Package ‘mlsurvirnrs’
January 17, 2026

Title R6-Based ML Survival Learners for 'mlexperiments’
Version 0.0.8

Description Enhances 'mlexperiments'
<https://CRAN.R-project.org/package=mlexperiments> with additional
machine learning ('ML') learners for survival analysis. The package
provides R6-based survival learners for the following algorithms:

'elmnet’ <https://CRAN.R-project.org/package=glmnet>, 'ranger'
<https://CRAN.R-project.org/package=ranger>, 'xgboost'
<https://CRAN.R-project.org/package=xghoost>, and 'rpart'
<https://CRAN.R-project.org/package=rpart>. These can be used directly
with the 'mlexperiments' R package.

License GPL (>=3)
URL https://github.com/kapsner/mlsurvlrnrs

BugReports https://github.com/kapsner/mlsurvlrnrs/issues
Depends R (>=4.1.0)

Imports data.table, kdry, mlexperiments (>= 1.0.0), mllrnrs (>=
0.0.8), R6, stats

Suggests glmnet, lintr, measures, parallel, quarto, ranger,
rBayesianOptimization, rpart, splitTools, survival, testthat
(>=3.0.1), xgboost >=3.1.2.1)

VignetteBuilder quarto
Config/testthat/edition 3
Config/testthat/parallel false
Date/Publication 2026-01-17 10:50:02 UTC
Encoding UTF-8

SystemRequirements Quarto command line tools
(https://github.com/quarto-dev/quarto-cli).

RoxygenNote 7.3.3
NeedsCompilation no

Author Lorenz A. Kapsner [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0003-1866-860X>)

1


https://CRAN.R-project.org/package=mlexperiments
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=rpart
https://github.com/kapsner/mlsurvlrnrs
https://github.com/kapsner/mlsurvlrnrs/issues
https://orcid.org/0000-0003-1866-860X

2 c_index

Maintainer Lorenz A. Kapsner <lorenz.kapsner@gmail.com>
Repository CRAN

Contents
cindex . ... e 2
LearnerSurvCoxPHCox . . . . . . . . . . . e 3
LearnerSurvGImnetCox . . . . . . . . . . . L e e 5
LearnerSurvRangerCox . . . . . . . . . . . ... 7
LearnerSurvRpartCox . . . . . . . . . . e 10
LearnerSurvXgboostAft . . . . . . .. L 13
LearnerSurvXgboostCox . . . . . . . . . . L e 16

Index 19

c_index c_index
Description

Calculate the Harrell’s concordance index (C-index)

Usage

c_index(ground_truth, predictions)

Arguments

ground_truth A survival::Surv object with the ground truth.

predictions A vector with predictions.

Details

A wrapper function around glmnet: :Cindex() for use with mlexperiments.

See Also

glmnet: :Cindex ()

Examples

if (requireNamespace("survival”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE)) {
set.seed(123)
gt <- survival::Surv(
time = rnorm(100, 50, 15),
event = sample(@:1, 100, TRUE)



LearnerSurvCoxPHCox 3

preds <- rbeta(100, 2, 5)

c_index(gt, preds)
}

LearnerSurvCoxPHCox R6 Class to construct a Cox proportional hazards survival learner

Description

The LearnerSurvCoxPHCox class is the interface to perform a Cox regression with the survival R
package for use with the mlexperiments package.

Details

Can be used with

* mlexperiments::MLCross Validation

Super class

mlexperiments: :MLLearnerBase -> LearnerSurvCoxPHCox

Methods
Public methods:

e LearnerSurvCoxPHCox$new()
e LearnerSurvCoxPHCox$clone()

Method new(): Create a new LearnerSurvCoxPHCox object.
Usage:
LearnerSurvCoxPHCox$new()
Returns: A new LearnerSurvCoxPHCox R6 object.
Examples:

if (requireNamespace("survival”, quietly = TRUE)) {
LearnerSurvCoxPHCox$new()

3

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurvCoxPHCox$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.



4 LearnerSurvCoxPHCox

See Also

survival::coxph()

Examples

# survival analysis

if (requireNamespace("survival”, quietly = TRUE) &&
requireNamespace(”glmnet”, quietly = TRUE) &&
requireNamespace("splitTools"”, quietly = TRUE)) {

dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()

dataset <- dataset[get("etype"”) == 2, ]

seed <- 123
surv_cols <- c("status”, "time",

)

)
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans”,
k =4

)

train_x <- model.matrix(
~ -1+,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”

)

fold_list <- splitTools::create_folds(
y = split_vector,
k =3,
type = "stratified”,
seed = seed

surv_coxph_cox_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvCoxPHCox$new(),
fold_list = fold_list,
ncores = 1L,
seed = seed



LearnerSurvGImnetCox 5

surv_coxph_cox_optimizer$performance_metric <- c_index

# set data
surv_coxph_cox_optimizer$set_data(
X = train_x,
y = train_y

)

surv_coxph_cox_optimizer$execute()

oo
## Method ~LearnerSurvCoxPHCox$new™
e

if (requireNamespace(”survival”, quietly = TRUE)) {
LearnerSurvCoxPHCox$new()

}

LearnerSurvGlmnetCox  R6 Class to construct a Glmnet survival learner for Cox regression

Description
The LearnerSurvGlmnetCox class is the interface to perform a Cox regression with the glmnet R
package for use with the mlexperiments package.

Details
Optimization metric: C-index Can be used with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerSurvGlmnetCox

Methods
Public methods:

e LearnerSurvGlmnetCox$new()
e LearnerSurvGlmnetCox$clone()

Method new(): Create a new LearnerSurvGlmnetCox object.



6 LearnerSurvGlmnetCox

Usage:
LearnerSurvGlmnetCox$new()

Returns: A new LearnerSurvGlmnetCox R6 object.

Examples:

if (requireNamespace("glmnet”, quietly = TRUE)) {
LearnerSurvGlmnetCox$new()

3

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurvGlmnetCox$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

glmnet::glmnet(), glmnet: :cv.glmnet()

Examples

# survival analysis

if (requireNamespace(”survival”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("splitTools”, quietly = TRUE)) {

dataset <- survival::colon |>
data.table::as.data.table() [>
na.omit()

dataset <- dataset[get("etype”) == 2, 1]

seed <- 123
surv_cols <- c("status”, "time"”, "rx")

feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

param_list_glmnet <- expand.grid(
alpha = seq(@, 1, .2)
)

ncores <- 2L

split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans”,
k =4

)

train_x <- model.matrix(



LearnerSurvRangerCox

~ -1+,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”

fold_list <- splitTools::create_folds(
y = split_vector,
k =3,
type = "stratified”,
seed = seed

surv_glmnet_cox_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvGlmnetCox$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed

)

surv_glmnet_cox_optimizer$learner_args <- list(
alpha = 0.8,
lambda = 0.002

)

surv_glmnet_cox_optimizer$performance_metric <- c_index

# set data
surv_glmnet_cox_optimizer$set_data(
X = train_x,
y = train_y
)

surv_glmnet_cox_optimizer$execute()

B m o
## Method ~LearnerSurvGlmnetCox$new”
B m o

if (requireNamespace("glmnet”, quietly = TRUE)) {
LearnerSurvGlmnetCox$new()

3

LearnerSurvRangerCox R6 Class to construct a Ranger survival learner for Cox regression




8 LearnerSurvRangerCox

Description

The LearnerSurvRangerCox class is the interface to perform a Cox regression with the ranger R
package for use with the mlexperiments package.

Details

Optimization metric: C-index Can be used with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super class

mlexperiments: :MLLearnerBase -> LearnerSurvRangerCox

Methods

Public methods:

e LearnerSurvRangerCox$new()
* LearnerSurvRangerCox$clone()

Method new(): Create a new LearnerSurvRangerCox object.

Usage:
LearnerSurvRangerCox$new()

Returns: A new LearnerSurvRangerCox R6 object.

Examples:

if (requireNamespace("ranger”, quietly = TRUE)) {
LearnerSurvRangerCox$new()

b

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerSurvRangerCox$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ranger::ranger()



LearnerSurvRangerCox

Examples

# survival analysis

if (requireNamespace(”survival”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("ranger"”, quietly = TRUE) &&
requireNamespace("splitTools"”, quietly = TRUE)) {

dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()

dataset <- dataset[get("etype"”) == 2, ]

seed <- 123
surv_cols <- c("status”, "time",

n

rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

param_list_ranger <- expand.grid(
sample.fraction = seq(0.6, 1, .2),
min.node.size = seq(1, 5, 4),
mtry = seq(2, 6, 2),
num.trees = c(5L, 10L),
max.depth = seq(1, 5, 4)

ncores <- 2L

split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans”,
k =4

)

train_x <- model.matrix(
~ =1+ .,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”

)

fold_list <- splitTools::create_folds(
y = split_vector,
k =3
type = "stratified”,
seed = seed



10 LearnerSurvRpartCox

surv_ranger_cox_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvRangerCox$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
surv_ranger_cox_optimizer$learner_args <- as.list(
data.table: :data.table(param_list_ranger[1, ], stringsAsFactors = FALSE)
)

surv_ranger_cox_optimizer$performance_metric <- c_index

# set data
surv_ranger_cox_optimizer$set_data(

X = train_x,
y = train_y

)

surv_ranger_cox_optimizer$execute()

oo
## Method ~LearnerSurvRangerCox$new”
H m o

if (requireNamespace("ranger”, quietly = TRUE)) {
LearnerSurvRangerCox$new()

}

LearnerSurvRpartCox LearnerSurvRpartCox R6 class

Description
This learner is a wrapper around rpart: :rpart() in order to fit recursive partitioning and regres-
sion trees with survival data.

Details
Optimization metric: C-index * Can be used with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Implemented methods:

* $fit To fit the model.
* $predict To predict new data with the model.



LearnerSurvRpartCox 11

* $cross_validation To perform a grid search (hyperparameter optimization).
* $bayesian_scoring_function To perform a Bayesian hyperparameter optimization.

Parameters that are specified with parameter_grid and/or learner_args are forwarded to rpart’s
argument control (see rpart::rpart.control() for further details).

Super class

mlexperiments: :MLLearnerBase -> LearnerSurvRpartCox

Methods
Public methods:

e LearnerSurvRpartCox$new()
* LearnerSurvRpartCox$clone()

Method new(): Create a new LearnerSurvRpartCox object.
Usage:
LearnerSurvRpartCox$new()

Details: This learner is a wrapper around rpart: : rpart() in order to fit recursive partitioning
and regression trees with survival data.

Examples:

if (requireNamespace("rpart”, quietly = TRUE)) {
LearnerSurvRpartCox$new()

3

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurvRpartCox$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

rpart::rpart(), c_index(), rpart::rpart.control()

rpart::rpart(), c_index(),

Examples

# survival analysis

if (requireNamespace(”survival”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("rpart”, quietly = TRUE) &&
requireNamespace("splitTools"”, quietly = TRUE)) {

dataset <- survival::colon |>



12

data.table::as.data.table() |>
na.omit()
dataset <- dataset[get("etype") == 2, ]
seed <- 123
surv_cols <- c("status”, "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
ncores <- 2L
split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans”,
k =4
)
train_x <- model.matrix(
~ -1+
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]

)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”
)

fold_list <- splitTools::create_folds(
y = split_vector,
k = 3,
type = "stratified”,
seed = seed

surv_rpart_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvRpartCox$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed

)

surv_rpart_optimizer$learner_args <- list(
minsplit = 10L,
maxdepth = 20L,
cp = 0.03,
method = "exp”

)

surv_rpart_optimizer$performance_metric <- c_index

# set data
surv_rpart_optimizer$set_data(
X = train_x,

LearnerSurvRpartCox



LearnerSurvXgboostAft 13

y = train_y
)

surv_rpart_optimizer$execute()

}

et
## Method ~LearnerSurvRpartCox$new”
H m o

if (requireNamespace("rpart”, quietly = TRUE)) {
LearnerSurvRpartCox$new()

}

LearnerSurvXgboostAft R6 Class to construct a Xgboost survival learner for accelerated fail-
ure time models

Description
The LearnerSurvXgboostAft class is the interface to accelerated failure time models with the
xgboost R package for use with the mlexperiments package.

Details

Optimization metric: needs to be specified with the learner parameter eval_metric. Can be used
with

* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV
Also see the official xgboost documentation on aft models: https://xgboost.readthedocs.io/
en/stable/tutorials/aft_survival_analysis.html
Super classes

mlexperiments: :MLLearnerBase ->mllrnrs: :LearnerXgboost -> LearnerSurvXgboostAft

Methods

Public methods:

e LearnerSurvXgboostAft$new()
¢ LearnerSurvXgboostAft$clone()

Method new(): Create a new LearnerSurvXgboostAft object.


https://xgboost.readthedocs.io/en/stable/tutorials/aft_survival_analysis.html
https://xgboost.readthedocs.io/en/stable/tutorials/aft_survival_analysis.html

14 LearnerSurvXgboostAft

Usage:

LearnerSurvXgboostAft$new(metric_optimization_higher_better)

Arguments:

metric_optimization_higher_better A logical. Defines the direction of the optimization
metric used throughout the hyperparameter optimization.

Returns: A new LearnerSurvXgboostAft R6 object.

Examples:

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerSurvXgboostAft$new(metric_optimization_higher_better = FALSE)
}

Method clone(): The objects of this class are cloneable with this method.
Usage:
LearnerSurvXgboostAft$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

xgboost: :xgb.train(), xgboost: :xgb.cv()

Examples

# execution time >2.5 sec

if (requireNamespace(”survival”, quietly = TRUE) &&
requireNamespace(”glmnet"”, quietly = TRUE) &&
requireNamespace("xgboost”, quietly = TRUE) &&
requireNamespace("splitTools"”, quietly = TRUE)) {

# survival analysis
Sys.setenv(”"OMP_THREAD_LIMIT" = 2)

dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()

dataset <- dataset[get("etype"”) == 2, ]

seed <- 123
surv_cols <- c("status”, "time"”, "rx")

feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

param_list_xgboost <- expand.grid(
objective = "survival:aft”,
eval_metric = "aft-nloglik”,
subsample = seq(@.6, 1, .2),
colsample_bytree = seq(0.6, 1, .2),



LearnerSurvXgboostAft

min_child_weight = seq(1, 5, 4),
learning_rate = c(0.1, 0.2),
max_depth = seq(1, 5, 4)

)

ncores <- 2L

split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],

strategy = "kmeans”,
k =4
)
train_x <- model.matrix(
~ -1+,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]

)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”

)

fold_list <- splitTools::create_folds(
y = split_vector,
k =3,
type = "stratified”,
seed = seed

)

surv_xgboost_aft_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvXgboostAft$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
surv_xgboost_aft_optimizer$learner_args <- c(as.list(
param_list_xgboost[1, 1),
nrounds = 45L
)

surv_xgboost_aft_optimizer$performance_metric <- c_index

# set data
surv_xgboost_aft_optimizer$set_data(
X = train_x,
y = train_y

)

surv_xgboost_aft_optimizer$execute()

15



16 LearnerSurvXgboostCox

i mm
## Method ~LearnerSurvXgboostAft$new™
HHE m oo

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerSurvXgboostAft$new(metric_optimization_higher_better = FALSE)

}

LearnerSurvXgboostCox R6 Class to construct a Xgboost survival learner for Cox regression

Description

The LearnerSurvXgboostCox class is the interface to perform a Cox regression with the xgboost
R package for use with the mlexperiments package.

Details
Optimization metric: needs to be specified with the learner parameter eval_metric. Can be used
with
* mlexperiments::MLTuneParameters
* mlexperiments::MLCrossValidation

* mlexperiments::MLNestedCV

Super classes

mlexperiments: :MLLearnerBase ->mllrnrs: :LearnerXgboost -> LearnerSurvXgboostCox

Methods
Public methods:

e LearnerSurvXgboostCox$new()
e LearnerSurvXgboostCox$clone()

Method new(): Create a new LearnerSurvXgboostCox object.

Usage:
LearnerSurvXgboostCox$new(metric_optimization_higher_better)

Arguments:

metric_optimization_higher_better A logical. Defines the direction of the optimization
metric used throughout the hyperparameter optimization.

Returns: A new LearnerSurvXgboostCox R6 object.

Examples:



LearnerSurvXgboostCox

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerSurvXgboostCox$new(metric_optimization_higher_better = FALSE)

3

Method clone(): The objects of this class are cloneable with this method.

Usage:
LearnerSurvXgboostCox$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

xgboost: :xgbh.train(), xgboost: :xgb.cv()

Examples

# execution time >2.5 sec

if (requireNamespace(”survival”, quietly = TRUE) &&
requireNamespace("glmnet”, quietly = TRUE) &&
requireNamespace("xgboost”, quietly = TRUE) &&
requireNamespace("splitTools”, quietly = TRUE)) {

# survival analysis
Sys.setenv("OMP_THREAD_LIMIT" = 2)

dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()

dataset <- dataset[get("etype"”) == 2, ]

seed <- 123
surv_cols <- c("status”, "time",

n

rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

param_list_xgboost <- expand.grid(
objective = "survival:cox",
eval_metric = "cox-nloglik”,
subsample = seq(@.6, 1, .2),
colsample_bytree = seq(@.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = c(0.1, 0.2),
max_depth = seq(1, 5, 4)

)

ncores <- 2L

split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans”,
k =4

17



LearnerSurvXgboostCox

)

train_x <- model.matrix(
~ =1+ .,
dataset[, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
train_y <- survival::Surv(
event = (dataset[, get("status")] |>
as.character() |>
as.integer()),
time = dataset[, get("time")],
type = "right”

)

fold_list <- splitTools::create_folds(
y = split_vector,
k =3
type = "stratified”,
seed = seed

)

surv_xgboost_cox_optimizer <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
surv_xgboost_cox_optimizer$learner_args <- c(as.list(
param_list_xgboost[1, 1),
nrounds = 45L

)

surv_xgboost_cox_optimizer$performance_metric <- c_index

# set data
surv_xgboost_cox_optimizer$set_data(
X = train_x,
y = train_y
)

surv_xgboost_cox_optimizer$execute()

oo
## Method ~LearnerSurvXgboostCox$new™
H m o

if (requireNamespace("xgboost”, quietly = TRUE)) {
LearnerSurvXgboostCox$new(metric_optimization_higher_better = FALSE)

}



Index

c_index, 2
c_index(), 11

glmnet: :Cindex(), 2
glmnet::cv.glmnet(), 6
glmnet: :glmnet(), 6

LearnerSurvCoxPHCox, 3
LearnerSurvGlmnetCox, 5
LearnerSurvRangerCox, 7
LearnerSurvRpartCox, 10
LearnerSurvXgboostAft, 13
LearnerSurvXgboostCox, 16

mlexperiments: :MLCrossValidation, 3, 5,
8,10,13,16

mlexperiments::MLLearnerBase, 3, 5, 8, 11,
13,16

mlexperiments: :MLNestedCV, 5, 8, 10, 13, 16

mlexperiments: :MLTuneParameters, 5, §,
10, 13,16

mllrnrs::LearnerXgboost, 13, 16

ranger::ranger(), 8
rpart::rpart(), 10, 11
rpart::rpart.control(), /1

survival: :coxph(), 4

xgboost::xgh.cv(), 14, 17
xgboost: :xgb.train(), 14, 17

19



	c_index
	LearnerSurvCoxPHCox
	LearnerSurvGlmnetCox
	LearnerSurvRangerCox
	LearnerSurvRpartCox
	LearnerSurvXgboostAft
	LearnerSurvXgboostCox
	Index

