

Value

An object of class `mvgam_forecast` containing the ensemble predictions. This object can be readily used with the supplied S3 functions `plot` and `score`.

Author(s)

Nicholas J Clark

See Also

[plot.mvgam_forecast](#), [score.mvgam_forecast](#)

Examples

```
## Not run:
# Simulate some series and fit a few competing dynamic models
set.seed(1)
simdat <- sim_mvgam(
  n_series = 1,
  prop_trend = 0.6,
  mu = 1
)

plot_mvgam_series(
  data = simdat$data_train,
  newdata = simdat$data_test
)

m1 <- mvgam(
  y ~ 1,
  trend_formula = ~ time +
    s(season, bs = 'cc', k = 9),
  trend_model = AR(p = 1),
  noncentred = TRUE,
  data = simdat$data_train,
  newdata = simdat$data_test,
  chains = 2,
  silent = 2
)

m2 <- mvgam(
  y ~ time,
  trend_model = RW(),
```

```

noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test,
chains = 2,
silent = 2
)

# Calculate forecast distributions for each model
fc1 <- forecast(m1)
fc2 <- forecast(m2)

# Generate the ensemble forecast
ensemble_fc <- ensemble(fc1, fc2)

# Plot forecasts
plot(fc1)
plot(fc2)
plot(ensemble_fc)

# Score forecasts
score(fc1)
score(fc2)
score(ensemble_fc)

## End(Not run)

```

evaluate_mvgams

*Evaluate forecasts from fitted **mvgam** objects*

Description

Evaluate forecasts from fitted **mvgam** objects

Usage

```

eval_mvgam(
  object,
  n_samples = 5000,
  eval_timepoint = 3,
  fc_horizon = 3,
  n_cores = 1,
  score = "drps",
  log = FALSE,
  weights
)

roll_eval_mvgam(
  object,

```

```

n_evaluations = 5,
evaluation_seq,
n_samples = 5000,
fc_horizon = 3,
n_cores = 1,
score = "drps",
log = FALSE,
weights
)

compare_mvgams(
  model1,
  model2,
  n_samples = 1000,
  fc_horizon = 3,
  n_evaluations = 10,
  n_cores = 1,
  score = "drps",
  log = FALSE,
  weights
)

```

Arguments

object	list object returned from <code>mvgam</code>
n_samples	integer specifying the number of samples to generate from the model's posterior distribution
eval_timepoint	integer indexing the timepoint that represents our last 'observed' set of outcome data
fc_horizon	integer specifying the length of the forecast horizon for evaluating forecasts
n_cores	Deprecated. Parallel processing is no longer supported
score	character specifying the type of ranked probability score to use for evaluation. Options are: <code>variogram</code> , <code>drps</code> or <code>crps</code>
log	logical. Should the forecasts and truths be logged prior to scoring? This is often appropriate for comparing performance of models when series vary in their observation ranges
weights	optional vector of weights (where <code>length(weights) == n_series</code>) for weighting pairwise correlations when evaluating the variogram score for multivariate forecasts. Useful for down-weighting series that have larger magnitude observations or that are of less interest when forecasting. Ignored if <code>score != 'variogram'</code>
n_evaluations	integer specifying the total number of evaluations to perform
evaluation_seq	Optional integer sequence specifying the exact set of timepoints for evaluating the model's forecasts. This sequence cannot have values <3 or > <code>max(training_timepoints) - fc_horizon</code>
model1	list object returned from <code>mvgam</code> representing the first model to be evaluated
model2	list object returned from <code>mvgam</code> representing the second model to be evaluated

Details

`eval_mvgam` may be useful when both repeated fitting of a model using `update.mvgam` for exact leave-future-out cross-validation and approximate leave-future-out cross-validation using `lfo_cv` are impractical. The function generates a set of samples representing fixed parameters estimated from the full `mvgam` model and latent trend states at a given point in time. The trends are rolled forward a total of `fc_horizon` timesteps according to their estimated state space dynamics to generate an 'out-of-sample' forecast that is evaluated against the true observations in the horizon window. This function therefore simulates a situation where the model's parameters had already been estimated but we have only observed data up to the evaluation timepoint and would like to generate forecasts from the latent trends that have been observed up to that timepoint. Evaluation involves calculating an appropriate Rank Probability Score and a binary indicator for whether or not the true value lies within the forecast's 90% prediction interval

`roll_eval_mvgam` sets up a sequence of evaluation timepoints along a rolling window and iteratively calls `eval_mvgam` to evaluate 'out-of-sample' forecasts. Evaluation involves calculating the Rank Probability Scores and a binary indicator for whether or not the true value lies within the forecast's 90% prediction interval

`compare_mvgams` automates the evaluation to compare two fitted models using rolling window forecast evaluation and provides a series of summary plots to facilitate model selection. It is essentially a wrapper for `roll_eval_mvgam`

Value

For `eval_mvgam`, a `list` object containing information on specific evaluations for each series (if using `drps` or `crps` as the score) or a vector of scores when using `variogram`.

For `roll_eval_mvgam`, a `list` object containing information on specific evaluations for each series as well as a total evaluation summary (taken by summing the forecast score for each series at each evaluation and averaging the coverages at each evaluation)

For `compare_mvgams`, a series of plots comparing forecast Rank Probability Scores for each competing model. A lower score is preferred. Note however that it is possible to select a model that ultimately would perform poorly in true out-of-sample forecasting. For example if a wiggly smooth function of 'year' is included in the model then this function will be learned prior to evaluating rolling window forecasts, and the model could generate very tight predictions as a result. But when forecasting ahead to timepoints that the model has not seen (i.e. next year), the smooth function will end up extrapolating, sometimes in very strange and unexpected ways. It is therefore recommended to only use smooth functions for covariates that are adequately measured in the data (i.e. 'seasonality', for example) to reduce possible extrapolation of smooths and let the latent trends in the `mvgam` model capture any temporal dependencies in the data. These trends are time series models and so will provide much more stable forecasts

See Also

`forecast`, `score`, `lfo_cv`

Examples

```
## Not run:
# Simulate from a Poisson-AR2 model with a seasonal smooth
set.seed(1)
```

```

dat <- sim_mvgam(
  T = 75,
  n_series = 1,
  prop_trend = 0.75,
  trend_model = AR(p = 2),
  family = poisson()
)

# Fit an appropriate model
mod_ar2 <- mvgam(
  formula = y ~ s(season, bs = 'cc'),
  trend_model = AR(p = 2),
  family = poisson(),
  data = dat$data_train,
  newdata = dat$data_test,
  chains = 2,
  silent = 2
)

# Fit a less appropriate model
mod_rw <- mvgam(
  formula = y ~ 1,
  trend_model = RW(),
  family = poisson(),
  data = dat$data_train,
  newdata = dat$data_test,
  chains = 2,
  silent = 2
)

# Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)
fc_rw <- forecast(mod_rw)
score_ar2 <- score(
  object = fc_ar2,
  score = 'drps'
)
score_rw <- score(
  object = fc_rw,
  score = 'drps'
)
sum(score_ar2$series_1$score)
sum(score_rw$series_1$score)

# Use rolling evaluation for approximate comparisons of 3-step ahead
# forecasts across the training period
compare_mvgams(
  model1 = mod_ar2,
  model2 = mod_rw,
  fc_horizon = 3,
  n_samples = 1000,
  n_evaluations = 5
)

```

```
# A more appropriate comparison would be to use approximate
# leave-future-out CV to compare forecasts (see ?mvgam::lfo_cv())

## End(Not run)
```

fevd.mvgam

Calculate latent VAR forecast error variance decompositions

Description

Compute forecast error variance decompositions from `mvgam` models with Vector Autoregressive dynamics

Usage

```
fevd(object, ...)
## S3 method for class 'mvgam'
fevd(object, h = 10, ...)
```

Arguments

object	list object of class <code>mvgam</code> resulting from a call to <code>mvgam()</code> that used a Vector Autoregressive latent process model (either as <code>VAR(cor = FALSE)</code> or <code>VAR(cor = TRUE)</code> ; see <code>VAR()</code> for details)
...	ignored
h	Positive integer specifying the forecast horizon over which to calculate the IRF

Value

See `mvgam_fevd-class` for a full description of the quantities that are computed and returned by this function, along with key references.

Author(s)

Nicholas J Clark

References

Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. 2nd ed. Springer-Verlag Berlin Heidelberg.

See Also

`VAR()`, `irf()`, `stability()`, `mvgam_fevd-class`

Examples

```

## Not run:
# Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(
  family = gaussian(),
  n_series = 4,
  trend_model = VAR(cor = TRUE),
  prop_trend = 1
)
plot_mvgam_series(data = simdat$data_train, series = "all")

# Fit a model that uses a latent VAR(1)
mod <- mvgam(
  formula = y ~ -1,
  trend_formula = ~ 1,
  trend_model = VAR(cor = TRUE),
  family = gaussian(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Plot the autoregressive coefficient distributions;
# use 'dir = "v"' to arrange the order of facets
# correctly
mcmc_plot(
  mod,
  variable = 'A',
  regex = TRUE,
  type = 'hist',
  facet_args = list(dir = 'v')
)

# Calculate forecast error variance decompositions for each series
fevds <- fevd(mod, h = 12)

# Plot median contributions to forecast error variance
plot(fevds)

# View a summary of the error variance decompositions
summary(fevds)

## End(Not run)

```

Description

This method extracts posterior estimates of the fitted values (i.e. the actual predictions, including estimates for any trend states, that were obtained when fitting the model). It also includes an option for obtaining summaries of the computed draws.

Usage

```
## S3 method for class 'mvgam'
fitted(
  object,
  process_error = TRUE,
  scale = c("response", "linear"),
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)
```

Arguments

object	An object of class <code>mvgam</code>
process_error	Logical. If TRUE and a dynamic trend model was fit, expected uncertainty in the process model is accounted for by using draws from a stationary, zero-centred multivariate Normal distribution using any estimated process variance-covariance parameters. If FALSE, uncertainty in the latent trend component is ignored when calculating predictions
scale	Either "response" or "linear". If "response", results are returned on the scale of the response variable. If "linear", results are returned on the scale of the linear predictor term, that is without applying the inverse link function or other transformations.
summary	Should summary statistics be returned instead of the raw values? Default is TRUE..
robust	If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead. Only used if <code>summary</code> is TRUE.
probs	The percentiles to be computed by the <code>quantile</code> function. Only used if <code>summary</code> is TRUE.
...	Further arguments passed to <code>prepare_predictions</code> that control several aspects of data validation and prediction.

Details

This method gives the actual fitted values from the model (i.e. what you will see if you generate hindcasts from the fitted model using `hindcast.mvgam` with `type = 'expected'`). These predictions can be overly precise if a flexible dynamic trend component was included in the model. This is in contrast to the set of predict functions (i.e. `posterior_epred.mvgam` or `predict.mvgam`),

which will assume any dynamic trend component has reached stationarity when returning hypothetical predictions.

Value

An array of predicted *mean* response values.

If `summary` = FALSE the output resembles those of `posterior_epred.mvgam` and `predict.mvgam`.

If `summary` = TRUE the output is an `n_observations` x `E` matrix. The number of summary statistics `E` is equal to `2 + length(probs)`: The `Estimate` column contains point estimates (either mean or median depending on argument `robust`), while the `Est.Error` column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument `robust`). The remaining columns starting with `Q` contain quantile estimates as specified via argument `probs`.

Author(s)

Nicholas J Clark

See Also

`hindcast.mvgam`

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Extract fitted values (posterior expectations)
expectations <- fitted(mod)
str(expectations)

## End(Not run)
```

`forecast.mvgam`

Extract or compute hindcasts and forecasts for a fitted mvgam object

Description

Extract or compute hindcasts and forecasts for a fitted `mvgam` object

Usage

```
## S3 method for class 'mvgam'
forecast(object, newdata, data_test, n_cores = 1, type = "response", ...)
```

Arguments

object	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
newdata	Optional data frame or list of test data containing the same variables that were included in the original data used to fit the model. If included, the covariate information in <code>newdata</code> will be used to generate forecasts from the fitted model equations. If this same <code>newdata</code> was originally included in the call to <code>mvgam</code> , then forecasts have already been produced by the generative model and these will simply be extracted and plotted. However if no <code>newdata</code> was supplied to the original model call, an assumption is made that the <code>newdata</code> supplied here comes sequentially after the data supplied in the original model (i.e. we assume there is no time gap between the last observation of series 1 in the original data and the first observation for series 1 in <code>newdata</code>)
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
n_cores	Deprecated. Parallel processing is no longer supported
type	When this has the value <code>link</code> (default) the linear predictor is calculated on the link scale. If <code>expected</code> is used, predictions reflect the expectation of the response (the mean) but ignore uncertainty in the observation process. When <code>response</code> is used, the predictions take uncertainty in the observation process into account to return predictions on the outcome scale. When <code>variance</code> is used, the variance of the response with respect to the mean (mean-variance relationship) is returned. When <code>type = "terms"</code> , each component of the linear predictor is returned separately in the form of a <code>list</code> (possibly with standard errors, if <code>summary = TRUE</code>): this includes parametric model components, followed by each smooth component, but excludes any offset and any intercept. Two special cases are also allowed: <code>type latent_N</code> will return the estimated latent abundances from an N -mixture distribution, while <code>type detection</code> will return the estimated detection probability from an N -mixture distribution
...	Ignored

Details

Posterior predictions are drawn from the fitted `mvgam` and used to simulate a forecast distribution

Value

An object of class `mvgam_forecast` containing hindcast and forecast distributions. See [mvgam_forecast-class](#) for details.

See Also

[hindcast.mvgam\(\)](#), [plot.mvgam_forecast\(\)](#), [summary.mvgam_forecast\(\)](#), [score.mvgam_forecast\(\)](#), [ensemble.mvgam_forecast\(\)](#)

Examples

```

## Not run:
# Simulate data with 3 series and AR trend model
simdat <- sim_mvgam(n_series = 3, trend_model = AR())

# Fit mvgam model
mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Hindcasts on response scale
hc <- hindcast(mod)
str(hc)

# Use summary() to extract hindcasts / forecasts for custom plotting
head(summary(hc), 12)

# Or just use the plot() function for quick plots
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

# Forecasts on response scale
fc <- forecast(
  mod,
  newdata = simdat$data_test
)
str(fc)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

# Forecasts as expectations
fc <- forecast(
  mod,
  newdata = simdat$data_test,
  type = 'expected'
)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

# Dynamic trend extrapolations
fc <- forecast(
  mod,

```

```
  newdata = simdat$data_test,
  type = 'trend'
)
head(summary(fc), 12)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

## End(Not run)
```

formula.mvgam

*Extract formulae from **mvgam** objects*

Description

Extract formulae from **mvgam** objects

Usage

```
## S3 method for class 'mvgam'
formula(x, trend_effects = FALSE, ...)

## S3 method for class 'mvgam_prefit'
formula(x, trend_effects = FALSE, ...)
```

Arguments

x **mvgam**, **jsdgam** or **mvgam_prefit** object
trend_effects logical, return the formula from the observation model (if FALSE) or from the underlying process model (if TRUE)
... Ignored

Value

A **formula** object

Author(s)

Nicholas J Clark

get_mvgam_priors	<i>Extract information on default prior distributions for an mvgam model</i>
------------------	---

Description

This function lists the parameters that can have their prior distributions changed for a given model, as well listing their default distributions

Usage

```
get_mvgam_priors(
  formula,
  trend_formula,
  factor_formula,
  knots,
  trend_knots,
  trend_model = "None",
  family = poisson(),
  data,
  unit = time,
  species = series,
  use_lv = FALSE,
  n_lv,
  trend_map,
  ...
)
```

Arguments

formula	A formula object specifying the GAM observation model formula. These are exactly like the formula for a GLM except that smooth terms, <code>s()</code> , <code>te()</code> , <code>ti()</code> , <code>t2()</code> , as well as time-varying <code>dynaminc()</code> terms, nonparametric <code>gp()</code> terms and offsets using <code>offset()</code> , can be added to the right hand side to specify that the linear predictor depends on smooth functions of predictors (or linear functionals of these). In <code>nmix()</code> family models, the formula is used to set up a linear predictor for the detection probability. Details of the formula syntax used by mvgam can be found in mvgam_formulae
trend_formula	An optional formula object specifying the GAM process model formula. If supplied, a linear predictor will be modelled for the latent trends to capture process model evolution separately from the observation model.

Important notes:

- Should not have a response variable specified on the left-hand side (e.g., `~ season + s(year)`)
- Use `trend` instead of `series` for effects that vary across time series

- Only available for RW(), AR() and VAR() trend models
- In nmix() family models, sets up linear predictor for latent abundance
- Consider dropping one intercept using - 1 convention to avoid estimation challenges

`factor_formula` Can be supplied instead `trend_formula` to match syntax from `jsdgam`

`knots` An optional `list` containing user specified knot values for basis construction. For most bases the user simply supplies the knots to be used, which must match up with the `k` value supplied. Different terms can use different numbers of knots, unless they share a covariate.

`trend_knots` As for `knots` above, this is an optional `list` of knot values for smooth functions within the `trend_formula`.

`trend_model` character or function specifying the time series dynamics for the latent trend.

Available options:

- None: No latent trend component (GAM component only, like `gam`)
- ZMVN or ZMVN(): Zero-Mean Multivariate Normal (Stan only)
- 'RW' or RW(): Random Walk
- 'AR1', 'AR2', 'AR3' or AR(`p` = 1, 2, 3): Autoregressive models
- 'CAR1' or CAR(`p` = 1): Continuous-time AR (Ornstein–Uhlenbeck process)
- 'VAR1' or VAR(): Vector Autoregressive (Stan only)
- 'PWlogistic', 'PWlinear' or PW(): Piecewise trends (Stan only)
- 'GP' or GP(): Gaussian Process with squared exponential kernel (Stan only)

Additional features:

- Moving average and/or correlated process error terms available for most types (e.g., RW(`cor` = TRUE) for multivariate Random Walk)
- Hierarchical correlations possible for structured data
- See `mvgam_trends` for details and `ZMVN()` for examples

`family` family specifying the exponential observation family for the series.

Supported families:

- `gaussian()`: Real-valued data
- `betar()`: Proportional data on (0, 1)
- `lognormal()`: Non-negative real-valued data
- `student_t()`: Real-valued data
- `Gamma()`: Non-negative real-valued data
- `bernoulli()`: Binary data
- `poisson()`: Count data (default)
- `nb()`: Overdispersed count data
- `binomial()`: Count data with imperfect detection when number of trials is known (use `cbind()` to bind observations and trials)
- `beta_binomial()`: As `binomial()` but allows for overdispersion
- `nmix()`: Count data with imperfect detection when number of trials is unknown (State-Space N-Mixture model with Poisson latent states and Binomial observations)

	See mvgam_families for more details.
data	A dataframe or list containing the model response variable and covariates required by the GAM formula and optional <code>trend_formula</code> .
	Required columns for most models:
	<ul style="list-style-type: none"> • <code>series</code>: A factor index of the series IDs (number of levels should equal number of unique series labels) • <code>time</code>: numeric or integer index of time points. For most dynamic trend types, time should be measured in discrete, regularly spaced intervals (i.e., <code>c(1, 2, 3, ...)</code>). Irregular spacing is allowed for <code>trend_model = CAR(1)</code>, but zero intervals are adjusted to <code>1e-12</code> to prevent sampling errors.
	Special cases:
	<ul style="list-style-type: none"> • Models with hierarchical temporal correlation (e.g., <code>AR(gr = region, subgr = species)</code>) should NOT include a <code>series</code> identifier • Models without temporal dynamics (<code>trend_model = 'None'</code> or <code>trend_model = ZMVN()</code>) don't require a <code>time</code> variable
unit	The unquoted name of the variable that represents the unit of analysis in data over which latent residuals should be correlated. This variable should be either a numeric or integer variable in the supplied data. Defaults to <code>time</code> to be consistent with other functionalities in mvgam , though note that the data need not be time series in this case. See examples below for further details and explanations
species	The unquoted name of the factor variable that indexes the different response units in <code>data</code> (usually 'species' in a JSDM). Defaults to <code>series</code> to be consistent with other mvgam models
use_lv	<code>logical</code> . If <code>TRUE</code> , use dynamic factors to estimate series' latent trends in a reduced dimension format. Only available for <code>RW()</code> , <code>AR()</code> and <code>GP()</code> trend models. Default is <code>FALSE</code> . See lv_correlations for examples.
n_lv	<code>integer</code> specifying the number of latent dynamic factors to use if <code>use_lv == TRUE</code> . Cannot exceed <code>n_series</code> . Default is <code>min(2, floor(n_series / 2))</code> .
trend_map	Optional <code>data.frame</code> specifying which series should depend on which latent trends. Enables multiple series to depend on the same latent trend process with different observation processes.
	Required structure:
	<ul style="list-style-type: none"> • Column <code>series</code>: Single unique entry for each series (matching factor levels in <code>data</code>) • Column <code>trend</code>: Integer values indicating which trend each series depends on
	Notes:
	<ul style="list-style-type: none"> • Sets up latent factor model by enabling <code>use_lv = TRUE</code> • Process model intercept is NOT automatically suppressed • Not yet supported for continuous time models (<code>CAR()</code>)
...	Not currently used

Details

Users can supply a model formula, prior to fitting the model, so that default priors can be inspected and altered. To make alterations, change the contents of the `prior` column and supplying this `data.frame` to the `mvgam` or `jsdgam` functions using the argument `priors`. If using Stan as the backend, users can also modify the parameter bounds by modifying the `new_lowerbound` and/or `new_upperbound` columns. This will be necessary if using restrictive distributions on some parameters, such as a Beta distribution for the trend sd parameters for example (Beta only has support on $(0, 1)$), so the upperbound cannot be above 1. Another option is to make use of the prior modification functions in `brms` (i.e. `prior`) to change prior distributions and bounds (just use the name of the parameter that you'd like to change as the `class` argument; see examples below)

Value

either a `data.frame` containing the prior definitions (if any suitable priors can be altered by the user) or `NULL`, indicating that no priors in the model can be modified

Note

Only the `prior`, `new_lowerbound` and/or `new_upperbound` columns of the output should be altered when defining the user-defined priors for the model. Use only if you are familiar with the underlying probabilistic programming language. There are no sanity checks done to ensure that the code is legal (i.e. to check that lower bounds are smaller than upper bounds, for example)

Author(s)

Nicholas J Clark

See Also

`mvgam`, `mvgam_formulae`, `prior`

Examples

```
## Not run:
# =====
# Example 1: Simulate data and inspect default priors
# =====

dat <- sim_mvgam(trend_rel = 0.5)

# Get a model file that uses default mvgam priors for inspection (not
# always necessary, but this can be useful for testing whether your
# updated priors are written correctly)
mod_default <- mvgam(
  y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
  family = nb(),
  data = dat$data_train,
  trend_model = AR(p = 2),
  run_model = FALSE
)
```

```

# Inspect the model file with default mvgam priors
stancode(mod_default)

# Look at which priors can be updated in mvgam
test_priors <- get_mvgam_priors(
  y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
  family = nb(),
  data = dat$data_train,
  trend_model = AR(p = 2)
)
test_priors

# =====
# Example 2: Modify priors manually
# =====

# Make a few changes; first, change the population mean for the
# series-level random intercepts
test_priors$prior[2] <- "mu_raw ~ normal(0.2, 0.5);"

# Now use stronger regularisation for the series-level AR2 coefficients
test_priors$prior[5] <- "ar2 ~ normal(0, 0.25);"

# Check that the changes are made to the model file without any warnings
# by setting 'run_model = FALSE'
mod <- mvgam(
  y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
  family = nb(),
  data = dat$data_train,
  trend_model = AR(p = 2),
  priors = test_priors,
  run_model = FALSE
)
stancode(mod)

# No warnings, the model is ready for fitting now in the usual way with
# the addition of the 'priors' argument

# =====
# Example 3: Use brms syntax for prior modification
# =====

# The same can be done using 'brms' functions; here we will also change
# the ar1 prior and put some bounds on the ar coefficients to enforce
# stationarity; we set the prior using the 'class' argument in all brms
# prior functions
brmsprior <- c(
  prior(normal(0.2, 0.5), class = mu_raw),
  prior(normal(0, 0.25), class = ar1, lb = -1, ub = 1),
  prior(normal(0, 0.25), class = ar2, lb = -1, ub = 1)
)
brmsprior

```

```
mod <- mvgam(
  y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
  family = nb(),
  data = dat$data_train,
  trend_model = AR(p = 2),
  priors = brmsprior,
  run_model = FALSE
)
stancode(mod)

# =====
# Example 4: Error handling example
# =====

# Look at what is returned when an incorrect spelling is used
test_priors$prior[5] <- "ar2_bananas ~ normal(0, 0.25);"
mod <- mvgam(
  y ~ s(series, bs = "re") + s(season, bs = "cc") - 1,
  family = nb(),
  data = dat$data_train,
  trend_model = AR(p = 2),
  priors = test_priors,
  run_model = FALSE
)
stancode(mod)

# =====
# Example 5: Parametric (fixed effect) priors
# =====

simdat <- sim_mvgam()

# Add a fake covariate
simdat$data_train$cov <- rnorm(NROW(simdat$data_train))

priors <- get_mvgam_priors(
  y ~ cov + s(season),
  data = simdat$data_train,
  family = poisson(),
  trend_model = AR()
)

# Change priors for the intercept and fake covariate effects
priors$prior[1] <- "(Intercept) ~ normal(0, 1);"
priors$prior[2] <- "cov ~ normal(0, 0.1);"

mod2 <- mvgam(
  y ~ cov + s(season),
  data = simdat$data_train,
  trend_model = AR(),
  family = poisson(),
  priors = priors,
```

```

  run_model = FALSE
)
stancode(mod2)

# =====
# Example 6: Alternative brms syntax for fixed effects
# =====

# Likewise using 'brms' utilities (note that you can use Intercept rather
# than `(Intercept)` to change priors on the intercept
brmsprior <- c(
  prior(normal(0.2, 0.5), class = cov),
  prior(normal(0, 0.25), class = Intercept)
)
brmsprior

mod2 <- mvgam(
  y ~ cov + s(season),
  data = simdat$data_train,
  trend_model = AR(),
  family = poisson(),
  priors = brmsprior,
  run_model = FALSE
)
stancode(mod2)

# =====
# Example 7: Bulk prior assignment
# =====

# The "class = 'b'" shortcut can be used to put the same prior on all
# 'fixed' effect coefficients (apart from any intercepts)
set.seed(0)
dat <- mgcv:::gamSim(1, n = 200, scale = 2)
dat$time <- 1:NROW(dat)
mod <- mvgam(
  y ~ x0 + x1 + s(x2) + s(x3),
  priors = prior(normal(0, 0.75), class = "b"),
  data = dat,
  family = gaussian(),
  run_model = FALSE
)
stancode(mod)

## End(Not run)

```

Description

Set up low-rank approximate Gaussian Process trend models using Hilbert basis expansions in **mvgam**. This function does not evaluate its arguments – it exists purely to help set up a model with particular GP trend models.

Usage

```
GP(...)
```

Arguments

... unused

Details

A GP trend is estimated for each series using Hilbert space approximate Gaussian Processes. In **mvgam**, latent squared exponential GP trends are approximated using by default 20 basis functions and using a multiplicative factor of $c = 5/4$, which saves computational costs compared to fitting full GPs while adequately estimating GP alpha and rho parameters.

Value

An object of class **mvgam_trend**, which contains a list of arguments to be interpreted by the parsing functions in **mvgam**.

Author(s)

Nicholas J Clark

References

Riuot-Mayol G, Burkner PC, Andersen MR, Solin A and Vehtari A (2023). Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming. *Statistics and Computing* 33, 1. <https://doi.org/10.1007/s11222-022-10167-2>

See Also

[gp](#)

gratia_mvgam_enhancements

*Enhance post-processing of **mvgam** models using **gratia** functionality*

Description

These evaluation and plotting functions exist to allow some popular **gratia** methods to work with **mvgam** or **jsdgam** models

Usage

```
drawDotmvgam(  
  object,  
  trend_effects = FALSE,  
  data = NULL,  
  select = NULL,  
  parametric = FALSE,  
  terms = NULL,  
  residuals = FALSE,  
  scales = c("free", "fixed"),  
  ci_level = 0.95,  
  n = 100,  
  n_3d = 16,  
  n_4d = 4,  
  unconditional = FALSE,  
  overall_uncertainty = TRUE,  
  constant = NULL,  
  fun = NULL,  
  dist = 0.1,  
  rug = TRUE,  
  contour = TRUE,  
  grouped_by = FALSE,  
  ci_alpha = 0.2,  
  ci_col = "black",  
  smooth_col = "black",  
  resid_col = "steelblue3",  
  contour_col = "black",  
  n_contour = NULL,  
  partial_match = FALSE,  
  discrete_colour = NULL,  
  discrete_fill = NULL,  
  continuous_colour = NULL,  
  continuous_fill = NULL,  
  position = "identity",  
  angle = NULL,  
  ncol = NULL,  
  nrow = NULL,
```

```
guides = "keep",
widths = NULL,
heights = NULL,
crs = NULL,
default_crs = NULL,
lims_method = "cross",
wrap = TRUE,
envir = environment(formula(object)),
...
)

eval_smoothDothilbertDotsmooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

eval_smoothDotmodDotsmooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
)

eval_smoothDotmoiDotsmooth(
  smooth,
  model,
  n = 100,
  n_3d = NULL,
  n_4d = NULL,
  data = NULL,
  unconditional = FALSE,
  overall_uncertainty = TRUE,
  dist = NULL,
  ...
```

)

Arguments

object	a fitted mvgam, the result of a call to mvgam()
trend_effects	logical specifying whether smooth terms from the <code>trend_formula</code> should be drawn. If FALSE, only terms from the observation formula are drawn. If TRUE, only terms from the <code>trend_formula</code> are drawn
data	a data frame of covariate values at which to evaluate the model's smooth functions
select	character, logical, or numeric; which smooths to plot. If NULL, the default, then all model smooths are drawn. Character <code>select</code> matches the labels for smooths as shown for example in the output from <code>summary(object)</code> . Logical <code>select</code> operates as per numeric <code>select</code> in the order that smooths are stored
parametric	logical; plot parametric terms also? Note that <code>select</code> is used for selecting which smooths to plot. The <code>terms</code> argument is used to select which parametric effects are plotted. The default, as with mgcv:::plot.gam() , is to not draw parametric effects
terms	character; which model parametric terms should be drawn? The Default of NULL will plot all parametric terms that can be drawn.
residuals	currently ignored for mvgam models
scales	character; should all univariate smooths be plotted with the same y-axis scale? If <code>scales = "free"</code> , the default, each univariate smooth has its own y-axis scale. If <code>scales = "fixed"</code> , a common y axis scale is used for all univariate smooths. Currently does not affect the y-axis scale of plots of the parametric terms
ci_level	numeric between 0 and 1; the coverage of credible interval.
n	numeric; the number of points over the range of the covariate at which to evaluate the smooth
n_3d, n_4d	numeric; the number of points over the range of last covariate in a 3D or 4D smooth. The default is NULL which achieves the standard behaviour of using n points over the range of all covariate, resulting in n^d evaluation points, where d is the dimension of the smooth. For $d > 2$ this can result in very many evaluation points and slow performance. For smooths of $d > 4$, the value of <code>n_4d</code> will be used for all dimensions > 4 , unless this is NULL, in which case the default behaviour (using n for all dimensions) will be observed
unconditional	ignored for mvgam models as all appropriate uncertainties are already included in the posterior estimates
overall_uncertainty	ignored for mvgam models as all appropriate uncertainties are already included in the posterior estimates
constant	numeric; a constant to add to the estimated values of the smooth. <code>constant</code> , if supplied, will be added to the estimated value before the confidence band is computed

fun	function; a function that will be applied to the estimated values and confidence interval before plotting. Can be a function or the name of a function. Function fun will be applied after adding any constant, if provided
dist	numeric; if greater than 0, this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. The data are scaled into the unit square before deciding what to exclude, and dist is a distance within the unit square. See mgcv:::exclude.too.far() for further details
rug	logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot locations of data for higher dimensions.
contour	logical; should contours be draw on the plot using ggplot2::geom_contour()
grouped_by	logical; should factor by smooths be drawn as one panel per level of the factor (FALSE, the default), or should the individual smooths be combined into a single panel containing all levels (TRUE)?
ci_alpha	numeric; alpha transparency for confidence or simultaneous interval
ci_col	colour specification for the confidence/credible intervals band. Affects the fill of the interval
smooth_col	colour specification for the smooth line
resid_col	colour specification for residual points. Ignored
contour_col	colour specification for contour lines
n_contour	numeric; the number of contour bins. Will result in n_contour - 1 contour lines being drawn. See ggplot2::geom_contour()
partial_match	logical; should smooths be selected by partial matches with select? If TRUE, select can only be a single string to match against
discrete_colour	a suitable colour scale to be used when plotting discrete variables
discrete_fill	a suitable fill scale to be used when plotting discrete variables.
continuous_colour	a suitable colour scale to be used when plotting continuous variables
continuous_fill	a suitable fill scale to be used when plotting continuous variables
position	Position adjustment, either as a string, or the result of a call to a position adjustment function
angle	numeric; the angle at which the x axis tick labels are to be drawn passed to the angle argument of ggplot2::guide_axis()
ncol, nrow	numeric; the numbers of rows and columns over which to spread the plots
guides	character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()
widths, heights	The relative widths and heights of each column and row in the grid. Will get repeated to match the dimensions of the grid. If there is more than 1 plot and widths = NULL, the value of widths will be set internally to widths = 1 to accommodate plots of smooths that use a fixed aspect ratio.=
crs	the coordinate reference system (CRS) to use for the plot. All data will be projected into this CRS. See ggplot2::coord_sf() for details

default_crs	the coordinate reference system (CRS) to use for the non-sf layers in the plot. If left at the default NULL, the CRS used is 4326 (WGS84), which is appropriate for spline-on-the-sphere smooths, which are parameterized in terms of latitude and longitude as coordinates. See ggplot2::coord_sf() for more details
lims_method	character; affects how the axis limits are determined. See ggplot2::coord_sf() . Be careful; in testing of some examples, changing this to "orthogonal" for example with the chlorophyll-a example from Simon Wood's GAM book quickly used up all the RAM in my test system and the OS killed R. This could be incorrect usage on my part; right now the grid of points at which SOS smooths are evaluated (if not supplied by the user) can produce invalid coordinates for the corners of tiles as the grid is generated for tile centres without respect to the spacing of those tiles
wrap	logical; wrap plots as a patchwork? If FALSE, a list of ggplot objects is returned, 1 per term plotted
envir	an environment to look up the data within
...	additional arguments passed to other methods
smooth	a smooth object of class "gp.smooth" (returned from a model using either the <code>dynamic()</code> function or the <code>gp()</code> function) or of class "moi.smooth" or "mod.smooth" (returned from a model using the 'moi' or 'mod' basis)
model	a fitted mgcv model of clas gam or bam

Details

These methods allow `mvgam` models to be *Enhanced* if users have the `gratia` package installed, making available the popular `draw()` function to plot partial effects of `mvgam` smooth functions using [ggplot2::ggplot\(\)](#) utilities

Author(s)

Nicholas J Clark

Examples

```
## Not run:
# Fit a simple GAM and draw partial effects of smooths using 'gratia'
set.seed(0)
dat <- mgcv:::gamSim(
  eg = 1,
  n = 200,
  scale = 2
)

mod <- mvgam(
  formula = y ~ s(x1, bs = 'moi') +
    te(x0, x2),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
```

```

  }

  if (require("gratia")) {
    gratia::draw(mod)
  }

  ## End(Not run)

```

hindcast.mvgam *Extract hindcasts for a fitted mvgam object*

Description

Extract hindcasts for a fitted `mvgam` object

Usage

```

hindcast(object, ...)

## S3 method for class 'mvgam'
hindcast(object, type = "response", ...)

```

Arguments

<code>object</code>	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
<code>...</code>	Ignored
<code>type</code>	When this has the value <code>link</code> (default) the linear predictor is calculated on the link scale. If <code>expected</code> is used, predictions reflect the expectation of the response (the mean) but ignore uncertainty in the observation process. When <code>response</code> is used, the predictions take uncertainty in the observation process into account to return predictions on the outcome scale. When <code>variance</code> is used, the variance of the response with respect to the mean (mean-variance relationship) is returned. When <code>type = "terms"</code> , each component of the linear predictor is returned separately in the form of a <code>list</code> (possibly with standard errors, if <code>summary = TRUE</code>): this includes parametric model components, followed by each smooth component, but excludes any offset and any intercept. Two special cases are also allowed: <code>type latent_N</code> will return the estimated latent abundances from an N-mixture distribution, while <code>type detection</code> will return the estimated detection probability from an N-mixture distribution

Details

Posterior hindcasts (i.e. retrodictions) are drawn from the fitted `mvgam` and organized into a convenient format for plotting

Value

An object of class `mvgam_forecast` containing hindcast distributions. See [mvgam_forecast-class](#) for details.

See Also

[plot.mvgam_forecast\(\)](#), [summary.mvgam_forecast\(\)](#), [forecast.mvgam\(\)](#), [fitted.mvgam\(\)](#), [predict.mvgam\(\)](#)

Examples

```
## Not run:
simdat <- sim_mvgam(n_series = 3, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc'),
               trend_model = AR(),
               noncentred = TRUE,
               data = simdat$data_train,
               chains = 2,
               silent = 2)

# Hindcasts on response scale
hc <- hindcast(mod)
str(hc)
head(summary(hc), 12)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

# Hindcasts as expectations
hc <- hindcast(mod, type = 'expected')
head(summary(hc), 12)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

# Estimated latent trends
hc <- hindcast(mod, type = 'trend')
head(summary(hc), 12)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

## End(Not run)
```

Description

Create a brief but fully referenced methods description, along with a useful list of references, for fitted **mvgam** and **jsdgam** models.

Usage

```
how_to_cite(object, ...)
## S3 method for class 'mvgam'
how_to_cite(object, ...)
```

Arguments

object	list object of class <code>mvgam</code> resulting from a call to mvgam() or jsdgam()
...	ignored

Details

This function uses the model's structure to come up with a very basic but hopefully useful methods description that can help users to appropriately acknowledge the hard work of developers and champion open science. Please do not consider the text returned by this function to be a completely adequate methods section; it is only meant to get you started.

Value

An object of class `how_to_cite` containing a text description of the methods as well as lists of both primary and additional references.

Author(s)

Nicholas J Clark

See Also

[citation](#), [mvgam](#), [jsdgam](#)

Examples

```
## Not run:
#-----
# Simulate 4 time series with hierarchical seasonality
# and a VAR(1) dynamic process
#-----
set.seed(0)

simdat <- sim_mvgam(
  seasonality = 'hierarchical',
  trend_model = VAR(cor = TRUE),
  family = gaussian()
)

# Fit an appropriate model
mod1 <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  data = simdat$data_train,
```

```

family = gaussian(),
trend_model = VAR(cor = TRUE),
chains = 2,
silent = 2
)

how_to_cite(mod1)

#-----
# For a GP example, simulate data using the mgcv package
#-----
dat <- mgcv::gamSim(1, n = 30, scale = 2)

# Fit a model that uses an approximate GP from brms
mod2 <- mvgam(
  y ~ gp(x2, k = 12),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
)

how_to_cite(mod2)

## End(Not run)

```

index-mvgam

Index mvgam objects

Description

Index `mvgam` objects

Usage

```
## S3 method for class 'mvgam'
variables(x, ...)
```

Arguments

<code>x</code>	list object returned from <code>mvgam</code> . See mvgam()
<code>...</code>	Arguments passed to individual methods (if applicable).

Value

a list object of the variables that can be extracted, along with their aliases

Author(s)

Nicholas J Clark

Examples

```
## Not run:
# Simulate data and fit a model
simdat <- sim_mvgam(
  n_series = 1,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Extract model variables
variables(mod)

## End(Not run)
```

irf.mvgam*Calculate latent VAR impulse response functions*

Description

Compute Generalized or Orthogonalized Impulse Response Functions (IRFs) from `mvgam` models with Vector Autoregressive dynamics

Usage

```
irf(object, ...)

## S3 method for class 'mvgam'
irf(object, h = 10, cumulative = FALSE, orthogonal = FALSE, ...)
```

Arguments

object	list object of class <code>mvgam</code> resulting from a call to <code>mvgam()</code> that used a Vector Autoregressive latent process model (either as <code>VAR(cor = FALSE)</code> or <code>VAR(cor = TRUE)</code>); see <code>VAR()</code> for details)
...	ignored
h	Positive integer specifying the forecast horizon over which to calculate the IRF

cumulative	Logical flag indicating whether the IRF should be cumulative
orthogonal	Logical flag indicating whether orthogonalized IRFs should be calculated. Note that the order of the variables matters when calculating these

Details

See [mvgam_irf-class](#) for a full description of the quantities that are computed and returned by this function, along with key references.

Value

An object of [mvgam_irf-class](#) containing the posterior IRFs. This object can be used with the supplied S3 functions [plot.mvgam_irf\(\)](#) and [summary.mvgam_irf\(\)](#)

Author(s)

Nicholas J Clark

See Also

[mvgam_irf-class](#), [VAR\(\)](#), [plot.mvgam_irf\(\)](#), [stability\(\)](#), [fevd\(\)](#)

Examples

```
## Not run:
# Fit a model to the portal time series that uses a latent VAR(1)
mod <- mvgam(
  formula = captures ~ -1,
  trend_formula = ~ trend,
  trend_model = VAR(cor = TRUE),
  family = poisson(),
  data = portal_data,
  chains = 2,
  silent = 2
)

# Plot the autoregressive coefficient distributions;
# use 'dir = "v"' to arrange the order of facets
# correctly
mcmc_plot(
  mod,
  variable = 'A',
  regex = TRUE,
  type = 'hist',
  facet_args = list(dir = 'v')
)

# Calculate Generalized IRFs for each series
irfs <- irf(
  mod,
  h = 12,
  cumulative = FALSE
```

```

  )

# Plot them
plot(irfs, series = 1)
plot(irfs, series = 2)
plot(irfs, series = 3)
plot(irfs, series = 4)

# Calculate posterior median, upper and lower 95th quantiles
# of the impulse responses
summary(irfs)

## End(Not run)

```

Description

This function sets up a Joint Species Distribution Model whereby the residual associations among species can be modelled in a reduced-rank format using a set of latent factors. The factor specification is extremely flexible, allowing users to include spatial, temporal or any other type of predictor effects to more efficiently capture unmodelled residual associations, while the observation model can also be highly flexible (including all smooth, GP and other effects that **mvgam** can handle)

Usage

```

jsdgam(
  formula,
  factor_formula = ~-1,
  knots,
  factor_knots,
  data,
  newdata,
  family = poisson(),
  unit = time,
  species = series,
  share_obs_params = FALSE,
  priors,
  n_lv = 2,
  backend = getOption("brms.backend", "cmdstanr"),
  algorithm = getOption("brms.algorithm", "sampling"),
  control = list(max_treedepth = 10, adapt_delta = 0.8),
  chains = 4,
  burnin = 500,
  samples = 500,
  thin = 1,
  parallel = TRUE,

```

```

  threads = 1,
  silent = 1,
  run_model = TRUE,
  return_model_data = FALSE,
  residuals = TRUE,
  ...
)

```

Arguments

formula	A formula object specifying the GAM observation model formula. These are exactly like the formula for a GLM except that smooth terms, <code>s()</code> , <code>te()</code> , <code>ti()</code> , <code>t2()</code> , as well as time-varying <code>dynamic()</code> terms, nonparametric <code>gp()</code> terms and offsets using <code>offset()</code> , can be added to the right hand side to specify that the linear predictor depends on smooth functions of predictors (or linear functionals of these). Details of the formula syntax used by <code>mvgam</code> can be found in mvgam_formulae
factor_formula	A formula object specifying the linear predictor effects for the latent factors. Use <code>by = trend</code> within calls to functional terms (i.e. <code>s()</code> , <code>te()</code> , <code>ti()</code> , <code>t2()</code> , <code>dynamic()</code> , or <code>gp()</code>) to ensure that each factor captures a different axis of variation. See the example below as an illustration
knots	An optional list containing user specified knot values for basis construction. For most bases the user simply supplies the knots to be used, which must match up with the <code>k</code> value supplied. Different terms can use different numbers of knots, unless they share a covariate.
factor_knots	An optional list containing user specified knot values to be used for basis construction of any smooth terms in <code>factor_formula</code> . For most bases the user simply supplies the knots to be used, which must match up with the <code>k</code> value supplied (note that the number of knots is not always just <code>k</code>). Different terms can use different numbers of knots, unless they share a covariate
data	A data frame or list containing the model response variable and covariates required by the GAM formula and <code>factor_formula</code> objects
newdata	Optional data frame or list of test data containing the same variables as in <code>data</code> . If included, observations in variable <code>y</code> will be set to NA when fitting the model so that posterior simulations can be obtained.
family	family specifying the observation family for the outcomes. Currently supported families are: <ul style="list-style-type: none"> • <code>gaussian()</code> for real-valued data • <code>betar()</code> for proportional data on $(0, 1)$ • <code>lognormal()</code> for non-negative real-valued data • <code>student_t()</code> for real-valued data • <code>Gamma()</code> for non-negative real-valued data • <code>bernoulli()</code> for binary data • <code>poisson()</code> for count data • <code>nb()</code> for overdispersed count data

	<ul style="list-style-type: none"> • <code>binomial()</code> for count data with imperfect detection when the number of trials is known; note that the <code>cbind()</code> function must be used to bind the discrete observations and the discrete number of trials • <code>beta_binomial()</code> as for <code>binomial()</code> but allows for overdispersion
	Default is <code>poisson()</code> . See mvgam_families for more details
<code>unit</code>	The unquoted name of the variable that represents the unit of analysis in data over which latent residuals should be correlated. This variable should be either a numeric or integer variable in the supplied data. Defaults to <code>time</code> to be consistent with other functionalities in mvgam , though note that the data need not be time series in this case. See examples below for further details and explanations
<code>species</code>	The unquoted name of the factor variable that indexes the different response units in data (usually 'species' in a JSDM). Defaults to <code>series</code> to be consistent with other mvgam models
<code>share_obs_params</code>	<code>logical</code> . If <code>TRUE</code> and the <code>family</code> has additional family-specific observation parameters (e.g., variance components, dispersion parameters), these will be shared across all outcome variables. Useful when multiple outcomes share properties. Default is <code>FALSE</code> .
<code>priors</code>	An optional <code>data.frame</code> with prior definitions (in Stan syntax) or, preferentially, a vector containing objects of class <code>brmsprior</code> (see, prior for details). See get_mvgam_priors and for more information on changing default prior distributions
<code>n_lv</code>	<code>integer</code> the number of latent factors to use for modelling residual associations. Cannot be $> n_species$. Defaults arbitrarily to 2
<code>backend</code>	Character string naming the package for Stan model fitting. Options are " <code>cmdstanr</code> " (default) or " <code>rstan</code> ". Can be set globally via " <code>brms.backend</code> " option. See https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstan/ for details.
<code>algorithm</code>	Character string naming the estimation approach: <ul style="list-style-type: none"> • "<code>sampling</code>": MCMC (default) • "<code>meanfield</code>": Variational inference with factorized normal distributions • "<code>fullrank</code>": Variational inference with multivariate normal distribution • "<code>laplace</code>": Laplace approximation (cmdstanr only) • "<code>pathfinder</code>": Pathfinder algorithm (cmdstanr only)
	Can be set globally via " <code>brms.algorithm</code> " option. Limited testing suggests " <code>meanfield</code> " performs best among non-MCMC approximations for dynamic GAMs.
<code>control</code>	Named list for controlling sampler behaviour. Valid elements include <code>max_treedepth</code> , <code>adapt_delta</code> and <code>init</code> .
<code>chains</code>	<code>integer</code> specifying the number of parallel chains for the model. Ignored for variational inference algorithms.
<code>burnin</code>	<code>integer</code> specifying the number of warmup iterations to tune sampling algorithms. Ignored for variational inference algorithms.

<code>samples</code>	integer specifying the number of post-warmup iterations for sampling the posterior distribution.
<code>thin</code>	Thinning interval for monitors. Ignored for variational inference algorithms.
<code>parallel</code>	logical specifying whether to use multiple cores for parallel MCMC simulation. If TRUE, uses <code>min(c(chains, parallel::detectCores() - 1))</code> cores.
<code>threads</code>	integer Experimental option to use multithreading for within-chain parallelisation in Stan. We recommend its use only if you are experienced with Stan's <code>reduce_sum</code> function and have a slow running model that cannot be sped up by any other means. Currently works for all families when using <code>cmdstanr</code> as the backend
<code>silent</code>	Verbosity level between 0 and 2. If 1 (default), most informational messages are suppressed. If 2, even more messages are suppressed. Sampling progress is still printed - set <code>refresh = 0</code> to disable. For <code>backend = "rstan"</code> , also set <code>open_progress = FALSE</code> to prevent additional progress bars.
<code>run_model</code>	logical. If FALSE, the model is not fitted but instead the function returns the model file and the data/initial values needed to fit the model outside of <code>mvgam</code> .
<code>return_model_data</code>	logical. If TRUE, the list of data needed to fit the model is returned, along with initial values for smooth and AR parameters, once the model is fitted. Helpful for users who wish to modify the model file to add other stochastic elements. Default is FALSE unless <code>run_model == FALSE</code> .
<code>residuals</code>	logical. Whether to compute series-level randomized quantile residuals. Default is TRUE. Set to FALSE to save time and reduce object size (can add later using <code>add_residuals</code>).
<code>...</code>	Other arguments to pass to <code>mvgam</code>

Details

Joint Species Distribution Models allow for responses of multiple species to be learned hierarchically, whereby responses to environmental variables in `formula` can be partially pooled and any latent, unmodelled residual associations can also be learned. In `mvgam`, both of these effects can be modelled with the full power of latent factor Hierarchical GAMs, providing unmatched flexibility to model full communities of species. When calling `jsdgam`, an initial State-Space model using `trend = 'None'` is set up and then modified to include the latent factors and their linear predictors. Consequently, you can inspect priors for these models using `get_mvgam_priors` by supplying the relevant `formula`, `factor_formula`, `data` and `family` arguments and keeping the default `trend = 'None'`.

In a JSDGAM, the expectation of response Y_{ij} is modelled with

$$g(\mu_{ij}) = X_i \beta + u_i \theta_j,$$

where $g(\cdot)$ is a known link function, X is a design matrix of linear predictors (with associated β coefficients), u are n_{lv} -variate latent factors ($n_{lv} < n_{species}$) and θ_j are species-specific loadings on the latent factors, respectively. The design matrix X and β coefficients are constructed and modelled using `formula` and can contain any of `mvgam`'s predictor effects, including random intercepts and slopes, multidimensional penalized smooths, GP effects etc... The factor loadings θ_j

are constrained for identifiability but can be used to reconstruct an estimate of the species' residual variance-covariance matrix using $\Theta\Theta'$ (see the example below and [residual_cor\(\)](#) for details). The latent factors are further modelled using:

$$u_i \sim \text{Normal}(Q_i\beta_{factor}, 1)$$

where the second design matrix Q and associated β_{factor} coefficients are constructed and modelled using `factor_formula`. Again, the effects that make up this linear predictor can contain any of `mvgam`'s allowed predictor effects, providing enormous flexibility for modelling species' communities.

Value

A list object of class `mvgam` containing model output, the text representation of the model file, the `mgcv` model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth residuals for each species and key information needed for other functions in the package. See [mvgam-class](#) for details. Use `methods(class = "mvgam")` for an overview on available methods

Author(s)

Nicholas J Clark

References

Nicholas J Clark & Konstans Wells (2023). Dynamic generalised additive models (DGAMs) for forecasting discrete ecological time series. *Methods in Ecology and Evolution*. 14:3, 771-784.

David I Warton, F Guillaume Blanchet, Robert B O'Hara, Otso Ovaskainen, Sara Taskinen, Steven C Walker & Francis KC Hui (2015). So many variables: joint modeling in community ecology. *Trends in Ecology & Evolution* 30:12, 766-779.

See Also

[mvgam\(\)](#), [residual_cor\(\)](#)

Examples

```
## Not run:
# =====
# Example 1: Basic JSDGAM with Portal Data
# =====

# Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
  formula = captures ~
    # Fixed effects of NDVI and mintemp, row effect as a GP of time
    ndvi_ma12:series + mintemp:series + gp(time, k = 15),
  factor_formula = ~ -1,
  data = portal_data,
  unit = time,
  species = series,
```

```

family = poisson(),
n_lv = 2,
silent = 2,
chains = 2
)

# Plot covariate effects
library(ggplot2); theme_set(theme_bw())
plot_predictions(
  mod,
  condition = c('ndvi_ma12', 'series', 'series')
)

plot_predictions(
  mod,
  condition = c('mintemp', 'series', 'series')
)

# A residual correlation plot
plot(residual_cor(mod))

# An ordination biplot can also be constructed
# from the factor scores and their loadings
if(requireNamespace('ggrepel', quietly = TRUE)){
  ordinate(mod, alpha = 0.7)
}

# =====
# Example 2: Advanced JSDGAM with Spatial Predictors
# =====

# Simulate latent count data for 500 spatial locations and 10 species
set.seed(0)
N_points <- 500
N_species <- 10

# Species-level intercepts (on the log scale)
alphas <- runif(N_species, 2, 2.25)

# Simulate a covariate and species-level responses to it
temperature <- rnorm(N_points)
betas <- runif(N_species, -0.5, 0.5)

# Simulate points uniformly over a space
lon <- runif(N_points, min = 150, max = 155)
lat <- runif(N_points, min = -20, max = -19)

# Set up spatial basis functions as a tensor product of lat and lon
sm <- mgcv::smoothCon(
  mgcv::te(lon, lat, k = 5),
  data = data.frame(lon, lat),
  knots = NULL
)[[1]]

```

```

# The design matrix for this smooth is in the 'X' slot
des_mat <- sm$X
dim(des_mat)

# Function to generate a random covariance matrix where all variables
# have unit variance (i.e. diagonals are all 1)
random_Sigma = function(N){
  L_Omega <- matrix(0, N, N);
  L_Omega[1, 1] <- 1;
  for (i in 2 : N) {
    bound <- 1;
    for (j in 1 : (i - 1)) {
      L_Omega[i, j] <- runif(1, -sqrt(bound), sqrt(bound));
      bound <- bound - L_Omega[i, j] ^ 2;
    }
    L_Omega[i, i] <- sqrt(bound);
  }
  Sigma <- L_Omega %*% t(L_Omega);
  return(Sigma)
}

# Simulate a variance-covariance matrix for the correlations among
# basis coefficients
Sigma <- random_Sigma(N = NCOL(des_mat))

# Now simulate the species-level basis coefficients hierarchically, where
# spatial basis function correlations are a convex sum of a base correlation
# matrix and a species-level correlation matrix
basis_coefs <- matrix(NA, nrow = N_species, ncol = NCOL(Sigma))
base_field <- mgcv:::rmvn(1, mu = rep(0, NCOL(Sigma)), V = Sigma)
for(t in 1:N_species){
  corOmega <- (cov2cor(Sigma) * 0.7) +
    (0.3 * cov2cor(random_Sigma(N = NCOL(des_mat))))
  basis_coefs[t, ] <- mgcv:::rmvn(1, mu = rep(0, NCOL(Sigma)), V = corOmega)
}

# Simulate the latent spatial processes
st_process <- do.call(rbind, lapply(seq_len(N_species), function(t){
  data.frame(
    lat = lat,
    lon = lon,
    species = paste0('species_', t),
    temperature = temperature,
    process = alphas[t] +
      betas[t] * temperature +
      des_mat %*% basis_coefs[t, ]
  )
}))

# Now take noisy observations at some of the points (60)
obs_points <- sample(1:N_points, size = 60, replace = FALSE)
obs_points <- data.frame(

```

```

lat = lat[obs_points],
lon = lon[obs_points],
site = 1:60
)

# Keep only the process data at these points
st_process %>%
  dplyr::inner_join(obs_points, by = c('lat', 'lon')) %>%
  # now take noisy Poisson observations of the process
  dplyr::mutate(count = rpois(NROW(.), lambda = exp(process))) %>%
  dplyr::mutate(species = factor(
    species,
    levels = paste0('species_', 1:N_species)
  )) %>%
  dplyr::group_by(lat, lon) -> dat

# View the count distributions for each species
ggplot(dat, aes(x = count)) +
  geom_histogram() +
  facet_wrap(~ species, scales = 'free')

ggplot(dat, aes(x = lon, y = lat, col = log(count + 1))) +
  geom_point(size = 2.25) +
  facet_wrap(~ species, scales = 'free') +
  scale_color_viridis_c()

# -----
# Model Fitting with Custom Priors
# -----

# Inspect default priors for a joint species model with three spatial factors
priors <- get_mvgam_priors(
  formula = count ~
    # Environmental model includes random slopes for
    # a linear effect of temperature
    s(species, bs = 're', by = temperature),

  # Each factor estimates a different nonlinear spatial process, using
  # 'by = trend' as in other mvgam State-Space models
  factor_formula = ~ gp(lon, lat, k = 6, by = trend) - 1,
  n_lv = 3,

  # The data and grouping variables
  data = dat,
  unit = site,
  species = species,

  # Poisson observations
  family = poisson()
)
head(priors)

# Fit a JSDM that estimates hierarchical temperature responses

```

```

# and that uses three latent spatial factors
mod <- jsdgam(
  formula = count ~
    # Environmental model includes random slopes for a
    # linear effect of temperature
    s(species, bs = 're', by = temperature),

  # Each factor estimates a different nonlinear spatial process, using
  # 'by = trend' as in other mvgam State-Space models
  factor_formula = ~ gp(lon, lat, k = 6, by = trend) - 1,
  n_lv = 3,

  # Change default priors for fixed random effect variances and
  # factor GP marginal deviations to standard normal
  priors = c(
    prior(std_normal(), class = sigma_raw),
    prior(std_normal(), class = `alpha_gp_trend(lon, lat):trendtrend1`),
    prior(std_normal(), class = `alpha_gp_trend(lon, lat):trendtrend2`),
    prior(std_normal(), class = `alpha_gp_trend(lon, lat):trendtrend3`)
  ),

  # The data and the grouping variables
  data = dat,
  unit = site,
  species = species,

  # Poisson observations
  family = poisson(),
  chains = 2,
  silent = 2
)

# -----
# Model Visualization and Diagnostics
# -----


# Plot the implicit species-level intercept estimates
plot_predictions(mod, condition = 'species', type = 'link')

# Plot species' hierarchical responses to temperature
plot_predictions(
  mod,
  condition = c('temperature', 'species', 'species'),
  type = 'link'
)

# Plot posterior median estimates of the latent spatial factors
plot(mod, type = 'smooths', trend_effects = TRUE)

# Or using gratia, if you have it installed
if(requireNamespace('gratia', quietly = TRUE)){
  gratia::draw(mod, trend_effects = TRUE, dist = 0)
}

```

```

# Plot species' randomized quantile residual distributions
# as a function of latitude
pp_check(
  mod,
  type = 'resid_ribbon_grouped',
  group = 'species',
  x = 'lat',
  ndraws = 200
)

# -----
# Residual Correlation Analysis
# -----

# Calculate residual spatial correlations
post_cors <- residual_cor(mod)
names(post_cors)

# Look at lower and upper credible interval estimates for
# some of the estimated correlations
post_cors$cor[1:5, 1:5]
post_cors$cor_upper[1:5, 1:5]
post_cors$cor_lower[1:5, 1:5]

# Plot of the posterior median correlations for those estimated
# to be non-zero
plot(post_cors, cluster = TRUE)

# An ordination biplot can also be constructed
# from the factor scores and their loadings
if(requireNamespace('ggrepel', quietly = TRUE)){
  ordinate(mod)
}

# -----
# Model Validation and Prediction
# -----

# Posterior predictive checks and ELPD-L00 can ascertain model fit
pp_check(
  mod,
  type = "pit_ecdf_grouped",
  group = "species",
  ndraws = 200
)
loo(mod)

# Forecast log(counts) for entire region (site value doesn't matter as long
# as each spatial location has a different and unique site identifier);
# note this calculation takes a few minutes because of the need to calculate
# draws from the stochastic latent factors
newdata <- st_process %>%

```

```

dplyr::mutate(species = factor(
  species,
  levels = paste0('species_', 1:N_species)
)) %>%
dplyr::group_by(lat, lon) %>%
dplyr::mutate(site = dplyr::cur_group_id()) %>%
dplyr::ungroup()
preds <- predict(mod, newdata = newdata)

# Plot the median log(count) predictions on a grid
newdata$log_count <- preds[,1]
ggplot(newdata, aes(x = lon, y = lat, col = log_count)) +
  geom_point(size = 1.5) +
  facet_wrap(~ species, scales = 'free') +
  scale_color_viridis_c() +
  theme_classic()

# Not needed for general use; cleans up connections for automated testing
closeAllConnections()

## End(Not run)

```

lfo_cv.mvgam

*Approximate leave-future-out cross-validation of fitted **mvgam** objects*

Description

Approximate leave-future-out cross-validation of fitted **mvgam** objects

Usage

```

lfo_cv(object, ...)

## S3 method for class 'mvgam'
lfo_cv(
  object,
  data,
  min_t,
  fc_horizon = 1,
  pareto_k_threshold = 0.7,
  silent = 1,
  ...
)

```

Arguments

object	list object of class mvgam . See mvgam()
...	Ignored

data	A dataframe or list containing the model response variable and covariates required by the GAM formula. Should include columns: 'series' (character or factor index of the series IDs) 'time' (numeric index of the time point for each observation). Any other variables to be included in the linear predictor of formula must also be present
min_t	Integer specifying the minimum training time required before making predictions from the data. Default is either the 30th timepoint in the observational data, or whatever training time allows for at least 10 lfo-cv calculations, if possible. This value is essentially arbitrary so it is highly recommended to change it to something that is more suitable to the data and models being evaluated.
fc_horizon	Integer specifying the number of time steps ahead for evaluating forecasts
pareto_k_threshold	Proportion specifying the threshold over which the Pareto shape parameter is considered unstable, triggering a model refit. Default is 0.7
silent	Verbosity level between 0 and 2. If 1 (the default), most of the informational messages of compiler and sampler are suppressed. If 2, even more messages are suppressed. The actual sampling progress is still printed. Set refresh = 0 to turn this off as well. If using backend = "rstan" you can also set open_progress = FALSE to prevent opening additional progress bars.

Details

Approximate leave-future-out cross-validation uses an expanding training window scheme to evaluate a model on its forecasting ability. The steps used in this function mirror those laid out in the [lfo vignette from the loo package](#), written by Paul Bürkner, Jonah Gabry, Aki Vehtari. First, we refit the model using the first `min_t` observations to perform a single exact `fc_horizon`-ahead forecast step. This forecast is evaluated against the `min_t + fc_horizon` out of sample observations using the Expected Log Predictive Density (ELPD). Next, we approximate each successive round of expanding window forecasts by moving forward one step at a time for `i` in `1:N_evaluations` and re-weighting draws from the model's posterior predictive distribution using Pareto Smoothed Importance Sampling (PSIS). In each iteration `i`, PSIS weights are obtained for the next observation that would have been included in the model if we had re-fit (i.e. the last observation that would have been in the training data, or `min_t + i`). If these importance ratios are stable, we consider the approximation adequate and use the re-weighted posterior's forecast for evaluating the next holdout set of testing observations `((min_t + i + 1):(min_t + i + fc_horizon))`. At some point the importance ratio variability will become too large and importance sampling will fail. This is indicated by the estimated shape parameter `k` of the generalized Pareto distribution crossing a certain threshold `pareto_k_threshold`. Only then do we refit the model using all of the observations up to the time of the failure. We then restart the process and iterate forward until the next refit is triggered (Bürkner et al. 2020).

Value

A list of class `mvgam_lfo` containing the approximate ELPD scores, the Pareto-k shape values and the specified `pareto_k_threshold`

Author(s)

Nicholas J Clark

References

Paul-Christian Bürkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-out cross-validation for Bayesian time series models Journal of Statistical Computation and Simulation. 90:14, 2499-2523.

See Also

[forecast](#), [score](#), [compare_mvgams](#)

Examples

```
## Not run:
# Simulate from a Poisson-AR2 model with a seasonal smooth
set.seed(100)
dat <- sim_mvgam(T = 75,
                  n_series = 1,
                  prop_trend = 0.75,
                  trend_model = 'AR2',
                  family = poisson())

# Plot the time series
plot_mvgam_series(data = dat$data_train,
                   newdata = dat$data_test,
                   series = 1)

# Fit an appropriate model
mod_ar2 <- mvgam(y ~ s(season, bs = 'cc', k = 6),
                  trend_model = AR(p = 2),
                  family = poisson(),
                  data = dat$data_train,
                  newdata = dat$data_test,
                  chains = 2,
                  silent = 2)

# Fit a less appropriate model
mod_rw <- mvgam(y ~ s(season, bs = 'cc', k = 6),
                  trend_model = RW(),
                  family = poisson(),
                  data = dat$data_train,
                  newdata = dat$data_test,
                  chains = 2,
                  silent = 2)

# Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)
fc_rw <- forecast(mod_rw)
score_ar2 <- score(fc_ar2, score = 'drps')
score_rw <- score(fc_rw, score = 'drps')
sum(score_ar2$series_1$score)
sum(score_rw$series_1$score)

# Now use approximate leave-future-out CV to compare
```

```

# rolling forecasts; start at time point 40 to reduce
# computational time and to ensure enough data is available
# for estimating model parameters
lfo_ar2 <- lfo_cv(mod_ar2,
                    min_t = 40,
                    fc_horizon = 3,
                    silent = 2)
lfo_rw <- lfo_cv(mod_rw,
                    min_t = 40,
                    fc_horizon = 3,
                    silent = 2)

# Plot Pareto-K values and ELPD estimates
plot(lfo_ar2)
plot(lfo_rw)

# Proportion of timepoints in which AR2 model gives better forecasts
length(which((lfo_ar2$elpds - lfo_rw$elpds) > 0)) /
  length(lfo_ar2$elpds)

# A higher total ELPD is preferred
lfo_ar2$sum_ELPD
lfo_rw$sum_ELPD

## End(Not run)

```

logLik.mvgam

*Compute pointwise Log-Likelihoods from fitted **mvgam** objects*

Description

Compute pointwise Log-Likelihoods from fitted **mvgam** objects

Usage

```
## S3 method for class 'mvgam'
logLik(object, linpreds, newdata, family_pars, include_forecast = TRUE, ...)
```

Arguments

object	list object of class mvgam or jsdgam
linpreds	Optional matrix of linear predictor draws to use for calculating pointwise log-likelihoods.
newdata	Optional data.frame or list object specifying which series each column in linpreds belongs to. If linpreds is supplied, then newdata must also be supplied.
family_pars	Optional list containing posterior draws of family-specific parameters (i.e. shape, scale or overdispersion parameters). Required if linpreds and newdata are supplied.

```
include_forecast
  Logical. If newdata were fed to the model to compute forecasts, should the
  log-likelihood draws for these observations also be returned. Defaults to TRUE.
...
  Ignored
```

Value

A matrix of dimension n_samples x n_observations containing the pointwise log-likelihood draws for all observations in newdata. If no newdata is supplied, log-likelihood draws are returned for all observations that were originally fed to the model (training observations and, if supplied to the original model via the newdata argument in [mvgam](#), testing observations).

Author(s)

Nicholas J Clark

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(
  n_series = 1,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Extract log-likelihood values
lls <- logLik(mod)
str(lls)

## End(Not run)
```

Description

Extract the LOOIC (leave-one-out information criterion) using [loo::loo\(\)](#).

Usage

```
## S3 method for class 'mvgam'
loo(x, incl_dynamics = FALSE, ...)

## S3 method for class 'mvgam'
loo_compare(x, ..., model_names = NULL, incl_dynamics = FALSE)
```

Arguments

x	Object of class <code>mvgam</code>
incl_dynamics	Deprecated and currently ignored
...	More <code>mvgam</code> objects
model_names	If <code>NULL</code> (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names

Details

When comparing two (or more) fitted `mvgam` models, we can estimate the difference in their in-sample predictive accuracies using the Expected Log Predictive Density (ELPD). This metric can be approximated using Pareto Smoothed Importance Sampling (PSIS), which re-weights posterior draws to approximate predictions for a datapoint had it not been included in the original model fit (i.e. leave-one-out cross-validation).

See `loo::loo()` and `loo::loo_compare()` for further details on how this importance sampling works.

Note: In-sample predictive metrics such as PSIS-LOO can sometimes be overly optimistic for models that include process error components (e.g. those with `trend_model`, `trend_formula`, or `factor_formula`). Consider using out-of-sample evaluations for further scrutiny (see `forecast.mvgam`, `score.mvgam_forecast`, `lfo_cv`).

Value

For `loo.mvgam`, an object of class `psis_loo` (see `loo::loo()` for details). For `loo_compare.mvgam`, an object of class `compare.loo` (see `loo::loo_compare()` for details).

Author(s)

Nicholas J Clark

Examples

```
## Not run:
#-----
# Simulate 4 time series with hierarchical seasonality
# and independent AR1 dynamic processes
#-----
set.seed(111)

simdat <- sim_mvgam(
```

```
seasonality = 'hierarchical',
trend_model = AR(),
family = gaussian()
)

# Fit a model with shared seasonality
mod1 <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  data = rbind(simdat$data_train, simdat$data_test),
  family = gaussian(),
  chains = 2,
  silent = 2
)

conditional_effects(mod1)

mc.cores.def <- getOption('mc.cores')
options(mc.cores = 1)
loo(mod1)

# Fit a model with hierarchical seasonality
mod2 <- update(
  mod1,
  formula = y ~ s(season, bs = 'cc', k = 6) +
    s(season, series, bs = 'fs', xt = list(bs = 'cc'), k = 4),
  chains = 2,
  silent = 2
)

conditional_effects(mod2)
loo(mod2)

# Add AR1 dynamic errors to mod2
mod3 <- update(
  mod2,
  trend_model = AR(),
  chains = 2,
  silent = 2
)

conditional_effects(mod3)
plot(mod3, type = 'trend')
loo(mod3)

#-----
# Compare models using LOO
#-----
loo_compare(mod1, mod2, mod3)
options(mc.cores = mc.cores.def)

#-----
# Compare forecast abilities using LO-CV
#-----
```

```

lfo_mod2 <- lfo_cv(mod2, min_t = 92)
lfo_mod3 <- lfo_cv(mod3, min_t = 92)

# Plot forecast ELPD differences
plot(
  y = lfo_mod2$elpds - lfo_mod3$elpds,
  x = lfo_mod2$eval_timepoints,
  pch = 16,
  ylab = 'ELPD_mod2 - ELPD_mod3',
  xlab = 'Evaluation timepoint'
)

abline(h = 0, lty = 'dashed')

## End(Not run)

```

lv_correlations

Calculate trend correlations based on latent factor loadings for mvgam models

Description

This function uses factor loadings from a fitted dynamic factor `mvgam` model to calculate temporal correlations among series' trends.

Usage

```
lv_correlations(object)
```

Arguments

object	list object of class <code>mvgam</code> that used latent factors, either with <code>use_lv = TRUE</code> or by supplying a <code>trend_map</code> . See mvgam() for details and for an example.
--------	---

Details

Although this function will still work, it is now recommended to use [residual_cor\(\)](#) to obtain residual correlation information in a more user-friendly format that allows for a deeper investigation of relationships among the time series.

Value

A list object containing the mean posterior correlations and the full array of posterior correlations.

See Also

[residual_cor\(\)](#), [plot.mvgam_residcor\(\)](#)

Examples

```
## Not run:
#-----
# Fit a model that uses two AR(1) dynamic factors to model
# the temporal dynamics of the four rodent species in the portal_data
#-----
mod <- mvgam(
  captures ~ series,
  trend_model = AR(),
  use_lv = TRUE,
  n_lv = 2,
  data = portal_data,
  chains = 2,
  silent = 2
)

# Plot the two dynamic factors
plot(mod, type = 'factors')

# Calculate correlations among the series
lvcors <- lv_correlations(mod)
names(lvcors)
lapply(lvcors, class)

# Recommended: use residual_cor() instead
lvcors <- residual_cor(mod)
names(lvcors)
lvcors$cor

# Plot credible correlations as a matrix
plot(lvcors, cluster = TRUE)

# Not needed for general use; cleans up connections for automated testing
closeAllConnections()

## End(Not run)
```

mcmc_plot.mvgam

*MCMC plots of **mvgam** parameters, as implemented in **bayesplot***

Description

Convenient way to call MCMC plotting functions implemented in the **bayesplot** package for **mvgam** models

Usage

```
## S3 method for class 'mvgam'
```

```
mcmc_plot(
  object,
  type = "intervals",
  variable = NULL,
  regex = FALSE,
  use_alias = TRUE,
  ...
)
```

Arguments

object	An R object typically of class <code>brmsfit</code>
type	The type of the plot. Supported types are (as names) <code>hist</code> , <code>dens</code> , <code>hist_by_chain</code> , <code>dens_overlay</code> , <code>violin</code> , <code>intervals</code> , <code>areas</code> , <code>areas_ridges</code> , <code>combo</code> , <code>acf</code> , <code>acf_bar</code> , <code>trace</code> , <code>trace_highlight</code> , <code>scatter</code> , <code>hex</code> , <code>pairs</code> , <code>violin</code> , <code>rhat</code> , <code>rhat_hist</code> , <code>neff</code> , <code>neff_hist</code> and <code>nuts_energy</code> . For an overview on the various plot types see MCMC-overview .
variable	Names of the variables (parameters) to plot, as given by a character vector or a regular expression (if <code>regex = TRUE</code>). By default, a hopefully not too large selection of variables is plotted.
regex	Logical; Indicates whether <code>variable</code> should be treated as regular expressions. Defaults to <code>FALSE</code> .
use_alias	Logical. If more informative names for parameters are available (i.e. for beta coefficients <code>b</code> or for smoothing parameters <code>rho</code>), replace the uninformative names with the more informative alias. Defaults to <code>TRUE</code> .
...	Additional arguments passed to the plotting functions. See MCMC-overview for more details.

Value

A `ggplot` object that can be further customized using the `ggplot2` package.

See Also

[mvgam_draws](#) for an overview of some of the shortcut strings that can be used for argument `variable`

Examples

```
## Not run:
simdat <- sim_mvgam(n_series = 1, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2)
mcmc_plot(mod)
mcmc_plot(mod, type = 'neff_hist')
mcmc_plot(mod, variable = 'betas', type = 'areas')
```

```
mcmc_plot(mod, variable = 'trend_params', type = 'combo')
## End(Not run)
```

model.frame.mvgam	<i>Extract model.frame from a fitted mvgam object</i>
-------------------	--

Description

Extract model.frame from a fitted **mvgam** object

Usage

```
## S3 method for class 'mvgam'
model.frame(formula, trend_effects = FALSE, ...)

## S3 method for class 'mvgam_prefit'
model.frame(formula, trend_effects = FALSE, ...)
```

Arguments

formula	a model formula or terms object or an R object.
trend_effects	logical, return the model.frame from the observation model (if FALSE) or from the underlying process model (if TRUE)
...	Ignored

Value

A **matrix** containing the fitted model frame

Author(s)

Nicholas J Clark

monotonic	<i>Monotonic splines in mvgam models</i>
-----------	---

Description

Uses constructors from package **splines2** to build monotonically increasing or decreasing splines. Details also in Wang & Yan (2021).

Usage

```
## S3 method for class 'moi.smooth.spec'
smooth.construct(object, data, knots)

## S3 method for class 'mod.smooth.spec'
smooth.construct(object, data, knots)

## S3 method for class 'moi.smooth'
Predict.matrix(object, data)

## S3 method for class 'mod.smooth'
Predict.matrix(object, data)
```

Arguments

object	A smooth specification object, usually generated by a term <code>s(x, bs = "moi", ...)</code> or <code>s(x, bs = "mod", ...)</code>
data	a list containing just the data (including any by variable) required by this term, with names corresponding to <code>object\$term</code> (and <code>object\$by</code>). The by variable is the last element.
knots	a list containing any knots supplied for basis setup — in same order and with same names as data. Can be <code>NULL</code> . See details for further information.

Details

The constructor is not normally called directly, but is rather used internally by `mgvam`. If they are not supplied then the knots of the spline are placed evenly throughout the covariate values to which the term refers: For example, if fitting 101 data with an 11 knot spline of x then there would be a knot at every 10th (ordered) x value. The spline is an implementation of the closed-form I-spline basis based on the recursion formula given by Ramsay (1988), in which the basis coefficients must be constrained to either be non-negative (for monotonically increasing functions) or non-positive (monotonically decreasing)

Take note that when using either monotonic basis, the number of basis functions `k` must be supplied as an even integer due to the manner in which monotonic basis functions are constructed

Value

An object of class "moi.smooth" or "mod.smooth". In addition to the usual elements of a smooth class documented under `smooth.construct`, this object will contain a slot called `boundary` that defines the endpoints beyond which the spline will begin extrapolating (extrapolation is flat due to the first order penalty placed on the smooth function)

Note

This constructor will result in a valid smooth if using a call to `gam` or `bam`, however the resulting functions will not be guaranteed to be monotonic because constraints on basis coefficients will not be enforced

Author(s)

Nicholas J Clark

References

Wang, Wenjie, and Jun Yan. "Shape-Restricted Regression Splines with R Package splines2." *Journal of Data Science* 19.3 (2021).

Ramsay, J. O. (1988). Monotone regression splines in action. *Statistical Science*, 3(4), 425–441.

Examples

```
## Not run:
# Simulate data from a monotonically increasing function
set.seed(123123)

x <- runif(80) * 4 - 1
x <- sort(x)
f <- exp(4 * x) / (1 + exp(4 * x))
y <- f + rnorm(80) * 0.1
plot(x, y)

# A standard TRPS smooth doesn't capture monotonicity
library(mgcv)

mod_data <- data.frame(y = y, x = x)
mod <- gam(
  y ~ s(x, k = 16),
  data = mod_data,
  family = gaussian()
)

library(marginaleffects)
plot_predictions(
  mod,
  by = 'x',
  newdata = data.frame(
    x = seq(min(x) - 0.5, max(x) + 0.5, length.out = 100)
  ),
  points = 0.5
)

# Using the 'moi' basis in mvgam rectifies this
mod_data$time <- 1:NROW(mod_data)
mod2 <- mvgam(
  y ~ s(x, bs = 'moi', k = 18),
  data = mod_data,
  family = gaussian(),
  chains = 2,
  silent = 2
)
```

```

plot_predictions(
  mod2,
  by = 'x',
  newdata = data.frame(
    x = seq(min(x) - 0.5, max(x) + 0.5, length.out = 100)
  ),
  points = 0.5
)

plot(mod2, type = 'smooth', realisations = TRUE)

# 'by' terms that produce a different smooth for each level of the 'by'
# factor are also allowed

x <- runif(80) * 4 - 1
x <- sort(x)

# Two different monotonic smooths, one for each factor level
f <- exp(4 * x) / (1 + exp(4 * x))
f2 <- exp(3.5 * x) / (1 + exp(3 * x))
fac <- c(rep('a', 80), rep('b', 80))
y <- c(
  f + rnorm(80) * 0.1,
  f2 + rnorm(80) * 0.2
)

plot(x, y[1:80])
plot(x, y[81:160])

# Gather all data into a data.frame, including the factor 'by' variable
mod_data <- data.frame(y, x, fac = as.factor(fac))
mod_data$time <- 1:NROW(mod_data)

# Fit a model with different smooths per factor level
mod <- mvgam(
  y ~ s(x, bs = 'monotonic', by = fac, k = 8),
  data = mod_data,
  family = gaussian(),
  chains = 2,
  silent = 2
)

# Visualise the different monotonic functions
plot_predictions(
  mod,
  condition = c('x', 'fac', 'fac'),
  points = 0.5
)

plot(mod, type = 'smooth', realisations = TRUE)

# First derivatives (on the link scale) should never be
# negative for either factor level

```

```
(derivs <- slopes(
  mod,
  variables = 'x',
  by = c('x', 'fac'),
  type = 'link'
))
all(derivs$estimate > 0)

## End(Not run)
```

mvgam

Fit a Bayesian Dynamic GAM to Univariate or Multivariate Time Series

Description

This function estimates the posterior distribution for Generalised Additive Models (GAMs) that can include smooth spline functions, specified in the GAM formula, as well as latent temporal processes, specified by `trend_model`.

Further modelling options include State-Space representations to allow covariates and dynamic processes to occur on the latent 'State' level while also capturing observation-level effects. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs.

In addition, model fits can easily be assessed and compared with posterior predictive checks, forecast comparisons and leave-one-out / leave-future-out cross-validation.

Usage

```
mvgam(
  formula,
  trend_formula,
  knots,
  trend_knots,
  trend_model = "None",
  noncentred = FALSE,
  family = poisson(),
  share_obs_params = FALSE,
  data,
  newdata,
  use_lv = FALSE,
  n_lv,
  trend_map,
  priors,
  run_model = TRUE,
  prior_simulation = FALSE,
  residuals = TRUE,
```

```

return_model_data = FALSE,
backend = getOption("brms.backend", "cmdstanr"),
algorithm = getOption("brms.algorithm", "sampling"),
control = list(max_treedepth = 10, adapt_delta = 0.8),
chains = 4,
burnin = 500,
samples = 500,
thin = 1,
parallel = TRUE,
threads = 1,
save_all_pars = FALSE,
silent = 1,
autoformat = TRUE,
refit = FALSE,
lfo = FALSE,
...
)

```

Arguments

formula	A formula object specifying the GAM observation model formula. These are exactly like the formula for a GLM except that smooth terms, <code>s()</code> , <code>te()</code> , <code>ti()</code> , <code>t2()</code> , as well as time-varying <code>dynamic()</code> terms, nonparametric <code>gp()</code> terms and offsets using <code>offset()</code> , can be added to the right hand side to specify that the linear predictor depends on smooth functions of predictors (or linear functionals of these). In <code>nmix()</code> family models, the formula is used to set up a linear predictor for the detection probability. Details of the formula syntax used by <code>mvgam</code> can be found in mvgam_formulae
trend_formula	An optional formula object specifying the GAM process model formula. If supplied, a linear predictor will be modelled for the latent trends to capture process model evolution separately from the observation model.
Important notes:	
	<ul style="list-style-type: none"> • Should not have a response variable specified on the left-hand side (e.g., <code>~ season + s(year)</code>) • Use <code>trend</code> instead of <code>series</code> for effects that vary across time series • Only available for <code>RW()</code>, <code>AR()</code> and <code>VAR()</code> trend models • In <code>nmix()</code> family models, sets up linear predictor for latent abundance • Consider dropping one intercept using <code>- 1</code> convention to avoid estimation challenges
knots	An optional <code>list</code> containing user specified knot values for basis construction. For most bases the user simply supplies the knots to be used, which must match up with the <code>k</code> value supplied. Different terms can use different numbers of knots, unless they share a covariate.
trend_knots	As for knots above, this is an optional <code>list</code> of knot values for smooth functions within the <code>trend_formula</code> .

trend_model	character or function specifying the time series dynamics for the latent trend.
	Available options:
	<ul style="list-style-type: none"> • None: No latent trend component (GAM component only, like <code>gam</code>) • ZMVN or ZMVN(): Zero-Mean Multivariate Normal (Stan only) • 'RW' or RW(): Random Walk • 'AR1', 'AR2', 'AR3' or AR($p = 1, 2, 3$): Autoregressive models • 'CAR1' or CAR($p = 1$): Continuous-time AR (Ornstein–Uhlenbeck process) • 'VAR1' or VAR(): Vector Autoregressive (Stan only) • 'PWlogistic', 'PWlinear' or PW(): Piecewise trends (Stan only) • 'GP' or GP(): Gaussian Process with squared exponential kernel (Stan only)
	Additional features:
	<ul style="list-style-type: none"> • Moving average and/or correlated process error terms available for most types (e.g., RW(<code>cor = TRUE</code>) for multivariate Random Walk) • Hierarchical correlations possible for structured data • See <code>mvgam_trends</code> for details and <code>ZMVN()</code> for examples
noncentred	logical. Use non-centred parameterisation for autoregressive trend models? Can improve efficiency by avoiding degeneracies in latent dynamic random effects estimation. Benefits vary by model - highly informative data may perform worse with this option. Available for RW(), AR(), CAR(), or <code>trend = 'None'</code> with <code>trend_formula</code> . Not available for moving average or correlated error models.
family	family specifying the exponential observation family for the series.
	Supported families:
	<ul style="list-style-type: none"> • gaussian(): Real-valued data • betar(): Proportional data on $(0, 1)$ • lognormal(): Non-negative real-valued data • student_t(): Real-valued data • Gamma(): Non-negative real-valued data • bernoulli(): Binary data • poisson(): Count data (default) • nb(): Overdispersed count data • binomial(): Count data with imperfect detection when number of trials is known (use <code>cbind()</code> to bind observations and trials) • beta_binomial(): As <code>binomial()</code> but allows for overdispersion • nmix(): Count data with imperfect detection when number of trials is unknown (State-Space N-Mixture model with Poisson latent states and Binomial observations)
	See <code>mvgam_families</code> for more details.
share_obs_params	logical. If TRUE and the family has additional family-specific observation parameters (e.g., variance components, dispersion parameters), these will be shared across all outcome variables. Useful when multiple outcomes share properties. Default is FALSE.

data	A data frame or list containing the model response variable and covariates required by the GAM formula and optional trend_formula.
	Required columns for most models:
	<ul style="list-style-type: none"> • series: A factor index of the series IDs (number of levels should equal number of unique series labels) • time: numeric or integer index of time points. For most dynamic trend types, time should be measured in discrete, regularly spaced intervals (i.e., <code>c(1, 2, 3, ...)</code>). Irregular spacing is allowed for <code>trend_model = CAR(1)</code>, but zero intervals are adjusted to <code>1e-12</code> to prevent sampling errors.
	Special cases:
	<ul style="list-style-type: none"> • Models with hierarchical temporal correlation (e.g., <code>AR(gr = region, subgr = species)</code>) should NOT include a <code>series</code> identifier • Models without temporal dynamics (<code>trend_model = 'None'</code> or <code>trend_model = ZMVN()</code>) don't require a <code>time</code> variable
newdata	Optional data frame or list of test data containing the same variables as in data. If included, observations in variable <code>y</code> will be set to NA when fitting the model so that posterior simulations can be obtained.
use_lv	logical. If TRUE, use dynamic factors to estimate series' latent trends in a reduced dimension format. Only available for <code>RW()</code> , <code>AR()</code> and <code>GP()</code> trend models. Default is FALSE. See lv_correlations for examples.
n_lv	integer specifying the number of latent dynamic factors to use if <code>use_lv == TRUE</code> . Cannot exceed <code>n_series</code> . Default is <code>min(2, floor(n_series / 2))</code> .
trend_map	Optional data.frame specifying which series should depend on which latent trends. Enables multiple series to depend on the same latent trend process with different observation processes.
	Required structure:
	<ul style="list-style-type: none"> • Column <code>series</code>: Single unique entry for each series (matching factor levels in data) • Column <code>trend</code>: Integer values indicating which trend each series depends on
	Notes:
	<ul style="list-style-type: none"> • Sets up latent factor model by enabling <code>use_lv = TRUE</code> • Process model intercept is NOT automatically suppressed • Not yet supported for continuous time models (<code>CAR()</code>)
priors	An optional data.frame with prior definitions or, preferably, a vector of <code>brmsprior</code> objects (see prior()). See get_mvgam_priors() and Details for more information.
run_model	logical. If FALSE, the model is not fitted but instead the function returns the model file and the data/initial values needed to fit the model outside of <code>mvgam</code> .
prior_simulation	logical. If TRUE, no observations are fed to the model, and instead simulations from prior distributions are returned.

residuals	logical. Whether to compute series-level randomized quantile residuals. Default is TRUE. Set to FALSE to save time and reduce object size (can add later using add_residuals).
return_model_data	logical. If TRUE, the list of data needed to fit the model is returned, along with initial values for smooth and AR parameters, once the model is fitted. Helpful for users who wish to modify the model file to add other stochastic elements. Default is FALSE unless <code>run_model == FALSE</code> .
backend	Character string naming the package for Stan model fitting. Options are "cmdstanr" (default) or "rstan". Can be set globally via "brms.backend" option. See https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstanr/ for details.
algorithm	Character string naming the estimation approach: <ul style="list-style-type: none"> • "sampling": MCMC (default) • "meanfield": Variational inference with factorized normal distributions • "fullrank": Variational inference with multivariate normal distribution • "laplace": Laplace approximation (cmdstanr only) • "pathfinder": Pathfinder algorithm (cmdstanr only) Can be set globally via "brms.algorithm" option. Limited testing suggests "meanfield" performs best among non-MCMC approximations for dynamic GAMs.
control	Named list for controlling sampler behaviour. Valid elements include <code>max_treedepth</code> , <code>adapt_delta</code> and <code>init</code> .
chains	integer specifying the number of parallel chains for the model. Ignored for variational inference algorithms.
burnin	integer specifying the number of warmup iterations to tune sampling algorithms. Ignored for variational inference algorithms.
samples	integer specifying the number of post-warmup iterations for sampling the posterior distribution.
thin	Thinning interval for monitors. Ignored for variational inference algorithms.
parallel	logical specifying whether to use multiple cores for parallel MCMC simulation. If TRUE, uses <code>min(c(chains, parallel::detectCores() - 1))</code> cores.
threads	integer. Experimental option for within-chain parallelisation in Stan using <code>reduce_sum</code> . Recommended only for experienced Stan users with slow models. Currently works for all families except <code>nmix()</code> and when using Cmdstan backend.
save_all_pars	logical. Save draws from all variables defined in Stan's parameters block. Default is FALSE.
silent	Verbosity level between 0 and 2. If 1 (default), most informational messages are suppressed. If 2, even more messages are suppressed. Sampling progress is still printed - set <code>refresh = 0</code> to disable. For <code>backend = "rstan"</code> , also set <code>open_progress = FALSE</code> to prevent additional progress bars.
autoformat	logical. Use <code>stanc</code> parser to automatically format Stan code and check for deprecations. For development purposes - leave as TRUE.

refit	logical. Indicates whether this is a refit called using update.mvgam() . Users should leave as FALSE.
lfo	logical. Indicates whether this is part of lfo_cv.mvgam call. Returns lighter model version for speed. Users should leave as FALSE.
...	Further arguments passed to Stan: <ul style="list-style-type: none"> • For backend = "rstan": passed to sampling() or vb() • For backend = "cmdstanr": passed to cmdstanr::sample, cmdstanr::variational, cmdstanr::laplace or cmdstanr::pathfinder methods

Details

Dynamic GAMs are useful when we wish to predict future values from time series that show temporal dependence but we do not want to rely on extrapolating from a smooth term (which can sometimes lead to unpredictable and unrealistic behaviours). In addition, smooths can often try to wiggle excessively to capture any autocorrelation that is present in a time series, which exacerbates the problem of forecasting ahead.

As GAMs are very naturally viewed through a Bayesian lens, and we often must model time series that show complex distributional features and missing data, parameters for **mvgam** models are estimated in a Bayesian framework using Markov Chain Monte Carlo by default.

Getting Started Resources:

- General overview: [vignette\("mvgam_overview"\)](#) and [vignette\("data_in_mvgam"\)](#)
- Full list of vignettes: [vignette\(package = "mvgam"\)](#)
- Real-world examples: [mvgam_use_cases](#)
- Quick reference: [mvgam cheatsheet](#)

Value

A list object of class **mvgam** containing model output, the text representation of the model file, the mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth residuals for each series and key information needed for other functions in the package. See [mvgam-class](#) for details. Use [methods\(class = "mvgam"\)](#) for an overview on available methods.

Model Specification Details

Formula Syntax: Details of the formula syntax used by **mvgam** can be found in [mvgam_formulae](#). Note that it is possible to supply an empty formula where there are no predictors or intercepts in the observation model (i.e. $y \sim 0$ or $y \sim -1$). In this case, an intercept-only observation model will be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit pure State-Space models where the variation in the dynamic trend controls the average expectation, and/or where intercepts are non-identifiable (as in piecewise trends).

Families and Link Functions: Details of families supported by **mvgam** can be found in [mvgam_families](#).

Trend Models: Details of latent error process models supported by **mvgam** can be found in [mvgam_trends](#).

Prior Specifications

Default priors for intercepts and any variance parameters are chosen to be vaguely informative, but these should always be checked by the user. Prior distributions for most important model parameters can be altered (see [get_mvgam_priors\(\)](#) for details). Note that latent trends are estimated on the link scale so choose priors accordingly.

However more control over the model specification can be accomplished by setting `run_model = FALSE` and then editing the model code (found in the `model_file` slot in the returned object) before running the model using either `rstan` or `cmdstanr`. This is encouraged for complex modelling tasks.

Important: No priors are formally checked to ensure they are in the right syntax so it is up to the user to ensure these are correct.

Model Components

Random Effects: For any smooth terms using the random effect basis ([smooth.construct.re.smooth.spec](#)), a non-centred parameterisation is automatically employed to avoid degeneracies that are common in hierarchical models. Note however that centred versions may perform better for series that are particularly informative, so as with any foray into Bayesian modelling, it is worth building an understanding of the model's assumptions and limitations by following a principled workflow. Also note that models are parameterised using `drop.unused.levels = FALSE` in [jagam](#) to ensure predictions can be made for all levels of the supplied factor variable.

Observation Level Parameters: When more than one series is included in `data` and an observation family that contains more than one parameter is used, additional observation family parameters (i.e. `phi` for `nb()` or `sigma` for `gaussian()`) are by default estimated independently for each series. But if you wish for the series to share the same observation parameters, set `share_obs_params = TRUE`.

Model Diagnostics

Residuals: For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for inspecting model diagnostics. If the fitted model is appropriate then Dunn-Smyth residuals will be standard normal in distribution and no autocorrelation will be evident. When a particular observation is missing, the residual is calculated by comparing independent draws from the model's posterior distribution.

Computational Backend

Using Stan: `mvgam` is primarily designed to use Hamiltonian Monte Carlo for parameter estimation via the software Stan (using either the `cmdstanr` or `rstan` interface). There are great advantages when using Stan over Gibbs / Metropolis Hastings samplers, which includes the option to estimate nonlinear effects via [Hilbert space approximate Gaussian Processes](#), the availability of a variety of inference algorithms (i.e. variational inference, laplacian inference etc...) and [capabilities to enforce stationarity for complex Vector Autoregressions](#).

Because of the many advantages of Stan over JAGS, **further development of the package will only be applied to Stan**. This includes the planned addition of more response distributions, plans to handle zero-inflation, and plans to incorporate a greater variety of trend models. Users are strongly encouraged to opt for Stan over JAGS in any proceeding workflows.

Recommended Workflow

How to Start: The [mvgam cheatsheet](#) is a good starting place if you are just learning to use the package. It gives an overview of the package's key functions and objects, as well as providing a reasonable workflow that new users can follow.

Recommended Steps:

1. **Data Preparation:** Check that your data are in a suitable tidy format for **mvgam** modeling (see the [data formatting vignette](#) for guidance)
2. **Data Exploration:** Inspect features of the data using [plot_mvgam_series](#). Now is also a good time to familiarise yourself with the package's example workflows that are detailed in the vignettes:
 - [Getting started vignette](#)
 - [Shared latent states vignette](#)
 - [Time-varying effects vignette](#)
 - [State-Space models vignette](#)
 - ["Fitting N-mixture models in mvgam"](#)
 - ["Joint Species Distribution Models in mvgam"](#)
 - ["Incorporating time-varying seasonality in forecast models"](#)
 - ["Temporal autocorrelation in GAMs and the mvgam package"](#)
3. **Model Structure:** Carefully think about how to structure linear predictor effects (i.e. smooth terms using `s()`, `te()` or `ti()`, GPs using `gp()`, dynamic time-varying effects using `dynamic()`, and parametric terms), latent temporal trend components (see [mvgam_trends](#)) and the appropriate observation family (see [mvgam_families](#)). Use [get_mvgam_priors\(\)](#) to see default prior distributions for stochastic parameters.
4. **Prior Specification:** Change default priors using appropriate prior knowledge (see [prior\(\)](#)). When using State-Space models with a `trend_formula`, pay particular attention to priors for any variance parameters such as process errors and observation errors. Default priors on these parameters are chosen to be vaguely informative and to avoid zero (using Inverse Gamma priors), but more informative priors will often help with model efficiency and convergence.
5. **Model Fitting:** Fit the model using either Hamiltonian Monte Carlo or an approximation algorithm (i.e. change the backend argument) and use [summary.mvgam\(\)](#), [conditional_effects.mvgam\(\)](#), [mcmc_plot.mvgam\(\)](#), [pp_check.mvgam\(\)](#), [pairs.mvgam\(\)](#) and [plot.mvgam\(\)](#) to inspect / interrogate the model.
6. **Model Comparison:** Update the model as needed and use [loo_compare.mvgam\(\)](#) for in-sample model comparisons, or alternatively use [forecast.mvgam\(\)](#), [lfo_cv.mvgam\(\)](#) and [score.mvgam_forecast\(\)](#) to compare models based on out-of-sample forecasts (see the [forecast evaluation vignette](#) for guidance).
7. **Inference and Prediction:** When satisfied with the model structure, use [predict.mvgam\(\)](#), [plot_predictions\(\)](#) and/or [plot_slopes\(\)](#) for more targeted simulation-based inferences (see ["How to interpret and report nonlinear effects from Generalized Additive Models"](#) for some guidance on interpreting GAMs). For time series models, use [hindcast.mvgam\(\)](#), [fitted.mvgam\(\)](#), [augment.mvgam\(\)](#) and [forecast.mvgam\(\)](#) to inspect posterior hindcast / forecast distributions.
8. **Documentation:** Use [how_to_cite\(\)](#) to obtain a scaffold methods section (with full references) to begin describing this model in scientific publications.

Author(s)

Nicholas J Clark

References

Nicholas J Clark & Konstans Wells (2023). Dynamic generalised additive models (DGAMs) for forecasting discrete ecological time series. *Methods in Ecology and Evolution*. 14:3, 771-784.

Nicholas J Clark, SK Morgan Ernest, Henry Senyondo, Juniper Simonis, Ethan P White, Glenda M Yenni, KANK Karunaratna (2025). Beyond single-species models: leveraging multispecies forecasts to navigate the dynamics of ecological predictability. *PeerJ*. 13:e18929 <https://doi.org/10.7717/peerj.18929>

See Also

[jagam\(\)](#), [gam\(\)](#), [gam.models](#), [get_mvgam_priors\(\)](#), [jsdgam\(\)](#), [hindcast.mvgam\(\)](#), [forecast.mvgam\(\)](#), [predict.mvgam\(\)](#)

Examples

```
## Not run:
# =====
# Basic Multi-Series Time Series Modeling
# =====

# Simulate three time series that have shared seasonal dynamics,
# independent AR(1) trends, and Poisson observations
set.seed(0)
dat <- sim_mvgam(
  T = 80,
  n_series = 3,
  mu = 2,
  trend_model = AR(p = 1),
  prop_missing = 0.1,
  prop_trend = 0.6
)

# Plot key summary statistics for a single series
plot_mvgam_series(data = dat$data_train, series = 1)

# Plot all series together
plot_mvgam_series(data = dat$data_train, series = "all")

# Formulate a model using Stan where series share a cyclic smooth for
# seasonality and each series has an independent AR1 temporal process.
# Note that 'noncentred = TRUE' will likely give performance gains.
# Set run_model = FALSE to inspect the returned objects
mod1 <- mvgam(
  formula = y ~ s(season, bs = "cc", k = 6),
  data = dat$data_train,
  trend_model = AR(),
  family = poisson(),
  noncentred = TRUE,
```

```

  run_model = FALSE
)

# View the model code in Stan language
stancode(mod1)

# View the data objects needed to fit the model in Stan
sdata1 <- standata(mod1)
str(sdata1)

# Now fit the model
mod1 <- mvgam(
  formula = y ~ s(season, bs = "cc", k = 6),
  data = dat$data_train,
  trend_model = AR(),
  family = poisson(),
  noncentred = TRUE,
  chains = 2,
  silent = 2
)

# Extract the model summary
summary(mod1)

# Plot the historical trend and hindcast distributions for one series
hc_trend <- hindcast(mod1, type = "trend")
plot(hc_trend)

hc_predicted <- hindcast(mod1, type = "response")
plot(hc_predicted)

# Residual diagnostics
plot(mod1, type = "residuals", series = 1)
resids <- residuals(mod1)
str(resids)

# Fitted values and residuals can be added directly to the training data
augment(mod1)

# Compute the forecast using covariate information in data_test
fc <- forecast(mod1, newdata = dat$data_test)
str(fc)
fc_summary <- summary(fc)
head(fc_summary, 12)
plot(fc)

# Plot the estimated seasonal smooth function
plot(mod1, type = "smooths")

# Plot estimated first derivatives of the smooth
plot(mod1, type = "smooths", derivatives = TRUE)

# Plot partial residuals of the smooth

```

```
plot(mod1, type = "smooths", residuals = TRUE)

# Plot posterior realisations for the smooth
plot(mod1, type = "smooths", realisations = TRUE)

# Plot conditional response predictions using marginaleffects
conditional_effects(mod1)
plot_predictions(mod1, condition = "season", points = 0.5)

# Generate posterior predictive checks using bayesplot
pp_check(mod1)

# Extract observation model beta coefficient draws as a data.frame
beta_draws_df <- as.data.frame(mod1, variable = "betas")
head(beta_draws_df)
str(beta_draws_df)

# Investigate model fit
mc.cores.def <- getOption("mc.cores")
options(mc.cores = 1)
loo(mod1)
options(mc.cores = mc.cores.def)

# =====
# Vector Autoregressive (VAR) Models
# =====

# Fit a model to the portal time series that uses a latent
# Vector Autoregression of order 1
mod <- mvgam(
  formula = captures ~ -1,
  trend_formula = ~ trend,
  trend_model = VAR(cor = TRUE),
  family = poisson(),
  data = portal_data,
  chains = 2,
  silent = 2
)

# Plot the autoregressive coefficient distributions;
# use 'dir = "v"' to arrange the order of facets correctly
mcmc_plot(
  mod,
  variable = 'A',
  regex = TRUE,
  type = 'hist',
  facet_args = list(dir = 'v')
)

# Plot the process error variance-covariance matrix in the same way
mcmc_plot(
  mod,
```

```

variable = 'Sigma',
regex = TRUE,
type = 'hist',
facet_args = list(dir = 'v')
)

# Calculate Generalized Impulse Response Functions for each series
irfs <- irf(
  mod,
  h = 12,
  cumulative = FALSE
)

# Plot some of them
plot(irfs, series = 1)
plot(irfs, series = 2)

# Calculate forecast error variance decompositions for each series
fevds <- fevd(mod, h = 12)

# Plot median contributions to forecast error variance
plot(fevds)

# =====
# Dynamic Factor Models
# =====

# Now fit a model that uses two RW dynamic factors to model
# the temporal dynamics of the four rodent species
mod <- mvgam(
  captures ~ series,
  trend_model = RW(),
  use_lv = TRUE,
  n_lv = 2,
  data = portal_data,
  chains = 2,
  silent = 2
)

# Plot the factors
plot(mod, type = 'factors')

# Plot the hindcast distributions
hcs <- hindcast(mod)
plot(hcs, series = 1)
plot(hcs, series = 2)
plot(hcs, series = 3)
plot(hcs, series = 4)

# Use residual_cor() to calculate temporal correlations among the series
# based on the factor loadings
lvcors <- residual_cor(mod)

```

```
names(lvcors)
lvcors$cor

# For those correlations whose credible intervals did not include
# zero, plot them as a correlation matrix (all other correlations
# are shown as zero on this plot)
plot(lvcors, cluster = TRUE)

# =====
# Shared Latent Trends with Custom Trend Mapping
# =====

# Example of supplying a trend_map so that some series can share
# latent trend processes
sim <- sim_mvgam(n_series = 3)
mod_data <- sim$data_train

# Here, we specify only two latent trends; series 1 and 2 share a trend,
# while series 3 has its own unique latent trend
trend_map <- data.frame(
  series = unique(mod_data$series),
  trend = c(1, 1, 2)
)

# Fit the model using AR1 trends
mod <- mvgam(
  formula = y ~ s(season, bs = "cc", k = 6),
  trend_map = trend_map,
  trend_model = AR(),
  data = mod_data,
  return_model_data = TRUE,
  chains = 2,
  silent = 2
)

# The mapping matrix is now supplied as data to the model in the 'Z' element
mod$model_data$Z

# The first two series share an identical latent trend; the third is different
plot(residual_cor(mod))
plot(mod, type = "trend", series = 1)
plot(mod, type = "trend", series = 2)
plot(mod, type = "trend", series = 3)

# =====
# Time-Varying (Dynamic) Coefficients
# =====

# Example of how to use dynamic coefficients
# Simulate a time-varying coefficient for the effect of temperature
set.seed(123)
```

```

N <- 200
beta_temp <- vector(length = N)
beta_temp[1] <- 0.4
for (i in 2:N) {
  beta_temp[i] <- rnorm(1, mean = beta_temp[i - 1] - 0.0025, sd = 0.05)
}
plot(beta_temp)

# Simulate a covariate called 'temp'
temp <- rnorm(N, sd = 1)

# Simulate some noisy Gaussian observations
out <- rnorm(N,
  mean = 4 + beta_temp * temp,
  sd = 0.5
)

# Gather necessary data into a data.frame; split into training / testing
data <- data.frame(out, temp, time = seq_along(temp))
data_train <- data[1:180, ]
data_test <- data[181:200, ]

# Fit the model using the dynamic() function
mod <- mvgam(
  formula = out ~ dynamic(
    temp,
    scale = FALSE,
    k = 40
  ),
  family = gaussian(),
  data = data_train,
  newdata = data_test,
  chains = 2,
  silent = 2
)

# Inspect the model summary, forecast and time-varying coefficient distribution
summary(mod)
plot(mod, type = "smooths")
fc <- forecast(mod, newdata = data_test)
plot(fc)

# Propagating the smooth term shows how the coefficient is expected to evolve
plot_mvgam_smooth(mod, smooth = 1, newdata = data)
abline(v = 180, lty = "dashed", lwd = 2)
points(beta_temp, pch = 16)

# =====
# Working with Offset Terms
# =====

# Example showing how to incorporate an offset; simulate some count data

```

```

# with different means per series
set.seed(100)
dat <- sim_mvgam(
  prop_trend = 0,
  mu = c(0, 2, 2),
  seasonality = "hierarchical"
)

# Add offset terms to the training and testing data
dat$data_train$offset <- 0.5 * as.numeric(dat$data_train$series)
dat$data_test$offset <- 0.5 * as.numeric(dat$data_test$series)

# Fit a model that includes the offset in the linear predictor as well as
# hierarchical seasonal smooths
mod <- mvgam(
  formula = y ~ offset(offset) +
    s(series, bs = "re") +
    s(season, bs = "cc") +
    s(season, by = series, m = 1, k = 5),
  data = dat$data_train,
  chains = 2,
  silent = 2
)

# Inspect the model file to see the modification to the linear predictor (eta)
stancode(mod)

# Forecasts for the first two series will differ in magnitude
fc <- forecast(mod, newdata = dat$data_test)
plot(fc, series = 1, ylim = c(0, 75))
plot(fc, series = 2, ylim = c(0, 75))

# Changing the offset for the testing data should lead to changes in
# the forecast
dat$data_test$offset <- dat$data_test$offset - 2
fc <- forecast(mod, newdata = dat$data_test)
plot(fc)

# Relative Risks can be computed by fixing the offset to the same value
# for each series
dat$data_test$offset <- rep(1, NROW(dat$data_test))
preds_rr <- predict(mod,
  type = "link",
  newdata = dat$data_test,
  summary = FALSE
)
series1_inds <- which(dat$data_test$series == "series_1")
series2_inds <- which(dat$data_test$series == "series_2")

# Relative Risks are now more comparable among series
layout(matrix(1:2, ncol = 2))
plot(preds_rr[1, series1_inds],
  type = "l", col = "grey75",

```

```

ylim = range(preds_rr),
ylab = "Series1 Relative Risk", xlab = "Time"
)
for (i in 2:50) {
  lines(preds_rr[i, series1_inds], col = "grey75")
}

plot(preds_rr[1, series2_inds],
  type = "l", col = "darkred",
  ylim = range(preds_rr),
  ylab = "Series2 Relative Risk", xlab = "Time"
)
for (i in 2:50) {
  lines(preds_rr[i, series2_inds], col = "darkred")
}
layout(1)

# =====
# Binomial Family Models
# =====

# Example showcasing how cbind() is needed for Binomial observations
# Simulate two time series of Binomial trials
trials <- sample(c(20:25), 50, replace = TRUE)
x <- rnorm(50)
detprob1 <- plogis(-0.5 + 0.9 * x)
detprob2 <- plogis(-0.1 - 0.7 * x)
dat <- rbind(
  data.frame(
    y = rbinom(n = 50, size = trials, prob = detprob1),
    time = 1:50,
    series = "series1",
    x = x,
    ntrials = trials
  ),
  data.frame(
    y = rbinom(n = 50, size = trials, prob = detprob2),
    time = 1:50,
    series = "series2",
    x = x,
    ntrials = trials
  )
)
dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)
plot_mvgam_series(data = dat, series = "all")

# Fit a model using the binomial() family; must specify observations
# and number of trials in the cbind() wrapper
mod <- mvgam(
  formula = cbind(y, ntrials) ~ series + s(x, by = series),
  family = binomial(),

```

```

data = dat,
chains = 2,
silent = 2
)
summary(mod)
pp_check(mod,
  type = "bars_grouped",
  group = "series", ndraws = 50
)
pp_check(mod,
  type = "ecdf_overlay_grouped",
  group = "series", ndraws = 50
)
conditional_effects(mod, type = "link")

# To view predictions on the probability scale,
# use ntrials = 1 in datagrid()
plot_predictions(
  mod,
  by = c('x', 'series'),
  newdata = datagrid(
    x = runif(100, -2, 2),
    series = unique,
    ntrials = 1
  ),
  type = 'expected'
)

# Not needed for general use; cleans up connections for automated testing
closeAllConnections()

## End(Not run)

```

mvgam-class
Fitted mvgam object description

Description

A fitted `mvgam` object returned by function `mvgam`. Run `methods(class = "mvgam")` to see an overview of available methods.

Details

A `mvgam` object contains the following elements:

- `call` the original observation model formula
- `trend_call` If a `trend_formula` was supplied, the original trend model formula is returned. Otherwise `NULL`
- `family` character description of the observation distribution

- `trend_model` character description of the latent trend model
- `trend_map` `data.frame` describing the mapping of trend states to observations, if supplied in the original model. Otherwise `NULL`
- `drift` Logical specifying whether a drift term was used in the trend model
- `priors` If the model priors were updated from their defaults, the prior `dataframe` will be returned. Otherwise `NULL`
- `model_output` The MCMC object returned by the fitting engine. If the model was fitted using Stan, this will be an object of class `stanfit` (see [stanfit-class](#) for details). If JAGS was used as the backend, this will be an object of class `runjags` (see [runjags-class](#) for details)
- `model_file` The character string model file used to describe the model in either Stan or JAGS syntax
- `model_data` If `return_model_data` was set to `TRUE` when fitting the model, the `list` object containing all data objects needed to condition the model is returned. Each item in the `list` is described in detail at the top of the `model_file`. Otherwise `NULL`
- `inits` If `return_model_data` was set to `TRUE` when fitting the model, the initial value functions used to initialise the MCMC chains will be returned. Otherwise `NULL`
- `monitor_pars` The parameters that were monitored during MCMC sampling are returned as a character vector
- `sp_names` A character vector specifying the names for each smoothing parameter
- `mgcv_model` An object of class `gam` containing the `mgcv` version of the observation model. This object is used for generating the linear predictor matrix when making predictions for new data. The coefficients in this model object will contain the posterior median coefficients from the GAM linear predictor, but these are only used if generating plots of smooth functions that `mvgam` currently cannot handle (such as plots for three-dimensional smooths). This model therefore should not be used for inference. See [gamObject](#) for details
- `trend_mgcv_model` If a `trend_formula` was supplied, an object of class `gam` containing the `mgcv` version of the trend model. Otherwise `NULL`
- `ytimes` The `matrix` object used in model fitting for indexing which series and timepoints were observed in each row of the supplied data. Used internally by some downstream plotting and prediction functions
- `resids` A named `list` object containing posterior draws of Dunn-Smyth randomized quantile residuals
- `use_lv` Logical flag indicating whether latent dynamic factors were used in the model
- `n_lv` If `use_lv == TRUE`, the number of latent dynamic factors used in the model
- `upper_bounds` If bounds were supplied in the original model fit, they will be returned. Otherwise `NULL`
- `obs_data` The original data object (either a `list` or `dataframe`) supplied in model fitting.
- `test_data` If test data were supplied (as argument `newdata` in the original model), it will be returned. Otherwise `NULL`
- `fit_engine` Character describing the fit engine, either as `stan` or `jags`
- `backend` Character describing the backend used for modelling, either as `rstan`, `cmdstanr` or `rjags`

- `algorithm` Character describing the algorithm used for finding the posterior, either as `sampling`, `laplace`, `pathfinder`, `meanfield` or `fullrank`
- `max_treedepth` If the model was fitted using Stan, the value supplied for the maximum treedepth tuning parameter is returned (see [stan](#) for details). Otherwise `NULL`
- `adapt_delta` If the model was fitted using Stan, the value supplied for the `adapt_delta` tuning parameter is returned (see [stan](#) for details). Otherwise `NULL`

Author(s)

Nicholas J Clark

See Also

[mvgam](#)

`mvgam_diagnostics` *Extract diagnostic quantities of **mvgam** models*

Description

Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by **Stan** at the back-end of **mvgam**.

Usage

```
## S3 method for class 'mvgam'
nuts_params(object, pars = NULL, ...)

## S3 method for class 'mvgam'
log_posterior(object, ...)

## S3 method for class 'mvgam'
rhat(x, pars = NULL, ...)

## S3 method for class 'mvgam'
neff_ratio(object, pars = NULL, ...)
```

Arguments

<code>object, x</code>	A <code>mvgam</code> or <code>jsdgam</code> object.
<code>pars</code>	An optional character vector of parameter names. For <code>nuts_params</code> these will be NUTS sampler parameter names rather than model parameters. If <code>pars</code> is omitted all parameters are included.
<code>...</code>	Arguments passed to individual methods.

Details

For more details see [bayesplot-extractors](#).

Value

The exact form of the output depends on the method.

Examples

```
## Not run:
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),
              trend_model = AR(),
              noncentred = TRUE,
              data = simdat$data_train,
              chains = 2)
np <- nuts_params(mod)
head(np)

# extract the number of divergence transitions
sum(subset(np, Parameter == "divergent_")$Value)

head(neff_ratio(mod))

## End(Not run)
```

mvgam_draws

*Extract posterior draws from fitted **mvgam** objects*

Description

Extract posterior draws in conventional formats as data.frames, matrices, or arrays.

Usage

```
## S3 method for class 'mvgam'
as.data.frame(
  x,
  row.names = NULL,
  optional = TRUE,
  variable = "betas",
  use_alias = TRUE,
  regex = FALSE,
  ...
)

## S3 method for class 'mvgam'
as.matrix(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)
```

```
## S3 method for class 'mvgam'
as.array(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)

## S3 method for class 'mvgam'
as_draws(
  x,
  variable = NULL,
  regex = FALSE,
  inc_warmup = FALSE,
  use_alias = TRUE,
  ...
)

## S3 method for class 'mvgam'
as_draws_matrix(
  x,
  variable = NULL,
  regex = FALSE,
  inc_warmup = FALSE,
  use_alias = TRUE,
  ...
)

## S3 method for class 'mvgam'
as_draws_df(
  x,
  variable = NULL,
  regex = FALSE,
  inc_warmup = FALSE,
  use_alias = TRUE,
  ...
)

## S3 method for class 'mvgam'
as_draws_array(
  x,
  variable = NULL,
  regex = FALSE,
  inc_warmup = FALSE,
  use_alias = TRUE,
  ...
)

## S3 method for class 'mvgam'
as_draws_list(
  x,
  variable = NULL,
```

```

  regex = FALSE,
  inc_warmup = FALSE,
  use_alias = TRUE,
  ...
)

## S3 method for class 'mvgam'
as_draws_rvars(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

```

Arguments

x	list object of class <code>mvgam</code>
row.names	Ignored
optional	Ignored
variable	A character specifying which parameters to extract. Can either be one of the following options: <ul style="list-style-type: none"> • <code>obs_params</code> (other parameters specific to the observation model, such as overdispersions for negative binomial models or observation error SD for gaussian / student-t models) • <code>betas</code> (beta coefficients from the GAM observation model linear predictor; default) • <code>smooth_params</code> (smoothing parameters from the GAM observation model) • <code>linpreds</code> (estimated linear predictors on whatever link scale was used in the model) • <code>trend_params</code> (parameters governing the trend dynamics, such as AR parameters, trend SD parameters or Gaussian Process parameters) • <code>trend_betas</code> (beta coefficients from the GAM latent process model linear predictor; only available if a <code>trend_formula</code> was supplied in the original model) • <code>trend_smooth_params</code> (process model GAM smoothing parameters; only available if a <code>trend_formula</code> was supplied in the original model) • <code>trend_linpreds</code> (process model linear predictors on the identity scale; only available if a <code>trend_formula</code> was supplied in the original model)
	OR can be a character vector providing the variables to extract.
use_alias	Logical. If more informative names for parameters are available (i.e. for beta coefficients <code>b</code> or for smoothing parameters <code>rho</code>), replace the uninformative names with the more informative alias. Defaults to TRUE.
regex	Logical. If not using one of the prespecified options for extractions, should <code>variable</code> be treated as a (vector of) regular expressions? Any variable in <code>x</code> matching at least one of the regular expressions will be selected. Defaults to FALSE.
...	Ignored
inc_warmup	Should warmup draws be included? Defaults to FALSE.

Value

A `data.frame`, `matrix`, or `array` containing the posterior draws.

Author(s)

Nicholas J Clark

Examples

```
## Not run:
sim <- sim_mvgam(family = Gamma())

mod1 <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  data = sim$data_train,
  family = Gamma(),
  chains = 2,
  silent = 2
)

beta_draws_df <- as.data.frame(mod1, variable = 'betas')
head(beta_draws_df)
str(beta_draws_df)

beta_draws_mat <- as.matrix(mod1, variable = 'betas')
head(beta_draws_mat)
str(beta_draws_mat)

shape_pars <- as.matrix(mod1, variable = 'shape', regex = TRUE)
head(shape_pars)

## End(Not run)
```

mvgam_families

Supported mvgam families

Description

Supported **mvgam** families

Usage

```
tweedie(link = "log")
student_t(link = "identity")
betar(...)
```

```

nb(...)

lognormal(...)

student(...)

bernoulli(...)

beta_binomial(...)

nmix(link = "log")

```

Arguments

link	a specification for the family link function. At present these cannot be changed
...	Arguments to be passed to the mgcv version of the associated functions

Details

mvgam currently supports the following standard observation families:

- **gaussian** with identity link, for real-valued data
- **poisson** with log-link, for count data
- **Gamma** with log-link, for non-negative real-valued data
- **binomial** with logit-link, for count data when the number of trials is known (and must be supplied)

In addition, the following extended families from the **mgcv** and **brms** packages are supported:

- **betar** with logit-link, for proportional data on $(0, 1)$
- **nb** with log-link, for count data
- **lognormal** with identity-link, for non-negative real-valued data
- **bernoulli** with logit-link, for binary data
- **beta_binomial** with logit-link, as for **binomial()** but allows for overdispersion

Finally, **mvgam** supports the three extended families described here:

- **tweedie** with log-link, for count data (power parameter p fixed at 1.5)
- **student_t()** (or **student**) with identity-link, for real-valued data
- **nmix** for count data with imperfect detection modeled via a State-Space N-Mixture model. The latent states are Poisson (with log link), capturing the 'true' latent abundance, while the observation process is Binomial to account for imperfect detection. The observation formula in these models is used to set up a linear predictor for the detection probability (with logit link). See the example below for a more detailed worked explanation of the **nmix()** family

Only **poisson()**, **nb()**, and **tweedie()** are available if using JAGS. All families, apart from **tweedie()**, are supported if using Stan.

Note that currently it is not possible to change the default link functions in **mvgam**, so any call to change these will be silently ignored

Value

Objects of class `family`

Author(s)

Nicholas J Clark

Examples

```
## Not run:
# =====
# N-mixture Models
# =====
set.seed(999)

# Simulate observations for species 1, which shows a declining trend and
# 0.7 detection probability
data.frame(
  site = 1,
  # five replicates per year; six years
  replicate = rep(1:5, 6),
  time = sort(rep(1:6, 5)),
  species = 'sp_1',
  # true abundance declines nonlinearly
  truth = c(
    rep(28, 5),
    rep(26, 5),
    rep(23, 5),
    rep(16, 5),
    rep(14, 5),
    rep(14, 5)
  ),
  # observations are taken with detection prob = 0.7
  obs = c(
    rbinom(5, 28, 0.7),
    rbinom(5, 26, 0.7),
    rbinom(5, 23, 0.7),
    rbinom(5, 15, 0.7),
    rbinom(5, 14, 0.7),
    rbinom(5, 14, 0.7)
  )
) %>%
  # add 'series' information, which is an identifier of site, replicate
  # and species
  dplyr::mutate(
    series = paste0(
      'site_', site,
      '_', species,
      '_rep_', replicate
    ),
    time = as.numeric(time),
    # add a 'cap' variable that defines the maximum latent N to
```

```

# marginalize over when estimating latent abundance; in other words
# how large do we realistically think the true abundance could be?
cap = 80
) %>%
dplyr::select(-replicate) -> testdat

# Now add another species that has a different temporal trend and a
# smaller detection probability (0.45 for this species)
testdat <- testdat %>%
dplyr::bind_rows(
  data.frame(
    site = 1,
    replicate = rep(1:5, 6),
    time = sort(rep(1:6, 5)),
    species = 'sp_2',
    truth = c(
      rep(4, 5),
      rep(7, 5),
      rep(15, 5),
      rep(16, 5),
      rep(19, 5),
      rep(18, 5)
    ),
    obs = c(
      rbinom(5, 4, 0.45),
      rbinom(5, 7, 0.45),
      rbinom(5, 15, 0.45),
      rbinom(5, 16, 0.45),
      rbinom(5, 19, 0.45),
      rbinom(5, 18, 0.45)
    )
  ) %>%
dplyr::mutate(
  series = paste0(
    'site_', site,
    '_', species,
    '_rep_', replicate
  ),
  time = as.numeric(time),
  cap = 50
) %>%
dplyr::select(-replicate)
)

# series identifiers
testdat$species <- factor(
  testdat$species,
  levels = unique(testdat$species)
)
testdat$series <- factor(
  testdat$series,
  levels = unique(testdat$series)
)

```

```
# The trend_map to state how replicates are structured
testdat %>%
  # each unique combination of site*species is a separate process
  dplyr::mutate(
    trend = as.numeric(factor(paste0(site, species)))
  ) %>%
  dplyr::select(trend, series) %>%
  dplyr::distinct() -> trend_map
trend_map

# Fit a model
mod <- mvgam(
  # the observation formula sets up linear predictors for
  # detection probability on the logit scale
  formula = obs ~ species - 1,

  # the trend_formula sets up the linear predictors for
  # the latent abundance processes on the log scale
  trend_formula = ~ s(time, by = trend, k = 4) + species,

  # the trend_map takes care of the mapping
  trend_map = trend_map,

  # nmix() family and data
  family = nmix(),
  data = testdat,

  # priors can be set in the usual way
  priors = c(
    prior(std_normal(), class = b),
    prior(normal(1, 1.5), class = Intercept_trend)
  ),
  chains = 2
)

# The usual diagnostics
summary(mod)

# Plotting conditional effects
library(ggplot2)

plot_predictions(
  mod,
  condition = 'species',
  type = 'detection'
) +
  ylab('Pr(detection)') +
  ylim(c(0, 1)) +
  theme_classic() +
  theme(legend.position = 'none')

# =====
```

```

# Binomial Models
# =====

# Simulate two time series of Binomial trials
trials <- sample(c(20:25), 50, replace = TRUE)
x <- rnorm(50)
detprob1 <- plogis(-0.5 + 0.9 * x)
detprob2 <- plogis(-0.1 - 0.7 * x)
dat <- rbind(
  data.frame(
    y = rbinom(n = 50, size = trials, prob = detprob1),
    time = 1:50,
    series = 'series1',
    x = x,
    ntrials = trials
  ),
  data.frame(
    y = rbinom(n = 50, size = trials, prob = detprob2),
    time = 1:50,
    series = 'series2',
    x = x,
    ntrials = trials
  )
)
dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)

# Fit a model using the binomial() family; must specify observations
# and number of trials in the cbind() wrapper
mod <- mvgam(
  cbind(y, ntrials) ~ series + s(x, by = series),
  family = binomial(),
  data = dat
)
summary(mod)

## End(Not run)

```

mvgam_fevd-class mvgam_fevd *object description*

Description

A mvgam_fevd object returned by function [fevd\(\)](#). Run `methods(class = "mvgam_fevd")` to see an overview of available methods.

Details

A forecast error variance decomposition is useful for quantifying the amount of information each series that in a Vector Autoregression contributes to the forecast distributions of the other series in

the autoregression. This object contains the forecast error variance decomposition using the orthogonalised impulse response coefficient matrices Ψ_h , which can be used to quantify the contribution of series j to the h -step forecast error variance of series k :

$$\sigma_k^2(h) = \sum_{j=1}^K (\psi_{kj,0}^2 + \dots + \psi_{kj,h-1}^2)$$

If the orthogonalised impulse responses $(\psi_{kj,0}^2 + \dots + \psi_{kj,h-1}^2)$ are divided by the variance of the forecast error $\sigma_k^2(h)$, this yields an interpretable percentage representing how much of the forecast error variance for k can be explained by an exogenous shock to j . This percentage is what is calculated and returned in objects of class `mvgam_fevd`, where the posterior distribution of variance decompositions for each variable in the original model is contained in a separate slot within the returned list object

Author(s)

Nicholas J Clark

References

Lütkepohl, H (2006). New Introduction to Multiple Time Series Analysis. Springer, New York.

See Also

[mvgam\(\)](#), [VAR\(\)](#)

`mvgam_forecast-class` `mvgam_forecast` *object description*

Description

A `mvgam_forecast` object returned by function `hindcast` or `forecast`. Run `methods(class = "mvgam_forecast")` to see an overview of available methods.

Details

A `mvgam_forecast` object contains the following elements:

- `call` the original observation model formula
- `trend_call` If a `trend_formula` was supplied, the original trend model formula is returned. Otherwise `NULL`
- `family` character description of the observation distribution
- `family_pars` list containing draws of family-specific parameters (i.e. shape, scale or overdispersion parameters). Only returned if `type = link`. Otherwise `NULL`
- `trend_model` character description of the latent trend model
- `drift` Logical specifying whether a drift term was used in the trend model

- `use_lv` Logical flag indicating whether latent dynamic factors were used in the model
- `fit_engine` Character describing the fit engine, either as `stan` or `jags`
- `type` The type of predictions included (either `link`, `response` or `trend`)
- `series_names` Names of the time series, taken from `levels(data$series)` in the original model fit
- `train_observations` A list of training observation vectors of length `n_series`
- `train_times` A list of the unique training times of length `n_series`
- `test_observations` If the `forecast` function was used, a list of test observation vectors of length `n_series`. Otherwise `NULL`
- `test_times` If the `forecast` function was used, a list of the unique testing (validation) times of length `n_series`. Otherwise `NULL`
- `hindcasts` A list of posterior hindcast distributions of length `n_series`.
- `forecasts` If the `forecast` function was used, a list of posterior forecast distributions of length `n_series`. Otherwise `NULL`

Author(s)

Nicholas J Clark

See Also

[mvgam](#), [hindcast.mvgam](#), [forecast.mvgam](#)

[mvgam_formulae](#)

*Details of formula specifications in **mvgam** models*

Description

Details of formula specifications in **mvgam** models

Details

mvgam will accept an observation model formula and an optional process model formula (via the argument `trend_formula`). Neither of these formulae can be specified as lists, contrary to the accepted behaviour in some `mgcv` or `brms` models.

Note that it is possible to supply an empty formula where there are no predictors or intercepts in the observation model (i.e. $y \sim 0$ or $y \sim -1$). In this case, an intercept-only observation model will be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit pure State-Space models where the variation in the dynamic trend controls the average expectation, and/or where intercepts are non-identifiable.

The formulae supplied to **mvgam** and **jsdgam** are exactly like those supplied to **glm** except that smooth terms, `s`, `te`, `ti` and `t2`, time-varying effects using `dynamic`, monotonically increasing (using `s(x, bs = 'moi')`) or decreasing splines (using `s(x, bs = 'mod')`); see `smooth.construct.moi.smooth.spec`

for details), as well as Gaussian Process functions using `gp` and offsets using `offset` can be added to the right hand side (and `.` is not supported in `mvgam` formulae).

Further details on specifying different kinds of smooth functions, and how to control their behaviours by modifying their potential complexities and / or how the penalties behave, can be found in the extensive documentation for the `mgcv` package.

Author(s)

Nicholas J Clark

See Also

`mvgam`, `formula.gam`, `gam.models`, `jagam`, `gam`, `s`, `gp`, `formula`

`mvgam_irf-class` *mvgam_irf object description*

Description

A `mvgam_irf` object returned by function `irf`. Run `methods(class = "mvgam_irf")` to see an overview of available methods.

Details

Generalized or Orthogonalized Impulse Response Functions can be computed using the posterior estimates of Vector Autoregressive parameters. This function generates a positive "shock" for a target process at time $t = 0$ and then calculates how each of the remaining processes in the latent VAR are expected to respond over the forecast horizon h . The function computes IRFs for all processes in the object and returns them in an array that can be plotted using the S3 `plot` function. To inspect community-level metrics of stability using latent VAR processes, you can use the related `stability()` function.

A `mvgam_irf` object contains a list of posterior impulse response functions, each stored as its own list

Author(s)

Nicholas J Clark

References

PH Pesaran & Shin Yongcheol (1998). Generalized impulse response analysis in linear multivariate models. *Economics Letters* 58: 17–29.

See Also

`mvgam`, `VAR`

mvgam_marginaleffects *Helper functions for **marginaleffects** calculations in **mvgam** models*

Description

Helper functions for **marginaleffects** calculations in **mvgam** models

Functions needed for working with **marginaleffects**

Functions needed for getting data / objects with **insight**

Usage

```
## S3 method for class 'mvgam'
get_coef(model, trend_effects = FALSE, ...)

## S3 method for class 'mvgam'
set_coef(model, coefs, trend_effects = FALSE, ...)

## S3 method for class 'mvgam'
get_vcov(model, vcov = NULL, ...)

## S3 method for class 'mvgam'
get_predict(
  model,
  newdata,
  type = "response",
  mfx,
  newparams,
  ndraws,
  se.fit,
  process_error = FALSE,
  ...
)

## S3 method for class 'mvgam'
get_data(x, source = "environment", verbose = TRUE, ...)

## S3 method for class 'mvgam_prefit'
get_data(x, source = "environment", verbose = TRUE, ...)

## S3 method for class 'mvgam'
find_predictors(
  x,
  effects = c("fixed", "random", "all"),
  component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "instruments",
  "correlation", "smooth_terms"),
  flatten = FALSE,
```

```

  verbose = TRUE,
  ...
)

## S3 method for class 'mvgam_prefit'
find_predictors(
  x,
  effects = c("fixed", "random", "all"),
  component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "instruments",
    "correlation", "smooth_terms"),
  flatten = FALSE,
  verbose = TRUE,
  ...
)

```

Arguments

model	Model object
trend_effects	logical, extract from the process model component (only applicable if a <code>trend_formula</code> was specified in the model)
...	Additional arguments are passed to the <code>predict()</code> method supplied by the modeling package. These arguments are particularly useful for mixed-effects or bayesian models (see the online vignettes on the <code>marginaleffects</code> website). Available arguments can vary from model to model, depending on the range of supported arguments by each modeling package. See the "Model-Specific Arguments" section of the <code>?slopes</code> documentation for a non-exhaustive list of available arguments.
coefs	vector of coefficients to insert in the <code>model</code> object
vcov	Type of uncertainty estimates to report (e.g., for robust standard errors). Acceptable values: <ul style="list-style-type: none"> • FALSE: Do not compute standard errors. This can speed up computation considerably. • TRUE: Unit-level standard errors using the default <code>vcov(model)</code> variance-covariance matrix. • String which indicates the kind of uncertainty estimates to return. <ul style="list-style-type: none"> – Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5". See <code>?sandwich::vcovHC</code> – Heteroskedasticity and autocorrelation consistent: "HAC" – Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger" – Other: "NeweyWest", "KernHAC", "OPG". See the <code>sandwich</code> package documentation. – "rsample", "boot", "fwb", and "simulation" are passed to the <code>method</code> argument of the <code>inferences()</code> function. To customize the bootstrap or simulation process, call <code>inferences()</code> directly. • One-sided formula which indicates the name of cluster variables (e.g., <code>~unit_id</code>). This formula is passed to the <code>cluster</code> argument of the <code>sandwich::vcovCL</code> function.

	<ul style="list-style-type: none"> • Square covariance matrix • Function which returns a covariance matrix (e.g., <code>stats::vcov(model)</code>)
<code>newdata</code>	<p>Grid of predictor values at which we evaluate the slopes.</p> <ul style="list-style-type: none"> • Warning: Please avoid modifying your dataset between fitting the model and calling a <code>marginaleffects</code> function. This can sometimes lead to unexpected results. • NULL (default): Unit-level slopes for each observed value in the dataset (empirical distribution). The dataset is retrieved using <code>insight::get_data()</code>, which tries to extract data from the environment. This may produce unexpected results if the original data frame has been altered since fitting the model. • <code>datagrid()</code> call to specify a custom grid of regressors. For example: <ul style="list-style-type: none"> – <code>newdata = datagrid(cyl = c(4, 6))</code>: cyl variable equal to 4 and 6 and other regressors fixed at their means or modes. – See the Examples section and the <code>datagrid()</code> documentation. • <code>subset()</code> call with a single argument to select a subset of the dataset used to fit the model, ex: <code>newdata = subset(treatment == 1)</code> • <code>dplyr::filter()</code> call with a single argument to select a subset of the dataset used to fit the model, ex: <code>newdata = filter(treatment == 1)</code> • string: <ul style="list-style-type: none"> – "mean": Slopes evaluated when each predictor is held at its mean or mode. – "median": Slopes evaluated when each predictor is held at its median or mode. – "balanced": Slopes evaluated on a balanced grid with every combination of categories and numeric variables held at their means. – "tukey": Slopes evaluated at Tukey's 5 numbers. – "grid": Slopes evaluated on a grid of representative numbers (Tukey's 5 numbers and unique values of categorical predictors).
<code>type</code>	<p>string indicates the type (scale) of the predictions used to compute contrasts or slopes. This can differ based on the model type, but will typically be a string such as: "response", "link", "probs", or "zero". When an unsupported string is entered, the model-specific list of acceptable values is returned in an error message. When <code>type</code> is NULL, the first entry in the error message is used by default.</p>
<code>mfx</code>	Ignored
<code>newparams</code>	Ignored
<code>ndraws</code>	Ignored
<code>se.fit</code>	Ignored
<code>process_error</code>	<code>logical</code> . If <code>TRUE</code> , uncertainty in the latent process (or trend) model is incorporated in predictions
<code>x</code>	A fitted model.

source	String, indicating from where data should be recovered. If source = "environment" (default), data is recovered from the environment (e.g. if the data is in the workspace). This option is usually the fastest way of getting data and ensures that the original variables used for model fitting are returned. Note that always the <i>current</i> data is recovered from the environment. Hence, if the data was modified <i>after</i> model fitting (e.g., variables were recoded or rows filtered), the returned data may no longer equal the model data. If source = "frame" (or "mf"), the data is taken from the model frame. Any transformed variables are back-transformed, if possible. This option returns the data even if it is not available in the environment, however, in certain edge cases back-transforming to the original data may fail. If source = "environment" fails to recover the data, it tries to extract the data from the model frame; if source = "frame" and data cannot be extracted from the model frame, data will be recovered from the environment. Both ways only returns observations that have no missing data in the variables used for model fitting.
verbose	Toggle messages and warnings.
effects	Should model data for fixed effects ("fixed"), random effects ("random") or both ("all") be returned? Only applies to mixed or gee models.
component	Which type of parameters to return, such as parameters for the conditional model, the zero-inflated part of the model, the dispersion term, the instrumental variables or marginal effects be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variables (so called fixed-effects regressions), or models with marginal effects (from mfx). See details in section <i>Model Components</i> . May be abbreviated. Note that the <i>conditional</i> component also refers to the <i>count</i> or <i>mean</i> component - names may differ, depending on the modeling package. There are three convenient shortcuts (not applicable to <i>all</i> model classes): <ul style="list-style-type: none"> • component = "all" returns all possible parameters. • If component = "location", location parameters such as conditional, zero_inflated, smooth_terms, or instruments are returned (everything that are fixed or random effects - depending on the effects argument - but no auxiliary parameters). • For component = "distributional" (or "auxiliary"), components like sigma, dispersion, beta or precision (and other auxiliary parameters) are returned.
flatten	Logical, if TRUE, the values are returned as character vector, not as list. Duplicated values are removed.

Value

Objects suitable for internal 'marginaleffects' functions to proceed. See [marginaleffects::get_coef\(\)](#), [marginaleffects::set_coef\(\)](#), [marginaleffects::get_vcov\(\)](#), [marginaleffects::get_predict\(\)](#), [insight::get_data\(\)](#) and [insight::find_predictors\(\)](#) for details

Author(s)

Nicholas J Clark

mvgam_residcor-class mvgam_residcor *object description*

Description

A mvgam_residcor object returned by function `residual_cor()`. Run `methods(class = "mvgam_residcor")` to see an overview of available methods.

Details

Hui (2016) provides an excellent description of the quantities that this function calculates, so this passage is heavily paraphrased from his associated **boral** package.

In latent factor models, the residual covariance matrix is calculated based on the matrix of latent factor loading matrix Θ , where the residual covariance matrix $\Sigma = \Theta\Theta'$. A strong residual covariance/correlation matrix between two species can be interpreted as evidence of species interactions (e.g., facilitation or competition), missing covariates, as well as any additional species correlation not accounted for by shared environmental captured in `formula`.

The residual precision matrix (also known as partial correlation matrix, Ovaskainen et al., 2016) is defined as the inverse of the residual correlation matrix. The precision matrix is often used to identify direct or causal relationships between two species e.g., two species can have a zero precision but still be correlated, which can be interpreted as saying that two species are not directly associated, but they are still correlated *through* other species. In other words, they are conditionally independent given the other species. It is important that the precision matrix does not exhibit the exact same properties of the correlation e.g., the diagonal elements are not equal to 1. Nevertheless, relatively larger values of precision may imply stronger direct relationships between two species.

In addition to the residual correlation and precision matrices, the median or mean point estimator of trace of the residual covariance matrix is returned, $\sum_{j=1}^p [\Theta\Theta']_{jj}$. Often used in other areas of multivariate statistics, the trace may be interpreted as the amount of covariation explained by the latent factors. One situation where the trace may be useful is when comparing a pure latent factor model (where no terms are supplied to `formula`) versus a model with latent factors and some additional predictors in `formula` – the proportional difference in trace between these two models may be interpreted as the proportion of covariation between species explained by the predictors in `formula`.

Of course, the trace itself is random due to the MCMC sampling, and so it is not always guaranteed to produce sensible answers.

Value

Objects of this class are structured as a `list` with the following components:

`cor, cor_lower, cor_upper`

A set of $p \times p$ correlation matrices, containing either the posterior median or mean estimate, plus lower and upper limits of the corresponding credible intervals supplied to `probs`

`sig_cor`

A $p \times p$ correlation matrix containing only those correlations whose credible interval does not contain zero. All other correlations are set to zero

prec, prec_lower, prec_upper	A set of $p \times p$ precision matrices, containing either the posterior median or mean estimate, plus lower and upper limits of the corresponding credible intervals supplied to probs
sig_prec	A $p \times p$ precision matrix containing only those precisions whose credible interval does not contain zero. All other precisions are set to zero
cov	A $p \times p$ posterior median or mean covariance matrix
trace	The median/mean point estimator of the trace (sum of the diagonal elements) of the residual covariance matrix cov

Author(s)

Nicholas J Clark

References

Francis KC Hui (2016). BORAL - Bayesian ordination and regression analysis of multivariate abundance data in R. *Methods in Ecology and Evolution*. 7, 744-750.

Otso Ovaskainen et al. (2016). Using latent variable models to identify large networks of species-to-species associations at different spatial scales. *Methods in Ecology and Evolution*, 7, 549-555.

See Also

[jsdgam\(\)](#), [residual_cor\(\)](#)

mvgam_trends

Supported latent trend models in mvgam

Description

Supported latent trend models in **mvgam**

Details

mvgam currently supports the following dynamic trend models:

- None (no latent trend component; i.e. the GAM component is all that contributes to the linear predictor, and the observation process is the only source of error; similar to what is estimated by **gam**)
- ZMVN() (zero-mean correlated errors, useful for modelling time series where no autoregressive terms are needed or for modelling data that are not sampled as time series)
- RW()
- AR($p = 1, 2, \text{ or } 3$)
- CAR($p = 1$) (continuous time autoregressive trends; only available in Stan)
- VAR() (only available in Stan)

- PW() (piecewise linear or logistic trends; only available in Stan)
- GP() (Gaussian Process with squared exponential kernel; only available in Stan)

For most dynamic trend types available in `mvgam` (see argument `trend_model`), time should be measured in discrete, regularly spaced intervals (i.e. `c(1, 2, 3, ...)`). However, you can use irregularly spaced intervals if using `trend_model = CAR(1)`, though note that any temporal intervals that are exactly 0 will be adjusted to a very small number (`1e-12`) to prevent sampling errors.

For all autoregressive trend types apart from `CAR()`, moving average and/or correlated process error terms can also be estimated (for example, `RW(cor = TRUE)` will set up a multivariate Random Walk if data contains >1 series). Hierarchical process error correlations can also be handled if the data contain relevant observation units that are nested into relevant grouping and subgrouping levels (i.e. using `AR(gr = region, subgr = species)`).

Note that only `RW`, `AR1`, `AR2` and `AR3` are available if using `JAGS`. All trend models are supported if using `Stan`.

Dynamic factor models can be used in which the latent factors evolve as either `RW`, `AR1-3`, `VAR` or `GP`. For `VAR` models (i.e. `VAR` and `VARcor` models), users can either fix the trend error covariances to be 0 (using `VAR`) or estimate them and potentially allow for contemporaneously correlated errors using `VARcor`.

For all `VAR` models, stationarity of the latent process is enforced through the prior using the parameterisation given by Heaps (2022). Stationarity is not enforced when using `AR1`, `AR2` or `AR3` models, though this can be changed by the user by specifying lower and upper bounds on autoregressive parameters using functionality in `get_mvgam_priors` and the `priors` argument in `mvgam`.

Piecewise trends follow the formulation in the popular `prophet` package produced by Facebook, where users can allow for changepoints to control the potential flexibility of the trend. See Taylor and Letham (2018) for details.

References

Sarah E. Heaps (2022) Enforcing stationarity through the prior in Vector Autoregressions. *Journal of Computational and Graphical Statistics*. 32:1, 1–10.

Sean J. Taylor and Benjamin Letham (2018) Forecasting at scale. *The American Statistician* 72.1, 37–45.

See Also

[RW](#), [AR](#), [CAR](#), [VAR](#), [PW](#), [GP](#), [ZMVN](#)

Description

mvgam is a package for fitting dynamic generalized additive models (GAMs) to univariate or multivariate data. It combines the flexibility of smooth functions with latent temporal processes to model autocorrelation, seasonality, and uncertainty. The package supports both univariate and multivariate time series, making it especially useful for ecological and environmental forecasting. Bayesian inference via Stan allows for full uncertainty quantification and forecasting in complex, non-Gaussian settings.

This help page provides external links to example applications and discussions relevant to the use of **mvgam** models. These examples span non-Gaussian time series modelling, multivariate abundance forecasting, and the use of complex predictors such as time-varying seasonality, monotonic nonlinear effects and Gaussian processes.

Details

Non-Gaussian time series modelling and forecasting

mvgam is designed for real-world time series data that include discrete, zero-inflated, or overdispersed observations. It supports latent dynamic components and smooth terms to model autocorrelation, trends, and uncertainty.

- [Uncertain serial autocorrelation in GAM count model residuals](#)
- [Fitting an autoregressive model and Poisson process interdependently](#)
- [Cyclical residual patterns and variable selection in GAMs](#)
- [Causality between two binary time series](#)
- [Logistic regression on time series data](#)
- [Autocorrelation for unevenly spaced time series](#)
- [Visualising autocorrelation in irregularly spaced count data](#)
- [Blog post: State-Space Vector Autoregressions in mvgam](#)
- [Vignette: State-Space models in mvgam](#)
- [Video tutorial: Ecological forecasting with Dynamic Generalized Additive Models](#)

Multivariate time series modelling and forecasting

mvgam supports multivariate models with shared or correlated latent trends, making it suitable for a broad range of applications that gather data on multiple time series simultaneously.

- [Ecological modelling: multivariate abundance time-series data](#)
- [Relationships between species in multivariate models](#)
- [Confirmatory factor analysis using brms](#)
- [Chains stuck in a local optimum: correlated Poisson distributions](#)
- [Blog post: Hierarchical distributed lag models in mgcv and mvgam](#)
- [Vignette: Multivariate series with shared latent states](#)
- [Video tutorial: Time series in R and Stan using the mvgam package: hierarchical GAMs](#)

Seasonality and other complex predictors

mvgam allows for flexible modelling of seasonal patterns and nonlinear effects using cyclic smooths, Gaussian processes, monotonic smooths and hierarchical structures.

- Gaussian process smoothers (`bs = "gp"`) in GAMs
- Fitting a GAM with double seasonality to a daily time series
- Simulating time series with different seasonal effects
- Adding time as a monotone predictor
- Blog post: Incorporating time-varying seasonality in forecast models
- Vignette: Time-varying effects in `mvgam`
- Video tutorial: Time series in R and Stan using the `mvgam` package: an introduction

Author(s)

Nicholas J Clark

ordinate.jsdgam

Latent variable ordination plots from jsdgam objects

Description

Plot an ordination of latent variables and their factor loadings from `jsdgam` models

Usage

```
ordinate(object, ...)

## S3 method for class 'jsdgam'
ordinate(
  object,
  which_lvs = c(1, 2),
  biplot = TRUE,
  alpha = 0.5,
  label_sites = TRUE,
  ...
)
```

Arguments

<code>object</code>	list object of class <code>jsdgam</code> resulting from a call to <code>jsdgam()</code>
<code>...</code>	ignored
<code>which_lvs</code>	A vector of indices indicating the two latent variables to be plotted (if number of the latent variables specified in the model was more than 2). Defaults to <code>c(1, 2)</code>

biplot	Logical. If TRUE, both the site and the species scores will be plotted, with names for the taxa interpreted based on the species argument in the original call to jsdgam() . If FALSE, only the site scores will be plotted
alpha	A proportional numeric scalar between 0 and 1 that controls the relative scaling of the latent variables and their loading coefficients
label_sites	Logical flag. If TRUE, site scores will be plotted as labels using names based on the unit argument in the original call to jsdgam() . If FALSE, site scores will be shown as points only

Details

This function constructs a two-dimensional scatterplot in ordination space. The chosen latent variables are first re-rotated using singular value decomposition, so that the first plotted latent variable does not have to be the first latent variable that was estimated in the original model. Posterior median estimates of the variables and the species' loadings on these variables are then used to construct the resulting plot. Some attempt at de-cluttering the resulting plot is made by using `geom_label_repel()` and `geom_text_repel` from the `ggrepel` package, but if there are many sites and/or species then some labels may be removed automatically. Note that you can typically get better, more readable plot layouts if you also have the `ggarrown` and `ggpp` packages installed

Value

An `ggplot` object

Author(s)

Nicholas J Clark

See Also

[jsdgam\(\)](#), [residual_cor\(\)](#)

Examples

```
## Not run:
# Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
  formula = captures ~
    # Fixed effects of NDVI and mintemp, row effect as a GP of time
    ndvi_ma12:series + mintemp:series + gp(time, k = 15),
  factor_formula = ~ -1,
  data = portal_data,
  unit = time,
  species = series,
  family = poisson(),
  n_lv = 2,
  silent = 2,
  chains = 2
)
```

```

# Plot a residual ordination biplot
ordinate(
  mod,
  alpha = 0.7
)

# Compare to a residual correlation plot
plot(
  residual_cor(mod)
)

## End(Not run)

```

pairs.mvgam*Create a matrix of output plots from a mvgam object*

Description

A [pairs](#) method that is customized for MCMC output.

Usage

```
## S3 method for class 'mvgam'
pairs(x, variable = NULL, regex = FALSE, use_alias = TRUE, ...)
```

Arguments

<code>x</code>	An object of class <code>mvgam</code> or <code>jsdgam</code>
<code>variable</code>	Names of the variables (parameters) to plot, as given by a character vector or a regular expression (if <code>regex</code> = <code>TRUE</code>). By default, a hopefully not too large selection of variables is plotted.
<code>regex</code>	Logical; Indicates whether <code>variable</code> should be treated as regular expressions. Defaults to <code>FALSE</code> .
<code>use_alias</code>	Logical. If more informative names for parameters are available (i.e. for beta coefficients <code>b</code> or for smoothing parameters <code>rho</code>), replace the uninformative names with the more informative alias. Defaults to <code>TRUE</code> .
<code>...</code>	Further arguments to be passed to mcmc_pairs .

Details

For a detailed description see [mcmc_pairs](#).

Value

Plottable objects whose classes depend on the arguments supplied. See [mcmc_pairs](#) for details.

Examples

```
## Not run:
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),
               trend_model = AR(),
               noncentred = TRUE,
               data = simdat$data_train,
               chains = 2)
pairs(mod)
pairs(mod, variable = c('ar1', 'sigma'), regex = TRUE)

## End(Not run)
```

plot.mvgam

Default plots for mvgam models

Description

This function takes a fitted `mvgam` object and produces plots of smooth functions, forecasts, trends and uncertainty components

Usage

```
## S3 method for class 'mvgam'
plot(
  x,
  type = "residuals",
  series = 1,
  residuals = FALSE,
  newdata,
  data_test,
  trend_effects = FALSE,
  ...
)
```

Arguments

<code>x</code>	list object returned from <code>mvgam</code> . See mvgam()
<code>type</code>	character specifying which type of plot to return. Options are: "series", "residuals", "smooths", "re" (random effect smooths), "pterm" (parametric effects), "forecast", "trend", "uncertainty", "factors"
<code>series</code>	integer specifying which series in the set is to be plotted. This is ignored if <code>type == 're'</code>

residuals	logical. If TRUE and type = 'smooths', posterior quantiles of partial residuals are added to plots of 1-D smooths as a series of ribbon rectangles. Partial residuals for a smooth term are the median Dunn-Smyth residuals that would be obtained by dropping the term concerned from the model, while leaving all other estimates fixed (i.e. the estimates for the term plus the original median Dunn-Smyth residuals). Note that because <code>mvgam</code> works with Dunn-Smyth residuals and not working residuals, which are used by <code>mgcv</code> , the magnitudes of partial residuals will be different to what you would expect from <code>plot.gam</code> . Interpretation is similar though, as these partial residuals should be evenly scattered around the smooth function if the function is well estimated
newdata	Optional dataframe or list of test data containing at least 'series' and 'time' in addition to any other variables included in the linear predictor of the original formula. This argument is optional when plotting out of sample forecast period observations (when type = forecast) and required when plotting uncertainty components (type = uncertainty).
data_test	Deprecated. Still works in place of newdata but users are recommended to use newdata instead for more seamless integration into R workflows
trend_effects	logical. If TRUE and a <code>trend_formula</code> was used in model fitting, terms from the trend (i.e. process) model will be plotted
...	Additional arguments for each individual plotting function.

Details

These plots are useful for getting an overview of the fitted model and its estimated random effects or smooth functions, but the individual plotting functions and the functions from the `marginalEffects` and `gratia` packages offer far more customisation.

Value

A base R plot or set of plots

Author(s)

Nicholas J Clark

See Also

`plot_mvgam_resids`, `plot_mvgam_smooth`, `plot_mvgam_fc`, `plot_mvgam_trend`, `plot_mvgam_uncertainty`, `plot_mvgam_factors`, `plot_mvgam_randomEffects`, `conditional_effects.mvgam`, `plot_predictions`, `plot_slopes`, `gratia_mvgam_enhancements`

Examples

```
## Not run:
# Simulate some time series
dat <- sim_mvgam(
  T = 80,
  n_series = 3
)
```

```
# Fit a basic model
mod <- mvgam(
  y ~ s(season, bs = 'cc') + s(series, bs = 're'),
  data = dat$data_train,
  trend_model = RW(),
  chains = 2,
  silent = 2
)

# Plot predictions and residuals for each series
plot(mod, type = 'forecast', series = 1)
plot(mod, type = 'forecast', series = 2)
plot(mod, type = 'forecast', series = 3)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)
plot(mod, type = 'residuals', series = 3)

# Plot model effects
plot(mod, type = 'smooths')
plot(mod, type = 're')

# More flexible plots with 'marginaleffects' utilities
library(marginaleffects)

plot_predictions(
  mod,
  condition = 'season',
  type = 'link'
)

plot_predictions(
  mod,
  condition = c('season', 'series', 'series'),
  type = 'link'
)

plot_predictions(
  mod,
  condition = 'series',
  type = 'link'
)

# When using a State-Space model with predictors on the process
# model, set trend_effects = TRUE to visualise process effects
mod <- mvgam(
  y ~ -1,
  trend_formula = ~ s(season, bs = 'cc'),
  data = dat$data_train,
  trend_model = RW(),
  chains = 2,
  silent = 2
)
```

```

plot(mod, type = 'smooths', trend_effects = TRUE)

# But 'marginaleffects' functions work without any modification
plot_predictions(
  mod,
  condition = 'season',
  type = 'link'
)
## End(Not run)

```

plot.mvgam_fevd

Plot forecast error variance decompositions from an mvgam_fevd object

Description

This function takes an `mvgam_fevd` object and produces a plot of the posterior median contributions to forecast variance for each series in the fitted Vector Autoregression

Usage

```
## S3 method for class 'mvgam_fevd'
plot(x, ...)
```

Arguments

<code>x</code>	list object of class <code>mvgam_fevd</code> . See fevd()
<code>...</code>	ignored

Value

A `ggplot` object, which can be further customized using the `ggplot2` package

Author(s)

Nicholas J Clark

plot.mvgam_irf *Plot impulse responses from an mvgam_irf object*

Description

This function takes an `mvgam_irf` object and produces plots of Impulse Response Functions

Usage

```
## S3 method for class 'mvgam_irf'  
plot(x, series = 1, ...)
```

Arguments

<code>x</code>	list object of class <code>mvgam_irf</code> . See irf()
<code>series</code>	integer specifying which process series should be given the shock
<code>...</code>	ignored

Value

A `ggplot` object showing the expected response of each latent time series to a shock of the focal series

Author(s)

Nicholas J Clark

plot.mvgam_lfo *Plot Pareto-k and ELPD values from a mvgam_lfo object*

Description

This function takes an object of class `mvgam_lfo` and creates several informative diagnostic plots

Usage

```
## S3 method for class 'mvgam_lfo'  
plot(x, ...)
```

Arguments

<code>x</code>	An object of class <code>mvgam_lfo</code>
<code>...</code>	Ignored

Value

A ggplot object presenting Pareto-k and ELPD values over the evaluation timepoints. For the Pareto-k plot, a dashed red line indicates the specified threshold chosen for triggering model refits. For the ELPD plot, a dashed red line indicates the bottom 10% quantile of ELPD values. Points below this threshold may represent outliers that were more difficult to forecast

plot.mvgam_residcor *Plot residual correlations based on latent factors*

Description

Plot residual correlation estimates from Joint Species Distribution (`jsdgam`) or dynamic factor (`mvgam`) models

Usage

```
## S3 method for class 'mvgam_residcor'
plot(x, cluster = FALSE, ...)
```

Arguments

<code>x</code>	list object of class <code>mvgam_residcor</code> resulting from a call to <code>residual_cor(..., summary = TRUE)</code>
<code>cluster</code>	Logical. Should the variables be re-arranged within the plot to group the correlation matrix into clusters of positive and negative correlations? Defaults to <code>FALSE</code>
<code>...</code>	ignored

Details

This function plots the significant residual correlations from a `mvgam_residcor` object, whereby the posterior mean (if `robust = FALSE`) or posterior median (if `robust = TRUE`) correlations are shown only those correlations whose credible interval does not contain zero. All other correlations are set to zero in the returned plot

Value

A ggplot object

Author(s)

Nicholas J Clark

See Also

`jsdgam()`, `lv_correlations()`, `residual_cor()`

plot_mvgam_factors	<i>Latent factor summaries for a fitted mvgam object</i>
--------------------	---

Description

This function takes a fitted **mvgam** object and returns plots and summary statistics for the latent dynamic factors

Usage

```
plot_mvgam_factors(object, plot = TRUE)
```

Arguments

object	list object returned from mvgam . See mvgam()
plot	logical specifying whether factors should be plotted

Details

If the model in `object` was estimated using dynamic factors, it is possible that not all factors contributed to the estimated trends. This is due to the regularisation penalty that acts independently on each factor's Gaussian precision, which will squeeze un-needed factors to a white noise process (effectively dropping that factor from the model). In this function, each factor is tested against a null hypothesis of white noise by calculating the sum of the factor's 2nd derivatives. A factor that has a larger contribution will have a larger sum due to the weaker penalty on the factor's precision. If `plot == TRUE`, the factors are also plotted.

Value

A `data.frame` of factor contributions

Author(s)

Nicholas J Clark

Examples

```
## Not run:
simdat <- sim_mvgam()

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  use_lv = TRUE,
  n_lv = 2,
  data = simdat$data_train,
  chains = 2,
  silent = 2
```

```
)
plot_mvgam_factors(mod)
## End(Not run)
```

plot_mvgam_forecasts *Plot posterior forecast predictions from **mvgam** models*

Description

Plot posterior forecast predictions from **mvgam** models

Usage

```
plot_mvgam_fc(
  object,
  series = 1,
  newdata,
  data_test,
  realisations = FALSE,
  n_realisations = 15,
  hide_xlabels = FALSE,
  xlab,
  ylab,
  ylim,
  n_cores = 1,
  return_forecasts = FALSE,
  return_score = FALSE,
  ...
)
## S3 method for class 'mvgam_forecast'
plot(
  x,
  series = 1,
  realisations = FALSE,
  n_realisations = 15,
  xlab,
  ylab,
  ylim,
  ...
)
```

Arguments

object	list object of class <code>mvgam</code> . See mvgam()
series	integer specifying which series in the set is to be plotted
newdata	Optional dataframe or list of test data containing at least 'series' and 'time' in addition to any other variables included in the linear predictor of the original formula. If included, the covariate information in newdata will be used to generate forecasts from the fitted model equations. If this same newdata was originally included in the call to <code>mvgam</code> , then forecasts have already been produced by the generative model and these will simply be extracted and plotted. However if no newdata was supplied to the original model call, an assumption is made that the newdata supplied here comes sequentially after the data supplied as data in the original model (i.e. we assume there is no time gap between the last observation of series 1 in data and the first observation for series 1 in newdata). If newdata contains observations in column <code>y</code> , these observations will be used to compute a Discrete Rank Probability Score for the forecast distribution
data_test	Deprecated. Still works in place of newdata but users are recommended to use newdata instead for more seamless integration into R workflows
realisations	logical. If TRUE, forecast realisations are shown as a spaghetti plot, making it easier to visualise the diversity of possible forecasts. If FALSE, the default, empirical quantiles of the forecast distribution are shown
n_realisations	integer specifying the number of posterior realisations to plot, if <code>realisations</code> = TRUE. Ignored otherwise
hide_xlabels	logical. If TRUE, no xlabel are printed to allow the user to add custom labels using <code>axis</code> from base R
xlab	Label for x axis
ylab	Label for y axis
ylim	Optional vector of y-axis limits (min, max)
n_cores	integer specifying number of cores for generating forecasts in parallel
return_forecasts	logical. If TRUE, the function will plot the forecast as well as returning the forecast object (as a <code>matrix</code> of dimension <code>n_samples</code> x <code>horizon</code>)
return_score	logical. If TRUE and out of sample test data is provided as newdata, a probabilistic score will be calculated and returned. The score used will depend on the observation family from the fitted model. Discrete families (<code>poisson</code> , <code>negative binomial</code> , <code>tweedie</code>) use the Discrete Rank Probability Score. Other families use the Continuous Rank Probability Score. The value returned is the sum of all scores within the out of sample forecast horizon
...	Further <code>par</code> graphical parameters
x	Object of class <code>mvgam_forecast</code>

Details

`plot_mvgam_fc` generates posterior predictions from an object of class `mvgam`, calculates posterior empirical quantiles and plots them against the observed data. If `realisations = FALSE`, the returned plot shows 90, 60, 40 and 20 percent posterior quantiles (as ribbons of increasingly darker shades of red) as well as the posterior median (as a dark red line). If `realisations = TRUE`, a set of `n_realisations` posterior draws are shown. This function produces an older style base R plot, as opposed to `plot.mvgam_forecast`

`plot.mvgam_forecast` takes an object of class `mvgam_forecast`, in which forecasts have already been computed, and plots the resulting forecast distribution as a `ggplot` object. This function is therefore more versatile and is recommended over the older and clunkier `plot_mvgam_fc` version

If `realisations = FALSE`, these posterior quantiles are plotted along with the true observed data that was used to train the model. Otherwise, a spaghetti plot is returned to show possible forecast paths.

Value

A base R graphics plot (for `plot_mvgam_fc`) or a `ggplot` object (for `plot.mvgam_forecast`) and an optional `list` containing the forecast distribution and the out of sample probabilistic forecast score

Author(s)

Nicholas J Clark

Examples

```
## Not run:
simdat <- sim_mvgam(
  n_series = 3,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Hindcasts on response scale
hc <- hindcast(mod)
str(hc)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

# Forecasts on response scale
fc <- forecast(
```

```

  mod,
  newdata = simdat$data_test
)
str(fc)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

# Forecasts as expectations
fc <- forecast(
  mod,
  newdata = simdat$data_test,
  type = 'expected'
)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

# Dynamic trend extrapolations
fc <- forecast(
  mod,
  newdata = simdat$data_test,
  type = 'trend'
)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

## End(Not run)

```

plot_mvgam_pterms *Plot parametric term partial effects for **mvgam** models*

Description

This function plots posterior empirical quantiles for partial effects of parametric terms

Usage

```
plot_mvgam_pterms(object, trend_effects = FALSE)
```

Arguments

object	list object of class mvgam . See mvgam()
trend_effects	logical. If TRUE and a trend_formula was used in model fitting, terms from the trend (i.e. process) model will be plotted

Details

Posterior empirical quantiles of each parametric term's partial effect estimates (on the link scale) are calculated and visualised as ribbon plots. These effects can be interpreted as the partial effect that a parametric term contributes when all other terms in the model have been set to 0

Value

A base R graphics plot

Author(s)

Nicholas J Clark

plot_mvgam_randomeffects

*Plot random effect terms from **mvgam** models*

Description

This function plots posterior empirical quantiles for random effect smooths (bs = re)

Usage

```
plot_mvgam_randomeffects(object, trend_effects = FALSE)
```

Arguments

object list object of class **mvgam**. See [mvgam\(\)](#)
trend_effects logical. If TRUE and a **trend_formula** was used in model fitting, terms from the trend (i.e. process) model will be plotted

Details

Posterior empirical quantiles of random effect coefficient estimates (on the link scale) are calculated and visualised as ribbon plots. Labels for coefficients are taken from the levels of the original factor variable that was used to specify the smooth in the model's formula

Value

A base R graphics plot

Author(s)

Nicholas J Clark

<code>plot_mvgam_resids</code>	<i>Residual diagnostics for a fitted mvgam object</i>
--------------------------------	--

Description

This function takes a fitted `mvgam` object and returns various residual diagnostic plots

Usage

```
plot_mvgam_resids(object, series = 1, n_draws = 100L, n_points = 1000L)
```

Arguments

<code>object</code>	list object returned from <code>mvgam</code> . See mvgam()
<code>series</code>	integer specifying which series in the set is to be plotted
<code>n_draws</code>	integer specifying the number of posterior residual draws to use for calculating uncertainty in the "ACF" and "pACF" frames. Default is 100
<code>n_points</code>	integer specifying the maximum number of points to show in the "Resids vs Fitted" and "Normal Q-Q Plot" frames. Default is 1000

Details

A total of four ggplot plots are generated to examine posterior Dunn-Smyth residuals for the specified series. Plots include a residuals vs fitted values plot, a Q-Q plot, and two plots to check for any remaining temporal autocorrelation in the residuals. Note, all plots only report statistics from a sample of up to 100 posterior draws (to save computational time), so uncertainty in these relationships may not be adequately represented.

Value

A faceted ggplot object

Author(s)

Nicholas J Clark

Nicholas J Clark and Matthijs Hollanders

Examples

```
## Not run:
simdat <- sim_mvgam(
  n_series = 3,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
```

```

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2,
silent = 2
)

# Plot Dunn Smyth residuals for some series
plot_mvgam_resids(mod)
plot_mvgam_resids(mod, series = 2)

## End(Not run)

```

plot_mvgam_series *Plot observed time series used for **mvgam** modelling*

Description

This function takes either a fitted **mvgam** object or a **data.frame** object and produces plots of observed time series, ACF, CDF and histograms for exploratory data analysis

Usage

```

plot_mvgam_series(
  object,
  data,
  newdata,
  y = "y",
  lines = TRUE,
  series = 1,
  n_bins = NULL,
  log_scale = FALSE
)

```

Arguments

object	Optional list object returned from mvgam . Either object or data must be supplied
data	Optional data.frame or list of training data containing at least 'series' and 'time'. Use this argument if training data have been gathered in the correct format for mvgam modelling but no model has yet been fitted.
newdata	Optional data.frame or list of test data containing at least 'series' and 'time' for the forecast horizon, in addition to any other variables included in the linear predictor of formula . If included, the observed values in the test data are compared to the model's forecast distribution for exploring biases in model predictions

y	Character. What is the name of the outcome variable in the supplied data? Defaults to 'y'
lines	Logical. If TRUE, line plots are used for visualizing time series. If FALSE, points are used.
series	Either an integer specifying which series in the set is to be plotted or the string 'all', which plots all series available in the supplied data
n_bins	integer specifying the number of bins to use for binning observed values when plotting a histogram. Default is to use the number of bins returned by a call to <code>hist</code> in base R
log_scale	logical. If <code>series == 'all'</code> , this flag is used to control whether the time series plot is shown on the log scale (using <code>log(Y + 1)</code>). This can be useful when visualizing many series that may have different observed ranges. Default is FALSE

Value

A set of ggplot objects. If `series` is an integer, the plots will show observed time series, autocorrelation and cumulative distribution functions, and a histogram for the series. If `series == 'all'`, a set of observed time series plots is returned in which all series are shown on each plot but only a single focal series is highlighted, with all remaining series shown as faint gray lines.

Author(s)

Nicholas J Clark and Matthijs Hollanders

Examples

```
# Simulate and plot series with observations bounded at 0 and 1 (Beta responses)
sim_data <- sim_mvgam(
  family = betar(),
  trend_model = RW(),
  prop_trend = 0.6
)

plot_mvgam_series(
  data = sim_data$data_train,
  series = 'all'
)

plot_mvgam_series(
  data = sim_data$data_train,
  newdata = sim_data$data_test,
  series = 1
)

# Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(
  family = nb(),
  trend_model = RW(),
  prop_trend = 0.6,
```

```

phi = 10
)

plot_mvgam_series(
  data = sim_data$data_train,
  series = 'all'
)

```

plot_mvgam_smooth *Plot smooth terms from **mvgam** models*

Description

This function plots posterior empirical quantiles for a series-specific smooth term

Usage

```

plot_mvgam_smooth(
  object,
  trend_effects = FALSE,
  series = 1,
  smooth,
  residuals = FALSE,
  n_resid_bins = 25,
  realisations = FALSE,
  n_realisations = 15,
  derivatives = FALSE,
  newdata
)

```

Arguments

object	list object of class mvgam . See mvgam()
trend_effects	logical. If TRUE and a trend_formula was used in model fitting, terms from the trend (i.e. process) model will be plotted
series	integer specifying which series in the set is to be plotted
smooth	Either a character or integer specifying which smooth term to be plotted
residuals	logical. If TRUE, posterior quantiles of partial residuals are added to plots of 1-D smooths as a series of ribbon rectangles. Partial residuals for a smooth term are the median Dunn-Smyth residuals that would be obtained by dropping the term concerned from the model, while leaving all other estimates fixed (i.e. the estimates for the term plus the original median Dunn-Smyth residuals). Note that because mvgam works with Dunn-Smyth residuals and not working residuals, which are used by mgcv , the magnitudes of partial residuals will be different to what you would expect from plot.gam . Interpretation is similar though, as these partial residuals should be evenly scattered around the smooth function if the function is well estimated

<code>n_resid_bins</code>	integer specifying the number of bins to group the covariate into when plotting partial residuals. Setting this argument too high can make for messy plots that are difficult to interpret, while setting it too low will likely mask some potentially useful patterns in the partial residuals. Default is 25
<code>realisations</code>	logical. If TRUE, posterior realisations are shown as a spaghetti plot, making it easier to visualise the diversity of possible functions. If FALSE, the default, empirical quantiles of the posterior distribution are shown
<code>n_realisations</code>	integer specifying the number of posterior realisations to plot, if <code>realisations</code> = TRUE. Ignored otherwise
<code>derivatives</code>	logical. If TRUE, an additional plot will be returned to show the estimated 1st derivative for the specified smooth (Note: this only works for univariate smooths)
<code>newdata</code>	Optional data frame for predicting the smooth, containing at least 'series' in addition to any other variables included in the linear predictor of the original model's <code>formula</code> . Note that this currently is only supported for plotting univariate smooths

Details

Smooth functions are shown as empirical quantiles (or spaghetti plots) of posterior partial expectations across a sequence of values between the variable's `min` and `max`, while zeroing out effects of all other variables. At present, only univariate and bivariate smooth plots are allowed, though note that bivariate smooths rely on default behaviour from `plot.gam`. `plot_mvgam_smooth` generates posterior predictions from an object of class `mvgam`, calculates posterior empirical quantiles and plots them. If `realisations` = FALSE, the returned plot shows 90, 60, 40 and 20 percent posterior quantiles (as ribbons of increasingly darker shades of red) as well as the posterior median (as a dark red line). If `realisations` = TRUE, a set of `n_realisations` posterior draws are shown. For more nuanced visualisation, supply `newdata` just as you would when predicting from a `gam` model or use the more flexible `conditional_effects.mvgam`. Alternatively, if you prefer to use partial effect plots in the style of `gratia`, and if you have the `gratia` package installed, you can use `draw.mvgam`. See `gratia_mvgam_enhancements` for details.

Value

A base R graphics plot

Author(s)

Nicholas J Clark

See Also

`plot.gam`, `conditional_effects.mvgam`, `gratia_mvgam_enhancements`

plot_mvgam_trend	<i>Plot latent trend predictions from mvgam models</i>
------------------	---

Description

Plot latent trend predictions from **mvgam** models

Usage

```
plot_mvgam_trend(
  object,
  series = 1,
  newdata,
  data_test,
  realisations = FALSE,
  n_realisations = 15,
  n_cores = 1,
  derivatives = FALSE,
  xlab,
  ylab
)
```

Arguments

object	list object returned from mvgam . See mvgam()
series	integer specifying which series in the set is to be plotted
newdata	Optional dataframe or list of test data containing at least 'series' and 'time' in addition to any other variables included in the linear predictor of the original formula.
data_test	Deprecated. Still works in place of newdata but users are recommended to use newdata instead for more seamless integration into R workflows
realisations	logical. If TRUE, posterior trend realisations are shown as a spaghetti plot, making it easier to visualise the diversity of possible trend paths. If FALSE, the default, empirical quantiles of the posterior distribution are shown
n_realisations	integer specifying the number of posterior realisations to plot, if realisations = TRUE. Ignored otherwise
n_cores	Deprecated. Parallel processing is no longer supported
derivatives	logical. If TRUE, an additional plot will be returned to show the estimated 1st derivative for the estimated trend
xlab	Label for x axis
ylab	Label for y axis

Value

A **ggplot** object

Author(s)

Nicholas J Clark

Examples

```
## Not run:
simdat <- sim_mvgam(
  n_series = 3,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2
)

# Plot estimated trends for some series
plot_mvgam_trend(mod)
plot_mvgam_trend(mod, series = 2)

# Extrapolate trends forward in time and plot on response scale
plot_mvgam_trend(
  mod,
  newdata = simdat$data_test
)

plot_mvgam_trend(
  mod,
  newdata = simdat$data_test,
  series = 2
)

# But it is recommended to compute extrapolations for all series
# first and then plot
trend_fc <- forecast(
  mod,
  newdata = simdat$data_test
)

plot(trend_fc, series = 1)
plot(trend_fc, series = 2)

## End(Not run)
```

plot_mvgam_uncertainty*Plot forecast uncertainty contributions from **mvgam** models*

DescriptionPlot forecast uncertainty contributions from **mvgam** models**Usage**

```
plot_mvgam_uncertainty(
  object,
  series = 1,
  newdata,
  data_test,
  legend_position = "topleft",
  hide_xlabels = FALSE
)
```

Arguments

object	list object returned from mvgam . See mvgam()
series	integer specifying which series in the set is to be plotted
newdata	A dataframe or list containing at least 'series' and 'time' for the forecast horizon, in addition to any other variables included in the linear predictor of formula
data_test	Deprecated. Still works in place of newdata but users are recommended to use newdata instead for more seamless integration into R workflows
legend_position	The location may also be specified by setting x to a single keyword from the list: "none", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location (if it is not "none").
hide_xlabels	logical. If TRUE, no xlabel are printed to allow the user to add custom labels using axis from base R

Details

The basic idea of this function is to compute forecasts by ignoring one of the two primary components in a correlated residual model (i.e. by either ignoring the linear predictor effects or by ignoring the residual dynamics). Some caution is required however, as this function was designed early in the **mvgam** development cycle and there are now many types of models that it cannot handle very well. For example, models with shared latent states, or any type of State-Space models that include terms in the **trend_formula**, will either fail or give nonsensical results. Improvements are in the works to provide a more general way to decompose forecast uncertainties, so please check back at a later date.

Value

A base R graphics plot

portal_data

Portal Project rodent capture survey data

Description

A dataset containing time series of total captures (across all control plots) for select rodent species from the Portal Project

Usage

`portal_data`

Format

A `data.frame` containing the following fields:

time time of sampling, in lunar monthly cycles
series factor indicator of the time series, i.e. the species
captures total captures across all control plots at each time point
ndvi_ma12 12-month moving average of the mean Normalised Difference Vegetation Index
mintemp monthly mean of minimum temperature

Source

<https://github.com/weecology/PortalData/blob/main/SiteandMethods/Methods.md>

`posterior_epred.mvgam` *Draws from the expected value of the posterior predictive distribution for `mvgam` objects*

Description

Compute posterior draws of the expected value of the posterior predictive distribution (i.e. the conditional expectation). Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these predictions have smaller variance than the posterior predictions performed by the `posterior_predict.mvgam` method. This is because only the uncertainty in the expected value of the posterior predictive distribution is incorporated in the draws computed by `posterior_epred` while the residual error is ignored there. However, the estimated means of both methods averaged across draws should be very similar.

Usage

```
## S3 method for class 'mvgam'
posterior_epred(
  object,
  newdata,
  data_test,
  ndraws = NULL,
  process_error = TRUE,
  ...
)
```

Arguments

object	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
newdata	Optional data frame or list of test data containing the same variables that were included in the original data used to fit the model. If not supplied, predictions are generated for the original observations used for the model fit.
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
ndraws	Positive integer indicating how many posterior draws should be used. If <code>NULL</code> (the default) all draws are used.
process_error	logical. If <code>TRUE</code> and <code>newdata</code> is supplied, expected uncertainty in the process model is accounted for by using draws from any latent trend SD parameters. If <code>FALSE</code> , uncertainty in the latent trend component is ignored when calculating predictions. If no <code>newdata</code> is supplied, draws from the fitted model's posterior predictive distribution will be used (which will always include uncertainty in any latent trend components)
...	Ignored

Details

Note that for all types of predictions for models that did not include a `trend_formula`, uncertainty in the dynamic trend component can be ignored by setting `process_error = FALSE`. However, if a `trend_formula` was supplied in the model, predictions for this component cannot be ignored. If `process_error = TRUE`, trend predictions will ignore autocorrelation coefficients or GP length scale coefficients, ultimately assuming the process is stationary. This method is similar to the types of posterior predictions returned from `brms` models when using autocorrelated error predictions for `newdata`. This function is therefore more suited to posterior simulation from the GAM components of a `mvgam` model, while the forecasting functions `plot_mvgam_fc` and `forecast.mvgam` are better suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent trends.

Value

A matrix of dimension `n_samples` x `n_obs`, where `n_samples` is the number of posterior samples from the fitted object and `n_obs` is the number of observations in `newdata`

Author(s)

Nicholas J Clark

See Also

[hindcast.mvgam](#), [posterior_linpred.mvgam](#), [posterior_predict.mvgam](#)

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(
  n_series = 1,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Compute posterior expectations
expectations <- posterior_epred(mod)
str(expectations)

## End(Not run)
```

posterior_linpred.mvgam

*Posterior draws of the linear predictor for **mvgam** objects*

Description

Compute posterior draws of the linear predictor, that is draws before applying any link functions or other transformations. Can be performed for the data used to fit the model (posterior predictive checks) or for new data.

Usage

```
## S3 method for class 'mvgam'
posterior_linpred(
  object,
  transform = FALSE,
  newdata,
```

```

  ndraws = NULL,
  data_test,
  process_error = TRUE,
  ...
)

```

Arguments

object	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
transform	logical; if <code>FALSE</code> (the default), draws of the linear predictor are returned. If <code>TRUE</code> , draws of the transformed linear predictor, i.e. the conditional expectation, are returned.
newdata	Optional dataframe or list of test data containing the same variables that were included in the original data used to fit the model. If not supplied, predictions are generated for the original observations used for the model fit.
ndraws	Positive integer indicating how many posterior draws should be used. If <code>NULL</code> (the default) all draws are used.
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
process_error	logical. If <code>TRUE</code> and <code>newdata</code> is supplied, expected uncertainty in the process model is accounted for by using draws from any latent trend SD parameters. If <code>FALSE</code> , uncertainty in the latent trend component is ignored when calculating predictions. If no <code>newdata</code> is supplied, draws from the fitted model's posterior predictive distribution will be used (which will always include uncertainty in any latent trend components)
...	Ignored

Details

Note that for all types of predictions for models that did not include a `trend_formula`, uncertainty in the dynamic trend component can be ignored by setting `process_error = FALSE`. However, if a `trend_formula` was supplied in the model, predictions for this component cannot be ignored. If `process_error = TRUE`, trend predictions will ignore autocorrelation coefficients or GP length scale coefficients, ultimately assuming the process is stationary. This method is similar to the types of posterior predictions returned from `brms` models when using autocorrelated error predictions for `newdata`. This function is therefore more suited to posterior simulation from the GAM components of a `mvgam` model, while the forecasting functions `plot_mvgam_fc` and `forecast.mvgam` are better suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent trends.

Value

A matrix of dimension `n_samples` x `n_obs`, where `n_samples` is the number of posterior samples from the fitted object and `n_obs` is the number of observations in `newdata`

Author(s)

Nicholas J Clark

See Also

[hindcast.mvgam](#), [posterior_epred.mvgam](#), [posterior_predict.mvgam](#)

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(
  n_series = 1,
  trend_model = AR()
)

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Extract linear predictor values
linpreds <- posterior_linpred(mod)
str(linpreds)

## End(Not run)
```

posterior_predict.mvgam

*Draws from the posterior predictive distribution for **mvgam** objects*

Description

Compute posterior draws of the posterior predictive distribution. Can be performed for the data used to fit the model (posterior predictive checks) or for new data. By definition, these draws have higher variance than draws of the expected value of the posterior predictive distribution computed by [posterior_epred.mvgam](#). This is because the residual error is incorporated in [posterior_predict](#). However, the estimated means of both methods averaged across draws should be very similar.

Usage

```
## S3 method for class 'mvgam'
posterior_predict(
  object,
  newdata,
  data_test,
  ndraws = NULL,
```

```
process_error = TRUE,
...
)
```

Arguments

object	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
newdata	Optional data frame or list of test data containing the same variables that were included in the original data used to fit the model. If not supplied, predictions are generated for the original observations used for the model fit.
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
ndraws	Positive integer indicating how many posterior draws should be used. If <code>NULL</code> (the default) all draws are used.
process_error	Logical. If <code>TRUE</code> and <code>newdata</code> is supplied, expected uncertainty in the process model is accounted for by using draws from any latent trend SD parameters. If <code>FALSE</code> , uncertainty in the latent trend component is ignored when calculating predictions. If no <code>newdata</code> is supplied, draws from the fitted model's posterior predictive distribution will be used (which will always include uncertainty in any latent trend components)
...	Ignored

Details

Note that for all types of predictions for models that did not include a `trend_formula`, uncertainty in the dynamic trend component can be ignored by setting `process_error = FALSE`. However, if a `trend_formula` was supplied in the model, predictions for this component cannot be ignored. If `process_error = TRUE`, trend predictions will ignore autocorrelation coefficients or GP length scale coefficients, ultimately assuming the process is stationary. This method is similar to the types of posterior predictions returned from `brms` models when using autocorrelated error predictions for `newdata`. This function is therefore more suited to posterior simulation from the GAM components of a `mvgam` model, while the forecasting functions `plot_mvgam_fc` and `forecast.mvgam` are better suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent trends.

Value

A matrix of dimension `n_samples` x `new_obs`, where `n_samples` is the number of posterior samples from the fitted object and `n_obs` is the number of observations in `newdata`

Author(s)

Nicholas J Clark

See Also

[hindcast.mvgam](#), [posterior_linpred.mvgam](#), [posterior_epred.mvgam](#)

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Compute posterior predictions
predictions <- posterior_predict(mod)
str(predictions)

## End(Not run)
```

ppc.mvgam

*Plot conditional posterior predictive checks from **mvgam** models*

Description

Plot conditional posterior predictive checks from **mvgam** models

Usage

```
ppc(object, ...)

## S3 method for class 'mvgam'
ppc(
  object,
  newdata,
  data_test,
  series = 1,
  type = "hist",
  n_bins,
  legend_position,
  xlab,
  ylab,
  ...
)
```

Arguments

object	list object returned from <code>mvgam</code> . See mvgam()
...	Further <code>par</code> graphical parameters
newdata	Optional data frame or list of test data containing at least 'series' and 'time' for the forecast horizon, in addition to any other variables included in the linear predictor of <code>formula</code> . If included, the observed values in the test data are compared to the model's forecast distribution for exploring biases in model predictions. Note this is only useful if the same <code>newdata</code> was also included when fitting the original model.
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
series	integer specifying which series in the set is to be plotted
type	character specifying the type of posterior predictive check to calculate and plot. Valid options are: 'rootogram', 'mean', 'hist', 'density', 'prop_zero', 'pit' and 'cdf'
n_bins	integer specifying the number of bins to use for binning observed values when plotting a rootogram or histogram. Default is 50 bins for a rootogram, which means that if there are >50 unique observed values, bins will be used to prevent overplotting and facilitate interpretation. Default for a histogram is to use the number of bins returned by a call to <code>hist</code> in base R
legend_position	The location may also be specified by setting <code>x</code> to a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". This places the legend on the inside of the plot frame at the given location. Or alternatively, use "none" to hide the legend.
xlab	Label for x axis
ylab	Label for y axis

Details

Conditional posterior predictions are drawn from the fitted `mvgam` and compared against the empirical distribution of the observed data for a specified series to help evaluate the model's ability to generate unbiased predictions. For all plots apart from `type = 'rootogram'`, posterior predictions can also be compared to out of sample observations as long as these observations were included as 'data_test' in the original model fit and supplied here. Rootograms are currently only plotted using the 'hanging' style.

Note that the predictions used for these plots are *conditional on the observed data*, i.e. they are those predictions that have been generated directly within the `mvgam()` model. They can be misleading if the model included flexible dynamic trend components. For a broader range of posterior checks that are created using *unconditional* "new data" predictions, see [pp_check.mvgam](#)

Value

A base R graphics plot showing either a posterior rootogram (for `type == 'rootogram'`), the predicted vs observed mean for the series (for `type == 'mean'`), predicted vs observed proportion of

zeroes for the series (for type == 'prop_zero'), predicted vs observed histogram for the series (for type == 'hist'), kernel density or empirical CDF estimates for posterior predictions (for type == 'density' or type == 'cdf') or a Probability Integral Transform histogram (for type == 'pit').

Author(s)

Nicholas J Clark

See Also

[pp_check.mvgam](#), [predict.mvgam](#)

Examples

```
## Not run:
# Simulate some smooth effects and fit a model
set.seed(0)

dat <- mgcv::gamSim(
  1,
  n = 200,
  scale = 2
)

mod <- mvgam(
  y ~ s(x0) + s(x1) + s(x2) + s(x3),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
)

# Posterior checks
ppc(mod, type = "hist")
ppc(mod, type = "density")
ppc(mod, type = "cdf")

# Many more options are available with pp_check()
pp_check(mod)
pp_check(mod, type = "ecdf_overlay")
pp_check(mod, type = "freqpoly")

## End(Not run)
```

Description

Perform unconditional posterior predictive checks with the help of the **bayesplot** package.

Usage

```
## S3 method for class 'mvgam'
pp_check(
  object,
  type,
  ndraws = NULL,
  prefix = c("ppc", "ppd"),
  group = NULL,
  x = NULL,
  newdata = NULL,
  ...
)
```

Arguments

object	An object of class <code>mvgam</code>
type	Type of the ppc plot as given by a character string. See PPC for an overview of currently supported types. You may also use an invalid type (e.g. <code>type = "xyz"</code>) to get a list of supported types in the resulting error message.
ndraws	Positive integer indicating how many posterior draws should be used. If <code>NULL</code> all draws are used. If not specified, the number of posterior draws is chosen automatically. Ignored if <code>draw_ids</code> is not <code>NULL</code> .
prefix	The prefix of the bayesplot function to be applied. Either <code>"ppc"</code> (posterior predictive check; the default) or <code>"ppd"</code> (posterior predictive distribution), the latter being the same as the former except that the observed data is not shown for <code>"ppd"</code> .
group	Optional name of a factor variable in the model by which to stratify the ppc plot. This argument is required for <code>ppc *_grouped</code> types and ignored otherwise.
x	Optional name of a variable in the model. Only used for ppc types having an <code>x</code> argument and ignored otherwise.
newdata	Optional data frame or list of test data containing the variables included in the linear predictor of <code>formula</code> . If not supplied, predictions are generated for the original observations used for the model fit. Ignored if using one of the residual plots (i.e. <code>'resid_hist'</code>)
...	Further arguments passed to predict.mvgam as well as to the PPC function specified in <code>type</code>

Details

Unlike the conditional posterior checks provided by [ppc](#), This function computes *unconditional* posterior predictive checks (i.e. it generates predictions for fake data without considering the true observations associated with those fake data). For a detailed explanation of each of the ppc functions, see the [PPC](#) documentation of the [bayesplot](#) package.

Value

A `ggplot` object that can be further customized using the `ggplot2` package.

Author(s)

Nicholas J Clark

See Also[ppc](#), [predict.mvgam](#)**Examples**

```
## Not run:
simdat <- sim_mvgam(seasonality = "hierarchical")
mod <- mvgam(
  y ~ series +
  s(season, bs = "cc", k = 6) +
  s(season, series, bs = "fs", k = 4),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

# Use pp_check(mod, type = "xyz") for a list of available plot types

# Default is a density overlay for all observations
pp_check(mod)

# Rootograms particularly useful for count data
pp_check(mod, type = "rootogram")

# Grouping plots by series is useful
pp_check(mod,
  type = "bars_grouped",
  group = "series", ndraws = 50
)
pp_check(mod,
  type = "ecdf_overlay_grouped",
  group = "series", ndraws = 50
)
pp_check(mod,
  type = "stat_freqpoly_grouped",
  group = "series", ndraws = 50
)

# Several types can be used to plot distributions of randomized
# quantile residuals
pp_check(
  object = mod,
  x = "season",
  type = "resid_ribbon"
)
pp_check(
  object = mod,
  x = "season",
```

```

group = "series",
type = "resid_ribbon_grouped"
)
pp_check(mod,
  ndraws = 5,
  type = "resid_hist_grouped",
  group = "series"
)

# Custom functions accepted
pp_check(mod, type = "stat", stat = function(x) mean(x == 0))
pp_check(mod,
  type = "stat_grouped",
  stat = function(x) mean(x == 0),
  group = "series"
)

# Some functions accept covariates to set the x-axes
pp_check(mod,
  x = "season",
  type = "ribbon_grouped",
  prob = 0.5,
  prob_outer = 0.8,
  group = "series"
)

# Many plots can be made without the observed data
pp_check(mod, prefix = "ppd")

## End(Not run)

```

predict.mvgam

*Predict from a fitted **mvgam** model*

Description

Predict from a fitted **mvgam** model

Usage

```

## S3 method for class 'mvgam'
predict(
  object,
  newdata,
  data_test,
  type = "link",
  process_error = FALSE,
  summary = TRUE,

```

```

  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)

```

Arguments

object	list object of class <code>mvgam</code> or <code>jsdgam</code> . See mvgam()
newdata	Optional data frame or list of test data containing the same variables that were included in the original data used to fit the model. If not supplied, predictions are generated for the original observations used for the model fit.
data_test	Deprecated. Still works in place of <code>newdata</code> but users are recommended to use <code>newdata</code> instead for more seamless integration into R workflows
type	When this has the value <code>link</code> (default) the linear predictor is calculated on the link scale. If <code>expected</code> is used, predictions reflect the expectation of the response (the mean) but ignore uncertainty in the observation process. When <code>response</code> is used, the predictions take uncertainty in the observation process into account to return predictions on the outcome scale. When <code>variance</code> is used, the variance of the response with respect to the mean (mean-variance relationship) is returned. When <code>type = "terms"</code> , each component of the linear predictor is returned separately in the form of a <code>list</code> (possibly with standard errors, if <code>summary = TRUE</code>): this includes parametric model components, followed by each smooth component, but excludes any offset and any intercept. Two special cases are also allowed: <code>type latent_N</code> will return the estimated latent abundances from an N-mixture distribution, while <code>type detection</code> will return the estimated detection probability from an N-mixture distribution
process_error	Logical. If <code>TRUE</code> and a dynamic trend model was fit, expected uncertainty in the process model is accounted for by using draws from a stationary, zero-centred multivariate Normal distribution using any estimated process variance-covariance parameters. If <code>FALSE</code> , uncertainty in the latent trend component is ignored when calculating predictions
summary	Should summary statistics be returned instead of the raw values? Default is <code>TRUE</code> .
robust	If <code>FALSE</code> (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If <code>TRUE</code> , the median and the median absolute deviation (MAD) are applied instead. Only used if <code>summary</code> is <code>TRUE</code> .
probs	The percentiles to be computed by the <code>quantile</code> function. Only used if <code>summary</code> is <code>TRUE</code> .
...	Ignored

Details

Note that if your model included a latent temporal trend (i.e. if you used something other than "None" for the `trend_model` argument), the predictions returned by this function will ignore autocorrelation coefficients or GP length scale coefficients by *assuming the process is stationary*.

This approach is similar to how predictions are computed from other types of regression models that can include correlated residuals, *ultimately treating the temporal dynamics as random effect nuisance parameters*. The `predict` function is therefore more suited to scenario-based posterior simulation from the GAM components of a `mvgam` model, while the `hindcast` / `forecast` functions `hindcast.mvgam()` and `forecast.mvgam()` are better suited to generate predictions that respect the temporal dynamics of estimated latent trends at the actual time points supplied in `data` and `newdata`.

Value

Predicted values on the appropriate scale.

If `summary = FALSE` and `type != "terms"`, the output is a matrix of dimension `n_draw x n_observations` containing predicted values for each posterior draw in `object`.

If `summary = TRUE` and `type != "terms"`, the output is an `n_observations x E` matrix. The number of summary statistics `E` is equal to `2 + length(probs)`: The `Estimate` column contains point estimates (either mean or median depending on argument `robust`), while the `Est.Error` column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument `robust`). The remaining columns starting with `Q` contain quantile estimates as specified via argument `probs`.

If `type = "terms"` and `summary = FALSE`, the output is a named `list` containing a separate slot for each effect, with the effects returned as matrices of dimension `n_draw x 1`. If `summary = TRUE`, the output resembles that from `predict.gam` when using the call `predict.gam(object, type = "terms", se.fit = TRUE)`, where mean contributions from each effect are returned in `matrix` form while standard errors (representing the interval: `(max(probs) - min(probs)) / 2`) are returned in a separate `matrix`

Author(s)

Nicholas J Clark

See Also

`hindcast.mvgam()`, `forecast.mvgam()`, `fitted.mvgam()`, `augment.mvgam()`

Examples

```
## Not run:
# Simulate 4 time series with hierarchical seasonality
# and independent AR1 dynamic processes
set.seed(123)
simdat <- sim_mvgam(
  seasonality = 'hierarchical',
  prop_trend = 0.75,
  trend_model = AR(),
  family = gaussian()
)

# Fit a model with shared seasonality
# and AR(1) dynamics
mod1 <- mvgam(
```

```
y ~ s(season, bs = 'cc', k = 6),
  data = simdat$data_train,
  family = gaussian(),
  trend_model = AR(),
  noncentred = TRUE,
  chains = 2,
  silent = 2
)

# Generate predictions against observed data
preds <- predict(
  mod1,
  summary = TRUE
)
head(preds)

# Generate predictions against test data
preds <- predict(
  mod1,
  newdata = simdat$data_test,
  summary = TRUE
)
head(preds)

# Use plot_predictions(), which relies on predict()
# to more easily see how the latent AR(1) dynamics are
# being ignored when using predict()
plot_predictions(
  mod1,
  by = c('time', 'series', 'series'),
  points = 0.5
)

# Using the hindcast() function will give a more accurate
# representation of how the AR(1) processes were estimated to give
# accurate predictions to the in-sample training data
hc <- hindcast(mod1)
plot(hc) +
  plot(hc, series = 2) +
  plot(hc, series = 3)

## End(Not run)
```

print.mvgam

*Print a fitted **mvgam** object*

Description

This function takes a fitted **mvgam** or **jsdgam** object and prints a quick summary.

Usage

```
## S3 method for class 'mvgam'
print(x, ...)
```

Arguments

x	list object returned from <code>mvgam</code>
...	Ignored

Details

A brief summary of the model's call is printed

Value

A list is printed on-screen

Author(s)

Nicholas J Clark

`print.mvgam_summary` *Print method for mvgam_summary objects*

Description

Print method for `mvgam_summary` objects

Usage

```
## S3 method for class 'mvgam_summary'
print(x, ...)
```

Arguments

x	An object of class <code>mvgam_summary</code>
...	Additional arguments (ignored)

Value

Invisibly returns the input object after printing

PW

*Specify piecewise linear or logistic trends in **mvgam** models*

Description

Set up piecewise linear or logistic trend models in **mvgam**. These functions do not evaluate their arguments – they exist purely to help set up a model with particular piecewise trend models.

Usage

```
PW(
  n_changepoints = 10,
  changepoint_range = 0.8,
  changepoint_scale = 0.05,
  growth = "linear"
)
```

Arguments

n_changepoints A non-negative integer specifying the number of potential changepoints. Potential changepoints are selected uniformly from the first **changepoint_range** proportion of timepoints in data. Default is 10.

changepoint_range
Proportion of history in data in which trend changepoints will be estimated. Defaults to 0.8 for the first 80%.

changepoint_scale
Parameter modulating the flexibility of the automatic changepoint selection by altering the scale parameter of a Laplace distribution. The resulting prior will be `double_exponential(0, changepoint_scale)`. Large values will allow many changepoints and a more flexible trend, while small values will allow few changepoints. Default is 0.05.

growth
Character string specifying either 'linear' or 'logistic' growth of the trend. If 'logistic', a variable labelled **cap** MUST be in data to specify the maximum saturation point for the trend (see details and examples in **mvgam** for more information). Default is 'linear'.

Details

Offsets and intercepts: For each of these trend models, an offset parameter is included in the trend estimation process. This parameter will be incredibly difficult to identify if you also include an intercept in the observation formula. For that reason, it is highly recommended that you drop the intercept from the formula (i.e. $y \sim x + 0$ or $y \sim x - 1$, where x are your optional predictor terms).

Logistic growth and the cap variable: When forecasting growth, there is often some maximum achievable point that a time series can reach. For example, total market size, total population size or carrying capacity in population dynamics. It can be advantageous for the forecast to saturate at or near this point so that predictions are more sensible.

This function allows you to make forecasts using a logistic growth trend model, with a specified carrying capacity. Note that this capacity does not need to be static over time; it can vary with each series \times timepoint combination if necessary. But you must supply a `cap` value for each observation in the data when using `growth = 'logistic'`.

For observation families that use a non-identity link function, the `cap` value will be internally transformed to the link scale (i.e. your specified `cap` will be log-transformed if you are using a `poisson()` or `nb()` family). It is therefore important that you specify the `cap` values on the scale of your outcome. Note also that no missing values are allowed in `cap`.

Value

An object of class `mvgam_trend`, which contains a list of arguments to be interpreted by the parsing functions in `mvgam`.

Author(s)

Nicholas J Clark

References

Taylor, Sean J., and Benjamin Letham. "Forecasting at scale." *The American Statistician* 72.1 (2018): 37–45.

Examples

```
## Not run:
# Example of logistic growth with possible changepoints
dNt = function(r, N, k) {
  r * N * (k - N)
}

Nt = function(r, N, t, k) {
  for (i in 1:(t - 1)) {
    if (i %in% c(5, 15, 25, 41, 45, 60, 80)) {
      N[i + 1] <- max(
        1,
        N[i] + dNt(r + runif(1, -0.1, 0.1), N[i], k)
      )
    } else {
      N[i + 1] <- max(1, N[i] + dNt(r, N[i], k))
    }
  }
  N
}

set.seed(11)
expected <- Nt(0.004, 2, 100, 30)
plot(expected, xlab = 'Time')

y <- rpois(100, expected)
plot(y, xlab = 'Time')
```

```

mod_data <- data.frame(
  y = y,
  time = 1:100,
  cap = 35,
  series = as.factor('series_1')
)
plot_mvgam_series(data = mod_data)

mod <- mvgam(
  y ~ 0,
  trend_model = PW(growth = 'logistic'),
  family = poisson(),
  data = mod_data,
  chains = 2,
  silent = 2
)
summary(mod)

hc <- hindcast(mod)
plot(hc)

library(ggplot2)
mcmc_plot(mod, variable = 'delta_trend', regex = TRUE) +
  scale_y_discrete(labels = mod$trend_model$changepoints) +
  labs(
    y = 'Potential changepoint',
    x = 'Rate change'
  )

how_to_cite(mod)

## End(Not run)

```

residuals.mvgam

*Posterior draws of residuals from **mvgam** models*

Description

This method extracts posterior draws of Dunn-Smyth (randomized quantile) residuals in the order in which the data were supplied to the model. It includes additional arguments for obtaining summaries of the computed residuals.

Usage

```

## S3 method for class 'mvgam'
residuals(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)

```

Arguments

object	An object of class <code>mvgam</code>
summary	Should summary statistics be returned instead of the raw values? Default is <code>TRUE</code> .
robust	If <code>FALSE</code> (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If <code>TRUE</code> , the median and the median absolute deviation (MAD) are applied instead. Only used if <code>summary</code> is <code>TRUE</code> .
probs	The percentiles to be computed by the <code>quantile</code> function. Only used if <code>summary</code> is <code>TRUE</code> .
...	Ignored

Details

This method gives residuals as Dunn-Smyth (randomized quantile) residuals. Any observations that were missing (i.e. `NA`) in the original data will have missing values in the residuals.

Value

An array of randomized quantile residual values.

If `summary = FALSE` the output resembles those of `posterior_epred.mvgam` and `predict.mvgam`.

If `summary = TRUE` the output is an `n_observations` x `E` matrix. The number of summary statistics `E` is equal to `2 + length(probs)`. The `Estimate` column contains point estimates (either mean or median depending on argument `robust`), while the `Est.Error` column contains uncertainty estimates (either standard deviation or median absolute deviation depending on argument `robust`). The remaining columns starting with `Q` contain quantile estimates as specified via argument `probs`.

Author(s)

Nicholas J Clark

See Also

[augment.mvgam](#)

Examples

```
## Not run:
# Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2,
  silent = 2
```

```

)
# Extract posterior residuals
resids <- residuals(mod)
str(resids)

# Or add them directly to the observed data, along with fitted values
augment(mod, robust = FALSE, probs = c(0.25, 0.75))

## End(Not run)

```

residual_cor.jsdgam *Extract residual correlations based on latent factors*

Description

Compute residual correlation estimates from Joint Species Distribution (jsdgam) or mvgam models that either used latent factors or included correlated process errors directly

Usage

```

residual_cor(object, ...)

## S3 method for class 'mvgam'
residual_cor(
  object,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)

## S3 method for class 'jsdgam'
residual_cor(
  object,
  summary = TRUE,
  robust = FALSE,
  probs = c(0.025, 0.975),
  ...
)

```

Arguments

object	list object of class mvgam resulting from a call to jsdgam() or a call to mvgam() in which either use_lv = TRUE or a multivariate process was used with cor = TRUE (see RW() and VAR() for examples)
...	ignored

summary	Should summary statistics be returned instead of the raw values? Default is TRUE..
robust	If FALSE (the default) the mean is used as a measure of central tendency. If TRUE, the median is used instead. Only used if summary is TRUE
probs	The percentiles to be computed by the quantile function. Only used if summary is TRUE.

Details

See [mvgam_residcor-class](#) for a description of the quantities that are computed and returned by this function, along with key references.

Value

If summary = TRUE, a list of [mvgam_residcor-class](#) with the following components:

cor, cor_lower, cor_upper	A set of $p \times p$ correlation matrices, containing either the posterior median or mean estimate, plus lower and upper limits of the corresponding credible intervals supplied to probs
sig_cor	A $p \times p$ correlation matrix containing only correlations whose credible interval does not contain zero. All other correlations are set to zero
prec, prec_lower, prec_upper	A set of $p \times p$ precision matrices, containing either the posterior median or mean estimate, plus lower and upper limits of the corresponding credible intervals supplied to probs
sig_prec	A $p \times p$ precision matrix containing only precisions whose credible interval does not contain zero. All other precisions are set to zero
cov	A $p \times p$ posterior median or mean covariance matrix
trace	The median/mean point estimator of the trace (sum of the diagonal elements) of the residual covariance matrix cov

If summary = FALSE, this function returns a list containing the following components:

all_cormat	A $ndraws \times p \times p$ array of posterior residual correlation matrix draws
all_covmat	A $ndraws \times p \times p$ array of posterior residual covariance matrix draws
all_presmat	A $ndraws \times p \times p$ array of posterior residual precision matrix draws
all_trace	A $ndraws$ vector of posterior covariance trace draws

References

Hui, F. K. C. (2016). boral – Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in r. *Methods in Ecology and Evolution*, 7(6), 744-750. [doi:10.1111/2041210X.12514](https://doi.org/10.1111/2041210X.12514)

See Also

[jsdgam\(\)](#), [lv_correlations\(\)](#), [mvgam_residcor-class](#)

Examples

```

## Not run:
# Fit a JSDGAM to the portal_data captures
mod <- jsdgam(
  formula = captures ~
    # Fixed effects of NDVI and mintemp, row effect as a GP of time
    ndvi_ma12:series + mintemp:series + gp(time, k = 15),
  factor_formula = ~ -1,
  data = portal_data,
  unit = time,
  species = series,
  family = poisson(),
  n_lv = 2,
  silent = 2,
  chains = 2
)

# Plot residual correlations
plot(
  residual_cor(mod)
)

# Compare to a residual ordination biplot
if(requireNamespace('ggrepel', quietly = TRUE)){
  ordinate(mod)
}

# Not needed for general use; cleans up connections for automated testing
closeAllConnections()

## End(Not run)

```

Description

Set up autoregressive or autoregressive moving average trend models in **mvgam**. These functions do not evaluate their arguments – they exist purely to help set up a model with particular autoregressive trend models.

Usage

```

RW(ma = FALSE, cor = FALSE, gr = NA, subgr = NA)

AR(p = 1, ma = FALSE, cor = FALSE, gr = NA, subgr = NA)

CAR(p = 1)

VAR(ma = FALSE, cor = FALSE, gr = NA, subgr = NA)

```

Arguments

ma	Logical. Include moving average terms of order 1? Default is FALSE.
cor	Logical. Include correlated process errors as part of a multivariate normal process model? If TRUE and if <code>n_series</code> > 1 in the supplied data, a fully structured covariance matrix will be estimated for the process errors. Default is FALSE.
gr	An optional grouping variable, which must be a factor in the supplied data, for setting up hierarchical residual correlation structures. If specified, this will automatically set <code>cor</code> = TRUE and set up a model where the residual correlations for a specific level of <code>gr</code> are modelled hierarchically: $\Omega_{group} = \alpha_{cor}\Omega_{global} + (1 - \alpha_{cor})\Omega_{group,local},$ where Ω_{global} is a <i>global</i> correlation matrix, $\Omega_{group,local}$ is a <i>local deviation</i> correlation matrix and α_{cor} is a weighting parameter controlling how strongly the local correlation matrix Ω_{group} is shrunk towards the global correlation matrix Ω_{global} (larger values of α_{cor} indicate a greater degree of shrinkage, i.e. a greater degree of partial pooling). When used within a <code>VAR()</code> model, this essentially sets up a hierarchical panel vector autoregression where both the autoregressive and correlation matrices are learned hierarchically. If <code>gr</code> is supplied then <code>subgr</code> <i>must</i> also be supplied.
subgr	A subgrouping factor variable specifying which element in data represents the different time series. Defaults to <code>series</code> , but note that models that use the hierarchical correlations, where the <code>subgr</code> time series are measured in each level of <code>gr</code> , <i>should not</i> include a <code>series</code> element in data. Rather, this element will be created internally based on the supplied variables for <code>gr</code> and <code>subgr</code> . For example, if you are modelling temporal counts for a group of species (labelled as <code>species</code> in data) across three different geographical regions (labelled as <code>region</code>), and you would like the residuals to be correlated within regions, then you should specify <code>gr</code> = <code>region</code> and <code>subgr</code> = <code>species</code> . Internally, <code>mvgam()</code> will create the <code>series</code> element for the data using: <code>series = interaction(group, subgroup, drop = TRUE)</code>
p	A non-negative integer specifying the autoregressive (AR) order. Default is 1. Cannot currently be larger than 3 for AR terms, and cannot be anything other than 1 for continuous time AR (CAR) terms.

Details

Use `vignette("mvgam_overview")` to see the full details of available stochastic trend types in **mvgam**, or view the rendered version on the package website at: https://nicholasjclark.github.io/mvgam/articles/mvgam_overview.html

Value

An object of class `mvgam_trend`, which contains a list of arguments to be interpreted by the parsing functions in **mvgam**.

Author(s)

Nicholas J Clark

Examples

```

## Not run:
# A short example to illustrate CAR(1) models
# Function to simulate CAR1 data with seasonality
sim_corcar1 = function(n = 125,
                      phi = 0.5,
                      sigma = 2,
                      sigma_obs = 0.75) {
  # Sample irregularly spaced time intervals
  time_dis <- c(1, runif(n - 1, 0, 5))

  # Set up the latent dynamic process
  x <- vector(length = n); x[1] <- -0.3
  for (i in 2:n) {
    # zero-distances will cause problems in sampling, so mvgam uses a
    # minimum threshold; this simulation function emulates that process
    if (time_dis[i] == 0) {
      x[i] <- rnorm(
        1,
        mean = (phi^1e-3) * x[i - 1],
        sd = sigma * (1 - phi^(2 * 1e-3)) / (1 - phi^2)
      )
    } else {
      x[i] <- rnorm(
        1,
        mean = (phi^time_dis[i]) * x[i - 1],
        sd = sigma * (1 - phi^(2 * time_dis[i])) / (1 - phi^2)
      )
    }
  }

  # Add 12-month seasonality
  cov1 <- sin(2 * pi * (1:n) / 12)
  cov2 <- cos(2 * pi * (1:n) / 12)
  beta1 <- runif(1, 0.3, 0.7)
  beta2 <- runif(1, 0.2, 0.5)
  seasonality <- beta1 * cov1 + beta2 * cov2

  # Take Gaussian observations with error and return
  data.frame(
    y = rnorm(n, mean = x + seasonality, sd = sigma_obs),
    season = rep(1:12, 20)[1:n],
    time = cumsum(time_dis)
  )
}

# Sample two time series
dat <- rbind(
  dplyr::bind_cols(
    sim_corcar1(phi = 0.65, sigma_obs = 0.55),
    data.frame(series = 'series1')
  ),

```

```

dplyr::bind_cols(
  sim_corcar1(phi = 0.8, sigma_obs = 0.35),
  data.frame(series = 'series2')
)
) %>%
  dplyr::mutate(series = as.factor(series))

# mvgam with CAR(1) trends and series-level seasonal smooths
mod <- mvgam(
  formula = y ~ -1,
  trend_formula = ~ s(season, bs = 'cc', k = 5, by = trend),
  trend_model = CAR(),
  priors = c(
    prior(exponential(3), class = sigma),
    prior(beta(4, 4), class = sigma_obs)
  ),
  data = dat,
  family = gaussian(),
  chains = 2,
  silent = 2
)

# View usual summaries and plots
summary(mod)
conditional_effects(mod, type = 'expected')
plot(mod, type = 'trend', series = 1)
plot(mod, type = 'trend', series = 2)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)
mcmc_plot(
  mod,
  variable = 'ar1',
  regex = TRUE,
  type = 'hist'
)

# Now an example illustrating hierarchical dynamics
set.seed(123)

# Simulate three species monitored in three different regions
simdat1 <- sim_mvgam(
  trend_model = VAR(cor = TRUE),
  prop_trend = 0.95,
  n_series = 3,
  mu = c(1, 2, 3)
)
simdat2 <- sim_mvgam(
  trend_model = VAR(cor = TRUE),
  prop_trend = 0.95,
  n_series = 3,
  mu = c(1, 2, 3)
)
simdat3 <- sim_mvgam(

```

```

trend_model = VAR(cor = TRUE),
prop_trend = 0.95,
n_series = 3,
mu = c(1, 2, 3)
)

# Set up the data but DO NOT include 'series'
all_dat <- rbind(
  simdat1$data_train %>%
    dplyr::mutate(region = 'qld'),
  simdat2$data_train %>%
    dplyr::mutate(region = 'nsw'),
  simdat3$data_train %>%
    dplyr::mutate(region = 'vic')
) %>%
  dplyr::mutate(
    species = gsub('series', 'species', series),
    species = as.factor(species),
    region = as.factor(region)
  ) %>%
  dplyr::arrange(series, time) %>%
  dplyr::select(-series)

# Check priors for a hierarchical AR1 model
get_mvgam_priors(
  formula = y ~ species,
  trend_model = AR(gr = region, subgr = species),
  data = all_dat
)

# Fit the model
mod <- mvgam(
  formula = y ~ species,
  trend_model = AR(gr = region, subgr = species),
  data = all_dat,
  chains = 2,
  silent = 2
)

# Check standard outputs
summary(mod)

# Inspect posterior estimates for the correlation weighting parameter
mcmc_plot(mod, variable = 'alpha_cor', type = 'hist')

## End(Not run)

```

Description

Compute probabilistic forecast scores for **mvgam** models

Usage

```
## S3 method for class 'mvgam_forecast'
score(
  object,
  score = "crps",
  log = FALSE,
  weights,
  interval_width = 0.9,
  n_cores = 1,
  ...
)
score(object, ...)
```

Arguments

object	<code>mvgam_forecast</code> object. See forecast.mvgam() .
score	character specifying the type of proper scoring rule to use for evaluation. Options are: <code>sis</code> (i.e. the Scaled Interval Score), <code>energy</code> , <code>variogram</code> , <code>elpd</code> (i.e. the Expected log pointwise Predictive Density), <code>drps</code> (i.e. the Discrete Rank Probability Score), <code>crps</code> (the Continuous Rank Probability Score) or <code>brier</code> (the latter of which is only applicable for <code>bernoulli</code> models. Note that when choosing <code>elpd</code> , the supplied object must have forecasts on the link scale so that expectations can be calculated prior to scoring. If choosing <code>brier</code> , the object must have forecasts on the expected scale (i.e. probability predictions). For all other scores, forecasts should be supplied on the response scale (i.e. posterior predictions)
log	logical. Should the forecasts and truths be logged prior to scoring? This is often appropriate for comparing performance of models when series vary in their observation ranges. Ignored if <code>score = 'brier'</code>
weights	optional vector of weights (where <code>length(weights) == n_series</code>) for weighting pairwise correlations when evaluating the <code>variogram</code> score for multivariate forecasts. Useful for down-weighting series that have larger magnitude observations or that are of less interest when forecasting. Ignored if <code>score != 'variogram'</code>
interval_width	proportional value on $[0.05, 0.95]$ defining the forecast interval for calculating coverage and, if <code>score = 'sis'</code> , for calculating the interval score. Ignored if <code>score = 'brier'</code>
n_cores	integer specifying number of cores for calculating scores in parallel
...	Ignored

Value

A list containing scores and interval coverages per forecast horizon. If `score %in% c('drps', 'crps', 'elpd', 'brier')`, the list will also contain return the sum of all series-level scores per horizon. If `score %in% c('energy', 'variogram')`, no series-level scores are computed and the only score returned will be for all series. For all scores apart from `elpd` and `brier`, the `in_interval` column in each series-level slot is a binary indicator of whether or not the true value was within the forecast's corresponding posterior empirical quantiles. Intervals are not calculated when using `elpd` because forecasts will only contain the linear predictors

Author(s)

Nicholas J Clark

References

Gneiting, T. and Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. *Journal of the American Statistical Association*, 102(477), 359-378. [doi:10.1198/016214506000001437](https://doi.org/10.1198/016214506000001437)

See Also

[forecast.mvgam](#), [ensemble](#)

Examples

```
## Not run:
# Simulate observations for three count-valued time series
data <- sim_mvgam()

# Fit a dynamic model using 'newdata' to automatically produce forecasts
mod <- mvgam(
  y ~ 1,
  trend_model = RW(),
  data = data$data_train,
  newdata = data$data_test,
  chains = 2,
  silent = 2
)

# Extract forecasts into a 'mvgam_forecast' object
fc <- forecast(mod)
plot(fc)

# Compute Discrete Rank Probability Scores and 0.90 interval coverages
fc_scores <- score(fc, score = 'drps')
str(fc_scores)

# An example using binary data
data <- sim_mvgam(family = bernoulli())

mod <- mvgam(
  y ~ s(season, bs = 'cc', k = 6),
```

```

trend_model = AR(),
data = data$data_train,
newdata = data$data_test,
family = bernoulli(),
chains = 2,
silent = 2
)

# Extract forecasts on the expectation (probability) scale
fc <- forecast(mod, type = 'expected')
plot(fc)

# Compute Brier scores
fc_scores <- score(fc, score = 'brier')
str(fc_scores)

## End(Not run)

```

series_to_mvgam

*Convert timeseries object to format necessary for **mvgam** models*

Description

This function converts univariate or multivariate time series (**xts** or **ts** objects) to the format necessary for **mvgam**.

Usage

```
series_to_mvgam(series, freq, train_prop = 0.85)
```

Arguments

series	xts or ts object to be converted to mvgam format
freq	integer. The seasonal frequency of the series
train_prop	numeric stating the proportion of data to use for training. Should be between 0.25 and 0.95

Value

A list object containing outputs needed for **mvgam**, including 'data_train' and 'data_test'

Examples

```

# A ts object example
data("sunspots")
series <- cbind(sunspots, sunspots)
colnames(series) <- c('blood', 'bone')
head(series)

```

```

series_to_mvgam(series, frequency(series), 0.85)

# An xts object example
library(xts)
dates <- seq(as.Date("2001-05-01"), length = 30, by = "quarter")

data <- cbind(
  c(gas = rpois(30, cumprod(1 + rnorm(30, mean = 0.01, sd = 0.001)))),
  c(oil = rpois(30, cumprod(1 + rnorm(30, mean = 0.01, sd = 0.001))))
)

series <- xts(x = data, order.by = dates)
colnames(series) <- c('gas', 'oil')
head(series)
series_to_mvgam(series, freq = 4, train_prop = 0.85)

```

sim_mvgam

Simulate a set of time series for modelling in mvgam

Description

This function simulates sets of time series data for fitting a multivariate GAM that includes shared seasonality and dependence on State-Space latent dynamic factors. Random dependencies among series, i.e. correlations in their long-term trends, are included in the form of correlated loadings on the latent dynamic factors

Usage

```

sim_mvgam(
  T = 100,
  n_series = 3,
  seasonality = "shared",
  use_lv = FALSE,
  n_lv = 0,
  trend_model = RW(),
  drift = FALSE,
  prop_trend = 0.2,
  trend_rel,
  freq = 12,
  family = poisson(),
  phi,
  shape,
  sigma,
  nu,
  mu,
  prop_missing = 0,
  prop_train = 0.85
)

```

Arguments

T	integer. Number of observations (timepoints)
n_series	integer. Number of discrete time series
seasonality	character. Either <code>shared</code> , meaning that all series share the exact same seasonal pattern, or <code>hierarchical</code> , meaning that there is a global seasonality but each series' pattern can deviate slightly
use_lv	logical. If <code>TRUE</code> , use dynamic factors to estimate series' latent trends in a reduced dimension format. If <code>FALSE</code> , estimate independent latent trends for each series
n_lv	integer. Number of latent dynamic factors for generating the series' trends. Defaults to 0, meaning that dynamics are estimated independently for each series
trend_model	character specifying the time series dynamics for the latent trend. Options are: <ul style="list-style-type: none"> • <code>None</code> (no latent trend component; i.e. the GAM component is all that contributes to the linear predictor, and the observation process is the only source of error; similarly to what is estimated by <code>gam</code>) • <code>RW</code> (random walk with possible drift) • <code>AR1</code> (with possible drift) • <code>AR2</code> (with possible drift) • <code>AR3</code> (with possible drift) • <code>VAR1</code> (contemporaneously uncorrelated VAR1) • <code>VAR1cor</code> (contemporaneously correlated VAR1) • <code>GP</code> (Gaussian Process with squared exponential kernel)
	See <code>mvgam_trends</code> for more details
drift	logical, simulate a drift term for each trend
prop_trend	numeric. Relative importance of the trend for each series. Should be between 0 and 1
trend_rel	Deprecated. Use <code>prop_trend</code> instead
freq	integer. The seasonal frequency of the series
family	family specifying the exponential observation family for the series. Currently supported families are: <code>nb()</code> , <code>poisson()</code> , <code>bernoulli()</code> , <code>tweedie()</code> , <code>gaussian()</code> , <code>betar()</code> , <code>lognormal()</code> , <code>student()</code> and <code>Gamma()</code>
phi	vector of dispersion parameters for the series (i.e. <code>size</code> for <code>nb()</code> or <code>phi</code> for <code>betar()</code>). If <code>length(phi) < n_series</code> , the first element of <code>phi</code> will be replicated <code>n_series</code> times. Defaults to 5 for <code>nb()</code> and <code>tweedie()</code> ; 10 for <code>betar()</code>
shape	vector of shape parameters for the series (i.e. <code>shape</code> for <code>gamma()</code>). If <code>length(shape) < n_series</code> , the first element of <code>shape</code> will be replicated <code>n_series</code> times. Defaults to 10
sigma	vector of scale parameters for the series (i.e. <code>sd</code> for <code>gaussian()</code> or <code>student()</code> , <code>log(sd)</code> for <code>lognormal()</code>). If <code>length(sigma) < n_series</code> , the first element of <code>sigma</code> will be replicated <code>n_series</code> times. Defaults to 0.5 for <code>gaussian()</code> and <code>student()</code> ; 0.2 for <code>lognormal()</code>

nu	vector of degrees of freedom parameters for the series (i.e. nu for student()). If <code>length(nu) < n_series</code> , the first element of <code>nu</code> will be replicated <code>n_series</code> times. Defaults to 3
mu	vector of location parameters for the series. If <code>length(mu) < n_series</code> , the first element of <code>mu</code> will be replicated <code>n_series</code> times. Defaults to small random values between -0.5 and 0.5 on the link scale
prop_missing	numeric stating proportion of observations that are missing. Should be between 0 and 0.8, inclusive
prop_train	numeric stating the proportion of data to use for training. Should be between 0.2 and 1

Value

A list object containing outputs needed for `mvgam`, including 'data_train' and 'data_test', as well as some additional information about the simulated seasonality and trend dependencies

References

Clark, N. J. and Wells, K. (2022). Dynamic generalised additive models (DGAMs) for forecasting discrete ecological time series. *Methods in Ecology and Evolution*, 13(11), 2388-2404. doi:10.1111/2041210X.13974

Examples

```
# Simulate series with observations bounded at 0 and 1 (Beta responses)
sim_data <- sim_mvgam(
  family = betar(),
  trend_model = RW(),
  prop_trend = 0.6
)
plot_mvgam_series(data = sim_data$data_train, series = 'all')

# Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(
  family = nb(),
  trend_model = RW(),
  prop_trend = 0.6,
  phi = 10
)
plot_mvgam_series(data = sim_data$data_train, series = 'all')
```

Description

Compute reactivity, return rates and contributions of interactions to stationary forecast variance from `mvgam` models with Vector Autoregressive dynamics.

Usage

```
stability(object, ...)

## S3 method for class 'mvgam'
stability(object, ...)
```

Arguments

object	list object of class <code>mvgam</code> resulting from a call to <code>mvgam()</code> that used a Vector Autoregressive latent process model (either as <code>VAR(cor = FALSE)</code> or <code>VAR(cor = TRUE)</code>)
...	Ignored

Details

These measures of stability can be used to assess how important inter-series dependencies are to the variability of a multivariate system and to ask how systems are expected to respond to environmental perturbations. Using the formula for a latent VAR(1) as:

$$\mu_t \sim \text{MVNormal}(A(\mu_{t-1}), \Sigma)$$

this function will calculate the long-term stationary forecast distribution of the system, which has mean μ_∞ and variance Σ_∞ , to then calculate the following quantities:

- `prop_int`: Proportion of the volume of the stationary forecast distribution that is attributable to lagged interactions:

$$\det(A)^2$$

```
\item `prop_int_adj`: Same as `prop_int` but scaled by the number of series  $\text{length}(p)$ :
\deqn{ \det(A)^{2/p} }

\item `prop_int_offdiag`: Sensitivity of `prop_int` to inter-series interactions (off-diagonals of  $\Sigma$ ):
\deqn{ [2 \cdot \det(A) \cdot (A^{-1})^T] }

\item `prop_int_diag`: Sensitivity of `prop_int` to intra-series interactions (diagonals of  $\Sigma$ ):
\deqn{ [2 \cdot \det(A) \cdot (A^{-1})^T] }

\item `prop_cov_offdiag`: Sensitivity of  $\Sigma$  to inter-series error correlations:
\deqn{ [2 \cdot \det(\Sigma) \cdot (\Sigma^{-1})^T] }

\item `prop_cov_diag`: Sensitivity of  $\Sigma$  to error variances:
\deqn{ [2 \cdot \det(\Sigma) \cdot (\Sigma^{-1})^T] }

\item `reactivity`: Degree to which the system moves away from a stable
```

```

equilibrium following a perturbation. If  $\sigma_{\max}(A)$  is the
largest singular value of  $A$ :

$$\log\sigma_{\max}(A)$$


\item `mean_return_rate`: Asymptotic return rate of the mean of the
transition distribution to the stationary mean:

$$\max(\lambda_A)$$


\item `var_return_rate`: Asymptotic return rate of the variance of the
transition distribution to the stationary variance:

$$\max(\lambda_A \otimes A)$$


```

Major advantages of using **mvgam** to compute these metrics are that well-calibrated uncertainties are available and that VAR processes are forced to be stationary. These properties make it simple and insightful to calculate and inspect aspects of both long-term and short-term stability.

You can also inspect interactions among the time series in a latent VAR process using [irf](#) for impulse response functions or [fevd](#) for forecast error variance decompositions.

Value

A `data.frame` containing posterior draws for each stability metric.

Author(s)

Nicholas J Clark

References

AR Ives, B Dennis, KL Cottingham & SR Carpenter (2003). Estimating community stability and ecological interactions from time-series data. *Ecological Monographs*, 73, 301–330.

See Also

[VAR](#), [irf](#), [fevd](#)

Examples

```

## Not run:
# Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(
  family = gaussian(),
  n_series = 4,
  trend_model = VAR(cor = TRUE),
  prop_trend = 1
)
plot_mvgam_series(data = simdat$data_train, series = 'all')

# Fit a model that uses a latent VAR(1)
mod <- mvgam(
  y ~ -1,

```

```
trend_formula = ~ 1,
trend_model = VAR(cor = TRUE),
family = gaussian(),
data = simdat$data_train,
chains = 2,
silent = 2
)

# Calculate stability metrics for this system
metrics <- stability(mod)

# Proportion of stationary forecast distribution attributable to interactions
hist(
  metrics$prop_int,
  xlim = c(0, 1),
  xlab = 'Prop_int',
  main = '',
  col = '#B97C7C',
  border = 'white'
)

# Inter- vs intra-series interaction contributions
layout(matrix(1:2, nrow = 2))
hist(
  metrics$prop_int_offdiag,
  xlim = c(0, 1),
  xlab = '',
  main = 'Inter-series interactions',
  col = '#B97C7C',
  border = 'white'
)

hist(
  metrics$prop_int_diag,
  xlim = c(0, 1),
  xlab = 'Contribution to interaction effect',
  main = 'Intra-series interactions (density dependence)',
  col = 'darkblue',
  border = 'white'
)
layout(1)

# Inter- vs intra-series contributions to forecast variance
layout(matrix(1:2, nrow = 2))
hist(
  metrics$prop_cov_offdiag,
  xlim = c(0, 1),
  xlab = '',
  main = 'Inter-series covariances',
  col = '#B97C7C',
  border = 'white'
)
```

```

hist(
  metrics$prop_cov_diag,
  xlim = c(0, 1),
  xlab = 'Contribution to forecast variance',
  main = 'Intra-series variances',
  col = 'darkblue',
  border = 'white'
)
layout(1)

# Reactivity: system response to perturbation
hist(
  metrics$reactivity,
  main = '',
  xlab = 'Reactivity',
  col = '#B97C7C',
  border = 'white',
  xlim = c(
    -1 * max(abs(metrics$reactivity)),
    max(abs(metrics$reactivity))
  )
)
abline(v = 0, lwd = 2.5)

## End(Not run)

```

summary.mvgam

Summary for a fitted mvgam models

Description

These functions take a fitted `mvgam` or `jsdgam` object and return various useful summaries

Usage

```

## S3 method for class 'mvgam'
summary(object, include_betas = TRUE, smooth_test = TRUE, digits = 2, ...)

## S3 method for class 'mvgam_prefit'
summary(object, ...)

## S3 method for class 'mvgam'
coef(object, summarise = TRUE, ...)

```

Arguments

`object` list object returned from `mvgam`

include_betas	Logical. Print a summary that includes posterior summaries of all linear predictor beta coefficients (including spline coefficients)? Defaults to TRUE but use FALSE for a more concise summary
smooth_test	Logical. Compute estimated degrees of freedom and approximate p-values for smooth terms? Defaults to TRUE, but users may wish to set to FALSE for complex models with many smooth or random effect terms
digits	The number of significant digits for printing out the summary; defaults to 2.
...	Ignored
summarise	logical. Summaries of coefficients will be returned if TRUE. Otherwise the full posterior distribution will be returned

Details

`summary.mvgam` and `summary.mvgam_prefit` return brief summaries of the model's call, along with posterior intervals for some of the key parameters in the model. Note that some smooths have extra penalties on the null space, so summaries for the `rho` parameters may include more penalty terms than the number of smooths in the original model formula. Approximate p-values for smooth terms are also returned, with methods used for their calculation following those used for `mgcv` equivalents (see `summary.gam` for details). The Estimated Degrees of Freedom (edf) for smooth terms is computed using either `edf.type = 1` for models with no trend component, or `edf.type = 0` for models with trend components. These are described in the documentation for `jagam`. Experiments suggest these p-values tend to be more conservative than those that might be returned from an equivalent model fit with `summary.gam` using `method = 'REML'`

`coef.mvgam` returns either summaries or full posterior estimates for GAM component coefficients

Value

For `summary.mvgam`, an object of class `mvgam_summary` containing:

- `model_spec`: Model specification details (formulas, family, dimensions)
- `parameters`: Parameter estimates and significance tests
- `diagnostics`: MCMC convergence diagnostics
- `sampling_info`: Sampling algorithm details

For `summary.mvgam_prefit`, a list is printed on-screen showing the model specifications

For `coef.mvgam`, either a matrix of posterior coefficient distributions (if `summarise == FALSE` or `data.frame` of coefficient summaries)

Author(s)

Nicholas J Clark

Examples

```
## Not run:
simdat <- sim_mvgam(seasonality = "hierarchical")

mod <- mvgam(
```

```

y ~ series +
  s(season, bs = "cc", k = 6) +
  s(season, series, bs = "fs", k = 4),
  data = simdat$data_train,
  chains = 2,
  silent = 2
)

mod_summary <- summary(mod)
mod_summary

## End(Not run)

```

summary.mvgam_fevd *Posterior summary of forecast error variance decompositions*

Description

This function takes an `mvgam_fevd` object and calculates a posterior summary of the error variance decompositions of each series, at all horizons

Usage

```
## S3 method for class 'mvgam_fevd'
summary(object, probs = c(0.025, 0.975), ...)
```

Arguments

<code>object</code>	an object of class <code>mvgam_fevd</code> obtained using the <code>fevd()</code> function. This object will contain draws from the posterior distribution of the forecast error variance decompositions.
<code>probs</code>	The upper and lower percentiles to be computed by the <code>quantile</code> function, in addition to the median
<code>...</code>	ignored

Value

A long-format `tibble` / `data.frame` reporting the posterior median, upper and lower percentiles of the error variance decompositions of each series at all horizons.

Author(s)

Nicholas J Clark

See Also

[fevd](#), [plot.mvgam_fevd](#)

summary.mvgam_forecast

Posterior summary of hindcast and forecast objects

Description

This function takes an `mvgam_forecast` object and calculates a posterior summary of the hindcast and forecast distributions of each series, along with any true values that were included in `data` and `newdata` if `type = 'response'` was used in the call to `hindcast()` or `function()`

Usage

```
## S3 method for class 'mvgam_forecast'  
summary(object, probs = c(0.025, 0.975), ...)
```

Arguments

<code>object</code>	an object of class <code>mvgam_forecast</code> obtained using either the <code>hindcast()</code> or <code>function()</code> function. This object will contain draws from the posterior distribution of hindcasts and forecasts.
<code>probs</code>	The upper and lower percentiles to be computed by the <code>quantile</code> function, in addition to the median
<code>...</code>	ignored

Value

A long-format `tibble` / `data.frame` reporting the posterior median, upper and lower percentiles of the predictions for each series at each of the timepoints that were originally supplied in `data` and, optionally, in `newdata`.

Author(s)

Nicholas J Clark

See Also

[forecast.mvgam](#), [plot.mvgam_forecast](#)

summary.mvgam_irf	<i>Posterior summary of impulse responses</i>
-------------------	---

Description

This function takes an `mvgam_irf` object and calculates a posterior summary of the impulse responses of each series to shocks from each of the other series, at all horizons

Usage

```
## S3 method for class 'mvgam_irf'
summary(object, probs = c(0.025, 0.975), ...)
```

Arguments

object	an object of class <code>mvgam_irf</code> obtained using the <code>irf()</code> function. This object will contain draws from the posterior distribution of the impulse responses.
probs	The upper and lower percentiles to be computed by the <code>quantile</code> function, in addition to the median
...	ignored

Value

A long-format `tibble` / `data.frame` reporting the posterior median, upper and lower percentiles of the impulse responses of each series to shocks from each of the other series at all horizons.

Author(s)

Nicholas J Clark

See Also

[irf](#), [plot.mvgam_irf](#)

tidy.mvgam	<i>Tidy an <code>mvgam</code> object's parameter posteriors</i>
------------	---

Description

Get parameters' posterior statistics, implementing the generic `tidy` from the package **broom**.

Usage

```
## S3 method for class 'mvgam'
tidy(x, probs = c(0.025, 0.5, 0.975), ...)
```

Arguments

x	An object of class <code>mvgam</code> .
probs	The desired probability levels of the parameters' posteriors. Defaults to <code>c(0.025, 0.5, 0.975)</code> , i.e. 2.5%, 50%, and 97.5%.
...	Unused, included for generic consistency only.

Details

The parameters are categorized by the column "type". For instance, the intercept of the observation model (i.e. the "formula" arg to `mvgam()`) has the "type" "observation_beta". The possible "type"s are:

- `observation_family_extra_param`: any extra parameters for your observation model, e.g. `sigma` for a gaussian observation model. These parameters are not directly derived from the latent trend components (contrast to `mu`).
- `observation_beta`: betas from your observation model, excluding any smooths. If your formula was `y ~ x1 + s(x2, bs='cr')`, then your intercept and `x1`'s beta would be categorized as this.
- `random_effect_group_level`: Group-level random effects parameters, i.e. the mean and `sd` of the distribution from which the specific random intercepts/slopes are considered to be drawn from.
- `random_effect_beta`: betas for the individual random intercepts/slopes.
- `trend_model_param`: parameters from your `trend_model`.
- `trend_beta`: analog of "observation_beta", but for any `trend_formula`.
- `trend_random_effect_group_level`: analog of "random_effect_group_level", but for any `trend_formula`.
- `trend_random_effect_beta`: analog of "random_effect_beta", but for any `trend_formula`.

Additionally, GP terms can be incorporated in several ways, leading to different "type"s (or absence!):

- `s(bs = "gp")`: No parameters returned.
- `gp()` in `formula`: "type" of "observation_param".
- `gp()` in `trend_formula`: "type" of "trend_formula_param".
- `GP()` in `trend_model`: "type" of "trend_model_param".

Value

A `tibble` containing:

- "parameter": The parameter in question.
- "type": The component of the model that the parameter belongs to (see details).
- "mean": The posterior mean.
- "sd": The posterior standard deviation.
- percentile(s): Any percentiles of interest from these posteriors.

See Also

Other tidiers: [augment.mvgam\(\)](#)

Examples

```
## Not run:
set.seed(0)
simdat <- sim_mvgam(
  T = 100,
  n_series = 3,
  trend_model = AR(),
  prop_trend = 0.75,
  family = gaussian()
)

simdat$data_train$x <- rnorm(nrow(simdat$data_train))
simdat$data_train$year_fac <- factor(simdat$data_train$year)

mod <- mvgam(
  y ~ -1 + s(time, by = series, bs = 'cr', k = 20) + x,
  trend_formula = ~ s(year_fac, bs = 're') - 1,
  trend_model = AR(cor = TRUE),
  family = gaussian(),
  data = simdat$data_train,
  silent = 2
)

tidy(mod, probs = c(0.2, 0.5, 0.8))

## End(Not run)
```

update.mvgam

*Update an existing **mvgam** model object*

Description

This function allows a previously fitted **mvgam** model to be updated.

Usage

```
## S3 method for class 'mvgam'
update(
  object,
  formula,
  trend_formula,
  knots,
  trend_knots,
  trend_model,
```

```

family,
share_obs_params,
data,
newdata,
trend_map,
use_lv,
n_lv,
priors,
chains,
burnin,
samples,
threads,
algorithm,
lfo = FALSE,
...
)

## S3 method for class 'jsdgam'
update(
  object,
  formula,
  factor_formula,
  knots,
  factor_knots,
  data,
  newdata,
  n_lv,
  family,
  share_obs_params,
  priors,
  chains,
  burnin,
  samples,
  threads,
  algorithm,
  lfo = FALSE,
  ...
)

```

Arguments

object list object returned from `mvgam`. See [mvgam\(\)](#)

formula Optional new `formula` object. Note, `mvgam` currently does not support dynamic formula updates such as removal of specific terms with `- term`. When updating, the entire formula needs to be supplied.

trend_formula An optional `formula` object specifying the GAM process model formula. If supplied, a linear predictor will be modelled for the latent trends to capture process model evolution separately from the observation model.

Important notes:

- Should not have a response variable specified on the left-hand side (e.g., `~ season + s(year)`)
- Use `trend` instead of `series` for effects that vary across time series
- Only available for `RW()`, `AR()` and `VAR()` trend models
- In `nmix()` family models, sets up linear predictor for latent abundance
- Consider dropping one intercept using `- 1` convention to avoid estimation challenges

knots An optional `list` containing user specified knot values for basis construction. For most bases the user simply supplies the knots to be used, which must match up with the `k` value supplied. Different terms can use different numbers of knots, unless they share a covariate.

trend_knots As for `knots` above, this is an optional `list` of knot values for smooth functions within the `trend_formula`.

trend_model character or function specifying the time series dynamics for the latent trend.

Available options:

- None: No latent trend component (GAM component only, like `gam`)
- `ZMVN` or `ZMVN()`: Zero-Mean Multivariate Normal (Stan only)
- '`RW`' or `RW()`: Random Walk
- '`AR1`', '`AR2`', '`AR3`' or `AR(p = 1, 2, 3)`: Autoregressive models
- '`CAR1`' or `CAR(p = 1)`: Continuous-time AR (Ornstein–Uhlenbeck process)
- '`VAR1`' or `VAR()`: Vector Autoregressive (Stan only)
- '`PWlogistic`', '`PWlinear`' or `PW()`: Piecewise trends (Stan only)
- '`GP`' or `GP()`: Gaussian Process with squared exponential kernel (Stan only)

Additional features:

- Moving average and/or correlated process error terms available for most types (e.g., `RW(cor = TRUE)` for multivariate Random Walk)
- Hierarchical correlations possible for structured data
- See `mvgam_trends` for details and `ZMVN()` for examples

family family specifying the exponential observation family for the series.

Supported families:

- `gaussian()`: Real-valued data
- `betar()`: Proportional data on $(0, 1)$
- `lognormal()`: Non-negative real-valued data
- `student_t()`: Real-valued data
- `Gamma()`: Non-negative real-valued data
- `bernoulli()`: Binary data
- `poisson()`: Count data (default)
- `nb()`: Overdispersed count data
- `binomial()`: Count data with imperfect detection when number of trials is known (use `cbind()` to bind observations and trials)

- `beta_binomial()`: As `binomial()` but allows for overdispersion
- `nmix()`: Count data with imperfect detection when number of trials is unknown (State-Space N-Mixture model with Poisson latent states and Binomial observations)

See [mvgam_families](#) for more details.

`share_obs_params`

`logical`. If `TRUE` and the `family` has additional family-specific observation parameters (e.g., variance components, dispersion parameters), these will be shared across all outcome variables. Useful when multiple outcomes share properties. Default is `FALSE`.

`data`

A `dataframe` or `list` containing the model response variable and covariates required by the GAM formula and optional `trend_formula`.

Required columns for most models:

- `series`: A factor index of the series IDs (number of levels should equal number of unique series labels)
- `time`: `numeric` or `integer` index of time points. For most dynamic trend types, time should be measured in discrete, regularly spaced intervals (i.e., `c(1, 2, 3, ...)`). Irregular spacing is allowed for `trend_model = CAR(1)`, but zero intervals are adjusted to `1e-12` to prevent sampling errors.

Special cases:

- Models with hierarchical temporal correlation (e.g., `AR(gr = region, subgr = species)`) should NOT include a `series` identifier
- Models without temporal dynamics (`trend_model = 'None'` or `trend_model = ZMVN()`) don't require a `time` variable

`newdata`

Optional `dataframe` or `list` of test data containing the same variables as in `data`. If included, observations in variable `y` will be set to `NA` when fitting the model so that posterior simulations can be obtained.

`trend_map`

Optional `data.frame` specifying which series should depend on which latent trends. Enables multiple series to depend on the same latent trend process with different observation processes.

Required structure:

- `Column series`: Single unique entry for each series (matching factor levels in `data`)
- `Column trend`: Integer values indicating which trend each series depends on

Notes:

- Sets up latent factor model by enabling `use_lv = TRUE`
- Process model intercept is NOT automatically suppressed
- Not yet supported for continuous time models (`CAR()`)

`use_lv`

`logical`. If `TRUE`, use dynamic factors to estimate series' latent trends in a reduced dimension format. Only available for `RW()`, `AR()` and `GP()` trend models. Default is `FALSE`. See [lv_correlations](#) for examples.

`n_lv`

`integer` specifying the number of latent dynamic factors to use if `use_lv == TRUE`. Cannot exceed `n_series`. Default is `min(2, floor(n_series / 2))`.

priors	An optional <code>data.frame</code> with prior definitions or, preferably, a vector of <code>brmsprior</code> objects (see <code>prior()</code>). See <code>get_mvgam_priors()</code> and <code>Details</code> for more information.
chains	<code>integer</code> specifying the number of parallel chains for the model. Ignored for variational inference algorithms.
burnin	<code>integer</code> specifying the number of warmup iterations to tune sampling algorithms. Ignored for variational inference algorithms.
samples	<code>integer</code> specifying the number of post-warmup iterations for sampling the posterior distribution.
threads	<code>integer</code> . Experimental option for within-chain parallelisation in Stan using <code>reduce_sum</code> . Recommended only for experienced Stan users with slow models. Currently works for all families except <code>nmix()</code> and when using <code>Cmdstan</code> backend.
algorithm	Character string naming the estimation approach: <ul style="list-style-type: none"> • "sampling": MCMC (default) • "meanfield": Variational inference with factorized normal distributions • "fullrank": Variational inference with multivariate normal distribution • "laplace": Laplace approximation (<code>cmdstanr</code> only) • "pathfinder": Pathfinder algorithm (<code>cmdstanr</code> only) Can be set globally via " <code>brms.algorithm</code> " option. Limited testing suggests "meanfield" performs best among non-MCMC approximations for dynamic GAMs.
lfo	<code>logical</code> . Indicates whether this is part of <code>lfo_cv.mvgam</code> call. Returns lighter model version for speed. Users should leave as <code>FALSE</code> .
...	Other arguments to be passed to <code>mvgam</code> or <code>jsdgam</code>
factor_formula	Optional new <code>formula</code> object for the factor linear predictors
factor_knots	An optional <code>list</code> containing user specified knot values to be used for basis construction of any smooth terms in <code>factor_formula</code> . For most bases the user simply supplies the knots to be used, which must match up with the <code>k</code> value supplied (note that the number of knots is not always just <code>k</code>). Different terms can use different numbers of knots, unless they share a covariate

Value

A `list` object of class `mvgam` containing model output, the text representation of the model file, the `mgcv` model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth residuals for each outcome variable and key information needed for other functions in the package. See `mvgam-class` for details. Use `methods(class = "mvgam")` for an overview on available methods.

A `list` object of class `mvgam` containing model output, the text representation of the model file, the `mgcv` model output (for easily generating simulations at unsampled covariate values), Dunn-Smyth residuals for each series and key information needed for other functions in the package. See `mvgam-class` for details. Use `methods(class = "mvgam")` for an overview on available methods.

Author(s)

Nicholas J Clark

Examples

```

## Not run:
# Simulate some data and fit a Poisson AR1 model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())

mod <- mvgam(
  y ~ s(season, bs = 'cc'),
  trend_model = AR(),
  noncentred = TRUE,
  data = simdat$data_train,
  chains = 2
)

summary(mod)
conditional_effects(mod, type = 'link')

# Update to an AR2 model
updated_mod <- update(
  mod,
  trend_model = AR(p = 2),
  noncentred = TRUE
)

summary(updated_mod)
conditional_effects(updated_mod, type = 'link')

# Now update to a Binomial AR1 by adding information on trials
# requires that we supply newdata that contains the 'trials' variable
simdat$data_train$trials <- max(simdat$data_train$y) + 15

updated_mod <- update(
  mod,
  formula = cbind(y, trials) ~ s(season, bs = 'cc'),
  noncentred = TRUE,
  data = simdat$data_train,
  family = binomial()
)

summary(updated_mod)
conditional_effects(updated_mod, type = 'link')

## End(Not run)

```

Description

Set up latent correlated multivariate Gaussian residual processes in **mvgam**. This function does not evaluate its arguments – it exists purely to help set up a model with particular error processes

Usage

```
ZMVN(unit = time, gr = NA, subgr = series)
```

Arguments

unit	The unquoted name of the variable that represents the unit of analysis in data over which latent residuals should be correlated. This variable should be either a numeric or integer variable in the supplied data. Defaults to <code>time</code> to be consistent with other functionalities in mvgam , though note that the data need not be time series in this case. See examples below for further details and explanations
gr	An optional grouping variable, which must be a factor in the supplied data, for setting up hierarchical residual correlation structures. If specified, this will automatically set up a model where the residual correlations for a specific level of <code>gr</code> are modelled hierarchically: $\Omega_{group} = p\Omega_{global} + (1 - p)\Omega_{group,local},$ where Ω_{global} is a <i>global</i> correlation matrix, $\Omega_{group,local}$ is a <i>local deviation</i> correlation matrix, and p is a weighting parameter controlling how strongly the local correlation matrix Ω_{group} is shrunk towards the global correlation matrix Ω_{global} . If <code>gr</code> is supplied then <code>subgr</code> <i>must</i> also be supplied
subgr	A subgrouping factor variable specifying which element in data represents the different observational units. Defaults to <code>series</code> to be consistent with other functionalities in mvgam , though note that the data need not be time series in this case Models that use the hierarchical correlations (by supplying a value for <code>gr</code>) <i>should not</i> include a <code>series</code> element in data. Rather, this element will be created internally based on the supplied variables for <code>gr</code> and <code>subgr</code> For example, if you are modelling counts for a group of species (labelled as <code>species</code> in the data) across sampling sites (labelled as <code>site</code> in the data) in three different geographical regions (labelled as <code>region</code>), and you would like the residuals to be correlated within regions, then you should specify <code>unit = site</code> , <code>gr = region</code> , and <code>subgr = species</code> Internally, <code>mvgam()</code> will appropriately order the data by <code>unit</code> (in this case, by <code>site</code>) and create the <code>series</code> element for the data using something like: <code>series = as.factor(paste0(group, '_', subgroup))</code>

Value

An object of class `mvgam_trend`, which contains a list of arguments to be interpreted by the parsing functions in **mvgam**

Examples

```

## Not run:
# Simulate counts of four species over ten sampling locations
site_dat <- data.frame(
  site = rep(1:10, 4),
  species = as.factor(sort(rep(letters[1:4], 10))),
  y = c(NA, rpois(39, 3))
)
head(site_dat)

# Set up a correlated residual (i.e. Joint Species Distribution) model
trend_model <- ZMVN(unit = site, subgr = species)
mod <- mvgam(
  y ~ species,
  trend_model = ZMVN(unit = site, subgr = species),
  data = site_dat,
  chains = 2,
  silent = 2
)

# Inspect the estimated species-species residual covariances
mcmc_plot(mod, variable = 'Sigma', regex = TRUE, type = 'hist')

# A hierarchical correlation example
Sigma <- matrix(
  c(1, -0.4, 0.5,
    -0.4, 1, 0.3,
    0.5, 0.3, 1),
  byrow = TRUE,
  nrow = 3
)

make_site_dat <- function(...) {
  errors <- mgcv:::rmvnn(
    n = 30,
    mu = c(0.6, 0.8, 1.8),
    V = Sigma
  )
  site_dat <- do.call(rbind, lapply(1:3, function(spec) {
    data.frame(
      y = rpois(30, lambda = exp(errors[, spec])),
      species = paste0('species', spec),
      site = 1:30
    )
  }))
  site_dat
}

site_dat <- rbind(
  make_site_dat() %>%
    dplyr::mutate(group = 'group1'),
  make_site_dat() %>%

```

```
  dplyr::mutate(group = 'group2')
) %>%
  dplyr::mutate(
  species = as.factor(species),
  group = as.factor(group)
)

# Fit the hierarchical correlated residual model
mod <- mvgam(
  y ~ species,
  trend_model = ZMVN(unit = site, gr = group, subgr = species),
  data = site_dat,
  chains = 2,
  silent = 2
)

# Inspect the estimated species-species residual covariances
mcmc_plot(mod, variable = 'Sigma', regex = TRUE, type = 'hist')

## End(Not run)
```

Index

* **datasets**
 all_neon_tick_data, 5
 portal_data, 131

* **tidiers**
 augment.mvgam, 5
 tidy.mvgam, 171
‘mgcv’ (index-mvgam), 42

add_residuals, 48, 73
add_residuals (add_residuals.mvgam), 4
add_residuals.mvgam, 4
all_neon_tick_data, 5
and (index-mvgam), 42
AR, 106
AR (RW), 153
as.array.mvgam (mvgam_draws), 88
as.data.frame.mvgam (mvgam_draws), 88
as.matrix.mvgam (mvgam_draws), 88
as_draws.mvgam (mvgam_draws), 88
as_draws_array.mvgam (mvgam_draws), 88
as_draws_df.mvgam (mvgam_draws), 88
as_draws_list.mvgam (mvgam_draws), 88
as_draws_matrix.mvgam (mvgam_draws), 88
as_draws_rvars.mvgam (mvgam_draws), 88
augment.mvgam, 5, 150, 173
augment.mvgam(), 76, 144

bam, 66
bayesplot, 140
beroulli, 92
beroulli (mvgam_families), 91
beta_binomial, 92
beta_binomial (mvgam_families), 91
betar, 92
betar (mvgam_families), 91
binomial, 92

CAR, 106
CAR (RW), 153
citation, 41

code, 7
coef.mvgam (summary.mvgam), 167
coefficient (index-mvgam), 42
compare_mvgams, 57
compare_mvgams (evaluate_mvgams), 15
conditional_effects.mvgam, 8, 112, 127
conditional_effects.mvgam(), 76

datagrid(), 102
dplyr::filter(), 102
draw.mvgam (gratia_mvgam_enhancements), 34
drawDotmvgam
 (gratia_mvgam_enhancements), 34
dynamic, 11, 98
dynamic(), 76

ensemble, 159
ensemble (ensemble.mvgam_forecast), 13
ensemble.mvgam_forecast, 13
ensemble.mvgam_forecast(), 23
eval_mvgam (evaluate_mvgams), 15
eval_smooth.hilbert.smooth
 (gratia_mvgam_enhancements), 34
eval_smooth.mod.smooth
 (gratia_mvgam_enhancements), 34
eval_smooth.moi.smooth
 (gratia_mvgam_enhancements), 34
eval_smoothDothilbertDotsmooth
 (gratia_mvgam_enhancements), 34
eval_smoothDotmodDotsmooth
 (gratia_mvgam_enhancements), 34
eval_smoothDotmoiDotsmooth
 (gratia_mvgam_enhancements), 34
evaluate_mvgams, 15

fevd, 165, 169
fevd (fevd.mvgam), 19
fevd(), 44, 96, 114
fevd.mvgam, 19

find_predictors.mvgam
 (mvgam_marginaleffects), 100
 find_predictors.mvgam_prefit
 (mvgam_marginaleffects), 100
 fitted.mvgam, 6, 20
 fitted.mvgam(), 6, 40, 76, 144
 forecast, 17, 57, 97, 98
 forecast.mvgam, 22, 60, 98, 132, 134, 136,
 159, 170
 forecast.mvgam(), 13, 40, 76, 77, 144, 158
 formula, 65, 99
 formula.gam, 99
 formula.mvgam, 25
 formula.mvgam_prefit (formula.mvgam), 25

 gam, 27, 66, 71, 77, 99, 105, 127, 162, 175
 gam.models, 77, 99
 Gamma, 92
 gamObject, 86
 gaussian, 92
 get_coef.mvgam (mvgam_marginaleffects),
 100
 get_data.mvgam (mvgam_marginaleffects),
 100
 get_data.mvgam_prefit
 (mvgam_marginaleffects), 100
 get_mvgam_priors, 26, 47, 48, 106
 get_mvgam_priors(), 72, 75–77, 177
 get_predict.mvgam
 (mvgam_marginaleffects), 100
 get_vcov.mvgam (mvgam_marginaleffects),
 100
 ggplot, 9, 64, 114
 ggplot2::coord_sf(), 37, 38
 ggplot2::geom_contour(), 37
 ggplot2::ggplot(), 38
 ggplot2::guide_axis(), 37
 glm, 98
 GP, 32, 106
 gp, 33, 76, 99
 gp.smooth, 11
 gratia_mvgam_enhancements, 34, 112, 127

 hindcast, 97
 hindcast (hindcast.mvgam), 39
 hindcast.mvgam, 21, 22, 39, 98, 133, 135, 136
 hindcast.mvgam(), 23, 76, 77, 144
 how_to_cite (how_to_cite.mvgam), 40
 how_to_cite(), 76

 how_to_cite.mvgam, 40

 Index (index-mvgam), 42
 index-mvgam, 42
 insight::find_predictors(), 103
 insight::get_data(), 102, 103
 irf, 99, 165, 171
 irf (irf.mvgam), 43
 irf(), 19, 115
 irf.mvgam, 43

 jagam, 75, 77, 99, 168
 jsdgam, 27, 29, 41, 45, 48, 98, 177
 jsdgam(), 41, 77, 105, 108, 109, 116, 151, 152

 lfo_cv, 17, 60
 lfo_cv (lfo_cv.mvgam), 55
 lfo_cv.mvgam, 55, 74, 177
 lfo_cv.mvgam(), 76
 log_posterior.mvgam
 (mvgam_diagnostics), 87
 logLik.mvgam, 58
 lognormal, 92
 lognormal (mvgam_families), 91
 loo.mvgam, 59
 loo::loo(), 59, 60
 loo::loo_compare(), 60
 loo_compare.mvgam (loo.mvgam), 59
 loo_compare.mvgam(), 76
 lv_correlations, 28, 62, 72, 176
 lv_correlations(), 116, 152

 marginaleffects::get_coef(), 103
 marginaleffects::get_predict(), 103
 marginaleffects::get_vcov(), 103
 marginaleffects::set_coef(), 103
 mcmc_pairs, 110
 mcmc_plot.mvgam, 63
 mcmc_plot.mvgam(), 76
 mgcv::exclude.too.far(), 37
 mgcv::plot.gam(), 36
 model.frame.mvgam, 65
 model.frame.mvgam_prefit
 (model.frame.mvgam), 65
 monotonic, 65
 mvgam, 29, 41, 48, 59, 66, 69, 85, 87, 98, 99,
 106, 147, 160, 163, 177
 mvgam(), 4, 19, 23, 36, 39, 41–43, 49, 55, 62,
 97, 111, 117, 119, 121–123, 126,

128, 130, 132, 134, 136, 138, 143,
 151, 164, 174
 mvgam-class, 85
 mvgam_diagnostics, 87
 mvgam_draws, 64, 88
 mvgam_families, 28, 47, 71, 74, 76, 91, 176
 mvgam_fevd-class, 96
 mvgam_forecast-class, 97
 mvgam_formulae, 26, 29, 46, 70, 74, 98
 mvgam_irf-class, 99
 mvgam_marginaleffects, 100
 mvgam_residcor-class, 104
 mvgam_trends, 27, 71, 74, 76, 105, 162, 175
 mvgam_use_cases, 74, 106

 names(index-mvgam), 42
 nb, 92
 nb(mvgam_families), 91
 neff_ratio(mvgam_diagnostics), 87
 nmix(mvgam_families), 91
 nuts_params(mvgam_diagnostics), 87

 offset, 99
 ordinate(ordinate.jsdgam), 108
 ordinate.jsdgam, 108

 pairs, 110
 pairs.mvgam, 110
 pairs.mvgam(), 76
 par, 119, 138
 patchwork::plot_layout(), 37
 plot.gam, 112, 126, 127
 plot.mvgam, 111
 plot.mvgam(), 76
 plot.mvgam_conditional_effects
 (conditional_effects.mvgam), 8
 plot.mvgam_fevd, 114, 169
 plot.mvgam_forecast, 14, 170
 plot.mvgam_forecast
 (plot_mvgam_forecasts), 118
 plot.mvgam_forecast(), 23, 40
 plot.mvgam_irf, 115, 171
 plot.mvgam_irf(), 44
 plot.mvgam_lfo, 115
 plot.mvgam_residcor, 116
 plot.mvgam_residcor(), 62
 plot_mvgam_factors, 112, 117
 plot_mvgam_fc, 112, 132, 134, 136

 plot_mvgam_fc(plot_mvgam_forecasts),
 118
 plot_mvgam_forecasts, 118
 plot_mvgam_pterms, 121
 plot_mvgam_ranomeffects, 112, 122
 plot_mvgam_resids, 112, 123
 plot_mvgam_series, 76, 124
 plot_mvgam_smooth, 112, 126
 plot_mvgam_trend, 112, 128
 plot_mvgam_uncertainty, 112, 130
 plot_predictions, 9, 76, 112
 plot_slopes, 9, 76, 112
 poisson, 92
 portal_data, 131
 posterior_epred.mvgam, 21, 22, 131, 135,
 136, 150
 posterior_linpred.mvgam, 133, 133, 136
 posterior_predict.mvgam, 131, 133, 135,
 135
 pp_check(pp_check.mvgam), 139
 pp_check.mvgam, 138, 139, 139
 pp_check.mvgam(), 76
 PPC, 140
 ppc, 140, 141
 ppc(ppc.mvgam), 137
 ppc.mvgam, 137
 predict.gam, 144
 Predict.matrix.mod.smooth(monotonic),
 65
 Predict.matrix.moi.smooth(monotonic),
 65
 predict.mvgam, 21, 22, 139–141, 142, 150
 predict.mvgam(), 40, 76, 77
 prepare_predictions, 21
 print.mvgam, 145
 print.mvgam_conditional_effects
 (conditional_effects.mvgam), 8
 print.mvgam_summary, 146
 prior, 29, 47, 72, 76, 177
 PW, 106, 147

 residual_cor(residual_cor.jsdgam), 151
 residual_cor(), 49, 62, 104, 105, 109, 116
 residual_cor.jsdgam, 151
 residuals.mvgam, 6, 149
 residuals.mvgam(), 6
 rhat(mvgam_diagnostics), 87
 roll_eval_mvgam(evaluate_mvgams), 15
 RW, 106, 153

RW(), 151
s, 76, 98, 99
sampling, 74
score, 17, 57
score(score.mvgam_forecast), 157
score.mvgam_forecast, 14, 60, 157
score.mvgam_forecast(), 23, 76
series_to_mvgam, 160
set_coef.mvgam(mvgam_marginaleffects),
 100
sim_mvgam, 161
smooth.construct, 66
smooth.construct.mod.smooth.spec
 (monotonic), 65
smooth.construct.moi.smooth.spec, 98
smooth.construct.moi.smooth.spec
 (monotonic), 65
smooth.construct.re.smooth.spec, 75
stability(stability.mvgam), 163
stability(), 19, 44, 99
stability.mvgam, 163
stan, 87
stancode.mvgam(code), 7
stancode.mvgam_prefit(code), 7
standata.mvgam_prefit(code), 7
student, 92
student(mvgam_families), 91
student_t(mvgam_families), 91
subset(), 102
summary.gam, 168
summary.mvgam, 167
summary.mvgam(), 76
summary.mvgam_fevd, 169
summary.mvgam_forecast, 170
summary.mvgam_forecast(), 23, 40
summary.mvgam_irf, 171
summary.mvgam_irf(), 44
summary.mvgam_prefit(summary.mvgam),
 167
t2, 98
te, 76, 98
terms, 65
their(index-mvgam), 42
ti, 76, 98
tidy.mvgam, 6, 171
ts, 160
tweedie(mvgam_families), 91
update.jsdgam(update.mvgam), 173
update.mvgam, 17, 173
update.mvgam(), 74
VAR, 99, 106, 165
VAR(RW), 153
VAR(), 19, 43, 44, 97, 151
variables(index-mvgam), 42
vb, 74
xts, 160
ZMVN, 106, 178
ZMVN(), 27, 71, 175